1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * ALSA driver for ICEnsemble VT1724 (Envy24HT)
4 *
5 * Lowlevel functions for Infrasonic Quartet
6 *
7 * Copyright (c) 2009 Pavel Hofman <pavel.hofman@ivitera.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/init.h>
13 #include <linux/slab.h>
14 #include <linux/string.h>
15 #include <sound/core.h>
16 #include <sound/tlv.h>
17 #include <sound/info.h>
18
19 #include "ice1712.h"
20 #include "envy24ht.h"
21 #include <sound/ak4113.h>
22 #include "quartet.h"
23
24 struct qtet_spec {
25 struct ak4113 *ak4113;
26 unsigned int scr; /* system control register */
27 unsigned int mcr; /* monitoring control register */
28 unsigned int cpld; /* cpld register */
29 };
30
31 struct qtet_kcontrol_private {
32 unsigned int bit;
33 void (*set_register)(struct snd_ice1712 *ice, unsigned int val);
34 unsigned int (*get_register)(struct snd_ice1712 *ice);
35 const char * const texts[2];
36 };
37
38 enum {
39 IN12_SEL = 0,
40 IN34_SEL,
41 AIN34_SEL,
42 COAX_OUT,
43 IN12_MON12,
44 IN12_MON34,
45 IN34_MON12,
46 IN34_MON34,
47 OUT12_MON34,
48 OUT34_MON12,
49 };
50
51 static const char * const ext_clock_names[3] = {"IEC958 In", "Word Clock 1xFS",
52 "Word Clock 256xFS"};
53
54 /* chip address on I2C bus */
55 #define AK4113_ADDR 0x26 /* S/PDIF receiver */
56
57 /* chip address on SPI bus */
58 #define AK4620_ADDR 0x02 /* ADC/DAC */
59
60
61 /*
62 * GPIO pins
63 */
64
65 /* GPIO0 - O - DATA0, def. 0 */
66 #define GPIO_D0 (1<<0)
67 /* GPIO1 - I/O - DATA1, Jack Detect Input0 (0:present, 1:missing), def. 1 */
68 #define GPIO_D1_JACKDTC0 (1<<1)
69 /* GPIO2 - I/O - DATA2, Jack Detect Input1 (0:present, 1:missing), def. 1 */
70 #define GPIO_D2_JACKDTC1 (1<<2)
71 /* GPIO3 - I/O - DATA3, def. 1 */
72 #define GPIO_D3 (1<<3)
73 /* GPIO4 - I/O - DATA4, SPI CDTO, def. 1 */
74 #define GPIO_D4_SPI_CDTO (1<<4)
75 /* GPIO5 - I/O - DATA5, SPI CCLK, def. 1 */
76 #define GPIO_D5_SPI_CCLK (1<<5)
77 /* GPIO6 - I/O - DATA6, Cable Detect Input (0:detected, 1:not detected */
78 #define GPIO_D6_CD (1<<6)
79 /* GPIO7 - I/O - DATA7, Device Detect Input (0:detected, 1:not detected */
80 #define GPIO_D7_DD (1<<7)
81 /* GPIO8 - O - CPLD Chip Select, def. 1 */
82 #define GPIO_CPLD_CSN (1<<8)
83 /* GPIO9 - O - CPLD register read/write (0:write, 1:read), def. 0 */
84 #define GPIO_CPLD_RW (1<<9)
85 /* GPIO10 - O - SPI Chip Select for CODEC#0, def. 1 */
86 #define GPIO_SPI_CSN0 (1<<10)
87 /* GPIO11 - O - SPI Chip Select for CODEC#1, def. 1 */
88 #define GPIO_SPI_CSN1 (1<<11)
89 /* GPIO12 - O - Ex. Register Output Enable (0:enable, 1:disable), def. 1,
90 * init 0 */
91 #define GPIO_EX_GPIOE (1<<12)
92 /* GPIO13 - O - Ex. Register0 Chip Select for System Control Register,
93 * def. 1 */
94 #define GPIO_SCR (1<<13)
95 /* GPIO14 - O - Ex. Register1 Chip Select for Monitor Control Register,
96 * def. 1 */
97 #define GPIO_MCR (1<<14)
98
99 #define GPIO_SPI_ALL (GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK |\
100 GPIO_SPI_CSN0 | GPIO_SPI_CSN1)
101
102 #define GPIO_DATA_MASK (GPIO_D0 | GPIO_D1_JACKDTC0 | \
103 GPIO_D2_JACKDTC1 | GPIO_D3 | \
104 GPIO_D4_SPI_CDTO | GPIO_D5_SPI_CCLK | \
105 GPIO_D6_CD | GPIO_D7_DD)
106
107 /* System Control Register GPIO_SCR data bits */
108 /* Mic/Line select relay (0:line, 1:mic) */
