1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (C) 2018 Exceet Electronics GmbH
4 * Copyright (C) 2018 Bootlin
5 *
6 * Author: Boris Brezillon <boris.brezillon@bootlin.com>
7 */
8 #include <linux/dmaengine.h>
9 #include <linux/pm_runtime.h>
10 #include <linux/spi/spi.h>
11 #include <linux/spi/spi-mem.h>
12
13 #include "internals.h"
14
15 /**
16 * spi_controller_dma_map_mem_op_data() - DMA-map the buffer attached to a
17 * memory operation
18 * @ctlr: the SPI controller requesting this dma_map()
19 * @op: the memory operation containing the buffer to map
20 * @sgt: a pointer to a non-initialized sg_table that will be filled by this
21 * function
22 *
23 * Some controllers might want to do DMA on the data buffer embedded in @op.
24 * This helper prepares everything for you and provides a ready-to-use
25 * sg_table. This function is not intended to be called from spi drivers.
26 * Only SPI controller drivers should use it.
27 * Note that the caller must ensure the memory region pointed by
28 * op->data.buf.{in,out} is DMA-able before calling this function.
29 *
30 * Return: 0 in case of success, a negative error code otherwise.
31 */
spi_controller_dma_map_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)32 int spi_controller_dma_map_mem_op_data(struct spi_controller *ctlr,
33 const struct spi_mem_op *op,
34 struct sg_table *sgt)
35 {
36 struct device *dmadev;
37
38 if (!op->data.nbytes)
39 return -EINVAL;
40
41 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
42 dmadev = ctlr->dma_tx->device->dev;
43 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
44 dmadev = ctlr->dma_rx->device->dev;
45 else
46 dmadev = ctlr->dev.parent;
47
48 if (!dmadev)
49 return -EINVAL;
50
51 return spi_map_buf(ctlr, dmadev, sgt, op->data.buf.in, op->data.nbytes,
52 op->data.dir == SPI_MEM_DATA_IN ?
53 DMA_FROM_DEVICE : DMA_TO_DEVICE);
54 }
55 EXPORT_SYMBOL_GPL(spi_controller_dma_map_mem_op_data);
56
57 /**
58 * spi_controller_dma_unmap_mem_op_data() - DMA-unmap the buffer attached to a
59 * memory operation
60 * @ctlr: the SPI controller requesting this dma_unmap()
61 * @op: the memory operation containing the buffer to unmap
62 * @sgt: a pointer to an sg_table previously initialized by
63 * spi_controller_dma_map_mem_op_data()
64 *
65 * Some controllers might want to do DMA on the data buffer embedded in @op.
66 * This helper prepares things so that the CPU can access the
67 * op->data.buf.{in,out} buffer again.
68 *
69 * This function is not intended to be called from SPI drivers. Only SPI
70 * controller drivers should use it.
71 *
72 * This function should be called after the DMA operation has finished and is
73 * only valid if the previous spi_controller_dma_map_mem_op_data() call
74 * returned 0.
75 *
76 * Return: 0 in case of success, a negative error code otherwise.
77 */
spi_controller_dma_unmap_mem_op_data(struct spi_controller * ctlr,const struct spi_mem_op * op,struct sg_table * sgt)78 void spi_controller_dma_unmap_mem_op_data(struct spi_controller *ctlr,
79 const struct spi_mem_op *op,
80 struct sg_table *sgt)
81 {
82 struct device *dmadev;
83
84 if (!op->data.nbytes)
85 return;
86
87 if (op->data.dir == SPI_MEM_DATA_OUT && ctlr->dma_tx)
88 dmadev = ctlr->dma_tx->device->dev;
89 else if (op->data.dir == SPI_MEM_DATA_IN && ctlr->dma_rx)
90 dmadev = ctlr->dma_rx->device->dev;
91 else
92 dmadev = ctlr->dev.parent;
93
94 spi_unmap_buf(ctlr, dmadev, sgt,
95 op->data.dir == SPI_MEM_DATA_IN ?
