1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for sTec s1120 PCIe SSDs. sTec was acquired in 2013 by HGST and HGST
4  * was acquired by Western Digital in 2012.
5  *
6  * Copyright 2012 sTec, Inc.
7  * Copyright (c) 2017 Western Digital Corporation or its affiliates.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/slab.h>
15 #include <linux/spinlock.h>
16 #include <linux/blkdev.h>
17 #include <linux/blk-mq.h>
18 #include <linux/sched.h>
19 #include <linux/interrupt.h>
20 #include <linux/compiler.h>
21 #include <linux/workqueue.h>
22 #include <linux/delay.h>
23 #include <linux/time.h>
24 #include <linux/hdreg.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/completion.h>
27 #include <linux/scatterlist.h>
28 #include <linux/version.h>
29 #include <linux/err.h>
30 #include <linux/aer.h>
31 #include <linux/wait.h>
32 #include <linux/stringify.h>
33 #include <scsi/scsi.h>
34 #include <scsi/sg.h>
35 #include <linux/io.h>
36 #include <linux/uaccess.h>
37 #include <asm/unaligned.h>
38 
39 #include "skd_s1120.h"
40 
41 static int skd_dbg_level;
42 static int skd_isr_comp_limit = 4;
43 
44 #define SKD_ASSERT(expr) \
45 	do { \
46 		if (unlikely(!(expr))) { \
47 			pr_err("Assertion failed! %s,%s,%s,line=%d\n",	\
48 			       # expr, __FILE__, __func__, __LINE__); \
49 		} \
50 	} while (0)
51 
52 #define DRV_NAME "skd"
53 #define PFX DRV_NAME ": "
54 
55 MODULE_LICENSE("GPL");
56 
57 MODULE_DESCRIPTION("STEC s1120 PCIe SSD block driver");
58 
59 #define PCI_VENDOR_ID_STEC      0x1B39
60 #define PCI_DEVICE_ID_S1120     0x0001
61 
62 #define SKD_FUA_NV		(1 << 1)
63 #define SKD_MINORS_PER_DEVICE   16
64 
65 #define SKD_MAX_QUEUE_DEPTH     200u
66 
67 #define SKD_PAUSE_TIMEOUT       (5 * 1000)
68 
69 #define SKD_N_FITMSG_BYTES      (512u)
70 #define SKD_MAX_REQ_PER_MSG	14
71 
72 #define SKD_N_SPECIAL_FITMSG_BYTES      (128u)
73 
74 /* SG elements are 32 bytes, so we can make this 4096 and still be under the
75  * 128KB limit.  That allows 4096*4K = 16M xfer size
76  */
77 #define SKD_N_SG_PER_REQ_DEFAULT 256u
78 
79 #define SKD_N_COMPLETION_ENTRY  256u
80 #define SKD_N_READ_CAP_BYTES    (8u)
81 
82 #define SKD_N_INTERNAL_BYTES    (512u)
83 
84 #define SKD_SKCOMP_SIZE							\
85 	((sizeof(struct fit_completion_entry_v1) +			\
86 	  sizeof(struct fit_comp_error_info)) * SKD_N_COMPLETION_ENTRY)
87 
88 /* 5 bits of uniqifier, 0xF800 */
89 #define SKD_ID_TABLE_MASK       (3u << 8u)
90 #define  SKD_ID_RW_REQUEST      (0u << 8u)
91 #define  SKD_ID_INTERNAL        (1u << 8u)
92 #define  SKD_ID_FIT_MSG         (3u << 8u)
93 #define SKD_ID_SLOT_MASK        0x00FFu
94 #define SKD_ID_SLOT_AND_TABLE_MASK 0x03FFu
95 
96 #define SKD_N_MAX_SECTORS 2048u
97 
98 #define SKD_MAX_RETRIES 2u
99 
100 #define SKD_TIMER_SECONDS(seconds) (seconds)
101 #define SKD_TIMER_MINUTES(minutes) ((minutes) * (60))
102 
103 #define INQ_STD_NBYTES 36
104 
105 enum skd_drvr_state {
106 	SKD_DRVR_STATE_LOAD,
107 	SKD_DRVR_STATE_IDLE,
108 	SKD_DRVR_STATE_BUSY,
109 	SKD_DRVR_STATE_STARTING,
110 	SKD_DRVR_STATE_ONLINE,
111 	SKD_DRVR_STATE_PAUSING,
112 	SKD_DRVR_STATE_PAUSED,
113 	SKD_DRVR_STATE_RESTARTING,
114 	SKD_DRVR_STATE_RESUMING,
115 	SKD_DRVR_STATE_STOPPING,
116 	SKD_DRVR_STATE_FAULT,
117 	SKD_DRVR_STATE_DISAPPEARED,
118 	SKD_DRVR_STATE_PROTOCOL_MISMATCH,
119 	SKD_DRVR_STATE_BUSY_ERASE,
120 	SKD_DRVR_STATE_BUSY_SANITIZE,
121 	SKD_DRVR_STATE_BUSY_IMMINENT,
122 	SKD_DRVR_STATE_WAIT_BOOT,
123 	SKD_DRVR_STATE_SYNCING,
124 };
125 
126 #define SKD_WAIT_BOOT_TIMO      SKD_TIMER_SECONDS(90u)
127 #define SKD_STARTING_TIMO       SKD_TIMER_SECONDS(8u)
128 #define SKD_RESTARTING_TIMO     SKD_TIMER_MINUTES(4u)
129 #define SKD_BUSY_TIMO           SKD_TIMER_MINUTES(20u)
130 #define SKD_STARTED_BUSY_TIMO   SKD_TIMER_SECONDS(60u)
131 #define SKD_START_WAIT_SECONDS  90u
132 
133 enum skd_req_state {
134 	SKD_REQ_STATE_IDLE,
135 	SKD_REQ_STATE_SETUP,
136 	SKD_REQ_STATE_BUSY,
137 	SKD_REQ_STATE_COMPLETED,
138 	SKD_REQ_STATE_TIMEOUT,
139 };
140 
141 enum skd_check_status_action {
142 	SKD_CHECK_STATUS_REPORT_GOOD,
143 	SKD_CHECK_STATUS_REPORT_SMART_ALERT,
144 	SKD_CHECK_STATUS_REQUEUE_REQUEST,
145 	SKD_CHECK_STATUS_REPORT_ERROR,
146 	SKD_CHECK_STATUS_BUSY_IMMINENT,
147 };
148 
149 struct skd_msg_buf {
150 	struct fit_msg_hdr	fmh;
151 	struct skd_scsi_request	scsi[SKD_MAX_REQ_PER_MSG];
152 };
153 
154 struct skd_fitmsg_context {
155 	u32 id;
156 
157 	u32 length;
158 
159 	struct skd_msg_buf *msg_buf;
160 	dma_addr_t mb_dma_address;
161 };
162 
163 struct skd_request_context {
164 	enum skd_req_state state;
165 
166 	u16 id;
167 	u32 fitmsg_id;
168 
169 	u8 flush_cmd;
170 
171 	enum dma_data_direction data_dir;
172 	struct scatterlist *sg;
173 	u32 n_sg;
174 	u32 sg_byte_count;
175 
176 	struct fit_sg_descriptor *sksg_list;
177 	dma_addr_t sksg_dma_address;
178 
179 	struct fit_completion_entry_v1 completion;
180 
181 	struct fit_comp_error_info err_info;
182 	int retries;
183 
184 	blk_status_t status;
185 };
186 
187 struct skd_special_context {
188 	struct skd_request_context req;
189 
190 	void *data_buf;
191 	dma_addr_t db_dma_address;
192 
193 	struct skd_msg_buf *msg_buf;
194 	dma_addr_t mb_dma_address;
195 };
196 
197 typedef enum skd_irq_type {
198 	SKD_IRQ_LEGACY,
199 	SKD_IRQ_MSI,
200 	SKD_IRQ_MSIX
201 } skd_irq_type_t;
202 
203 #define SKD_MAX_BARS                    2
204 
205 struct skd_device {
206 	void __iomem *mem_map[SKD_MAX_BARS];
207 	resource_size_t mem_phys[SKD_MAX_BARS];
208 	u32 mem_size[SKD_MAX_BARS];
209 
210 	struct skd_msix_entry *msix_entries;
211 
212 	struct pci_dev *pdev;
213 	int pcie_error_reporting_is_enabled;
214 
215 	spinlock_t lock;
216 	struct gendisk *disk;
217 	struct blk_mq_tag_set tag_set;
218 	struct request_queue *queue;
219 	struct skd_fitmsg_context *skmsg;
220 	struct device *class_dev;
221 	int gendisk_on;
222 	int sync_done;
223 
224 	u32 devno;
225 	u32 major;
226 	char isr_name[30];
227 
228 	enum skd_drvr_state state;
229 	u32 drive_state;
230 
231 	u32 cur_max_queue_depth;
232 	u32 queue_low_water_mark;
233 	u32 dev_max_queue_depth;
234 
235 	u32 num_fitmsg_context;
236 	u32 num_req_context;
237 
238 	struct skd_fitmsg_context *skmsg_table;
239 
240 	struct skd_special_context internal_skspcl;
241 	u32 read_cap_blocksize;
242 	u32 read_cap_last_lba;
243 	int read_cap_is_valid;
244 	int inquiry_is_valid;
245 	u8 inq_serial_num[13];  /*12 chars plus null term */
246 
247 	u8 skcomp_cycle;
248 	u32 skcomp_ix;
249 	struct kmem_cache *msgbuf_cache;
250 	struct kmem_cache *sglist_cache;
251 	struct kmem_cache *databuf_cache;
252 	struct fit_completion_entry_v1 *skcomp_table;
253 	struct fit_comp_error_info *skerr_table;
254 	dma_addr_t cq_dma_address;
255 
256 	wait_queue_head_t waitq;
257 
258 	struct timer_list timer;
259 	u32 timer_countdown;
260 	u32 timer_substate;
261 
262 	int sgs_per_request;
263 	u32 last_mtd;
264 
265 	u32 proto_ver;
266 
267 	int dbg_level;
268 	u32 connect_time_stamp;
269 	int connect_retries;
270 #define SKD_MAX_CONNECT_RETRIES 16
271 	u32 drive_jiffies;
272 
273 	u32 timo_slot;
274 
275 	struct work_struct start_queue;
276 	struct work_struct completion_worker;
277 };
278 
279 #define SKD_WRITEL(DEV, VAL, OFF) skd_reg_write32(DEV, VAL, OFF)
280 #define SKD_READL(DEV, OFF)      skd_reg_read32(DEV, OFF)
281 #define SKD_WRITEQ(DEV, VAL, OFF) skd_reg_write64(DEV, VAL, OFF)
282 
skd_reg_read32(struct skd_device * skdev,u32 offset)283 static inline u32 skd_reg_read32(struct skd_device *skdev, u32 offset)
284 {
285 	u32 val = readl(skdev->mem_map[1] + offset);
286 
287 	if (unlikely(skdev->dbg_level >= 2))
288 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
289 	return val;
290 }
291 
skd_reg_write32(struct skd_device * skdev,u32 val,u32 offset)292 static inline void skd_reg_write32(struct skd_device *skdev, u32 val,
293 				   u32 offset)
294 {
295 	writel(val, skdev->mem_map[1] + offset);
296 	if (unlikely(skdev->dbg_level >= 2))
297 		dev_dbg(&skdev->pdev->dev, "offset %x = %x\n", offset, val);
298 }
299 
skd_reg_write64(struct skd_device * skdev,u64 val,u32 offset)300 static inline void skd_reg_write64(struct skd_device *skdev, u64 val,
301 				   u32 offset)
302 {
303 	writeq(val, skdev->mem_map[1] + offset);
304 	if (unlikely(skdev->dbg_level >= 2))
305 		dev_dbg(&skdev->pdev->dev, "offset %x = %016llx\n", offset,
306 			val);
307 }
308 
309 
310 #define SKD_IRQ_DEFAULT SKD_IRQ_MSIX
311 static int skd_isr_type = SKD_IRQ_DEFAULT;
312 
313 module_param(skd_isr_type, int, 0444);
314 MODULE_PARM_DESC(skd_isr_type, "Interrupt type capability."
315 		 " (0==legacy, 1==MSI, 2==MSI-X, default==1)");
316 
317 #define SKD_MAX_REQ_PER_MSG_DEFAULT 1
318 static int skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
319 
320 module_param(skd_max_req_per_msg, int, 0444);
321 MODULE_PARM_DESC(skd_max_req_per_msg,
322 		 "Maximum SCSI requests packed in a single message."
323 		 " (1-" __stringify(SKD_MAX_REQ_PER_MSG) ", default==1)");
324 
325 #define SKD_MAX_QUEUE_DEPTH_DEFAULT 64
326 #define SKD_MAX_QUEUE_DEPTH_DEFAULT_STR "64"
327 static int skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
328 
329 module_param(skd_max_queue_depth, int, 0444);
330 MODULE_PARM_DESC(skd_max_queue_depth,
331 		 "Maximum SCSI requests issued to s1120."
332 		 " (1-200, default==" SKD_MAX_QUEUE_DEPTH_DEFAULT_STR ")");
333 
334 static int skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
335 module_param(skd_sgs_per_request, int, 0444);
336 MODULE_PARM_DESC(skd_sgs_per_request,
337 		 "Maximum SG elements per block request."
338 		 " (1-4096, default==256)");
339 
340 static int skd_max_pass_thru = 1;
341 module_param(skd_max_pass_thru, int, 0444);
342 MODULE_PARM_DESC(skd_max_pass_thru,
343 		 "Maximum SCSI pass-thru at a time. IGNORED");
344 
345 module_param(skd_dbg_level, int, 0444);
346 MODULE_PARM_DESC(skd_dbg_level, "s1120 debug level (0,1,2)");
347 
348 module_param(skd_isr_comp_limit, int, 0444);
349 MODULE_PARM_DESC(skd_isr_comp_limit, "s1120 isr comp limit (0=none) default=4");
350 
351 /* Major device number dynamically assigned. */
352 static u32 skd_major;
353 
354 static void skd_destruct(struct skd_device *skdev);
355 static const struct block_device_operations skd_blockdev_ops;
356 static void skd_send_fitmsg(struct skd_device *skdev,
357 			    struct skd_fitmsg_context *skmsg);
358 static void skd_send_special_fitmsg(struct skd_device *skdev,
359 				    struct skd_special_context *skspcl);
360 static bool skd_preop_sg_list(struct skd_device *skdev,
361 			     struct skd_request_context *skreq);
362 static void skd_postop_sg_list(struct skd_device *skdev,
363 			       struct skd_request_context *skreq);
364 
365 static void skd_restart_device(struct skd_device *skdev);
366 static int skd_quiesce_dev(struct skd_device *skdev);
367 static int skd_unquiesce_dev(struct skd_device *skdev);
368 static void skd_disable_interrupts(struct skd_device *skdev);
369 static void skd_isr_fwstate(struct skd_device *skdev);
370 static void skd_recover_requests(struct skd_device *skdev);
371 static void skd_soft_reset(struct skd_device *skdev);
372 
373 const char *skd_drive_state_to_str(int state);
374 const char *skd_skdev_state_to_str(enum skd_drvr_state state);
375 static void skd_log_skdev(struct skd_device *skdev, const char *event);
376 static void skd_log_skreq(struct skd_device *skdev,
377 			  struct skd_request_context *skreq, const char *event);
378 
379 /*
380  *****************************************************************************
381  * READ/WRITE REQUESTS
382  *****************************************************************************
383  */
skd_inc_in_flight(struct request * rq,void * data,bool reserved)384 static bool skd_inc_in_flight(struct request *rq, void *data, bool reserved)
385 {
386 	int *count = data;
387 
388 	count++;
389 	return true;
390 }
391 
skd_in_flight(struct skd_device * skdev)392 static int skd_in_flight(struct skd_device *skdev)
393 {
394 	int count = 0;
395 
396 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_inc_in_flight, &count);
397 
398 	return count;
399 }
400 
401 static void
skd_prep_rw_cdb(struct skd_scsi_request * scsi_req,int data_dir,unsigned lba,unsigned count)402 skd_prep_rw_cdb(struct skd_scsi_request *scsi_req,
403 		int data_dir, unsigned lba,
404 		unsigned count)
405 {
406 	if (data_dir == READ)
407 		scsi_req->cdb[0] = READ_10;
408 	else
409 		scsi_req->cdb[0] = WRITE_10;
410 
411 	scsi_req->cdb[1] = 0;
412 	scsi_req->cdb[2] = (lba & 0xff000000) >> 24;
413 	scsi_req->cdb[3] = (lba & 0xff0000) >> 16;
414 	scsi_req->cdb[4] = (lba & 0xff00) >> 8;
415 	scsi_req->cdb[5] = (lba & 0xff);
416 	scsi_req->cdb[6] = 0;
417 	scsi_req->cdb[7] = (count & 0xff00) >> 8;
418 	scsi_req->cdb[8] = count & 0xff;
419 	scsi_req->cdb[9] = 0;
420 }
421 
422 static void
skd_prep_zerosize_flush_cdb(struct skd_scsi_request * scsi_req,struct skd_request_context * skreq)423 skd_prep_zerosize_flush_cdb(struct skd_scsi_request *scsi_req,
424 			    struct skd_request_context *skreq)
425 {
426 	skreq->flush_cmd = 1;
427 
428 	scsi_req->cdb[0] = SYNCHRONIZE_CACHE;
429 	scsi_req->cdb[1] = 0;
430 	scsi_req->cdb[2] = 0;
431 	scsi_req->cdb[3] = 0;
432 	scsi_req->cdb[4] = 0;
433 	scsi_req->cdb[5] = 0;
434 	scsi_req->cdb[6] = 0;
435 	scsi_req->cdb[7] = 0;
436 	scsi_req->cdb[8] = 0;
437 	scsi_req->cdb[9] = 0;
438 }
439 
440 /*
441  * Return true if and only if all pending requests should be failed.
442  */
skd_fail_all(struct request_queue * q)443 static bool skd_fail_all(struct request_queue *q)
444 {
445 	struct skd_device *skdev = q->queuedata;
446 
447 	SKD_ASSERT(skdev->state != SKD_DRVR_STATE_ONLINE);
448 
449 	skd_log_skdev(skdev, "req_not_online");
450 	switch (skdev->state) {
451 	case SKD_DRVR_STATE_PAUSING:
452 	case SKD_DRVR_STATE_PAUSED:
453 	case SKD_DRVR_STATE_STARTING:
454 	case SKD_DRVR_STATE_RESTARTING:
455 	case SKD_DRVR_STATE_WAIT_BOOT:
456 	/* In case of starting, we haven't started the queue,
457 	 * so we can't get here... but requests are
458 	 * possibly hanging out waiting for us because we
459 	 * reported the dev/skd0 already.  They'll wait
460 	 * forever if connect doesn't complete.
461 	 * What to do??? delay dev/skd0 ??
