1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * Header file for the BFQ I/O scheduler: data structures and
4  * prototypes of interface functions among BFQ components.
5  */
6 #ifndef _BFQ_H
7 #define _BFQ_H
8 
9 #include <linux/blktrace_api.h>
10 #include <linux/hrtimer.h>
11 #include <linux/blk-cgroup.h>
12 
13 #define BFQ_IOPRIO_CLASSES	3
14 #define BFQ_CL_IDLE_TIMEOUT	(HZ/5)
15 
16 #define BFQ_MIN_WEIGHT			1
17 #define BFQ_MAX_WEIGHT			1000
18 #define BFQ_WEIGHT_CONVERSION_COEFF	10
19 
20 #define BFQ_DEFAULT_QUEUE_IOPRIO	4
21 
22 #define BFQ_WEIGHT_LEGACY_DFL	100
23 #define BFQ_DEFAULT_GRP_IOPRIO	0
24 #define BFQ_DEFAULT_GRP_CLASS	IOPRIO_CLASS_BE
25 
26 #define MAX_PID_STR_LENGTH 12
27 
28 /*
29  * Soft real-time applications are extremely more latency sensitive
30  * than interactive ones. Over-raise the weight of the former to
31  * privilege them against the latter.
32  */
33 #define BFQ_SOFTRT_WEIGHT_FACTOR	100
34 
35 struct bfq_entity;
36 
37 /**
38  * struct bfq_service_tree - per ioprio_class service tree.
39  *
40  * Each service tree represents a B-WF2Q+ scheduler on its own.  Each
41  * ioprio_class has its own independent scheduler, and so its own
42  * bfq_service_tree.  All the fields are protected by the queue lock
43  * of the containing bfqd.
44  */
45 struct bfq_service_tree {
46 	/* tree for active entities (i.e., those backlogged) */
47 	struct rb_root active;
48 	/* tree for idle entities (i.e., not backlogged, with V < F_i)*/
49 	struct rb_root idle;
50 
51 	/* idle entity with minimum F_i */
52 	struct bfq_entity *first_idle;
53 	/* idle entity with maximum F_i */
54 	struct bfq_entity *last_idle;
55 
56 	/* scheduler virtual time */
57 	u64 vtime;
58 	/* scheduler weight sum; active and idle entities contribute to it */
59 	unsigned long wsum;
60 };
61 
62 /**
63  * struct bfq_sched_data - multi-class scheduler.
64  *
65  * bfq_sched_data is the basic scheduler queue.  It supports three
66  * ioprio_classes, and can be used either as a toplevel queue or as an
67  * intermediate queue in a hierarchical setup.
68  *
69  * The supported ioprio_classes are the same as in CFQ, in descending
70  * priority order, IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, IOPRIO_CLASS_IDLE.
71  * Requests from higher priority queues are served before all the
72  * requests from lower priority queues; among requests of the same
73  * queue requests are served according to B-WF2Q+.
74  *
75  * The schedule is implemented by the service trees, plus the field
76  * @next_in_service, which points to the entity on the active trees
77  * that will be served next, if 1) no changes in the schedule occurs
78  * before the current in-service entity is expired, 2) the in-service
79  * queue becomes idle when it expires, and 3) if the entity pointed by
80  * in_service_entity is not a queue, then the in-service child entity
81  * of the entity pointed by in_service_entity becomes idle on
82  * expiration. This peculiar definition allows for the following
83  * optimization, not yet exploited: while a given entity is still in
84  * service, we already know which is the best candidate for next
85  * service among the other active entities in the same parent
86  * entity. We can then quickly compare the timestamps of the
87  * in-service entity with those of such best candidate.
88  *
89  * All fields are protected by the lock of the containing bfqd.
90  */
91 struct bfq_sched_data {
92 	/* entity in service */
93 	struct bfq_entity *in_service_entity;
94 	/* head-of-line entity (see comments above) */
95 	struct bfq_entity *next_in_service;
96 	/* array of service trees, one per ioprio_class */
97 	struct bfq_service_tree service_tree[BFQ_IOPRIO_CLASSES];
98 	/* last time CLASS_IDLE was served */
99 	unsigned long bfq_class_idle_last_service;
100 
101 };
102 
103 /**
104  * struct bfq_weight_counter - counter of the number of all active queues
105  *                             with a given weight.
106  */
107 struct bfq_weight_counter {
108 	unsigned int weight; /* weight of the queues this counter refers to */
109 	unsigned int num_active; /* nr of active queues with this weight */
110 	/*
111 	 * Weights tree member (see bfq_data's @queue_weights_tree)
112 	 */
113 	struct rb_node weights_node;
114 };
115 
116 /**
117  * struct bfq_entity - schedulable entity.
118  *
119  * A bfq_entity is used to represent either a bfq_queue (leaf node in the
120  * cgroup hierarchy) or a bfq_group into the upper level scheduler.  Each
121  * entity belongs to the sched_data of the parent group in the cgroup
122  * hierarchy.  Non-leaf entities have also their own sched_data, stored
123  * in @my_sched_data.
124  *
125  * Each entity stores independently its priority values; this would
126  * allow different weights on different devices, but this
127  * functionality is not exported to userspace by now.  Priorities and
128  * weights are updated lazily, first storing the new values into the
129  * new_* fields, then setting the @prio_changed flag.  As soon as
130  * there is a transition in the entity state that allows the priority
131  * update to take place the effective and the requested priority
132  * values are synchronized.
