1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #ifndef __LINUX_SPI_H
16 #define __LINUX_SPI_H
17 
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/slab.h>
21 #include <linux/kthread.h>
22 #include <linux/completion.h>
23 #include <linux/scatterlist.h>
24 
25 struct dma_chan;
26 struct property_entry;
27 struct spi_controller;
28 struct spi_transfer;
29 struct spi_controller_mem_ops;
30 
31 /*
32  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
33  * and SPI infrastructure.
34  */
35 extern struct bus_type spi_bus_type;
36 
37 /**
38  * struct spi_statistics - statistics for spi transfers
39  * @lock:          lock protecting this structure
40  *
41  * @messages:      number of spi-messages handled
42  * @transfers:     number of spi_transfers handled
43  * @errors:        number of errors during spi_transfer
44  * @timedout:      number of timeouts during spi_transfer
45  *
46  * @spi_sync:      number of times spi_sync is used
47  * @spi_sync_immediate:
48  *                 number of times spi_sync is executed immediately
49  *                 in calling context without queuing and scheduling
50  * @spi_async:     number of times spi_async is used
51  *
52  * @bytes:         number of bytes transferred to/from device
53  * @bytes_tx:      number of bytes sent to device
54  * @bytes_rx:      number of bytes received from device
55  *
56  * @transfer_bytes_histo:
57  *                 transfer bytes histogramm
58  *
59  * @transfers_split_maxsize:
60  *                 number of transfers that have been split because of
61  *                 maxsize limit
62  */
63 struct spi_statistics {
64 	spinlock_t		lock; /* lock for the whole structure */
65 
66 	unsigned long		messages;
67 	unsigned long		transfers;
68 	unsigned long		errors;
69 	unsigned long		timedout;
70 
71 	unsigned long		spi_sync;
72 	unsigned long		spi_sync_immediate;
73 	unsigned long		spi_async;
74 
75 	unsigned long long	bytes;
76 	unsigned long long	bytes_rx;
77 	unsigned long long	bytes_tx;
78 
79 #define SPI_STATISTICS_HISTO_SIZE 17
80 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
81 
82 	unsigned long transfers_split_maxsize;
83 };
84 
85 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
86 				       struct spi_transfer *xfer,
87 				       struct spi_controller *ctlr);
88 
89 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
90 	do {							\
91 		unsigned long flags;				\
92 		spin_lock_irqsave(&(stats)->lock, flags);	\
93 		(stats)->field += count;			\
94 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
95 	} while (0)
96 
97 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
98 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
99 
100 /**
101  * struct spi_device - Controller side proxy for an SPI slave device
102  * @dev: Driver model representation of the device.
103  * @controller: SPI controller used with the device.
104  * @master: Copy of controller, for backwards compatibility.
105  * @max_speed_hz: Maximum clock rate to be used with this chip
106  *	(on this board); may be changed by the device's driver.
107  *	The spi_transfer.speed_hz can override this for each transfer.
108  * @chip_select: Chipselect, distinguishing chips handled by @controller.
109  * @mode: The spi mode defines how data is clocked out and in.
110  *	This may be changed by the device's driver.
111  *	The "active low" default for chipselect mode can be overridden
112  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
113  *	each word in a transfer (by specifying SPI_LSB_FIRST).
114  * @bits_per_word: Data transfers involve one or more words; word sizes
115  *	like eight or 12 bits are common.  In-memory wordsizes are
116  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
117  *	This may be changed by the device's driver, or left at the
118  *	default (0) indicating protocol words are eight bit bytes.
119  *	The spi_transfer.bits_per_word can override this for each transfer.
120  * @irq: Negative, or the number passed to request_irq() to receive
121  *	interrupts from this device.
122  * @controller_state: Controller's runtime state
123  * @controller_data: Board-specific definitions for controller, such as
124  *	FIFO initialization parameters; from board_info.controller_data
125  * @modalias: Name of the driver to use with this device, or an alias
126  *	for that name.  This appears in the sysfs "modalias" attribute
127  *	for driver coldplugging, and in uevents used for hotplugging
128  * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
129  *	not using a GPIO line)
130  *
131  * @statistics: statistics for the spi_device
132  *
133  * A @spi_device is used to interchange data between an SPI slave
134  * (usually a discrete chip) and CPU memory.
135  *
136  * In @dev, the platform_data is used to hold information about this
137  * device that's meaningful to the device's protocol driver, but not
138  * to its controller.  One example might be an identifier for a chip
139  * variant with slightly different functionality; another might be
140  * information about how this particular board wires the chip's pins.
141  */
142 struct spi_device {
143 	struct device		dev;
144 	struct spi_controller	*controller;
145 	struct spi_controller	*master;	/* compatibility layer */
146 	u32			max_speed_hz;
147 	u8			chip_select;
148 	u8			bits_per_word;
149 	u16			mode;
150 #define	SPI_CPHA	0x01			/* clock phase */
151 #define	SPI_CPOL	0x02			/* clock polarity */
152 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
153 #define	SPI_MODE_1	(0|SPI_CPHA)
154 #define	SPI_MODE_2	(SPI_CPOL|0)
155 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
156 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
157 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
158 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
159 #define	SPI_LOOP	0x20			/* loopback mode */
160 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
161 #define	SPI_READY	0x80			/* slave pulls low to pause */
162 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
163 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
164 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
165 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
166 	int			irq;
167 	void			*controller_state;
168 	void			*controller_data;
169 	char			modalias[SPI_NAME_SIZE];
170 	int			cs_gpio;	/* chip select gpio */
171 
172 	/* the statistics */
173 	struct spi_statistics	statistics;
174 
175 	/*
176 	 * likely need more hooks for more protocol options affecting how
177 	 * the controller talks to each chip, like:
178 	 *  - memory packing (12 bit samples into low bits, others zeroed)
179 	 *  - priority
180 	 *  - drop chipselect after each word
181 	 *  - chipselect delays
182 	 *  - ...
