1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2005, Intec Automation Inc.
4 * Copyright (C) 2014, Freescale Semiconductor, Inc.
5 */
6
7 #include <linux/mtd/spi-nor.h>
8
9 #include "core.h"
10
11 /* flash_info mfr_flag. Used to read proprietary FSR register. */
12 #define USE_FSR BIT(0)
13
14 #define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
15 #define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */
16 #define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */
17 #define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */
18 #define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */
19 #define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */
20 #define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */
21 #define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */
22 #define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */
23 #define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */
24
25 /* Flag Status Register bits */
26 #define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */
27 #define FSR_E_ERR BIT(5) /* Erase operation status */
28 #define FSR_P_ERR BIT(4) /* Program operation status */
29 #define FSR_PT_ERR BIT(1) /* Protection error bit */
30
31 /* Micron ST SPI NOR flash operations. */
32 #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \
33 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \
34 SPI_MEM_OP_ADDR(naddr, addr, 0), \
35 SPI_MEM_OP_NO_DUMMY, \
36 SPI_MEM_OP_DATA_OUT(ndata, buf, 0))
37
38 #define MICRON_ST_RDFSR_OP(buf) \
39 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \
40 SPI_MEM_OP_NO_ADDR, \
41 SPI_MEM_OP_NO_DUMMY, \
42 SPI_MEM_OP_DATA_IN(1, buf, 0))
43
44 #define MICRON_ST_CLFSR_OP \
45 SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \
46 SPI_MEM_OP_NO_ADDR, \
47 SPI_MEM_OP_NO_DUMMY, \
48 SPI_MEM_OP_NO_DATA)
49
micron_st_nor_octal_dtr_en(struct spi_nor * nor)50 static int micron_st_nor_octal_dtr_en(struct spi_nor *nor)
51 {
52 struct spi_mem_op op;
53 u8 *buf = nor->bouncebuf;
54 int ret;
55
56 /* Use 20 dummy cycles for memory array reads. */
57 *buf = 20;
58 op = (struct spi_mem_op)
59 MICRON_ST_NOR_WR_ANY_REG_OP(3, SPINOR_REG_MT_CFR1V, 1, buf);
60 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
61 if (ret)
62 return ret;
63
64 buf[0] = SPINOR_MT_OCT_DTR;
65 op = (struct spi_mem_op)
66 MICRON_ST_NOR_WR_ANY_REG_OP(3, SPINOR_REG_MT_CFR0V, 1, buf);
67 ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
68 if (ret)
69 return ret;
70
71 /* Read flash ID to make sure the switch was successful. */
72 ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR);
73 if (ret) {
74 dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
75 return ret;
76 }
77
78 if (memcmp(buf, nor->info->id, nor->info->id_len))
79 return -EINVAL;
80
81 return 0;
82 }
83
micron_st_nor_octal_dtr_dis(struct spi_nor * nor)84 static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor)
85 {
86 struct spi_mem_op op;
87 u8 *buf = nor->bouncebuf;
88 int ret;
89
90 /*
91 * The register is 1-byte wide, but 1-byte transactions are not allowed
92 * in 8D-8D-8D mode. The next register is the dummy cycle configuration
93 * register. Since the transaction needs to be at least 2 bytes wide,
94 * set the next register to its default value. This also makes sense
95 * because the value was changed when enabling 8D-8D-8D mode, it should
96 * be reset when disabling.
97 */
98 buf[0] = SPINOR_MT_EXSPI;
99 buf[1] = SPINOR_REG_MT_CFR1V_DEF;
100 op = (struct spi_mem_op)
101 MICRON_ST_NOR_WR_ANY_REG_OP(4, SPINOR_REG_MT_CFR0V, 2, buf);
102 ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
103 if (ret)
104 return ret;
105
106 /* Read flash ID to make sure the switch was successful. */
107 ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
108 if (ret) {
109 dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
110 return ret;
111 }
112
113 if (memcmp(buf, nor->info->id, nor->info->id_len))
114 return -EINVAL;
115
116 return 0;
117 }
118
micron_st_nor_octal_dtr_enable(struct spi_nor * nor,bool enable)119 static int micron_st_nor_octal_dtr_enable(struct spi_nor *nor, bool enable)
120 {
121 return enable ? micron_st_nor_octal_dtr_en(nor) :
122 micron_st_nor_octal_dtr_dis(nor);
123 }
124
mt35xu512aba_default_init(struct spi_nor * nor)125 static void mt35xu512aba_default_init(struct spi_nor *nor)
126 {
127 nor->params->octal_dtr_enable = micron_st_nor_octal_dtr_enable;
128 }
129
mt35xu512aba_post_sfdp_fixup(struct spi_nor * nor)130 static void mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor)
131 {
132 /* Set the Fast Read settings. */
133 nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
134 spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
135 0, 20, SPINOR_OP_MT_DTR_RD,
136 SNOR_PROTO_8_8_8_DTR);
137
138 nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
139 nor->params->rdsr_dummy = 8;
140 nor->params->rdsr_addr_nbytes = 0;
141
142 /*
143 * The BFPT quad enable field is set to a reserved value so the quad
144 * enable function is ignored by spi_nor_parse_bfpt(). Make sure we
145 * disable it.