133  *
134  * Unless cgroups are used, the weight value is calculated from the
135  * ioprio to export the same interface as CFQ.  When dealing with
136  * "well-behaved" queues (i.e., queues that do not spend too much
137  * time to consume their budget and have true sequential behavior, and
138  * when there are no external factors breaking anticipation) the
139  * relative weights at each level of the cgroups hierarchy should be
140  * guaranteed.  All the fields are protected by the queue lock of the
141  * containing bfqd.
142  */
143 struct bfq_entity {
144 	/* service_tree member */
145 	struct rb_node rb_node;
146 
147 	/*
148 	 * Flag, true if the entity is on a tree (either the active or
149 	 * the idle one of its service_tree) or is in service.
150 	 */
151 	bool on_st;
152 
153 	/* B-WF2Q+ start and finish timestamps [sectors/weight] */
154 	u64 start, finish;
155 
156 	/* tree the entity is enqueued into; %NULL if not on a tree */
157 	struct rb_root *tree;
158 
159 	/*
160 	 * minimum start time of the (active) subtree rooted at this
161 	 * entity; used for O(log N) lookups into active trees
162 	 */
163 	u64 min_start;
164 
165 	/* amount of service received during the last service slot */
166 	int service;
167 
168 	/* budget, used also to calculate F_i: F_i = S_i + @budget / @weight */
169 	int budget;
170 
171 	/* device weight, if non-zero, it overrides the default weight of
172 	 * bfq_group_data */
173 	int dev_weight;
174 	/* weight of the queue */
175 	int weight;
176 	/* next weight if a change is in progress */
177 	int new_weight;
178 
179 	/* original weight, used to implement weight boosting */
180 	int orig_weight;
181 
182 	/* parent entity, for hierarchical scheduling */
183 	struct bfq_entity *parent;
184 
185 	/*
186 	 * For non-leaf nodes in the hierarchy, the associated
187 	 * scheduler queue, %NULL on leaf nodes.
188 	 */
189 	struct bfq_sched_data *my_sched_data;
190 	/* the scheduler queue this entity belongs to */
191 	struct bfq_sched_data *sched_data;
192 
193 	/* flag, set to request a weight, ioprio or ioprio_class change  */
194 	int prio_changed;
195 
196 	/* flag, set if the entity is counted in groups_with_pending_reqs */
197 	bool in_groups_with_pending_reqs;
198 };
199 
200 struct bfq_group;
201 
202 /**
203  * struct bfq_ttime - per process thinktime stats.
204  */
205 struct bfq_ttime {
206 	/* completion time of the last request */
207 	u64 last_end_request;
208 
209 	/* total process thinktime */
210 	u64 ttime_total;
211 	/* number of thinktime samples */
212 	unsigned long ttime_samples;
213 	/* average process thinktime */
214 	u64 ttime_mean;
215 };
216 
217 /**
218  * struct bfq_queue - leaf schedulable entity.
219  *
220  * A bfq_queue is a leaf request queue; it can be associated with an
221  * io_context or more, if it  is  async or shared  between  cooperating
222  * processes. @cgroup holds a reference to the cgroup, to be sure that it
223  * does not disappear while a bfqq still references it (mostly to avoid
224  * races between request issuing and task migration followed by cgroup
225  * destruction).
226  * All the fields are protected by the queue lock of the containing bfqd.
227  */
228 struct bfq_queue {
229 	/* reference counter */
230 	int ref;
231 	/* parent bfq_data */
232 	struct bfq_data *bfqd;
233 
234 	/* current ioprio and ioprio class */
235 	unsigned short ioprio, ioprio_class;
236 	/* next ioprio and ioprio class if a change is in progress */
237 	unsigned short new_ioprio, new_ioprio_class;
238 
239 	/* last total-service-time sample, see bfq_update_inject_limit() */
240 	u64 last_serv_time_ns;
241 	/* limit for request injection */
242 	unsigned int inject_limit;
243 	/* last time the inject limit has been decreased, in jiffies */
244 	unsigned long decrease_time_jif;
245 
246 	/*
247 	 * Shared bfq_queue if queue is cooperating with one or more
248 	 * other queues.
249 	 */
250 	struct bfq_queue *new_bfqq;
251 	/* request-position tree member (see bfq_group's @rq_pos_tree) */
252 	struct rb_node pos_node;
253 	/* request-position tree root (see bfq_group's @rq_pos_tree) */
254 	struct rb_root *pos_root;
255 
256 	/* sorted list of pending requests */
257 	struct rb_root sort_list;
258 	/* if fifo isn't expired, next request to serve */
259 	struct request *next_rq;
260 	/* number of sync and async requests queued */
261 	int queued[2];
262 	/* number of requests currently allocated */
263 	int allocated;
264 	/* number of pending metadata requests */
265 	int meta_pending;
266 	/* fifo list of requests in sort_list */
267 	struct list_head fifo;
268 
269 	/* entity representing this queue in the scheduler */
270 	struct bfq_entity entity;
271 
272 	/* pointer to the weight counter associated with this entity */
273 	struct bfq_weight_counter *weight_counter;
274 
275 	/* maximum budget allowed from the feedback mechanism */
276 	int max_budget;
277 	/* budget expiration (in jiffies) */
278 	unsigned long budget_timeout;
279 
280 	/* number of requests on the dispatch list or inside driver */
281 	int dispatched;
282 
283 	/* status flags */
284 	unsigned long flags;
285 
286 	/* node for active/idle bfqq list inside parent bfqd */
287 	struct list_head bfqq_list;
288 
289 	/* associated @bfq_ttime struct */
290 	struct bfq_ttime ttime;
291 
292 	/* bit vector: a 1 for each seeky requests in history */
293 	u32 seek_history;
294 
295 	/* node for the device's burst list */
296 	struct hlist_node burst_list_node;
297 
298 	/* position of the last request enqueued */
299 	sector_t last_request_pos;
300 
301 	/* Number of consecutive pairs of request completion and
302 	 * arrival, such that the queue becomes idle after the
303 	 * completion, but the next request arrives within an idle
304 	 * time slice; used only if the queue's IO_bound flag has been
305 	 * cleared.