183 	 */
184 };
185 
to_spi_device(struct device * dev)186 static inline struct spi_device *to_spi_device(struct device *dev)
187 {
188 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
189 }
190 
191 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)192 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
193 {
194 	return (spi && get_device(&spi->dev)) ? spi : NULL;
195 }
196 
spi_dev_put(struct spi_device * spi)197 static inline void spi_dev_put(struct spi_device *spi)
198 {
199 	if (spi)
200 		put_device(&spi->dev);
201 }
202 
203 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)204 static inline void *spi_get_ctldata(struct spi_device *spi)
205 {
206 	return spi->controller_state;
207 }
208 
spi_set_ctldata(struct spi_device * spi,void * state)209 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
210 {
211 	spi->controller_state = state;
212 }
213 
214 /* device driver data */
215 
spi_set_drvdata(struct spi_device * spi,void * data)216 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
217 {
218 	dev_set_drvdata(&spi->dev, data);
219 }
220 
spi_get_drvdata(struct spi_device * spi)221 static inline void *spi_get_drvdata(struct spi_device *spi)
222 {
223 	return dev_get_drvdata(&spi->dev);
224 }
225 
226 struct spi_message;
227 struct spi_transfer;
228 
229 /**
230  * struct spi_driver - Host side "protocol" driver
231  * @id_table: List of SPI devices supported by this driver
232  * @probe: Binds this driver to the spi device.  Drivers can verify
233  *	that the device is actually present, and may need to configure
234  *	characteristics (such as bits_per_word) which weren't needed for
235  *	the initial configuration done during system setup.
236  * @remove: Unbinds this driver from the spi device
237  * @shutdown: Standard shutdown callback used during system state
238  *	transitions such as powerdown/halt and kexec
239  * @driver: SPI device drivers should initialize the name and owner
240  *	field of this structure.
241  *
242  * This represents the kind of device driver that uses SPI messages to
243  * interact with the hardware at the other end of a SPI link.  It's called
244  * a "protocol" driver because it works through messages rather than talking
245  * directly to SPI hardware (which is what the underlying SPI controller
246  * driver does to pass those messages).  These protocols are defined in the
247  * specification for the device(s) supported by the driver.
248  *
249  * As a rule, those device protocols represent the lowest level interface
250  * supported by a driver, and it will support upper level interfaces too.
251  * Examples of such upper levels include frameworks like MTD, networking,
252  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
253  */
254 struct spi_driver {
255 	const struct spi_device_id *id_table;
256 	int			(*probe)(struct spi_device *spi);
257 	int			(*remove)(struct spi_device *spi);
258 	void			(*shutdown)(struct spi_device *spi);
259 	struct device_driver	driver;
260 };
261 
to_spi_driver(struct device_driver * drv)262 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
263 {
264 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
265 }
266 
267 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
268 
269 /**
270  * spi_unregister_driver - reverse effect of spi_register_driver
271  * @sdrv: the driver to unregister
272  * Context: can sleep
273  */
spi_unregister_driver(struct spi_driver * sdrv)274 static inline void spi_unregister_driver(struct spi_driver *sdrv)
275 {
276 	if (sdrv)
277 		driver_unregister(&sdrv->driver);
278 }
279 
280 /* use a define to avoid include chaining to get THIS_MODULE */
281 #define spi_register_driver(driver) \
282 	__spi_register_driver(THIS_MODULE, driver)
283 
284 /**
285  * module_spi_driver() - Helper macro for registering a SPI driver
286  * @__spi_driver: spi_driver struct
287  *
288  * Helper macro for SPI drivers which do not do anything special in module
289  * init/exit. This eliminates a lot of boilerplate. Each module may only
290  * use this macro once, and calling it replaces module_init() and module_exit()
291  */
292 #define module_spi_driver(__spi_driver) \
293 	module_driver(__spi_driver, spi_register_driver, \
294 			spi_unregister_driver)
295 
296 /**
297  * struct spi_controller - interface to SPI master or slave controller
298  * @dev: device interface to this driver
299  * @list: link with the global spi_controller list
300  * @bus_num: board-specific (and often SOC-specific) identifier for a
301  *	given SPI controller.
302  * @num_chipselect: chipselects are used to distinguish individual
303  *	SPI slaves, and are numbered from zero to num_chipselects.
304  *	each slave has a chipselect signal, but it's common that not
305  *	every chipselect is connected to a slave.
306  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
307  * @mode_bits: flags understood by this controller driver
308  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
309  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
310  *	supported. If set, the SPI core will reject any transfer with an
311  *	unsupported bits_per_word. If not set, this value is simply ignored,
312  *	and it's up to the individual driver to perform any validation.
313  * @min_speed_hz: Lowest supported transfer speed
314  * @max_speed_hz: Highest supported transfer speed
315  * @flags: other constraints relevant to this driver
316  * @slave: indicates that this is an SPI slave controller
317  * @max_transfer_size: function that returns the max transfer size for
318  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
319  * @max_message_size: function that returns the max message size for
320  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
321  * @io_mutex: mutex for physical bus access
322  * @bus_lock_spinlock: spinlock for SPI bus locking
323  * @bus_lock_mutex: mutex for exclusion of multiple callers
324  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
325  * @setup: updates the device mode and clocking records used by a
326  *	device's SPI controller; protocol code may call this.  This
327  *	must fail if an unrecognized or unsupported mode is requested.
328  *	It's always safe to call this unless transfers are pending on
329  *	the device whose settings are being modified.
330  * @transfer: adds a message to the controller's transfer queue.
331  * @cleanup: frees controller-specific state
332  * @can_dma: determine whether this controller supports DMA
333  * @queued: whether this controller is providing an internal message queue
334  * @kworker: thread struct for message pump
335  * @kworker_task: pointer to task for message pump kworker thread
336  * @pump_messages: work struct for scheduling work to the message pump
337  * @queue_lock: spinlock to syncronise access to message queue
338  * @queue: message queue
339  * @idling: the device is entering idle state
340  * @cur_msg: the currently in-flight message
341  * @cur_msg_prepared: spi_prepare_message was called for the currently
342  *                    in-flight message
343  * @cur_msg_mapped: message has been mapped for DMA
344  * @xfer_completion: used by core transfer_one_message()
345  * @busy: message pump is busy
346  * @running: message pump is running
347  * @rt: whether this queue is set to run as a realtime task
348  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
349  *                   while the hardware is prepared, using the parent
350  *                   device for the spidev
351  * @max_dma_len: Maximum length of a DMA transfer for the device.
