1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/spi/spi.h>
21 #include <linux/spi/spi-mem.h>
22
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)23 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
24 {
25 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
26 spinand->scratchbuf);
27 int ret;
28
29 ret = spi_mem_exec_op(spinand->spimem, &op);
30 if (ret)
31 return ret;
32
33 *val = *spinand->scratchbuf;
34 return 0;
35 }
36
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)37 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
38 {
39 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
40 spinand->scratchbuf);
41
42 *spinand->scratchbuf = val;
43 return spi_mem_exec_op(spinand->spimem, &op);
44 }
45
spinand_read_status(struct spinand_device * spinand,u8 * status)46 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
47 {
48 return spinand_read_reg_op(spinand, REG_STATUS, status);
49 }
50
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)51 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
52 {
53 struct nand_device *nand = spinand_to_nand(spinand);
54
55 if (WARN_ON(spinand->cur_target < 0 ||
56 spinand->cur_target >= nand->memorg.ntargets))
57 return -EINVAL;
58
59 *cfg = spinand->cfg_cache[spinand->cur_target];
60 return 0;
61 }
62
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)63 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
64 {
65 struct nand_device *nand = spinand_to_nand(spinand);
66 int ret;
67
68 if (WARN_ON(spinand->cur_target < 0 ||
69 spinand->cur_target >= nand->memorg.ntargets))
70 return -EINVAL;
71
72 if (spinand->cfg_cache[spinand->cur_target] == cfg)
73 return 0;
74
75 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
76 if (ret)
77 return ret;
78
79 spinand->cfg_cache[spinand->cur_target] = cfg;
80 return 0;
81 }
82
83 /**
84 * spinand_upd_cfg() - Update the configuration register
85 * @spinand: the spinand device
86 * @mask: the mask encoding the bits to update in the config reg
87 * @val: the new value to apply
88 *
89 * Update the configuration register.
90 *
91 * Return: 0 on success, a negative error code otherwise.
92 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)93 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
94 {
95 int ret;
96 u8 cfg;
97
98 ret = spinand_get_cfg(spinand, &cfg);
99 if (ret)
100 return ret;
101
102 cfg &= ~mask;
103 cfg |= val;
104
105 return spinand_set_cfg(spinand, cfg);
106 }
107
108 /**
109 * spinand_select_target() - Select a specific NAND target/die
110 * @spinand: the spinand device
111 * @target: the target/die to select
112 *
113 * Select a new target/die. If chip only has one die, this function is a NOOP.
114 *
115 * Return: 0 on success, a negative error code otherwise.
116 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)117 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
118 {
119 struct nand_device *nand = spinand_to_nand(spinand);
120 int ret;
121
122 if (WARN_ON(target >= nand->memorg.ntargets))
123 return -EINVAL;
124
125 if (spinand->cur_target == target)
126 return 0;
127
128 if (nand->memorg.ntargets == 1) {
129 spinand->cur_target = target;
130 return 0;
131 }
132
133 ret = spinand->select_target(spinand, target);
134 if (ret)
135 return ret;
136
137 spinand->cur_target = target;
138 return 0;
139 }
140
spinand_read_cfg(struct spinand_device * spinand)141 static int spinand_read_cfg(struct spinand_device *spinand)
142 {
143 struct nand_device *nand = spinand_to_nand(spinand);
144 unsigned int target;
145 int ret;
146
147 for (target = 0; target < nand->memorg.ntargets; target++) {
148 ret = spinand_select_target(spinand, target);
149 if (ret)
150 return ret;
151
152 /*
153 * We use spinand_read_reg_op() instead of spinand_get_cfg()
154 * here to bypass the config cache.
155 */
156 ret = spinand_read_reg_op(spinand, REG_CFG,
157 &spinand->cfg_cache[target]);
158 if (ret)
159 return ret;
160 }
161
162 return 0;
163 }
164
spinand_init_cfg_cache(struct spinand_device * spinand)165 static int spinand_init_cfg_cache(struct spinand_device *spinand)
166 {
167 struct nand_device *nand = spinand_to_nand(spinand);
168 struct device *dev = &spinand->spimem->spi->dev;
169
170 spinand->cfg_cache = devm_kcalloc(dev,
171 nand->memorg.ntargets,
172 sizeof(*spinand->cfg_cache),
173 GFP_KERNEL);
174 if (!spinand->cfg_cache)
175 return -ENOMEM;
176
177 return 0;
178 }
179
spinand_init_quad_enable(struct spinand_device * spinand)180 static int spinand_init_quad_enable(struct spinand_device *spinand)
181 {
182 bool enable = false;
183
184 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
185 return 0;
186
187 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
188 spinand->op_templates.write_cache->data.buswidth == 4 ||
189 spinand->op_templates.update_cache->data.buswidth == 4)
190 enable = true;
191
192 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
193 enable ? CFG_QUAD_ENABLE : 0);
194 }
195
spinand_ecc_enable(struct spinand_device * spinand,bool enable)196 static int spinand_ecc_enable(struct spinand_device *spinand,
197 bool enable)
198 {
199 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
200 enable ? CFG_ECC_ENABLE : 0);
201 }
202
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)203 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
204 {
205 struct nand_device *nand = spinand_to_nand(spinand);
206
207 if (spinand->eccinfo.get_status)
208 return spinand->eccinfo.get_status(spinand, status);
209
210 switch (status & STATUS_ECC_MASK) {
211 case STATUS_ECC_NO_BITFLIPS:
212 return 0;
213
214 case STATUS_ECC_HAS_BITFLIPS:
215 /*
216 * We have no way to know exactly how many bitflips have been
217 * fixed, so let's return the maximum possible value so that
218 * wear-leveling layers move the data immediately.