306 	 */
307 	unsigned int requests_within_timer;
308 
309 	/* pid of the process owning the queue, used for logging purposes */
310 	pid_t pid;
311 
312 	/*
313 	 * Pointer to the bfq_io_cq owning the bfq_queue, set to %NULL
314 	 * if the queue is shared.
315 	 */
316 	struct bfq_io_cq *bic;
317 
318 	/* current maximum weight-raising time for this queue */
319 	unsigned long wr_cur_max_time;
320 	/*
321 	 * Minimum time instant such that, only if a new request is
322 	 * enqueued after this time instant in an idle @bfq_queue with
323 	 * no outstanding requests, then the task associated with the
324 	 * queue it is deemed as soft real-time (see the comments on
325 	 * the function bfq_bfqq_softrt_next_start())
326 	 */
327 	unsigned long soft_rt_next_start;
328 	/*
329 	 * Start time of the current weight-raising period if
330 	 * the @bfq-queue is being weight-raised, otherwise
331 	 * finish time of the last weight-raising period.
332 	 */
333 	unsigned long last_wr_start_finish;
334 	/* factor by which the weight of this queue is multiplied */
335 	unsigned int wr_coeff;
336 	/*
337 	 * Time of the last transition of the @bfq_queue from idle to
338 	 * backlogged.
339 	 */
340 	unsigned long last_idle_bklogged;
341 	/*
342 	 * Cumulative service received from the @bfq_queue since the
343 	 * last transition from idle to backlogged.
344 	 */
345 	unsigned long service_from_backlogged;
346 	/*
347 	 * Cumulative service received from the @bfq_queue since its
348 	 * last transition to weight-raised state.
349 	 */
350 	unsigned long service_from_wr;
351 
352 	/*
353 	 * Value of wr start time when switching to soft rt
354 	 */
355 	unsigned long wr_start_at_switch_to_srt;
356 
357 	unsigned long split_time; /* time of last split */
358 
359 	unsigned long first_IO_time; /* time of first I/O for this queue */
360 
361 	/* max service rate measured so far */
362 	u32 max_service_rate;
363 
364 	/*
365 	 * Pointer to the waker queue for this queue, i.e., to the
366 	 * queue Q such that this queue happens to get new I/O right
367 	 * after some I/O request of Q is completed. For details, see
368 	 * the comments on the choice of the queue for injection in
369 	 * bfq_select_queue().
370 	 */
371 	struct bfq_queue *waker_bfqq;
372 	/* node for woken_list, see below */
373 	struct hlist_node woken_list_node;
374 	/*
375 	 * Head of the list of the woken queues for this queue, i.e.,
376 	 * of the list of the queues for which this queue is a waker
377 	 * queue. This list is used to reset the waker_bfqq pointer in
378 	 * the woken queues when this queue exits.
379 	 */
380 	struct hlist_head woken_list;
381 };
382 
383 /**
384  * struct bfq_io_cq - per (request_queue, io_context) structure.
385  */
386 struct bfq_io_cq {
387 	/* associated io_cq structure */
388 	struct io_cq icq; /* must be the first member */
389 	/* array of two process queues, the sync and the async */
390 	struct bfq_queue *bfqq[2];
391 	/* per (request_queue, blkcg) ioprio */
392 	int ioprio;
393 #ifdef CONFIG_BFQ_GROUP_IOSCHED
394 	uint64_t blkcg_serial_nr; /* the current blkcg serial */
395 #endif
396 	/*
397 	 * Snapshot of the has_short_time flag before merging; taken
398 	 * to remember its value while the queue is merged, so as to
399 	 * be able to restore it in case of split.
400 	 */
401 	bool saved_has_short_ttime;
402 	/*
403 	 * Same purpose as the previous two fields for the I/O bound
404 	 * classification of a queue.
405 	 */
406 	bool saved_IO_bound;
407 
408 	/*
409 	 * Same purpose as the previous fields for the value of the
410 	 * field keeping the queue's belonging to a large burst
411 	 */
412 	bool saved_in_large_burst;
413 	/*
414 	 * True if the queue belonged to a burst list before its merge
415 	 * with another cooperating queue.
416 	 */
417 	bool was_in_burst_list;
418 
419 	/*
420 	 * Save the weight when a merge occurs, to be able
421 	 * to restore it in case of split. If the weight is not
422 	 * correctly resumed when the queue is recycled,
423 	 * then the weight of the recycled queue could differ
424 	 * from the weight of the original queue.
425 	 */
426 	unsigned int saved_weight;
427 
428 	/*
429 	 * Similar to previous fields: save wr information.
430 	 */
431 	unsigned long saved_wr_coeff;
432 	unsigned long saved_last_wr_start_finish;
433 	unsigned long saved_wr_start_at_switch_to_srt;
434 	unsigned int saved_wr_cur_max_time;
435 	struct bfq_ttime saved_ttime;
436 };
437 
438 /**
439  * struct bfq_data - per-device data structure.
440  *
441  * All the fields are protected by @lock.