352  * @prepare_transfer_hardware: a message will soon arrive from the queue
353  *	so the subsystem requests the driver to prepare the transfer hardware
354  *	by issuing this call
355  * @transfer_one_message: the subsystem calls the driver to transfer a single
356  *	message while queuing transfers that arrive in the meantime. When the
357  *	driver is finished with this message, it must call
358  *	spi_finalize_current_message() so the subsystem can issue the next
359  *	message
360  * @unprepare_transfer_hardware: there are currently no more messages on the
361  *	queue so the subsystem notifies the driver that it may relax the
362  *	hardware by issuing this call
363  * @set_cs: set the logic level of the chip select line.  May be called
364  *          from interrupt context.
365  * @prepare_message: set up the controller to transfer a single message,
366  *                   for example doing DMA mapping.  Called from threaded
367  *                   context.
368  * @transfer_one: transfer a single spi_transfer.
369  *                  - return 0 if the transfer is finished,
370  *                  - return 1 if the transfer is still in progress. When
371  *                    the driver is finished with this transfer it must
372  *                    call spi_finalize_current_transfer() so the subsystem
373  *                    can issue the next transfer. Note: transfer_one and
374  *                    transfer_one_message are mutually exclusive; when both
375  *                    are set, the generic subsystem does not call your
376  *                    transfer_one callback.
377  * @handle_err: the subsystem calls the driver to handle an error that occurs
378  *		in the generic implementation of transfer_one_message().
379  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
380  *	     This field is optional and should only be implemented if the
381  *	     controller has native support for memory like operations.
382  * @unprepare_message: undo any work done by prepare_message().
383  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
384  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
385  *	number. Any individual value may be -ENOENT for CS lines that
386  *	are not GPIOs (driven by the SPI controller itself).
387  * @statistics: statistics for the spi_controller
388  * @dma_tx: DMA transmit channel
389  * @dma_rx: DMA receive channel
390  * @dummy_rx: dummy receive buffer for full-duplex devices
391  * @dummy_tx: dummy transmit buffer for full-duplex devices
392  * @fw_translate_cs: If the boot firmware uses different numbering scheme
393  *	what Linux expects, this optional hook can be used to translate
394  *	between the two.
395  *
396  * Each SPI controller can communicate with one or more @spi_device
397  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
398  * but not chip select signals.  Each device may be configured to use a
399  * different clock rate, since those shared signals are ignored unless
400  * the chip is selected.
401  *
402  * The driver for an SPI controller manages access to those devices through
403  * a queue of spi_message transactions, copying data between CPU memory and
404  * an SPI slave device.  For each such message it queues, it calls the
405  * message's completion function when the transaction completes.
406  */
407 struct spi_controller {
408 	struct device	dev;
409 
410 	struct list_head list;
411 
412 	/* other than negative (== assign one dynamically), bus_num is fully
413 	 * board-specific.  usually that simplifies to being SOC-specific.
414 	 * example:  one SOC has three SPI controllers, numbered 0..2,
415 	 * and one board's schematics might show it using SPI-2.  software
416 	 * would normally use bus_num=2 for that controller.
417 	 */
418 	s16			bus_num;
419 
420 	/* chipselects will be integral to many controllers; some others
421 	 * might use board-specific GPIOs.
422 	 */
423 	u16			num_chipselect;
424 
425 	/* some SPI controllers pose alignment requirements on DMAable
426 	 * buffers; let protocol drivers know about these requirements.
427 	 */
428 	u16			dma_alignment;
429 
430 	/* spi_device.mode flags understood by this controller driver */
431 	u16			mode_bits;
432 
433 	/* bitmask of supported bits_per_word for transfers */
434 	u32			bits_per_word_mask;
435 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
436 #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
437 #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
438 
439 	/* limits on transfer speed */
440 	u32			min_speed_hz;
441 	u32			max_speed_hz;
442 
443 	/* other constraints relevant to this driver */
444 	u16			flags;
445 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
446 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
447 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
448 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
449 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
450 
451 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
452 
453 	/* flag indicating this is an SPI slave controller */
454 	bool			slave;
455 
456 	/*
457 	 * on some hardware transfer / message size may be constrained
458 	 * the limit may depend on device transfer settings
459 	 */
460 	size_t (*max_transfer_size)(struct spi_device *spi);
461 	size_t (*max_message_size)(struct spi_device *spi);
462 
463 	/* I/O mutex */
464 	struct mutex		io_mutex;
465 
466 	/* lock and mutex for SPI bus locking */
467 	spinlock_t		bus_lock_spinlock;
468 	struct mutex		bus_lock_mutex;
469 
470 	/* flag indicating that the SPI bus is locked for exclusive use */
471 	bool			bus_lock_flag;
472 
473 	/* Setup mode and clock, etc (spi driver may call many times).
474 	 *
475 	 * IMPORTANT:  this may be called when transfers to another
476 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
477 	 * which could break those transfers.
478 	 */
479 	int			(*setup)(struct spi_device *spi);
480 
481 	/* bidirectional bulk transfers
482 	 *
483 	 * + The transfer() method may not sleep; its main role is
484 	 *   just to add the message to the queue.
485 	 * + For now there's no remove-from-queue operation, or
486 	 *   any other request management
487 	 * + To a given spi_device, message queueing is pure fifo
488 	 *
489 	 * + The controller's main job is to process its message queue,
490 	 *   selecting a chip (for masters), then transferring data
491 	 * + If there are multiple spi_device children, the i/o queue
492 	 *   arbitration algorithm is unspecified (round robin, fifo,
493 	 *   priority, reservations, preemption, etc)
494 	 *
495 	 * + Chipselect stays active during the entire message
496 	 *   (unless modified by spi_transfer.cs_change != 0).
