1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Watchdog support on powerpc systems.
4 *
5 * Copyright 2017, IBM Corporation.
6 *
7 * This uses code from arch/sparc/kernel/nmi.c and kernel/watchdog.c
8 */
9
10 #define pr_fmt(fmt) "watchdog: " fmt
11
12 #include <linux/kernel.h>
13 #include <linux/param.h>
14 #include <linux/init.h>
15 #include <linux/percpu.h>
16 #include <linux/cpu.h>
17 #include <linux/nmi.h>
18 #include <linux/module.h>
19 #include <linux/export.h>
20 #include <linux/kprobes.h>
21 #include <linux/hardirq.h>
22 #include <linux/reboot.h>
23 #include <linux/slab.h>
24 #include <linux/kdebug.h>
25 #include <linux/sched/debug.h>
26 #include <linux/delay.h>
27 #include <linux/smp.h>
28
29 #include <asm/paca.h>
30
31 /*
32 * The powerpc watchdog ensures that each CPU is able to service timers.
33 * The watchdog sets up a simple timer on each CPU to run once per timer
34 * period, and updates a per-cpu timestamp and a "pending" cpumask. This is
35 * the heartbeat.
36 *
37 * Then there are two systems to check that the heartbeat is still running.
38 * The local soft-NMI, and the SMP checker.
39 *
40 * The soft-NMI checker can detect lockups on the local CPU. When interrupts
41 * are disabled with local_irq_disable(), platforms that use soft-masking
42 * can leave hardware interrupts enabled and handle them with a masked
43 * interrupt handler. The masked handler can send the timer interrupt to the
44 * watchdog's soft_nmi_interrupt(), which appears to Linux as an NMI
45 * interrupt, and can be used to detect CPUs stuck with IRQs disabled.
46 *
47 * The soft-NMI checker will compare the heartbeat timestamp for this CPU
48 * with the current time, and take action if the difference exceeds the
49 * watchdog threshold.
50 *
51 * The limitation of the soft-NMI watchdog is that it does not work when
52 * interrupts are hard disabled or otherwise not being serviced. This is
53 * solved by also having a SMP watchdog where all CPUs check all other
54 * CPUs heartbeat.
55 *
56 * The SMP checker can detect lockups on other CPUs. A gobal "pending"
57 * cpumask is kept, containing all CPUs which enable the watchdog. Each
58 * CPU clears their pending bit in their heartbeat timer. When the bitmask
59 * becomes empty, the last CPU to clear its pending bit updates a global
60 * timestamp and refills the pending bitmask.
61 *
62 * In the heartbeat timer, if any CPU notices that the global timestamp has
63 * not been updated for a period exceeding the watchdog threshold, then it
64 * means the CPU(s) with their bit still set in the pending mask have had
65 * their heartbeat stop, and action is taken.
66 *
67 * Some platforms implement true NMI IPIs, which can be used by the SMP
68 * watchdog to detect an unresponsive CPU and pull it out of its stuck
69 * state with the NMI IPI, to get crash/debug data from it. This way the
70 * SMP watchdog can detect hardware interrupts off lockups.
71 */
72
73 static cpumask_t wd_cpus_enabled __read_mostly;
74
75 static u64 wd_panic_timeout_tb __read_mostly; /* timebase ticks until panic */
76 static u64 wd_smp_panic_timeout_tb __read_mostly; /* panic other CPUs */
77
78 static u64 wd_timer_period_ms __read_mostly; /* interval between heartbeat */
79
80 static DEFINE_PER_CPU(struct timer_list, wd_timer);
81 static DEFINE_PER_CPU(u64, wd_timer_tb);
82
83 /* SMP checker bits */
84 static unsigned long __wd_smp_lock;
85 static cpumask_t wd_smp_cpus_pending;
86 static cpumask_t wd_smp_cpus_stuck;
87 static u64 wd_smp_last_reset_tb;
88
wd_smp_lock(unsigned long * flags)89 static inline void wd_smp_lock(unsigned long *flags)
90 {
91 /*
92 * Avoid locking layers if possible.
93 * This may be called from low level interrupt handlers at some
94 * point in future.
