1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/device.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/slab.h>
12 #include <linux/kthread.h>
13 #include <linux/completion.h>
14 #include <linux/scatterlist.h>
15 #include <linux/gpio/consumer.h>
16 
17 struct dma_chan;
18 struct property_entry;
19 struct spi_controller;
20 struct spi_transfer;
21 struct spi_controller_mem_ops;
22 
23 /*
24  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
25  * and SPI infrastructure.
26  */
27 extern struct bus_type spi_bus_type;
28 
29 /**
30  * struct spi_statistics - statistics for spi transfers
31  * @lock:          lock protecting this structure
32  *
33  * @messages:      number of spi-messages handled
34  * @transfers:     number of spi_transfers handled
35  * @errors:        number of errors during spi_transfer
36  * @timedout:      number of timeouts during spi_transfer
37  *
38  * @spi_sync:      number of times spi_sync is used
39  * @spi_sync_immediate:
40  *                 number of times spi_sync is executed immediately
41  *                 in calling context without queuing and scheduling
42  * @spi_async:     number of times spi_async is used
43  *
44  * @bytes:         number of bytes transferred to/from device
45  * @bytes_tx:      number of bytes sent to device
46  * @bytes_rx:      number of bytes received from device
47  *
48  * @transfer_bytes_histo:
49  *                 transfer bytes histogramm
50  *
51  * @transfers_split_maxsize:
52  *                 number of transfers that have been split because of
53  *                 maxsize limit
54  */
55 struct spi_statistics {
56 	spinlock_t		lock; /* lock for the whole structure */
57 
58 	unsigned long		messages;
59 	unsigned long		transfers;
60 	unsigned long		errors;
61 	unsigned long		timedout;
62 
63 	unsigned long		spi_sync;
64 	unsigned long		spi_sync_immediate;
65 	unsigned long		spi_async;
66 
67 	unsigned long long	bytes;
68 	unsigned long long	bytes_rx;
69 	unsigned long long	bytes_tx;
70 
71 #define SPI_STATISTICS_HISTO_SIZE 17
72 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
73 
74 	unsigned long transfers_split_maxsize;
75 };
76 
77 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
78 				       struct spi_transfer *xfer,
79 				       struct spi_controller *ctlr);
80 
81 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
82 	do {							\
83 		unsigned long flags;				\
84 		spin_lock_irqsave(&(stats)->lock, flags);	\
85 		(stats)->field += count;			\
86 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
87 	} while (0)
88 
89 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
90 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
91 
92 /**
93  * struct spi_device - Controller side proxy for an SPI slave device
94  * @dev: Driver model representation of the device.
95  * @controller: SPI controller used with the device.
96  * @master: Copy of controller, for backwards compatibility.
97  * @max_speed_hz: Maximum clock rate to be used with this chip
98  *	(on this board); may be changed by the device's driver.
99  *	The spi_transfer.speed_hz can override this for each transfer.
100  * @chip_select: Chipselect, distinguishing chips handled by @controller.
101  * @mode: The spi mode defines how data is clocked out and in.
102  *	This may be changed by the device's driver.
103  *	The "active low" default for chipselect mode can be overridden
104  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
105  *	each word in a transfer (by specifying SPI_LSB_FIRST).
106  * @bits_per_word: Data transfers involve one or more words; word sizes
107  *	like eight or 12 bits are common.  In-memory wordsizes are
108  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
109  *	This may be changed by the device's driver, or left at the
110  *	default (0) indicating protocol words are eight bit bytes.
111  *	The spi_transfer.bits_per_word can override this for each transfer.
112  * @rt: Make the pump thread real time priority.
113  * @irq: Negative, or the number passed to request_irq() to receive
114  *	interrupts from this device.
115  * @controller_state: Controller's runtime state
116  * @controller_data: Board-specific definitions for controller, such as
117  *	FIFO initialization parameters; from board_info.controller_data
118  * @modalias: Name of the driver to use with this device, or an alias
119  *	for that name.  This appears in the sysfs "modalias" attribute
120  *	for driver coldplugging, and in uevents used for hotplugging
121  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
122  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
123  *	the spi_master.
124  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
125  *	not using a GPIO line)
126  * @word_delay_usecs: microsecond delay to be inserted between consecutive
127  *	words of a transfer
128  *
129  * @statistics: statistics for the spi_device
130  *
131  * A @spi_device is used to interchange data between an SPI slave
132  * (usually a discrete chip) and CPU memory.
133  *
134  * In @dev, the platform_data is used to hold information about this
135  * device that's meaningful to the device's protocol driver, but not
136  * to its controller.  One example might be an identifier for a chip
137  * variant with slightly different functionality; another might be
138  * information about how this particular board wires the chip's pins.
139  */
140 struct spi_device {
141 	struct device		dev;
142 	struct spi_controller	*controller;
143 	struct spi_controller	*master;	/* compatibility layer */
144 	u32			max_speed_hz;
145 	u8			chip_select;
146 	u8			bits_per_word;
147 	bool			rt;
148 	u32			mode;
149 #define	SPI_CPHA	0x01			/* clock phase */
150 #define	SPI_CPOL	0x02			/* clock polarity */
151 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
152 #define	SPI_MODE_1	(0|SPI_CPHA)
153 #define	SPI_MODE_2	(SPI_CPOL|0)
154 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
155 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
156 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
157 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
158 #define	SPI_LOOP	0x20			/* loopback mode */
159 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
160 #define	SPI_READY	0x80			/* slave pulls low to pause */
161 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
162 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
163 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
164 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
165 #define	SPI_CS_WORD	0x1000			/* toggle cs after each word */
166 #define	SPI_TX_OCTAL	0x2000			/* transmit with 8 wires */
167 #define	SPI_RX_OCTAL	0x4000			/* receive with 8 wires */
168 #define	SPI_3WIRE_HIZ	0x8000			/* high impedance turnaround */
169 	int			irq;
170 	void			*controller_state;
171 	void			*controller_data;
172 	char			modalias[SPI_NAME_SIZE];
173 	const char		*driver_override;
174 	int			cs_gpio;	/* LEGACY: chip select gpio */
175 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
176 	uint8_t			word_delay_usecs; /* inter-word delay */
177 
178 	/* the statistics */
179 	struct spi_statistics	statistics;
180 
181 	/*
182 	 * likely need more hooks for more protocol options affecting how
183 	 * the controller talks to each chip, like:
184 	 *  - memory packing (12 bit samples into low bits, others zeroed)
185 	 *  - priority
186 	 *  - chipselect delays
187 	 *  - ...
