1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2016-2017 Micron Technology, Inc.
4 *
5 * Authors:
6 * Peter Pan <peterpandong@micron.com>
7 * Boris Brezillon <boris.brezillon@bootlin.com>
8 */
9
10 #define pr_fmt(fmt) "spi-nand: " fmt
11
12 #include <linux/device.h>
13 #include <linux/jiffies.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/mtd/spinand.h>
17 #include <linux/of.h>
18 #include <linux/slab.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21
spinand_cache_op_adjust_colum(struct spinand_device * spinand,const struct nand_page_io_req * req,u16 * column)22 static void spinand_cache_op_adjust_colum(struct spinand_device *spinand,
23 const struct nand_page_io_req *req,
24 u16 *column)
25 {
26 struct nand_device *nand = spinand_to_nand(spinand);
27 unsigned int shift;
28
29 if (nand->memorg.planes_per_lun < 2)
30 return;
31
32 /* The plane number is passed in MSB just above the column address */
33 shift = fls(nand->memorg.pagesize);
34 *column |= req->pos.plane << shift;
35 }
36
spinand_read_reg_op(struct spinand_device * spinand,u8 reg,u8 * val)37 static int spinand_read_reg_op(struct spinand_device *spinand, u8 reg, u8 *val)
38 {
39 struct spi_mem_op op = SPINAND_GET_FEATURE_OP(reg,
40 spinand->scratchbuf);
41 int ret;
42
43 ret = spi_mem_exec_op(spinand->spimem, &op);
44 if (ret)
45 return ret;
46
47 *val = *spinand->scratchbuf;
48 return 0;
49 }
50
spinand_write_reg_op(struct spinand_device * spinand,u8 reg,u8 val)51 static int spinand_write_reg_op(struct spinand_device *spinand, u8 reg, u8 val)
52 {
53 struct spi_mem_op op = SPINAND_SET_FEATURE_OP(reg,
54 spinand->scratchbuf);
55
56 *spinand->scratchbuf = val;
57 return spi_mem_exec_op(spinand->spimem, &op);
58 }
59
spinand_read_status(struct spinand_device * spinand,u8 * status)60 static int spinand_read_status(struct spinand_device *spinand, u8 *status)
61 {
62 return spinand_read_reg_op(spinand, REG_STATUS, status);
63 }
64
spinand_get_cfg(struct spinand_device * spinand,u8 * cfg)65 static int spinand_get_cfg(struct spinand_device *spinand, u8 *cfg)
66 {
67 struct nand_device *nand = spinand_to_nand(spinand);
68
69 if (WARN_ON(spinand->cur_target < 0 ||
70 spinand->cur_target >= nand->memorg.ntargets))
71 return -EINVAL;
72
73 *cfg = spinand->cfg_cache[spinand->cur_target];
74 return 0;
75 }
76
spinand_set_cfg(struct spinand_device * spinand,u8 cfg)77 static int spinand_set_cfg(struct spinand_device *spinand, u8 cfg)
78 {
79 struct nand_device *nand = spinand_to_nand(spinand);
80 int ret;
81
82 if (WARN_ON(spinand->cur_target < 0 ||
83 spinand->cur_target >= nand->memorg.ntargets))
84 return -EINVAL;
85
86 if (spinand->cfg_cache[spinand->cur_target] == cfg)
87 return 0;
88
89 ret = spinand_write_reg_op(spinand, REG_CFG, cfg);
90 if (ret)
91 return ret;
92
93 spinand->cfg_cache[spinand->cur_target] = cfg;
94 return 0;
95 }
96
97 /**
98 * spinand_upd_cfg() - Update the configuration register
99 * @spinand: the spinand device
100 * @mask: the mask encoding the bits to update in the config reg
101 * @val: the new value to apply
102 *
103 * Update the configuration register.
104 *
105 * Return: 0 on success, a negative error code otherwise.
106 */
spinand_upd_cfg(struct spinand_device * spinand,u8 mask,u8 val)107 int spinand_upd_cfg(struct spinand_device *spinand, u8 mask, u8 val)
108 {
109 int ret;
110 u8 cfg;
111
112 ret = spinand_get_cfg(spinand, &cfg);
113 if (ret)
114 return ret;
115
116 cfg &= ~mask;
117 cfg |= val;
118
119 return spinand_set_cfg(spinand, cfg);
120 }
121
122 /**
123 * spinand_select_target() - Select a specific NAND target/die
124 * @spinand: the spinand device
125 * @target: the target/die to select
126 *
127 * Select a new target/die. If chip only has one die, this function is a NOOP.
128 *
129 * Return: 0 on success, a negative error code otherwise.