146 */
147 nor->params->quad_enable = NULL;
148 }
149
150 static const struct spi_nor_fixups mt35xu512aba_fixups = {
151 .default_init = mt35xu512aba_default_init,
152 .post_sfdp = mt35xu512aba_post_sfdp_fixup,
153 };
154
155 static const struct flash_info micron_nor_parts[] = {
156 { "mt35xu512aba", INFO(0x2c5b1a, 0, 128 * 1024, 512)
157 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ |
158 SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP)
159 FIXUP_FLAGS(SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE)
160 MFR_FLAGS(USE_FSR)
161 .fixups = &mt35xu512aba_fixups
162 },
163 { "mt35xu02g", INFO(0x2c5b1c, 0, 128 * 1024, 2048)
164 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_OCTAL_READ)
165 FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
166 MFR_FLAGS(USE_FSR)
167 },
168 };
169
170 static const struct flash_info st_nor_parts[] = {
171 { "n25q016a", INFO(0x20bb15, 0, 64 * 1024, 32)
172 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
173 { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64)
174 NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
175 { "n25q032a", INFO(0x20bb16, 0, 64 * 1024, 64)
176 NO_SFDP_FLAGS(SPI_NOR_QUAD_READ) },
177 { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128)
178 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
179 { "n25q064a", INFO(0x20bb17, 0, 64 * 1024, 128)
180 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ) },
181 { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256)
182 FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
183 SPI_NOR_BP3_SR_BIT6)
184 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
185 MFR_FLAGS(USE_FSR)
186 },
187 { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256)
188 FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
189 SPI_NOR_BP3_SR_BIT6)
190 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
191 MFR_FLAGS(USE_FSR)
192 },
193 { "mt25ql256a", INFO6(0x20ba19, 0x104400, 64 * 1024, 512)
194 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
195 FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
196 MFR_FLAGS(USE_FSR)
197 },
198 { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512)
199 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
200 SPI_NOR_QUAD_READ)
201 MFR_FLAGS(USE_FSR)
202 },
203 { "mt25qu256a", INFO6(0x20bb19, 0x104400, 64 * 1024, 512)
204 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
205 FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
206 MFR_FLAGS(USE_FSR)
207 },
208 { "n25q256ax1", INFO(0x20bb19, 0, 64 * 1024, 512)
209 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
210 MFR_FLAGS(USE_FSR)
211 },
212 { "mt25ql512a", INFO6(0x20ba20, 0x104400, 64 * 1024, 1024)
213 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
214 FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
215 MFR_FLAGS(USE_FSR)
216 },
217 { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024)
218 FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
219 SPI_NOR_BP3_SR_BIT6)
220 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
221 MFR_FLAGS(USE_FSR)
222 },
223 { "mt25qu512a", INFO6(0x20bb20, 0x104400, 64 * 1024, 1024)
224 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ)
225 FIXUP_FLAGS(SPI_NOR_4B_OPCODES)
226 MFR_FLAGS(USE_FSR)
227 },
228 { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024)
229 FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
230 SPI_NOR_BP3_SR_BIT6)
231 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
232 MFR_FLAGS(USE_FSR)
233 },
234 { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048)
235 FLAGS(SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP |
236 SPI_NOR_BP3_SR_BIT6 | NO_CHIP_ERASE)
237 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
238 MFR_FLAGS(USE_FSR)
239 },
240 { "n25q00a", INFO(0x20bb21, 0, 64 * 1024, 2048)
241 FLAGS(NO_CHIP_ERASE)
242 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