462 	 */
463 	case SKD_DRVR_STATE_BUSY:
464 	case SKD_DRVR_STATE_BUSY_IMMINENT:
465 	case SKD_DRVR_STATE_BUSY_ERASE:
466 		return false;
467 
468 	case SKD_DRVR_STATE_BUSY_SANITIZE:
469 	case SKD_DRVR_STATE_STOPPING:
470 	case SKD_DRVR_STATE_SYNCING:
471 	case SKD_DRVR_STATE_FAULT:
472 	case SKD_DRVR_STATE_DISAPPEARED:
473 	default:
474 		return true;
475 	}
476 }
477 
skd_mq_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * mqd)478 static blk_status_t skd_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
479 				    const struct blk_mq_queue_data *mqd)
480 {
481 	struct request *const req = mqd->rq;
482 	struct request_queue *const q = req->q;
483 	struct skd_device *skdev = q->queuedata;
484 	struct skd_fitmsg_context *skmsg;
485 	struct fit_msg_hdr *fmh;
486 	const u32 tag = blk_mq_unique_tag(req);
487 	struct skd_request_context *const skreq = blk_mq_rq_to_pdu(req);
488 	struct skd_scsi_request *scsi_req;
489 	unsigned long flags = 0;
490 	const u32 lba = blk_rq_pos(req);
491 	const u32 count = blk_rq_sectors(req);
492 	const int data_dir = rq_data_dir(req);
493 
494 	if (unlikely(skdev->state != SKD_DRVR_STATE_ONLINE))
495 		return skd_fail_all(q) ? BLK_STS_IOERR : BLK_STS_RESOURCE;
496 
497 	if (!(req->rq_flags & RQF_DONTPREP)) {
498 		skreq->retries = 0;
499 		req->rq_flags |= RQF_DONTPREP;
500 	}
501 
502 	blk_mq_start_request(req);
503 
504 	WARN_ONCE(tag >= skd_max_queue_depth, "%#x > %#x (nr_requests = %lu)\n",
505 		  tag, skd_max_queue_depth, q->nr_requests);
506 
507 	SKD_ASSERT(skreq->state == SKD_REQ_STATE_IDLE);
508 
509 	dev_dbg(&skdev->pdev->dev,
510 		"new req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba,
511 		lba, count, count, data_dir);
512 
513 	skreq->id = tag + SKD_ID_RW_REQUEST;
514 	skreq->flush_cmd = 0;
515 	skreq->n_sg = 0;
516 	skreq->sg_byte_count = 0;
517 
518 	skreq->fitmsg_id = 0;
519 
520 	skreq->data_dir = data_dir == READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
521 
522 	if (req->bio && !skd_preop_sg_list(skdev, skreq)) {
523 		dev_dbg(&skdev->pdev->dev, "error Out\n");
524 		skreq->status = BLK_STS_RESOURCE;
525 		blk_mq_complete_request(req);
526 		return BLK_STS_OK;
527 	}
528 
529 	dma_sync_single_for_device(&skdev->pdev->dev, skreq->sksg_dma_address,
530 				   skreq->n_sg *
531 				   sizeof(struct fit_sg_descriptor),
532 				   DMA_TO_DEVICE);
533 
534 	/* Either a FIT msg is in progress or we have to start one. */
535 	if (skd_max_req_per_msg == 1) {
536 		skmsg = NULL;
537 	} else {
538 		spin_lock_irqsave(&skdev->lock, flags);
539 		skmsg = skdev->skmsg;
540 	}
541 	if (!skmsg) {
542 		skmsg = &skdev->skmsg_table[tag];
543 		skdev->skmsg = skmsg;
544 
545 		/* Initialize the FIT msg header */
546 		fmh = &skmsg->msg_buf->fmh;
547 		memset(fmh, 0, sizeof(*fmh));
548 		fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
549 		skmsg->length = sizeof(*fmh);
550 	} else {
551 		fmh = &skmsg->msg_buf->fmh;
552 	}
553 
554 	skreq->fitmsg_id = skmsg->id;
555 
556 	scsi_req = &skmsg->msg_buf->scsi[fmh->num_protocol_cmds_coalesced];
557 	memset(scsi_req, 0, sizeof(*scsi_req));
558 
559 	scsi_req->hdr.tag = skreq->id;
560 	scsi_req->hdr.sg_list_dma_address =
561 		cpu_to_be64(skreq->sksg_dma_address);
562 
563 	if (req_op(req) == REQ_OP_FLUSH) {
564 		skd_prep_zerosize_flush_cdb(scsi_req, skreq);
565 		SKD_ASSERT(skreq->flush_cmd == 1);
566 	} else {
567 		skd_prep_rw_cdb(scsi_req, data_dir, lba, count);
568 	}
569 
570 	if (req->cmd_flags & REQ_FUA)
571 		scsi_req->cdb[1] |= SKD_FUA_NV;
572 
573 	scsi_req->hdr.sg_list_len_bytes = cpu_to_be32(skreq->sg_byte_count);
574 
575 	/* Complete resource allocations. */
576 	skreq->state = SKD_REQ_STATE_BUSY;
577 
578 	skmsg->length += sizeof(struct skd_scsi_request);
579 	fmh->num_protocol_cmds_coalesced++;
580 
581 	dev_dbg(&skdev->pdev->dev, "req=0x%x busy=%d\n", skreq->id,
582 		skd_in_flight(skdev));
583 
584 	/*
585 	 * If the FIT msg buffer is full send it.
586 	 */
587 	if (skd_max_req_per_msg == 1) {
588 		skd_send_fitmsg(skdev, skmsg);
589 	} else {
590 		if (mqd->last ||
591 		    fmh->num_protocol_cmds_coalesced >= skd_max_req_per_msg) {
592 			skd_send_fitmsg(skdev, skmsg);
593 			skdev->skmsg = NULL;
594 		}
595 		spin_unlock_irqrestore(&skdev->lock, flags);
596 	}
597 
598 	return BLK_STS_OK;
599 }
600 
skd_timed_out(struct request * req,bool reserved)601 static enum blk_eh_timer_return skd_timed_out(struct request *req,
602 					      bool reserved)
603 {
604 	struct skd_device *skdev = req->q->queuedata;
605 
606 	dev_err(&skdev->pdev->dev, "request with tag %#x timed out\n",
607 		blk_mq_unique_tag(req));
608 
609 	return BLK_EH_RESET_TIMER;
610 }
611 
skd_complete_rq(struct request * req)612 static void skd_complete_rq(struct request *req)
613 {
614 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
615 
616 	blk_mq_end_request(req, skreq->status);
617 }
618 
skd_preop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)619 static bool skd_preop_sg_list(struct skd_device *skdev,
620 			     struct skd_request_context *skreq)
621 {
622 	struct request *req = blk_mq_rq_from_pdu(skreq);
623 	struct scatterlist *sgl = &skreq->sg[0], *sg;
624 	int n_sg;
625 	int i;
626 
627 	skreq->sg_byte_count = 0;
628 
629 	WARN_ON_ONCE(skreq->data_dir != DMA_TO_DEVICE &&
630 		     skreq->data_dir != DMA_FROM_DEVICE);
631 
632 	n_sg = blk_rq_map_sg(skdev->queue, req, sgl);
633 	if (n_sg <= 0)
634 		return false;
635 
636 	/*
637 	 * Map scatterlist to PCI bus addresses.
638 	 * Note PCI might change the number of entries.
639 	 */
640 	n_sg = dma_map_sg(&skdev->pdev->dev, sgl, n_sg, skreq->data_dir);
641 	if (n_sg <= 0)
642 		return false;
643 
644 	SKD_ASSERT(n_sg <= skdev->sgs_per_request);
645 
646 	skreq->n_sg = n_sg;
647 
648 	for_each_sg(sgl, sg, n_sg, i) {
649 		struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
650 		u32 cnt = sg_dma_len(sg);
651 		uint64_t dma_addr = sg_dma_address(sg);
652 
653 		sgd->control = FIT_SGD_CONTROL_NOT_LAST;
654 		sgd->byte_count = cnt;
655 		skreq->sg_byte_count += cnt;
656 		sgd->host_side_addr = dma_addr;
657 		sgd->dev_side_addr = 0;
658 	}
659 
660 	skreq->sksg_list[n_sg - 1].next_desc_ptr = 0LL;
661 	skreq->sksg_list[n_sg - 1].control = FIT_SGD_CONTROL_LAST;
662 
663 	if (unlikely(skdev->dbg_level > 1)) {
664 		dev_dbg(&skdev->pdev->dev,
665 			"skreq=%x sksg_list=%p sksg_dma=%pad\n",
666 			skreq->id, skreq->sksg_list, &skreq->sksg_dma_address);
667 		for (i = 0; i < n_sg; i++) {
668 			struct fit_sg_descriptor *sgd = &skreq->sksg_list[i];
669 
670 			dev_dbg(&skdev->pdev->dev,
671 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
672 				i, sgd->byte_count, sgd->control,
673 				sgd->host_side_addr, sgd->next_desc_ptr);
674 		}
675 	}
676 
677 	return true;
678 }
679 
skd_postop_sg_list(struct skd_device * skdev,struct skd_request_context * skreq)680 static void skd_postop_sg_list(struct skd_device *skdev,
681 			       struct skd_request_context *skreq)
682 {
683 	/*
684 	 * restore the next ptr for next IO request so we
685 	 * don't have to set it every time.
686 	 */
687 	skreq->sksg_list[skreq->n_sg - 1].next_desc_ptr =
688 		skreq->sksg_dma_address +
689 		((skreq->n_sg) * sizeof(struct fit_sg_descriptor));
690 	dma_unmap_sg(&skdev->pdev->dev, &skreq->sg[0], skreq->n_sg,
691 		     skreq->data_dir);
692 }
693 
694 /*
695  *****************************************************************************
696  * TIMER
697  *****************************************************************************
698  */
699 
700 static void skd_timer_tick_not_online(struct skd_device *skdev);
701 
skd_start_queue(struct work_struct * work)702 static void skd_start_queue(struct work_struct *work)
703 {
704 	struct skd_device *skdev = container_of(work, typeof(*skdev),
705 						start_queue);
706 
707 	/*
708 	 * Although it is safe to call blk_start_queue() from interrupt
709 	 * context, blk_mq_start_hw_queues() must not be called from
710 	 * interrupt context.
711 	 */
712 	blk_mq_start_hw_queues(skdev->queue);
713 }
714 
skd_timer_tick(struct timer_list * t)715 static void skd_timer_tick(struct timer_list *t)
716 {
717 	struct skd_device *skdev = from_timer(skdev, t, timer);
718 	unsigned long reqflags;
719 	u32 state;
720 
721 	if (skdev->state == SKD_DRVR_STATE_FAULT)
722 		/* The driver has declared fault, and we want it to
723 		 * stay that way until driver is reloaded.
724 		 */
725 		return;
726 
727 	spin_lock_irqsave(&skdev->lock, reqflags);
728 
729 	state = SKD_READL(skdev, FIT_STATUS);
730 	state &= FIT_SR_DRIVE_STATE_MASK;
731 	if (state != skdev->drive_state)
732 		skd_isr_fwstate(skdev);
733 
734 	if (skdev->state != SKD_DRVR_STATE_ONLINE)
735 		skd_timer_tick_not_online(skdev);
736 
737 	mod_timer(&skdev->timer, (jiffies + HZ));
738 
739 	spin_unlock_irqrestore(&skdev->lock, reqflags);
740 }
741 
skd_timer_tick_not_online(struct skd_device * skdev)742 static void skd_timer_tick_not_online(struct skd_device *skdev)
743 {
744 	switch (skdev->state) {
745 	case SKD_DRVR_STATE_IDLE:
746 	case SKD_DRVR_STATE_LOAD:
747 		break;
748 	case SKD_DRVR_STATE_BUSY_SANITIZE:
749 		dev_dbg(&skdev->pdev->dev,
750 			"drive busy sanitize[%x], driver[%x]\n",
751 			skdev->drive_state, skdev->state);
752 		/* If we've been in sanitize for 3 seconds, we figure we're not
753 		 * going to get anymore completions, so recover requests now
754 		 */
755 		if (skdev->timer_countdown > 0) {
756 			skdev->timer_countdown--;
757 			return;
758 		}
759 		skd_recover_requests(skdev);
760 		break;
761 
762 	case SKD_DRVR_STATE_BUSY:
763 	case SKD_DRVR_STATE_BUSY_IMMINENT:
764 	case SKD_DRVR_STATE_BUSY_ERASE:
765 		dev_dbg(&skdev->pdev->dev, "busy[%x], countdown=%d\n",
766 			skdev->state, skdev->timer_countdown);
767 		if (skdev->timer_countdown > 0) {
768 			skdev->timer_countdown--;
769 			return;
770 		}
771 		dev_dbg(&skdev->pdev->dev,
772 			"busy[%x], timedout=%d, restarting device.",
773 			skdev->state, skdev->timer_countdown);
774 		skd_restart_device(skdev);
775 		break;
776 
777 	case SKD_DRVR_STATE_WAIT_BOOT:
778 	case SKD_DRVR_STATE_STARTING:
779 		if (skdev->timer_countdown > 0) {
780 			skdev->timer_countdown--;
781 			return;
782 		}
783 		/* For now, we fault the drive.  Could attempt resets to
784 		 * revcover at some point. */
785 		skdev->state = SKD_DRVR_STATE_FAULT;
786 
787 		dev_err(&skdev->pdev->dev, "DriveFault Connect Timeout (%x)\n",
788 			skdev->drive_state);
789 
790 		/*start the queue so we can respond with error to requests */
791 		/* wakeup anyone waiting for startup complete */
792 		schedule_work(&skdev->start_queue);
793 		skdev->gendisk_on = -1;
794 		wake_up_interruptible(&skdev->waitq);
795 		break;
796 
797 	case SKD_DRVR_STATE_ONLINE:
798 		/* shouldn't get here. */
799 		break;
800 
801 	case SKD_DRVR_STATE_PAUSING:
802 	case SKD_DRVR_STATE_PAUSED:
803 		break;
804 
805 	case SKD_DRVR_STATE_RESTARTING:
806 		if (skdev->timer_countdown > 0) {
807 			skdev->timer_countdown--;
808 			return;
809 		}
810 		/* For now, we fault the drive. Could attempt resets to
811 		 * revcover at some point. */
812 		skdev->state = SKD_DRVR_STATE_FAULT;
813 		dev_err(&skdev->pdev->dev,
814 			"DriveFault Reconnect Timeout (%x)\n",
815 			skdev->drive_state);
816 
817 		/*
818 		 * Recovering does two things:
819 		 * 1. completes IO with error
820 		 * 2. reclaims dma resources
821 		 * When is it safe to recover requests?
822 		 * - if the drive state is faulted
823 		 * - if the state is still soft reset after out timeout
824 		 * - if the drive registers are dead (state = FF)
825 		 * If it is "unsafe", we still need to recover, so we will
826 		 * disable pci bus mastering and disable our interrupts.
827 		 */
828 
829 		if ((skdev->drive_state == FIT_SR_DRIVE_SOFT_RESET) ||
830 		    (skdev->drive_state == FIT_SR_DRIVE_FAULT) ||
831 		    (skdev->drive_state == FIT_SR_DRIVE_STATE_MASK))
832 			/* It never came out of soft reset. Try to
833 			 * recover the requests and then let them
834 			 * fail. This is to mitigate hung processes. */
835 			skd_recover_requests(skdev);
836 		else {
837 			dev_err(&skdev->pdev->dev, "Disable BusMaster (%x)\n",
838 				skdev->drive_state);
839 			pci_disable_device(skdev->pdev);
840 			skd_disable_interrupts(skdev);
841 			skd_recover_requests(skdev);
842 		}
843 
844 		/*start the queue so we can respond with error to requests */
845 		/* wakeup anyone waiting for startup complete */
846 		schedule_work(&skdev->start_queue);
847 		skdev->gendisk_on = -1;
848 		wake_up_interruptible(&skdev->waitq);
849 		break;
850 
851 	case SKD_DRVR_STATE_RESUMING:
852 	case SKD_DRVR_STATE_STOPPING:
853 	case SKD_DRVR_STATE_SYNCING:
854 	case SKD_DRVR_STATE_FAULT:
855 	case SKD_DRVR_STATE_DISAPPEARED:
856 	default:
857 		break;
858 	}
859 }
860 
skd_start_timer(struct skd_device * skdev)861 static int skd_start_timer(struct skd_device *skdev)
862 {
863 	int rc;
864 
865 	timer_setup(&skdev->timer, skd_timer_tick, 0);
866 
867 	rc = mod_timer(&skdev->timer, (jiffies + HZ));
868 	if (rc)
869 		dev_err(&skdev->pdev->dev, "failed to start timer %d\n", rc);
870 	return rc;
871 }
872 
skd_kill_timer(struct skd_device * skdev)873 static void skd_kill_timer(struct skd_device *skdev)
874 {
875 	del_timer_sync(&skdev->timer);
876 }
877 
878 /*
879  *****************************************************************************
880  * INTERNAL REQUESTS -- generated by driver itself
881  *****************************************************************************
882  */
883 
skd_format_internal_skspcl(struct skd_device * skdev)884 static int skd_format_internal_skspcl(struct skd_device *skdev)
885 {
886 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
887 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
888 	struct fit_msg_hdr *fmh;
889 	uint64_t dma_address;
890 	struct skd_scsi_request *scsi;
891 
892 	fmh = &skspcl->msg_buf->fmh;
893 	fmh->protocol_id = FIT_PROTOCOL_ID_SOFIT;
894 	fmh->num_protocol_cmds_coalesced = 1;
895 
896 	scsi = &skspcl->msg_buf->scsi[0];
897 	memset(scsi, 0, sizeof(*scsi));
898 	dma_address = skspcl->req.sksg_dma_address;
899 	scsi->hdr.sg_list_dma_address = cpu_to_be64(dma_address);
900 	skspcl->req.n_sg = 1;
901 	sgd->control = FIT_SGD_CONTROL_LAST;
902 	sgd->byte_count = 0;
903 	sgd->host_side_addr = skspcl->db_dma_address;
904 	sgd->dev_side_addr = 0;
905 	sgd->next_desc_ptr = 0LL;
906 
907 	return 1;
908 }
909 
910 #define WR_BUF_SIZE SKD_N_INTERNAL_BYTES
911 
skd_send_internal_skspcl(struct skd_device * skdev,struct skd_special_context * skspcl,u8 opcode)912 static void skd_send_internal_skspcl(struct skd_device *skdev,
913 				     struct skd_special_context *skspcl,
914 				     u8 opcode)
915 {
916 	struct fit_sg_descriptor *sgd = &skspcl->req.sksg_list[0];
917 	struct skd_scsi_request *scsi;
918 	unsigned char *buf = skspcl->data_buf;
919 	int i;
920 
921 	if (skspcl->req.state != SKD_REQ_STATE_IDLE)
922 		/*
923 		 * A refresh is already in progress.
924 		 * Just wait for it to finish.