497 	 * + The message transfers use clock and SPI mode parameters
498 	 *   previously established by setup() for this device
499 	 */
500 	int			(*transfer)(struct spi_device *spi,
501 						struct spi_message *mesg);
502 
503 	/* called on release() to free memory provided by spi_controller */
504 	void			(*cleanup)(struct spi_device *spi);
505 
506 	/*
507 	 * Used to enable core support for DMA handling, if can_dma()
508 	 * exists and returns true then the transfer will be mapped
509 	 * prior to transfer_one() being called.  The driver should
510 	 * not modify or store xfer and dma_tx and dma_rx must be set
511 	 * while the device is prepared.
512 	 */
513 	bool			(*can_dma)(struct spi_controller *ctlr,
514 					   struct spi_device *spi,
515 					   struct spi_transfer *xfer);
516 
517 	/*
518 	 * These hooks are for drivers that want to use the generic
519 	 * controller transfer queueing mechanism. If these are used, the
520 	 * transfer() function above must NOT be specified by the driver.
521 	 * Over time we expect SPI drivers to be phased over to this API.
522 	 */
523 	bool				queued;
524 	struct kthread_worker		kworker;
525 	struct task_struct		*kworker_task;
526 	struct kthread_work		pump_messages;
527 	spinlock_t			queue_lock;
528 	struct list_head		queue;
529 	struct spi_message		*cur_msg;
530 	bool				idling;
531 	bool				busy;
532 	bool				running;
533 	bool				rt;
534 	bool				auto_runtime_pm;
535 	bool                            cur_msg_prepared;
536 	bool				cur_msg_mapped;
537 	struct completion               xfer_completion;
538 	size_t				max_dma_len;
539 
540 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
541 	int (*transfer_one_message)(struct spi_controller *ctlr,
542 				    struct spi_message *mesg);
543 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
544 	int (*prepare_message)(struct spi_controller *ctlr,
545 			       struct spi_message *message);
546 	int (*unprepare_message)(struct spi_controller *ctlr,
547 				 struct spi_message *message);
548 	int (*slave_abort)(struct spi_controller *ctlr);
549 
550 	/*
551 	 * These hooks are for drivers that use a generic implementation
552 	 * of transfer_one_message() provied by the core.
553 	 */
554 	void (*set_cs)(struct spi_device *spi, bool enable);
555 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
556 			    struct spi_transfer *transfer);
557 	void (*handle_err)(struct spi_controller *ctlr,
558 			   struct spi_message *message);
559 
560 	/* Optimized handlers for SPI memory-like operations. */
561 	const struct spi_controller_mem_ops *mem_ops;
562 
563 	/* gpio chip select */
564 	int			*cs_gpios;
565 
566 	/* statistics */
567 	struct spi_statistics	statistics;
568 
569 	/* DMA channels for use with core dmaengine helpers */
570 	struct dma_chan		*dma_tx;
571 	struct dma_chan		*dma_rx;
572 
573 	/* dummy data for full duplex devices */
574 	void			*dummy_rx;
575 	void			*dummy_tx;
576 
577 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
578 };
579 
spi_controller_get_devdata(struct spi_controller * ctlr)580 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
581 {
582 	return dev_get_drvdata(&ctlr->dev);
583 }
584 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)585 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
586 					      void *data)
587 {
588 	dev_set_drvdata(&ctlr->dev, data);
589 }
590 
spi_controller_get(struct spi_controller * ctlr)591 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
592 {
593 	if (!ctlr || !get_device(&ctlr->dev))
594 		return NULL;
595 	return ctlr;
596 }
597 
spi_controller_put(struct spi_controller * ctlr)598 static inline void spi_controller_put(struct spi_controller *ctlr)
599 {
600 	if (ctlr)
601 		put_device(&ctlr->dev);
602 }
603 
spi_controller_is_slave(struct spi_controller * ctlr)604 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
605 {
606 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
607 }
608 
609 /* PM calls that need to be issued by the driver */
610 extern int spi_controller_suspend(struct spi_controller *ctlr);
611 extern int spi_controller_resume(struct spi_controller *ctlr);
612 
613 /* Calls the driver make to interact with the message queue */
614 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
615 extern void spi_finalize_current_message(struct spi_controller *ctlr);
616 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
617 
618 /* the spi driver core manages memory for the spi_controller classdev */
619 extern struct spi_controller *__spi_alloc_controller(struct device *host,
620 						unsigned int size, bool slave);
621 
spi_alloc_master(struct device * host,unsigned int size)622 static inline struct spi_controller *spi_alloc_master(struct device *host,
623 						      unsigned int size)
624 {
625 	return __spi_alloc_controller(host, size, false);
626 }
627 
spi_alloc_slave(struct device * host,unsigned int size)628 static inline struct spi_controller *spi_alloc_slave(struct device *host,
629 						     unsigned int size)
630 {
631 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
632 		return NULL;
633 
634 	return __spi_alloc_controller(host, size, true);
635 }
636 
637 extern int spi_register_controller(struct spi_controller *ctlr);
638 extern int devm_spi_register_controller(struct device *dev,
639 					struct spi_controller *ctlr);
640 extern void spi_unregister_controller(struct spi_controller *ctlr);
641 
642 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
643 
644 /*
645  * SPI resource management while processing a SPI message
646  */
647 
648 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
649 				  struct spi_message *msg,
650 				  void *res);
651 
652 /**
653  * struct spi_res - spi resource management structure
654  * @entry:   list entry
655  * @release: release code called prior to freeing this resource
656  * @data:    extra data allocated for the specific use-case
657  *
658  * this is based on ideas from devres, but focused on life-cycle
659  * management during spi_message processing
660  */
661 struct spi_res {
662 	struct list_head        entry;
663 	spi_res_release_t       release;
664 	unsigned long long      data[]; /* guarantee ull alignment */
665 };
666 
667 extern void *spi_res_alloc(struct spi_device *spi,
668 			   spi_res_release_t release,
669 			   size_t size, gfp_t gfp);
670 extern void spi_res_add(struct spi_message *message, void *res);
671 extern void spi_res_free(void *res);
672 
673 extern void spi_res_release(struct spi_controller *ctlr,
674 			    struct spi_message *message);
675 
676 /*---------------------------------------------------------------------------*/
677 
678 /*
679  * I/O INTERFACE between SPI controller and protocol drivers
680  *
681  * Protocol drivers use a queue of spi_messages, each transferring data
682  * between the controller and memory buffers.