219 */
220 return nanddev_get_ecc_conf(nand)->strength;
221
222 case STATUS_ECC_UNCOR_ERROR:
223 return -EBADMSG;
224
225 default:
226 break;
227 }
228
229 return -EINVAL;
230 }
231
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)232 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
233 struct mtd_oob_region *region)
234 {
235 return -ERANGE;
236 }
237
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)238 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
239 struct mtd_oob_region *region)
240 {
241 if (section)
242 return -ERANGE;
243
244 /* Reserve 2 bytes for the BBM. */
245 region->offset = 2;
246 region->length = 62;
247
248 return 0;
249 }
250
251 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
252 .ecc = spinand_noecc_ooblayout_ecc,
253 .free = spinand_noecc_ooblayout_free,
254 };
255
spinand_ondie_ecc_init_ctx(struct nand_device * nand)256 static int spinand_ondie_ecc_init_ctx(struct nand_device *nand)
257 {
258 struct spinand_device *spinand = nand_to_spinand(nand);
259 struct mtd_info *mtd = nanddev_to_mtd(nand);
260 struct spinand_ondie_ecc_conf *engine_conf;
261
262 nand->ecc.ctx.conf.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
263 nand->ecc.ctx.conf.step_size = nand->ecc.requirements.step_size;
264 nand->ecc.ctx.conf.strength = nand->ecc.requirements.strength;
265
266 engine_conf = kzalloc(sizeof(*engine_conf), GFP_KERNEL);
267 if (!engine_conf)
268 return -ENOMEM;
269
270 nand->ecc.ctx.priv = engine_conf;
271
272 if (spinand->eccinfo.ooblayout)
273 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
274 else
275 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
276
277 return 0;
278 }
279
spinand_ondie_ecc_cleanup_ctx(struct nand_device * nand)280 static void spinand_ondie_ecc_cleanup_ctx(struct nand_device *nand)
281 {
282 kfree(nand->ecc.ctx.priv);
283 }
284
spinand_ondie_ecc_prepare_io_req(struct nand_device * nand,struct nand_page_io_req * req)285 static int spinand_ondie_ecc_prepare_io_req(struct nand_device *nand,
286 struct nand_page_io_req *req)
287 {
288 struct spinand_device *spinand = nand_to_spinand(nand);
289 bool enable = (req->mode != MTD_OPS_RAW);
290
291 memset(spinand->oobbuf, 0xff, nanddev_per_page_oobsize(nand));
292
293 /* Only enable or disable the engine */
294 return spinand_ecc_enable(spinand, enable);
295 }
296
spinand_ondie_ecc_finish_io_req(struct nand_device * nand,struct nand_page_io_req * req)297 static int spinand_ondie_ecc_finish_io_req(struct nand_device *nand,
298 struct nand_page_io_req *req)
299 {
300 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
301 struct spinand_device *spinand = nand_to_spinand(nand);
302 struct mtd_info *mtd = spinand_to_mtd(spinand);
303 int ret;
304
305 if (req->mode == MTD_OPS_RAW)
306 return 0;
307
308 /* Nothing to do when finishing a page write */
309 if (req->type == NAND_PAGE_WRITE)
310 return 0;
311
312 /* Finish a page read: check the status, report errors/bitflips */
313 ret = spinand_check_ecc_status(spinand, engine_conf->status);
314 if (ret == -EBADMSG)
315 mtd->ecc_stats.failed++;
316 else if (ret > 0)
317 mtd->ecc_stats.corrected += ret;
318
319 return ret;
320 }
321
322 static struct nand_ecc_engine_ops spinand_ondie_ecc_engine_ops = {
323 .init_ctx = spinand_ondie_ecc_init_ctx,
324 .cleanup_ctx = spinand_ondie_ecc_cleanup_ctx,
325 .prepare_io_req = spinand_ondie_ecc_prepare_io_req,
326 .finish_io_req = spinand_ondie_ecc_finish_io_req,
327 };
328
329 static struct nand_ecc_engine spinand_ondie_ecc_engine = {
330 .ops = &spinand_ondie_ecc_engine_ops,
331 };
332
spinand_ondie_ecc_save_status(struct nand_device * nand,u8 status)333 static void spinand_ondie_ecc_save_status(struct nand_device *nand, u8 status)
334 {
335 struct spinand_ondie_ecc_conf *engine_conf = nand->ecc.ctx.priv;
336
337 if (nand->ecc.ctx.conf.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE &&
338 engine_conf)
339 engine_conf->status = status;
340 }
341
spinand_write_enable_op(struct spinand_device * spinand)342 static int spinand_write_enable_op(struct spinand_device *spinand)
343 {
344 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
345
346 return spi_mem_exec_op(spinand->spimem, &op);
347 }
348
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)349 static int spinand_load_page_op(struct spinand_device *spinand,
350 const struct nand_page_io_req *req)
351 {
352 struct nand_device *nand = spinand_to_nand(spinand);
353 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
354 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
355
356 return spi_mem_exec_op(spinand->spimem, &op);
357 }
358
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)359 static int spinand_read_from_cache_op(struct spinand_device *spinand,
360 const struct nand_page_io_req *req)
361 {
362 struct nand_device *nand = spinand_to_nand(spinand);
363 struct mtd_info *mtd = spinand_to_mtd(spinand);
364 struct spi_mem_dirmap_desc *rdesc;