130 */
spinand_select_target(struct spinand_device * spinand,unsigned int target)131 int spinand_select_target(struct spinand_device *spinand, unsigned int target)
132 {
133 struct nand_device *nand = spinand_to_nand(spinand);
134 int ret;
135
136 if (WARN_ON(target >= nand->memorg.ntargets))
137 return -EINVAL;
138
139 if (spinand->cur_target == target)
140 return 0;
141
142 if (nand->memorg.ntargets == 1) {
143 spinand->cur_target = target;
144 return 0;
145 }
146
147 ret = spinand->select_target(spinand, target);
148 if (ret)
149 return ret;
150
151 spinand->cur_target = target;
152 return 0;
153 }
154
spinand_init_cfg_cache(struct spinand_device * spinand)155 static int spinand_init_cfg_cache(struct spinand_device *spinand)
156 {
157 struct nand_device *nand = spinand_to_nand(spinand);
158 struct device *dev = &spinand->spimem->spi->dev;
159 unsigned int target;
160 int ret;
161
162 spinand->cfg_cache = devm_kcalloc(dev,
163 nand->memorg.ntargets,
164 sizeof(*spinand->cfg_cache),
165 GFP_KERNEL);
166 if (!spinand->cfg_cache)
167 return -ENOMEM;
168
169 for (target = 0; target < nand->memorg.ntargets; target++) {
170 ret = spinand_select_target(spinand, target);
171 if (ret)
172 return ret;
173
174 /*
175 * We use spinand_read_reg_op() instead of spinand_get_cfg()
176 * here to bypass the config cache.
177 */
178 ret = spinand_read_reg_op(spinand, REG_CFG,
179 &spinand->cfg_cache[target]);
180 if (ret)
181 return ret;
182 }
183
184 return 0;
185 }
186
spinand_init_quad_enable(struct spinand_device * spinand)187 static int spinand_init_quad_enable(struct spinand_device *spinand)
188 {
189 bool enable = false;
190
191 if (!(spinand->flags & SPINAND_HAS_QE_BIT))
192 return 0;
193
194 if (spinand->op_templates.read_cache->data.buswidth == 4 ||
195 spinand->op_templates.write_cache->data.buswidth == 4 ||
196 spinand->op_templates.update_cache->data.buswidth == 4)
197 enable = true;
198
199 return spinand_upd_cfg(spinand, CFG_QUAD_ENABLE,
200 enable ? CFG_QUAD_ENABLE : 0);
201 }
202
spinand_ecc_enable(struct spinand_device * spinand,bool enable)203 static int spinand_ecc_enable(struct spinand_device *spinand,
204 bool enable)
205 {
206 return spinand_upd_cfg(spinand, CFG_ECC_ENABLE,
207 enable ? CFG_ECC_ENABLE : 0);
208 }
209
spinand_write_enable_op(struct spinand_device * spinand)210 static int spinand_write_enable_op(struct spinand_device *spinand)
211 {
212 struct spi_mem_op op = SPINAND_WR_EN_DIS_OP(true);
213
214 return spi_mem_exec_op(spinand->spimem, &op);
215 }
216
spinand_load_page_op(struct spinand_device * spinand,const struct nand_page_io_req * req)217 static int spinand_load_page_op(struct spinand_device *spinand,
218 const struct nand_page_io_req *req)
219 {
220 struct nand_device *nand = spinand_to_nand(spinand);
221 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
222 struct spi_mem_op op = SPINAND_PAGE_READ_OP(row);
223
224 return spi_mem_exec_op(spinand->spimem, &op);
225 }
226
spinand_read_from_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)227 static int spinand_read_from_cache_op(struct spinand_device *spinand,
228 const struct nand_page_io_req *req)
229 {
230 struct spi_mem_op op = *spinand->op_templates.read_cache;
231 struct nand_device *nand = spinand_to_nand(spinand);
232 struct mtd_info *mtd = nanddev_to_mtd(nand);
233 struct nand_page_io_req adjreq = *req;
234 unsigned int nbytes = 0;
235 void *buf = NULL;
236 u16 column = 0;
237 int ret;
238
239 if (req->datalen) {
240 adjreq.datalen = nanddev_page_size(nand);
241 adjreq.dataoffs = 0;
242 adjreq.databuf.in = spinand->databuf;
243 buf = spinand->databuf;
244 nbytes = adjreq.datalen;
245 }
246
247 if (req->ooblen) {
248 adjreq.ooblen = nanddev_per_page_oobsize(nand);
249 adjreq.ooboffs = 0;
250 adjreq.oobbuf.in = spinand->oobbuf;
251 nbytes += nanddev_per_page_oobsize(nand);
252 if (!buf) {
253 buf = spinand->oobbuf;
254 column = nanddev_page_size(nand);
255 }
256 }
257
258 spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
259 op.addr.val = column;
260
261 /*
262 * Some controllers are limited in term of max RX data size. In this
263 * case, just repeat the READ_CACHE operation after updating the
264 * column.