442  */
443 struct bfq_data {
444 	/* device request queue */
445 	struct request_queue *queue;
446 	/* dispatch queue */
447 	struct list_head dispatch;
448 
449 	/* root bfq_group for the device */
450 	struct bfq_group *root_group;
451 
452 	/*
453 	 * rbtree of weight counters of @bfq_queues, sorted by
454 	 * weight. Used to keep track of whether all @bfq_queues have
455 	 * the same weight. The tree contains one counter for each
456 	 * distinct weight associated to some active and not
457 	 * weight-raised @bfq_queue (see the comments to the functions
458 	 * bfq_weights_tree_[add|remove] for further details).
459 	 */
460 	struct rb_root_cached queue_weights_tree;
461 
462 	/*
463 	 * Number of groups with at least one descendant process that
464 	 * has at least one request waiting for completion. Note that
465 	 * this accounts for also requests already dispatched, but not
466 	 * yet completed. Therefore this number of groups may differ
467 	 * (be larger) than the number of active groups, as a group is
468 	 * considered active only if its corresponding entity has
469 	 * descendant queues with at least one request queued. This
470 	 * number is used to decide whether a scenario is symmetric.
471 	 * For a detailed explanation see comments on the computation
472 	 * of the variable asymmetric_scenario in the function
473 	 * bfq_better_to_idle().
474 	 *
475 	 * However, it is hard to compute this number exactly, for
476 	 * groups with multiple descendant processes. Consider a group
477 	 * that is inactive, i.e., that has no descendant process with
478 	 * pending I/O inside BFQ queues. Then suppose that
479 	 * num_groups_with_pending_reqs is still accounting for this
480 	 * group, because the group has descendant processes with some
481 	 * I/O request still in flight. num_groups_with_pending_reqs
482 	 * should be decremented when the in-flight request of the
483 	 * last descendant process is finally completed (assuming that
484 	 * nothing else has changed for the group in the meantime, in
485 	 * terms of composition of the group and active/inactive state of child
486 	 * groups and processes). To accomplish this, an additional
487 	 * pending-request counter must be added to entities, and must
488 	 * be updated correctly. To avoid this additional field and operations,
489 	 * we resort to the following tradeoff between simplicity and
490 	 * accuracy: for an inactive group that is still counted in
491 	 * num_groups_with_pending_reqs, we decrement
492 	 * num_groups_with_pending_reqs when the first descendant
493 	 * process of the group remains with no request waiting for
494 	 * completion.
495 	 *
496 	 * Even this simpler decrement strategy requires a little
497 	 * carefulness: to avoid multiple decrements, we flag a group,
498 	 * more precisely an entity representing a group, as still
499 	 * counted in num_groups_with_pending_reqs when it becomes
500 	 * inactive. Then, when the first descendant queue of the
501 	 * entity remains with no request waiting for completion,
502 	 * num_groups_with_pending_reqs is decremented, and this flag
503 	 * is reset. After this flag is reset for the entity,
504 	 * num_groups_with_pending_reqs won't be decremented any
505 	 * longer in case a new descendant queue of the entity remains
506 	 * with no request waiting for completion.
507 	 */
508 	unsigned int num_groups_with_pending_reqs;
509 
510 	/*
511 	 * Per-class (RT, BE, IDLE) number of bfq_queues containing
512 	 * requests (including the queue in service, even if it is
513 	 * idling).
514 	 */
515 	unsigned int busy_queues[3];
516 	/* number of weight-raised busy @bfq_queues */
517 	int wr_busy_queues;
518 	/* number of queued requests */
519 	int queued;
520 	/* number of requests dispatched and waiting for completion */
521 	int rq_in_driver;
522 
523 	/* true if the device is non rotational and performs queueing */
524 	bool nonrot_with_queueing;
525 
526 	/*
527 	 * Maximum number of requests in driver in the last
528 	 * @hw_tag_samples completed requests.
529 	 */
530 	int max_rq_in_driver;
531 	/* number of samples used to calculate hw_tag */
532 	int hw_tag_samples;
533 	/* flag set to one if the driver is showing a queueing behavior */
534 	int hw_tag;
535 
536 	/* number of budgets assigned */
537 	int budgets_assigned;
538 
539 	/*
540 	 * Timer set when idling (waiting) for the next request from
541 	 * the queue in service.
542 	 */
543 	struct hrtimer idle_slice_timer;
544 
545 	/* bfq_queue in service */
546 	struct bfq_queue *in_service_queue;
547 
548 	/* on-disk position of the last served request */
549 	sector_t last_position;
550 
551 	/* position of the last served request for the in-service queue */
552 	sector_t in_serv_last_pos;
553 
554 	/* time of last request completion (ns) */
555 	u64 last_completion;
556 
557 	/* bfqq owning the last completed rq */
558 	struct bfq_queue *last_completed_rq_bfqq;
559 
560 	/* time of last transition from empty to non-empty (ns) */
561 	u64 last_empty_occupied_ns;
562 
563 	/*
564 	 * Flag set to activate the sampling of the total service time
565 	 * of a just-arrived first I/O request (see
566 	 * bfq_update_inject_limit()). This will cause the setting of
567 	 * waited_rq when the request is finally dispatched.
568 	 */
569 	bool wait_dispatch;
570 	/*
571 	 *  If set, then bfq_update_inject_limit() is invoked when
572 	 *  waited_rq is eventually completed.
573 	 */
574 	struct request *waited_rq;
575 	/*
576 	 * True if some request has been injected during the last service hole.