365 unsigned int nbytes = 0;
366 void *buf = NULL;
367 u16 column = 0;
368 ssize_t ret;
369
370 if (req->datalen) {
371 buf = spinand->databuf;
372 nbytes = nanddev_page_size(nand);
373 column = 0;
374 }
375
376 if (req->ooblen) {
377 nbytes += nanddev_per_page_oobsize(nand);
378 if (!buf) {
379 buf = spinand->oobbuf;
380 column = nanddev_page_size(nand);
381 }
382 }
383
384 if (req->mode == MTD_OPS_RAW)
385 rdesc = spinand->dirmaps[req->pos.plane].rdesc;
386 else
387 rdesc = spinand->dirmaps[req->pos.plane].rdesc_ecc;
388
389 while (nbytes) {
390 ret = spi_mem_dirmap_read(rdesc, column, nbytes, buf);
391 if (ret < 0)
392 return ret;
393
394 if (!ret || ret > nbytes)
395 return -EIO;
396
397 nbytes -= ret;
398 column += ret;
399 buf += ret;
400 }
401
402 if (req->datalen)
403 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
404 req->datalen);
405
406 if (req->ooblen) {
407 if (req->mode == MTD_OPS_AUTO_OOB)
408 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
409 spinand->oobbuf,
410 req->ooboffs,
411 req->ooblen);
412 else
413 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
414 req->ooblen);
415 }
416
417 return 0;
418 }
419
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)420 static int spinand_write_to_cache_op(struct spinand_device *spinand,
421 const struct nand_page_io_req *req)
422 {
423 struct nand_device *nand = spinand_to_nand(spinand);
424 struct mtd_info *mtd = spinand_to_mtd(spinand);
425 struct spi_mem_dirmap_desc *wdesc;
426 unsigned int nbytes, column = 0;
427 void *buf = spinand->databuf;
428 ssize_t ret;
429
430 /*
431 * Looks like PROGRAM LOAD (AKA write cache) does not necessarily reset
432 * the cache content to 0xFF (depends on vendor implementation), so we
433 * must fill the page cache entirely even if we only want to program
434 * the data portion of the page, otherwise we might corrupt the BBM or
435 * user data previously programmed in OOB area.
436 *
437 * Only reset the data buffer manually, the OOB buffer is prepared by
438 * ECC engines ->prepare_io_req() callback.
439 */
440 nbytes = nanddev_page_size(nand) + nanddev_per_page_oobsize(nand);
441 memset(spinand->databuf, 0xff, nanddev_page_size(nand));
442
443 if (req->datalen)
444 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
445 req->datalen);
446
447 if (req->ooblen) {
448 if (req->mode == MTD_OPS_AUTO_OOB)
449 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
450 spinand->oobbuf,
451 req->ooboffs,
452 req->ooblen);
453 else
454 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
455 req->ooblen);
456 }
457
458 if (req->mode == MTD_OPS_RAW)
459 wdesc = spinand->dirmaps[req->pos.plane].wdesc;
460 else
461 wdesc = spinand->dirmaps[req->pos.plane].wdesc_ecc;
462
463 while (nbytes) {
464 ret = spi_mem_dirmap_write(wdesc, column, nbytes, buf);
465 if (ret < 0)
466 return ret;
467
468 if (!ret || ret > nbytes)
469 return -EIO;
470
471 nbytes -= ret;
472 column += ret;
473 buf += ret;
474 }
475
476 return 0;
477 }
478
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)479 static int spinand_program_op(struct spinand_device *spinand,
480 const struct nand_page_io_req *req)
481 {
482 struct nand_device *nand = spinand_to_nand(spinand);
483 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
484 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
485
486 return spi_mem_exec_op(spinand->spimem, &op);
487 }
488
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)489 static int spinand_erase_op(struct spinand_device *spinand,
490 const struct nand_pos *pos)
491 {
492 struct nand_device *nand = spinand_to_nand(spinand);
493 unsigned int row = nanddev_pos_to_row(nand, pos);
494 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
495
496 return spi_mem_exec_op(spinand->spimem, &op);
497 }
498
spinand_wait(struct spinand_device * spinand,unsigned long initial_delay_us,unsigned long poll_delay_us,u8 * s)499 static int spinand_wait(struct spinand_device *spinand,
500 unsigned long initial_delay_us,
501 unsigned long poll_delay_us,
502 u8 *s)
503 {
504 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(REG_STATUS,
505 spinand->scratchbuf);
506 u8 status;
507 int ret;
508
509 ret = spi_mem_poll_status(spinand->spimem, &op, STATUS_BUSY, 0,
510 initial_delay_us,
511 poll_delay_us,
512 SPINAND_WAITRDY_TIMEOUT_MS);
513 if (ret)
514 return ret;
515
516 status = *spinand->scratchbuf;
517 if (!(status & STATUS_BUSY))
518 goto out;
519
520 /*
521 * Extra read, just in case the STATUS_READY bit has changed
522 * since our last check
523 */
524 ret = spinand_read_status(spinand, &status);
525 if (ret)
526 return ret;
527
528 out:
529 if (s)
530 *s = status;
531
532 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
533 }
534
spinand_read_id_op(struct spinand_device * spinand,u8 naddr,u8 ndummy,u8 * buf)535 static int spinand_read_id_op(struct spinand_device *spinand, u8 naddr,
536 u8 ndummy, u8 *buf)
537 {