188 	 */
189 };
190 
to_spi_device(struct device * dev)191 static inline struct spi_device *to_spi_device(struct device *dev)
192 {
193 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
194 }
195 
196 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)197 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
198 {
199 	return (spi && get_device(&spi->dev)) ? spi : NULL;
200 }
201 
spi_dev_put(struct spi_device * spi)202 static inline void spi_dev_put(struct spi_device *spi)
203 {
204 	if (spi)
205 		put_device(&spi->dev);
206 }
207 
208 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)209 static inline void *spi_get_ctldata(struct spi_device *spi)
210 {
211 	return spi->controller_state;
212 }
213 
spi_set_ctldata(struct spi_device * spi,void * state)214 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
215 {
216 	spi->controller_state = state;
217 }
218 
219 /* device driver data */
220 
spi_set_drvdata(struct spi_device * spi,void * data)221 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
222 {
223 	dev_set_drvdata(&spi->dev, data);
224 }
225 
spi_get_drvdata(struct spi_device * spi)226 static inline void *spi_get_drvdata(struct spi_device *spi)
227 {
228 	return dev_get_drvdata(&spi->dev);
229 }
230 
231 struct spi_message;
232 struct spi_transfer;
233 
234 /**
235  * struct spi_driver - Host side "protocol" driver
236  * @id_table: List of SPI devices supported by this driver
237  * @probe: Binds this driver to the spi device.  Drivers can verify
238  *	that the device is actually present, and may need to configure
239  *	characteristics (such as bits_per_word) which weren't needed for
240  *	the initial configuration done during system setup.
241  * @remove: Unbinds this driver from the spi device
242  * @shutdown: Standard shutdown callback used during system state
243  *	transitions such as powerdown/halt and kexec
244  * @driver: SPI device drivers should initialize the name and owner
245  *	field of this structure.
246  *
247  * This represents the kind of device driver that uses SPI messages to
248  * interact with the hardware at the other end of a SPI link.  It's called
249  * a "protocol" driver because it works through messages rather than talking
250  * directly to SPI hardware (which is what the underlying SPI controller
251  * driver does to pass those messages).  These protocols are defined in the
252  * specification for the device(s) supported by the driver.
253  *
254  * As a rule, those device protocols represent the lowest level interface
255  * supported by a driver, and it will support upper level interfaces too.
256  * Examples of such upper levels include frameworks like MTD, networking,
257  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
258  */
259 struct spi_driver {
260 	const struct spi_device_id *id_table;
261 	int			(*probe)(struct spi_device *spi);
262 	int			(*remove)(struct spi_device *spi);
263 	void			(*shutdown)(struct spi_device *spi);
264 	struct device_driver	driver;
265 };
266 
to_spi_driver(struct device_driver * drv)267 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
268 {
269 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
270 }
271 
272 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
273 
274 /**
275  * spi_unregister_driver - reverse effect of spi_register_driver
276  * @sdrv: the driver to unregister
277  * Context: can sleep
278  */
spi_unregister_driver(struct spi_driver * sdrv)279 static inline void spi_unregister_driver(struct spi_driver *sdrv)
280 {
281 	if (sdrv)
282 		driver_unregister(&sdrv->driver);
283 }
284 
285 /* use a define to avoid include chaining to get THIS_MODULE */
286 #define spi_register_driver(driver) \
287 	__spi_register_driver(THIS_MODULE, driver)
288 
289 /**
290  * module_spi_driver() - Helper macro for registering a SPI driver
291  * @__spi_driver: spi_driver struct
292  *
293  * Helper macro for SPI drivers which do not do anything special in module
294  * init/exit. This eliminates a lot of boilerplate. Each module may only
295  * use this macro once, and calling it replaces module_init() and module_exit()
296  */
297 #define module_spi_driver(__spi_driver) \
298 	module_driver(__spi_driver, spi_register_driver, \
299 			spi_unregister_driver)
300 
301 /**
302  * struct spi_controller - interface to SPI master or slave controller
303  * @dev: device interface to this driver
304  * @list: link with the global spi_controller list
305  * @bus_num: board-specific (and often SOC-specific) identifier for a
306  *	given SPI controller.
307  * @num_chipselect: chipselects are used to distinguish individual
308  *	SPI slaves, and are numbered from zero to num_chipselects.
309  *	each slave has a chipselect signal, but it's common that not
310  *	every chipselect is connected to a slave.
311  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
312  * @mode_bits: flags understood by this controller driver
313  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
314  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
315  *	supported. If set, the SPI core will reject any transfer with an
316  *	unsupported bits_per_word. If not set, this value is simply ignored,
317  *	and it's up to the individual driver to perform any validation.
318  * @min_speed_hz: Lowest supported transfer speed
319  * @max_speed_hz: Highest supported transfer speed
320  * @flags: other constraints relevant to this driver
321  * @slave: indicates that this is an SPI slave controller
322  * @max_transfer_size: function that returns the max transfer size for
323  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
324  * @max_message_size: function that returns the max message size for
325  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
326  * @io_mutex: mutex for physical bus access
327  * @bus_lock_spinlock: spinlock for SPI bus locking
328  * @bus_lock_mutex: mutex for exclusion of multiple callers
329  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
330  * @setup: updates the device mode and clocking records used by a
331  *	device's SPI controller; protocol code may call this.  This
332  *	must fail if an unrecognized or unsupported mode is requested.
333  *	It's always safe to call this unless transfers are pending on
334  *	the device whose settings are being modified.
335  * @set_cs_timing: optional hook for SPI devices to request SPI master
336  * controller for configuring specific CS setup time, hold time and inactive
337  * delay interms of clock counts
338  * @transfer: adds a message to the controller's transfer queue.
339  * @cleanup: frees controller-specific state
340  * @can_dma: determine whether this controller supports DMA
341  * @queued: whether this controller is providing an internal message queue
342  * @kworker: thread struct for message pump
343  * @kworker_task: pointer to task for message pump kworker thread
344  * @pump_messages: work struct for scheduling work to the message pump
345  * @queue_lock: spinlock to syncronise access to message queue
346  * @queue: message queue
347  * @idling: the device is entering idle state
348  * @cur_msg: the currently in-flight message
349  * @cur_msg_prepared: spi_prepare_message was called for the currently
350  *                    in-flight message
351  * @cur_msg_mapped: message has been mapped for DMA
352  * @xfer_completion: used by core transfer_one_message()
353  * @busy: message pump is busy
354  * @running: message pump is running
355  * @rt: whether this queue is set to run as a realtime task
356  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
357  *                   while the hardware is prepared, using the parent
358  *                   device for the spidev
359  * @max_dma_len: Maximum length of a DMA transfer for the device.