577 	 */
578 	bool rqs_injected;
579 
580 	/* time of first rq dispatch in current observation interval (ns) */
581 	u64 first_dispatch;
582 	/* time of last rq dispatch in current observation interval (ns) */
583 	u64 last_dispatch;
584 
585 	/* beginning of the last budget */
586 	ktime_t last_budget_start;
587 	/* beginning of the last idle slice */
588 	ktime_t last_idling_start;
589 	unsigned long last_idling_start_jiffies;
590 
591 	/* number of samples in current observation interval */
592 	int peak_rate_samples;
593 	/* num of samples of seq dispatches in current observation interval */
594 	u32 sequential_samples;
595 	/* total num of sectors transferred in current observation interval */
596 	u64 tot_sectors_dispatched;
597 	/* max rq size seen during current observation interval (sectors) */
598 	u32 last_rq_max_size;
599 	/* time elapsed from first dispatch in current observ. interval (us) */
600 	u64 delta_from_first;
601 	/*
602 	 * Current estimate of the device peak rate, measured in
603 	 * [(sectors/usec) / 2^BFQ_RATE_SHIFT]. The left-shift by
604 	 * BFQ_RATE_SHIFT is performed to increase precision in
605 	 * fixed-point calculations.
606 	 */
607 	u32 peak_rate;
608 
609 	/* maximum budget allotted to a bfq_queue before rescheduling */
610 	int bfq_max_budget;
611 
612 	/* list of all the bfq_queues active on the device */
613 	struct list_head active_list;
614 	/* list of all the bfq_queues idle on the device */
615 	struct list_head idle_list;
616 
617 	/*
618 	 * Timeout for async/sync requests; when it fires, requests
619 	 * are served in fifo order.
620 	 */
621 	u64 bfq_fifo_expire[2];
622 	/* weight of backward seeks wrt forward ones */
623 	unsigned int bfq_back_penalty;
624 	/* maximum allowed backward seek */
625 	unsigned int bfq_back_max;
626 	/* maximum idling time */
627 	u32 bfq_slice_idle;
628 
629 	/* user-configured max budget value (0 for auto-tuning) */
630 	int bfq_user_max_budget;
631 	/*
632 	 * Timeout for bfq_queues to consume their budget; used to
633 	 * prevent seeky queues from imposing long latencies to
634 	 * sequential or quasi-sequential ones (this also implies that
635 	 * seeky queues cannot receive guarantees in the service
636 	 * domain; after a timeout they are charged for the time they
637 	 * have been in service, to preserve fairness among them, but
638 	 * without service-domain guarantees).
639 	 */
640 	unsigned int bfq_timeout;
641 
642 	/*
643 	 * Number of consecutive requests that must be issued within
644 	 * the idle time slice to set again idling to a queue which
645 	 * was marked as non-I/O-bound (see the definition of the
646 	 * IO_bound flag for further details).
647 	 */
648 	unsigned int bfq_requests_within_timer;
649 
650 	/*
651 	 * Force device idling whenever needed to provide accurate
652 	 * service guarantees, without caring about throughput
653 	 * issues. CAVEAT: this may even increase latencies, in case
654 	 * of useless idling for processes that did stop doing I/O.
655 	 */
656 	bool strict_guarantees;
657 
658 	/*
659 	 * Last time at which a queue entered the current burst of
660 	 * queues being activated shortly after each other; for more
661 	 * details about this and the following parameters related to
662 	 * a burst of activations, see the comments on the function
663 	 * bfq_handle_burst.
664 	 */
665 	unsigned long last_ins_in_burst;
666 	/*
667 	 * Reference time interval used to decide whether a queue has
668 	 * been activated shortly after @last_ins_in_burst.
669 	 */
670 	unsigned long bfq_burst_interval;
671 	/* number of queues in the current burst of queue activations */
672 	int burst_size;
673 
674 	/* common parent entity for the queues in the burst */
675 	struct bfq_entity *burst_parent_entity;
676 	/* Maximum burst size above which the current queue-activation
677 	 * burst is deemed as 'large'.
678 	 */
679 	unsigned long bfq_large_burst_thresh;
680 	/* true if a large queue-activation burst is in progress */
681 	bool large_burst;
682 	/*
683 	 * Head of the burst list (as for the above fields, more
684 	 * details in the comments on the function bfq_handle_burst).
685 	 */
686 	struct hlist_head burst_list;
687 
688 	/* if set to true, low-latency heuristics are enabled */
689 	bool low_latency;
690 	/*
691 	 * Maximum factor by which the weight of a weight-raised queue
692 	 * is multiplied.
693 	 */
694 	unsigned int bfq_wr_coeff;
695 	/* maximum duration of a weight-raising period (jiffies) */
696 	unsigned int bfq_wr_max_time;
697 
698 	/* Maximum weight-raising duration for soft real-time processes */
699 	unsigned int bfq_wr_rt_max_time;
700 	/*
701 	 * Minimum idle period after which weight-raising may be
702 	 * reactivated for a queue (in jiffies).
703 	 */
704 	unsigned int bfq_wr_min_idle_time;
705 	/*
706 	 * Minimum period between request arrivals after which
707 	 * weight-raising may be reactivated for an already busy async
708 	 * queue (in jiffies).
709 	 */
710 	unsigned long bfq_wr_min_inter_arr_async;
711 
712 	/* Max service-rate for a soft real-time queue, in sectors/sec */
713 	unsigned int bfq_wr_max_softrt_rate;
714 	/*
715 	 * Cached value of the product ref_rate*ref_wr_duration, used
716 	 * for computing the maximum duration of weight raising
717 	 * automatically.