538 struct spi_mem_op op = SPINAND_READID_OP(
539 naddr, ndummy, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
540 int ret;
541
542 ret = spi_mem_exec_op(spinand->spimem, &op);
543 if (!ret)
544 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
545
546 return ret;
547 }
548
spinand_reset_op(struct spinand_device * spinand)549 static int spinand_reset_op(struct spinand_device *spinand)
550 {
551 struct spi_mem_op op = SPINAND_RESET_OP;
552 int ret;
553
554 ret = spi_mem_exec_op(spinand->spimem, &op);
555 if (ret)
556 return ret;
557
558 return spinand_wait(spinand,
559 SPINAND_RESET_INITIAL_DELAY_US,
560 SPINAND_RESET_POLL_DELAY_US,
561 NULL);
562 }
563
spinand_lock_block(struct spinand_device * spinand,u8 lock)564 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
565 {
566 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
567 }
568
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req)569 static int spinand_read_page(struct spinand_device *spinand,
570 const struct nand_page_io_req *req)
571 {
572 struct nand_device *nand = spinand_to_nand(spinand);
573 u8 status;
574 int ret;
575
576 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
577 if (ret)
578 return ret;
579
580 ret = spinand_load_page_op(spinand, req);
581 if (ret)
582 return ret;
583
584 ret = spinand_wait(spinand,
585 SPINAND_READ_INITIAL_DELAY_US,
586 SPINAND_READ_POLL_DELAY_US,
587 &status);
588 if (ret < 0)
589 return ret;
590
591 spinand_ondie_ecc_save_status(nand, status);
592
593 ret = spinand_read_from_cache_op(spinand, req);
594 if (ret)
595 return ret;
596
597 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
598 }
599
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)600 static int spinand_write_page(struct spinand_device *spinand,
601 const struct nand_page_io_req *req)
602 {
603 struct nand_device *nand = spinand_to_nand(spinand);
604 u8 status;
605 int ret;
606
607 ret = nand_ecc_prepare_io_req(nand, (struct nand_page_io_req *)req);
608 if (ret)
609 return ret;
610
611 ret = spinand_write_enable_op(spinand);
612 if (ret)
613 return ret;
614
615 ret = spinand_write_to_cache_op(spinand, req);
616 if (ret)
617 return ret;
618
619 ret = spinand_program_op(spinand, req);
620 if (ret)
621 return ret;
622
623 ret = spinand_wait(spinand,
624 SPINAND_WRITE_INITIAL_DELAY_US,
625 SPINAND_WRITE_POLL_DELAY_US,
626 &status);
627 if (!ret && (status & STATUS_PROG_FAILED))
628 return -EIO;
629
630 return nand_ecc_finish_io_req(nand, (struct nand_page_io_req *)req);
631 }
632
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)633 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
634 struct mtd_oob_ops *ops)
635 {
636 struct spinand_device *spinand = mtd_to_spinand(mtd);
637 struct nand_device *nand = mtd_to_nanddev(mtd);
638 struct mtd_ecc_stats old_stats;
639 unsigned int max_bitflips = 0;
640 struct nand_io_iter iter;
641 bool disable_ecc = false;
642 bool ecc_failed = false;
643 int ret = 0;
644
645 if (ops->mode == MTD_OPS_RAW || !spinand->eccinfo.ooblayout)
646 disable_ecc = true;
647
648 mutex_lock(&spinand->lock);
649
650 old_stats = mtd->ecc_stats;
651
652 nanddev_io_for_each_page(nand, NAND_PAGE_READ, from, ops, &iter) {
653 if (disable_ecc)
654 iter.req.mode = MTD_OPS_RAW;
655
656 ret = spinand_select_target(spinand, iter.req.pos.target);
657 if (ret)
658 break;
659
660 ret = spinand_read_page(spinand, &iter.req);
661 if (ret < 0 && ret != -EBADMSG)
662 break;
663
664 if (ret == -EBADMSG)
665 ecc_failed = true;
666 else
667 max_bitflips = max_t(unsigned int, max_bitflips, ret);
668
669 ret = 0;
670 ops->retlen += iter.req.datalen;
671 ops->oobretlen += iter.req.ooblen;
672 }
673
674 if (ops->stats) {
675 ops->stats->uncorrectable_errors +=
676 mtd->ecc_stats.failed - old_stats.failed;
677 ops->stats->corrected_bitflips +=
678 mtd->ecc_stats.corrected - old_stats.corrected;
679 }
680
681 mutex_unlock(&spinand->lock);
682
683 if (ecc_failed && !ret)
684 ret = -EBADMSG;
685
686 return ret ? ret : max_bitflips;
687 }
688
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)689 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
690 struct mtd_oob_ops *ops)
691 {
692 struct spinand_device *spinand = mtd_to_spinand(mtd);
693 struct nand_device *nand = mtd_to_nanddev(mtd);
694 struct nand_io_iter iter;
695 bool disable_ecc = false;
696 int ret = 0;
697
698 if (ops->mode == MTD_OPS_RAW || !mtd->ooblayout)
699 disable_ecc = true;
700
701 mutex_lock(&spinand->lock);
702
703 nanddev_io_for_each_page(nand, NAND_PAGE_WRITE, to, ops, &iter) {
704 if (disable_ecc)
705 iter.req.mode = MTD_OPS_RAW;
706
707 ret = spinand_select_target(spinand, iter.req.pos.target);
708 if (ret)
709 break;
710
711 ret = spinand_write_page(spinand, &iter.req);
712 if (ret)
713 break;
714
715 ops->retlen += iter.req.datalen;
716 ops->oobretlen += iter.req.ooblen;
717 }
718
719 mutex_unlock(&spinand->lock);
720
721 return ret;
722 }
723
