1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Parallel SCSI (SPI) transport specific attributes exported to sysfs.
4 *
5 * Copyright (c) 2003 Silicon Graphics, Inc. All rights reserved.
6 * Copyright (c) 2004, 2005 James Bottomley <James.Bottomley@SteelEye.com>
7 */
8 #include <linux/ctype.h>
9 #include <linux/init.h>
10 #include <linux/module.h>
11 #include <linux/workqueue.h>
12 #include <linux/blkdev.h>
13 #include <linux/mutex.h>
14 #include <linux/sysfs.h>
15 #include <linux/slab.h>
16 #include <linux/suspend.h>
17 #include <scsi/scsi.h>
18 #include "scsi_priv.h"
19 #include <scsi/scsi_device.h>
20 #include <scsi/scsi_host.h>
21 #include <scsi/scsi_cmnd.h>
22 #include <scsi/scsi_eh.h>
23 #include <scsi/scsi_tcq.h>
24 #include <scsi/scsi_transport.h>
25 #include <scsi/scsi_transport_spi.h>
26
27 #define SPI_NUM_ATTRS 14 /* increase this if you add attributes */
28 #define SPI_OTHER_ATTRS 1 /* Increase this if you add "always
29 * on" attributes */
30 #define SPI_HOST_ATTRS 1
31
32 #define SPI_MAX_ECHO_BUFFER_SIZE 4096
33
34 #define DV_LOOPS 3
35 #define DV_TIMEOUT (10*HZ)
36 #define DV_RETRIES 3 /* should only need at most
37 * two cc/ua clears */
38
39 /* Our blacklist flags */
40 enum {
41 SPI_BLIST_NOIUS = (__force blist_flags_t)0x1,
42 };
43
44 /* blacklist table, modelled on scsi_devinfo.c */
45 static struct {
46 char *vendor;
47 char *model;
48 blist_flags_t flags;
49 } spi_static_device_list[] __initdata = {
50 {"HP", "Ultrium 3-SCSI", SPI_BLIST_NOIUS },
51 {"IBM", "ULTRIUM-TD3", SPI_BLIST_NOIUS },
52 {NULL, NULL, 0}
53 };
54
55 /* Private data accessors (keep these out of the header file) */
56 #define spi_dv_in_progress(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_in_progress)
57 #define spi_dv_mutex(x) (((struct spi_transport_attrs *)&(x)->starget_data)->dv_mutex)
58
59 struct spi_internal {
60 struct scsi_transport_template t;
61 struct spi_function_template *f;
62 };
63
64 #define to_spi_internal(tmpl) container_of(tmpl, struct spi_internal, t)
65
66 static const int ppr_to_ps[] = {
67 /* The PPR values 0-6 are reserved, fill them in when
68 * the committee defines them */
69 -1, /* 0x00 */
70 -1, /* 0x01 */
71 -1, /* 0x02 */
72 -1, /* 0x03 */
73 -1, /* 0x04 */
74 -1, /* 0x05 */
75 -1, /* 0x06 */
76 3125, /* 0x07 */
77 6250, /* 0x08 */
78 12500, /* 0x09 */
79 25000, /* 0x0a */
80 30300, /* 0x0b */
81 50000, /* 0x0c */
82 };
83 /* The PPR values at which you calculate the period in ns by multiplying
84 * by 4 */
85 #define SPI_STATIC_PPR 0x0c
86
sprint_frac(char * dest,int value,int denom)87 static int sprint_frac(char *dest, int value, int denom)
88 {
89 int frac = value % denom;
90 int result = sprintf(dest, "%d", value / denom);
91
92 if (frac == 0)
93 return result;
94 dest[result++] = '.';
95
96 do {
97 denom /= 10;
98 sprintf(dest + result, "%d", frac / denom);
99 result++;
100 frac %= denom;
101 } while (frac);
102
103 dest[result++] = '\0';
104 return result;
105 }
106
spi_execute(struct scsi_device * sdev,const void * cmd,enum dma_data_direction dir,void * buffer,unsigned bufflen,struct scsi_sense_hdr * sshdr)107 static int spi_execute(struct scsi_device *sdev, const void *cmd,
108 enum dma_data_direction dir,
109 void *buffer, unsigned bufflen,
110 struct scsi_sense_hdr *sshdr)
111 {
112 int i, result;
113 unsigned char sense[SCSI_SENSE_BUFFERSIZE];
114 struct scsi_sense_hdr sshdr_tmp;
115
116 if (!sshdr)
117 sshdr = &sshdr_tmp;
118
119 for(i = 0; i < DV_RETRIES; i++) {
120 result = scsi_execute(sdev, cmd, dir, buffer, bufflen, sense,
121 sshdr, DV_TIMEOUT, /* retries */ 1,
122 REQ_FAILFAST_DEV |
123 REQ_FAILFAST_TRANSPORT |
124 REQ_FAILFAST_DRIVER,
125 0, NULL);
126 if (driver_byte(result) != DRIVER_SENSE ||
127 sshdr->sense_key != UNIT_ATTENTION)
128 break;
129 }
130 return result;
131 }
132
133 static struct {
134 enum spi_signal_type value;
135 char *name;
136 } signal_types[] = {
137 { SPI_SIGNAL_UNKNOWN, "unknown" },
138 { SPI_SIGNAL_SE, "SE" },
139 { SPI_SIGNAL_LVD, "LVD" },
140 { SPI_SIGNAL_HVD, "HVD" },
141 };
142
spi_signal_to_string(enum spi_signal_type type)143 static inline const char *spi_signal_to_string(enum spi_signal_type type)
144 {
145 int i;
146
147 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
148 if (type == signal_types[i].value)
149 return signal_types[i].name;
150 }
151 return NULL;
152 }
spi_signal_to_value(const char * name)153 static inline enum spi_signal_type spi_signal_to_value(const char *name)
154 {
155 int i, len;
156
157 for (i = 0; i < ARRAY_SIZE(signal_types); i++) {
158 len = strlen(signal_types[i].name);
159 if (strncmp(name, signal_types[i].name, len) == 0 &&
160 (name[len] == '\n' || name[len] == '\0'))
161 return signal_types[i].value;
162 }
163 return SPI_SIGNAL_UNKNOWN;
164 }
165
spi_host_setup(struct transport_container * tc,struct device * dev,struct device * cdev)166 static int spi_host_setup(struct transport_container *tc, struct device *dev,
167 struct device *cdev)
168 {
169 struct Scsi_Host *shost = dev_to_shost(dev);
170
171 spi_signalling(shost) = SPI_SIGNAL_UNKNOWN;
172
173 return 0;
174 }
175
176 static int spi_host_configure(struct transport_container *tc,
177 struct device *dev,
178 struct device *cdev);
179
180 static DECLARE_TRANSPORT_CLASS(spi_host_class,
181 "spi_host",
182 spi_host_setup,
183 NULL,
184 spi_host_configure);
185
spi_host_match(struct attribute_container * cont,struct device * dev)186 static int spi_host_match(struct attribute_container *cont,
187 struct device *dev)
188 {
189 struct Scsi_Host *shost;
190
191 if (!scsi_is_host_device(dev))
192 return 0;
193
194 shost = dev_to_shost(dev);
195 if (!shost->transportt || shost->transportt->host_attrs.ac.class
196 != &spi_host_class.class)
197 return 0;
198
199 return &shost->transportt->host_attrs.ac == cont;
200 }
201
202 static int spi_target_configure(struct transport_container *tc,
203 struct device *dev,
204 struct device *cdev);
205
spi_device_configure(struct transport_container * tc,struct device * dev,struct device * cdev)206 static int spi_device_configure(struct transport_container *tc,
207 struct device *dev,
208 struct device *cdev)
209 {
210 struct scsi_device *sdev = to_scsi_device(dev);
211 struct scsi_target *starget = sdev->sdev_target;
212 blist_flags_t bflags;
213
214 bflags = scsi_get_device_flags_keyed(sdev, &sdev->inquiry[8],
215 &sdev->inquiry[16],
216 SCSI_DEVINFO_SPI);
217
218 /* Populate the target capability fields with the values
219 * gleaned from the device inquiry */
220
221 spi_support_sync(starget) = scsi_device_sync(sdev);
222 spi_support_wide(starget) = scsi_device_wide(sdev);
223 spi_support_dt(starget) = scsi_device_dt(sdev);
224 spi_support_dt_only(starget) = scsi_device_dt_only(sdev);
225 spi_support_ius(starget) = scsi_device_ius(sdev);
226 if (bflags & SPI_BLIST_NOIUS) {