925 		 */
926 		return;
927 
928 	skspcl->req.state = SKD_REQ_STATE_BUSY;
929 
930 	scsi = &skspcl->msg_buf->scsi[0];
931 	scsi->hdr.tag = skspcl->req.id;
932 
933 	memset(scsi->cdb, 0, sizeof(scsi->cdb));
934 
935 	switch (opcode) {
936 	case TEST_UNIT_READY:
937 		scsi->cdb[0] = TEST_UNIT_READY;
938 		sgd->byte_count = 0;
939 		scsi->hdr.sg_list_len_bytes = 0;
940 		break;
941 
942 	case READ_CAPACITY:
943 		scsi->cdb[0] = READ_CAPACITY;
944 		sgd->byte_count = SKD_N_READ_CAP_BYTES;
945 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
946 		break;
947 
948 	case INQUIRY:
949 		scsi->cdb[0] = INQUIRY;
950 		scsi->cdb[1] = 0x01;    /* evpd */
951 		scsi->cdb[2] = 0x80;    /* serial number page */
952 		scsi->cdb[4] = 0x10;
953 		sgd->byte_count = 16;
954 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
955 		break;
956 
957 	case SYNCHRONIZE_CACHE:
958 		scsi->cdb[0] = SYNCHRONIZE_CACHE;
959 		sgd->byte_count = 0;
960 		scsi->hdr.sg_list_len_bytes = 0;
961 		break;
962 
963 	case WRITE_BUFFER:
964 		scsi->cdb[0] = WRITE_BUFFER;
965 		scsi->cdb[1] = 0x02;
966 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
967 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
968 		sgd->byte_count = WR_BUF_SIZE;
969 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
970 		/* fill incrementing byte pattern */
971 		for (i = 0; i < sgd->byte_count; i++)
972 			buf[i] = i & 0xFF;
973 		break;
974 
975 	case READ_BUFFER:
976 		scsi->cdb[0] = READ_BUFFER;
977 		scsi->cdb[1] = 0x02;
978 		scsi->cdb[7] = (WR_BUF_SIZE & 0xFF00) >> 8;
979 		scsi->cdb[8] = WR_BUF_SIZE & 0xFF;
980 		sgd->byte_count = WR_BUF_SIZE;
981 		scsi->hdr.sg_list_len_bytes = cpu_to_be32(sgd->byte_count);
982 		memset(skspcl->data_buf, 0, sgd->byte_count);
983 		break;
984 
985 	default:
986 		SKD_ASSERT("Don't know what to send");
987 		return;
988 
989 	}
990 	skd_send_special_fitmsg(skdev, skspcl);
991 }
992 
skd_refresh_device_data(struct skd_device * skdev)993 static void skd_refresh_device_data(struct skd_device *skdev)
994 {
995 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
996 
997 	skd_send_internal_skspcl(skdev, skspcl, TEST_UNIT_READY);
998 }
999 
skd_chk_read_buf(struct skd_device * skdev,struct skd_special_context * skspcl)1000 static int skd_chk_read_buf(struct skd_device *skdev,
1001 			    struct skd_special_context *skspcl)
1002 {
1003 	unsigned char *buf = skspcl->data_buf;
1004 	int i;
1005 
1006 	/* check for incrementing byte pattern */
1007 	for (i = 0; i < WR_BUF_SIZE; i++)
1008 		if (buf[i] != (i & 0xFF))
1009 			return 1;
1010 
1011 	return 0;
1012 }
1013 
skd_log_check_status(struct skd_device * skdev,u8 status,u8 key,u8 code,u8 qual,u8 fruc)1014 static void skd_log_check_status(struct skd_device *skdev, u8 status, u8 key,
1015 				 u8 code, u8 qual, u8 fruc)
1016 {
1017 	/* If the check condition is of special interest, log a message */
1018 	if ((status == SAM_STAT_CHECK_CONDITION) && (key == 0x02)
1019 	    && (code == 0x04) && (qual == 0x06)) {
1020 		dev_err(&skdev->pdev->dev,
1021 			"*** LOST_WRITE_DATA ERROR *** key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1022 			key, code, qual, fruc);
1023 	}
1024 }
1025 
skd_complete_internal(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr,struct skd_special_context * skspcl)1026 static void skd_complete_internal(struct skd_device *skdev,
1027 				  struct fit_completion_entry_v1 *skcomp,
1028 				  struct fit_comp_error_info *skerr,
1029 				  struct skd_special_context *skspcl)
1030 {
1031 	u8 *buf = skspcl->data_buf;
1032 	u8 status;
1033 	int i;
1034 	struct skd_scsi_request *scsi = &skspcl->msg_buf->scsi[0];
1035 
1036 	lockdep_assert_held(&skdev->lock);
1037 
1038 	SKD_ASSERT(skspcl == &skdev->internal_skspcl);
1039 
1040 	dev_dbg(&skdev->pdev->dev, "complete internal %x\n", scsi->cdb[0]);
1041 
1042 	dma_sync_single_for_cpu(&skdev->pdev->dev,
1043 				skspcl->db_dma_address,
1044 				skspcl->req.sksg_list[0].byte_count,
1045 				DMA_BIDIRECTIONAL);
1046 
1047 	skspcl->req.completion = *skcomp;
1048 	skspcl->req.state = SKD_REQ_STATE_IDLE;
1049 
1050 	status = skspcl->req.completion.status;
1051 
1052 	skd_log_check_status(skdev, status, skerr->key, skerr->code,
1053 			     skerr->qual, skerr->fruc);
1054 
1055 	switch (scsi->cdb[0]) {
1056 	case TEST_UNIT_READY:
1057 		if (status == SAM_STAT_GOOD)
1058 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1059 		else if ((status == SAM_STAT_CHECK_CONDITION) &&
1060 			 (skerr->key == MEDIUM_ERROR))
1061 			skd_send_internal_skspcl(skdev, skspcl, WRITE_BUFFER);
1062 		else {
1063 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1064 				dev_dbg(&skdev->pdev->dev,
1065 					"TUR failed, don't send anymore state 0x%x\n",
1066 					skdev->state);
1067 				return;
1068 			}
1069 			dev_dbg(&skdev->pdev->dev,
1070 				"**** TUR failed, retry skerr\n");
1071 			skd_send_internal_skspcl(skdev, skspcl,
1072 						 TEST_UNIT_READY);
1073 		}
1074 		break;
1075 
1076 	case WRITE_BUFFER:
1077 		if (status == SAM_STAT_GOOD)
1078 			skd_send_internal_skspcl(skdev, skspcl, READ_BUFFER);
1079 		else {
1080 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1081 				dev_dbg(&skdev->pdev->dev,
1082 					"write buffer failed, don't send anymore state 0x%x\n",
1083 					skdev->state);
1084 				return;
1085 			}
1086 			dev_dbg(&skdev->pdev->dev,
1087 				"**** write buffer failed, retry skerr\n");
1088 			skd_send_internal_skspcl(skdev, skspcl,
1089 						 TEST_UNIT_READY);
1090 		}
1091 		break;
1092 
1093 	case READ_BUFFER:
1094 		if (status == SAM_STAT_GOOD) {
1095 			if (skd_chk_read_buf(skdev, skspcl) == 0)
1096 				skd_send_internal_skspcl(skdev, skspcl,
1097 							 READ_CAPACITY);
1098 			else {
1099 				dev_err(&skdev->pdev->dev,
1100 					"*** W/R Buffer mismatch %d ***\n",
1101 					skdev->connect_retries);
1102 				if (skdev->connect_retries <
1103 				    SKD_MAX_CONNECT_RETRIES) {
1104 					skdev->connect_retries++;
1105 					skd_soft_reset(skdev);
1106 				} else {
1107 					dev_err(&skdev->pdev->dev,
1108 						"W/R Buffer Connect Error\n");
1109 					return;
1110 				}
1111 			}
1112 
1113 		} else {
1114 			if (skdev->state == SKD_DRVR_STATE_STOPPING) {
1115 				dev_dbg(&skdev->pdev->dev,
1116 					"read buffer failed, don't send anymore state 0x%x\n",
1117 					skdev->state);
1118 				return;
1119 			}
1120 			dev_dbg(&skdev->pdev->dev,
1121 				"**** read buffer failed, retry skerr\n");
1122 			skd_send_internal_skspcl(skdev, skspcl,
1123 						 TEST_UNIT_READY);
1124 		}
1125 		break;
1126 
1127 	case READ_CAPACITY:
1128 		skdev->read_cap_is_valid = 0;
1129 		if (status == SAM_STAT_GOOD) {
1130 			skdev->read_cap_last_lba =
1131 				(buf[0] << 24) | (buf[1] << 16) |
1132 				(buf[2] << 8) | buf[3];
1133 			skdev->read_cap_blocksize =
1134 				(buf[4] << 24) | (buf[5] << 16) |
1135 				(buf[6] << 8) | buf[7];
1136 
1137 			dev_dbg(&skdev->pdev->dev, "last lba %d, bs %d\n",
1138 				skdev->read_cap_last_lba,
1139 				skdev->read_cap_blocksize);
1140 
1141 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1142 
1143 			skdev->read_cap_is_valid = 1;
1144 
1145 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1146 		} else if ((status == SAM_STAT_CHECK_CONDITION) &&
1147 			   (skerr->key == MEDIUM_ERROR)) {
1148 			skdev->read_cap_last_lba = ~0;
1149 			set_capacity(skdev->disk, skdev->read_cap_last_lba + 1);
1150 			dev_dbg(&skdev->pdev->dev, "**** MEDIUM ERROR caused READCAP to fail, ignore failure and continue to inquiry\n");
1151 			skd_send_internal_skspcl(skdev, skspcl, INQUIRY);
1152 		} else {
1153 			dev_dbg(&skdev->pdev->dev, "**** READCAP failed, retry TUR\n");
1154 			skd_send_internal_skspcl(skdev, skspcl,
1155 						 TEST_UNIT_READY);
1156 		}
1157 		break;
1158 
1159 	case INQUIRY:
1160 		skdev->inquiry_is_valid = 0;
1161 		if (status == SAM_STAT_GOOD) {
1162 			skdev->inquiry_is_valid = 1;
1163 
1164 			for (i = 0; i < 12; i++)
1165 				skdev->inq_serial_num[i] = buf[i + 4];
1166 			skdev->inq_serial_num[12] = 0;
1167 		}
1168 
1169 		if (skd_unquiesce_dev(skdev) < 0)
1170 			dev_dbg(&skdev->pdev->dev, "**** failed, to ONLINE device\n");
1171 		 /* connection is complete */
1172 		skdev->connect_retries = 0;
1173 		break;
1174 
1175 	case SYNCHRONIZE_CACHE:
1176 		if (status == SAM_STAT_GOOD)
1177 			skdev->sync_done = 1;
1178 		else
1179 			skdev->sync_done = -1;
1180 		wake_up_interruptible(&skdev->waitq);
1181 		break;
1182 
1183 	default:
1184 		SKD_ASSERT("we didn't send this");
1185 	}
1186 }
1187 
1188 /*
1189  *****************************************************************************
1190  * FIT MESSAGES
1191  *****************************************************************************
1192  */
1193 
skd_send_fitmsg(struct skd_device * skdev,struct skd_fitmsg_context * skmsg)1194 static void skd_send_fitmsg(struct skd_device *skdev,
1195 			    struct skd_fitmsg_context *skmsg)
1196 {
1197 	u64 qcmd;
1198 
1199 	dev_dbg(&skdev->pdev->dev, "dma address %pad, busy=%d\n",
1200 		&skmsg->mb_dma_address, skd_in_flight(skdev));
1201 	dev_dbg(&skdev->pdev->dev, "msg_buf %p\n", skmsg->msg_buf);
1202 
1203 	qcmd = skmsg->mb_dma_address;
1204 	qcmd |= FIT_QCMD_QID_NORMAL;
1205 
1206 	if (unlikely(skdev->dbg_level > 1)) {
1207 		u8 *bp = (u8 *)skmsg->msg_buf;
1208 		int i;
1209 		for (i = 0; i < skmsg->length; i += 8) {
1210 			dev_dbg(&skdev->pdev->dev, "msg[%2d] %8ph\n", i,
1211 				&bp[i]);
1212 			if (i == 0)
1213 				i = 64 - 8;
1214 		}
1215 	}
1216 
1217 	if (skmsg->length > 256)
1218 		qcmd |= FIT_QCMD_MSGSIZE_512;
1219 	else if (skmsg->length > 128)
1220 		qcmd |= FIT_QCMD_MSGSIZE_256;
1221 	else if (skmsg->length > 64)
1222 		qcmd |= FIT_QCMD_MSGSIZE_128;
1223 	else
1224 		/*
1225 		 * This makes no sense because the FIT msg header is
1226 		 * 64 bytes. If the msg is only 64 bytes long it has
1227 		 * no payload.
1228 		 */
1229 		qcmd |= FIT_QCMD_MSGSIZE_64;
1230 
1231 	dma_sync_single_for_device(&skdev->pdev->dev, skmsg->mb_dma_address,
1232 				   skmsg->length, DMA_TO_DEVICE);
1233 
1234 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1235 	smp_wmb();
1236 
1237 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1238 }
1239 
skd_send_special_fitmsg(struct skd_device * skdev,struct skd_special_context * skspcl)1240 static void skd_send_special_fitmsg(struct skd_device *skdev,
1241 				    struct skd_special_context *skspcl)
1242 {
1243 	u64 qcmd;
1244 
1245 	WARN_ON_ONCE(skspcl->req.n_sg != 1);
1246 
1247 	if (unlikely(skdev->dbg_level > 1)) {
1248 		u8 *bp = (u8 *)skspcl->msg_buf;
1249 		int i;
1250 
1251 		for (i = 0; i < SKD_N_SPECIAL_FITMSG_BYTES; i += 8) {
1252 			dev_dbg(&skdev->pdev->dev, " spcl[%2d] %8ph\n", i,
1253 				&bp[i]);
1254 			if (i == 0)
1255 				i = 64 - 8;
1256 		}
1257 
1258 		dev_dbg(&skdev->pdev->dev,
1259 			"skspcl=%p id=%04x sksg_list=%p sksg_dma=%pad\n",
1260 			skspcl, skspcl->req.id, skspcl->req.sksg_list,
1261 			&skspcl->req.sksg_dma_address);
1262 		for (i = 0; i < skspcl->req.n_sg; i++) {
1263 			struct fit_sg_descriptor *sgd =
1264 				&skspcl->req.sksg_list[i];
1265 
1266 			dev_dbg(&skdev->pdev->dev,
1267 				"  sg[%d] count=%u ctrl=0x%x addr=0x%llx next=0x%llx\n",
1268 				i, sgd->byte_count, sgd->control,
1269 				sgd->host_side_addr, sgd->next_desc_ptr);
1270 		}
1271 	}
1272 
1273 	/*
1274 	 * Special FIT msgs are always 128 bytes: a 64-byte FIT hdr
1275 	 * and one 64-byte SSDI command.
1276 	 */
1277 	qcmd = skspcl->mb_dma_address;
1278 	qcmd |= FIT_QCMD_QID_NORMAL + FIT_QCMD_MSGSIZE_128;
1279 
1280 	dma_sync_single_for_device(&skdev->pdev->dev, skspcl->mb_dma_address,
1281 				   SKD_N_SPECIAL_FITMSG_BYTES, DMA_TO_DEVICE);
1282 	dma_sync_single_for_device(&skdev->pdev->dev,
1283 				   skspcl->req.sksg_dma_address,
1284 				   1 * sizeof(struct fit_sg_descriptor),
1285 				   DMA_TO_DEVICE);
1286 	dma_sync_single_for_device(&skdev->pdev->dev,
1287 				   skspcl->db_dma_address,
1288 				   skspcl->req.sksg_list[0].byte_count,
1289 				   DMA_BIDIRECTIONAL);
1290 
1291 	/* Make sure skd_msg_buf is written before the doorbell is triggered. */
1292 	smp_wmb();
1293 
1294 	SKD_WRITEQ(skdev, qcmd, FIT_Q_COMMAND);
1295 }
1296 
1297 /*
1298  *****************************************************************************
1299  * COMPLETION QUEUE
1300  *****************************************************************************
1301  */
1302 
1303 static void skd_complete_other(struct skd_device *skdev,
1304 			       struct fit_completion_entry_v1 *skcomp,
1305 			       struct fit_comp_error_info *skerr);
1306 
1307 struct sns_info {
1308 	u8 type;
1309 	u8 stat;
1310 	u8 key;
1311 	u8 asc;
1312 	u8 ascq;
1313 	u8 mask;
1314 	enum skd_check_status_action action;
1315 };
1316 
1317 static struct sns_info skd_chkstat_table[] = {
1318 	/* Good */
1319 	{ 0x70, 0x02, RECOVERED_ERROR, 0,    0,	   0x1c,
1320 	  SKD_CHECK_STATUS_REPORT_GOOD },
1321 
1322 	/* Smart alerts */
1323 	{ 0x70, 0x02, NO_SENSE,	       0x0B, 0x00, 0x1E,	/* warnings */
1324 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1325 	{ 0x70, 0x02, NO_SENSE,	       0x5D, 0x00, 0x1E,	/* thresholds */
1326 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1327 	{ 0x70, 0x02, RECOVERED_ERROR, 0x0B, 0x01, 0x1F,        /* temperature over trigger */
1328 	  SKD_CHECK_STATUS_REPORT_SMART_ALERT },
1329 
1330 	/* Retry (with limits) */
1331 	{ 0x70, 0x02, 0x0B,	       0,    0,	   0x1C,        /* This one is for DMA ERROR */
1332 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1333 	{ 0x70, 0x02, 0x06,	       0x0B, 0x00, 0x1E,        /* warnings */
1334 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1335 	{ 0x70, 0x02, 0x06,	       0x5D, 0x00, 0x1E,        /* thresholds */
1336 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1337 	{ 0x70, 0x02, 0x06,	       0x80, 0x30, 0x1F,        /* backup power */
1338 	  SKD_CHECK_STATUS_REQUEUE_REQUEST },
1339 
1340 	/* Busy (or about to be) */
1341 	{ 0x70, 0x02, 0x06,	       0x3f, 0x01, 0x1F, /* fw changed */
1342 	  SKD_CHECK_STATUS_BUSY_IMMINENT },
1343 };
1344 
1345 /*
1346  * Look up status and sense data to decide how to handle the error
1347  * from the device.
1348  * mask says which fields must match e.g., mask=0x18 means check
1349  * type and stat, ignore key, asc, ascq.