265 */
266 while (nbytes) {
267 op.data.buf.in = buf;
268 op.data.nbytes = nbytes;
269 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
270 if (ret)
271 return ret;
272
273 ret = spi_mem_exec_op(spinand->spimem, &op);
274 if (ret)
275 return ret;
276
277 buf += op.data.nbytes;
278 nbytes -= op.data.nbytes;
279 op.addr.val += op.data.nbytes;
280 }
281
282 if (req->datalen)
283 memcpy(req->databuf.in, spinand->databuf + req->dataoffs,
284 req->datalen);
285
286 if (req->ooblen) {
287 if (req->mode == MTD_OPS_AUTO_OOB)
288 mtd_ooblayout_get_databytes(mtd, req->oobbuf.in,
289 spinand->oobbuf,
290 req->ooboffs,
291 req->ooblen);
292 else
293 memcpy(req->oobbuf.in, spinand->oobbuf + req->ooboffs,
294 req->ooblen);
295 }
296
297 return 0;
298 }
299
spinand_write_to_cache_op(struct spinand_device * spinand,const struct nand_page_io_req * req)300 static int spinand_write_to_cache_op(struct spinand_device *spinand,
301 const struct nand_page_io_req *req)
302 {
303 struct spi_mem_op op = *spinand->op_templates.write_cache;
304 struct nand_device *nand = spinand_to_nand(spinand);
305 struct mtd_info *mtd = nanddev_to_mtd(nand);
306 struct nand_page_io_req adjreq = *req;
307 unsigned int nbytes = 0;
308 void *buf = NULL;
309 u16 column = 0;
310 int ret;
311
312 memset(spinand->databuf, 0xff,
313 nanddev_page_size(nand) +
314 nanddev_per_page_oobsize(nand));
315
316 if (req->datalen) {
317 memcpy(spinand->databuf + req->dataoffs, req->databuf.out,
318 req->datalen);
319 adjreq.dataoffs = 0;
320 adjreq.datalen = nanddev_page_size(nand);
321 adjreq.databuf.out = spinand->databuf;
322 nbytes = adjreq.datalen;
323 buf = spinand->databuf;
324 }
325
326 if (req->ooblen) {
327 if (req->mode == MTD_OPS_AUTO_OOB)
328 mtd_ooblayout_set_databytes(mtd, req->oobbuf.out,
329 spinand->oobbuf,
330 req->ooboffs,
331 req->ooblen);
332 else
333 memcpy(spinand->oobbuf + req->ooboffs, req->oobbuf.out,
334 req->ooblen);
335
336 adjreq.ooblen = nanddev_per_page_oobsize(nand);
337 adjreq.ooboffs = 0;
338 nbytes += nanddev_per_page_oobsize(nand);
339 if (!buf) {
340 buf = spinand->oobbuf;
341 column = nanddev_page_size(nand);
342 }
343 }
344
345 spinand_cache_op_adjust_colum(spinand, &adjreq, &column);
346
347 op = *spinand->op_templates.write_cache;
348 op.addr.val = column;
349
350 /*
351 * Some controllers are limited in term of max TX data size. In this
352 * case, split the operation into one LOAD CACHE and one or more
353 * LOAD RANDOM CACHE.
354 */
355 while (nbytes) {
356 op.data.buf.out = buf;
357 op.data.nbytes = nbytes;
358
359 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
360 if (ret)
361 return ret;
362
363 ret = spi_mem_exec_op(spinand->spimem, &op);
364 if (ret)
365 return ret;
366
367 buf += op.data.nbytes;
368 nbytes -= op.data.nbytes;
369 op.addr.val += op.data.nbytes;
370
371 /*
372 * We need to use the RANDOM LOAD CACHE operation if there's
373 * more than one iteration, because the LOAD operation resets
374 * the cache to 0xff.
375 */
376 if (nbytes) {
377 column = op.addr.val;
378 op = *spinand->op_templates.update_cache;
379 op.addr.val = column;
380 }
381 }
382
383 return 0;
384 }
385
spinand_program_op(struct spinand_device * spinand,const struct nand_page_io_req * req)386 static int spinand_program_op(struct spinand_device *spinand,
387 const struct nand_page_io_req *req)
388 {
389 struct nand_device *nand = spinand_to_nand(spinand);
390 unsigned int row = nanddev_pos_to_row(nand, &req->pos);
391 struct spi_mem_op op = SPINAND_PROG_EXEC_OP(row);
392
393 return spi_mem_exec_op(spinand->spimem, &op);
394 }
395
spinand_erase_op(struct spinand_device * spinand,const struct nand_pos * pos)396 static int spinand_erase_op(struct spinand_device *spinand,
397 const struct nand_pos *pos)
398 {
399 struct nand_device *nand = spinand_to_nand(spinand);
400 unsigned int row = nanddev_pos_to_row(nand, pos);
401 struct spi_mem_op op = SPINAND_BLK_ERASE_OP(row);
402
403 return spi_mem_exec_op(spinand->spimem, &op);
404 }
405
spinand_wait(struct spinand_device * spinand,u8 * s)406 static int spinand_wait(struct spinand_device *spinand, u8 *s)
407 {