718 	 */
719 	u64 rate_dur_prod;
720 
721 	/* fallback dummy bfqq for extreme OOM conditions */
722 	struct bfq_queue oom_bfqq;
723 
724 	spinlock_t lock;
725 
726 	/*
727 	 * bic associated with the task issuing current bio for
728 	 * merging. This and the next field are used as a support to
729 	 * be able to perform the bic lookup, needed by bio-merge
730 	 * functions, before the scheduler lock is taken, and thus
731 	 * avoid taking the request-queue lock while the scheduler
732 	 * lock is being held.
733 	 */
734 	struct bfq_io_cq *bio_bic;
735 	/* bfqq associated with the task issuing current bio for merging */
736 	struct bfq_queue *bio_bfqq;
737 
738 	/*
739 	 * Depth limits used in bfq_limit_depth (see comments on the
740 	 * function)
741 	 */
742 	unsigned int word_depths[2][2];
743 };
744 
745 enum bfqq_state_flags {
746 	BFQQF_just_created = 0,	/* queue just allocated */
747 	BFQQF_busy,		/* has requests or is in service */
748 	BFQQF_wait_request,	/* waiting for a request */
749 	BFQQF_non_blocking_wait_rq, /*
750 				     * waiting for a request
751 				     * without idling the device
752 				     */
753 	BFQQF_fifo_expire,	/* FIFO checked in this slice */
754 	BFQQF_has_short_ttime,	/* queue has a short think time */
755 	BFQQF_sync,		/* synchronous queue */
756 	BFQQF_IO_bound,		/*
757 				 * bfqq has timed-out at least once
758 				 * having consumed at most 2/10 of
759 				 * its budget
760 				 */
761 	BFQQF_in_large_burst,	/*
762 				 * bfqq activated in a large burst,
763 				 * see comments to bfq_handle_burst.
764 				 */
765 	BFQQF_softrt_update,	/*
766 				 * may need softrt-next-start
767 				 * update
768 				 */
769 	BFQQF_coop,		/* bfqq is shared */
770 	BFQQF_split_coop,	/* shared bfqq will be split */
771 	BFQQF_has_waker		/* bfqq has a waker queue */
772 };
773 
774 #define BFQ_BFQQ_FNS(name)						\
775 void bfq_mark_bfqq_##name(struct bfq_queue *bfqq);			\
776 void bfq_clear_bfqq_##name(struct bfq_queue *bfqq);			\
777 int bfq_bfqq_##name(const struct bfq_queue *bfqq);
778 
779 BFQ_BFQQ_FNS(just_created);
780 BFQ_BFQQ_FNS(busy);
781 BFQ_BFQQ_FNS(wait_request);
782 BFQ_BFQQ_FNS(non_blocking_wait_rq);
783 BFQ_BFQQ_FNS(fifo_expire);
784 BFQ_BFQQ_FNS(has_short_ttime);
785 BFQ_BFQQ_FNS(sync);
786 BFQ_BFQQ_FNS(IO_bound);
787 BFQ_BFQQ_FNS(in_large_burst);
788 BFQ_BFQQ_FNS(coop);
789 BFQ_BFQQ_FNS(split_coop);
790 BFQ_BFQQ_FNS(softrt_update);
791 BFQ_BFQQ_FNS(has_waker);
792 #undef BFQ_BFQQ_FNS
793 
794 /* Expiration reasons. */
795 enum bfqq_expiration {
796 	BFQQE_TOO_IDLE = 0,		/*
797 					 * queue has been idling for
798 					 * too long
799 					 */
800 	BFQQE_BUDGET_TIMEOUT,	/* budget took too long to be used */
801 	BFQQE_BUDGET_EXHAUSTED,	/* budget consumed */
802 	BFQQE_NO_MORE_REQUESTS,	/* the queue has no more requests */
803 	BFQQE_PREEMPTED		/* preemption in progress */
804 };
805 
806 struct bfq_stat {
807 	struct percpu_counter		cpu_cnt;
808 	atomic64_t			aux_cnt;
809 };
810 
811 struct bfqg_stats {
812 #ifdef CONFIG_BFQ_CGROUP_DEBUG
813 	/* number of ios merged */
814 	struct blkg_rwstat		merged;
815 	/* total time spent on device in ns, may not be accurate w/ queueing */
816 	struct blkg_rwstat		service_time;
817 	/* total time spent waiting in scheduler queue in ns */
818 	struct blkg_rwstat		wait_time;
819 	/* number of IOs queued up */
820 	struct blkg_rwstat		queued;
821 	/* total disk time and nr sectors dispatched by this group */
822 	struct bfq_stat		time;
823 	/* sum of number of ios queued across all samples */
824 	struct bfq_stat		avg_queue_size_sum;
825 	/* count of samples taken for average */
826 	struct bfq_stat		avg_queue_size_samples;
827 	/* how many times this group has been removed from service tree */
828 	struct bfq_stat		dequeue;
829 	/* total time spent waiting for it to be assigned a timeslice. */
830 	struct bfq_stat		group_wait_time;
831 	/* time spent idling for this blkcg_gq */
832 	struct bfq_stat		idle_time;
833 	/* total time with empty current active q with other requests queued */
834 	struct bfq_stat		empty_time;
835 	/* fields after this shouldn't be cleared on stat reset */
836 	u64				start_group_wait_time;
837 	u64				start_idle_time;
838 	u64				start_empty_time;
839 	uint16_t			flags;
840 #endif /* CONFIG_BFQ_CGROUP_DEBUG */
841 };
842 
843 #ifdef CONFIG_BFQ_GROUP_IOSCHED
844 
845 /*
846  * struct bfq_group_data - per-blkcg storage for the blkio subsystem.