95 */
96 raw_local_irq_save(*flags);
97 hard_irq_disable(); /* Make it soft-NMI safe */
98 while (unlikely(test_and_set_bit_lock(0, &__wd_smp_lock))) {
99 raw_local_irq_restore(*flags);
100 spin_until_cond(!test_bit(0, &__wd_smp_lock));
101 raw_local_irq_save(*flags);
102 hard_irq_disable();
103 }
104 }
105
wd_smp_unlock(unsigned long * flags)106 static inline void wd_smp_unlock(unsigned long *flags)
107 {
108 clear_bit_unlock(0, &__wd_smp_lock);
109 raw_local_irq_restore(*flags);
110 }
111
wd_lockup_ipi(struct pt_regs * regs)112 static void wd_lockup_ipi(struct pt_regs *regs)
113 {
114 int cpu = raw_smp_processor_id();
115 u64 tb = get_tb();
116
117 pr_emerg("CPU %d Hard LOCKUP\n", cpu);
118 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
119 cpu, tb, per_cpu(wd_timer_tb, cpu),
120 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
121 print_modules();
122 print_irqtrace_events(current);
123 if (regs)
124 show_regs(regs);
125 else
126 dump_stack();
127
128 /* Do not panic from here because that can recurse into NMI IPI layer */
129 }
130
set_cpumask_stuck(const struct cpumask * cpumask,u64 tb)131 static void set_cpumask_stuck(const struct cpumask *cpumask, u64 tb)
132 {
133 cpumask_or(&wd_smp_cpus_stuck, &wd_smp_cpus_stuck, cpumask);
134 cpumask_andnot(&wd_smp_cpus_pending, &wd_smp_cpus_pending, cpumask);
135 if (cpumask_empty(&wd_smp_cpus_pending)) {
136 wd_smp_last_reset_tb = tb;
137 cpumask_andnot(&wd_smp_cpus_pending,
138 &wd_cpus_enabled,
139 &wd_smp_cpus_stuck);
140 }
141 }
set_cpu_stuck(int cpu,u64 tb)142 static void set_cpu_stuck(int cpu, u64 tb)
143 {
144 set_cpumask_stuck(cpumask_of(cpu), tb);
145 }
146
watchdog_smp_panic(int cpu,u64 tb)147 static void watchdog_smp_panic(int cpu, u64 tb)
148 {
149 unsigned long flags;
150 int c;
151
152 wd_smp_lock(&flags);
153 /* Double check some things under lock */
154 if ((s64)(tb - wd_smp_last_reset_tb) < (s64)wd_smp_panic_timeout_tb)
155 goto out;
156 if (cpumask_test_cpu(cpu, &wd_smp_cpus_pending))
157 goto out;
158 if (cpumask_weight(&wd_smp_cpus_pending) == 0)
159 goto out;
160
161 pr_emerg("CPU %d detected hard LOCKUP on other CPUs %*pbl\n",
162 cpu, cpumask_pr_args(&wd_smp_cpus_pending));
163 pr_emerg("CPU %d TB:%lld, last SMP heartbeat TB:%lld (%lldms ago)\n",
164 cpu, tb, wd_smp_last_reset_tb,
165 tb_to_ns(tb - wd_smp_last_reset_tb) / 1000000);
166
167 if (!sysctl_hardlockup_all_cpu_backtrace) {
168 /*
169 * Try to trigger the stuck CPUs, unless we are going to
170 * get a backtrace on all of them anyway.
171 */
172 for_each_cpu(c, &wd_smp_cpus_pending) {
173 if (c == cpu)
174 continue;
175 smp_send_nmi_ipi(c, wd_lockup_ipi, 1000000);
176 }
177 }
178
179 /* Take the stuck CPUs out of the watch group */
180 set_cpumask_stuck(&wd_smp_cpus_pending, tb);
181
182 wd_smp_unlock(&flags);
183
184 printk_safe_flush();
185 /*
186 * printk_safe_flush() seems to require another print
187 * before anything actually goes out to console.