683  *
684  * The spi_messages themselves consist of a series of read+write transfer
685  * segments.  Those segments always read the same number of bits as they
686  * write; but one or the other is easily ignored by passing a null buffer
687  * pointer.  (This is unlike most types of I/O API, because SPI hardware
688  * is full duplex.)
689  *
690  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
691  * up to the protocol driver, which guarantees the integrity of both (as
692  * well as the data buffers) for as long as the message is queued.
693  */
694 
695 /**
696  * struct spi_transfer - a read/write buffer pair
697  * @tx_buf: data to be written (dma-safe memory), or NULL
698  * @rx_buf: data to be read (dma-safe memory), or NULL
699  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
700  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
701  * @tx_nbits: number of bits used for writing. If 0 the default
702  *      (SPI_NBITS_SINGLE) is used.
703  * @rx_nbits: number of bits used for reading. If 0 the default
704  *      (SPI_NBITS_SINGLE) is used.
705  * @len: size of rx and tx buffers (in bytes)
706  * @speed_hz: Select a speed other than the device default for this
707  *      transfer. If 0 the default (from @spi_device) is used.
708  * @bits_per_word: select a bits_per_word other than the device default
709  *      for this transfer. If 0 the default (from @spi_device) is used.
710  * @cs_change: affects chipselect after this transfer completes
711  * @delay_usecs: microseconds to delay after this transfer before
712  *	(optionally) changing the chipselect status, then starting
713  *	the next transfer or completing this @spi_message.
714  * @transfer_list: transfers are sequenced through @spi_message.transfers
715  * @tx_sg: Scatterlist for transmit, currently not for client use
716  * @rx_sg: Scatterlist for receive, currently not for client use
717  *
718  * SPI transfers always write the same number of bytes as they read.
719  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
720  * In some cases, they may also want to provide DMA addresses for
721  * the data being transferred; that may reduce overhead, when the
722  * underlying driver uses dma.
723  *
724  * If the transmit buffer is null, zeroes will be shifted out
725  * while filling @rx_buf.  If the receive buffer is null, the data
726  * shifted in will be discarded.  Only "len" bytes shift out (or in).
727  * It's an error to try to shift out a partial word.  (For example, by
728  * shifting out three bytes with word size of sixteen or twenty bits;
729  * the former uses two bytes per word, the latter uses four bytes.)
730  *
731  * In-memory data values are always in native CPU byte order, translated
732  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
733  * for example when bits_per_word is sixteen, buffers are 2N bytes long
734  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
735  *
736  * When the word size of the SPI transfer is not a power-of-two multiple
737  * of eight bits, those in-memory words include extra bits.  In-memory
738  * words are always seen by protocol drivers as right-justified, so the
739  * undefined (rx) or unused (tx) bits are always the most significant bits.
740  *
741  * All SPI transfers start with the relevant chipselect active.  Normally
742  * it stays selected until after the last transfer in a message.  Drivers
743  * can affect the chipselect signal using cs_change.
744  *
745  * (i) If the transfer isn't the last one in the message, this flag is
746  * used to make the chipselect briefly go inactive in the middle of the
747  * message.  Toggling chipselect in this way may be needed to terminate
748  * a chip command, letting a single spi_message perform all of group of
749  * chip transactions together.
750  *
751  * (ii) When the transfer is the last one in the message, the chip may
752  * stay selected until the next transfer.  On multi-device SPI busses
753  * with nothing blocking messages going to other devices, this is just
754  * a performance hint; starting a message to another device deselects
755  * this one.  But in other cases, this can be used to ensure correctness.
756  * Some devices need protocol transactions to be built from a series of
757  * spi_message submissions, where the content of one message is determined
758  * by the results of previous messages and where the whole transaction
759  * ends when the chipselect goes intactive.
760  *
761  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
762  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
763  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
764  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
765  *
766  * The code that submits an spi_message (and its spi_transfers)
767  * to the lower layers is responsible for managing its memory.
768  * Zero-initialize every field you don't set up explicitly, to
769  * insulate against future API updates.  After you submit a message
770  * and its transfers, ignore them until its completion callback.
771  */
772 struct spi_transfer {
773 	/* it's ok if tx_buf == rx_buf (right?)
774 	 * for MicroWire, one buffer must be null
775 	 * buffers must work with dma_*map_single() calls, unless
776 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
777 	 */
778 	const void	*tx_buf;
779 	void		*rx_buf;
780 	unsigned	len;
781 
782 	dma_addr_t	tx_dma;
783 	dma_addr_t	rx_dma;
784 	struct sg_table tx_sg;
785 	struct sg_table rx_sg;
786 
787 	unsigned	cs_change:1;
788 	unsigned	tx_nbits:3;
789 	unsigned	rx_nbits:3;
790 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
791 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
792 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
793 	u8		bits_per_word;
794 	u16		delay_usecs;
795 	u32		speed_hz;
796 
797 	struct list_head transfer_list;
798 };
799 
800 /**
801  * struct spi_message - one multi-segment SPI transaction
802  * @transfers: list of transfer segments in this transaction
803  * @spi: SPI device to which the transaction is queued
804  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
805  *	addresses for each transfer buffer
806  * @complete: called to report transaction completions
807  * @context: the argument to complete() when it's called
808  * @frame_length: the total number of bytes in the message
809  * @actual_length: the total number of bytes that were transferred in all
810  *	successful segments
811  * @status: zero for success, else negative errno
812  * @queue: for use by whichever driver currently owns the message
813  * @state: for use by whichever driver currently owns the message
814  * @resources: for resource management when the spi message is processed
815  *
816  * A @spi_message is used to execute an atomic sequence of data transfers,
817  * each represented by a struct spi_transfer.  The sequence is "atomic"
818  * in the sense that no other spi_message may use that SPI bus until that
819  * sequence completes.  On some systems, many such sequences can execute as
820  * as single programmed DMA transfer.  On all systems, these messages are
821  * queued, and might complete after transactions to other devices.  Messages
822  * sent to a given spi_device are always executed in FIFO order.