408 unsigned long timeo = jiffies + msecs_to_jiffies(400);
409 u8 status;
410 int ret;
411
412 do {
413 ret = spinand_read_status(spinand, &status);
414 if (ret)
415 return ret;
416
417 if (!(status & STATUS_BUSY))
418 goto out;
419 } while (time_before(jiffies, timeo));
420
421 /*
422 * Extra read, just in case the STATUS_READY bit has changed
423 * since our last check
424 */
425 ret = spinand_read_status(spinand, &status);
426 if (ret)
427 return ret;
428
429 out:
430 if (s)
431 *s = status;
432
433 return status & STATUS_BUSY ? -ETIMEDOUT : 0;
434 }
435
spinand_read_id_op(struct spinand_device * spinand,u8 * buf)436 static int spinand_read_id_op(struct spinand_device *spinand, u8 *buf)
437 {
438 struct spi_mem_op op = SPINAND_READID_OP(0, spinand->scratchbuf,
439 SPINAND_MAX_ID_LEN);
440 int ret;
441
442 ret = spi_mem_exec_op(spinand->spimem, &op);
443 if (!ret)
444 memcpy(buf, spinand->scratchbuf, SPINAND_MAX_ID_LEN);
445
446 return ret;
447 }
448
spinand_reset_op(struct spinand_device * spinand)449 static int spinand_reset_op(struct spinand_device *spinand)
450 {
451 struct spi_mem_op op = SPINAND_RESET_OP;
452 int ret;
453
454 ret = spi_mem_exec_op(spinand->spimem, &op);
455 if (ret)
456 return ret;
457
458 return spinand_wait(spinand, NULL);
459 }
460
spinand_lock_block(struct spinand_device * spinand,u8 lock)461 static int spinand_lock_block(struct spinand_device *spinand, u8 lock)
462 {
463 return spinand_write_reg_op(spinand, REG_BLOCK_LOCK, lock);
464 }
465
spinand_check_ecc_status(struct spinand_device * spinand,u8 status)466 static int spinand_check_ecc_status(struct spinand_device *spinand, u8 status)
467 {
468 struct nand_device *nand = spinand_to_nand(spinand);
469
470 if (spinand->eccinfo.get_status)
471 return spinand->eccinfo.get_status(spinand, status);
472
473 switch (status & STATUS_ECC_MASK) {
474 case STATUS_ECC_NO_BITFLIPS:
475 return 0;
476
477 case STATUS_ECC_HAS_BITFLIPS:
478 /*
479 * We have no way to know exactly how many bitflips have been
480 * fixed, so let's return the maximum possible value so that
481 * wear-leveling layers move the data immediately.
482 */
483 return nand->eccreq.strength;
484
485 case STATUS_ECC_UNCOR_ERROR:
486 return -EBADMSG;
487
488 default:
489 break;
490 }
491
492 return -EINVAL;
493 }
494
spinand_read_page(struct spinand_device * spinand,const struct nand_page_io_req * req,bool ecc_enabled)495 static int spinand_read_page(struct spinand_device *spinand,
496 const struct nand_page_io_req *req,
497 bool ecc_enabled)
498 {
499 u8 status;
500 int ret;
501
502 ret = spinand_load_page_op(spinand, req);
503 if (ret)
504 return ret;
505
506 ret = spinand_wait(spinand, &status);
507 if (ret < 0)
508 return ret;
509
510 ret = spinand_read_from_cache_op(spinand, req);
511 if (ret)
512 return ret;
513
514 if (!ecc_enabled)
515 return 0;
516
517 return spinand_check_ecc_status(spinand, status);
518 }
519
spinand_write_page(struct spinand_device * spinand,const struct nand_page_io_req * req)520 static int spinand_write_page(struct spinand_device *spinand,
521 const struct nand_page_io_req *req)
522 {
523 u8 status;
524 int ret;
525
526 ret = spinand_write_enable_op(spinand);
527 if (ret)
528 return ret;
529
530 ret = spinand_write_to_cache_op(spinand, req);
531 if (ret)
532 return ret;
533
534 ret = spinand_program_op(spinand, req);
535 if (ret)
536 return ret;
537
538 ret = spinand_wait(spinand, &status);
539 if (!ret && (status & STATUS_PROG_FAILED))
540 ret = -EIO;
541
542 return ret;
543 }
544
spinand_mtd_read(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)545 static int spinand_mtd_read(struct mtd_info *mtd, loff_t from,
546 struct mtd_oob_ops *ops)
547 {
548 struct spinand_device *spinand = mtd_to_spinand(mtd);
549 struct nand_device *nand = mtd_to_nanddev(mtd);
550 unsigned int max_bitflips = 0;
551 struct nand_io_iter iter;
552 bool enable_ecc = false;
553 bool ecc_failed = false;
554 int ret = 0;
555
556 if (ops->mode != MTD_OPS_RAW && spinand->eccinfo.ooblayout)
557 enable_ecc = true;
558
559 mutex_lock(&spinand->lock);
560
561 nanddev_io_for_each_page(nand, from, ops, &iter) {
562 ret = spinand_select_target(spinand, iter.req.pos.target);