109 #define SCR_RELAY GPIO_D0
110 /* Phantom power drive control (0:5V, 1:48V) */
111 #define SCR_PHP_V GPIO_D1_JACKDTC0
112 /* H/W mute control (0:Normal, 1:Mute) */
113 #define SCR_MUTE GPIO_D2_JACKDTC1
114 /* Phantom power control (0:Phantom on, 1:off) */
115 #define SCR_PHP GPIO_D3
116 /* Analog input 1/2 Source Select */
117 #define SCR_AIN12_SEL0 GPIO_D4_SPI_CDTO
118 #define SCR_AIN12_SEL1 GPIO_D5_SPI_CCLK
119 /* Analog input 3/4 Source Select (0:line, 1:hi-z) */
120 #define SCR_AIN34_SEL GPIO_D6_CD
121 /* Codec Power Down (0:power down, 1:normal) */
122 #define SCR_CODEC_PDN GPIO_D7_DD
123
124 #define SCR_AIN12_LINE (0)
125 #define SCR_AIN12_MIC (SCR_AIN12_SEL0)
126 #define SCR_AIN12_LOWCUT (SCR_AIN12_SEL1 | SCR_AIN12_SEL0)
127
128 /* Monitor Control Register GPIO_MCR data bits */
129 /* Input 1/2 to Monitor 1/2 (0:off, 1:on) */
130 #define MCR_IN12_MON12 GPIO_D0
131 /* Input 1/2 to Monitor 3/4 (0:off, 1:on) */
132 #define MCR_IN12_MON34 GPIO_D1_JACKDTC0
133 /* Input 3/4 to Monitor 1/2 (0:off, 1:on) */
134 #define MCR_IN34_MON12 GPIO_D2_JACKDTC1
135 /* Input 3/4 to Monitor 3/4 (0:off, 1:on) */
136 #define MCR_IN34_MON34 GPIO_D3
137 /* Output to Monitor 1/2 (0:off, 1:on) */
138 #define MCR_OUT34_MON12 GPIO_D4_SPI_CDTO
139 /* Output to Monitor 3/4 (0:off, 1:on) */
140 #define MCR_OUT12_MON34 GPIO_D5_SPI_CCLK
141
142 /* CPLD Register DATA bits */
143 /* Clock Rate Select */
144 #define CPLD_CKS0 GPIO_D0
145 #define CPLD_CKS1 GPIO_D1_JACKDTC0
146 #define CPLD_CKS2 GPIO_D2_JACKDTC1
147 /* Sync Source Select (0:Internal, 1:External) */
148 #define CPLD_SYNC_SEL GPIO_D3
149 /* Word Clock FS Select (0:FS, 1:256FS) */
150 #define CPLD_WORD_SEL GPIO_D4_SPI_CDTO
151 /* Coaxial Output Source (IS-Link) (0:SPDIF, 1:I2S) */
152 #define CPLD_COAX_OUT GPIO_D5_SPI_CCLK
153 /* Input 1/2 Source Select (0:Analog12, 1:An34) */
154 #define CPLD_IN12_SEL GPIO_D6_CD
155 /* Input 3/4 Source Select (0:Analog34, 1:Digital In) */
156 #define CPLD_IN34_SEL GPIO_D7_DD
157
158 /* internal clock (CPLD_SYNC_SEL = 0) options */
159 #define CPLD_CKS_44100HZ (0)
160 #define CPLD_CKS_48000HZ (CPLD_CKS0)
161 #define CPLD_CKS_88200HZ (CPLD_CKS1)
162 #define CPLD_CKS_96000HZ (CPLD_CKS1 | CPLD_CKS0)
163 #define CPLD_CKS_176400HZ (CPLD_CKS2)
164 #define CPLD_CKS_192000HZ (CPLD_CKS2 | CPLD_CKS0)
165
166 #define CPLD_CKS_MASK (CPLD_CKS0 | CPLD_CKS1 | CPLD_CKS2)
167
168 /* external clock (CPLD_SYNC_SEL = 1) options */
169 /* external clock - SPDIF */
170 #define CPLD_EXT_SPDIF (0 | CPLD_SYNC_SEL)
171 /* external clock - WordClock 1xfs */
172 #define CPLD_EXT_WORDCLOCK_1FS (CPLD_CKS1 | CPLD_SYNC_SEL)
173 /* external clock - WordClock 256xfs */
174 #define CPLD_EXT_WORDCLOCK_256FS (CPLD_CKS1 | CPLD_WORD_SEL |\
175 CPLD_SYNC_SEL)
176
177 #define EXT_SPDIF_TYPE 0
178 #define EXT_WORDCLOCK_1FS_TYPE 1
179 #define EXT_WORDCLOCK_256FS_TYPE 2
180
181 #define AK4620_DFS0 (1<<0)
182 #define AK4620_DFS1 (1<<1)
183 #define AK4620_CKS0 (1<<2)
184 #define AK4620_CKS1 (1<<3)
185 /* Clock and Format Control register */
186 #define AK4620_DFS_REG 0x02
187
188 /* Deem and Volume Control register */
189 #define AK4620_DEEMVOL_REG 0x03
190 #define AK4620_SMUTE (1<<7)
191
192 /*
193 * Conversion from int value to its binary form. Used for debugging.