96 DMA_FROM_DEVICE : DMA_TO_DEVICE);
97 }
98 EXPORT_SYMBOL_GPL(spi_controller_dma_unmap_mem_op_data);
99
spi_check_buswidth_req(struct spi_mem * mem,u8 buswidth,bool tx)100 static int spi_check_buswidth_req(struct spi_mem *mem, u8 buswidth, bool tx)
101 {
102 u32 mode = mem->spi->mode;
103
104 switch (buswidth) {
105 case 1:
106 return 0;
107
108 case 2:
109 if ((tx && (mode & (SPI_TX_DUAL | SPI_TX_QUAD))) ||
110 (!tx && (mode & (SPI_RX_DUAL | SPI_RX_QUAD))))
111 return 0;
112
113 break;
114
115 case 4:
116 if ((tx && (mode & SPI_TX_QUAD)) ||
117 (!tx && (mode & SPI_RX_QUAD)))
118 return 0;
119
120 break;
121
122 default:
123 break;
124 }
125
126 return -ENOTSUPP;
127 }
128
spi_mem_default_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)129 static bool spi_mem_default_supports_op(struct spi_mem *mem,
130 const struct spi_mem_op *op)
131 {
132 if (spi_check_buswidth_req(mem, op->cmd.buswidth, true))
133 return false;
134
135 if (op->addr.nbytes &&
136 spi_check_buswidth_req(mem, op->addr.buswidth, true))
137 return false;
138
139 if (op->dummy.nbytes &&
140 spi_check_buswidth_req(mem, op->dummy.buswidth, true))
141 return false;
142
143 if (op->data.nbytes &&
144 spi_check_buswidth_req(mem, op->data.buswidth,
145 op->data.dir == SPI_MEM_DATA_OUT))
146 return false;
147
148 return true;
149 }
150 EXPORT_SYMBOL_GPL(spi_mem_default_supports_op);
151
152 /**
153 * spi_mem_supports_op() - Check if a memory device and the controller it is
154 * connected to support a specific memory operation
155 * @mem: the SPI memory
156 * @op: the memory operation to check
157 *
158 * Some controllers are only supporting Single or Dual IOs, others might only
159 * support specific opcodes, or it can even be that the controller and device
160 * both support Quad IOs but the hardware prevents you from using it because
161 * only 2 IO lines are connected.
162 *
163 * This function checks whether a specific operation is supported.
164 *
165 * Return: true if @op is supported, false otherwise.
166 */
spi_mem_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)167 bool spi_mem_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
168 {
169 struct spi_controller *ctlr = mem->spi->controller;
170
171 if (ctlr->mem_ops && ctlr->mem_ops->supports_op)
172 return ctlr->mem_ops->supports_op(mem, op);
173
174 return spi_mem_default_supports_op(mem, op);
175 }
176 EXPORT_SYMBOL_GPL(spi_mem_supports_op);
177
178 /**
179 * spi_mem_exec_op() - Execute a memory operation
180 * @mem: the SPI memory
181 * @op: the memory operation to execute
182 *
183 * Executes a memory operation.
184 *
185 * This function first checks that @op is supported and then tries to execute
186 * it.
187 *
188 * Return: 0 in case of success, a negative error code otherwise.
189 */
spi_mem_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)190 int spi_mem_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
191 {
192 unsigned int tmpbufsize, xferpos = 0, totalxferlen = 0;
193 struct spi_controller *ctlr = mem->spi->controller;
194 struct spi_transfer xfers[4] = { };
195 struct spi_message msg;
196 u8 *tmpbuf;
197 int ret;
198
199 if (!spi_mem_supports_op(mem, op))
200 return -ENOTSUPP;
201
202 if (ctlr->mem_ops) {
203 /*
204 * Flush the message queue before executing our SPI memory
205 * operation to prevent preemption of regular SPI transfers.
206 */
207 spi_flush_queue(ctlr);
208
209 if (ctlr->auto_runtime_pm) {
210 ret = pm_runtime_get_sync(ctlr->dev.parent);
211 if (ret < 0) {
212 dev_err(&ctlr->dev,
213 "Failed to power device: %d\n",
214 ret);
215 return ret;
216 }
217 }
218
219 mutex_lock(&ctlr->bus_lock_mutex);
220 mutex_lock(&ctlr->io_mutex);
221 ret = ctlr->mem_ops->exec_op(mem, op);
222 mutex_unlock(&ctlr->io_mutex);
223 mutex_unlock(&ctlr->bus_lock_mutex);
224
225 if (ctlr->auto_runtime_pm)
226 pm_runtime_put(ctlr->dev.parent);
227
228 /*
229 * Some controllers only optimize specific paths (typically the
230 * read path) and expect the core to use the regular SPI
231 * interface in other cases.