563 if (ret)
564 break;
565
566 ret = spinand_ecc_enable(spinand, enable_ecc);
567 if (ret)
568 break;
569
570 ret = spinand_read_page(spinand, &iter.req, enable_ecc);
571 if (ret < 0 && ret != -EBADMSG)
572 break;
573
574 if (ret == -EBADMSG) {
575 ecc_failed = true;
576 mtd->ecc_stats.failed++;
577 ret = 0;
578 } else {
579 mtd->ecc_stats.corrected += ret;
580 max_bitflips = max_t(unsigned int, max_bitflips, ret);
581 }
582
583 ops->retlen += iter.req.datalen;
584 ops->oobretlen += iter.req.ooblen;
585 }
586
587 mutex_unlock(&spinand->lock);
588
589 if (ecc_failed && !ret)
590 ret = -EBADMSG;
591
592 return ret ? ret : max_bitflips;
593 }
594
spinand_mtd_write(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)595 static int spinand_mtd_write(struct mtd_info *mtd, loff_t to,
596 struct mtd_oob_ops *ops)
597 {
598 struct spinand_device *spinand = mtd_to_spinand(mtd);
599 struct nand_device *nand = mtd_to_nanddev(mtd);
600 struct nand_io_iter iter;
601 bool enable_ecc = false;
602 int ret = 0;
603
604 if (ops->mode != MTD_OPS_RAW && mtd->ooblayout)
605 enable_ecc = true;
606
607 mutex_lock(&spinand->lock);
608
609 nanddev_io_for_each_page(nand, to, ops, &iter) {
610 ret = spinand_select_target(spinand, iter.req.pos.target);
611 if (ret)
612 break;
613
614 ret = spinand_ecc_enable(spinand, enable_ecc);
615 if (ret)
616 break;
617
618 ret = spinand_write_page(spinand, &iter.req);
619 if (ret)
620 break;
621
622 ops->retlen += iter.req.datalen;
623 ops->oobretlen += iter.req.ooblen;
624 }
625
626 mutex_unlock(&spinand->lock);
627
628 return ret;
629 }
630
spinand_isbad(struct nand_device * nand,const struct nand_pos * pos)631 static bool spinand_isbad(struct nand_device *nand, const struct nand_pos *pos)
632 {
633 struct spinand_device *spinand = nand_to_spinand(nand);
634 struct nand_page_io_req req = {
635 .pos = *pos,
636 .ooblen = 2,
637 .ooboffs = 0,
638 .oobbuf.in = spinand->oobbuf,
639 .mode = MTD_OPS_RAW,
640 };
641
642 memset(spinand->oobbuf, 0, 2);
643 spinand_select_target(spinand, pos->target);
644 spinand_read_page(spinand, &req, false);
645 if (spinand->oobbuf[0] != 0xff || spinand->oobbuf[1] != 0xff)
646 return true;
647
648 return false;
649 }
650
spinand_mtd_block_isbad(struct mtd_info * mtd,loff_t offs)651 static int spinand_mtd_block_isbad(struct mtd_info *mtd, loff_t offs)
652 {
653 struct nand_device *nand = mtd_to_nanddev(mtd);
654 struct spinand_device *spinand = nand_to_spinand(nand);
655 struct nand_pos pos;
656 int ret;
657
658 nanddev_offs_to_pos(nand, offs, &pos);
659 mutex_lock(&spinand->lock);
660 ret = nanddev_isbad(nand, &pos);
661 mutex_unlock(&spinand->lock);
662
663 return ret;
664 }
665
spinand_markbad(struct nand_device * nand,const struct nand_pos * pos)666 static int spinand_markbad(struct nand_device *nand, const struct nand_pos *pos)
667 {
668 struct spinand_device *spinand = nand_to_spinand(nand);
669 struct nand_page_io_req req = {
670 .pos = *pos,
671 .ooboffs = 0,
672 .ooblen = 2,
673 .oobbuf.out = spinand->oobbuf,
674 };
675 int ret;
676
677 /* Erase block before marking it bad. */
678 ret = spinand_select_target(spinand, pos->target);
679 if (ret)
680 return ret;
681
682 ret = spinand_write_enable_op(spinand);
683 if (ret)
684 return ret;
685
686 spinand_erase_op(spinand, pos);
687
688 memset(spinand->oobbuf, 0, 2);
689 return spinand_write_page(spinand, &req);
690 }
691
spinand_mtd_block_markbad(struct mtd_info * mtd,loff_t offs)692 static int spinand_mtd_block_markbad(struct mtd_info *mtd, loff_t offs)
693 {
694 struct nand_device *nand = mtd_to_nanddev(mtd);
695 struct spinand_device *spinand = nand_to_spinand(nand);
696 struct nand_pos pos;
697 int ret;
698
699 nanddev_offs_to_pos(nand, offs, &pos);
700 mutex_lock(&spinand->lock);
701 ret = nanddev_markbad(nand, &pos);
702 mutex_unlock(&spinand->lock);
703
704 return ret;
705 }
706
spinand_erase(struct nand_device * nand,const struct nand_pos * pos)707 static int spinand_erase(struct nand_device *nand, const struct nand_pos *pos)
708 {
709 struct spinand_device *spinand = nand_to_spinand(nand);
710 u8 status;
711 int ret;
712