243 MFR_FLAGS(USE_FSR)
244 },
245 { "mt25ql02g", INFO(0x20ba22, 0, 64 * 1024, 4096)
246 FLAGS(NO_CHIP_ERASE)
247 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_QUAD_READ)
248 MFR_FLAGS(USE_FSR)
249 },
250 { "mt25qu02g", INFO(0x20bb22, 0, 64 * 1024, 4096)
251 FLAGS(NO_CHIP_ERASE)
252 NO_SFDP_FLAGS(SECT_4K | SPI_NOR_DUAL_READ |
253 SPI_NOR_QUAD_READ)
254 MFR_FLAGS(USE_FSR)
255 },
256
257 { "m25p05", INFO(0x202010, 0, 32 * 1024, 2) },
258 { "m25p10", INFO(0x202011, 0, 32 * 1024, 4) },
259 { "m25p20", INFO(0x202012, 0, 64 * 1024, 4) },
260 { "m25p40", INFO(0x202013, 0, 64 * 1024, 8) },
261 { "m25p80", INFO(0x202014, 0, 64 * 1024, 16) },
262 { "m25p16", INFO(0x202015, 0, 64 * 1024, 32) },
263 { "m25p32", INFO(0x202016, 0, 64 * 1024, 64) },
264 { "m25p64", INFO(0x202017, 0, 64 * 1024, 128) },
265 { "m25p128", INFO(0x202018, 0, 256 * 1024, 64) },
266
267 { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2) },
268 { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4) },
269 { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4) },
270 { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8) },
271 { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16) },
272 { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32) },
273 { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64) },
274 { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128) },
275 { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64) },
276
277 { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2) },
278 { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16) },
279 { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32) },
280
281 { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4) },
282 { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16) },
283 { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32)
284 NO_SFDP_FLAGS(SECT_4K) },
285
286 { "m25px16", INFO(0x207115, 0, 64 * 1024, 32)
287 NO_SFDP_FLAGS(SECT_4K) },
288 { "m25px32", INFO(0x207116, 0, 64 * 1024, 64)
289 NO_SFDP_FLAGS(SECT_4K) },
290 { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64)
291 NO_SFDP_FLAGS(SECT_4K) },
292 { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64)
293 NO_SFDP_FLAGS(SECT_4K) },
294 { "m25px64", INFO(0x207117, 0, 64 * 1024, 128) },
295 { "m25px80", INFO(0x207114, 0, 64 * 1024, 16) },
296 };
297
298 /**
299 * micron_st_nor_set_4byte_addr_mode() - Set 4-byte address mode for ST and
300 * Micron flashes.
301 * @nor: pointer to 'struct spi_nor'.
302 * @enable: true to enter the 4-byte address mode, false to exit the 4-byte
303 * address mode.
304 *
305 * Return: 0 on success, -errno otherwise.
306 */
micron_st_nor_set_4byte_addr_mode(struct spi_nor * nor,bool enable)307 static int micron_st_nor_set_4byte_addr_mode(struct spi_nor *nor, bool enable)
308 {
309 int ret;
310
311 ret = spi_nor_write_enable(nor);
312 if (ret)
313 return ret;
314
315 ret = spi_nor_set_4byte_addr_mode(nor, enable);
316 if (ret)
317 return ret;
318
319 return spi_nor_write_disable(nor);
320 }
321
322 /**
323 * micron_st_nor_read_fsr() - Read the Flag Status Register.
324 * @nor: pointer to 'struct spi_nor'
325 * @fsr: pointer to a DMA-able buffer where the value of the
326 * Flag Status Register will be written. Should be at least 2
327 * bytes.
328 *
329 * Return: 0 on success, -errno otherwise.
330 */
micron_st_nor_read_fsr(struct spi_nor * nor,u8 * fsr)331 static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr)
332 {
333 int ret;
334
335 if (nor->spimem) {
336 struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr);
337
338 if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) {
339 op.addr.nbytes = nor->params->rdsr_addr_nbytes;
340 op.dummy.nbytes = nor->params->rdsr_dummy;
341 /*
342 * We don't want to read only one byte in DTR mode. So,
343 * read 2 and then discard the second byte.