227 dev_info(dev, "Information Units disabled by blacklist\n");
228 spi_support_ius(starget) = 0;
229 }
230 spi_support_qas(starget) = scsi_device_qas(sdev);
231
232 return 0;
233 }
234
spi_setup_transport_attrs(struct transport_container * tc,struct device * dev,struct device * cdev)235 static int spi_setup_transport_attrs(struct transport_container *tc,
236 struct device *dev,
237 struct device *cdev)
238 {
239 struct scsi_target *starget = to_scsi_target(dev);
240
241 spi_period(starget) = -1; /* illegal value */
242 spi_min_period(starget) = 0;
243 spi_offset(starget) = 0; /* async */
244 spi_max_offset(starget) = 255;
245 spi_width(starget) = 0; /* narrow */
246 spi_max_width(starget) = 1;
247 spi_iu(starget) = 0; /* no IU */
248 spi_max_iu(starget) = 1;
249 spi_dt(starget) = 0; /* ST */
250 spi_qas(starget) = 0;
251 spi_max_qas(starget) = 1;
252 spi_wr_flow(starget) = 0;
253 spi_rd_strm(starget) = 0;
254 spi_rti(starget) = 0;
255 spi_pcomp_en(starget) = 0;
256 spi_hold_mcs(starget) = 0;
257 spi_dv_pending(starget) = 0;
258 spi_dv_in_progress(starget) = 0;
259 spi_initial_dv(starget) = 0;
260 mutex_init(&spi_dv_mutex(starget));
261
262 return 0;
263 }
264
265 #define spi_transport_show_simple(field, format_string) \
266 \
267 static ssize_t \
268 show_spi_transport_##field(struct device *dev, \
269 struct device_attribute *attr, char *buf) \
270 { \
271 struct scsi_target *starget = transport_class_to_starget(dev); \
272 struct spi_transport_attrs *tp; \
273 \
274 tp = (struct spi_transport_attrs *)&starget->starget_data; \
275 return snprintf(buf, 20, format_string, tp->field); \
276 }
277
278 #define spi_transport_store_simple(field, format_string) \
279 \
280 static ssize_t \
281 store_spi_transport_##field(struct device *dev, \
282 struct device_attribute *attr, \
283 const char *buf, size_t count) \
284 { \
285 int val; \
286 struct scsi_target *starget = transport_class_to_starget(dev); \
287 struct spi_transport_attrs *tp; \
288 \
289 tp = (struct spi_transport_attrs *)&starget->starget_data; \
290 val = simple_strtoul(buf, NULL, 0); \
291 tp->field = val; \
292 return count; \
293 }
294
295 #define spi_transport_show_function(field, format_string) \
296 \
297 static ssize_t \
298 show_spi_transport_##field(struct device *dev, \
299 struct device_attribute *attr, char *buf) \
300 { \
301 struct scsi_target *starget = transport_class_to_starget(dev); \
302 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
303 struct spi_transport_attrs *tp; \
304 struct spi_internal *i = to_spi_internal(shost->transportt); \
305 tp = (struct spi_transport_attrs *)&starget->starget_data; \
306 if (i->f->get_##field) \
307 i->f->get_##field(starget); \
308 return snprintf(buf, 20, format_string, tp->field); \
309 }
310
311 #define spi_transport_store_function(field, format_string) \
312 static ssize_t \
313 store_spi_transport_##field(struct device *dev, \
314 struct device_attribute *attr, \
315 const char *buf, size_t count) \
316 { \
317 int val; \
318 struct scsi_target *starget = transport_class_to_starget(dev); \
319 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
320 struct spi_internal *i = to_spi_internal(shost->transportt); \
321 \
322 if (!i->f->set_##field) \
323 return -EINVAL; \
324 val = simple_strtoul(buf, NULL, 0); \
325 i->f->set_##field(starget, val); \
326 return count; \
327 }
328
329 #define spi_transport_store_max(field, format_string) \
330 static ssize_t \
331 store_spi_transport_##field(struct device *dev, \
332 struct device_attribute *attr, \
333 const char *buf, size_t count) \
334 { \
335 int val; \
336 struct scsi_target *starget = transport_class_to_starget(dev); \
337 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent); \
338 struct spi_internal *i = to_spi_internal(shost->transportt); \
339 struct spi_transport_attrs *tp \
340 = (struct spi_transport_attrs *)&starget->starget_data; \
341 \
342 if (!i->f->set_##field) \
343 return -EINVAL; \
344 val = simple_strtoul(buf, NULL, 0); \
345 if (val > tp->max_##field) \
346 val = tp->max_##field; \
347 i->f->set_##field(starget, val); \
348 return count; \
349 }
350
351 #define spi_transport_rd_attr(field, format_string) \
352 spi_transport_show_function(field, format_string) \
353 spi_transport_store_function(field, format_string) \
354 static DEVICE_ATTR(field, S_IRUGO, \
355 show_spi_transport_##field, \
356 store_spi_transport_##field);
357
358 #define spi_transport_simple_attr(field, format_string) \
359 spi_transport_show_simple(field, format_string) \
360 spi_transport_store_simple(field, format_string) \
361 static DEVICE_ATTR(field, S_IRUGO, \
362 show_spi_transport_##field, \
363 store_spi_transport_##field);
364
365 #define spi_transport_max_attr(field, format_string) \
366 spi_transport_show_function(field, format_string) \
367 spi_transport_store_max(field, format_string) \
368 spi_transport_simple_attr(max_##field, format_string) \
369 static DEVICE_ATTR(field, S_IRUGO, \
370 show_spi_transport_##field, \
371 store_spi_transport_##field);
372
373 /* The Parallel SCSI Tranport Attributes: */
374 spi_transport_max_attr(offset, "%d\n");
375 spi_transport_max_attr(width, "%d\n");
376 spi_transport_max_attr(iu, "%d\n");
377 spi_transport_rd_attr(dt, "%d\n");
378 spi_transport_max_attr(qas, "%d\n");
379 spi_transport_rd_attr(wr_flow, "%d\n");
380 spi_transport_rd_attr(rd_strm, "%d\n");
381 spi_transport_rd_attr(rti, "%d\n");
382 spi_transport_rd_attr(pcomp_en, "%d\n");
383 spi_transport_rd_attr(hold_mcs, "%d\n");
384
385 /* we only care about the first child device that's a real SCSI device
386 * so we return 1 to terminate the iteration when we find it */
child_iter(struct device * dev,void * data)387 static int child_iter(struct device *dev, void *data)
388 {
389 if (!scsi_is_sdev_device(dev))
390 return 0;
391
392 spi_dv_device(to_scsi_device(dev));
393 return 1;
394 }
395
396 static ssize_t
store_spi_revalidate(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)397 store_spi_revalidate(struct device *dev, struct device_attribute *attr,
398 const char *buf, size_t count)
399 {
400 struct scsi_target *starget = transport_class_to_starget(dev);
401
402 device_for_each_child(&starget->dev, NULL, child_iter);
403 return count;
404 }
405 static DEVICE_ATTR(revalidate, S_IWUSR, NULL, store_spi_revalidate);
406
407 /* Translate the period into ns according to the current spec
408 * for SDTR/PPR messages */
period_to_str(char * buf,int period)409 static int period_to_str(char *buf, int period)
410 {
411 int len, picosec;
412
413 if (period < 0 || period > 0xff) {
414 picosec = -1;
415 } else if (period <= SPI_STATIC_PPR) {
416 picosec = ppr_to_ps[period];
417 } else {
418 picosec = period * 4000;
419 }
420
421 if (picosec == -1) {
422 len = sprintf(buf, "reserved");
423 } else {