713 ret = spinand_select_target(spinand, pos->target);
714 if (ret)
715 return ret;
716
717 ret = spinand_write_enable_op(spinand);
718 if (ret)
719 return ret;
720
721 ret = spinand_erase_op(spinand, pos);
722 if (ret)
723 return ret;
724
725 ret = spinand_wait(spinand, &status);
726 if (!ret && (status & STATUS_ERASE_FAILED))
727 ret = -EIO;
728
729 return ret;
730 }
731
spinand_mtd_erase(struct mtd_info * mtd,struct erase_info * einfo)732 static int spinand_mtd_erase(struct mtd_info *mtd,
733 struct erase_info *einfo)
734 {
735 struct spinand_device *spinand = mtd_to_spinand(mtd);
736 int ret;
737
738 mutex_lock(&spinand->lock);
739 ret = nanddev_mtd_erase(mtd, einfo);
740 mutex_unlock(&spinand->lock);
741
742 return ret;
743 }
744
spinand_mtd_block_isreserved(struct mtd_info * mtd,loff_t offs)745 static int spinand_mtd_block_isreserved(struct mtd_info *mtd, loff_t offs)
746 {
747 struct spinand_device *spinand = mtd_to_spinand(mtd);
748 struct nand_device *nand = mtd_to_nanddev(mtd);
749 struct nand_pos pos;
750 int ret;
751
752 nanddev_offs_to_pos(nand, offs, &pos);
753 mutex_lock(&spinand->lock);
754 ret = nanddev_isreserved(nand, &pos);
755 mutex_unlock(&spinand->lock);
756
757 return ret;
758 }
759
760 static const struct nand_ops spinand_ops = {
761 .erase = spinand_erase,
762 .markbad = spinand_markbad,
763 .isbad = spinand_isbad,
764 };
765
766 static const struct spinand_manufacturer *spinand_manufacturers[] = {
767 ¯onix_spinand_manufacturer,
768 µn_spinand_manufacturer,
769 &winbond_spinand_manufacturer,
770 };
771
spinand_manufacturer_detect(struct spinand_device * spinand)772 static int spinand_manufacturer_detect(struct spinand_device *spinand)
773 {
774 unsigned int i;
775 int ret;
776
777 for (i = 0; i < ARRAY_SIZE(spinand_manufacturers); i++) {
778 ret = spinand_manufacturers[i]->ops->detect(spinand);
779 if (ret > 0) {
780 spinand->manufacturer = spinand_manufacturers[i];
781 return 0;
782 } else if (ret < 0) {
783 return ret;
784 }
785 }
786
787 return -ENOTSUPP;
788 }
789
spinand_manufacturer_init(struct spinand_device * spinand)790 static int spinand_manufacturer_init(struct spinand_device *spinand)
791 {
792 if (spinand->manufacturer->ops->init)
793 return spinand->manufacturer->ops->init(spinand);
794
795 return 0;
796 }
797
spinand_manufacturer_cleanup(struct spinand_device * spinand)798 static void spinand_manufacturer_cleanup(struct spinand_device *spinand)
799 {
800 /* Release manufacturer private data */
801 if (spinand->manufacturer->ops->cleanup)
802 return spinand->manufacturer->ops->cleanup(spinand);
803 }
804
805 static const struct spi_mem_op *
spinand_select_op_variant(struct spinand_device * spinand,const struct spinand_op_variants * variants)806 spinand_select_op_variant(struct spinand_device *spinand,
807 const struct spinand_op_variants *variants)
808 {
809 struct nand_device *nand = spinand_to_nand(spinand);
810 unsigned int i;
811
812 for (i = 0; i < variants->nops; i++) {
813 struct spi_mem_op op = variants->ops[i];
814 unsigned int nbytes;
815 int ret;
816
817 nbytes = nanddev_per_page_oobsize(nand) +
818 nanddev_page_size(nand);
819
820 while (nbytes) {
821 op.data.nbytes = nbytes;
822 ret = spi_mem_adjust_op_size(spinand->spimem, &op);
823 if (ret)
824 break;
825
826 if (!spi_mem_supports_op(spinand->spimem, &op))
827 break;
828
829 nbytes -= op.data.nbytes;
830 }
831
832 if (!nbytes)
833 return &variants->ops[i];
834 }
835
836 return NULL;
837 }
838
839 /**
840 * spinand_match_and_init() - Try to find a match between a device ID and an
841 * entry in a spinand_info table
842 * @spinand: SPI NAND object
843 * @table: SPI NAND device description table
844 * @table_size: size of the device description table
845 *
846 * Should be used by SPI NAND manufacturer drivers when they want to find a
847 * match between a device ID retrieved through the READ_ID command and an
848 * entry in the SPI NAND description table. If a match is found, the spinand
849 * object will be initialized with information provided by the matching
850 * spinand_info entry.
851 *
852 * Return: 0 on success, a negative error code otherwise.