847  *
848  * @ps: @blkcg_policy_storage that this structure inherits
849  * @weight: weight of the bfq_group
850  */
851 struct bfq_group_data {
852 	/* must be the first member */
853 	struct blkcg_policy_data pd;
854 
855 	unsigned int weight;
856 };
857 
858 /**
859  * struct bfq_group - per (device, cgroup) data structure.
860  * @entity: schedulable entity to insert into the parent group sched_data.
861  * @sched_data: own sched_data, to contain child entities (they may be
862  *              both bfq_queues and bfq_groups).
863  * @bfqd: the bfq_data for the device this group acts upon.
864  * @async_bfqq: array of async queues for all the tasks belonging to
865  *              the group, one queue per ioprio value per ioprio_class,
866  *              except for the idle class that has only one queue.
867  * @async_idle_bfqq: async queue for the idle class (ioprio is ignored).
868  * @my_entity: pointer to @entity, %NULL for the toplevel group; used
869  *             to avoid too many special cases during group creation/
870  *             migration.
871  * @stats: stats for this bfqg.
872  * @active_entities: number of active entities belonging to the group;
873  *                   unused for the root group. Used to know whether there
874  *                   are groups with more than one active @bfq_entity
875  *                   (see the comments to the function
876  *                   bfq_bfqq_may_idle()).
877  * @rq_pos_tree: rbtree sorted by next_request position, used when
878  *               determining if two or more queues have interleaving
879  *               requests (see bfq_find_close_cooperator()).
880  *
881  * Each (device, cgroup) pair has its own bfq_group, i.e., for each cgroup
882  * there is a set of bfq_groups, each one collecting the lower-level
883  * entities belonging to the group that are acting on the same device.
884  *
885  * Locking works as follows:
886  *    o @bfqd is protected by the queue lock, RCU is used to access it
887  *      from the readers.
888  *    o All the other fields are protected by the @bfqd queue lock.
889  */
890 struct bfq_group {
891 	/* must be the first member */
892 	struct blkg_policy_data pd;
893 
894 	/* cached path for this blkg (see comments in bfq_bic_update_cgroup) */
895 	char blkg_path[128];
896 
897 	/* reference counter (see comments in bfq_bic_update_cgroup) */
898 	int ref;
899 
900 	struct bfq_entity entity;
901 	struct bfq_sched_data sched_data;
902 
903 	void *bfqd;
904 
905 	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
906 	struct bfq_queue *async_idle_bfqq;
907 
908 	struct bfq_entity *my_entity;
909 
910 	int active_entities;
911 
912 	struct rb_root rq_pos_tree;
913 
914 	struct bfqg_stats stats;
915 };
916 
917 #else
918 struct bfq_group {
919 	struct bfq_sched_data sched_data;
920 
921 	struct bfq_queue *async_bfqq[2][IOPRIO_BE_NR];
922 	struct bfq_queue *async_idle_bfqq;
923 
924 	struct rb_root rq_pos_tree;
925 };
926 #endif
927 
928 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
929 
930 /* --------------- main algorithm interface ----------------- */
931 
932 #define BFQ_SERVICE_TREE_INIT	((struct bfq_service_tree)		\
933 				{ RB_ROOT, RB_ROOT, NULL, NULL, 0, 0 })
934 
935 extern const int bfq_timeout;
936 
937 struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync);
938 void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync);
939 struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic);
940 void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq);
941 void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
942 			  struct rb_root_cached *root);
943 void __bfq_weights_tree_remove(struct bfq_data *bfqd,
944 			       struct bfq_queue *bfqq,
945 			       struct rb_root_cached *root);
946 void bfq_weights_tree_remove(struct bfq_data *bfqd,
947 			     struct bfq_queue *bfqq);
948 void bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
949 		     bool compensate, enum bfqq_expiration reason);
950 void bfq_put_queue(struct bfq_queue *bfqq);
951 void bfq_end_wr_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
952 void bfq_schedule_dispatch(struct bfq_data *bfqd);
953 void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg);
954 
955 /* ------------ end of main algorithm interface -------------- */
956 
957 /* ---------------- cgroups-support interface ---------------- */
958 
959 void bfqg_stats_update_io_add(struct bfq_group *bfqg, struct bfq_queue *bfqq,
960 			      unsigned int op);
961 void bfqg_stats_update_io_remove(struct bfq_group *bfqg, unsigned int op);
962 void bfqg_stats_update_io_merged(struct bfq_group *bfqg, unsigned int op);
963 void bfqg_stats_update_completion(struct bfq_group *bfqg, u64 start_time_ns,
964 				  u64 io_start_time_ns, unsigned int op);
965 void bfqg_stats_update_dequeue(struct bfq_group *bfqg);
966 void bfqg_stats_set_start_empty_time(struct bfq_group *bfqg);
967 void bfqg_stats_update_idle_time(struct bfq_group *bfqg);
968 void bfqg_stats_set_start_idle_time(struct bfq_group *bfqg);
969 void bfqg_stats_update_avg_queue_size(struct bfq_group *bfqg);
970 void bfq_bfqq_move(struct bfq_data *bfqd, struct bfq_queue *bfqq,
971 		   struct bfq_group *bfqg);
972 
973 void bfq_init_entity(struct bfq_entity *entity, struct bfq_group *bfqg);
974 void bfq_bic_update_cgroup(struct bfq_io_cq *bic, struct bio *bio);
975 void bfq_end_wr_async(struct bfq_data *bfqd);
976 struct bfq_group *bfq_find_set_group(struct bfq_data *bfqd,
977 				     struct blkcg *blkcg);
978 struct blkcg_gq *bfqg_to_blkg(struct bfq_group *bfqg);
979 struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
980 struct bfq_group *bfq_create_group_hierarchy(struct bfq_data *bfqd, int node);
981 void bfqg_and_blkg_put(struct bfq_group *bfqg);
982 
983 #ifdef CONFIG_BFQ_GROUP_IOSCHED
984 extern struct cftype bfq_blkcg_legacy_files[];
985 extern struct cftype bfq_blkg_files[];
986 extern struct blkcg_policy blkcg_policy_bfq;
987 #endif
988 
989 /* ------------- end of cgroups-support interface ------------- */
990 
991 /* - interface of the internal hierarchical B-WF2Q+ scheduler - */
992 
993 #ifdef CONFIG_BFQ_GROUP_IOSCHED
994 /* both next loops stop at one of the child entities of the root group */
995 #define for_each_entity(entity)	\
996 	for (; entity ; entity = entity->parent)
997 
998 /*
999  * For each iteration, compute parent in advance, so as to be safe if
1000  * entity is deallocated during the iteration. Such a deallocation may
1001  * happen as a consequence of a bfq_put_queue that frees the bfq_queue
1002  * containing entity.