424 len = sprint_frac(buf, picosec, 1000);
425 }
426
427 return len;
428 }
429
430 static ssize_t
show_spi_transport_period_helper(char * buf,int period)431 show_spi_transport_period_helper(char *buf, int period)
432 {
433 int len = period_to_str(buf, period);
434 buf[len++] = '\n';
435 buf[len] = '\0';
436 return len;
437 }
438
439 static ssize_t
store_spi_transport_period_helper(struct device * dev,const char * buf,size_t count,int * periodp)440 store_spi_transport_period_helper(struct device *dev, const char *buf,
441 size_t count, int *periodp)
442 {
443 int j, picosec, period = -1;
444 char *endp;
445
446 picosec = simple_strtoul(buf, &endp, 10) * 1000;
447 if (*endp == '.') {
448 int mult = 100;
449 do {
450 endp++;
451 if (!isdigit(*endp))
452 break;
453 picosec += (*endp - '0') * mult;
454 mult /= 10;
455 } while (mult > 0);
456 }
457
458 for (j = 0; j <= SPI_STATIC_PPR; j++) {
459 if (ppr_to_ps[j] < picosec)
460 continue;
461 period = j;
462 break;
463 }
464
465 if (period == -1)
466 period = picosec / 4000;
467
468 if (period > 0xff)
469 period = 0xff;
470
471 *periodp = period;
472
473 return count;
474 }
475
476 static ssize_t
show_spi_transport_period(struct device * dev,struct device_attribute * attr,char * buf)477 show_spi_transport_period(struct device *dev,
478 struct device_attribute *attr, char *buf)
479 {
480 struct scsi_target *starget = transport_class_to_starget(dev);
481 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
482 struct spi_internal *i = to_spi_internal(shost->transportt);
483 struct spi_transport_attrs *tp =
484 (struct spi_transport_attrs *)&starget->starget_data;
485
486 if (i->f->get_period)
487 i->f->get_period(starget);
488
489 return show_spi_transport_period_helper(buf, tp->period);
490 }
491
492 static ssize_t
store_spi_transport_period(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)493 store_spi_transport_period(struct device *cdev, struct device_attribute *attr,
494 const char *buf, size_t count)
495 {
496 struct scsi_target *starget = transport_class_to_starget(cdev);
497 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
498 struct spi_internal *i = to_spi_internal(shost->transportt);
499 struct spi_transport_attrs *tp =
500 (struct spi_transport_attrs *)&starget->starget_data;
501 int period, retval;
502
503 if (!i->f->set_period)
504 return -EINVAL;
505
506 retval = store_spi_transport_period_helper(cdev, buf, count, &period);
507
508 if (period < tp->min_period)
509 period = tp->min_period;
510
511 i->f->set_period(starget, period);
512
513 return retval;
514 }
515
516 static DEVICE_ATTR(period, S_IRUGO,
517 show_spi_transport_period,
518 store_spi_transport_period);
519
520 static ssize_t
show_spi_transport_min_period(struct device * cdev,struct device_attribute * attr,char * buf)521 show_spi_transport_min_period(struct device *cdev,
522 struct device_attribute *attr, char *buf)
523 {
524 struct scsi_target *starget = transport_class_to_starget(cdev);
525 struct Scsi_Host *shost = dev_to_shost(starget->dev.parent);
526 struct spi_internal *i = to_spi_internal(shost->transportt);
527 struct spi_transport_attrs *tp =
528 (struct spi_transport_attrs *)&starget->starget_data;
529
530 if (!i->f->set_period)
531 return -EINVAL;
532
533 return show_spi_transport_period_helper(buf, tp->min_period);
534 }
535
536 static ssize_t
store_spi_transport_min_period(struct device * cdev,struct device_attribute * attr,const char * buf,size_t count)537 store_spi_transport_min_period(struct device *cdev,
538 struct device_attribute *attr,
539 const char *buf, size_t count)
540 {
541 struct scsi_target *starget = transport_class_to_starget(cdev);
542 struct spi_transport_attrs *tp =
543 (struct spi_transport_attrs *)&starget->starget_data;
544
545 return store_spi_transport_period_helper(cdev, buf, count,
546 &tp->min_period);
547 }
548
549
550 static DEVICE_ATTR(min_period, S_IRUGO,
551 show_spi_transport_min_period,
552 store_spi_transport_min_period);
553
554
show_spi_host_signalling(struct device * cdev,struct device_attribute * attr,char * buf)555 static ssize_t show_spi_host_signalling(struct device *cdev,
556 struct device_attribute *attr,
557 char *buf)
558 {
559 struct Scsi_Host *shost = transport_class_to_shost(cdev);
560 struct spi_internal *i = to_spi_internal(shost->transportt);
561
562 if (i->f->get_signalling)
563 i->f->get_signalling(shost);
564
565 return sprintf(buf, "%s\n", spi_signal_to_string(spi_signalling(shost)));
566 }
store_spi_host_signalling(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)567 static ssize_t store_spi_host_signalling(struct device *dev,
568 struct device_attribute *attr,
569 const char *buf, size_t count)
570 {
571 struct Scsi_Host *shost = transport_class_to_shost(dev);
572 struct spi_internal *i = to_spi_internal(shost->transportt);
573 enum spi_signal_type type = spi_signal_to_value(buf);
574
575 if (!i->f->set_signalling)
576 return -EINVAL;
577
578 if (type != SPI_SIGNAL_UNKNOWN)
579 i->f->set_signalling(shost, type);
580
581 return count;
582 }
583 static DEVICE_ATTR(signalling, S_IRUGO,
584 show_spi_host_signalling,
585 store_spi_host_signalling);
586
show_spi_host_width(struct device * cdev,struct device_attribute * attr,char * buf)587 static ssize_t show_spi_host_width(struct device *cdev,
588 struct device_attribute *attr,
589 char *buf)
590 {
591 struct Scsi_Host *shost = transport_class_to_shost(cdev);
592
593 return sprintf(buf, "%s\n", shost->max_id == 16 ? "wide" : "narrow");
594 }
595 static DEVICE_ATTR(host_width, S_IRUGO,
596 show_spi_host_width, NULL);
597
show_spi_host_hba_id(struct device * cdev,struct device_attribute * attr,char * buf)598 static ssize_t show_spi_host_hba_id(struct device *cdev,
599 struct device_attribute *attr,
600 char *buf)
601 {
602 struct Scsi_Host *shost = transport_class_to_shost(cdev);
603
604 return sprintf(buf, "%d\n", shost->this_id);
605 }
606 static DEVICE_ATTR(hba_id, S_IRUGO,
607 show_spi_host_hba_id, NULL);
608
609 #define DV_SET(x, y) \
610 if(i->f->set_##x) \
611 i->f->set_##x(sdev->sdev_target, y)
612
613 enum spi_compare_returns {
614 SPI_COMPARE_SUCCESS,
615 SPI_COMPARE_FAILURE,
616 SPI_COMPARE_SKIP_TEST,
617 };
618
619
620 /* This is for read/write Domain Validation: If the device supports
621 * an echo buffer, we do read/write tests to it */
622 static enum spi_compare_returns
spi_dv_device_echo_buffer(struct scsi_device * sdev,u8 * buffer,u8 * ptr,const int retries)623 spi_dv_device_echo_buffer(struct scsi_device *sdev, u8 *buffer,
624 u8 *ptr, const int retries)
625 {
626 int len = ptr - buffer;
627 int j, k, r, result;
628 unsigned int pattern = 0x0000ffff;
629 struct scsi_sense_hdr sshdr;
630
631 const char spi_write_buffer[] = {
632 WRITE_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
633 };