823  *
824  * The code that submits an spi_message (and its spi_transfers)
825  * to the lower layers is responsible for managing its memory.
826  * Zero-initialize every field you don't set up explicitly, to
827  * insulate against future API updates.  After you submit a message
828  * and its transfers, ignore them until its completion callback.
829  */
830 struct spi_message {
831 	struct list_head	transfers;
832 
833 	struct spi_device	*spi;
834 
835 	unsigned		is_dma_mapped:1;
836 
837 	/* REVISIT:  we might want a flag affecting the behavior of the
838 	 * last transfer ... allowing things like "read 16 bit length L"
839 	 * immediately followed by "read L bytes".  Basically imposing
840 	 * a specific message scheduling algorithm.
841 	 *
842 	 * Some controller drivers (message-at-a-time queue processing)
843 	 * could provide that as their default scheduling algorithm.  But
844 	 * others (with multi-message pipelines) could need a flag to
845 	 * tell them about such special cases.
846 	 */
847 
848 	/* completion is reported through a callback */
849 	void			(*complete)(void *context);
850 	void			*context;
851 	unsigned		frame_length;
852 	unsigned		actual_length;
853 	int			status;
854 
855 	/* for optional use by whatever driver currently owns the
856 	 * spi_message ...  between calls to spi_async and then later
857 	 * complete(), that's the spi_controller controller driver.
858 	 */
859 	struct list_head	queue;
860 	void			*state;
861 
862 	/* list of spi_res reources when the spi message is processed */
863 	struct list_head        resources;
864 };
865 
spi_message_init_no_memset(struct spi_message * m)866 static inline void spi_message_init_no_memset(struct spi_message *m)
867 {
868 	INIT_LIST_HEAD(&m->transfers);
869 	INIT_LIST_HEAD(&m->resources);
870 }
871 
spi_message_init(struct spi_message * m)872 static inline void spi_message_init(struct spi_message *m)
873 {
874 	memset(m, 0, sizeof *m);
875 	spi_message_init_no_memset(m);
876 }
877 
878 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)879 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
880 {
881 	list_add_tail(&t->transfer_list, &m->transfers);
882 }
883 
884 static inline void
spi_transfer_del(struct spi_transfer * t)885 spi_transfer_del(struct spi_transfer *t)
886 {
887 	list_del(&t->transfer_list);
888 }
889 
890 /**
891  * spi_message_init_with_transfers - Initialize spi_message and append transfers
892  * @m: spi_message to be initialized
893  * @xfers: An array of spi transfers
894  * @num_xfers: Number of items in the xfer array
895  *
896  * This function initializes the given spi_message and adds each spi_transfer in
897  * the given array to the message.
898  */
899 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)900 spi_message_init_with_transfers(struct spi_message *m,
901 struct spi_transfer *xfers, unsigned int num_xfers)
902 {
903 	unsigned int i;
904 
905 	spi_message_init(m);
906 	for (i = 0; i < num_xfers; ++i)
907 		spi_message_add_tail(&xfers[i], m);
908 }
909 
910 /* It's fine to embed message and transaction structures in other data
911  * structures so long as you don't free them while they're in use.
912  */
913 
spi_message_alloc(unsigned ntrans,gfp_t flags)914 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
915 {
916 	struct spi_message *m;
917 
918 	m = kzalloc(sizeof(struct spi_message)
919 			+ ntrans * sizeof(struct spi_transfer),
920 			flags);
921 	if (m) {
922 		unsigned i;
923 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
924 
925 		spi_message_init_no_memset(m);
926 		for (i = 0; i < ntrans; i++, t++)
927 			spi_message_add_tail(t, m);
928 	}
929 	return m;
930 }
931 
spi_message_free(struct spi_message * m)932 static inline void spi_message_free(struct spi_message *m)
933 {
934 	kfree(m);
935 }
936 
937 extern int spi_setup(struct spi_device *spi);
938 extern int spi_async(struct spi_device *spi, struct spi_message *message);
939 extern int spi_async_locked(struct spi_device *spi,
940 			    struct spi_message *message);
941 extern int spi_slave_abort(struct spi_device *spi);
942 
943 static inline size_t
spi_max_message_size(struct spi_device * spi)944 spi_max_message_size(struct spi_device *spi)
945 {
946 	struct spi_controller *ctlr = spi->controller;
947 
948 	if (!ctlr->max_message_size)
949 		return SIZE_MAX;
950 	return ctlr->max_message_size(spi);
951 }
952 
953 static inline size_t
spi_max_transfer_size(struct spi_device * spi)954 spi_max_transfer_size(struct spi_device *spi)
955 {
956 	struct spi_controller *ctlr = spi->controller;
957 	size_t tr_max = SIZE_MAX;
958 	size_t msg_max = spi_max_message_size(spi);
959 
960 	if (ctlr->max_transfer_size)
961 		tr_max = ctlr->max_transfer_size(spi);
962 
963 	/* transfer size limit must not be greater than messsage size limit */
964 	return min(tr_max, msg_max);
965 }
966 
967 /*---------------------------------------------------------------------------*/
968 
969 /* SPI transfer replacement methods which make use of spi_res */
970 
971 struct spi_replaced_transfers;
972 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
973 				       struct spi_message *msg,
974 				       struct spi_replaced_transfers *res);
975 /**
976  * struct spi_replaced_transfers - structure describing the spi_transfer
977  *                                 replacements that have occurred
978  *                                 so that they can get reverted
979  * @release:            some extra release code to get executed prior to
980  *                      relasing this structure
981  * @extradata:          pointer to some extra data if requested or NULL
982  * @replaced_transfers: transfers that have been replaced and which need
983  *                      to get restored
984  * @replaced_after:     the transfer after which the @replaced_transfers
985  *                      are to get re-inserted
986  * @inserted:           number of transfers inserted