853 */
spinand_match_and_init(struct spinand_device * spinand,const struct spinand_info * table,unsigned int table_size,u8 devid)854 int spinand_match_and_init(struct spinand_device *spinand,
855 const struct spinand_info *table,
856 unsigned int table_size, u8 devid)
857 {
858 struct nand_device *nand = spinand_to_nand(spinand);
859 unsigned int i;
860
861 for (i = 0; i < table_size; i++) {
862 const struct spinand_info *info = &table[i];
863 const struct spi_mem_op *op;
864
865 if (devid != info->devid)
866 continue;
867
868 nand->memorg = table[i].memorg;
869 nand->eccreq = table[i].eccreq;
870 spinand->eccinfo = table[i].eccinfo;
871 spinand->flags = table[i].flags;
872 spinand->select_target = table[i].select_target;
873
874 op = spinand_select_op_variant(spinand,
875 info->op_variants.read_cache);
876 if (!op)
877 return -ENOTSUPP;
878
879 spinand->op_templates.read_cache = op;
880
881 op = spinand_select_op_variant(spinand,
882 info->op_variants.write_cache);
883 if (!op)
884 return -ENOTSUPP;
885
886 spinand->op_templates.write_cache = op;
887
888 op = spinand_select_op_variant(spinand,
889 info->op_variants.update_cache);
890 spinand->op_templates.update_cache = op;
891
892 return 0;
893 }
894
895 return -ENOTSUPP;
896 }
897
spinand_detect(struct spinand_device * spinand)898 static int spinand_detect(struct spinand_device *spinand)
899 {
900 struct device *dev = &spinand->spimem->spi->dev;
901 struct nand_device *nand = spinand_to_nand(spinand);
902 int ret;
903
904 ret = spinand_reset_op(spinand);
905 if (ret)
906 return ret;
907
908 ret = spinand_read_id_op(spinand, spinand->id.data);
909 if (ret)
910 return ret;
911
912 spinand->id.len = SPINAND_MAX_ID_LEN;
913
914 ret = spinand_manufacturer_detect(spinand);
915 if (ret) {
916 dev_err(dev, "unknown raw ID %*phN\n", SPINAND_MAX_ID_LEN,
917 spinand->id.data);
918 return ret;
919 }
920
921 if (nand->memorg.ntargets > 1 && !spinand->select_target) {
922 dev_err(dev,
923 "SPI NANDs with more than one die must implement ->select_target()\n");
924 return -EINVAL;
925 }
926
927 dev_info(&spinand->spimem->spi->dev,
928 "%s SPI NAND was found.\n", spinand->manufacturer->name);
929 dev_info(&spinand->spimem->spi->dev,
930 "%llu MiB, block size: %zu KiB, page size: %zu, OOB size: %u\n",
931 nanddev_size(nand) >> 20, nanddev_eraseblock_size(nand) >> 10,
932 nanddev_page_size(nand), nanddev_per_page_oobsize(nand));
933
934 return 0;
935 }
936
spinand_noecc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * region)937 static int spinand_noecc_ooblayout_ecc(struct mtd_info *mtd, int section,
938 struct mtd_oob_region *region)
939 {
940 return -ERANGE;
941 }
942
spinand_noecc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * region)943 static int spinand_noecc_ooblayout_free(struct mtd_info *mtd, int section,
944 struct mtd_oob_region *region)
945 {
946 if (section)
947 return -ERANGE;
948
949 /* Reserve 2 bytes for the BBM. */
950 region->offset = 2;
951 region->length = 62;
952
953 return 0;
954 }
955
956 static const struct mtd_ooblayout_ops spinand_noecc_ooblayout = {
957 .ecc = spinand_noecc_ooblayout_ecc,
958 .free = spinand_noecc_ooblayout_free,
959 };
960
spinand_init(struct spinand_device * spinand)961 static int spinand_init(struct spinand_device *spinand)
962 {
963 struct device *dev = &spinand->spimem->spi->dev;
964 struct mtd_info *mtd = spinand_to_mtd(spinand);
965 struct nand_device *nand = mtd_to_nanddev(mtd);
966 int ret, i;
967
968 /*
969 * We need a scratch buffer because the spi_mem interface requires that
970 * buf passed in spi_mem_op->data.buf be DMA-able.
971 */
972 spinand->scratchbuf = kzalloc(SPINAND_MAX_ID_LEN, GFP_KERNEL);
973 if (!spinand->scratchbuf)
974 return -ENOMEM;
975
976 ret = spinand_detect(spinand);
977 if (ret)
978 goto err_free_bufs;
979
980 /*
981 * Use kzalloc() instead of devm_kzalloc() here, because some drivers
982 * may use this buffer for DMA access.
983 * Memory allocated by devm_ does not guarantee DMA-safe alignment.
984 */
985 spinand->databuf = kzalloc(nanddev_page_size(nand) +
986 nanddev_per_page_oobsize(nand),
987 GFP_KERNEL);
988 if (!spinand->databuf) {
989 ret = -ENOMEM;
990 goto err_free_bufs;
991 }
992
993 spinand->oobbuf = spinand->databuf + nanddev_page_size(nand);
994
995 ret = spinand_init_cfg_cache(spinand);
996 if (ret)
997 goto err_free_bufs;
998
999 ret = spinand_init_quad_enable(spinand);
1000 if (ret)
1001 goto err_free_bufs;
1002
1003 ret = spinand_upd_cfg(spinand, CFG_OTP_ENABLE, 0);
1004 if (ret)
1005 goto err_free_bufs;
1006
1007 ret = spinand_manufacturer_init(spinand);
1008 if (ret) {
1009 dev_err(dev,
1010 "Failed to initialize the SPI NAND chip (err = %d)\n",
1011 ret);
1012 goto err_free_bufs;
1013 }
1014
1015 /* After power up, all blocks are locked, so unlock them here. */
1016 for (i = 0; i < nand->memorg.ntargets; i++) {
1017 ret = spinand_select_target(spinand, i);
1018 if (ret)
1019 goto err_free_bufs;
1020
1021 ret = spinand_lock_block(spinand, BL_ALL_UNLOCKED);
1022 if (ret)
1023 goto err_free_bufs;
1024 }
1025
1026 ret = nanddev_init(nand, &spinand_ops, THIS_MODULE);
1027 if (ret)
1028 goto err_manuf_cleanup;
1029
1030 /*
1031 * Right now, we don't support ECC, so let the whole oob
1032 * area is available for user.