634 const char spi_read_buffer[] = {
635 READ_BUFFER, 0x0a, 0, 0, 0, 0, 0, len >> 8, len & 0xff, 0
636 };
637
638 /* set up the pattern buffer. Doesn't matter if we spill
639 * slightly beyond since that's where the read buffer is */
640 for (j = 0; j < len; ) {
641
642 /* fill the buffer with counting (test a) */
643 for ( ; j < min(len, 32); j++)
644 buffer[j] = j;
645 k = j;
646 /* fill the buffer with alternating words of 0x0 and
647 * 0xffff (test b) */
648 for ( ; j < min(len, k + 32); j += 2) {
649 u16 *word = (u16 *)&buffer[j];
650
651 *word = (j & 0x02) ? 0x0000 : 0xffff;
652 }
653 k = j;
654 /* fill with crosstalk (alternating 0x5555 0xaaa)
655 * (test c) */
656 for ( ; j < min(len, k + 32); j += 2) {
657 u16 *word = (u16 *)&buffer[j];
658
659 *word = (j & 0x02) ? 0x5555 : 0xaaaa;
660 }
661 k = j;
662 /* fill with shifting bits (test d) */
663 for ( ; j < min(len, k + 32); j += 4) {
664 u32 *word = (unsigned int *)&buffer[j];
665 u32 roll = (pattern & 0x80000000) ? 1 : 0;
666
667 *word = pattern;
668 pattern = (pattern << 1) | roll;
669 }
670 /* don't bother with random data (test e) */
671 }
672
673 for (r = 0; r < retries; r++) {
674 result = spi_execute(sdev, spi_write_buffer, DMA_TO_DEVICE,
675 buffer, len, &sshdr);
676 if(result || !scsi_device_online(sdev)) {
677
678 scsi_device_set_state(sdev, SDEV_QUIESCE);
679 if (scsi_sense_valid(&sshdr)
680 && sshdr.sense_key == ILLEGAL_REQUEST
681 /* INVALID FIELD IN CDB */
682 && sshdr.asc == 0x24 && sshdr.ascq == 0x00)
683 /* This would mean that the drive lied
684 * to us about supporting an echo
685 * buffer (unfortunately some Western
686 * Digital drives do precisely this)
687 */
688 return SPI_COMPARE_SKIP_TEST;
689
690
691 sdev_printk(KERN_ERR, sdev, "Write Buffer failure %x\n", result);
692 return SPI_COMPARE_FAILURE;
693 }
694
695 memset(ptr, 0, len);
696 spi_execute(sdev, spi_read_buffer, DMA_FROM_DEVICE,
697 ptr, len, NULL);
698 scsi_device_set_state(sdev, SDEV_QUIESCE);
699
700 if (memcmp(buffer, ptr, len) != 0)
701 return SPI_COMPARE_FAILURE;
702 }
703 return SPI_COMPARE_SUCCESS;
704 }
705
706 /* This is for the simplest form of Domain Validation: a read test
707 * on the inquiry data from the device */
708 static enum spi_compare_returns
spi_dv_device_compare_inquiry(struct scsi_device * sdev,u8 * buffer,u8 * ptr,const int retries)709 spi_dv_device_compare_inquiry(struct scsi_device *sdev, u8 *buffer,
710 u8 *ptr, const int retries)
711 {
712 int r, result;
713 const int len = sdev->inquiry_len;
714 const char spi_inquiry[] = {
715 INQUIRY, 0, 0, 0, len, 0
716 };
717
718 for (r = 0; r < retries; r++) {
719 memset(ptr, 0, len);
720
721 result = spi_execute(sdev, spi_inquiry, DMA_FROM_DEVICE,
722 ptr, len, NULL);
723
724 if(result || !scsi_device_online(sdev)) {
725 scsi_device_set_state(sdev, SDEV_QUIESCE);
726 return SPI_COMPARE_FAILURE;
727 }
728
729 /* If we don't have the inquiry data already, the
730 * first read gets it */
731 if (ptr == buffer) {
732 ptr += len;
733 --r;
734 continue;
735 }
736
737 if (memcmp(buffer, ptr, len) != 0)
738 /* failure */
739 return SPI_COMPARE_FAILURE;
740 }
741 return SPI_COMPARE_SUCCESS;
742 }
743
744 static enum spi_compare_returns
spi_dv_retrain(struct scsi_device * sdev,u8 * buffer,u8 * ptr,enum spi_compare_returns (* compare_fn)(struct scsi_device *,u8 *,u8 *,int))745 spi_dv_retrain(struct scsi_device *sdev, u8 *buffer, u8 *ptr,
746 enum spi_compare_returns
747 (*compare_fn)(struct scsi_device *, u8 *, u8 *, int))
748 {
749 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
750 struct scsi_target *starget = sdev->sdev_target;
751 int period = 0, prevperiod = 0;
752 enum spi_compare_returns retval;
753
754
755 for (;;) {
756 int newperiod;
757 retval = compare_fn(sdev, buffer, ptr, DV_LOOPS);
758
759 if (retval == SPI_COMPARE_SUCCESS
760 || retval == SPI_COMPARE_SKIP_TEST)
761 break;
762
763 /* OK, retrain, fallback */
764 if (i->f->get_iu)
765 i->f->get_iu(starget);
766 if (i->f->get_qas)
767 i->f->get_qas(starget);
768 if (i->f->get_period)
769 i->f->get_period(sdev->sdev_target);
770
771 /* Here's the fallback sequence; first try turning off
772 * IU, then QAS (if we can control them), then finally
773 * fall down the periods */
774 if (i->f->set_iu && spi_iu(starget)) {
775 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Information Units\n");
776 DV_SET(iu, 0);
777 } else if (i->f->set_qas && spi_qas(starget)) {
778 starget_printk(KERN_ERR, starget, "Domain Validation Disabling Quick Arbitration and Selection\n");
779 DV_SET(qas, 0);
780 } else {
781 newperiod = spi_period(starget);
782 period = newperiod > period ? newperiod : period;
783 if (period < 0x0d)
784 period++;
785 else
786 period += period >> 1;
787
788 if (unlikely(period > 0xff || period == prevperiod)) {
789 /* Total failure; set to async and return */
790 starget_printk(KERN_ERR, starget, "Domain Validation Failure, dropping back to Asynchronous\n");
791 DV_SET(offset, 0);
792 return SPI_COMPARE_FAILURE;
793 }
794 starget_printk(KERN_ERR, starget, "Domain Validation detected failure, dropping back\n");
795 DV_SET(period, period);
796 prevperiod = period;
797 }
798 }
799 return retval;
800 }
801
802 static int
spi_dv_device_get_echo_buffer(struct scsi_device * sdev,u8 * buffer)803 spi_dv_device_get_echo_buffer(struct scsi_device *sdev, u8 *buffer)
804 {
805 int l, result;
806
807 /* first off do a test unit ready. This can error out
808 * because of reservations or some other reason. If it
809 * fails, the device won't let us write to the echo buffer
810 * so just return failure */
811
812 static const char spi_test_unit_ready[] = {
813 TEST_UNIT_READY, 0, 0, 0, 0, 0
814 };
815
816 static const char spi_read_buffer_descriptor[] = {
817 READ_BUFFER, 0x0b, 0, 0, 0, 0, 0, 0, 4, 0
818 };
819
820
821 /* We send a set of three TURs to clear any outstanding
822 * unit attention conditions if they exist (Otherwise the
823 * buffer tests won't be happy). If the TUR still fails
824 * (reservation conflict, device not ready, etc) just
825 * skip the write tests */
826 for (l = 0; ; l++) {
827 result = spi_execute(sdev, spi_test_unit_ready, DMA_NONE,
828 NULL, 0, NULL);
829
830 if(result) {
831 if(l >= 3)
832 return 0;
833 } else {
834 /* TUR succeeded */
835 break;
836 }
837 }
838
839 result = spi_execute(sdev, spi_read_buffer_descriptor,
840 DMA_FROM_DEVICE, buffer, 4, NULL);
841
842 if (result)
843 /* Device has no echo buffer */
844 return 0;
845
846 return buffer[3] + ((buffer[2] & 0x1f) << 8);
847 }
848
849 static void
spi_dv_device_internal(struct scsi_device * sdev,u8 * buffer)850 spi_dv_device_internal(struct scsi_device *sdev, u8 *buffer)
851 {
852 struct spi_internal *i = to_spi_internal(sdev->host->transportt);
853 struct scsi_target *starget = sdev->sdev_target;
854 struct Scsi_Host *shost = sdev->host;