188 */
189 if (sysctl_hardlockup_all_cpu_backtrace)
190 trigger_allbutself_cpu_backtrace();
191
192 if (hardlockup_panic)
193 nmi_panic(NULL, "Hard LOCKUP");
194
195 return;
196
197 out:
198 wd_smp_unlock(&flags);
199 }
200
wd_smp_clear_cpu_pending(int cpu,u64 tb)201 static void wd_smp_clear_cpu_pending(int cpu, u64 tb)
202 {
203 if (!cpumask_test_cpu(cpu, &wd_smp_cpus_pending)) {
204 if (unlikely(cpumask_test_cpu(cpu, &wd_smp_cpus_stuck))) {
205 struct pt_regs *regs = get_irq_regs();
206 unsigned long flags;
207
208 wd_smp_lock(&flags);
209
210 pr_emerg("CPU %d became unstuck TB:%lld\n",
211 cpu, tb);
212 print_irqtrace_events(current);
213 if (regs)
214 show_regs(regs);
215 else
216 dump_stack();
217
218 cpumask_clear_cpu(cpu, &wd_smp_cpus_stuck);
219 wd_smp_unlock(&flags);
220 }
221 return;
222 }
223 cpumask_clear_cpu(cpu, &wd_smp_cpus_pending);
224 if (cpumask_empty(&wd_smp_cpus_pending)) {
225 unsigned long flags;
226
227 wd_smp_lock(&flags);
228 if (cpumask_empty(&wd_smp_cpus_pending)) {
229 wd_smp_last_reset_tb = tb;
230 cpumask_andnot(&wd_smp_cpus_pending,
231 &wd_cpus_enabled,
232 &wd_smp_cpus_stuck);
233 }
234 wd_smp_unlock(&flags);
235 }
236 }
237
watchdog_timer_interrupt(int cpu)238 static void watchdog_timer_interrupt(int cpu)
239 {
240 u64 tb = get_tb();
241
242 per_cpu(wd_timer_tb, cpu) = tb;
243
244 wd_smp_clear_cpu_pending(cpu, tb);
245
246 if ((s64)(tb - wd_smp_last_reset_tb) >= (s64)wd_smp_panic_timeout_tb)
247 watchdog_smp_panic(cpu, tb);
248 }
249
soft_nmi_interrupt(struct pt_regs * regs)250 void soft_nmi_interrupt(struct pt_regs *regs)
251 {
252 unsigned long flags;
253 int cpu = raw_smp_processor_id();
254 u64 tb;
255
256 if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
257 return;
258
259 nmi_enter();
260
261 __this_cpu_inc(irq_stat.soft_nmi_irqs);
262
263 tb = get_tb();
264 if (tb - per_cpu(wd_timer_tb, cpu) >= wd_panic_timeout_tb) {
265 wd_smp_lock(&flags);
266 if (cpumask_test_cpu(cpu, &wd_smp_cpus_stuck)) {
267 wd_smp_unlock(&flags);
268 goto out;
269 }
270 set_cpu_stuck(cpu, tb);
271
272 pr_emerg("CPU %d self-detected hard LOCKUP @ %pS\n",
273 cpu, (void *)regs->nip);
274 pr_emerg("CPU %d TB:%lld, last heartbeat TB:%lld (%lldms ago)\n",
275 cpu, tb, per_cpu(wd_timer_tb, cpu),
276 tb_to_ns(tb - per_cpu(wd_timer_tb, cpu)) / 1000000);
277 print_modules();
278 print_irqtrace_events(current);
279 show_regs(regs);
280
281 wd_smp_unlock(&flags);
282
283 if (sysctl_hardlockup_all_cpu_backtrace)
284 trigger_allbutself_cpu_backtrace();
285
286 if (hardlockup_panic)
287 nmi_panic(regs, "Hard LOCKUP");
288 }
289 if (wd_panic_timeout_tb < 0x7fffffff)
290 mtspr(SPRN_DEC, wd_panic_timeout_tb);
291
292 out:
293 nmi_exit();
294 }
295
wd_timer_reset(unsigned int cpu,struct timer_list * t)296 static void wd_timer_reset(unsigned int cpu, struct timer_list *t)
297 {
298 t->expires = jiffies + msecs_to_jiffies(wd_timer_period_ms);
299 if (wd_timer_period_ms > 1000)
300 t->expires = __round_jiffies_up(t->expires, cpu);
301 add_timer_on(t, cpu);
302 }
303
wd_timer_fn(struct timer_list * t)304 static void wd_timer_fn(struct timer_list *t)
305 {
306 int cpu = smp_processor_id();
307