344 */
345 op.data.nbytes = 2;
346 }
347
348 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
349
350 ret = spi_mem_exec_op(nor->spimem, &op);
351 } else {
352 ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr,
353 1);
354 }
355
356 if (ret)
357 dev_dbg(nor->dev, "error %d reading FSR\n", ret);
358
359 return ret;
360 }
361
362 /**
363 * micron_st_nor_clear_fsr() - Clear the Flag Status Register.
364 * @nor: pointer to 'struct spi_nor'.
365 */
micron_st_nor_clear_fsr(struct spi_nor * nor)366 static void micron_st_nor_clear_fsr(struct spi_nor *nor)
367 {
368 int ret;
369
370 if (nor->spimem) {
371 struct spi_mem_op op = MICRON_ST_CLFSR_OP;
372
373 spi_nor_spimem_setup_op(nor, &op, nor->reg_proto);
374
375 ret = spi_mem_exec_op(nor->spimem, &op);
376 } else {
377 ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR,
378 NULL, 0);
379 }
380
381 if (ret)
382 dev_dbg(nor->dev, "error %d clearing FSR\n", ret);
383 }
384
385 /**
386 * micron_st_nor_ready() - Query the Status Register as well as the Flag Status
387 * Register to see if the flash is ready for new commands. If there are any
388 * errors in the FSR clear them.
389 * @nor: pointer to 'struct spi_nor'.
390 *
391 * Return: 1 if ready, 0 if not ready, -errno on errors.
392 */
micron_st_nor_ready(struct spi_nor * nor)393 static int micron_st_nor_ready(struct spi_nor *nor)
394 {
395 int sr_ready, ret;
396
397 sr_ready = spi_nor_sr_ready(nor);
398 if (sr_ready < 0)
399 return sr_ready;
400
401 ret = micron_st_nor_read_fsr(nor, nor->bouncebuf);
402 if (ret) {
403 /*
404 * Some controllers, such as Intel SPI, do not support low
405 * level operations such as reading the flag status
406 * register. They only expose small amount of high level
407 * operations to the software. If this is the case we use
408 * only the status register value.
409 */
410 return ret == -EOPNOTSUPP ? sr_ready : ret;
411 }
412
413 if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) {
414 if (nor->bouncebuf[0] & FSR_E_ERR)
415 dev_err(nor->dev, "Erase operation failed.\n");
416 else
417 dev_err(nor->dev, "Program operation failed.\n");
418
419 if (nor->bouncebuf[0] & FSR_PT_ERR)
420 dev_err(nor->dev,
421 "Attempted to modify a protected sector.\n");
422
423 micron_st_nor_clear_fsr(nor);
424
425 /*
426 * WEL bit remains set to one when an erase or page program
427 * error occurs. Issue a Write Disable command to protect
428 * against inadvertent writes that can possibly corrupt the
429 * contents of the memory.
430 */
431 ret = spi_nor_write_disable(nor);
432 if (ret)
433 return ret;
434
435 return -EIO;
436 }
437
438 return sr_ready && !!(nor->bouncebuf[0] & FSR_READY);
439 }
440
micron_st_nor_default_init(struct spi_nor * nor)441 static void micron_st_nor_default_init(struct spi_nor *nor)
442 {
443 nor->flags |= SNOR_F_HAS_LOCK;
444 nor->flags &= ~SNOR_F_HAS_16BIT_SR;
445 nor->params->quad_enable = NULL;
446 nor->params->set_4byte_addr_mode = micron_st_nor_set_4byte_addr_mode;
447 }
448
micron_st_nor_late_init(struct spi_nor * nor)449 static void micron_st_nor_late_init(struct spi_nor *nor)
450 {
451 if (nor->info->mfr_flags & USE_FSR)
452 nor->params->ready = micron_st_nor_ready;
453 }
454
455 static const struct spi_nor_fixups micron_st_nor_fixups = {
456 .default_init = micron_st_nor_default_init,
457 .late_init = micron_st_nor_late_init,
458 };
459
460 const struct spi_nor_manufacturer spi_nor_micron = {
461 .name = "micron",
462 .parts = micron_nor_parts,
463 .nparts = ARRAY_SIZE(micron_nor_parts),
464 .fixups = µn_st_nor_fixups,
465 };
466
467 const struct spi_nor_manufacturer spi_nor_st = {
468 .name = "st",
469 .parts = st_nor_parts,
470 .nparts = ARRAY_SIZE(st_nor_parts),
471 .fixups = µn_st_nor_fixups,
472 };
473