855 int len = sdev->inquiry_len;
856 int min_period = spi_min_period(starget);
857 int max_width = spi_max_width(starget);
858 /* first set us up for narrow async */
859 DV_SET(offset, 0);
860 DV_SET(width, 0);
861
862 if (spi_dv_device_compare_inquiry(sdev, buffer, buffer, DV_LOOPS)
863 != SPI_COMPARE_SUCCESS) {
864 starget_printk(KERN_ERR, starget, "Domain Validation Initial Inquiry Failed\n");
865 /* FIXME: should probably offline the device here? */
866 return;
867 }
868
869 if (!spi_support_wide(starget)) {
870 spi_max_width(starget) = 0;
871 max_width = 0;
872 }
873
874 /* test width */
875 if (i->f->set_width && max_width) {
876 i->f->set_width(starget, 1);
877
878 if (spi_dv_device_compare_inquiry(sdev, buffer,
879 buffer + len,
880 DV_LOOPS)
881 != SPI_COMPARE_SUCCESS) {
882 starget_printk(KERN_ERR, starget, "Wide Transfers Fail\n");
883 i->f->set_width(starget, 0);
884 /* Make sure we don't force wide back on by asking
885 * for a transfer period that requires it */
886 max_width = 0;
887 if (min_period < 10)
888 min_period = 10;
889 }
890 }
891
892 if (!i->f->set_period)
893 return;
894
895 /* device can't handle synchronous */
896 if (!spi_support_sync(starget) && !spi_support_dt(starget))
897 return;
898
899 /* len == -1 is the signal that we need to ascertain the
900 * presence of an echo buffer before trying to use it. len ==
901 * 0 means we don't have an echo buffer */
902 len = -1;
903
904 retry:
905
906 /* now set up to the maximum */
907 DV_SET(offset, spi_max_offset(starget));
908 DV_SET(period, min_period);
909
910 /* try QAS requests; this should be harmless to set if the
911 * target supports it */
912 if (spi_support_qas(starget) && spi_max_qas(starget)) {
913 DV_SET(qas, 1);
914 } else {
915 DV_SET(qas, 0);
916 }
917
918 if (spi_support_ius(starget) && spi_max_iu(starget) &&
919 min_period < 9) {
920 /* This u320 (or u640). Set IU transfers */
921 DV_SET(iu, 1);
922 /* Then set the optional parameters */
923 DV_SET(rd_strm, 1);
924 DV_SET(wr_flow, 1);
925 DV_SET(rti, 1);
926 if (min_period == 8)
927 DV_SET(pcomp_en, 1);
928 } else {
929 DV_SET(iu, 0);
930 }
931
932 /* now that we've done all this, actually check the bus
933 * signal type (if known). Some devices are stupid on
934 * a SE bus and still claim they can try LVD only settings */
935 if (i->f->get_signalling)
936 i->f->get_signalling(shost);
937 if (spi_signalling(shost) == SPI_SIGNAL_SE ||
938 spi_signalling(shost) == SPI_SIGNAL_HVD ||
939 !spi_support_dt(starget)) {
940 DV_SET(dt, 0);
941 } else {
942 DV_SET(dt, 1);
943 }
944 /* set width last because it will pull all the other
945 * parameters down to required values */
946 DV_SET(width, max_width);
947
948 /* Do the read only INQUIRY tests */
949 spi_dv_retrain(sdev, buffer, buffer + sdev->inquiry_len,
950 spi_dv_device_compare_inquiry);
951 /* See if we actually managed to negotiate and sustain DT */
952 if (i->f->get_dt)
953 i->f->get_dt(starget);
954
955 /* see if the device has an echo buffer. If it does we can do
956 * the SPI pattern write tests. Because of some broken
957 * devices, we *only* try this on a device that has actually
958 * negotiated DT */
959
960 if (len == -1 && spi_dt(starget))
961 len = spi_dv_device_get_echo_buffer(sdev, buffer);
962
963 if (len <= 0) {
964 starget_printk(KERN_INFO, starget, "Domain Validation skipping write tests\n");
965 return;
966 }
967
968 if (len > SPI_MAX_ECHO_BUFFER_SIZE) {
969 starget_printk(KERN_WARNING, starget, "Echo buffer size %d is too big, trimming to %d\n", len, SPI_MAX_ECHO_BUFFER_SIZE);
970 len = SPI_MAX_ECHO_BUFFER_SIZE;
971 }
972
973 if (spi_dv_retrain(sdev, buffer, buffer + len,
974 spi_dv_device_echo_buffer)
975 == SPI_COMPARE_SKIP_TEST) {
976 /* OK, the stupid drive can't do a write echo buffer
977 * test after all, fall back to the read tests */
978 len = 0;
979 goto retry;
980 }
981 }
982
983
984 /** spi_dv_device - Do Domain Validation on the device
985 * @sdev: scsi device to validate
986 *
987 * Performs the domain validation on the given device in the
988 * current execution thread. Since DV operations may sleep,
989 * the current thread must have user context. Also no SCSI
990 * related locks that would deadlock I/O issued by the DV may
991 * be held.
992 */
993 void
spi_dv_device(struct scsi_device * sdev)994 spi_dv_device(struct scsi_device *sdev)
995 {
996 struct scsi_target *starget = sdev->sdev_target;
997 u8 *buffer;
998 const int len = SPI_MAX_ECHO_BUFFER_SIZE*2;
999
1000 /*
1001 * Because this function and the power management code both call
1002 * scsi_device_quiesce(), it is not safe to perform domain validation
1003 * while suspend or resume is in progress. Hence the
1004 * lock/unlock_system_sleep() calls.
1005 */
1006 lock_system_sleep();
1007
1008 if (unlikely(spi_dv_in_progress(starget)))
1009 goto unlock;
1010
1011 if (unlikely(scsi_device_get(sdev)))
1012 goto unlock;
1013
1014 spi_dv_in_progress(starget) = 1;
1015
1016 buffer = kzalloc(len, GFP_KERNEL);
1017
1018 if (unlikely(!buffer))
1019 goto out_put;
1020
1021 /* We need to verify that the actual device will quiesce; the
1022 * later target quiesce is just a nice to have */
1023 if (unlikely(scsi_device_quiesce(sdev)))
1024 goto out_free;
1025
1026 scsi_target_quiesce(starget);
1027
1028 spi_dv_pending(starget) = 1;
1029 mutex_lock(&spi_dv_mutex(starget));
1030
1031 starget_printk(KERN_INFO, starget, "Beginning Domain Validation\n");
1032
1033 spi_dv_device_internal(sdev, buffer);
1034
1035 starget_printk(KERN_INFO, starget, "Ending Domain Validation\n");
1036
1037 mutex_unlock(&spi_dv_mutex(starget));
1038 spi_dv_pending(starget) = 0;
1039
1040 scsi_target_resume(starget);
1041
1042 spi_initial_dv(starget) = 1;
1043
1044 out_free:
1045 kfree(buffer);
1046 out_put:
1047 spi_dv_in_progress(starget) = 0;
1048 scsi_device_put(sdev);
1049 unlock:
1050 unlock_system_sleep();
1051 }
1052 EXPORT_SYMBOL(spi_dv_device);
1053
1054 struct work_queue_wrapper {
1055 struct work_struct work;
1056 struct scsi_device *sdev;
1057 };
1058
1059 static void
spi_dv_device_work_wrapper(struct work_struct * work)1060 spi_dv_device_work_wrapper(struct work_struct *work)
1061 {
1062 struct work_queue_wrapper *wqw =
1063 container_of(work, struct work_queue_wrapper, work);
1064 struct scsi_device *sdev = wqw->sdev;
1065
1066 kfree(wqw);
1067 spi_dv_device(sdev);
1068 spi_dv_pending(sdev->sdev_target) = 0;
1069 scsi_device_put(sdev);
1070 }
1071
1072
1073 /**
1074 * spi_schedule_dv_device - schedule domain validation to occur on the device
1075 * @sdev: The device to validate
1076 *
1077 * Identical to spi_dv_device() above, except that the DV will be
1078 * scheduled to occur in a workqueue later. All memory allocations
1079 * are atomic, so may be called from any context including those holding
1080 * SCSI locks.