232 */
233 if (!ret || ret != -ENOTSUPP)
234 return ret;
235 }
236
237 tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
238 op->dummy.nbytes;
239
240 /*
241 * Allocate a buffer to transmit the CMD, ADDR cycles with kmalloc() so
242 * we're guaranteed that this buffer is DMA-able, as required by the
243 * SPI layer.
244 */
245 tmpbuf = kzalloc(tmpbufsize, GFP_KERNEL | GFP_DMA);
246 if (!tmpbuf)
247 return -ENOMEM;
248
249 spi_message_init(&msg);
250
251 tmpbuf[0] = op->cmd.opcode;
252 xfers[xferpos].tx_buf = tmpbuf;
253 xfers[xferpos].len = sizeof(op->cmd.opcode);
254 xfers[xferpos].tx_nbits = op->cmd.buswidth;
255 spi_message_add_tail(&xfers[xferpos], &msg);
256 xferpos++;
257 totalxferlen++;
258
259 if (op->addr.nbytes) {
260 int i;
261
262 for (i = 0; i < op->addr.nbytes; i++)
263 tmpbuf[i + 1] = op->addr.val >>
264 (8 * (op->addr.nbytes - i - 1));
265
266 xfers[xferpos].tx_buf = tmpbuf + 1;
267 xfers[xferpos].len = op->addr.nbytes;
268 xfers[xferpos].tx_nbits = op->addr.buswidth;
269 spi_message_add_tail(&xfers[xferpos], &msg);
270 xferpos++;
271 totalxferlen += op->addr.nbytes;
272 }
273
274 if (op->dummy.nbytes) {
275 memset(tmpbuf + op->addr.nbytes + 1, 0xff, op->dummy.nbytes);
276 xfers[xferpos].tx_buf = tmpbuf + op->addr.nbytes + 1;
277 xfers[xferpos].len = op->dummy.nbytes;
278 xfers[xferpos].tx_nbits = op->dummy.buswidth;
279 spi_message_add_tail(&xfers[xferpos], &msg);
280 xferpos++;
281 totalxferlen += op->dummy.nbytes;
282 }
283
284 if (op->data.nbytes) {
285 if (op->data.dir == SPI_MEM_DATA_IN) {
286 xfers[xferpos].rx_buf = op->data.buf.in;
287 xfers[xferpos].rx_nbits = op->data.buswidth;
288 } else {
289 xfers[xferpos].tx_buf = op->data.buf.out;
290 xfers[xferpos].tx_nbits = op->data.buswidth;
291 }
292
293 xfers[xferpos].len = op->data.nbytes;
294 spi_message_add_tail(&xfers[xferpos], &msg);
295 xferpos++;
296 totalxferlen += op->data.nbytes;
297 }
298
299 ret = spi_sync(mem->spi, &msg);
300
301 kfree(tmpbuf);
302
303 if (ret)
304 return ret;
305
306 if (msg.actual_length != totalxferlen)
307 return -EIO;
308
309 return 0;
310 }
311 EXPORT_SYMBOL_GPL(spi_mem_exec_op);
312
313 /**
314 * spi_mem_get_name() - Return the SPI mem device name to be used by the
315 * upper layer if necessary
316 * @mem: the SPI memory
317 *
318 * This function allows SPI mem users to retrieve the SPI mem device name.
319 * It is useful if the upper layer needs to expose a custom name for
320 * compatibility reasons.
321 *
322 * Return: a string containing the name of the memory device to be used
323 * by the SPI mem user
324 */
spi_mem_get_name(struct spi_mem * mem)325 const char *spi_mem_get_name(struct spi_mem *mem)
326 {
327 return mem->name;
328 }
329 EXPORT_SYMBOL_GPL(spi_mem_get_name);
330
331 /**
332 * spi_mem_adjust_op_size() - Adjust the data size of a SPI mem operation to
333 * match controller limitations
334 * @mem: the SPI memory
335 * @op: the operation to adjust
336 *
337 * Some controllers have FIFO limitations and must split a data transfer
338 * operation into multiple ones, others require a specific alignment for
339 * optimized accesses. This function allows SPI mem drivers to split a single
340 * operation into multiple sub-operations when required.