360  * @prepare_transfer_hardware: a message will soon arrive from the queue
361  *	so the subsystem requests the driver to prepare the transfer hardware
362  *	by issuing this call
363  * @transfer_one_message: the subsystem calls the driver to transfer a single
364  *	message while queuing transfers that arrive in the meantime. When the
365  *	driver is finished with this message, it must call
366  *	spi_finalize_current_message() so the subsystem can issue the next
367  *	message
368  * @unprepare_transfer_hardware: there are currently no more messages on the
369  *	queue so the subsystem notifies the driver that it may relax the
370  *	hardware by issuing this call
371  *
372  * @set_cs: set the logic level of the chip select line.  May be called
373  *          from interrupt context.
374  * @prepare_message: set up the controller to transfer a single message,
375  *                   for example doing DMA mapping.  Called from threaded
376  *                   context.
377  * @transfer_one: transfer a single spi_transfer.
378  *                  - return 0 if the transfer is finished,
379  *                  - return 1 if the transfer is still in progress. When
380  *                    the driver is finished with this transfer it must
381  *                    call spi_finalize_current_transfer() so the subsystem
382  *                    can issue the next transfer. Note: transfer_one and
383  *                    transfer_one_message are mutually exclusive; when both
384  *                    are set, the generic subsystem does not call your
385  *                    transfer_one callback.
386  * @handle_err: the subsystem calls the driver to handle an error that occurs
387  *		in the generic implementation of transfer_one_message().
388  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
389  *	     This field is optional and should only be implemented if the
390  *	     controller has native support for memory like operations.
391  * @unprepare_message: undo any work done by prepare_message().
392  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
393  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
394  *	CS number. Any individual value may be -ENOENT for CS lines that
395  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
396  *	in new drivers.
397  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
398  *	number. Any individual value may be NULL for CS lines that
399  *	are not GPIOs (driven by the SPI controller itself).
400  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
401  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
402  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
403  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
404  * @statistics: statistics for the spi_controller
405  * @dma_tx: DMA transmit channel
406  * @dma_rx: DMA receive channel
407  * @dummy_rx: dummy receive buffer for full-duplex devices
408  * @dummy_tx: dummy transmit buffer for full-duplex devices
409  * @fw_translate_cs: If the boot firmware uses different numbering scheme
410  *	what Linux expects, this optional hook can be used to translate
411  *	between the two.
412  *
413  * Each SPI controller can communicate with one or more @spi_device
414  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
415  * but not chip select signals.  Each device may be configured to use a
416  * different clock rate, since those shared signals are ignored unless
417  * the chip is selected.
418  *
419  * The driver for an SPI controller manages access to those devices through
420  * a queue of spi_message transactions, copying data between CPU memory and
421  * an SPI slave device.  For each such message it queues, it calls the
422  * message's completion function when the transaction completes.
423  */
424 struct spi_controller {
425 	struct device	dev;
426 
427 	struct list_head list;
428 
429 	/* other than negative (== assign one dynamically), bus_num is fully
430 	 * board-specific.  usually that simplifies to being SOC-specific.
431 	 * example:  one SOC has three SPI controllers, numbered 0..2,
432 	 * and one board's schematics might show it using SPI-2.  software
433 	 * would normally use bus_num=2 for that controller.
434 	 */
435 	s16			bus_num;
436 
437 	/* chipselects will be integral to many controllers; some others
438 	 * might use board-specific GPIOs.
439 	 */
440 	u16			num_chipselect;
441 
442 	/* some SPI controllers pose alignment requirements on DMAable
443 	 * buffers; let protocol drivers know about these requirements.
444 	 */
445 	u16			dma_alignment;
446 
447 	/* spi_device.mode flags understood by this controller driver */
448 	u32			mode_bits;
449 
450 	/* bitmask of supported bits_per_word for transfers */
451 	u32			bits_per_word_mask;
452 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
453 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
454 
455 	/* limits on transfer speed */
456 	u32			min_speed_hz;
457 	u32			max_speed_hz;
458 
459 	/* other constraints relevant to this driver */
460 	u16			flags;
461 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
462 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
463 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
464 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
465 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
466 
467 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
468 
469 	/* flag indicating this is an SPI slave controller */
470 	bool			slave;
471 
472 	/*
473 	 * on some hardware transfer / message size may be constrained
474 	 * the limit may depend on device transfer settings
475 	 */
476 	size_t (*max_transfer_size)(struct spi_device *spi);
477 	size_t (*max_message_size)(struct spi_device *spi);
478 
479 	/* I/O mutex */
480 	struct mutex		io_mutex;
481 
482 	/* lock and mutex for SPI bus locking */
483 	spinlock_t		bus_lock_spinlock;
484 	struct mutex		bus_lock_mutex;
485 
486 	/* flag indicating that the SPI bus is locked for exclusive use */
487 	bool			bus_lock_flag;
488 
489 	/* Setup mode and clock, etc (spi driver may call many times).
490 	 *
491 	 * IMPORTANT:  this may be called when transfers to another
492 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
493 	 * which could break those transfers.
494 	 */
495 	int			(*setup)(struct spi_device *spi);
496 
497 	/*
498 	 * set_cs_timing() method is for SPI controllers that supports
499 	 * configuring CS timing.
500 	 *
501 	 * This hook allows SPI client drivers to request SPI controllers
502 	 * to configure specific CS timing through spi_set_cs_timing() after
503 	 * spi_setup().
504 	 */
505 	void (*set_cs_timing)(struct spi_device *spi, u8 setup_clk_cycles,
506 			      u8 hold_clk_cycles, u8 inactive_clk_cycles);
507 
508 	/* bidirectional bulk transfers
509 	 *
510 	 * + The transfer() method may not sleep; its main role is
511 	 *   just to add the message to the queue.
512 	 * + For now there's no remove-from-queue operation, or
513 	 *   any other request management
514 	 * + To a given spi_device, message queueing is pure fifo
515 	 *
516 	 * + The controller's main job is to process its message queue,
517 	 *   selecting a chip (for masters), then transferring data
518 	 * + If there are multiple spi_device children, the i/o queue
519 	 *   arbitration algorithm is unspecified (round robin, fifo,
520 	 *   priority, reservations, preemption, etc)
521 	 *
522 	 * + Chipselect stays active during the entire message
523 	 *   (unless modified by spi_transfer.cs_change != 0).