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)724 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
725 {
726 struct spinand_device *spinand = nand_to_spinand(nand);
727 u8 marker[2] = { };
728 struct nand_page_io_req req = {
729 .pos = *pos,
730 .ooblen = sizeof(marker),
731 .ooboffs = 0,
732 .oobbuf.in = marker,
733 .mode = MTD_OPS_RAW,
734 };
735
736 spinand_select_target(spinand, pos->target);
737 spinand_read_page(spinand, &req);
738 if (marker[0] != 0xff || marker[1] != 0xff)
739 return true;
740
741 return false;
742 }
743
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)744 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
745 {
746 struct nand_device *nand = mtd_to_nanddev(mtd);
747 struct spinand_device *spinand = nand_to_spinand(nand);
748 struct nand_pos pos;
749 int ret;
750
751 nanddev_offs_to_pos(nand, offs, &pos);
752 mutex_lock(&spinand->lock);
753 ret = nanddev_isbad(nand, &pos);
754 mutex_unlock(&spinand->lock);
755
756 return ret;
757 }
758
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)759 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
760 {
761 struct spinand_device *spinand = nand_to_spinand(nand);
762 u8 marker[2] = { };
763 struct nand_page_io_req req = {
764 .pos = *pos,
765 .ooboffs = 0,
766 .ooblen = sizeof(marker),
767 .oobbuf.out = marker,
768 .mode = MTD_OPS_RAW,
769 };
770 int ret;
771
772 ret = spinand_select_target(spinand, pos->target);
773 if (ret)
774 return ret;
775
776 ret = spinand_write_enable_op(spinand);
777 if (ret)
778 return ret;
779
780 return spinand_write_page(spinand, &req);
781 }
782
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)783 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
784 {
785 struct nand_device *nand = mtd_to_nanddev(mtd);
786 struct spinand_device *spinand = nand_to_spinand(nand);
787 struct nand_pos pos;
788 int ret;
789
790 nanddev_offs_to_pos(nand, offs, &pos);
791 mutex_lock(&spinand->lock);
792 ret = nanddev_markbad(nand, &pos);
793 mutex_unlock(&spinand->lock);
794
795 return ret;
796 }
797
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)798 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
799 {
800 struct spinand_device *spinand = nand_to_spinand(nand);
801 u8 status;
802 int ret;
803
804 ret = spinand_select_target(spinand, pos->target);
805 if (ret)
806 return ret;
807
808 ret = spinand_write_enable_op(spinand);
809 if (ret)
810 return ret;
811
812 ret = spinand_erase_op(spinand, pos);
813 if (ret)
814 return ret;
815
816 ret = spinand_wait(spinand,
817 SPINAND_ERASE_INITIAL_DELAY_US,
818 SPINAND_ERASE_POLL_DELAY_US,
819 &status);
820
821 if (!ret && (status & STATUS_ERASE_FAILED))
822 ret = -EIO;
823
824 return ret;
825 }
826
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)827 static int spinand_mtd_erase(struct mtd_info *mtd,
828 struct erase_info *einfo)
829 {
830 struct spinand_device *spinand = mtd_to_spinand(mtd);
831 int ret;
832
833 mutex_lock(&spinand->lock);
834 ret = nanddev_mtd_erase(mtd, einfo);
835 mutex_unlock(&spinand->lock);
836
837 return ret;
838 }
839
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)840 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
841 {
842 struct spinand_device *spinand = mtd_to_spinand(mtd);
843 struct nand_device *nand = mtd_to_nanddev(mtd);
844 struct nand_pos pos;
845 int ret;
846
847 nanddev_offs_to_pos(nand, offs, &pos);
848 mutex_lock(&spinand->lock);
849 ret = nanddev_isreserved(nand, &pos);
850 mutex_unlock(&spinand->lock);
851
852 return ret;
853 }
854
spinand_create_dirmap(struct spinand_device * spinand,unsigned int plane)855 static int spinand_create_dirmap(struct spinand_device *spinand,
856 unsigned int plane)
857 {
858 struct nand_device *nand = spinand_to_nand(spinand);
859 struct spi_mem_dirmap_info info = {
860 .length = nanddev_page_size(nand) +
861 nanddev_per_page_oobsize(nand),
862 };
863 struct spi_mem_dirmap_desc *desc;
864
865 /* The plane number is passed in MSB just above the column address */
866 info.offset = plane << fls(nand->memorg.pagesize);
867
868 info.op_tmpl = *spinand->op_templates.update_cache;
869 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
870 spinand->spimem, &info);
871 if (IS_ERR(desc))
872 return PTR_ERR(desc);
873
874 spinand->dirmaps[plane].wdesc = desc;
875
876 info.op_tmpl = *spinand->op_templates.read_cache;
877 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
878 spinand->spimem, &info);
879 if (IS_ERR(desc))
880 return PTR_ERR(desc);
881
882 spinand->dirmaps[plane].rdesc = desc;
883
884 if (nand->ecc.engine->integration != NAND_ECC_ENGINE_INTEGRATION_PIPELINED) {
885 spinand->dirmaps[plane].wdesc_ecc = spinand->dirmaps[plane].wdesc;
886 spinand->dirmaps[plane].rdesc_ecc = spinand->dirmaps[plane].rdesc;
887
888 return 0;
889 }
890
891 info.op_tmpl = *spinand->op_templates.update_cache;
892 info.op_tmpl.data.ecc = true;
893 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
894 spinand->spimem, &info);