1350  */
1351 
1352 static enum skd_check_status_action
skd_check_status(struct skd_device * skdev,u8 cmp_status,struct fit_comp_error_info * skerr)1353 skd_check_status(struct skd_device *skdev,
1354 		 u8 cmp_status, struct fit_comp_error_info *skerr)
1355 {
1356 	int i;
1357 
1358 	dev_err(&skdev->pdev->dev, "key/asc/ascq/fruc %02x/%02x/%02x/%02x\n",
1359 		skerr->key, skerr->code, skerr->qual, skerr->fruc);
1360 
1361 	dev_dbg(&skdev->pdev->dev,
1362 		"stat: t=%02x stat=%02x k=%02x c=%02x q=%02x fruc=%02x\n",
1363 		skerr->type, cmp_status, skerr->key, skerr->code, skerr->qual,
1364 		skerr->fruc);
1365 
1366 	/* Does the info match an entry in the good category? */
1367 	for (i = 0; i < ARRAY_SIZE(skd_chkstat_table); i++) {
1368 		struct sns_info *sns = &skd_chkstat_table[i];
1369 
1370 		if (sns->mask & 0x10)
1371 			if (skerr->type != sns->type)
1372 				continue;
1373 
1374 		if (sns->mask & 0x08)
1375 			if (cmp_status != sns->stat)
1376 				continue;
1377 
1378 		if (sns->mask & 0x04)
1379 			if (skerr->key != sns->key)
1380 				continue;
1381 
1382 		if (sns->mask & 0x02)
1383 			if (skerr->code != sns->asc)
1384 				continue;
1385 
1386 		if (sns->mask & 0x01)
1387 			if (skerr->qual != sns->ascq)
1388 				continue;
1389 
1390 		if (sns->action == SKD_CHECK_STATUS_REPORT_SMART_ALERT) {
1391 			dev_err(&skdev->pdev->dev,
1392 				"SMART Alert: sense key/asc/ascq %02x/%02x/%02x\n",
1393 				skerr->key, skerr->code, skerr->qual);
1394 		}
1395 		return sns->action;
1396 	}
1397 
1398 	/* No other match, so nonzero status means error,
1399 	 * zero status means good
1400 	 */
1401 	if (cmp_status) {
1402 		dev_dbg(&skdev->pdev->dev, "status check: error\n");
1403 		return SKD_CHECK_STATUS_REPORT_ERROR;
1404 	}
1405 
1406 	dev_dbg(&skdev->pdev->dev, "status check good default\n");
1407 	return SKD_CHECK_STATUS_REPORT_GOOD;
1408 }
1409 
skd_resolve_req_exception(struct skd_device * skdev,struct skd_request_context * skreq,struct request * req)1410 static void skd_resolve_req_exception(struct skd_device *skdev,
1411 				      struct skd_request_context *skreq,
1412 				      struct request *req)
1413 {
1414 	u8 cmp_status = skreq->completion.status;
1415 
1416 	switch (skd_check_status(skdev, cmp_status, &skreq->err_info)) {
1417 	case SKD_CHECK_STATUS_REPORT_GOOD:
1418 	case SKD_CHECK_STATUS_REPORT_SMART_ALERT:
1419 		skreq->status = BLK_STS_OK;
1420 		blk_mq_complete_request(req);
1421 		break;
1422 
1423 	case SKD_CHECK_STATUS_BUSY_IMMINENT:
1424 		skd_log_skreq(skdev, skreq, "retry(busy)");
1425 		blk_mq_requeue_request(req, true);
1426 		dev_info(&skdev->pdev->dev, "drive BUSY imminent\n");
1427 		skdev->state = SKD_DRVR_STATE_BUSY_IMMINENT;
1428 		skdev->timer_countdown = SKD_TIMER_MINUTES(20);
1429 		skd_quiesce_dev(skdev);
1430 		break;
1431 
1432 	case SKD_CHECK_STATUS_REQUEUE_REQUEST:
1433 		if (++skreq->retries < SKD_MAX_RETRIES) {
1434 			skd_log_skreq(skdev, skreq, "retry");
1435 			blk_mq_requeue_request(req, true);
1436 			break;
1437 		}
1438 		/* fall through */
1439 
1440 	case SKD_CHECK_STATUS_REPORT_ERROR:
1441 	default:
1442 		skreq->status = BLK_STS_IOERR;
1443 		blk_mq_complete_request(req);
1444 		break;
1445 	}
1446 }
1447 
skd_release_skreq(struct skd_device * skdev,struct skd_request_context * skreq)1448 static void skd_release_skreq(struct skd_device *skdev,
1449 			      struct skd_request_context *skreq)
1450 {
1451 	/*
1452 	 * Reclaim the skd_request_context
1453 	 */
1454 	skreq->state = SKD_REQ_STATE_IDLE;
1455 }
1456 
skd_isr_completion_posted(struct skd_device * skdev,int limit,int * enqueued)1457 static int skd_isr_completion_posted(struct skd_device *skdev,
1458 					int limit, int *enqueued)
1459 {
1460 	struct fit_completion_entry_v1 *skcmp;
1461 	struct fit_comp_error_info *skerr;
1462 	u16 req_id;
1463 	u32 tag;
1464 	u16 hwq = 0;
1465 	struct request *rq;
1466 	struct skd_request_context *skreq;
1467 	u16 cmp_cntxt;
1468 	u8 cmp_status;
1469 	u8 cmp_cycle;
1470 	u32 cmp_bytes;
1471 	int rc = 0;
1472 	int processed = 0;
1473 
1474 	lockdep_assert_held(&skdev->lock);
1475 
1476 	for (;; ) {
1477 		SKD_ASSERT(skdev->skcomp_ix < SKD_N_COMPLETION_ENTRY);
1478 
1479 		skcmp = &skdev->skcomp_table[skdev->skcomp_ix];
1480 		cmp_cycle = skcmp->cycle;
1481 		cmp_cntxt = skcmp->tag;
1482 		cmp_status = skcmp->status;
1483 		cmp_bytes = be32_to_cpu(skcmp->num_returned_bytes);
1484 
1485 		skerr = &skdev->skerr_table[skdev->skcomp_ix];
1486 
1487 		dev_dbg(&skdev->pdev->dev,
1488 			"cycle=%d ix=%d got cycle=%d cmdctxt=0x%x stat=%d busy=%d rbytes=0x%x proto=%d\n",
1489 			skdev->skcomp_cycle, skdev->skcomp_ix, cmp_cycle,
1490 			cmp_cntxt, cmp_status, skd_in_flight(skdev),
1491 			cmp_bytes, skdev->proto_ver);
1492 
1493 		if (cmp_cycle != skdev->skcomp_cycle) {
1494 			dev_dbg(&skdev->pdev->dev, "end of completions\n");
1495 			break;
1496 		}
1497 		/*
1498 		 * Update the completion queue head index and possibly
1499 		 * the completion cycle count. 8-bit wrap-around.
1500 		 */
1501 		skdev->skcomp_ix++;
1502 		if (skdev->skcomp_ix >= SKD_N_COMPLETION_ENTRY) {
1503 			skdev->skcomp_ix = 0;
1504 			skdev->skcomp_cycle++;
1505 		}
1506 
1507 		/*
1508 		 * The command context is a unique 32-bit ID. The low order
1509 		 * bits help locate the request. The request is usually a
1510 		 * r/w request (see skd_start() above) or a special request.
1511 		 */
1512 		req_id = cmp_cntxt;
1513 		tag = req_id & SKD_ID_SLOT_AND_TABLE_MASK;
1514 
1515 		/* Is this other than a r/w request? */
1516 		if (tag >= skdev->num_req_context) {
1517 			/*
1518 			 * This is not a completion for a r/w request.
1519 			 */
1520 			WARN_ON_ONCE(blk_mq_tag_to_rq(skdev->tag_set.tags[hwq],
1521 						      tag));
1522 			skd_complete_other(skdev, skcmp, skerr);
1523 			continue;
1524 		}
1525 
1526 		rq = blk_mq_tag_to_rq(skdev->tag_set.tags[hwq], tag);
1527 		if (WARN(!rq, "No request for tag %#x -> %#x\n", cmp_cntxt,
1528 			 tag))
1529 			continue;
1530 		skreq = blk_mq_rq_to_pdu(rq);
1531 
1532 		/*
1533 		 * Make sure the request ID for the slot matches.
1534 		 */
1535 		if (skreq->id != req_id) {
1536 			dev_err(&skdev->pdev->dev,
1537 				"Completion mismatch comp_id=0x%04x skreq=0x%04x new=0x%04x\n",
1538 				req_id, skreq->id, cmp_cntxt);
1539 
1540 			continue;
1541 		}
1542 
1543 		SKD_ASSERT(skreq->state == SKD_REQ_STATE_BUSY);
1544 
1545 		skreq->completion = *skcmp;
1546 		if (unlikely(cmp_status == SAM_STAT_CHECK_CONDITION)) {
1547 			skreq->err_info = *skerr;
1548 			skd_log_check_status(skdev, cmp_status, skerr->key,
1549 					     skerr->code, skerr->qual,
1550 					     skerr->fruc);
1551 		}
1552 		/* Release DMA resources for the request. */
1553 		if (skreq->n_sg > 0)
1554 			skd_postop_sg_list(skdev, skreq);
1555 
1556 		skd_release_skreq(skdev, skreq);
1557 
1558 		/*
1559 		 * Capture the outcome and post it back to the native request.
1560 		 */
1561 		if (likely(cmp_status == SAM_STAT_GOOD)) {
1562 			skreq->status = BLK_STS_OK;
1563 			blk_mq_complete_request(rq);
1564 		} else {
1565 			skd_resolve_req_exception(skdev, skreq, rq);
1566 		}
1567 
1568 		/* skd_isr_comp_limit equal zero means no limit */
1569 		if (limit) {
1570 			if (++processed >= limit) {
1571 				rc = 1;
1572 				break;
1573 			}
1574 		}
1575 	}
1576 
1577 	if (skdev->state == SKD_DRVR_STATE_PAUSING &&
1578 	    skd_in_flight(skdev) == 0) {
1579 		skdev->state = SKD_DRVR_STATE_PAUSED;
1580 		wake_up_interruptible(&skdev->waitq);
1581 	}
1582 
1583 	return rc;
1584 }
1585 
skd_complete_other(struct skd_device * skdev,struct fit_completion_entry_v1 * skcomp,struct fit_comp_error_info * skerr)1586 static void skd_complete_other(struct skd_device *skdev,
1587 			       struct fit_completion_entry_v1 *skcomp,
1588 			       struct fit_comp_error_info *skerr)
1589 {
1590 	u32 req_id = 0;
1591 	u32 req_table;
1592 	u32 req_slot;
1593 	struct skd_special_context *skspcl;
1594 
1595 	lockdep_assert_held(&skdev->lock);
1596 
1597 	req_id = skcomp->tag;
1598 	req_table = req_id & SKD_ID_TABLE_MASK;
1599 	req_slot = req_id & SKD_ID_SLOT_MASK;
1600 
1601 	dev_dbg(&skdev->pdev->dev, "table=0x%x id=0x%x slot=%d\n", req_table,
1602 		req_id, req_slot);
1603 
1604 	/*
1605 	 * Based on the request id, determine how to dispatch this completion.
1606 	 * This swich/case is finding the good cases and forwarding the
1607 	 * completion entry. Errors are reported below the switch.
1608 	 */
1609 	switch (req_table) {
1610 	case SKD_ID_RW_REQUEST:
1611 		/*
1612 		 * The caller, skd_isr_completion_posted() above,
1613 		 * handles r/w requests. The only way we get here
1614 		 * is if the req_slot is out of bounds.
1615 		 */
1616 		break;
1617 
1618 	case SKD_ID_INTERNAL:
1619 		if (req_slot == 0) {
1620 			skspcl = &skdev->internal_skspcl;
1621 			if (skspcl->req.id == req_id &&
1622 			    skspcl->req.state == SKD_REQ_STATE_BUSY) {
1623 				skd_complete_internal(skdev,
1624 						      skcomp, skerr, skspcl);
1625 				return;
1626 			}
1627 		}
1628 		break;
1629 
1630 	case SKD_ID_FIT_MSG:
1631 		/*
1632 		 * These id's should never appear in a completion record.
1633 		 */
1634 		break;
1635 
1636 	default:
1637 		/*
1638 		 * These id's should never appear anywhere;
1639 		 */
1640 		break;
1641 	}
1642 
1643 	/*
1644 	 * If we get here it is a bad or stale id.
1645 	 */
1646 }
1647 
skd_reset_skcomp(struct skd_device * skdev)1648 static void skd_reset_skcomp(struct skd_device *skdev)
1649 {
1650 	memset(skdev->skcomp_table, 0, SKD_SKCOMP_SIZE);
1651 
1652 	skdev->skcomp_ix = 0;
1653 	skdev->skcomp_cycle = 1;
1654 }
1655 
1656 /*
1657  *****************************************************************************
1658  * INTERRUPTS
1659  *****************************************************************************
1660  */
skd_completion_worker(struct work_struct * work)1661 static void skd_completion_worker(struct work_struct *work)
1662 {
1663 	struct skd_device *skdev =
1664 		container_of(work, struct skd_device, completion_worker);
1665 	unsigned long flags;
1666 	int flush_enqueued = 0;
1667 
1668 	spin_lock_irqsave(&skdev->lock, flags);
1669 
1670 	/*
1671 	 * pass in limit=0, which means no limit..
1672 	 * process everything in compq
1673 	 */
1674 	skd_isr_completion_posted(skdev, 0, &flush_enqueued);
1675 	schedule_work(&skdev->start_queue);
1676 
1677 	spin_unlock_irqrestore(&skdev->lock, flags);
1678 }
1679 
1680 static void skd_isr_msg_from_dev(struct skd_device *skdev);
1681 
1682 static irqreturn_t
skd_isr(int irq,void * ptr)1683 skd_isr(int irq, void *ptr)
1684 {
1685 	struct skd_device *skdev = ptr;
1686 	u32 intstat;
1687 	u32 ack;
1688 	int rc = 0;
1689 	int deferred = 0;
1690 	int flush_enqueued = 0;
1691 
1692 	spin_lock(&skdev->lock);
1693 
1694 	for (;; ) {
1695 		intstat = SKD_READL(skdev, FIT_INT_STATUS_HOST);
1696 
1697 		ack = FIT_INT_DEF_MASK;
1698 		ack &= intstat;
1699 
1700 		dev_dbg(&skdev->pdev->dev, "intstat=0x%x ack=0x%x\n", intstat,
1701 			ack);
1702 
1703 		/* As long as there is an int pending on device, keep
1704 		 * running loop.  When none, get out, but if we've never
1705 		 * done any processing, call completion handler?
1706 		 */
1707 		if (ack == 0) {
1708 			/* No interrupts on device, but run the completion
1709 			 * processor anyway?
1710 			 */
1711 			if (rc == 0)
1712 				if (likely (skdev->state
1713 					== SKD_DRVR_STATE_ONLINE))
1714 					deferred = 1;
1715 			break;
1716 		}
1717 
1718 		rc = IRQ_HANDLED;
1719 
1720 		SKD_WRITEL(skdev, ack, FIT_INT_STATUS_HOST);
1721 
1722 		if (likely((skdev->state != SKD_DRVR_STATE_LOAD) &&
1723 			   (skdev->state != SKD_DRVR_STATE_STOPPING))) {
1724 			if (intstat & FIT_ISH_COMPLETION_POSTED) {
1725 				/*
1726 				 * If we have already deferred completion
1727 				 * processing, don't bother running it again
1728 				 */
1729 				if (deferred == 0)
1730 					deferred =
1731 						skd_isr_completion_posted(skdev,
1732 						skd_isr_comp_limit, &flush_enqueued);
1733 			}
1734 
1735 			if (intstat & FIT_ISH_FW_STATE_CHANGE) {
1736 				skd_isr_fwstate(skdev);
1737 				if (skdev->state == SKD_DRVR_STATE_FAULT ||
1738 				    skdev->state ==
1739 				    SKD_DRVR_STATE_DISAPPEARED) {
1740 					spin_unlock(&skdev->lock);
1741 					return rc;
1742 				}
1743 			}
1744 
1745 			if (intstat & FIT_ISH_MSG_FROM_DEV)
1746 				skd_isr_msg_from_dev(skdev);
1747 		}
1748 	}
1749 
1750 	if (unlikely(flush_enqueued))
1751 		schedule_work(&skdev->start_queue);
1752 
1753 	if (deferred)
1754 		schedule_work(&skdev->completion_worker);
1755 	else if (!flush_enqueued)
1756 		schedule_work(&skdev->start_queue);
1757 
1758 	spin_unlock(&skdev->lock);
1759 
1760 	return rc;
1761 }
1762 
skd_drive_fault(struct skd_device * skdev)1763 static void skd_drive_fault(struct skd_device *skdev)
1764 {
1765 	skdev->state = SKD_DRVR_STATE_FAULT;
1766 	dev_err(&skdev->pdev->dev, "Drive FAULT\n");
1767 }
1768 
skd_drive_disappeared(struct skd_device * skdev)1769 static void skd_drive_disappeared(struct skd_device *skdev)
1770 {
1771 	skdev->state = SKD_DRVR_STATE_DISAPPEARED;
1772 	dev_err(&skdev->pdev->dev, "Drive DISAPPEARED\n");
1773 }
1774 
skd_isr_fwstate(struct skd_device * skdev)1775 static void skd_isr_fwstate(struct skd_device *skdev)
1776 {
1777 	u32 sense;
1778 	u32 state;
1779 	u32 mtd;
1780 	int prev_driver_state = skdev->state;
1781 
1782 	sense = SKD_READL(skdev, FIT_STATUS);
1783 	state = sense & FIT_SR_DRIVE_STATE_MASK;
1784 
1785 	dev_err(&skdev->pdev->dev, "s1120 state %s(%d)=>%s(%d)\n",
1786 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
1787 		skd_drive_state_to_str(state), state);
1788 
1789 	skdev->drive_state = state;
1790 
1791 	switch (skdev->drive_state) {
1792 	case FIT_SR_DRIVE_INIT:
1793 		if (skdev->state == SKD_DRVR_STATE_PROTOCOL_MISMATCH) {
1794 			skd_disable_interrupts(skdev);
1795 			break;
1796 		}
1797 		if (skdev->state == SKD_DRVR_STATE_RESTARTING)
1798 			skd_recover_requests(skdev);
1799 		if (skdev->state == SKD_DRVR_STATE_WAIT_BOOT) {
1800 			skdev->timer_countdown = SKD_STARTING_TIMO;
1801 			skdev->state = SKD_DRVR_STATE_STARTING;
1802 			skd_soft_reset(skdev);
1803 			break;
1804 		}
1805 		mtd = FIT_MXD_CONS(FIT_MTD_FITFW_INIT, 0, 0);
1806 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1807 		skdev->last_mtd = mtd;
1808 		break;
1809 
1810 	case FIT_SR_DRIVE_ONLINE:
1811 		skdev->cur_max_queue_depth = skd_max_queue_depth;
1812 		if (skdev->cur_max_queue_depth > skdev->dev_max_queue_depth)
1813 			skdev->cur_max_queue_depth = skdev->dev_max_queue_depth;
1814 
1815 		skdev->queue_low_water_mark =
1816 			skdev->cur_max_queue_depth * 2 / 3 + 1;
1817 		if (skdev->queue_low_water_mark < 1)
1818 			skdev->queue_low_water_mark = 1;
1819 		dev_info(&skdev->pdev->dev,
1820 			 "Queue depth limit=%d dev=%d lowat=%d\n",
1821 			 skdev->cur_max_queue_depth,
1822 			 skdev->dev_max_queue_depth,
1823 			 skdev->queue_low_water_mark);
1824 
1825 		skd_refresh_device_data(skdev);
1826 		break;
1827 
1828 	case FIT_SR_DRIVE_BUSY:
1829 		skdev->state = SKD_DRVR_STATE_BUSY;
1830 		skdev->timer_countdown = SKD_BUSY_TIMO;
1831 		skd_quiesce_dev(skdev);
1832 		break;
1833 	case FIT_SR_DRIVE_BUSY_SANITIZE:
1834 		/* set timer for 3 seconds, we'll abort any unfinished
1835 		 * commands after that expires
1836 		 */
1837 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
1838 		skdev->timer_countdown = SKD_TIMER_SECONDS(3);
1839 		schedule_work(&skdev->start_queue);
1840 		break;
1841 	case FIT_SR_DRIVE_BUSY_ERASE:
1842 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
1843 		skdev->timer_countdown = SKD_BUSY_TIMO;
1844 		break;
1845 	case FIT_SR_DRIVE_OFFLINE:
1846 		skdev->state = SKD_DRVR_STATE_IDLE;
1847 		break;
1848 	case FIT_SR_DRIVE_SOFT_RESET:
1849 		switch (skdev->state) {
1850 		case SKD_DRVR_STATE_STARTING:
1851 		case SKD_DRVR_STATE_RESTARTING:
1852 			/* Expected by a caller of skd_soft_reset() */
1853 			break;
1854 		default:
1855 			skdev->state = SKD_DRVR_STATE_RESTARTING;
1856 			break;
1857 		}
1858 		break;
1859 	case FIT_SR_DRIVE_FW_BOOTING:
1860 		dev_dbg(&skdev->pdev->dev, "ISR FIT_SR_DRIVE_FW_BOOTING\n");
1861 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
1862 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
1863 		break;
1864 
1865 	case FIT_SR_DRIVE_DEGRADED:
1866 	case FIT_SR_PCIE_LINK_DOWN:
1867 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
1868 		break;
1869 
1870 	case FIT_SR_DRIVE_FAULT:
1871 		skd_drive_fault(skdev);
1872 		skd_recover_requests(skdev);
1873 		schedule_work(&skdev->start_queue);
1874 		break;
1875 
1876 	/* PCIe bus returned all Fs? */
1877 	case 0xFF:
1878 		dev_info(&skdev->pdev->dev, "state=0x%x sense=0x%x\n", state,
1879 			 sense);
1880 		skd_drive_disappeared(skdev);
1881 		skd_recover_requests(skdev);
1882 		schedule_work(&skdev->start_queue);
1883 		break;
1884 	default:
1885 		/*
1886 		 * Uknown FW State. Wait for a state we recognize.