524 	 * + The message transfers use clock and SPI mode parameters
525 	 *   previously established by setup() for this device
526 	 */
527 	int			(*transfer)(struct spi_device *spi,
528 						struct spi_message *mesg);
529 
530 	/* called on release() to free memory provided by spi_controller */
531 	void			(*cleanup)(struct spi_device *spi);
532 
533 	/*
534 	 * Used to enable core support for DMA handling, if can_dma()
535 	 * exists and returns true then the transfer will be mapped
536 	 * prior to transfer_one() being called.  The driver should
537 	 * not modify or store xfer and dma_tx and dma_rx must be set
538 	 * while the device is prepared.
539 	 */
540 	bool			(*can_dma)(struct spi_controller *ctlr,
541 					   struct spi_device *spi,
542 					   struct spi_transfer *xfer);
543 
544 	/*
545 	 * These hooks are for drivers that want to use the generic
546 	 * controller transfer queueing mechanism. If these are used, the
547 	 * transfer() function above must NOT be specified by the driver.
548 	 * Over time we expect SPI drivers to be phased over to this API.
549 	 */
550 	bool				queued;
551 	struct kthread_worker		kworker;
552 	struct task_struct		*kworker_task;
553 	struct kthread_work		pump_messages;
554 	spinlock_t			queue_lock;
555 	struct list_head		queue;
556 	struct spi_message		*cur_msg;
557 	bool				idling;
558 	bool				busy;
559 	bool				running;
560 	bool				rt;
561 	bool				auto_runtime_pm;
562 	bool                            cur_msg_prepared;
563 	bool				cur_msg_mapped;
564 	struct completion               xfer_completion;
565 	size_t				max_dma_len;
566 
567 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
568 	int (*transfer_one_message)(struct spi_controller *ctlr,
569 				    struct spi_message *mesg);
570 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
571 	int (*prepare_message)(struct spi_controller *ctlr,
572 			       struct spi_message *message);
573 	int (*unprepare_message)(struct spi_controller *ctlr,
574 				 struct spi_message *message);
575 	int (*slave_abort)(struct spi_controller *ctlr);
576 
577 	/*
578 	 * These hooks are for drivers that use a generic implementation
579 	 * of transfer_one_message() provied by the core.
580 	 */
581 	void (*set_cs)(struct spi_device *spi, bool enable);
582 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
583 			    struct spi_transfer *transfer);
584 	void (*handle_err)(struct spi_controller *ctlr,
585 			   struct spi_message *message);
586 
587 	/* Optimized handlers for SPI memory-like operations. */
588 	const struct spi_controller_mem_ops *mem_ops;
589 
590 	/* gpio chip select */
591 	int			*cs_gpios;
592 	struct gpio_desc	**cs_gpiods;
593 	bool			use_gpio_descriptors;
594 
595 	/* statistics */
596 	struct spi_statistics	statistics;
597 
598 	/* DMA channels for use with core dmaengine helpers */
599 	struct dma_chan		*dma_tx;
600 	struct dma_chan		*dma_rx;
601 
602 	/* dummy data for full duplex devices */
603 	void			*dummy_rx;
604 	void			*dummy_tx;
605 
606 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
607 };
608 
spi_controller_get_devdata(struct spi_controller * ctlr)609 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
610 {
611 	return dev_get_drvdata(&ctlr->dev);
612 }
613 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)614 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
615 					      void *data)
616 {
617 	dev_set_drvdata(&ctlr->dev, data);
618 }
619 
spi_controller_get(struct spi_controller * ctlr)620 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
621 {
622 	if (!ctlr || !get_device(&ctlr->dev))
623 		return NULL;
624 	return ctlr;
625 }
626 
spi_controller_put(struct spi_controller * ctlr)627 static inline void spi_controller_put(struct spi_controller *ctlr)
628 {
629 	if (ctlr)
630 		put_device(&ctlr->dev);
631 }
632 
spi_controller_is_slave(struct spi_controller * ctlr)633 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
634 {
635 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
636 }
637 
638 /* PM calls that need to be issued by the driver */
639 extern int spi_controller_suspend(struct spi_controller *ctlr);
640 extern int spi_controller_resume(struct spi_controller *ctlr);
641 
642 /* Calls the driver make to interact with the message queue */
643 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
644 extern void spi_finalize_current_message(struct spi_controller *ctlr);
645 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
646 
647 /* the spi driver core manages memory for the spi_controller classdev */
648 extern struct spi_controller *__spi_alloc_controller(struct device *host,
649 						unsigned int size, bool slave);
650 
spi_alloc_master(struct device * host,unsigned int size)651 static inline struct spi_controller *spi_alloc_master(struct device *host,
652 						      unsigned int size)
653 {
654 	return __spi_alloc_controller(host, size, false);
655 }
656 
spi_alloc_slave(struct device * host,unsigned int size)657 static inline struct spi_controller *spi_alloc_slave(struct device *host,
658 						     unsigned int size)
659 {
660 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
661 		return NULL;
662 
663 	return __spi_alloc_controller(host, size, true);
664 }
665 
666 extern int spi_register_controller(struct spi_controller *ctlr);
667 extern int devm_spi_register_controller(struct device *dev,
668 					struct spi_controller *ctlr);
669 extern void spi_unregister_controller(struct spi_controller *ctlr);
670 
671 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
672 
673 /*
674  * SPI resource management while processing a SPI message
675  */
676 
677 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
678 				  struct spi_message *msg,
679 				  void *res);
680 
681 /**
682  * struct spi_res - spi resource management structure
683  * @entry:   list entry
684  * @release: release code called prior to freeing this resource
685  * @data:    extra data allocated for the specific use-case
686  *
687  * this is based on ideas from devres, but focused on life-cycle
688  * management during spi_message processing
689  */
690 struct spi_res {
691 	struct list_head        entry;
692 	spi_res_release_t       release;
693 	unsigned long long      data[]; /* guarantee ull alignment */
694 };
695 
696 extern void *spi_res_alloc(struct spi_device *spi,
697 			   spi_res_release_t release,
698 			   size_t size, gfp_t gfp);
699 extern void spi_res_add(struct spi_message *message, void *res);
700 extern void spi_res_free(void *res);
701 
702 extern void spi_res_release(struct spi_controller *ctlr,
703 			    struct spi_message *message);
704 
705 /*---------------------------------------------------------------------------*/
706 
707 /*
708  * I/O INTERFACE between SPI controller and protocol drivers
709  *
710  * Protocol drivers use a queue of spi_messages, each transferring data
711  * between the controller and memory buffers.