987  * @inserted_transfers: array of spi_transfers of array-size @inserted,
988  *                      that have been replacing replaced_transfers
989  *
990  * note: that @extradata will point to @inserted_transfers[@inserted]
991  * if some extra allocation is requested, so alignment will be the same
992  * as for spi_transfers
993  */
994 struct spi_replaced_transfers {
995 	spi_replaced_release_t release;
996 	void *extradata;
997 	struct list_head replaced_transfers;
998 	struct list_head *replaced_after;
999 	size_t inserted;
1000 	struct spi_transfer inserted_transfers[];
1001 };
1002 
1003 extern struct spi_replaced_transfers *spi_replace_transfers(
1004 	struct spi_message *msg,
1005 	struct spi_transfer *xfer_first,
1006 	size_t remove,
1007 	size_t insert,
1008 	spi_replaced_release_t release,
1009 	size_t extradatasize,
1010 	gfp_t gfp);
1011 
1012 /*---------------------------------------------------------------------------*/
1013 
1014 /* SPI transfer transformation methods */
1015 
1016 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1017 				       struct spi_message *msg,
1018 				       size_t maxsize,
1019 				       gfp_t gfp);
1020 
1021 /*---------------------------------------------------------------------------*/
1022 
1023 /* All these synchronous SPI transfer routines are utilities layered
1024  * over the core async transfer primitive.  Here, "synchronous" means
1025  * they will sleep uninterruptibly until the async transfer completes.
1026  */
1027 
1028 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1029 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1030 extern int spi_bus_lock(struct spi_controller *ctlr);
1031 extern int spi_bus_unlock(struct spi_controller *ctlr);
1032 
1033 /**
1034  * spi_sync_transfer - synchronous SPI data transfer
1035  * @spi: device with which data will be exchanged
1036  * @xfers: An array of spi_transfers
1037  * @num_xfers: Number of items in the xfer array
1038  * Context: can sleep
1039  *
1040  * Does a synchronous SPI data transfer of the given spi_transfer array.
1041  *
1042  * For more specific semantics see spi_sync().
1043  *
1044  * Return: Return: zero on success, else a negative error code.
1045  */
1046 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1047 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1048 	unsigned int num_xfers)
1049 {
1050 	struct spi_message msg;
1051 
1052 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1053 
1054 	return spi_sync(spi, &msg);
1055 }
1056 
1057 /**
1058  * spi_write - SPI synchronous write
1059  * @spi: device to which data will be written
1060  * @buf: data buffer
1061  * @len: data buffer size
1062  * Context: can sleep
1063  *
1064  * This function writes the buffer @buf.
1065  * Callable only from contexts that can sleep.
1066  *
1067  * Return: zero on success, else a negative error code.
1068  */
1069 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1070 spi_write(struct spi_device *spi, const void *buf, size_t len)
1071 {
1072 	struct spi_transfer	t = {
1073 			.tx_buf		= buf,
1074 			.len		= len,
1075 		};
1076 
1077 	return spi_sync_transfer(spi, &t, 1);
1078 }
1079 
1080 /**
1081  * spi_read - SPI synchronous read
1082  * @spi: device from which data will be read
1083  * @buf: data buffer
1084  * @len: data buffer size
1085  * Context: can sleep
1086  *
1087  * This function reads the buffer @buf.
1088  * Callable only from contexts that can sleep.
1089  *
1090  * Return: zero on success, else a negative error code.
1091  */
1092 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1093 spi_read(struct spi_device *spi, void *buf, size_t len)
1094 {
1095 	struct spi_transfer	t = {
1096 			.rx_buf		= buf,
1097 			.len		= len,
1098 		};
1099 
1100 	return spi_sync_transfer(spi, &t, 1);
1101 }
1102 
1103 /* this copies txbuf and rxbuf data; for small transfers only! */
1104 extern int spi_write_then_read(struct spi_device *spi,
1105 		const void *txbuf, unsigned n_tx,
1106 		void *rxbuf, unsigned n_rx);
1107 
1108 /**
1109  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1110  * @spi: device with which data will be exchanged
1111  * @cmd: command to be written before data is read back
1112  * Context: can sleep
1113  *
1114  * Callable only from contexts that can sleep.
1115  *
1116  * Return: the (unsigned) eight bit number returned by the
1117  * device, or else a negative error code.
1118  */
spi_w8r8(struct spi_device * spi,u8 cmd)1119 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1120 {
1121 	ssize_t			status;
1122 	u8			result;
1123 
1124 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1125 
1126 	/* return negative errno or unsigned value */
1127 	return (status < 0) ? status : result;
1128 }
1129 
1130 /**
1131  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1132  * @spi: device with which data will be exchanged
1133  * @cmd: command to be written before data is read back
1134  * Context: can sleep
1135  *
1136  * The number is returned in wire-order, which is at least sometimes
1137  * big-endian.
1138  *
1139  * Callable only from contexts that can sleep.
1140  *
1141  * Return: the (unsigned) sixteen bit number returned by the
1142  * device, or else a negative error code.
1143  */
spi_w8r16(struct spi_device * spi,u8 cmd)1144 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1145 {
1146 	ssize_t			status;
1147 	u16			result;
1148 
1149 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1150 
1151 	/* return negative errno or unsigned value */
1152 	return (status < 0) ? status : result;
1153 }
1154 
1155 /**
1156  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1157  * @spi: device with which data will be exchanged
1158  * @cmd: command to be written before data is read back
1159  * Context: can sleep
1160  *
1161  * This function is similar to spi_w8r16, with the exception that it will
1162  * convert the read 16 bit data word from big-endian to native endianness.