1003  */
1004 #define for_each_entity_safe(entity, parent) \
1005 	for (; entity && ({ parent = entity->parent; 1; }); entity = parent)
1006 
1007 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1008 /*
1009  * Next two macros are fake loops when cgroups support is not
1010  * enabled. I fact, in such a case, there is only one level to go up
1011  * (to reach the root group).
1012  */
1013 #define for_each_entity(entity)	\
1014 	for (; entity ; entity = NULL)
1015 
1016 #define for_each_entity_safe(entity, parent) \
1017 	for (parent = NULL; entity ; entity = parent)
1018 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1019 
1020 struct bfq_group *bfq_bfqq_to_bfqg(struct bfq_queue *bfqq);
1021 struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity);
1022 unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd);
1023 struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity);
1024 struct bfq_entity *bfq_entity_of(struct rb_node *node);
1025 unsigned short bfq_ioprio_to_weight(int ioprio);
1026 void bfq_put_idle_entity(struct bfq_service_tree *st,
1027 			 struct bfq_entity *entity);
1028 struct bfq_service_tree *
1029 __bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
1030 				struct bfq_entity *entity,
1031 				bool update_class_too);
1032 void bfq_bfqq_served(struct bfq_queue *bfqq, int served);
1033 void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1034 			  unsigned long time_ms);
1035 bool __bfq_deactivate_entity(struct bfq_entity *entity,
1036 			     bool ins_into_idle_tree);
1037 bool next_queue_may_preempt(struct bfq_data *bfqd);
1038 struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd);
1039 bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd);
1040 void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1041 			 bool ins_into_idle_tree, bool expiration);
1042 void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1043 void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1044 		      bool expiration);
1045 void bfq_del_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1046 		       bool expiration);
1047 void bfq_add_bfqq_busy(struct bfq_data *bfqd, struct bfq_queue *bfqq);
1048 
1049 /* --------------- end of interface of B-WF2Q+ ---------------- */
1050 
1051 /* Logging facilities. */
bfq_pid_to_str(int pid,char * str,int len)1052 static inline void bfq_pid_to_str(int pid, char *str, int len)
1053 {
1054 	if (pid != -1)
1055 		snprintf(str, len, "%d", pid);
1056 	else
1057 		snprintf(str, len, "SHARED-");
1058 }
1059 
1060 #ifdef CONFIG_BFQ_GROUP_IOSCHED
1061 struct bfq_group *bfqq_group(struct bfq_queue *bfqq);
1062 
1063 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...)	do {			\
1064 	char pid_str[MAX_PID_STR_LENGTH];	\
1065 	bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH);	\
1066 	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1067 			bfqg_to_blkg(bfqq_group(bfqq))->blkcg,		\
1068 			"bfq%s%c " fmt, pid_str,			\
1069 			bfq_bfqq_sync((bfqq)) ? 'S' : 'A', ##args);	\
1070 } while (0)
1071 
1072 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...)	do {			\
1073 	blk_add_cgroup_trace_msg((bfqd)->queue,				\
1074 		bfqg_to_blkg(bfqg)->blkcg, fmt, ##args);		\
1075 } while (0)
1076 
1077 #else /* CONFIG_BFQ_GROUP_IOSCHED */
1078 
1079 #define bfq_log_bfqq(bfqd, bfqq, fmt, args...) do {	\
1080 	char pid_str[MAX_PID_STR_LENGTH];	\
1081 	bfq_pid_to_str((bfqq)->pid, pid_str, MAX_PID_STR_LENGTH);	\
1082 	blk_add_trace_msg((bfqd)->queue, "bfq%s%c " fmt, pid_str,	\
1083 			bfq_bfqq_sync((bfqq)) ? 'S' : 'A',		\
1084 				##args);	\
1085 } while (0)
1086 #define bfq_log_bfqg(bfqd, bfqg, fmt, args...)		do {} while (0)
1087 
1088 #endif /* CONFIG_BFQ_GROUP_IOSCHED */
1089 
1090 #define bfq_log(bfqd, fmt, args...) \
1091 	blk_add_trace_msg((bfqd)->queue, "bfq " fmt, ##args)
1092 
1093 #endif /* _BFQ_H */
1094