712  *
713  * The spi_messages themselves consist of a series of read+write transfer
714  * segments.  Those segments always read the same number of bits as they
715  * write; but one or the other is easily ignored by passing a null buffer
716  * pointer.  (This is unlike most types of I/O API, because SPI hardware
717  * is full duplex.)
718  *
719  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
720  * up to the protocol driver, which guarantees the integrity of both (as
721  * well as the data buffers) for as long as the message is queued.
722  */
723 
724 /**
725  * struct spi_transfer - a read/write buffer pair
726  * @tx_buf: data to be written (dma-safe memory), or NULL
727  * @rx_buf: data to be read (dma-safe memory), or NULL
728  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
729  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
730  * @tx_nbits: number of bits used for writing. If 0 the default
731  *      (SPI_NBITS_SINGLE) is used.
732  * @rx_nbits: number of bits used for reading. If 0 the default
733  *      (SPI_NBITS_SINGLE) is used.
734  * @len: size of rx and tx buffers (in bytes)
735  * @speed_hz: Select a speed other than the device default for this
736  *      transfer. If 0 the default (from @spi_device) is used.
737  * @bits_per_word: select a bits_per_word other than the device default
738  *      for this transfer. If 0 the default (from @spi_device) is used.
739  * @cs_change: affects chipselect after this transfer completes
740  * @cs_change_delay: delay between cs deassert and assert when
741  *      @cs_change is set and @spi_transfer is not the last in @spi_message
742  * @cs_change_delay_unit: unit of cs_change_delay
743  * @delay_usecs: microseconds to delay after this transfer before
744  *	(optionally) changing the chipselect status, then starting
745  *	the next transfer or completing this @spi_message.
746  * @word_delay_usecs: microseconds to inter word delay after each word size
747  *	(set by bits_per_word) transmission.
748  * @word_delay: clock cycles to inter word delay after each word size
749  *	(set by bits_per_word) transmission.
750  * @effective_speed_hz: the effective SCK-speed that was used to
751  *      transfer this transfer. Set to 0 if the spi bus driver does
752  *      not support it.
753  * @transfer_list: transfers are sequenced through @spi_message.transfers
754  * @tx_sg: Scatterlist for transmit, currently not for client use
755  * @rx_sg: Scatterlist for receive, currently not for client use
756  *
757  * SPI transfers always write the same number of bytes as they read.
758  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
759  * In some cases, they may also want to provide DMA addresses for
760  * the data being transferred; that may reduce overhead, when the
761  * underlying driver uses dma.
762  *
763  * If the transmit buffer is null, zeroes will be shifted out
764  * while filling @rx_buf.  If the receive buffer is null, the data
765  * shifted in will be discarded.  Only "len" bytes shift out (or in).
766  * It's an error to try to shift out a partial word.  (For example, by
767  * shifting out three bytes with word size of sixteen or twenty bits;
768  * the former uses two bytes per word, the latter uses four bytes.)
769  *
770  * In-memory data values are always in native CPU byte order, translated
771  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
772  * for example when bits_per_word is sixteen, buffers are 2N bytes long
773  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
774  *
775  * When the word size of the SPI transfer is not a power-of-two multiple
776  * of eight bits, those in-memory words include extra bits.  In-memory
777  * words are always seen by protocol drivers as right-justified, so the
778  * undefined (rx) or unused (tx) bits are always the most significant bits.
779  *
780  * All SPI transfers start with the relevant chipselect active.  Normally
781  * it stays selected until after the last transfer in a message.  Drivers
782  * can affect the chipselect signal using cs_change.
783  *
784  * (i) If the transfer isn't the last one in the message, this flag is
785  * used to make the chipselect briefly go inactive in the middle of the
786  * message.  Toggling chipselect in this way may be needed to terminate
787  * a chip command, letting a single spi_message perform all of group of
788  * chip transactions together.
789  *
790  * (ii) When the transfer is the last one in the message, the chip may
791  * stay selected until the next transfer.  On multi-device SPI busses
792  * with nothing blocking messages going to other devices, this is just
793  * a performance hint; starting a message to another device deselects
794  * this one.  But in other cases, this can be used to ensure correctness.
795  * Some devices need protocol transactions to be built from a series of
796  * spi_message submissions, where the content of one message is determined
797  * by the results of previous messages and where the whole transaction
798  * ends when the chipselect goes intactive.
799  *
800  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
801  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
802  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
803  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
804  *
805  * The code that submits an spi_message (and its spi_transfers)
806  * to the lower layers is responsible for managing its memory.
807  * Zero-initialize every field you don't set up explicitly, to
808  * insulate against future API updates.  After you submit a message
809  * and its transfers, ignore them until its completion callback.
810  */
811 struct spi_transfer {
812 	/* it's ok if tx_buf == rx_buf (right?)
813 	 * for MicroWire, one buffer must be null
814 	 * buffers must work with dma_*map_single() calls, unless
815 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
816 	 */
817 	const void	*tx_buf;
818 	void		*rx_buf;
819 	unsigned	len;
820 
821 	dma_addr_t	tx_dma;
822 	dma_addr_t	rx_dma;
823 	struct sg_table tx_sg;
824 	struct sg_table rx_sg;
825 
826 	unsigned	cs_change:1;
827 	unsigned	tx_nbits:3;
828 	unsigned	rx_nbits:3;
829 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
830 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
831 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
832 	u8		bits_per_word;
833 	u8		word_delay_usecs;
834 	u16		delay_usecs;
835 	u16		cs_change_delay;
836 	u8		cs_change_delay_unit;
837 #define SPI_DELAY_UNIT_USECS	0
838 #define SPI_DELAY_UNIT_NSECS	1
839 #define SPI_DELAY_UNIT_SCK	2
840 	u32		speed_hz;
841 	u16		word_delay;
842 
843 	u32		effective_speed_hz;
844 
845 	struct list_head transfer_list;
846 };
847 
848 /**
849  * struct spi_message - one multi-segment SPI transaction
850  * @transfers: list of transfer segments in this transaction
851  * @spi: SPI device to which the transaction is queued
852  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
853  *	addresses for each transfer buffer
854  * @complete: called to report transaction completions
855  * @context: the argument to complete() when it's called
856  * @frame_length: the total number of bytes in the message
857  * @actual_length: the total number of bytes that were transferred in all
858  *	successful segments
859  * @status: zero for success, else negative errno
860  * @queue: for use by whichever driver currently owns the message
861  * @state: for use by whichever driver currently owns the message
862  * @resources: for resource management when the spi message is processed
863  *
864  * A @spi_message is used to execute an atomic sequence of data transfers,
865  * each represented by a struct spi_transfer.  The sequence is "atomic"
866  * in the sense that no other spi_message may use that SPI bus until that
867  * sequence completes.  On some systems, many such sequences can execute as
868  * as single programmed DMA transfer.  On all systems, these messages are
869  * queued, and might complete after transactions to other devices.  Messages
870  * sent to a given spi_device are always executed in FIFO order.