1163  *
1164  * Callable only from contexts that can sleep.
1165  *
1166  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1167  * endianness, or else a negative error code.
1168  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1169 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1170 
1171 {
1172 	ssize_t status;
1173 	__be16 result;
1174 
1175 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1176 	if (status < 0)
1177 		return status;
1178 
1179 	return be16_to_cpu(result);
1180 }
1181 
1182 /*---------------------------------------------------------------------------*/
1183 
1184 /*
1185  * INTERFACE between board init code and SPI infrastructure.
1186  *
1187  * No SPI driver ever sees these SPI device table segments, but
1188  * it's how the SPI core (or adapters that get hotplugged) grows
1189  * the driver model tree.
1190  *
1191  * As a rule, SPI devices can't be probed.  Instead, board init code
1192  * provides a table listing the devices which are present, with enough
1193  * information to bind and set up the device's driver.  There's basic
1194  * support for nonstatic configurations too; enough to handle adding
1195  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1196  */
1197 
1198 /**
1199  * struct spi_board_info - board-specific template for a SPI device
1200  * @modalias: Initializes spi_device.modalias; identifies the driver.
1201  * @platform_data: Initializes spi_device.platform_data; the particular
1202  *	data stored there is driver-specific.
1203  * @properties: Additional device properties for the device.
1204  * @controller_data: Initializes spi_device.controller_data; some
1205  *	controllers need hints about hardware setup, e.g. for DMA.
1206  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1207  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1208  *	from the chip datasheet and board-specific signal quality issues.
1209  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1210  *	by spi_new_device(), and otherwise depends on board wiring.
1211  * @chip_select: Initializes spi_device.chip_select; depends on how
1212  *	the board is wired.
1213  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1214  *	wiring (some devices support both 3WIRE and standard modes), and
1215  *	possibly presence of an inverter in the chipselect path.
1216  *
1217  * When adding new SPI devices to the device tree, these structures serve
1218  * as a partial device template.  They hold information which can't always
1219  * be determined by drivers.  Information that probe() can establish (such
1220  * as the default transfer wordsize) is not included here.
1221  *
1222  * These structures are used in two places.  Their primary role is to
1223  * be stored in tables of board-specific device descriptors, which are
1224  * declared early in board initialization and then used (much later) to
1225  * populate a controller's device tree after the that controller's driver
1226  * initializes.  A secondary (and atypical) role is as a parameter to
1227  * spi_new_device() call, which happens after those controller drivers
1228  * are active in some dynamic board configuration models.
1229  */
1230 struct spi_board_info {
1231 	/* the device name and module name are coupled, like platform_bus;
1232 	 * "modalias" is normally the driver name.
1233 	 *
1234 	 * platform_data goes to spi_device.dev.platform_data,
1235 	 * controller_data goes to spi_device.controller_data,
1236 	 * device properties are copied and attached to spi_device,
1237 	 * irq is copied too
1238 	 */
1239 	char		modalias[SPI_NAME_SIZE];
1240 	const void	*platform_data;
1241 	const struct property_entry *properties;
1242 	void		*controller_data;
1243 	int		irq;
1244 
1245 	/* slower signaling on noisy or low voltage boards */
1246 	u32		max_speed_hz;
1247 
1248 
1249 	/* bus_num is board specific and matches the bus_num of some
1250 	 * spi_controller that will probably be registered later.
1251 	 *
1252 	 * chip_select reflects how this chip is wired to that master;
1253 	 * it's less than num_chipselect.
1254 	 */
1255 	u16		bus_num;
1256 	u16		chip_select;
1257 
1258 	/* mode becomes spi_device.mode, and is essential for chips
1259 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1260 	 */
1261 	u16		mode;
1262 
1263 	/* ... may need additional spi_device chip config data here.
1264 	 * avoid stuff protocol drivers can set; but include stuff
1265 	 * needed to behave without being bound to a driver:
1266 	 *  - quirks like clock rate mattering when not selected
1267 	 */
1268 };
1269 
1270 #ifdef	CONFIG_SPI
1271 extern int
1272 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1273 #else
1274 /* board init code may ignore whether SPI is configured or not */
1275 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1276 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1277 	{ return 0; }
1278 #endif
1279 
1280 
1281 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1282  * use spi_new_device() to describe each device.  You can also call
1283  * spi_unregister_device() to start making that device vanish, but
1284  * normally that would be handled by spi_unregister_controller().
1285  *
1286  * You can also use spi_alloc_device() and spi_add_device() to use a two
1287  * stage registration sequence for each spi_device.  This gives the caller
1288  * some more control over the spi_device structure before it is registered,
1289  * but requires that caller to initialize fields that would otherwise
1290  * be defined using the board info.
1291  */
1292 extern struct spi_device *
1293 spi_alloc_device(struct spi_controller *ctlr);
1294 
1295 extern int
1296 spi_add_device(struct spi_device *spi);
1297 
1298 extern struct spi_device *
1299 spi_new_device(struct spi_controller *, struct spi_board_info *);
1300 
1301 extern void spi_unregister_device(struct spi_device *spi);
1302 
1303 extern const struct spi_device_id *
1304 spi_get_device_id(const struct spi_device *sdev);
1305 
1306 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1307 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1308 {
1309 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1310 }
1311 
1312 
1313 /* Compatibility layer */
1314 #define spi_master			spi_controller
1315 
1316 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1317 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1318 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1319 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1320 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1321 
1322 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1323 #define spi_master_set_devdata(_ctlr, _data)	\
1324 	spi_controller_set_devdata(_ctlr, _data)
1325 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1326 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1327 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1328 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1329 
1330 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1331 #define devm_spi_register_master(_dev, _ctlr) \
1332 	devm_spi_register_controller(_dev, _ctlr)
1333 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1334 
1335 #endif /* __LINUX_SPI_H */
1336