1081 */
1082 void
spi_schedule_dv_device(struct scsi_device * sdev)1083 spi_schedule_dv_device(struct scsi_device *sdev)
1084 {
1085 struct work_queue_wrapper *wqw =
1086 kmalloc(sizeof(struct work_queue_wrapper), GFP_ATOMIC);
1087
1088 if (unlikely(!wqw))
1089 return;
1090
1091 if (unlikely(spi_dv_pending(sdev->sdev_target))) {
1092 kfree(wqw);
1093 return;
1094 }
1095 /* Set pending early (dv_device doesn't check it, only sets it) */
1096 spi_dv_pending(sdev->sdev_target) = 1;
1097 if (unlikely(scsi_device_get(sdev))) {
1098 kfree(wqw);
1099 spi_dv_pending(sdev->sdev_target) = 0;
1100 return;
1101 }
1102
1103 INIT_WORK(&wqw->work, spi_dv_device_work_wrapper);
1104 wqw->sdev = sdev;
1105
1106 schedule_work(&wqw->work);
1107 }
1108 EXPORT_SYMBOL(spi_schedule_dv_device);
1109
1110 /**
1111 * spi_display_xfer_agreement - Print the current target transfer agreement
1112 * @starget: The target for which to display the agreement
1113 *
1114 * Each SPI port is required to maintain a transfer agreement for each
1115 * other port on the bus. This function prints a one-line summary of
1116 * the current agreement; more detailed information is available in sysfs.
1117 */
spi_display_xfer_agreement(struct scsi_target * starget)1118 void spi_display_xfer_agreement(struct scsi_target *starget)
1119 {
1120 struct spi_transport_attrs *tp;
1121 tp = (struct spi_transport_attrs *)&starget->starget_data;
1122
1123 if (tp->offset > 0 && tp->period > 0) {
1124 unsigned int picosec, kb100;
1125 char *scsi = "FAST-?";
1126 char tmp[8];
1127
1128 if (tp->period <= SPI_STATIC_PPR) {
1129 picosec = ppr_to_ps[tp->period];
1130 switch (tp->period) {
1131 case 7: scsi = "FAST-320"; break;
1132 case 8: scsi = "FAST-160"; break;
1133 case 9: scsi = "FAST-80"; break;
1134 case 10:
1135 case 11: scsi = "FAST-40"; break;
1136 case 12: scsi = "FAST-20"; break;
1137 }
1138 } else {
1139 picosec = tp->period * 4000;
1140 if (tp->period < 25)
1141 scsi = "FAST-20";
1142 else if (tp->period < 50)
1143 scsi = "FAST-10";
1144 else
1145 scsi = "FAST-5";
1146 }
1147
1148 kb100 = (10000000 + picosec / 2) / picosec;
1149 if (tp->width)
1150 kb100 *= 2;
1151 sprint_frac(tmp, picosec, 1000);
1152
1153 dev_info(&starget->dev,
1154 "%s %sSCSI %d.%d MB/s %s%s%s%s%s%s%s%s (%s ns, offset %d)\n",
1155 scsi, tp->width ? "WIDE " : "", kb100/10, kb100 % 10,
1156 tp->dt ? "DT" : "ST",
1157 tp->iu ? " IU" : "",
1158 tp->qas ? " QAS" : "",
1159 tp->rd_strm ? " RDSTRM" : "",
1160 tp->rti ? " RTI" : "",
1161 tp->wr_flow ? " WRFLOW" : "",
1162 tp->pcomp_en ? " PCOMP" : "",
1163 tp->hold_mcs ? " HMCS" : "",
1164 tmp, tp->offset);
1165 } else {
1166 dev_info(&starget->dev, "%sasynchronous\n",
1167 tp->width ? "wide " : "");
1168 }
1169 }
1170 EXPORT_SYMBOL(spi_display_xfer_agreement);
1171
spi_populate_width_msg(unsigned char * msg,int width)1172 int spi_populate_width_msg(unsigned char *msg, int width)
1173 {
1174 msg[0] = EXTENDED_MESSAGE;
1175 msg[1] = 2;
1176 msg[2] = EXTENDED_WDTR;
1177 msg[3] = width;
1178 return 4;
1179 }
1180 EXPORT_SYMBOL_GPL(spi_populate_width_msg);
1181
spi_populate_sync_msg(unsigned char * msg,int period,int offset)1182 int spi_populate_sync_msg(unsigned char *msg, int period, int offset)
1183 {
1184 msg[0] = EXTENDED_MESSAGE;
1185 msg[1] = 3;
1186 msg[2] = EXTENDED_SDTR;
1187 msg[3] = period;
1188 msg[4] = offset;
1189 return 5;
1190 }
1191 EXPORT_SYMBOL_GPL(spi_populate_sync_msg);
1192
spi_populate_ppr_msg(unsigned char * msg,int period,int offset,int width,int options)1193 int spi_populate_ppr_msg(unsigned char *msg, int period, int offset,
1194 int width, int options)
1195 {
1196 msg[0] = EXTENDED_MESSAGE;
1197 msg[1] = 6;
1198 msg[2] = EXTENDED_PPR;
1199 msg[3] = period;
1200 msg[4] = 0;
1201 msg[5] = offset;
1202 msg[6] = width;
1203 msg[7] = options;
1204 return 8;
1205 }
1206 EXPORT_SYMBOL_GPL(spi_populate_ppr_msg);
1207
1208 /**
1209 * spi_populate_tag_msg - place a tag message in a buffer
1210 * @msg: pointer to the area to place the tag
1211 * @cmd: pointer to the scsi command for the tag
1212 *
1213 * Notes:
1214 * designed to create the correct type of tag message for the
1215 * particular request. Returns the size of the tag message.
1216 * May return 0 if TCQ is disabled for this device.