871  *
872  * The code that submits an spi_message (and its spi_transfers)
873  * to the lower layers is responsible for managing its memory.
874  * Zero-initialize every field you don't set up explicitly, to
875  * insulate against future API updates.  After you submit a message
876  * and its transfers, ignore them until its completion callback.
877  */
878 struct spi_message {
879 	struct list_head	transfers;
880 
881 	struct spi_device	*spi;
882 
883 	unsigned		is_dma_mapped:1;
884 
885 	/* REVISIT:  we might want a flag affecting the behavior of the
886 	 * last transfer ... allowing things like "read 16 bit length L"
887 	 * immediately followed by "read L bytes".  Basically imposing
888 	 * a specific message scheduling algorithm.
889 	 *
890 	 * Some controller drivers (message-at-a-time queue processing)
891 	 * could provide that as their default scheduling algorithm.  But
892 	 * others (with multi-message pipelines) could need a flag to
893 	 * tell them about such special cases.
894 	 */
895 
896 	/* completion is reported through a callback */
897 	void			(*complete)(void *context);
898 	void			*context;
899 	unsigned		frame_length;
900 	unsigned		actual_length;
901 	int			status;
902 
903 	/* for optional use by whatever driver currently owns the
904 	 * spi_message ...  between calls to spi_async and then later
905 	 * complete(), that's the spi_controller controller driver.
906 	 */
907 	struct list_head	queue;
908 	void			*state;
909 
910 	/* list of spi_res reources when the spi message is processed */
911 	struct list_head        resources;
912 };
913 
spi_message_init_no_memset(struct spi_message * m)914 static inline void spi_message_init_no_memset(struct spi_message *m)
915 {
916 	INIT_LIST_HEAD(&m->transfers);
917 	INIT_LIST_HEAD(&m->resources);
918 }
919 
spi_message_init(struct spi_message * m)920 static inline void spi_message_init(struct spi_message *m)
921 {
922 	memset(m, 0, sizeof *m);
923 	spi_message_init_no_memset(m);
924 }
925 
926 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)927 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
928 {
929 	list_add_tail(&t->transfer_list, &m->transfers);
930 }
931 
932 static inline void
spi_transfer_del(struct spi_transfer * t)933 spi_transfer_del(struct spi_transfer *t)
934 {
935 	list_del(&t->transfer_list);
936 }
937 
938 /**
939  * spi_message_init_with_transfers - Initialize spi_message and append transfers
940  * @m: spi_message to be initialized
941  * @xfers: An array of spi transfers
942  * @num_xfers: Number of items in the xfer array
943  *
944  * This function initializes the given spi_message and adds each spi_transfer in
945  * the given array to the message.
946  */
947 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)948 spi_message_init_with_transfers(struct spi_message *m,
949 struct spi_transfer *xfers, unsigned int num_xfers)
950 {
951 	unsigned int i;
952 
953 	spi_message_init(m);
954 	for (i = 0; i < num_xfers; ++i)
955 		spi_message_add_tail(&xfers[i], m);
956 }
957 
958 /* It's fine to embed message and transaction structures in other data
959  * structures so long as you don't free them while they're in use.
960  */
961 
spi_message_alloc(unsigned ntrans,gfp_t flags)962 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
963 {
964 	struct spi_message *m;
965 
966 	m = kzalloc(sizeof(struct spi_message)
967 			+ ntrans * sizeof(struct spi_transfer),
968 			flags);
969 	if (m) {
970 		unsigned i;
971 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
972 
973 		spi_message_init_no_memset(m);
974 		for (i = 0; i < ntrans; i++, t++)
975 			spi_message_add_tail(t, m);
976 	}
977 	return m;
978 }
979 
spi_message_free(struct spi_message * m)980 static inline void spi_message_free(struct spi_message *m)
981 {
982 	kfree(m);
983 }
984 
985 extern void spi_set_cs_timing(struct spi_device *spi, u8 setup, u8 hold, u8 inactive_dly);
986 
987 extern int spi_setup(struct spi_device *spi);
988 extern int spi_async(struct spi_device *spi, struct spi_message *message);
989 extern int spi_async_locked(struct spi_device *spi,
990 			    struct spi_message *message);
991 extern int spi_slave_abort(struct spi_device *spi);
992 
993 static inline size_t
spi_max_message_size(struct spi_device * spi)994 spi_max_message_size(struct spi_device *spi)
995 {
996 	struct spi_controller *ctlr = spi->controller;
997 
998 	if (!ctlr->max_message_size)
999 		return SIZE_MAX;
1000 	return ctlr->max_message_size(spi);
1001 }
1002 
1003 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1004 spi_max_transfer_size(struct spi_device *spi)
1005 {
1006 	struct spi_controller *ctlr = spi->controller;
1007 	size_t tr_max = SIZE_MAX;
1008 	size_t msg_max = spi_max_message_size(spi);
1009 
1010 	if (ctlr->max_transfer_size)
1011 		tr_max = ctlr->max_transfer_size(spi);
1012 
1013 	/* transfer size limit must not be greater than messsage size limit */
1014 	return min(tr_max, msg_max);
1015 }
1016 
1017 /**
1018  * spi_is_bpw_supported - Check if bits per word is supported
1019  * @spi: SPI device
1020  * @bpw: Bits per word
1021  *
1022  * This function checks to see if the SPI controller supports @bpw.
1023  *
1024  * Returns:
1025  * True if @bpw is supported, false otherwise.