895 if (IS_ERR(desc))
896 return PTR_ERR(desc);
897
898 spinand->dirmaps[plane].wdesc_ecc = desc;
899
900 info.op_tmpl = *spinand->op_templates.read_cache;
901 info.op_tmpl.data.ecc = true;
902 desc = devm_spi_mem_dirmap_create(&spinand->spimem->spi->dev,
903 spinand->spimem, &info);
904 if (IS_ERR(desc))
905 return PTR_ERR(desc);
906
907 spinand->dirmaps[plane].rdesc_ecc = desc;
908
909 return 0;
910 }
911
spinand_create_dirmaps(struct spinand_device * spinand)912 static int spinand_create_dirmaps(struct spinand_device *spinand)
913 {
914 struct nand_device *nand = spinand_to_nand(spinand);
915 int i, ret;
916
917 spinand->dirmaps = devm_kzalloc(&spinand->spimem->spi->dev,
918 sizeof(*spinand->dirmaps) *
919 nand->memorg.planes_per_lun,
920 GFP_KERNEL);
921 if (!spinand->dirmaps)
922 return -ENOMEM;
923
924 for (i = 0; i < nand->memorg.planes_per_lun; i++) {
925 ret = spinand_create_dirmap(spinand, i);
926 if (ret)
927 return ret;
928 }
929
930 return 0;
931 }
932
933 static const struct nand_ops spinand_ops = {
934 .erase = spinand_erase,
935 .markbad = spinand_markbad,
936 .isbad = spinand_isbad,
937 };
938
939 static const struct spinand_manufacturer *spinand_manufacturers[] = {
940 &ato_spinand_manufacturer,
941 &gigadevice_spinand_manufacturer,
942 ¯onix_spinand_manufacturer,
943 µn_spinand_manufacturer,
944 ¶gon_spinand_manufacturer,
945 &toshiba_spinand_manufacturer,
946 &winbond_spinand_manufacturer,
947 &xtx_spinand_manufacturer,
948 };
949
spinand_manufacturer_match(struct spinand_device * spinand,enum spinand_readid_method rdid_method)950 static int spinand_manufacturer_match(struct spinand_device *spinand,
951 enum spinand_readid_method rdid_method)
952 {
953 u8 *id = spinand->id.data;
954 unsigned int i;
955 int ret;
956
957 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
958 const struct spinand_manufacturer *manufacturer =
959 spinand_manufacturers[i];
960
961 if (id[0] != manufacturer->id)
962 continue;
963
964 ret = spinand_match_and_init(spinand,
965 manufacturer->chips,
966 manufacturer->nchips,
967 rdid_method);
968 if (ret < 0)
969 continue;
970
971 spinand->manufacturer = manufacturer;
972 return 0;
973 }
974 return -ENOTSUPP;
975 }
976
spinand_id_detect(struct spinand_device * spinand)977 static int spinand_id_detect(struct spinand_device *spinand)
978 {
979 u8 *id = spinand->id.data;
980 int ret;
981
982 ret = spinand_read_id_op(spinand, 0, 0, id);
983 if (ret)
984 return ret;
985 ret = spinand_manufacturer_match(spinand, SPINAND_READID_METHOD_OPCODE);
986 if (!ret)
987 return 0;
988
989 ret = spinand_read_id_op(spinand, 1, 0, id);
990 if (ret)
991 return ret;
992 ret = spinand_manufacturer_match(spinand,
993 SPINAND_READID_METHOD_OPCODE_ADDR);
994 if (!ret)
995 return 0;
996
997 ret = spinand_read_id_op(spinand, 0, 1, id);
998 if (ret)
999 return ret;
1000 ret = spinand_manufacturer_match(spinand,
1001 SPINAND_READID_METHOD_OPCODE_DUMMY);
1002
1003 return ret;
1004 }
1005
spinand_manufacturer_init(struct spinand_device * spinand)1006 static int spinand_manufacturer_init(struct spinand_device *spinand)
1007 {
1008 if (spinand->manufacturer->ops->init)
1009 return spinand->manufacturer->ops->init(spinand);
1010
1011 return 0;
1012 }
1013
spinand_manufacturer_cleanup(struct spinand_device * spinand)1014 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
1015 {
1016 /* Release manufacturer private data */
1017 if (spinand->manufacturer->ops->cleanup)
1018 return spinand->manufacturer->ops->cleanup(spinand);
1019 }
1020
1021 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)1022 spinand_select_op_variant(struct spinand_device *spinand,
1023 const struct spinand_op_variants *variants)
1024 {
1025 struct nand_device *nand = spinand_to_nand(spinand);
1026 unsigned int i;
1027
1028 for (i = 0; i < variants->nops; i++) {
1029 struct spi_mem_op op = variants->ops[i];
1030 unsigned int nbytes;
1031 int ret;
1032
1033 nbytes = nanddev_per_page_oobsize(nand) +
1034 nanddev_page_size(nand);
1035
1036 while (nbytes) {
1037 op.data.nbytes = nbytes;
1038 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
1039 if (ret)
1040 break;
1041
1042 if (!spi_mem_supports_op(spinand->spimem, &op))
1043 break;
1044
1045 nbytes -= op.data.nbytes;
1046 }
1047
1048 if (!nbytes)
1049 return &variants->ops[i];
1050 }
1051
1052 return NULL;
1053 }
1054
1055 /**
1056 * spinand_match_and_init() - Try to find a match between a device ID and an
1057 * entry in a spinand_info table
1058 * @spinand: SPI NAND object
1059 * @table: SPI NAND device description table
1060 * @table_size: size of the device description table
1061 * @rdid_method: read id method to match
1062 *
1063 * Match between a device ID retrieved through the READ_ID command and an
1064 * entry in the SPI NAND description table. If a match is found, the spinand
1065 * object will be initialized with information provided by the matching
1066 * spinand_info entry.