308 watchdog_timer_interrupt(cpu);
309
310 wd_timer_reset(cpu, t);
311 }
312
arch_touch_nmi_watchdog(void)313 void arch_touch_nmi_watchdog(void)
314 {
315 unsigned long ticks = tb_ticks_per_usec * wd_timer_period_ms * 1000;
316 int cpu = smp_processor_id();
317 u64 tb = get_tb();
318
319 if (tb - per_cpu(wd_timer_tb, cpu) >= ticks) {
320 per_cpu(wd_timer_tb, cpu) = tb;
321 wd_smp_clear_cpu_pending(cpu, tb);
322 }
323 }
324 EXPORT_SYMBOL(arch_touch_nmi_watchdog);
325
start_watchdog_timer_on(unsigned int cpu)326 static void start_watchdog_timer_on(unsigned int cpu)
327 {
328 struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
329
330 per_cpu(wd_timer_tb, cpu) = get_tb();
331
332 timer_setup(t, wd_timer_fn, TIMER_PINNED);
333 wd_timer_reset(cpu, t);
334 }
335
stop_watchdog_timer_on(unsigned int cpu)336 static void stop_watchdog_timer_on(unsigned int cpu)
337 {
338 struct timer_list *t = per_cpu_ptr(&wd_timer, cpu);
339
340 del_timer_sync(t);
341 }
342
start_wd_on_cpu(unsigned int cpu)343 static int start_wd_on_cpu(unsigned int cpu)
344 {
345 unsigned long flags;
346
347 if (cpumask_test_cpu(cpu, &wd_cpus_enabled)) {
348 WARN_ON(1);
349 return 0;
350 }
351
352 if (!(watchdog_enabled & NMI_WATCHDOG_ENABLED))
353 return 0;
354
355 if (!cpumask_test_cpu(cpu, &watchdog_cpumask))
356 return 0;
357
358 wd_smp_lock(&flags);
359 cpumask_set_cpu(cpu, &wd_cpus_enabled);
360 if (cpumask_weight(&wd_cpus_enabled) == 1) {
361 cpumask_set_cpu(cpu, &wd_smp_cpus_pending);
362 wd_smp_last_reset_tb = get_tb();
363 }
364 wd_smp_unlock(&flags);
365
366 start_watchdog_timer_on(cpu);
367
368 return 0;
369 }
370
stop_wd_on_cpu(unsigned int cpu)371 static int stop_wd_on_cpu(unsigned int cpu)
372 {
373 unsigned long flags;
374
375 if (!cpumask_test_cpu(cpu, &wd_cpus_enabled))
376 return 0; /* Can happen in CPU unplug case */
377
378 stop_watchdog_timer_on(cpu);
379
380 wd_smp_lock(&flags);
381 cpumask_clear_cpu(cpu, &wd_cpus_enabled);
382 wd_smp_unlock(&flags);
383
384 wd_smp_clear_cpu_pending(cpu, get_tb());
385
386 return 0;
387 }
388
watchdog_calc_timeouts(void)389 static void watchdog_calc_timeouts(void)
390 {
391 wd_panic_timeout_tb = watchdog_thresh * ppc_tb_freq;
392
393 /* Have the SMP detector trigger a bit later */
394 wd_smp_panic_timeout_tb = wd_panic_timeout_tb * 3 / 2;
395
396 /* 2/5 is the factor that the perf based detector uses */
397 wd_timer_period_ms = watchdog_thresh * 1000 * 2 / 5;
398 }
399
watchdog_nmi_stop(void)400 void watchdog_nmi_stop(void)
401 {
402 int cpu;
403
404 for_each_cpu(cpu, &wd_cpus_enabled)
405 stop_wd_on_cpu(cpu);
406 }
407
watchdog_nmi_start(void)408 void watchdog_nmi_start(void)
409 {
410 int cpu;
411
412 watchdog_calc_timeouts();
413 for_each_cpu_and(cpu, cpu_online_mask, &watchdog_cpumask)
414 start_wd_on_cpu(cpu);
415 }
416
417 /*
418 * Invoked from core watchdog init.
419 */
watchdog_nmi_probe(void)420 int __init watchdog_nmi_probe(void)
421 {
422 int err;
423
424 err = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
425 "powerpc/watchdog:online",
426 start_wd_on_cpu, stop_wd_on_cpu);
427 if (err < 0) {
428 pr_warn("could not be initialized");
429 return err;
430 }
431 return 0;
432 }
433