1217 **/
spi_populate_tag_msg(unsigned char * msg,struct scsi_cmnd * cmd)1218 int spi_populate_tag_msg(unsigned char *msg, struct scsi_cmnd *cmd)
1219 {
1220 if (cmd->flags & SCMD_TAGGED) {
1221 *msg++ = SIMPLE_QUEUE_TAG;
1222 *msg++ = cmd->request->tag;
1223 return 2;
1224 }
1225
1226 return 0;
1227 }
1228 EXPORT_SYMBOL_GPL(spi_populate_tag_msg);
1229
1230 #ifdef CONFIG_SCSI_CONSTANTS
1231 static const char * const one_byte_msgs[] = {
1232 /* 0x00 */ "Task Complete", NULL /* Extended Message */, "Save Pointers",
1233 /* 0x03 */ "Restore Pointers", "Disconnect", "Initiator Error",
1234 /* 0x06 */ "Abort Task Set", "Message Reject", "Nop", "Message Parity Error",
1235 /* 0x0a */ "Linked Command Complete", "Linked Command Complete w/flag",
1236 /* 0x0c */ "Target Reset", "Abort Task", "Clear Task Set",
1237 /* 0x0f */ "Initiate Recovery", "Release Recovery",
1238 /* 0x11 */ "Terminate Process", "Continue Task", "Target Transfer Disable",
1239 /* 0x14 */ NULL, NULL, "Clear ACA", "LUN Reset"
1240 };
1241
1242 static const char * const two_byte_msgs[] = {
1243 /* 0x20 */ "Simple Queue Tag", "Head of Queue Tag", "Ordered Queue Tag",
1244 /* 0x23 */ "Ignore Wide Residue", "ACA"
1245 };
1246
1247 static const char * const extended_msgs[] = {
1248 /* 0x00 */ "Modify Data Pointer", "Synchronous Data Transfer Request",
1249 /* 0x02 */ "SCSI-I Extended Identify", "Wide Data Transfer Request",
1250 /* 0x04 */ "Parallel Protocol Request", "Modify Bidirectional Data Pointer"
1251 };
1252
print_nego(const unsigned char * msg,int per,int off,int width)1253 static void print_nego(const unsigned char *msg, int per, int off, int width)
1254 {
1255 if (per) {
1256 char buf[20];
1257 period_to_str(buf, msg[per]);
1258 printk("period = %s ns ", buf);
1259 }
1260
1261 if (off)
1262 printk("offset = %d ", msg[off]);
1263 if (width)
1264 printk("width = %d ", 8 << msg[width]);
1265 }
1266
print_ptr(const unsigned char * msg,int msb,const char * desc)1267 static void print_ptr(const unsigned char *msg, int msb, const char *desc)
1268 {
1269 int ptr = (msg[msb] << 24) | (msg[msb+1] << 16) | (msg[msb+2] << 8) |
1270 msg[msb+3];
1271 printk("%s = %d ", desc, ptr);
1272 }
1273
spi_print_msg(const unsigned char * msg)1274 int spi_print_msg(const unsigned char *msg)
1275 {
1276 int len = 1, i;
1277 if (msg[0] == EXTENDED_MESSAGE) {
1278 len = 2 + msg[1];
1279 if (len == 2)
1280 len += 256;
1281 if (msg[2] < ARRAY_SIZE(extended_msgs))
1282 printk ("%s ", extended_msgs[msg[2]]);
1283 else
1284 printk ("Extended Message, reserved code (0x%02x) ",
1285 (int) msg[2]);
1286 switch (msg[2]) {
1287 case EXTENDED_MODIFY_DATA_POINTER:
1288 print_ptr(msg, 3, "pointer");
1289 break;
1290 case EXTENDED_SDTR:
1291 print_nego(msg, 3, 4, 0);
1292 break;
1293 case EXTENDED_WDTR:
1294 print_nego(msg, 0, 0, 3);
1295 break;
1296 case EXTENDED_PPR:
1297 print_nego(msg, 3, 5, 6);
1298 break;
1299 case EXTENDED_MODIFY_BIDI_DATA_PTR:
1300 print_ptr(msg, 3, "out");
1301 print_ptr(msg, 7, "in");
1302 break;
1303 default:
1304 for (i = 2; i < len; ++i)
1305 printk("%02x ", msg[i]);
1306 }
1307 /* Identify */
1308 } else if (msg[0] & 0x80) {
1309 printk("Identify disconnect %sallowed %s %d ",
1310 (msg[0] & 0x40) ? "" : "not ",
1311 (msg[0] & 0x20) ? "target routine" : "lun",
1312 msg[0] & 0x7);
1313 /* Normal One byte */
1314 } else if (msg[0] < 0x1f) {
1315 if (msg[0] < ARRAY_SIZE(one_byte_msgs) && one_byte_msgs[msg[0]])
1316 printk("%s ", one_byte_msgs[msg[0]]);
1317 else
1318 printk("reserved (%02x) ", msg[0]);
1319 } else if (msg[0] == 0x55) {
1320 printk("QAS Request ");
1321 /* Two byte */
1322 } else if (msg[0] <= 0x2f) {
1323 if ((msg[0] - 0x20) < ARRAY_SIZE(two_byte_msgs))
1324 printk("%s %02x ", two_byte_msgs[msg[0] - 0x20],
1325 msg[1]);
1326 else
1327 printk("reserved two byte (%02x %02x) ",
1328 msg[0], msg[1]);
1329 len = 2;
1330 } else
1331 printk("reserved ");
1332 return len;
1333 }
1334 EXPORT_SYMBOL(spi_print_msg);
1335
1336 #else /* ifndef CONFIG_SCSI_CONSTANTS */
1337
spi_print_msg(const unsigned char * msg)1338 int spi_print_msg(const unsigned char *msg)
1339 {
1340 int len = 1, i;
1341
1342 if (msg[0] == EXTENDED_MESSAGE) {
1343 len = 2 + msg[1];
1344 if (len == 2)
1345 len += 256;
1346 for (i = 0; i < len; ++i)
1347 printk("%02x ", msg[i]);
1348 /* Identify */
1349 } else if (msg[0] & 0x80) {
1350 printk("%02x ", msg[0]);
1351 /* Normal One byte */
1352 } else if ((msg[0] < 0x1f) || (msg[0] == 0x55)) {
1353 printk("%02x ", msg[0]);
1354 /* Two byte */
1355 } else if (msg[0] <= 0x2f) {
1356 printk("%02x %02x", msg[0], msg[1]);
1357 len = 2;
1358 } else
1359 printk("%02x ", msg[0]);
1360 return len;
1361 }
1362 EXPORT_SYMBOL(spi_print_msg);
1363 #endif /* ! CONFIG_SCSI_CONSTANTS */
1364
spi_device_match(struct attribute_container * cont,struct device * dev)1365 static int spi_device_match(struct attribute_container *cont,
1366 struct device *dev)
1367 {
1368 struct scsi_device *sdev;
1369 struct Scsi_Host *shost;
1370 struct spi_internal *i;
1371
1372 if (!scsi_is_sdev_device(dev))
1373 return 0;
1374
1375 sdev = to_scsi_device(dev);
1376 shost = sdev->host;
1377 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1378 != &spi_host_class.class)
1379 return 0;
1380 /* Note: this class has no device attributes, so it has
1381 * no per-HBA allocation and thus we don't need to distinguish
1382 * the attribute containers for the device */
1383 i = to_spi_internal(shost->transportt);
1384 if (i->f->deny_binding && i->f->deny_binding(sdev->sdev_target))
1385 return 0;
1386 return 1;
1387 }
1388
spi_target_match(struct attribute_container * cont,struct device * dev)1389 static int spi_target_match(struct attribute_container *cont,
1390 struct device *dev)
1391 {
1392 struct Scsi_Host *shost;
1393 struct scsi_target *starget;
1394 struct spi_internal *i;
1395
1396 if (!scsi_is_target_device(dev))
1397 return 0;
1398
1399 shost = dev_to_shost(dev->parent);
1400 if (!shost->transportt || shost->transportt->host_attrs.ac.class
1401 != &spi_host_class.class)
1402 return 0;
1403
1404 i = to_spi_internal(shost->transportt);
1405 starget = to_scsi_target(dev);
1406
1407 if (i->f->deny_binding && i->f->deny_binding(starget))
1408 return 0;
1409
1410 return &i->t.target_attrs.ac == cont;
1411 }
1412
1413 static DECLARE_TRANSPORT_CLASS(spi_transport_class,
1414 "spi_transport",
1415 spi_setup_transport_attrs,
1416 NULL,
1417 spi_target_configure);
1418
1419 static DECLARE_ANON_TRANSPORT_CLASS(spi_device_class,
1420 spi_device_match,
1421 spi_device_configure);
1422
1423 static struct attribute *host_attributes[] = {
1424 &dev_attr_signalling.attr,
1425 &dev_attr_host_width.attr,
1426 &dev_attr_hba_id.attr,
1427 NULL
1428 };
1429
1430 static struct attribute_group host_attribute_group = {
1431 .attrs = host_attributes,
1432 };
1433
spi_host_configure(struct transport_container * tc,struct device * dev,struct device * cdev)1434 static int spi_host_configure(struct transport_container *tc,