1067 *
1068 * Return: 0 on success, a negative error code otherwise.
1069 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,enum spinand_readid_method rdid_method)1070 int spinand_match_and_init(struct spinand_device *spinand,
1071 const struct spinand_info *table,
1072 unsigned int table_size,
1073 enum spinand_readid_method rdid_method)
1074 {
1075 u8 *id = spinand->id.data;
1076 struct nand_device *nand = spinand_to_nand(spinand);
1077 unsigned int i;
1078
1079 for (i = 0; i < table_size; i++) {
1080 const struct spinand_info *info = &table[i];
1081 const struct spi_mem_op *op;
1082
1083 if (rdid_method != info->devid.method)
1084 continue;
1085
1086 if (memcmp(id + 1, info->devid.id, info->devid.len))
1087 continue;
1088
1089 nand->memorg = table[i].memorg;
1090 nanddev_set_ecc_requirements(nand, &table[i].eccreq);
1091 spinand->eccinfo = table[i].eccinfo;
1092 spinand->flags = table[i].flags;
1093 spinand->id.len = 1 + table[i].devid.len;
1094 spinand->select_target = table[i].select_target;
1095
1096 op = spinand_select_op_variant(spinand,
1097 info->op_variants.read_cache);
1098 if (!op)
1099 return -ENOTSUPP;
1100
1101 spinand->op_templates.read_cache = op;
1102
1103 op = spinand_select_op_variant(spinand,
1104 info->op_variants.write_cache);
1105 if (!op)
1106 return -ENOTSUPP;
1107
1108 spinand->op_templates.write_cache = op;
1109
1110 op = spinand_select_op_variant(spinand,
1111 info->op_variants.update_cache);
1112 spinand->op_templates.update_cache = op;
1113
1114 return 0;
1115 }
1116
1117 return -ENOTSUPP;
1118 }
1119
spinand_detect(struct spinand_device * spinand)1120 static int spinand_detect(struct spinand_device *spinand)
1121 {
1122 struct device *dev = &spinand->spimem->spi->dev;
1123 struct nand_device *nand = spinand_to_nand(spinand);
1124 int ret;
1125
1126 ret = spinand_reset_op(spinand);
1127 if (ret)
1128 return ret;
1129
1130 ret = spinand_id_detect(spinand);
1131 if (ret) {
1132 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
1133 spinand->id.data);
1134 return ret;
1135 }
1136
1137 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
1138 dev_err(dev,
1139 "SPI NANDs with more than one die must implement ->select_target()\n");
1140 return -EINVAL;
1141 }
1142
1143 dev_info(&spinand->spimem->spi->dev,
1144 "%s SPI NAND was found.\n", spinand->manufacturer->name);
1145 dev_info(&spinand->spimem->spi->dev,
1146 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
1147 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
1148 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
1149
1150 return 0;
1151 }
1152
spinand_init_flash(struct spinand_device * spinand)1153 static int spinand_init_flash(struct spinand_device *spinand)
1154 {
1155 struct device *dev = &spinand->spimem->spi->dev;
1156 struct nand_device *nand = spinand_to_nand(spinand);
1157 int ret, i;
1158
1159 ret = spinand_read_cfg(spinand);
1160 if (ret)
1161 return ret;
1162
1163 ret = spinand_init_quad_enable(spinand);
1164 if (ret)
1165 return ret;
1166
1167 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1168 if (ret)
1169 return ret;
1170
1171 ret = spinand_manufacturer_init(spinand);
1172 if (ret) {
1173 dev_err(dev,
1174 "Failed to initialize the SPI NAND chip (err = %d)\n",
1175 ret);
1176 return ret;
1177 }
1178
1179 /* After power up, all blocks are locked, so unlock them here. */
1180 for (i = 0; i < nand->memorg.ntargets; i++) {
1181 ret = spinand_select_target(spinand, i);
1182 if (ret)
1183 break;
1184
1185 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1186 if (ret)
1187 break;
1188 }
1189
1190 if (ret)
1191 spinand_manufacturer_cleanup(spinand);
1192
1193 return ret;
1194 }
1195
spinand_mtd_resume(struct mtd_info * mtd)1196 static void spinand_mtd_resume(struct mtd_info *mtd)
1197 {
1198 struct spinand_device *spinand = mtd_to_spinand(mtd);
1199 int ret;
1200
1201 ret = spinand_reset_op(spinand);
1202 if (ret)
1203 return;
1204
1205 ret = spinand_init_flash(spinand);
1206 if (ret)
1207 return;
1208
1209 spinand_ecc_enable(spinand, false);
1210 }
1211
spinand_init(struct spinand_device * spinand)1212 static int spinand_init(struct spinand_device *spinand)
1213 {
1214 struct device *dev = &spinand->spimem->spi->dev;
1215 struct mtd_info *mtd = spinand_to_mtd(spinand);
1216 struct nand_device *nand = mtd_to_nanddev(mtd);
1217 int ret;
1218
1219 /*
1220 * We need a scratch buffer because the spi_mem interface requires that
1221 * buf passed in spi_mem_op->data.buf be DMA-able.
1222 */
1223 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
1224 if (!spinand->scratchbuf)
1225 return -ENOMEM;
1226
1227 ret = spinand_detect(spinand);
1228 if (ret)
1229 goto err_free_bufs;
1230
1231 /*
1232 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
1233 * may use this buffer for DMA access.