1026  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1027 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1028 {
1029 	u32 bpw_mask = spi->master->bits_per_word_mask;
1030 
1031 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1032 		return true;
1033 
1034 	return false;
1035 }
1036 
1037 /*---------------------------------------------------------------------------*/
1038 
1039 /* SPI transfer replacement methods which make use of spi_res */
1040 
1041 struct spi_replaced_transfers;
1042 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1043 				       struct spi_message *msg,
1044 				       struct spi_replaced_transfers *res);
1045 /**
1046  * struct spi_replaced_transfers - structure describing the spi_transfer
1047  *                                 replacements that have occurred
1048  *                                 so that they can get reverted
1049  * @release:            some extra release code to get executed prior to
1050  *                      relasing this structure
1051  * @extradata:          pointer to some extra data if requested or NULL
1052  * @replaced_transfers: transfers that have been replaced and which need
1053  *                      to get restored
1054  * @replaced_after:     the transfer after which the @replaced_transfers
1055  *                      are to get re-inserted
1056  * @inserted:           number of transfers inserted
1057  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1058  *                      that have been replacing replaced_transfers
1059  *
1060  * note: that @extradata will point to @inserted_transfers[@inserted]
1061  * if some extra allocation is requested, so alignment will be the same
1062  * as for spi_transfers
1063  */
1064 struct spi_replaced_transfers {
1065 	spi_replaced_release_t release;
1066 	void *extradata;
1067 	struct list_head replaced_transfers;
1068 	struct list_head *replaced_after;
1069 	size_t inserted;
1070 	struct spi_transfer inserted_transfers[];
1071 };
1072 
1073 extern struct spi_replaced_transfers *spi_replace_transfers(
1074 	struct spi_message *msg,
1075 	struct spi_transfer *xfer_first,
1076 	size_t remove,
1077 	size_t insert,
1078 	spi_replaced_release_t release,
1079 	size_t extradatasize,
1080 	gfp_t gfp);
1081 
1082 /*---------------------------------------------------------------------------*/
1083 
1084 /* SPI transfer transformation methods */
1085 
1086 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1087 				       struct spi_message *msg,
1088 				       size_t maxsize,
1089 				       gfp_t gfp);
1090 
1091 /*---------------------------------------------------------------------------*/
1092 
1093 /* All these synchronous SPI transfer routines are utilities layered
1094  * over the core async transfer primitive.  Here, "synchronous" means
1095  * they will sleep uninterruptibly until the async transfer completes.
1096  */
1097 
1098 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1099 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1100 extern int spi_bus_lock(struct spi_controller *ctlr);
1101 extern int spi_bus_unlock(struct spi_controller *ctlr);
1102 
1103 /**
1104  * spi_sync_transfer - synchronous SPI data transfer
1105  * @spi: device with which data will be exchanged
1106  * @xfers: An array of spi_transfers
1107  * @num_xfers: Number of items in the xfer array
1108  * Context: can sleep
1109  *
1110  * Does a synchronous SPI data transfer of the given spi_transfer array.
1111  *
1112  * For more specific semantics see spi_sync().
1113  *
1114  * Return: Return: zero on success, else a negative error code.
1115  */
1116 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1117 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1118 	unsigned int num_xfers)
1119 {
1120 	struct spi_message msg;
1121 
1122 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1123 
1124 	return spi_sync(spi, &msg);
1125 }
1126 
1127 /**
1128  * spi_write - SPI synchronous write
1129  * @spi: device to which data will be written
1130  * @buf: data buffer
1131  * @len: data buffer size
1132  * Context: can sleep
1133  *
1134  * This function writes the buffer @buf.
1135  * Callable only from contexts that can sleep.
1136  *
1137  * Return: zero on success, else a negative error code.
1138  */
1139 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1140 spi_write(struct spi_device *spi, const void *buf, size_t len)
1141 {
1142 	struct spi_transfer	t = {
1143 			.tx_buf		= buf,
1144 			.len		= len,
1145 		};
1146 
1147 	return spi_sync_transfer(spi, &t, 1);
1148 }
1149 
1150 /**
1151  * spi_read - SPI synchronous read
1152  * @spi: device from which data will be read
1153  * @buf: data buffer
1154  * @len: data buffer size
1155  * Context: can sleep
1156  *
1157  * This function reads the buffer @buf.
1158  * Callable only from contexts that can sleep.
1159  *
1160  * Return: zero on success, else a negative error code.
1161  */
1162 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1163 spi_read(struct spi_device *spi, void *buf, size_t len)
1164 {
1165 	struct spi_transfer	t = {
1166 			.rx_buf		= buf,
1167 			.len		= len,
1168 		};
1169 
1170 	return spi_sync_transfer(spi, &t, 1);
1171 }
1172 
1173 /* this copies txbuf and rxbuf data; for small transfers only! */
1174 extern int spi_write_then_read(struct spi_device *spi,
1175 		const void *txbuf, unsigned n_tx,
1176 		void *rxbuf, unsigned n_rx);
1177 
1178 /**
1179  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1180  * @spi: device with which data will be exchanged
1181  * @cmd: command to be written before data is read back
1182  * Context: can sleep
1183  *
1184  * Callable only from contexts that can sleep.
1185  *
1186  * Return: the (unsigned) eight bit number returned by the
1187  * device, or else a negative error code.
1188  */
spi_w8r8(struct spi_device * spi,u8 cmd)1189 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1190 {
1191 	ssize_t			status;
1192 	u8			result;
1193 
1194 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1195 
1196 	/* return negative errno or unsigned value */
1197 	return (status < 0) ? status : result;
1198 }
1199 
1200 /**
1201  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1202  * @spi: device with which data will be exchanged
1203  * @cmd: command to be written before data is read back
1204  * Context: can sleep
1205  *
1206  * The number is returned in wire-order, which is at least sometimes
1207  * big-endian.
1208  *
1209  * Callable only from contexts that can sleep.
1210  *
1211  * Return: the (unsigned) sixteen bit number returned by the
1212  * device, or else a negative error code.
1213  */
spi_w8r16(struct spi_device * spi,u8 cmd)1214 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1215 {
1216 	ssize_t			status;
1217 	u16			result;
1218 
1219 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1220 
1221 	/* return negative errno or unsigned value */
1222 	return (status < 0) ? status : result;
1223 }
1224 
1225 /**
1226  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1227  * @spi: device with which data will be exchanged
1228  * @cmd: command to be written before data is read back
1229  * Context: can sleep
1230  *
1231  * This function is similar to spi_w8r16, with the exception that it will
1232  * convert the read 16 bit data word from big-endian to native endianness.