1435 struct device *dev,
1436 struct device *cdev)
1437 {
1438 struct kobject *kobj = &cdev->kobj;
1439 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1440 struct spi_internal *si = to_spi_internal(shost->transportt);
1441 struct attribute *attr = &dev_attr_signalling.attr;
1442 int rc = 0;
1443
1444 if (si->f->set_signalling)
1445 rc = sysfs_chmod_file(kobj, attr, attr->mode | S_IWUSR);
1446
1447 return rc;
1448 }
1449
1450 /* returns true if we should be showing the variable. Also
1451 * overloads the return by setting 1<<1 if the attribute should
1452 * be writeable */
1453 #define TARGET_ATTRIBUTE_HELPER(name) \
1454 (si->f->show_##name ? S_IRUGO : 0) | \
1455 (si->f->set_##name ? S_IWUSR : 0)
1456
target_attribute_is_visible(struct kobject * kobj,struct attribute * attr,int i)1457 static umode_t target_attribute_is_visible(struct kobject *kobj,
1458 struct attribute *attr, int i)
1459 {
1460 struct device *cdev = container_of(kobj, struct device, kobj);
1461 struct scsi_target *starget = transport_class_to_starget(cdev);
1462 struct Scsi_Host *shost = transport_class_to_shost(cdev);
1463 struct spi_internal *si = to_spi_internal(shost->transportt);
1464
1465 if (attr == &dev_attr_period.attr &&
1466 spi_support_sync(starget))
1467 return TARGET_ATTRIBUTE_HELPER(period);
1468 else if (attr == &dev_attr_min_period.attr &&
1469 spi_support_sync(starget))
1470 return TARGET_ATTRIBUTE_HELPER(period);
1471 else if (attr == &dev_attr_offset.attr &&
1472 spi_support_sync(starget))
1473 return TARGET_ATTRIBUTE_HELPER(offset);
1474 else if (attr == &dev_attr_max_offset.attr &&
1475 spi_support_sync(starget))
1476 return TARGET_ATTRIBUTE_HELPER(offset);
1477 else if (attr == &dev_attr_width.attr &&
1478 spi_support_wide(starget))
1479 return TARGET_ATTRIBUTE_HELPER(width);
1480 else if (attr == &dev_attr_max_width.attr &&
1481 spi_support_wide(starget))
1482 return TARGET_ATTRIBUTE_HELPER(width);
1483 else if (attr == &dev_attr_iu.attr &&
1484 spi_support_ius(starget))
1485 return TARGET_ATTRIBUTE_HELPER(iu);
1486 else if (attr == &dev_attr_max_iu.attr &&
1487 spi_support_ius(starget))
1488 return TARGET_ATTRIBUTE_HELPER(iu);
1489 else if (attr == &dev_attr_dt.attr &&
1490 spi_support_dt(starget))
1491 return TARGET_ATTRIBUTE_HELPER(dt);
1492 else if (attr == &dev_attr_qas.attr &&
1493 spi_support_qas(starget))
1494 return TARGET_ATTRIBUTE_HELPER(qas);
1495 else if (attr == &dev_attr_max_qas.attr &&
1496 spi_support_qas(starget))
1497 return TARGET_ATTRIBUTE_HELPER(qas);
1498 else if (attr == &dev_attr_wr_flow.attr &&
1499 spi_support_ius(starget))
1500 return TARGET_ATTRIBUTE_HELPER(wr_flow);
1501 else if (attr == &dev_attr_rd_strm.attr &&
1502 spi_support_ius(starget))
1503 return TARGET_ATTRIBUTE_HELPER(rd_strm);
1504 else if (attr == &dev_attr_rti.attr &&
1505 spi_support_ius(starget))
1506 return TARGET_ATTRIBUTE_HELPER(rti);
1507 else if (attr == &dev_attr_pcomp_en.attr &&
1508 spi_support_ius(starget))
1509 return TARGET_ATTRIBUTE_HELPER(pcomp_en);
1510 else if (attr == &dev_attr_hold_mcs.attr &&
1511 spi_support_ius(starget))
1512 return TARGET_ATTRIBUTE_HELPER(hold_mcs);
1513 else if (attr == &dev_attr_revalidate.attr)
1514 return S_IWUSR;
1515
1516 return 0;
1517 }
1518
1519 static struct attribute *target_attributes[] = {
1520 &dev_attr_period.attr,
1521 &dev_attr_min_period.attr,
1522 &dev_attr_offset.attr,
1523 &dev_attr_max_offset.attr,
1524 &dev_attr_width.attr,
1525 &dev_attr_max_width.attr,
1526 &dev_attr_iu.attr,
1527 &dev_attr_max_iu.attr,
1528 &dev_attr_dt.attr,
1529 &dev_attr_qas.attr,
1530 &dev_attr_max_qas.attr,
1531 &dev_attr_wr_flow.attr,
1532 &dev_attr_rd_strm.attr,
1533 &dev_attr_rti.attr,
1534 &dev_attr_pcomp_en.attr,
1535 &dev_attr_hold_mcs.attr,
1536 &dev_attr_revalidate.attr,
1537 NULL
1538 };
1539
1540 static struct attribute_group target_attribute_group = {
1541 .attrs = target_attributes,
1542 .is_visible = target_attribute_is_visible,
1543 };
1544
spi_target_configure(struct transport_container * tc,struct device * dev,struct device * cdev)1545 static int spi_target_configure(struct transport_container *tc,
1546 struct device *dev,
1547 struct device *cdev)
1548 {
1549 struct kobject *kobj = &cdev->kobj;
1550
1551 /* force an update based on parameters read from the device */
1552 sysfs_update_group(kobj, &target_attribute_group);
1553
1554 return 0;
1555 }
1556
1557 struct scsi_transport_template *
spi_attach_transport(struct spi_function_template * ft)1558 spi_attach_transport(struct spi_function_template *ft)
1559 {
1560 struct spi_internal *i = kzalloc(sizeof(struct spi_internal),
1561 GFP_KERNEL);
1562
1563 if (unlikely(!i))
1564 return NULL;
1565
1566 i->t.target_attrs.ac.class = &spi_transport_class.class;
1567 i->t.target_attrs.ac.grp = &target_attribute_group;
1568 i->t.target_attrs.ac.match = spi_target_match;
1569 transport_container_register(&i->t.target_attrs);
1570 i->t.target_size = sizeof(struct spi_transport_attrs);
1571 i->t.host_attrs.ac.class = &spi_host_class.class;
1572 i->t.host_attrs.ac.grp = &host_attribute_group;
1573 i->t.host_attrs.ac.match = spi_host_match;
1574 transport_container_register(&i->t.host_attrs);
1575 i->t.host_size = sizeof(struct spi_host_attrs);
1576 i->f = ft;
1577
1578 return &i->t;
1579 }
1580 EXPORT_SYMBOL(spi_attach_transport);
1581
spi_release_transport(struct scsi_transport_template * t)1582 void spi_release_transport(struct scsi_transport_template *t)
1583 {
1584 struct spi_internal *i = to_spi_internal(t);
1585
1586 transport_container_unregister(&i->t.target_attrs);
1587 transport_container_unregister(&i->t.host_attrs);
1588
1589 kfree(i);
1590 }
1591 EXPORT_SYMBOL(spi_release_transport);
1592
spi_transport_init(void)1593 static __init int spi_transport_init(void)
1594 {
1595 int error = scsi_dev_info_add_list(SCSI_DEVINFO_SPI,
1596 "SCSI Parallel Transport Class");
1597 if (!error) {
1598 int i;
1599
1600 for (i = 0; spi_static_device_list[i].vendor; i++)
1601 scsi_dev_info_list_add_keyed(1, /* compatible */
1602 spi_static_device_list[i].vendor,
1603 spi_static_device_list[i].model,
1604 NULL,
1605 spi_static_device_list[i].flags,
1606 SCSI_DEVINFO_SPI);
1607 }
1608
1609 error = transport_class_register(&spi_transport_class);
1610 if (error)
1611 return error;
1612 error = anon_transport_class_register(&spi_device_class);
1613 return transport_class_register(&spi_host_class);
1614 }
1615
spi_transport_exit(void)1616 static void __exit spi_transport_exit(void)
1617 {
1618 transport_class_unregister(&spi_transport_class);
1619 anon_transport_class_unregister(&spi_device_class);
1620 transport_class_unregister(&spi_host_class);
1621 scsi_dev_info_remove_list(SCSI_DEVINFO_SPI);
1622 }
1623
1624 MODULE_AUTHOR("Martin Hicks");
1625 MODULE_DESCRIPTION("SPI Transport Attributes");
1626 MODULE_LICENSE("GPL");
1627
1628 module_init(spi_transport_init);
1629 module_exit(spi_transport_exit);
1630