1887 		 */
1888 		break;
1889 	}
1890 	dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
1891 		skd_skdev_state_to_str(prev_driver_state), prev_driver_state,
1892 		skd_skdev_state_to_str(skdev->state), skdev->state);
1893 }
1894 
skd_recover_request(struct request * req,void * data,bool reserved)1895 static bool skd_recover_request(struct request *req, void *data, bool reserved)
1896 {
1897 	struct skd_device *const skdev = data;
1898 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(req);
1899 
1900 	if (skreq->state != SKD_REQ_STATE_BUSY)
1901 		return true;
1902 
1903 	skd_log_skreq(skdev, skreq, "recover");
1904 
1905 	/* Release DMA resources for the request. */
1906 	if (skreq->n_sg > 0)
1907 		skd_postop_sg_list(skdev, skreq);
1908 
1909 	skreq->state = SKD_REQ_STATE_IDLE;
1910 	skreq->status = BLK_STS_IOERR;
1911 	blk_mq_complete_request(req);
1912 	return true;
1913 }
1914 
skd_recover_requests(struct skd_device * skdev)1915 static void skd_recover_requests(struct skd_device *skdev)
1916 {
1917 	blk_mq_tagset_busy_iter(&skdev->tag_set, skd_recover_request, skdev);
1918 }
1919 
skd_isr_msg_from_dev(struct skd_device * skdev)1920 static void skd_isr_msg_from_dev(struct skd_device *skdev)
1921 {
1922 	u32 mfd;
1923 	u32 mtd;
1924 	u32 data;
1925 
1926 	mfd = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
1927 
1928 	dev_dbg(&skdev->pdev->dev, "mfd=0x%x last_mtd=0x%x\n", mfd,
1929 		skdev->last_mtd);
1930 
1931 	/* ignore any mtd that is an ack for something we didn't send */
1932 	if (FIT_MXD_TYPE(mfd) != FIT_MXD_TYPE(skdev->last_mtd))
1933 		return;
1934 
1935 	switch (FIT_MXD_TYPE(mfd)) {
1936 	case FIT_MTD_FITFW_INIT:
1937 		skdev->proto_ver = FIT_PROTOCOL_MAJOR_VER(mfd);
1938 
1939 		if (skdev->proto_ver != FIT_PROTOCOL_VERSION_1) {
1940 			dev_err(&skdev->pdev->dev, "protocol mismatch\n");
1941 			dev_err(&skdev->pdev->dev, "  got=%d support=%d\n",
1942 				skdev->proto_ver, FIT_PROTOCOL_VERSION_1);
1943 			dev_err(&skdev->pdev->dev, "  please upgrade driver\n");
1944 			skdev->state = SKD_DRVR_STATE_PROTOCOL_MISMATCH;
1945 			skd_soft_reset(skdev);
1946 			break;
1947 		}
1948 		mtd = FIT_MXD_CONS(FIT_MTD_GET_CMDQ_DEPTH, 0, 0);
1949 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1950 		skdev->last_mtd = mtd;
1951 		break;
1952 
1953 	case FIT_MTD_GET_CMDQ_DEPTH:
1954 		skdev->dev_max_queue_depth = FIT_MXD_DATA(mfd);
1955 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_DEPTH, 0,
1956 				   SKD_N_COMPLETION_ENTRY);
1957 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1958 		skdev->last_mtd = mtd;
1959 		break;
1960 
1961 	case FIT_MTD_SET_COMPQ_DEPTH:
1962 		SKD_WRITEQ(skdev, skdev->cq_dma_address, FIT_MSG_TO_DEVICE_ARG);
1963 		mtd = FIT_MXD_CONS(FIT_MTD_SET_COMPQ_ADDR, 0, 0);
1964 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1965 		skdev->last_mtd = mtd;
1966 		break;
1967 
1968 	case FIT_MTD_SET_COMPQ_ADDR:
1969 		skd_reset_skcomp(skdev);
1970 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_HOST_ID, 0, skdev->devno);
1971 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1972 		skdev->last_mtd = mtd;
1973 		break;
1974 
1975 	case FIT_MTD_CMD_LOG_HOST_ID:
1976 		/* hardware interface overflows in y2106 */
1977 		skdev->connect_time_stamp = (u32)ktime_get_real_seconds();
1978 		data = skdev->connect_time_stamp & 0xFFFF;
1979 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_LO, 0, data);
1980 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1981 		skdev->last_mtd = mtd;
1982 		break;
1983 
1984 	case FIT_MTD_CMD_LOG_TIME_STAMP_LO:
1985 		skdev->drive_jiffies = FIT_MXD_DATA(mfd);
1986 		data = (skdev->connect_time_stamp >> 16) & 0xFFFF;
1987 		mtd = FIT_MXD_CONS(FIT_MTD_CMD_LOG_TIME_STAMP_HI, 0, data);
1988 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1989 		skdev->last_mtd = mtd;
1990 		break;
1991 
1992 	case FIT_MTD_CMD_LOG_TIME_STAMP_HI:
1993 		skdev->drive_jiffies |= (FIT_MXD_DATA(mfd) << 16);
1994 		mtd = FIT_MXD_CONS(FIT_MTD_ARM_QUEUE, 0, 0);
1995 		SKD_WRITEL(skdev, mtd, FIT_MSG_TO_DEVICE);
1996 		skdev->last_mtd = mtd;
1997 
1998 		dev_err(&skdev->pdev->dev, "Time sync driver=0x%x device=0x%x\n",
1999 			skdev->connect_time_stamp, skdev->drive_jiffies);
2000 		break;
2001 
2002 	case FIT_MTD_ARM_QUEUE:
2003 		skdev->last_mtd = 0;
2004 		/*
2005 		 * State should be, or soon will be, FIT_SR_DRIVE_ONLINE.
2006 		 */
2007 		break;
2008 
2009 	default:
2010 		break;
2011 	}
2012 }
2013 
skd_disable_interrupts(struct skd_device * skdev)2014 static void skd_disable_interrupts(struct skd_device *skdev)
2015 {
2016 	u32 sense;
2017 
2018 	sense = SKD_READL(skdev, FIT_CONTROL);
2019 	sense &= ~FIT_CR_ENABLE_INTERRUPTS;
2020 	SKD_WRITEL(skdev, sense, FIT_CONTROL);
2021 	dev_dbg(&skdev->pdev->dev, "sense 0x%x\n", sense);
2022 
2023 	/* Note that the 1s is written. A 1-bit means
2024 	 * disable, a 0 means enable.
2025 	 */
2026 	SKD_WRITEL(skdev, ~0, FIT_INT_MASK_HOST);
2027 }
2028 
skd_enable_interrupts(struct skd_device * skdev)2029 static void skd_enable_interrupts(struct skd_device *skdev)
2030 {
2031 	u32 val;
2032 
2033 	/* unmask interrupts first */
2034 	val = FIT_ISH_FW_STATE_CHANGE +
2035 	      FIT_ISH_COMPLETION_POSTED + FIT_ISH_MSG_FROM_DEV;
2036 
2037 	/* Note that the compliment of mask is written. A 1-bit means
2038 	 * disable, a 0 means enable. */
2039 	SKD_WRITEL(skdev, ~val, FIT_INT_MASK_HOST);
2040 	dev_dbg(&skdev->pdev->dev, "interrupt mask=0x%x\n", ~val);
2041 
2042 	val = SKD_READL(skdev, FIT_CONTROL);
2043 	val |= FIT_CR_ENABLE_INTERRUPTS;
2044 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2045 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2046 }
2047 
2048 /*
2049  *****************************************************************************
2050  * START, STOP, RESTART, QUIESCE, UNQUIESCE
2051  *****************************************************************************
2052  */
2053 
skd_soft_reset(struct skd_device * skdev)2054 static void skd_soft_reset(struct skd_device *skdev)
2055 {
2056 	u32 val;
2057 
2058 	val = SKD_READL(skdev, FIT_CONTROL);
2059 	val |= (FIT_CR_SOFT_RESET);
2060 	dev_dbg(&skdev->pdev->dev, "control=0x%x\n", val);
2061 	SKD_WRITEL(skdev, val, FIT_CONTROL);
2062 }
2063 
skd_start_device(struct skd_device * skdev)2064 static void skd_start_device(struct skd_device *skdev)
2065 {
2066 	unsigned long flags;
2067 	u32 sense;
2068 	u32 state;
2069 
2070 	spin_lock_irqsave(&skdev->lock, flags);
2071 
2072 	/* ack all ghost interrupts */
2073 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2074 
2075 	sense = SKD_READL(skdev, FIT_STATUS);
2076 
2077 	dev_dbg(&skdev->pdev->dev, "initial status=0x%x\n", sense);
2078 
2079 	state = sense & FIT_SR_DRIVE_STATE_MASK;
2080 	skdev->drive_state = state;
2081 	skdev->last_mtd = 0;
2082 
2083 	skdev->state = SKD_DRVR_STATE_STARTING;
2084 	skdev->timer_countdown = SKD_STARTING_TIMO;
2085 
2086 	skd_enable_interrupts(skdev);
2087 
2088 	switch (skdev->drive_state) {
2089 	case FIT_SR_DRIVE_OFFLINE:
2090 		dev_err(&skdev->pdev->dev, "Drive offline...\n");
2091 		break;
2092 
2093 	case FIT_SR_DRIVE_FW_BOOTING:
2094 		dev_dbg(&skdev->pdev->dev, "FIT_SR_DRIVE_FW_BOOTING\n");
2095 		skdev->state = SKD_DRVR_STATE_WAIT_BOOT;
2096 		skdev->timer_countdown = SKD_WAIT_BOOT_TIMO;
2097 		break;
2098 
2099 	case FIT_SR_DRIVE_BUSY_SANITIZE:
2100 		dev_info(&skdev->pdev->dev, "Start: BUSY_SANITIZE\n");
2101 		skdev->state = SKD_DRVR_STATE_BUSY_SANITIZE;
2102 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2103 		break;
2104 
2105 	case FIT_SR_DRIVE_BUSY_ERASE:
2106 		dev_info(&skdev->pdev->dev, "Start: BUSY_ERASE\n");
2107 		skdev->state = SKD_DRVR_STATE_BUSY_ERASE;
2108 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2109 		break;
2110 
2111 	case FIT_SR_DRIVE_INIT:
2112 	case FIT_SR_DRIVE_ONLINE:
2113 		skd_soft_reset(skdev);
2114 		break;
2115 
2116 	case FIT_SR_DRIVE_BUSY:
2117 		dev_err(&skdev->pdev->dev, "Drive Busy...\n");
2118 		skdev->state = SKD_DRVR_STATE_BUSY;
2119 		skdev->timer_countdown = SKD_STARTED_BUSY_TIMO;
2120 		break;
2121 
2122 	case FIT_SR_DRIVE_SOFT_RESET:
2123 		dev_err(&skdev->pdev->dev, "drive soft reset in prog\n");
2124 		break;
2125 
2126 	case FIT_SR_DRIVE_FAULT:
2127 		/* Fault state is bad...soft reset won't do it...
2128 		 * Hard reset, maybe, but does it work on device?
2129 		 * For now, just fault so the system doesn't hang.
2130 		 */
2131 		skd_drive_fault(skdev);
2132 		/*start the queue so we can respond with error to requests */
2133 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2134 		schedule_work(&skdev->start_queue);
2135 		skdev->gendisk_on = -1;
2136 		wake_up_interruptible(&skdev->waitq);
2137 		break;
2138 
2139 	case 0xFF:
2140 		/* Most likely the device isn't there or isn't responding
2141 		 * to the BAR1 addresses. */
2142 		skd_drive_disappeared(skdev);
2143 		/*start the queue so we can respond with error to requests */
2144 		dev_dbg(&skdev->pdev->dev,
2145 			"starting queue to error-out reqs\n");
2146 		schedule_work(&skdev->start_queue);
2147 		skdev->gendisk_on = -1;
2148 		wake_up_interruptible(&skdev->waitq);
2149 		break;
2150 
2151 	default:
2152 		dev_err(&skdev->pdev->dev, "Start: unknown state %x\n",
2153 			skdev->drive_state);
2154 		break;
2155 	}
2156 
2157 	state = SKD_READL(skdev, FIT_CONTROL);
2158 	dev_dbg(&skdev->pdev->dev, "FIT Control Status=0x%x\n", state);
2159 
2160 	state = SKD_READL(skdev, FIT_INT_STATUS_HOST);
2161 	dev_dbg(&skdev->pdev->dev, "Intr Status=0x%x\n", state);
2162 
2163 	state = SKD_READL(skdev, FIT_INT_MASK_HOST);
2164 	dev_dbg(&skdev->pdev->dev, "Intr Mask=0x%x\n", state);
2165 
2166 	state = SKD_READL(skdev, FIT_MSG_FROM_DEVICE);
2167 	dev_dbg(&skdev->pdev->dev, "Msg from Dev=0x%x\n", state);
2168 
2169 	state = SKD_READL(skdev, FIT_HW_VERSION);
2170 	dev_dbg(&skdev->pdev->dev, "HW version=0x%x\n", state);
2171 
2172 	spin_unlock_irqrestore(&skdev->lock, flags);
2173 }
2174 
skd_stop_device(struct skd_device * skdev)2175 static void skd_stop_device(struct skd_device *skdev)
2176 {
2177 	unsigned long flags;
2178 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
2179 	u32 dev_state;
2180 	int i;
2181 
2182 	spin_lock_irqsave(&skdev->lock, flags);
2183 
2184 	if (skdev->state != SKD_DRVR_STATE_ONLINE) {
2185 		dev_err(&skdev->pdev->dev, "%s not online no sync\n", __func__);
2186 		goto stop_out;
2187 	}
2188 
2189 	if (skspcl->req.state != SKD_REQ_STATE_IDLE) {
2190 		dev_err(&skdev->pdev->dev, "%s no special\n", __func__);
2191 		goto stop_out;
2192 	}
2193 
2194 	skdev->state = SKD_DRVR_STATE_SYNCING;
2195 	skdev->sync_done = 0;
2196 
2197 	skd_send_internal_skspcl(skdev, skspcl, SYNCHRONIZE_CACHE);
2198 
2199 	spin_unlock_irqrestore(&skdev->lock, flags);
2200 
2201 	wait_event_interruptible_timeout(skdev->waitq,
2202 					 (skdev->sync_done), (10 * HZ));
2203 
2204 	spin_lock_irqsave(&skdev->lock, flags);
2205 
2206 	switch (skdev->sync_done) {
2207 	case 0:
2208 		dev_err(&skdev->pdev->dev, "%s no sync\n", __func__);
2209 		break;
2210 	case 1:
2211 		dev_err(&skdev->pdev->dev, "%s sync done\n", __func__);
2212 		break;
2213 	default:
2214 		dev_err(&skdev->pdev->dev, "%s sync error\n", __func__);
2215 	}
2216 
2217 stop_out:
2218 	skdev->state = SKD_DRVR_STATE_STOPPING;
2219 	spin_unlock_irqrestore(&skdev->lock, flags);
2220 
2221 	skd_kill_timer(skdev);
2222 
2223 	spin_lock_irqsave(&skdev->lock, flags);
2224 	skd_disable_interrupts(skdev);
2225 
2226 	/* ensure all ints on device are cleared */
2227 	/* soft reset the device to unload with a clean slate */
2228 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2229 	SKD_WRITEL(skdev, FIT_CR_SOFT_RESET, FIT_CONTROL);
2230 
2231 	spin_unlock_irqrestore(&skdev->lock, flags);
2232 
2233 	/* poll every 100ms, 1 second timeout */
2234 	for (i = 0; i < 10; i++) {
2235 		dev_state =
2236 			SKD_READL(skdev, FIT_STATUS) & FIT_SR_DRIVE_STATE_MASK;
2237 		if (dev_state == FIT_SR_DRIVE_INIT)
2238 			break;
2239 		set_current_state(TASK_INTERRUPTIBLE);
2240 		schedule_timeout(msecs_to_jiffies(100));
2241 	}
2242 
2243 	if (dev_state != FIT_SR_DRIVE_INIT)
2244 		dev_err(&skdev->pdev->dev, "%s state error 0x%02x\n", __func__,
2245 			dev_state);
2246 }
2247 
2248 /* assume spinlock is held */
skd_restart_device(struct skd_device * skdev)2249 static void skd_restart_device(struct skd_device *skdev)
2250 {
2251 	u32 state;
2252 
2253 	/* ack all ghost interrupts */
2254 	SKD_WRITEL(skdev, FIT_INT_DEF_MASK, FIT_INT_STATUS_HOST);
2255 
2256 	state = SKD_READL(skdev, FIT_STATUS);
2257 
2258 	dev_dbg(&skdev->pdev->dev, "drive status=0x%x\n", state);
2259 
2260 	state &= FIT_SR_DRIVE_STATE_MASK;
2261 	skdev->drive_state = state;
2262 	skdev->last_mtd = 0;
2263 
2264 	skdev->state = SKD_DRVR_STATE_RESTARTING;
2265 	skdev->timer_countdown = SKD_RESTARTING_TIMO;
2266 
2267 	skd_soft_reset(skdev);
2268 }
2269 
2270 /* assume spinlock is held */
skd_quiesce_dev(struct skd_device * skdev)2271 static int skd_quiesce_dev(struct skd_device *skdev)
2272 {
2273 	int rc = 0;
2274 
2275 	switch (skdev->state) {
2276 	case SKD_DRVR_STATE_BUSY:
2277 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2278 		dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2279 		blk_mq_stop_hw_queues(skdev->queue);
2280 		break;
2281 	case SKD_DRVR_STATE_ONLINE:
2282 	case SKD_DRVR_STATE_STOPPING:
2283 	case SKD_DRVR_STATE_SYNCING:
2284 	case SKD_DRVR_STATE_PAUSING:
2285 	case SKD_DRVR_STATE_PAUSED:
2286 	case SKD_DRVR_STATE_STARTING:
2287 	case SKD_DRVR_STATE_RESTARTING:
2288 	case SKD_DRVR_STATE_RESUMING:
2289 	default:
2290 		rc = -EINVAL;
2291 		dev_dbg(&skdev->pdev->dev, "state [%d] not implemented\n",
2292 			skdev->state);
2293 	}
2294 	return rc;
2295 }
2296 
2297 /* assume spinlock is held */
skd_unquiesce_dev(struct skd_device * skdev)2298 static int skd_unquiesce_dev(struct skd_device *skdev)
2299 {
2300 	int prev_driver_state = skdev->state;
2301 
2302 	skd_log_skdev(skdev, "unquiesce");
2303 	if (skdev->state == SKD_DRVR_STATE_ONLINE) {
2304 		dev_dbg(&skdev->pdev->dev, "**** device already ONLINE\n");
2305 		return 0;
2306 	}
2307 	if (skdev->drive_state != FIT_SR_DRIVE_ONLINE) {
2308 		/*
2309 		 * If there has been an state change to other than
2310 		 * ONLINE, we will rely on controller state change
2311 		 * to come back online and restart the queue.