1233  *
1234  * Callable only from contexts that can sleep.
1235  *
1236  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1237  * endianness, or else a negative error code.
1238  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1239 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1240 
1241 {
1242 	ssize_t status;
1243 	__be16 result;
1244 
1245 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1246 	if (status < 0)
1247 		return status;
1248 
1249 	return be16_to_cpu(result);
1250 }
1251 
1252 /*---------------------------------------------------------------------------*/
1253 
1254 /*
1255  * INTERFACE between board init code and SPI infrastructure.
1256  *
1257  * No SPI driver ever sees these SPI device table segments, but
1258  * it's how the SPI core (or adapters that get hotplugged) grows
1259  * the driver model tree.
1260  *
1261  * As a rule, SPI devices can't be probed.  Instead, board init code
1262  * provides a table listing the devices which are present, with enough
1263  * information to bind and set up the device's driver.  There's basic
1264  * support for nonstatic configurations too; enough to handle adding
1265  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1266  */
1267 
1268 /**
1269  * struct spi_board_info - board-specific template for a SPI device
1270  * @modalias: Initializes spi_device.modalias; identifies the driver.
1271  * @platform_data: Initializes spi_device.platform_data; the particular
1272  *	data stored there is driver-specific.
1273  * @properties: Additional device properties for the device.
1274  * @controller_data: Initializes spi_device.controller_data; some
1275  *	controllers need hints about hardware setup, e.g. for DMA.
1276  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1277  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1278  *	from the chip datasheet and board-specific signal quality issues.
1279  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1280  *	by spi_new_device(), and otherwise depends on board wiring.
1281  * @chip_select: Initializes spi_device.chip_select; depends on how
1282  *	the board is wired.
1283  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1284  *	wiring (some devices support both 3WIRE and standard modes), and
1285  *	possibly presence of an inverter in the chipselect path.
1286  *
1287  * When adding new SPI devices to the device tree, these structures serve
1288  * as a partial device template.  They hold information which can't always
1289  * be determined by drivers.  Information that probe() can establish (such
1290  * as the default transfer wordsize) is not included here.
1291  *
1292  * These structures are used in two places.  Their primary role is to
1293  * be stored in tables of board-specific device descriptors, which are
1294  * declared early in board initialization and then used (much later) to
1295  * populate a controller's device tree after the that controller's driver
1296  * initializes.  A secondary (and atypical) role is as a parameter to
1297  * spi_new_device() call, which happens after those controller drivers
1298  * are active in some dynamic board configuration models.
1299  */
1300 struct spi_board_info {
1301 	/* the device name and module name are coupled, like platform_bus;
1302 	 * "modalias" is normally the driver name.
1303 	 *
1304 	 * platform_data goes to spi_device.dev.platform_data,
1305 	 * controller_data goes to spi_device.controller_data,
1306 	 * device properties are copied and attached to spi_device,
1307 	 * irq is copied too
1308 	 */
1309 	char		modalias[SPI_NAME_SIZE];
1310 	const void	*platform_data;
1311 	const struct property_entry *properties;
1312 	void		*controller_data;
1313 	int		irq;
1314 
1315 	/* slower signaling on noisy or low voltage boards */
1316 	u32		max_speed_hz;
1317 
1318 
1319 	/* bus_num is board specific and matches the bus_num of some
1320 	 * spi_controller that will probably be registered later.
1321 	 *
1322 	 * chip_select reflects how this chip is wired to that master;
1323 	 * it's less than num_chipselect.
1324 	 */
1325 	u16		bus_num;
1326 	u16		chip_select;
1327 
1328 	/* mode becomes spi_device.mode, and is essential for chips
1329 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1330 	 */
1331 	u32		mode;
1332 
1333 	/* ... may need additional spi_device chip config data here.
1334 	 * avoid stuff protocol drivers can set; but include stuff
1335 	 * needed to behave without being bound to a driver:
1336 	 *  - quirks like clock rate mattering when not selected
1337 	 */
1338 };
1339 
1340 #ifdef	CONFIG_SPI
1341 extern int
1342 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1343 #else
1344 /* board init code may ignore whether SPI is configured or not */
1345 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1346 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1347 	{ return 0; }
1348 #endif
1349 
1350 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1351  * use spi_new_device() to describe each device.  You can also call
1352  * spi_unregister_device() to start making that device vanish, but
1353  * normally that would be handled by spi_unregister_controller().
1354  *
1355  * You can also use spi_alloc_device() and spi_add_device() to use a two
1356  * stage registration sequence for each spi_device.  This gives the caller
1357  * some more control over the spi_device structure before it is registered,
1358  * but requires that caller to initialize fields that would otherwise
1359  * be defined using the board info.
1360  */
1361 extern struct spi_device *
1362 spi_alloc_device(struct spi_controller *ctlr);
1363 
1364 extern int
1365 spi_add_device(struct spi_device *spi);
1366 
1367 extern struct spi_device *
1368 spi_new_device(struct spi_controller *, struct spi_board_info *);
1369 
1370 extern void spi_unregister_device(struct spi_device *spi);
1371 
1372 extern const struct spi_device_id *
1373 spi_get_device_id(const struct spi_device *sdev);
1374 
1375 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1376 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1377 {
1378 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1379 }
1380 
1381 /* OF support code */
1382 #if IS_ENABLED(CONFIG_OF)
1383 
1384 /* must call put_device() when done with returned spi_device device */
1385 extern struct spi_device *
1386 of_find_spi_device_by_node(struct device_node *node);
1387 
1388 #else
1389 
1390 static inline struct spi_device *
of_find_spi_device_by_node(struct device_node * node)1391 of_find_spi_device_by_node(struct device_node *node)
1392 {
1393 	return NULL;
1394 }
1395 
1396 #endif /* IS_ENABLED(CONFIG_OF) */
1397 
1398 /* Compatibility layer */
1399 #define spi_master			spi_controller
1400 
1401 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1402 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1403 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1404 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1405 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1406 
1407 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1408 #define spi_master_set_devdata(_ctlr, _data)	\
1409 	spi_controller_set_devdata(_ctlr, _data)
1410 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1411 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1412 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1413 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1414 
1415 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1416 #define devm_spi_register_master(_dev, _ctlr) \
1417 	devm_spi_register_controller(_dev, _ctlr)
1418 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1419 
1420 #endif /* __LINUX_SPI_H */
1421