341 *
342 * Return: a negative error code if the controller can't properly adjust @op,
343 * 0 otherwise. Note that @op->data.nbytes will be updated if @op
344 * can't be handled in a single step.
345 */
spi_mem_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)346 int spi_mem_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
347 {
348 struct spi_controller *ctlr = mem->spi->controller;
349
350 if (ctlr->mem_ops && ctlr->mem_ops->adjust_op_size)
351 return ctlr->mem_ops->adjust_op_size(mem, op);
352
353 return 0;
354 }
355 EXPORT_SYMBOL_GPL(spi_mem_adjust_op_size);
356
to_spi_mem_drv(struct device_driver * drv)357 static inline struct spi_mem_driver *to_spi_mem_drv(struct device_driver *drv)
358 {
359 return container_of(drv, struct spi_mem_driver, spidrv.driver);
360 }
361
spi_mem_probe(struct spi_device * spi)362 static int spi_mem_probe(struct spi_device *spi)
363 {
364 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
365 struct spi_controller *ctlr = spi->controller;
366 struct spi_mem *mem;
367
368 mem = devm_kzalloc(&spi->dev, sizeof(*mem), GFP_KERNEL);
369 if (!mem)
370 return -ENOMEM;
371
372 mem->spi = spi;
373
374 if (ctlr->mem_ops && ctlr->mem_ops->get_name)
375 mem->name = ctlr->mem_ops->get_name(mem);
376 else
377 mem->name = dev_name(&spi->dev);
378
379 if (IS_ERR_OR_NULL(mem->name))
380 return PTR_ERR(mem->name);
381
382 spi_set_drvdata(spi, mem);
383
384 return memdrv->probe(mem);
385 }
386
spi_mem_remove(struct spi_device * spi)387 static int spi_mem_remove(struct spi_device *spi)
388 {
389 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
390 struct spi_mem *mem = spi_get_drvdata(spi);
391
392 if (memdrv->remove)
393 return memdrv->remove(mem);
394
395 return 0;
396 }
397
spi_mem_shutdown(struct spi_device * spi)398 static void spi_mem_shutdown(struct spi_device *spi)
399 {
400 struct spi_mem_driver *memdrv = to_spi_mem_drv(spi->dev.driver);
401 struct spi_mem *mem = spi_get_drvdata(spi);
402
403 if (memdrv->shutdown)
404 memdrv->shutdown(mem);
405 }
406
407 /**
408 * spi_mem_driver_register_with_owner() - Register a SPI memory driver
409 * @memdrv: the SPI memory driver to register
410 * @owner: the owner of this driver
411 *
412 * Registers a SPI memory driver.
413 *
414 * Return: 0 in case of success, a negative error core otherwise.
415 */
416
spi_mem_driver_register_with_owner(struct spi_mem_driver * memdrv,struct module * owner)417 int spi_mem_driver_register_with_owner(struct spi_mem_driver *memdrv,
418 struct module *owner)
419 {
420 memdrv->spidrv.probe = spi_mem_probe;
421 memdrv->spidrv.remove = spi_mem_remove;
422 memdrv->spidrv.shutdown = spi_mem_shutdown;
423
424 return __spi_register_driver(owner, &memdrv->spidrv);
425 }
426 EXPORT_SYMBOL_GPL(spi_mem_driver_register_with_owner);
427
428 /**
429 * spi_mem_driver_unregister_with_owner() - Unregister a SPI memory driver
430 * @memdrv: the SPI memory driver to unregister
431 *
432 * Unregisters a SPI memory driver.
433 */
spi_mem_driver_unregister(struct spi_mem_driver * memdrv)434 void spi_mem_driver_unregister(struct spi_mem_driver *memdrv)
435 {
436 spi_unregister_driver(&memdrv->spidrv);
437 }
438 EXPORT_SYMBOL_GPL(spi_mem_driver_unregister);
439