2312 		 * The BUSY state means that driver is ready to
2313 		 * continue normal processing but waiting for controller
2314 		 * to become available.
2315 		 */
2316 		skdev->state = SKD_DRVR_STATE_BUSY;
2317 		dev_dbg(&skdev->pdev->dev, "drive BUSY state\n");
2318 		return 0;
2319 	}
2320 
2321 	/*
2322 	 * Drive has just come online, driver is either in startup,
2323 	 * paused performing a task, or bust waiting for hardware.
2324 	 */
2325 	switch (skdev->state) {
2326 	case SKD_DRVR_STATE_PAUSED:
2327 	case SKD_DRVR_STATE_BUSY:
2328 	case SKD_DRVR_STATE_BUSY_IMMINENT:
2329 	case SKD_DRVR_STATE_BUSY_ERASE:
2330 	case SKD_DRVR_STATE_STARTING:
2331 	case SKD_DRVR_STATE_RESTARTING:
2332 	case SKD_DRVR_STATE_FAULT:
2333 	case SKD_DRVR_STATE_IDLE:
2334 	case SKD_DRVR_STATE_LOAD:
2335 		skdev->state = SKD_DRVR_STATE_ONLINE;
2336 		dev_err(&skdev->pdev->dev, "Driver state %s(%d)=>%s(%d)\n",
2337 			skd_skdev_state_to_str(prev_driver_state),
2338 			prev_driver_state, skd_skdev_state_to_str(skdev->state),
2339 			skdev->state);
2340 		dev_dbg(&skdev->pdev->dev,
2341 			"**** device ONLINE...starting block queue\n");
2342 		dev_dbg(&skdev->pdev->dev, "starting queue\n");
2343 		dev_info(&skdev->pdev->dev, "STEC s1120 ONLINE\n");
2344 		schedule_work(&skdev->start_queue);
2345 		skdev->gendisk_on = 1;
2346 		wake_up_interruptible(&skdev->waitq);
2347 		break;
2348 
2349 	case SKD_DRVR_STATE_DISAPPEARED:
2350 	default:
2351 		dev_dbg(&skdev->pdev->dev,
2352 			"**** driver state %d, not implemented\n",
2353 			skdev->state);
2354 		return -EBUSY;
2355 	}
2356 	return 0;
2357 }
2358 
2359 /*
2360  *****************************************************************************
2361  * PCIe MSI/MSI-X INTERRUPT HANDLERS
2362  *****************************************************************************
2363  */
2364 
skd_reserved_isr(int irq,void * skd_host_data)2365 static irqreturn_t skd_reserved_isr(int irq, void *skd_host_data)
2366 {
2367 	struct skd_device *skdev = skd_host_data;
2368 	unsigned long flags;
2369 
2370 	spin_lock_irqsave(&skdev->lock, flags);
2371 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2372 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2373 	dev_err(&skdev->pdev->dev, "MSIX reserved irq %d = 0x%x\n", irq,
2374 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2375 	SKD_WRITEL(skdev, FIT_INT_RESERVED_MASK, FIT_INT_STATUS_HOST);
2376 	spin_unlock_irqrestore(&skdev->lock, flags);
2377 	return IRQ_HANDLED;
2378 }
2379 
skd_statec_isr(int irq,void * skd_host_data)2380 static irqreturn_t skd_statec_isr(int irq, void *skd_host_data)
2381 {
2382 	struct skd_device *skdev = skd_host_data;
2383 	unsigned long flags;
2384 
2385 	spin_lock_irqsave(&skdev->lock, flags);
2386 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2387 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2388 	SKD_WRITEL(skdev, FIT_ISH_FW_STATE_CHANGE, FIT_INT_STATUS_HOST);
2389 	skd_isr_fwstate(skdev);
2390 	spin_unlock_irqrestore(&skdev->lock, flags);
2391 	return IRQ_HANDLED;
2392 }
2393 
skd_comp_q(int irq,void * skd_host_data)2394 static irqreturn_t skd_comp_q(int irq, void *skd_host_data)
2395 {
2396 	struct skd_device *skdev = skd_host_data;
2397 	unsigned long flags;
2398 	int flush_enqueued = 0;
2399 	int deferred;
2400 
2401 	spin_lock_irqsave(&skdev->lock, flags);
2402 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2403 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2404 	SKD_WRITEL(skdev, FIT_ISH_COMPLETION_POSTED, FIT_INT_STATUS_HOST);
2405 	deferred = skd_isr_completion_posted(skdev, skd_isr_comp_limit,
2406 						&flush_enqueued);
2407 	if (flush_enqueued)
2408 		schedule_work(&skdev->start_queue);
2409 
2410 	if (deferred)
2411 		schedule_work(&skdev->completion_worker);
2412 	else if (!flush_enqueued)
2413 		schedule_work(&skdev->start_queue);
2414 
2415 	spin_unlock_irqrestore(&skdev->lock, flags);
2416 
2417 	return IRQ_HANDLED;
2418 }
2419 
skd_msg_isr(int irq,void * skd_host_data)2420 static irqreturn_t skd_msg_isr(int irq, void *skd_host_data)
2421 {
2422 	struct skd_device *skdev = skd_host_data;
2423 	unsigned long flags;
2424 
2425 	spin_lock_irqsave(&skdev->lock, flags);
2426 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2427 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2428 	SKD_WRITEL(skdev, FIT_ISH_MSG_FROM_DEV, FIT_INT_STATUS_HOST);
2429 	skd_isr_msg_from_dev(skdev);
2430 	spin_unlock_irqrestore(&skdev->lock, flags);
2431 	return IRQ_HANDLED;
2432 }
2433 
skd_qfull_isr(int irq,void * skd_host_data)2434 static irqreturn_t skd_qfull_isr(int irq, void *skd_host_data)
2435 {
2436 	struct skd_device *skdev = skd_host_data;
2437 	unsigned long flags;
2438 
2439 	spin_lock_irqsave(&skdev->lock, flags);
2440 	dev_dbg(&skdev->pdev->dev, "MSIX = 0x%x\n",
2441 		SKD_READL(skdev, FIT_INT_STATUS_HOST));
2442 	SKD_WRITEL(skdev, FIT_INT_QUEUE_FULL, FIT_INT_STATUS_HOST);
2443 	spin_unlock_irqrestore(&skdev->lock, flags);
2444 	return IRQ_HANDLED;
2445 }
2446 
2447 /*
2448  *****************************************************************************
2449  * PCIe MSI/MSI-X SETUP
2450  *****************************************************************************
2451  */
2452 
2453 struct skd_msix_entry {
2454 	char isr_name[30];
2455 };
2456 
2457 struct skd_init_msix_entry {
2458 	const char *name;
2459 	irq_handler_t handler;
2460 };
2461 
2462 #define SKD_MAX_MSIX_COUNT              13
2463 #define SKD_MIN_MSIX_COUNT              7
2464 #define SKD_BASE_MSIX_IRQ               4
2465 
2466 static struct skd_init_msix_entry msix_entries[SKD_MAX_MSIX_COUNT] = {
2467 	{ "(DMA 0)",	    skd_reserved_isr },
2468 	{ "(DMA 1)",	    skd_reserved_isr },
2469 	{ "(DMA 2)",	    skd_reserved_isr },
2470 	{ "(DMA 3)",	    skd_reserved_isr },
2471 	{ "(State Change)", skd_statec_isr   },
2472 	{ "(COMPL_Q)",	    skd_comp_q	     },
2473 	{ "(MSG)",	    skd_msg_isr	     },
2474 	{ "(Reserved)",	    skd_reserved_isr },
2475 	{ "(Reserved)",	    skd_reserved_isr },
2476 	{ "(Queue Full 0)", skd_qfull_isr    },
2477 	{ "(Queue Full 1)", skd_qfull_isr    },
2478 	{ "(Queue Full 2)", skd_qfull_isr    },
2479 	{ "(Queue Full 3)", skd_qfull_isr    },
2480 };
2481 
skd_acquire_msix(struct skd_device * skdev)2482 static int skd_acquire_msix(struct skd_device *skdev)
2483 {
2484 	int i, rc;
2485 	struct pci_dev *pdev = skdev->pdev;
2486 
2487 	rc = pci_alloc_irq_vectors(pdev, SKD_MAX_MSIX_COUNT, SKD_MAX_MSIX_COUNT,
2488 			PCI_IRQ_MSIX);
2489 	if (rc < 0) {
2490 		dev_err(&skdev->pdev->dev, "failed to enable MSI-X %d\n", rc);
2491 		goto out;
2492 	}
2493 
2494 	skdev->msix_entries = kcalloc(SKD_MAX_MSIX_COUNT,
2495 			sizeof(struct skd_msix_entry), GFP_KERNEL);
2496 	if (!skdev->msix_entries) {
2497 		rc = -ENOMEM;
2498 		dev_err(&skdev->pdev->dev, "msix table allocation error\n");
2499 		goto out;
2500 	}
2501 
2502 	/* Enable MSI-X vectors for the base queue */
2503 	for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2504 		struct skd_msix_entry *qentry = &skdev->msix_entries[i];
2505 
2506 		snprintf(qentry->isr_name, sizeof(qentry->isr_name),
2507 			 "%s%d-msix %s", DRV_NAME, skdev->devno,
2508 			 msix_entries[i].name);
2509 
2510 		rc = devm_request_irq(&skdev->pdev->dev,
2511 				pci_irq_vector(skdev->pdev, i),
2512 				msix_entries[i].handler, 0,
2513 				qentry->isr_name, skdev);
2514 		if (rc) {
2515 			dev_err(&skdev->pdev->dev,
2516 				"Unable to register(%d) MSI-X handler %d: %s\n",
2517 				rc, i, qentry->isr_name);
2518 			goto msix_out;
2519 		}
2520 	}
2521 
2522 	dev_dbg(&skdev->pdev->dev, "%d msix irq(s) enabled\n",
2523 		SKD_MAX_MSIX_COUNT);
2524 	return 0;
2525 
2526 msix_out:
2527 	while (--i >= 0)
2528 		devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i), skdev);
2529 out:
2530 	kfree(skdev->msix_entries);
2531 	skdev->msix_entries = NULL;
2532 	return rc;
2533 }
2534 
skd_acquire_irq(struct skd_device * skdev)2535 static int skd_acquire_irq(struct skd_device *skdev)
2536 {
2537 	struct pci_dev *pdev = skdev->pdev;
2538 	unsigned int irq_flag = PCI_IRQ_LEGACY;
2539 	int rc;
2540 
2541 	if (skd_isr_type == SKD_IRQ_MSIX) {
2542 		rc = skd_acquire_msix(skdev);
2543 		if (!rc)
2544 			return 0;
2545 
2546 		dev_err(&skdev->pdev->dev,
2547 			"failed to enable MSI-X, re-trying with MSI %d\n", rc);
2548 	}
2549 
2550 	snprintf(skdev->isr_name, sizeof(skdev->isr_name), "%s%d", DRV_NAME,
2551 			skdev->devno);
2552 
2553 	if (skd_isr_type != SKD_IRQ_LEGACY)
2554 		irq_flag |= PCI_IRQ_MSI;
2555 	rc = pci_alloc_irq_vectors(pdev, 1, 1, irq_flag);
2556 	if (rc < 0) {
2557 		dev_err(&skdev->pdev->dev,
2558 			"failed to allocate the MSI interrupt %d\n", rc);
2559 		return rc;
2560 	}
2561 
2562 	rc = devm_request_irq(&pdev->dev, pdev->irq, skd_isr,
2563 			pdev->msi_enabled ? 0 : IRQF_SHARED,
2564 			skdev->isr_name, skdev);
2565 	if (rc) {
2566 		pci_free_irq_vectors(pdev);
2567 		dev_err(&skdev->pdev->dev, "failed to allocate interrupt %d\n",
2568 			rc);
2569 		return rc;
2570 	}
2571 
2572 	return 0;
2573 }
2574 
skd_release_irq(struct skd_device * skdev)2575 static void skd_release_irq(struct skd_device *skdev)
2576 {
2577 	struct pci_dev *pdev = skdev->pdev;
2578 
2579 	if (skdev->msix_entries) {
2580 		int i;
2581 
2582 		for (i = 0; i < SKD_MAX_MSIX_COUNT; i++) {
2583 			devm_free_irq(&pdev->dev, pci_irq_vector(pdev, i),
2584 					skdev);
2585 		}
2586 
2587 		kfree(skdev->msix_entries);
2588 		skdev->msix_entries = NULL;
2589 	} else {
2590 		devm_free_irq(&pdev->dev, pdev->irq, skdev);
2591 	}
2592 
2593 	pci_free_irq_vectors(pdev);
2594 }
2595 
2596 /*
2597  *****************************************************************************
2598  * CONSTRUCT
2599  *****************************************************************************
2600  */
2601 
skd_alloc_dma(struct skd_device * skdev,struct kmem_cache * s,dma_addr_t * dma_handle,gfp_t gfp,enum dma_data_direction dir)2602 static void *skd_alloc_dma(struct skd_device *skdev, struct kmem_cache *s,
2603 			   dma_addr_t *dma_handle, gfp_t gfp,
2604 			   enum dma_data_direction dir)
2605 {
2606 	struct device *dev = &skdev->pdev->dev;
2607 	void *buf;
2608 
2609 	buf = kmem_cache_alloc(s, gfp);
2610 	if (!buf)
2611 		return NULL;
2612 	*dma_handle = dma_map_single(dev, buf,
2613 				     kmem_cache_size(s), dir);
2614 	if (dma_mapping_error(dev, *dma_handle)) {
2615 		kmem_cache_free(s, buf);
2616 		buf = NULL;
2617 	}
2618 	return buf;
2619 }
2620 
skd_free_dma(struct skd_device * skdev,struct kmem_cache * s,void * vaddr,dma_addr_t dma_handle,enum dma_data_direction dir)2621 static void skd_free_dma(struct skd_device *skdev, struct kmem_cache *s,
2622 			 void *vaddr, dma_addr_t dma_handle,
2623 			 enum dma_data_direction dir)
2624 {
2625 	if (!vaddr)
2626 		return;
2627 
2628 	dma_unmap_single(&skdev->pdev->dev, dma_handle,
2629 			 kmem_cache_size(s), dir);
2630 	kmem_cache_free(s, vaddr);
2631 }
2632 
skd_cons_skcomp(struct skd_device * skdev)2633 static int skd_cons_skcomp(struct skd_device *skdev)
2634 {
2635 	int rc = 0;
2636 	struct fit_completion_entry_v1 *skcomp;
2637 
2638 	dev_dbg(&skdev->pdev->dev,
2639 		"comp pci_alloc, total bytes %zd entries %d\n",
2640 		SKD_SKCOMP_SIZE, SKD_N_COMPLETION_ENTRY);
2641 
2642 	skcomp = dma_alloc_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2643 				    &skdev->cq_dma_address, GFP_KERNEL);
2644 
2645 	if (skcomp == NULL) {
2646 		rc = -ENOMEM;
2647 		goto err_out;
2648 	}
2649 
2650 	skdev->skcomp_table = skcomp;
2651 	skdev->skerr_table = (struct fit_comp_error_info *)((char *)skcomp +
2652 							   sizeof(*skcomp) *
2653 							   SKD_N_COMPLETION_ENTRY);
2654 
2655 err_out:
2656 	return rc;
2657 }
2658 
skd_cons_skmsg(struct skd_device * skdev)2659 static int skd_cons_skmsg(struct skd_device *skdev)
2660 {
2661 	int rc = 0;
2662 	u32 i;
2663 
2664 	dev_dbg(&skdev->pdev->dev,
2665 		"skmsg_table kcalloc, struct %lu, count %u total %lu\n",
2666 		sizeof(struct skd_fitmsg_context), skdev->num_fitmsg_context,
2667 		sizeof(struct skd_fitmsg_context) * skdev->num_fitmsg_context);
2668 
2669 	skdev->skmsg_table = kcalloc(skdev->num_fitmsg_context,
2670 				     sizeof(struct skd_fitmsg_context),
2671 				     GFP_KERNEL);
2672 	if (skdev->skmsg_table == NULL) {
2673 		rc = -ENOMEM;
2674 		goto err_out;
2675 	}
2676 
2677 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2678 		struct skd_fitmsg_context *skmsg;
2679 
2680 		skmsg = &skdev->skmsg_table[i];
2681 
2682 		skmsg->id = i + SKD_ID_FIT_MSG;
2683 
2684 		skmsg->msg_buf = dma_alloc_coherent(&skdev->pdev->dev,
2685 						    SKD_N_FITMSG_BYTES,
2686 						    &skmsg->mb_dma_address,
2687 						    GFP_KERNEL);
2688 		if (skmsg->msg_buf == NULL) {
2689 			rc = -ENOMEM;
2690 			goto err_out;
2691 		}
2692 
2693 		WARN(((uintptr_t)skmsg->msg_buf | skmsg->mb_dma_address) &
2694 		     (FIT_QCMD_ALIGN - 1),
2695 		     "not aligned: msg_buf %p mb_dma_address %pad\n",
2696 		     skmsg->msg_buf, &skmsg->mb_dma_address);
2697 	}
2698 
2699 err_out:
2700 	return rc;
2701 }
2702 
skd_cons_sg_list(struct skd_device * skdev,u32 n_sg,dma_addr_t * ret_dma_addr)2703 static struct fit_sg_descriptor *skd_cons_sg_list(struct skd_device *skdev,
2704 						  u32 n_sg,
2705 						  dma_addr_t *ret_dma_addr)
2706 {
2707 	struct fit_sg_descriptor *sg_list;
2708 
2709 	sg_list = skd_alloc_dma(skdev, skdev->sglist_cache, ret_dma_addr,
2710 				GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2711 
2712 	if (sg_list != NULL) {
2713 		uint64_t dma_address = *ret_dma_addr;
2714 		u32 i;
2715 
2716 		for (i = 0; i < n_sg - 1; i++) {
2717 			uint64_t ndp_off;
2718 			ndp_off = (i + 1) * sizeof(struct fit_sg_descriptor);
2719 
2720 			sg_list[i].next_desc_ptr = dma_address + ndp_off;
2721 		}
2722 		sg_list[i].next_desc_ptr = 0LL;
2723 	}
2724 
2725 	return sg_list;
2726 }
2727 
skd_free_sg_list(struct skd_device * skdev,struct fit_sg_descriptor * sg_list,dma_addr_t dma_addr)2728 static void skd_free_sg_list(struct skd_device *skdev,
2729 			     struct fit_sg_descriptor *sg_list,
2730 			     dma_addr_t dma_addr)
2731 {
2732 	if (WARN_ON_ONCE(!sg_list))
2733 		return;
2734 
2735 	skd_free_dma(skdev, skdev->sglist_cache, sg_list, dma_addr,
2736 		     DMA_TO_DEVICE);
2737 }
2738 
skd_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2739 static int skd_init_request(struct blk_mq_tag_set *set, struct request *rq,