1033 */
1034 mtd->_read_oob = spinand_mtd_read;
1035 mtd->_write_oob = spinand_mtd_write;
1036 mtd->_block_isbad = spinand_mtd_block_isbad;
1037 mtd->_block_markbad = spinand_mtd_block_markbad;
1038 mtd->_block_isreserved = spinand_mtd_block_isreserved;
1039 mtd->_erase = spinand_mtd_erase;
1040
1041 if (spinand->eccinfo.ooblayout)
1042 mtd_set_ooblayout(mtd, spinand->eccinfo.ooblayout);
1043 else
1044 mtd_set_ooblayout(mtd, &spinand_noecc_ooblayout);
1045
1046 ret = mtd_ooblayout_count_freebytes(mtd);
1047 if (ret < 0)
1048 goto err_cleanup_nanddev;
1049
1050 mtd->oobavail = ret;
1051
1052 return 0;
1053
1054 err_cleanup_nanddev:
1055 nanddev_cleanup(nand);
1056
1057 err_manuf_cleanup:
1058 spinand_manufacturer_cleanup(spinand);
1059
1060 err_free_bufs:
1061 kfree(spinand->databuf);
1062 kfree(spinand->scratchbuf);
1063 return ret;
1064 }
1065
spinand_cleanup(struct spinand_device * spinand)1066 static void spinand_cleanup(struct spinand_device *spinand)
1067 {
1068 struct nand_device *nand = spinand_to_nand(spinand);
1069
1070 nanddev_cleanup(nand);
1071 spinand_manufacturer_cleanup(spinand);
1072 kfree(spinand->databuf);
1073 kfree(spinand->scratchbuf);
1074 }
1075
spinand_probe(struct spi_mem * mem)1076 static int spinand_probe(struct spi_mem *mem)
1077 {
1078 struct spinand_device *spinand;
1079 struct mtd_info *mtd;
1080 int ret;
1081
1082 spinand = devm_kzalloc(&mem->spi->dev, sizeof(*spinand),
1083 GFP_KERNEL);
1084 if (!spinand)
1085 return -ENOMEM;
1086
1087 spinand->spimem = mem;
1088 spi_mem_set_drvdata(mem, spinand);
1089 spinand_set_of_node(spinand, mem->spi->dev.of_node);
1090 mutex_init(&spinand->lock);
1091 mtd = spinand_to_mtd(spinand);
1092 mtd->dev.parent = &mem->spi->dev;
1093
1094 ret = spinand_init(spinand);
1095 if (ret)
1096 return ret;
1097
1098 ret = mtd_device_register(mtd, NULL, 0);
1099 if (ret)
1100 goto err_spinand_cleanup;
1101
1102 return 0;
1103
1104 err_spinand_cleanup:
1105 spinand_cleanup(spinand);
1106
1107 return ret;
1108 }
1109
spinand_remove(struct spi_mem * mem)1110 static int spinand_remove(struct spi_mem *mem)
1111 {
1112 struct spinand_device *spinand;
1113 struct mtd_info *mtd;
1114 int ret;
1115
1116 spinand = spi_mem_get_drvdata(mem);
1117 mtd = spinand_to_mtd(spinand);
1118
1119 ret = mtd_device_unregister(mtd);
1120 if (ret)
1121 return ret;
1122
1123 spinand_cleanup(spinand);
1124
1125 return 0;
1126 }
1127
1128 static const struct spi_device_id spinand_ids[] = {
1129 { .name = "spi-nand" },
1130 { /* sentinel */ },
1131 };
1132
1133 #ifdef CONFIG_OF
1134 static const struct of_device_id spinand_of_ids[] = {
1135 { .compatible = "spi-nand" },
1136 { /* sentinel */ },
1137 };
1138 #endif
1139
1140 static struct spi_mem_driver spinand_drv = {
1141 .spidrv = {
1142 .id_table = spinand_ids,
1143 .driver = {
1144 .name = "spi-nand",
1145 .of_match_table = of_match_ptr(spinand_of_ids),
1146 },
1147 },
1148 .probe = spinand_probe,
1149 .remove = spinand_remove,
1150 };
1151 module_spi_mem_driver(spinand_drv);
1152
1153 MODULE_DESCRIPTION("SPI NAND framework");
1154 MODULE_AUTHOR("Peter Pan<peterpandong@micron.com>");
1155 MODULE_LICENSE("GPL v2");
1156