1234 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
1235 */
1236 spinand->databuf = kzalloc(nanddev_page_size(nand) +
1237 nanddev_per_page_oobsize(nand),
1238 GFP_KERNEL);
1239 if (!spinand->databuf) {
1240 ret = -ENOMEM;
1241 goto err_free_bufs;
1242 }
1243
1244 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
1245
1246 ret = spinand_init_cfg_cache(spinand);
1247 if (ret)
1248 goto err_free_bufs;
1249
1250 ret = spinand_init_flash(spinand);
1251 if (ret)
1252 goto err_free_bufs;
1253
1254 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1255 if (ret)
1256 goto err_manuf_cleanup;
1257
1258 /* SPI-NAND default ECC engine is on-die */
1259 nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_DIE;
1260 nand->ecc.ondie_engine = &spinand_ondie_ecc_engine;
1261
1262 spinand_ecc_enable(spinand, false);
1263 ret = nanddev_ecc_engine_init(nand);
1264 if (ret)
1265 goto err_cleanup_nanddev;
1266
1267 mtd->_read_oob = spinand_mtd_read;
1268 mtd->_write_oob = spinand_mtd_write;
1269 mtd->_block_isbad = spinand_mtd_block_isbad;
1270 mtd->_block_markbad = spinand_mtd_block_markbad;
1271 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1272 mtd->_erase = spinand_mtd_erase;
1273 mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
1274 mtd->_resume = spinand_mtd_resume;
1275
1276 if (nand->ecc.engine) {
1277 ret = mtd_ooblayout_count_freebytes(mtd);
1278 if (ret < 0)
1279 goto err_cleanup_ecc_engine;
1280 }
1281
1282 mtd->oobavail = ret;
1283
1284 /* Propagate ECC information to mtd_info */
1285 mtd->ecc_strength = nanddev_get_ecc_conf(nand)->strength;
1286 mtd->ecc_step_size = nanddev_get_ecc_conf(nand)->step_size;
1287
1288 ret = spinand_create_dirmaps(spinand);
1289 if (ret) {
1290 dev_err(dev,
1291 "Failed to create direct mappings for read/write operations (err = %d)\n",
1292 ret);
1293 goto err_cleanup_ecc_engine;
1294 }
1295
1296 return 0;
1297
1298 err_cleanup_ecc_engine:
1299 nanddev_ecc_engine_cleanup(nand);
1300
1301 err_cleanup_nanddev:
1302 nanddev_cleanup(nand);
1303
1304 err_manuf_cleanup:
1305 spinand_manufacturer_cleanup(spinand);
1306
1307 err_free_bufs:
1308 kfree(spinand->databuf);
1309 kfree(spinand->scratchbuf);
1310 return ret;
1311 }
1312
spinand_cleanup(struct spinand_device * spinand)1313 static void spinand_cleanup(struct spinand_device *spinand)
1314 {
1315 struct nand_device *nand = spinand_to_nand(spinand);
1316
1317 nanddev_cleanup(nand);
1318 spinand_manufacturer_cleanup(spinand);
1319 kfree(spinand->databuf);
1320 kfree(spinand->scratchbuf);
1321 }
1322
spinand_probe(struct spi_mem * mem)1323 static int spinand_probe(struct spi_mem *mem)
1324 {
1325 struct spinand_device *spinand;
1326 struct mtd_info *mtd;
1327 int ret;
1328
1329 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1330 GFP_KERNEL);
1331 if (!spinand)
1332 return -ENOMEM;
1333
1334 spinand->spimem = mem;
1335 spi_mem_set_drvdata(mem, spinand);
1336 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1337 mutex_init(&spinand->lock);
1338 mtd = spinand_to_mtd(spinand);
1339 mtd->dev.parent = &mem->spi->dev;
1340
1341 ret = spinand_init(spinand);
1342 if (ret)
1343 return ret;
1344
1345 ret = mtd_device_register(mtd, NULL, 0);
1346 if (ret)
1347 goto err_spinand_cleanup;
1348
1349 return 0;
1350
1351 err_spinand_cleanup:
1352 spinand_cleanup(spinand);
1353
1354 return ret;
1355 }
1356
spinand_remove(struct spi_mem * mem)1357 static int spinand_remove(struct spi_mem *mem)
1358 {
1359 struct spinand_device *spinand;
1360 struct mtd_info *mtd;
1361 int ret;
1362
1363 spinand = spi_mem_get_drvdata(mem);
1364 mtd = spinand_to_mtd(spinand);
1365
1366 ret = mtd_device_unregister(mtd);
1367 if (ret)
1368 return ret;
1369
1370 spinand_cleanup(spinand);
1371
1372 return 0;
1373 }
1374
1375 static const struct spi_device_id spinand_ids[] = {
1376 { .name = "spi-nand" },
1377 { /* sentinel */ },
1378 };
1379 MODULE_DEVICE_TABLE(spi, spinand_ids);
1380
1381 #ifdef CONFIG_OF
1382 static const struct of_device_id spinand_of_ids[] = {
1383 { .compatible = "spi-nand" },
1384 { /* sentinel */ },
1385 };
1386 MODULE_DEVICE_TABLE(of, spinand_of_ids);
1387 #endif
1388
1389 static struct spi_mem_driver spinand_drv = {
1390 .spidrv = {
1391 .id_table = spinand_ids,
1392 .driver = {
1393 .name = "spi-nand",
1394 .of_match_table = of_match_ptr(spinand_of_ids),
1395 },
1396 },
1397 .probe = spinand_probe,
1398 .remove = spinand_remove,
1399 };
1400 module_spi_mem_driver(spinand_drv);
1401
1402 MODULE_DESCRIPTION("SPI NAND framework");
1403 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1404 MODULE_LICENSE("GPL v2");
1405