2740 			    unsigned int hctx_idx, unsigned int numa_node)
2741 {
2742 	struct skd_device *skdev = set->driver_data;
2743 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2744 
2745 	skreq->state = SKD_REQ_STATE_IDLE;
2746 	skreq->sg = (void *)(skreq + 1);
2747 	sg_init_table(skreq->sg, skd_sgs_per_request);
2748 	skreq->sksg_list = skd_cons_sg_list(skdev, skd_sgs_per_request,
2749 					    &skreq->sksg_dma_address);
2750 
2751 	return skreq->sksg_list ? 0 : -ENOMEM;
2752 }
2753 
skd_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)2754 static void skd_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2755 			     unsigned int hctx_idx)
2756 {
2757 	struct skd_device *skdev = set->driver_data;
2758 	struct skd_request_context *skreq = blk_mq_rq_to_pdu(rq);
2759 
2760 	skd_free_sg_list(skdev, skreq->sksg_list, skreq->sksg_dma_address);
2761 }
2762 
skd_cons_sksb(struct skd_device * skdev)2763 static int skd_cons_sksb(struct skd_device *skdev)
2764 {
2765 	int rc = 0;
2766 	struct skd_special_context *skspcl;
2767 
2768 	skspcl = &skdev->internal_skspcl;
2769 
2770 	skspcl->req.id = 0 + SKD_ID_INTERNAL;
2771 	skspcl->req.state = SKD_REQ_STATE_IDLE;
2772 
2773 	skspcl->data_buf = skd_alloc_dma(skdev, skdev->databuf_cache,
2774 					 &skspcl->db_dma_address,
2775 					 GFP_DMA | __GFP_ZERO,
2776 					 DMA_BIDIRECTIONAL);
2777 	if (skspcl->data_buf == NULL) {
2778 		rc = -ENOMEM;
2779 		goto err_out;
2780 	}
2781 
2782 	skspcl->msg_buf = skd_alloc_dma(skdev, skdev->msgbuf_cache,
2783 					&skspcl->mb_dma_address,
2784 					GFP_DMA | __GFP_ZERO, DMA_TO_DEVICE);
2785 	if (skspcl->msg_buf == NULL) {
2786 		rc = -ENOMEM;
2787 		goto err_out;
2788 	}
2789 
2790 	skspcl->req.sksg_list = skd_cons_sg_list(skdev, 1,
2791 						 &skspcl->req.sksg_dma_address);
2792 	if (skspcl->req.sksg_list == NULL) {
2793 		rc = -ENOMEM;
2794 		goto err_out;
2795 	}
2796 
2797 	if (!skd_format_internal_skspcl(skdev)) {
2798 		rc = -EINVAL;
2799 		goto err_out;
2800 	}
2801 
2802 err_out:
2803 	return rc;
2804 }
2805 
2806 static const struct blk_mq_ops skd_mq_ops = {
2807 	.queue_rq	= skd_mq_queue_rq,
2808 	.complete	= skd_complete_rq,
2809 	.timeout	= skd_timed_out,
2810 	.init_request	= skd_init_request,
2811 	.exit_request	= skd_exit_request,
2812 };
2813 
skd_cons_disk(struct skd_device * skdev)2814 static int skd_cons_disk(struct skd_device *skdev)
2815 {
2816 	int rc = 0;
2817 	struct gendisk *disk;
2818 	struct request_queue *q;
2819 	unsigned long flags;
2820 
2821 	disk = alloc_disk(SKD_MINORS_PER_DEVICE);
2822 	if (!disk) {
2823 		rc = -ENOMEM;
2824 		goto err_out;
2825 	}
2826 
2827 	skdev->disk = disk;
2828 	sprintf(disk->disk_name, DRV_NAME "%u", skdev->devno);
2829 
2830 	disk->major = skdev->major;
2831 	disk->first_minor = skdev->devno * SKD_MINORS_PER_DEVICE;
2832 	disk->fops = &skd_blockdev_ops;
2833 	disk->private_data = skdev;
2834 
2835 	memset(&skdev->tag_set, 0, sizeof(skdev->tag_set));
2836 	skdev->tag_set.ops = &skd_mq_ops;
2837 	skdev->tag_set.nr_hw_queues = 1;
2838 	skdev->tag_set.queue_depth = skd_max_queue_depth;
2839 	skdev->tag_set.cmd_size = sizeof(struct skd_request_context) +
2840 		skdev->sgs_per_request * sizeof(struct scatterlist);
2841 	skdev->tag_set.numa_node = NUMA_NO_NODE;
2842 	skdev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE |
2843 		BLK_ALLOC_POLICY_TO_MQ_FLAG(BLK_TAG_ALLOC_FIFO);
2844 	skdev->tag_set.driver_data = skdev;
2845 	rc = blk_mq_alloc_tag_set(&skdev->tag_set);
2846 	if (rc)
2847 		goto err_out;
2848 	q = blk_mq_init_queue(&skdev->tag_set);
2849 	if (IS_ERR(q)) {
2850 		blk_mq_free_tag_set(&skdev->tag_set);
2851 		rc = PTR_ERR(q);
2852 		goto err_out;
2853 	}
2854 	q->queuedata = skdev;
2855 
2856 	skdev->queue = q;
2857 	disk->queue = q;
2858 
2859 	blk_queue_write_cache(q, true, true);
2860 	blk_queue_max_segments(q, skdev->sgs_per_request);
2861 	blk_queue_max_hw_sectors(q, SKD_N_MAX_SECTORS);
2862 
2863 	/* set optimal I/O size to 8KB */
2864 	blk_queue_io_opt(q, 8192);
2865 
2866 	blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2867 	blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2868 
2869 	blk_queue_rq_timeout(q, 8 * HZ);
2870 
2871 	spin_lock_irqsave(&skdev->lock, flags);
2872 	dev_dbg(&skdev->pdev->dev, "stopping queue\n");
2873 	blk_mq_stop_hw_queues(skdev->queue);
2874 	spin_unlock_irqrestore(&skdev->lock, flags);
2875 
2876 err_out:
2877 	return rc;
2878 }
2879 
2880 #define SKD_N_DEV_TABLE         16u
2881 static u32 skd_next_devno;
2882 
skd_construct(struct pci_dev * pdev)2883 static struct skd_device *skd_construct(struct pci_dev *pdev)
2884 {
2885 	struct skd_device *skdev;
2886 	int blk_major = skd_major;
2887 	size_t size;
2888 	int rc;
2889 
2890 	skdev = kzalloc(sizeof(*skdev), GFP_KERNEL);
2891 
2892 	if (!skdev) {
2893 		dev_err(&pdev->dev, "memory alloc failure\n");
2894 		return NULL;
2895 	}
2896 
2897 	skdev->state = SKD_DRVR_STATE_LOAD;
2898 	skdev->pdev = pdev;
2899 	skdev->devno = skd_next_devno++;
2900 	skdev->major = blk_major;
2901 	skdev->dev_max_queue_depth = 0;
2902 
2903 	skdev->num_req_context = skd_max_queue_depth;
2904 	skdev->num_fitmsg_context = skd_max_queue_depth;
2905 	skdev->cur_max_queue_depth = 1;
2906 	skdev->queue_low_water_mark = 1;
2907 	skdev->proto_ver = 99;
2908 	skdev->sgs_per_request = skd_sgs_per_request;
2909 	skdev->dbg_level = skd_dbg_level;
2910 
2911 	spin_lock_init(&skdev->lock);
2912 
2913 	INIT_WORK(&skdev->start_queue, skd_start_queue);
2914 	INIT_WORK(&skdev->completion_worker, skd_completion_worker);
2915 
2916 	size = max(SKD_N_FITMSG_BYTES, SKD_N_SPECIAL_FITMSG_BYTES);
2917 	skdev->msgbuf_cache = kmem_cache_create("skd-msgbuf", size, 0,
2918 						SLAB_HWCACHE_ALIGN, NULL);
2919 	if (!skdev->msgbuf_cache)
2920 		goto err_out;
2921 	WARN_ONCE(kmem_cache_size(skdev->msgbuf_cache) < size,
2922 		  "skd-msgbuf: %d < %zd\n",
2923 		  kmem_cache_size(skdev->msgbuf_cache), size);
2924 	size = skd_sgs_per_request * sizeof(struct fit_sg_descriptor);
2925 	skdev->sglist_cache = kmem_cache_create("skd-sglist", size, 0,
2926 						SLAB_HWCACHE_ALIGN, NULL);
2927 	if (!skdev->sglist_cache)
2928 		goto err_out;
2929 	WARN_ONCE(kmem_cache_size(skdev->sglist_cache) < size,
2930 		  "skd-sglist: %d < %zd\n",
2931 		  kmem_cache_size(skdev->sglist_cache), size);
2932 	size = SKD_N_INTERNAL_BYTES;
2933 	skdev->databuf_cache = kmem_cache_create("skd-databuf", size, 0,
2934 						 SLAB_HWCACHE_ALIGN, NULL);
2935 	if (!skdev->databuf_cache)
2936 		goto err_out;
2937 	WARN_ONCE(kmem_cache_size(skdev->databuf_cache) < size,
2938 		  "skd-databuf: %d < %zd\n",
2939 		  kmem_cache_size(skdev->databuf_cache), size);
2940 
2941 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
2942 	rc = skd_cons_skcomp(skdev);
2943 	if (rc < 0)
2944 		goto err_out;
2945 
2946 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
2947 	rc = skd_cons_skmsg(skdev);
2948 	if (rc < 0)
2949 		goto err_out;
2950 
2951 	dev_dbg(&skdev->pdev->dev, "sksb\n");
2952 	rc = skd_cons_sksb(skdev);
2953 	if (rc < 0)
2954 		goto err_out;
2955 
2956 	dev_dbg(&skdev->pdev->dev, "disk\n");
2957 	rc = skd_cons_disk(skdev);
2958 	if (rc < 0)
2959 		goto err_out;
2960 
2961 	dev_dbg(&skdev->pdev->dev, "VICTORY\n");
2962 	return skdev;
2963 
2964 err_out:
2965 	dev_dbg(&skdev->pdev->dev, "construct failed\n");
2966 	skd_destruct(skdev);
2967 	return NULL;
2968 }
2969 
2970 /*
2971  *****************************************************************************
2972  * DESTRUCT (FREE)
2973  *****************************************************************************
2974  */
2975 
skd_free_skcomp(struct skd_device * skdev)2976 static void skd_free_skcomp(struct skd_device *skdev)
2977 {
2978 	if (skdev->skcomp_table)
2979 		dma_free_coherent(&skdev->pdev->dev, SKD_SKCOMP_SIZE,
2980 				  skdev->skcomp_table, skdev->cq_dma_address);
2981 
2982 	skdev->skcomp_table = NULL;
2983 	skdev->cq_dma_address = 0;
2984 }
2985 
skd_free_skmsg(struct skd_device * skdev)2986 static void skd_free_skmsg(struct skd_device *skdev)
2987 {
2988 	u32 i;
2989 
2990 	if (skdev->skmsg_table == NULL)
2991 		return;
2992 
2993 	for (i = 0; i < skdev->num_fitmsg_context; i++) {
2994 		struct skd_fitmsg_context *skmsg;
2995 
2996 		skmsg = &skdev->skmsg_table[i];
2997 
2998 		if (skmsg->msg_buf != NULL) {
2999 			dma_free_coherent(&skdev->pdev->dev, SKD_N_FITMSG_BYTES,
3000 					  skmsg->msg_buf,
3001 					    skmsg->mb_dma_address);
3002 		}
3003 		skmsg->msg_buf = NULL;
3004 		skmsg->mb_dma_address = 0;
3005 	}
3006 
3007 	kfree(skdev->skmsg_table);
3008 	skdev->skmsg_table = NULL;
3009 }
3010 
skd_free_sksb(struct skd_device * skdev)3011 static void skd_free_sksb(struct skd_device *skdev)
3012 {
3013 	struct skd_special_context *skspcl = &skdev->internal_skspcl;
3014 
3015 	skd_free_dma(skdev, skdev->databuf_cache, skspcl->data_buf,
3016 		     skspcl->db_dma_address, DMA_BIDIRECTIONAL);
3017 
3018 	skspcl->data_buf = NULL;
3019 	skspcl->db_dma_address = 0;
3020 
3021 	skd_free_dma(skdev, skdev->msgbuf_cache, skspcl->msg_buf,
3022 		     skspcl->mb_dma_address, DMA_TO_DEVICE);
3023 
3024 	skspcl->msg_buf = NULL;
3025 	skspcl->mb_dma_address = 0;
3026 
3027 	skd_free_sg_list(skdev, skspcl->req.sksg_list,
3028 			 skspcl->req.sksg_dma_address);
3029 
3030 	skspcl->req.sksg_list = NULL;
3031 	skspcl->req.sksg_dma_address = 0;
3032 }
3033 
skd_free_disk(struct skd_device * skdev)3034 static void skd_free_disk(struct skd_device *skdev)
3035 {
3036 	struct gendisk *disk = skdev->disk;
3037 
3038 	if (disk && (disk->flags & GENHD_FL_UP))
3039 		del_gendisk(disk);
3040 
3041 	if (skdev->queue) {
3042 		blk_cleanup_queue(skdev->queue);
3043 		skdev->queue = NULL;
3044 		if (disk)
3045 			disk->queue = NULL;
3046 	}
3047 
3048 	if (skdev->tag_set.tags)
3049 		blk_mq_free_tag_set(&skdev->tag_set);
3050 
3051 	put_disk(disk);
3052 	skdev->disk = NULL;
3053 }
3054 
skd_destruct(struct skd_device * skdev)3055 static void skd_destruct(struct skd_device *skdev)
3056 {
3057 	if (skdev == NULL)
3058 		return;
3059 
3060 	cancel_work_sync(&skdev->start_queue);
3061 
3062 	dev_dbg(&skdev->pdev->dev, "disk\n");
3063 	skd_free_disk(skdev);
3064 
3065 	dev_dbg(&skdev->pdev->dev, "sksb\n");
3066 	skd_free_sksb(skdev);
3067 
3068 	dev_dbg(&skdev->pdev->dev, "skmsg\n");
3069 	skd_free_skmsg(skdev);
3070 
3071 	dev_dbg(&skdev->pdev->dev, "skcomp\n");
3072 	skd_free_skcomp(skdev);
3073 
3074 	kmem_cache_destroy(skdev->databuf_cache);
3075 	kmem_cache_destroy(skdev->sglist_cache);
3076 	kmem_cache_destroy(skdev->msgbuf_cache);
3077 
3078 	dev_dbg(&skdev->pdev->dev, "skdev\n");
3079 	kfree(skdev);
3080 }
3081 
3082 /*
3083  *****************************************************************************
3084  * BLOCK DEVICE (BDEV) GLUE
3085  *****************************************************************************
3086  */
3087 
skd_bdev_getgeo(struct block_device * bdev,struct hd_geometry * geo)3088 static int skd_bdev_getgeo(struct block_device *bdev, struct hd_geometry *geo)
3089 {
3090 	struct skd_device *skdev;
3091 	u64 capacity;
3092 
3093 	skdev = bdev->bd_disk->private_data;
3094 
3095 	dev_dbg(&skdev->pdev->dev, "%s: CMD[%s] getgeo device\n",
3096 		bdev->bd_disk->disk_name, current->comm);
3097 
3098 	if (skdev->read_cap_is_valid) {
3099 		capacity = get_capacity(skdev->disk);
3100 		geo->heads = 64;
3101 		geo->sectors = 255;
3102 		geo->cylinders = (capacity) / (255 * 64);
3103 
3104 		return 0;
3105 	}
3106 	return -EIO;
3107 }
3108 
skd_bdev_attach(struct device * parent,struct skd_device * skdev)3109 static int skd_bdev_attach(struct device *parent, struct skd_device *skdev)
3110 {
3111 	dev_dbg(&skdev->pdev->dev, "add_disk\n");
3112 	device_add_disk(parent, skdev->disk, NULL);
3113 	return 0;
3114 }
3115 
3116 static const struct block_device_operations skd_blockdev_ops = {
3117 	.owner		= THIS_MODULE,
3118 	.getgeo		= skd_bdev_getgeo,
3119 };
3120 
3121 /*
3122  *****************************************************************************
3123  * PCIe DRIVER GLUE
3124  *****************************************************************************
3125  */
3126 
3127 static const struct pci_device_id skd_pci_tbl[] = {
3128 	{ PCI_VENDOR_ID_STEC, PCI_DEVICE_ID_S1120,
3129 	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
3130 	{ 0 }                     /* terminate list */
3131 };
3132 
3133 MODULE_DEVICE_TABLE(pci, skd_pci_tbl);
3134 
skd_pci_info(struct skd_device * skdev,char * str)3135 static char *skd_pci_info(struct skd_device *skdev, char *str)
3136 {
3137 	int pcie_reg;
3138 
3139 	strcpy(str, "PCIe (");
3140 	pcie_reg = pci_find_capability(skdev->pdev, PCI_CAP_ID_EXP);
3141 
3142 	if (pcie_reg) {
3143 
3144 		char lwstr[6];
3145 		uint16_t pcie_lstat, lspeed, lwidth;
3146 
3147 		pcie_reg += 0x12;
3148 		pci_read_config_word(skdev->pdev, pcie_reg, &pcie_lstat);
3149 		lspeed = pcie_lstat & (0xF);
3150 		lwidth = (pcie_lstat & 0x3F0) >> 4;
3151 
3152 		if (lspeed == 1)
3153 			strcat(str, "2.5GT/s ");
3154 		else if (lspeed == 2)
3155 			strcat(str, "5.0GT/s ");
3156 		else
3157 			strcat(str, "<unknown> ");
3158 		snprintf(lwstr, sizeof(lwstr), "%dX)", lwidth);
3159 		strcat(str, lwstr);
3160 	}
3161 	return str;
3162 }
3163 
skd_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)3164 static int skd_pci_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
3165 {
3166 	int i;
3167 	int rc = 0;
3168 	char pci_str[32];
3169 	struct skd_device *skdev;
3170 
3171 	dev_dbg(&pdev->dev, "vendor=%04X device=%04x\n", pdev->vendor,
3172 		pdev->device);
3173 
3174 	rc = pci_enable_device(pdev);
3175 	if (rc)
3176 		return rc;
3177 	rc = pci_request_regions(pdev, DRV_NAME);
3178 	if (rc)
3179 		goto err_out;
3180 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3181 	if (rc)
3182 		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3183 	if (rc) {
3184 		dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3185 		goto err_out_regions;
3186 	}
3187 
3188 	if (!skd_major) {
3189 		rc = register_blkdev(0, DRV_NAME);
3190 		if (rc < 0)
3191 			goto err_out_regions;
3192 		BUG_ON(!rc);
3193 		skd_major = rc;
3194 	}
3195 
3196 	skdev = skd_construct(pdev);
3197 	if (skdev == NULL) {
3198 		rc = -ENOMEM;
3199 		goto err_out_regions;
3200 	}
3201 
3202 	skd_pci_info(skdev, pci_str);
3203 	dev_info(&pdev->dev, "%s 64bit\n", pci_str);
3204 
3205 	pci_set_master(pdev);
3206 	rc = pci_enable_pcie_error_reporting(pdev);
3207 	if (rc) {
3208 		dev_err(&pdev->dev,
3209 			"bad enable of PCIe error reporting rc=%d\n", rc);
3210 		skdev->pcie_error_reporting_is_enabled = 0;
3211 	} else
3212 		skdev->pcie_error_reporting_is_enabled = 1;
3213 
3214 	pci_set_drvdata(pdev, skdev);
3215 
3216 	for (i = 0; i < SKD_MAX_BARS; i++) {
3217 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3218 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3219 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3220 					    skdev->mem_size[i]);
3221 		if (!skdev->mem_map[i]) {
3222 			dev_err(&pdev->dev,
3223 				"Unable to map adapter memory!\n");
3224 			rc = -ENODEV;
3225 			goto err_out_iounmap;
3226 		}
3227 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3228 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3229 			skdev->mem_size[i]);
3230 	}
3231 
3232 	rc = skd_acquire_irq(skdev);
3233 	if (rc) {
3234 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3235 		goto err_out_iounmap;
3236 	}
3237 
3238 	rc = skd_start_timer(skdev);
3239 	if (rc)
3240 		goto err_out_timer;
3241 
3242 	init_waitqueue_head(&skdev->waitq);
3243 
3244 	skd_start_device(skdev);
3245 
3246 	rc = wait_event_interruptible_timeout(skdev->waitq,
3247 					      (skdev->gendisk_on),
3248 					      (SKD_START_WAIT_SECONDS * HZ));
3249 	if (skdev->gendisk_on > 0) {
3250 		/* device came on-line after reset */
3251 		skd_bdev_attach(&pdev->dev, skdev);
3252 		rc = 0;
3253 	} else {
3254 		/* we timed out, something is wrong with the device,
3255 		   don't add the disk structure */
3256 		dev_err(&pdev->dev, "error: waiting for s1120 timed out %d!\n",
3257 			rc);
3258 		/* in case of no error; we timeout with ENXIO */
3259 		if (!rc)
3260 			rc = -ENXIO;
3261 		goto err_out_timer;
3262 	}
3263 
3264 	return rc;
3265 
3266 err_out_timer:
3267 	skd_stop_device(skdev);
3268 	skd_release_irq(skdev);
3269 
3270 err_out_iounmap:
3271 	for (i = 0; i < SKD_MAX_BARS; i++)
3272 		if (skdev->mem_map[i])
3273 			iounmap(skdev->mem_map[i]);
3274 
3275 	if (skdev->pcie_error_reporting_is_enabled)
3276 		pci_disable_pcie_error_reporting(pdev);
3277 
3278 	skd_destruct(skdev);
3279 
3280 err_out_regions:
3281 	pci_release_regions(pdev);
3282 
3283 err_out:
3284 	pci_disable_device(pdev);
3285 	pci_set_drvdata(pdev, NULL);
3286 	return rc;
3287 }
3288 
skd_pci_remove(struct pci_dev * pdev)3289 static void skd_pci_remove(struct pci_dev *pdev)
3290 {
3291 	int i;
3292 	struct skd_device *skdev;
3293 
3294 	skdev = pci_get_drvdata(pdev);
3295 	if (!skdev) {
3296 		dev_err(&pdev->dev, "no device data for PCI\n");
3297 		return;
3298 	}
3299 	skd_stop_device(skdev);
3300 	skd_release_irq(skdev);
3301 
3302 	for (i = 0; i < SKD_MAX_BARS; i++)
3303 		if (skdev->mem_map[i])
3304 			iounmap(skdev->mem_map[i]);
3305 
3306 	if (skdev->pcie_error_reporting_is_enabled)
3307 		pci_disable_pcie_error_reporting(pdev);
3308 
3309 	skd_destruct(skdev);
3310 
3311 	pci_release_regions(pdev);
3312 	pci_disable_device(pdev);
3313 	pci_set_drvdata(pdev, NULL);
3314 
3315 	return;
3316 }
3317 
skd_pci_suspend(struct pci_dev * pdev,pm_message_t state)3318 static int skd_pci_suspend(struct pci_dev *pdev, pm_message_t state)
3319 {
3320 	int i;
3321 	struct skd_device *skdev;
3322 
3323 	skdev = pci_get_drvdata(pdev);
3324 	if (!skdev) {
3325 		dev_err(&pdev->dev, "no device data for PCI\n");
3326 		return -EIO;
3327 	}
3328 
3329 	skd_stop_device(skdev);
3330 
3331 	skd_release_irq(skdev);
3332 
3333 	for (i = 0; i < SKD_MAX_BARS; i++)
3334 		if (skdev->mem_map[i])
3335 			iounmap(skdev->mem_map[i]);
3336 
3337 	if (skdev->pcie_error_reporting_is_enabled)
3338 		pci_disable_pcie_error_reporting(pdev);
3339 
3340 	pci_release_regions(pdev);
3341 	pci_save_state(pdev);
3342 	pci_disable_device(pdev);
3343 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
3344 	return 0;
3345 }
3346 
skd_pci_resume(struct pci_dev * pdev)3347 static int skd_pci_resume(struct pci_dev *pdev)
3348 {
3349 	int i;
3350 	int rc = 0;
3351 	struct skd_device *skdev;
3352 
3353 	skdev = pci_get_drvdata(pdev);
3354 	if (!skdev) {
3355 		dev_err(&pdev->dev, "no device data for PCI\n");
3356 		return -1;
3357 	}
3358 
3359 	pci_set_power_state(pdev, PCI_D0);
3360 	pci_enable_wake(pdev, PCI_D0, 0);
3361 	pci_restore_state(pdev);
3362 
3363 	rc = pci_enable_device(pdev);
3364 	if (rc)
3365 		return rc;
3366 	rc = pci_request_regions(pdev, DRV_NAME);
3367 	if (rc)
3368 		goto err_out;
3369 	rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3370 	if (rc)
3371 		rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3372 	if (rc) {
3373 		dev_err(&pdev->dev, "DMA mask error %d\n", rc);
3374 		goto err_out_regions;
3375 	}
3376 
3377 	pci_set_master(pdev);
3378 	rc = pci_enable_pcie_error_reporting(pdev);
3379 	if (rc) {
3380 		dev_err(&pdev->dev,
3381 			"bad enable of PCIe error reporting rc=%d\n", rc);
3382 		skdev->pcie_error_reporting_is_enabled = 0;
3383 	} else
3384 		skdev->pcie_error_reporting_is_enabled = 1;
3385 
3386 	for (i = 0; i < SKD_MAX_BARS; i++) {
3387 
3388 		skdev->mem_phys[i] = pci_resource_start(pdev, i);
3389 		skdev->mem_size[i] = (u32)pci_resource_len(pdev, i);
3390 		skdev->mem_map[i] = ioremap(skdev->mem_phys[i],
3391 					    skdev->mem_size[i]);
3392 		if (!skdev->mem_map[i]) {
3393 			dev_err(&pdev->dev, "Unable to map adapter memory!\n");
3394 			rc = -ENODEV;
3395 			goto err_out_iounmap;
3396 		}
3397 		dev_dbg(&pdev->dev, "mem_map=%p, phyd=%016llx, size=%d\n",
3398 			skdev->mem_map[i], (uint64_t)skdev->mem_phys[i],
3399 			skdev->mem_size[i]);
3400 	}
3401 	rc = skd_acquire_irq(skdev);
3402 	if (rc) {
3403 		dev_err(&pdev->dev, "interrupt resource error %d\n", rc);
3404 		goto err_out_iounmap;
3405 	}
3406 
3407 	rc = skd_start_timer(skdev);
3408 	if (rc)
3409 		goto err_out_timer;
3410 
3411 	init_waitqueue_head(&skdev->waitq);
3412 
3413 	skd_start_device(skdev);
3414 
3415 	return rc;
3416 
3417 err_out_timer:
3418 	skd_stop_device(skdev);
3419 	skd_release_irq(skdev);
3420 
3421 err_out_iounmap:
3422 	for (i = 0; i < SKD_MAX_BARS; i++)
3423 		if (skdev->mem_map[i])
3424 			iounmap(skdev->mem_map[i]);
3425 
3426 	if (skdev->pcie_error_reporting_is_enabled)
3427 		pci_disable_pcie_error_reporting(pdev);
3428 
3429 err_out_regions:
3430 	pci_release_regions(pdev);
3431 
3432 err_out:
3433 	pci_disable_device(pdev);
3434 	return rc;
3435 }
3436 
skd_pci_shutdown(struct pci_dev * pdev)3437 static void skd_pci_shutdown(struct pci_dev *pdev)
3438 {
3439 	struct skd_device *skdev;
3440 
3441 	dev_err(&pdev->dev, "%s called\n", __func__);
3442 
3443 	skdev = pci_get_drvdata(pdev);
3444 	if (!skdev) {
3445 		dev_err(&pdev->dev, "no device data for PCI\n");
3446 		return;
3447 	}
3448 
3449 	dev_err(&pdev->dev, "calling stop\n");
3450 	skd_stop_device(skdev);
3451 }
3452 
3453 static struct pci_driver skd_driver = {
3454 	.name		= DRV_NAME,
3455 	.id_table	= skd_pci_tbl,
3456 	.probe		= skd_pci_probe,
3457 	.remove		= skd_pci_remove,
3458 	.suspend	= skd_pci_suspend,
3459 	.resume		= skd_pci_resume,
3460 	.shutdown	= skd_pci_shutdown,
3461 };
3462 
3463 /*
3464  *****************************************************************************
3465  * LOGGING SUPPORT
3466  *****************************************************************************
3467  */
3468 
skd_drive_state_to_str(int state)3469 const char *skd_drive_state_to_str(int state)
3470 {
3471 	switch (state) {
3472 	case FIT_SR_DRIVE_OFFLINE:
3473 		return "OFFLINE";
3474 	case FIT_SR_DRIVE_INIT:
3475 		return "INIT";
3476 	case FIT_SR_DRIVE_ONLINE:
3477 		return "ONLINE";
3478 	case FIT_SR_DRIVE_BUSY:
3479 		return "BUSY";
3480 	case FIT_SR_DRIVE_FAULT:
3481 		return "FAULT";
3482 	case FIT_SR_DRIVE_DEGRADED:
3483 		return "DEGRADED";
3484 	case FIT_SR_PCIE_LINK_DOWN:
3485 		return "INK_DOWN";
3486 	case FIT_SR_DRIVE_SOFT_RESET:
3487 		return "SOFT_RESET";
3488 	case FIT_SR_DRIVE_NEED_FW_DOWNLOAD:
3489 		return "NEED_FW";
3490 	case FIT_SR_DRIVE_INIT_FAULT:
3491 		return "INIT_FAULT";
3492 	case FIT_SR_DRIVE_BUSY_SANITIZE:
3493 		return "BUSY_SANITIZE";
3494 	case FIT_SR_DRIVE_BUSY_ERASE:
3495 		return "BUSY_ERASE";
3496 	case FIT_SR_DRIVE_FW_BOOTING:
3497 		return "FW_BOOTING";
3498 	default:
3499 		return "???";
3500 	}
3501 }
3502 
skd_skdev_state_to_str(enum skd_drvr_state state)3503 const char *skd_skdev_state_to_str(enum skd_drvr_state state)
3504 {
3505 	switch (state) {
3506 	case SKD_DRVR_STATE_LOAD:
3507 		return "LOAD";
3508 	case SKD_DRVR_STATE_IDLE:
3509 		return "IDLE";
3510 	case SKD_DRVR_STATE_BUSY:
3511 		return "BUSY";
3512 	case SKD_DRVR_STATE_STARTING:
3513 		return "STARTING";
3514 	case SKD_DRVR_STATE_ONLINE:
3515 		return "ONLINE";
3516 	case SKD_DRVR_STATE_PAUSING:
3517 		return "PAUSING";
3518 	case SKD_DRVR_STATE_PAUSED:
3519 		return "PAUSED";
3520 	case SKD_DRVR_STATE_RESTARTING:
3521 		return "RESTARTING";
3522 	case SKD_DRVR_STATE_RESUMING:
3523 		return "RESUMING";
3524 	case SKD_DRVR_STATE_STOPPING:
3525 		return "STOPPING";
3526 	case SKD_DRVR_STATE_SYNCING:
3527 		return "SYNCING";
3528 	case SKD_DRVR_STATE_FAULT:
3529 		return "FAULT";
3530 	case SKD_DRVR_STATE_DISAPPEARED:
3531 		return "DISAPPEARED";
3532 	case SKD_DRVR_STATE_BUSY_ERASE:
3533 		return "BUSY_ERASE";
3534 	case SKD_DRVR_STATE_BUSY_SANITIZE:
3535 		return "BUSY_SANITIZE";
3536 	case SKD_DRVR_STATE_BUSY_IMMINENT:
3537 		return "BUSY_IMMINENT";
3538 	case SKD_DRVR_STATE_WAIT_BOOT:
3539 		return "WAIT_BOOT";
3540 
3541 	default:
3542 		return "???";
3543 	}
3544 }
3545 
skd_skreq_state_to_str(enum skd_req_state state)3546 static const char *skd_skreq_state_to_str(enum skd_req_state state)
3547 {
3548 	switch (state) {
3549 	case SKD_REQ_STATE_IDLE:
3550 		return "IDLE";
3551 	case SKD_REQ_STATE_SETUP:
3552 		return "SETUP";
3553 	case SKD_REQ_STATE_BUSY:
3554 		return "BUSY";
3555 	case SKD_REQ_STATE_COMPLETED:
3556 		return "COMPLETED";
3557 	case SKD_REQ_STATE_TIMEOUT:
3558 		return "TIMEOUT";
3559 	default:
3560 		return "???";
3561 	}
3562 }
3563 
skd_log_skdev(struct skd_device * skdev,const char * event)3564 static void skd_log_skdev(struct skd_device *skdev, const char *event)
3565 {
3566 	dev_dbg(&skdev->pdev->dev, "skdev=%p event='%s'\n", skdev, event);
3567 	dev_dbg(&skdev->pdev->dev, "  drive_state=%s(%d) driver_state=%s(%d)\n",
3568 		skd_drive_state_to_str(skdev->drive_state), skdev->drive_state,
3569 		skd_skdev_state_to_str(skdev->state), skdev->state);
3570 	dev_dbg(&skdev->pdev->dev, "  busy=%d limit=%d dev=%d lowat=%d\n",
3571 		skd_in_flight(skdev), skdev->cur_max_queue_depth,
3572 		skdev->dev_max_queue_depth, skdev->queue_low_water_mark);
3573 	dev_dbg(&skdev->pdev->dev, "  cycle=%d cycle_ix=%d\n",
3574 		skdev->skcomp_cycle, skdev->skcomp_ix);
3575 }
3576 
skd_log_skreq(struct skd_device * skdev,struct skd_request_context * skreq,const char * event)3577 static void skd_log_skreq(struct skd_device *skdev,
3578 			  struct skd_request_context *skreq, const char *event)
3579 {
3580 	struct request *req = blk_mq_rq_from_pdu(skreq);
3581 	u32 lba = blk_rq_pos(req);
3582 	u32 count = blk_rq_sectors(req);
3583 
3584 	dev_dbg(&skdev->pdev->dev, "skreq=%p event='%s'\n", skreq, event);
3585 	dev_dbg(&skdev->pdev->dev, "  state=%s(%d) id=0x%04x fitmsg=0x%04x\n",
3586 		skd_skreq_state_to_str(skreq->state), skreq->state, skreq->id,
3587 		skreq->fitmsg_id);
3588 	dev_dbg(&skdev->pdev->dev, "  sg_dir=%d n_sg=%d\n",
3589 		skreq->data_dir, skreq->n_sg);
3590 
3591 	dev_dbg(&skdev->pdev->dev,
3592 		"req=%p lba=%u(0x%x) count=%u(0x%x) dir=%d\n", req, lba, lba,
3593 		count, count, (int)rq_data_dir(req));
3594 }
3595 
3596 /*
3597  *****************************************************************************
3598  * MODULE GLUE
3599  *****************************************************************************
3600  */
3601 
skd_init(void)3602 static int __init skd_init(void)
3603 {
3604 	BUILD_BUG_ON(sizeof(struct fit_completion_entry_v1) != 8);
3605 	BUILD_BUG_ON(sizeof(struct fit_comp_error_info) != 32);
3606 	BUILD_BUG_ON(sizeof(struct skd_command_header) != 16);
3607 	BUILD_BUG_ON(sizeof(struct skd_scsi_request) != 32);
3608 	BUILD_BUG_ON(sizeof(struct driver_inquiry_data) != 44);
3609 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, fmh) != 0);
3610 	BUILD_BUG_ON(offsetof(struct skd_msg_buf, scsi) != 64);
3611 	BUILD_BUG_ON(sizeof(struct skd_msg_buf) != SKD_N_FITMSG_BYTES);
3612 
3613 	switch (skd_isr_type) {
3614 	case SKD_IRQ_LEGACY:
3615 	case SKD_IRQ_MSI:
3616 	case SKD_IRQ_MSIX:
3617 		break;
3618 	default:
3619 		pr_err(PFX "skd_isr_type %d invalid, re-set to %d\n",
3620 		       skd_isr_type, SKD_IRQ_DEFAULT);
3621 		skd_isr_type = SKD_IRQ_DEFAULT;
3622 	}
3623 
3624 	if (skd_max_queue_depth < 1 ||
3625 	    skd_max_queue_depth > SKD_MAX_QUEUE_DEPTH) {
3626 		pr_err(PFX "skd_max_queue_depth %d invalid, re-set to %d\n",
3627 		       skd_max_queue_depth, SKD_MAX_QUEUE_DEPTH_DEFAULT);
3628 		skd_max_queue_depth = SKD_MAX_QUEUE_DEPTH_DEFAULT;
3629 	}
3630 
3631 	if (skd_max_req_per_msg < 1 ||
3632 	    skd_max_req_per_msg > SKD_MAX_REQ_PER_MSG) {
3633 		pr_err(PFX "skd_max_req_per_msg %d invalid, re-set to %d\n",
3634 		       skd_max_req_per_msg, SKD_MAX_REQ_PER_MSG_DEFAULT);
3635 		skd_max_req_per_msg = SKD_MAX_REQ_PER_MSG_DEFAULT;
3636 	}
3637 
3638 	if (skd_sgs_per_request < 1 || skd_sgs_per_request > 4096) {
3639 		pr_err(PFX "skd_sg_per_request %d invalid, re-set to %d\n",
3640 		       skd_sgs_per_request, SKD_N_SG_PER_REQ_DEFAULT);
3641 		skd_sgs_per_request = SKD_N_SG_PER_REQ_DEFAULT;
3642 	}
3643 
3644 	if (skd_dbg_level < 0 || skd_dbg_level > 2) {
3645 		pr_err(PFX "skd_dbg_level %d invalid, re-set to %d\n",
3646 		       skd_dbg_level, 0);
3647 		skd_dbg_level = 0;
3648 	}
3649 
3650 	if (skd_isr_comp_limit < 0) {
3651 		pr_err(PFX "skd_isr_comp_limit %d invalid, set to %d\n",
3652 		       skd_isr_comp_limit, 0);
3653 		skd_isr_comp_limit = 0;
3654 	}
3655 
3656 	return pci_register_driver(&skd_driver);
3657 }
3658 
skd_exit(void)3659 static void __exit skd_exit(void)
3660 {
3661 	pci_unregister_driver(&skd_driver);
3662 
3663 	if (skd_major)
3664 		unregister_blkdev(skd_major, DRV_NAME);
3665 }
3666 
3667 module_init(skd_init);
3668 module_exit(skd_exit);
3669