194 * The output buffer must be allocated prior to calling the function.
195 */
get_binary(char * buffer,int value)196 static char *get_binary(char *buffer, int value)
197 {
198 int i, j, pos;
199 pos = 0;
200 for (i = 0; i < 4; ++i) {
201 for (j = 0; j < 8; ++j) {
202 if (value & (1 << (31-(i*8 + j))))
203 buffer[pos] = '1';
204 else
205 buffer[pos] = '0';
206 pos++;
207 }
208 if (i < 3) {
209 buffer[pos] = ' ';
210 pos++;
211 }
212 }
213 buffer[pos] = '\0';
214 return buffer;
215 }
216
217 /*
218 * Initial setup of the conversion array GPIO <-> rate
219 */
220 static const unsigned int qtet_rates[] = {
221 44100, 48000, 88200,
222 96000, 176400, 192000,
223 };
224
225 static const unsigned int cks_vals[] = {
226 CPLD_CKS_44100HZ, CPLD_CKS_48000HZ, CPLD_CKS_88200HZ,
227 CPLD_CKS_96000HZ, CPLD_CKS_176400HZ, CPLD_CKS_192000HZ,
228 };
229
230 static const struct snd_pcm_hw_constraint_list qtet_rates_info = {
231 .count = ARRAY_SIZE(qtet_rates),
232 .list = qtet_rates,
233 .mask = 0,
234 };
235
qtet_ak4113_write(void * private_data,unsigned char reg,unsigned char val)236 static void qtet_ak4113_write(void *private_data, unsigned char reg,
237 unsigned char val)
238 {
239 snd_vt1724_write_i2c((struct snd_ice1712 *)private_data, AK4113_ADDR,
240 reg, val);
241 }
242
qtet_ak4113_read(void * private_data,unsigned char reg)243 static unsigned char qtet_ak4113_read(void *private_data, unsigned char reg)
244 {
245 return snd_vt1724_read_i2c((struct snd_ice1712 *)private_data,
246 AK4113_ADDR, reg);
247 }
248
249
250 /*
251 * AK4620 section
252 */
253
254 /*
255 * Write data to addr register of ak4620
256 */
qtet_akm_write(struct snd_akm4xxx * ak,int chip,unsigned char addr,unsigned char data)257 static void qtet_akm_write(struct snd_akm4xxx *ak, int chip,
258 unsigned char addr, unsigned char data)
259 {
260 unsigned int tmp, orig_dir;
261 int idx;
262 unsigned int addrdata;
263 struct snd_ice1712 *ice = ak->private_data[0];
264
265 if (snd_BUG_ON(chip < 0 || chip >= 4))
266 return;
267 /*dev_dbg(ice->card->dev, "Writing to AK4620: chip=%d, addr=0x%x,
268 data=0x%x\n", chip, addr, data);*/
269 orig_dir = ice->gpio.get_dir(ice);
270 ice->gpio.set_dir(ice, orig_dir | GPIO_SPI_ALL);
271 /* set mask - only SPI bits */
272 ice->gpio.set_mask(ice, ~GPIO_SPI_ALL);
273
274 tmp = ice->gpio.get_data(ice);
275 /* high all */
276 tmp |= GPIO_SPI_ALL;
277 ice->gpio.set_data(ice, tmp);
278 udelay(100);
279 /* drop chip select */
280 if (chip)
281 /* CODEC 1 */
282 tmp &= ~GPIO_SPI_CSN1;
283 else
284 tmp &= ~GPIO_SPI_CSN0;
285 ice->gpio.set_data(ice, tmp);
286 udelay(100);
287
288 /* build I2C address + data byte */
289 addrdata = (AK4620_ADDR << 6) | 0x20 | (addr & 0x1f);
290 addrdata = (addrdata << 8) | data;
291 for (idx = 15; idx >= 0; idx--) {
292 /* drop clock */
293 tmp &= ~GPIO_D5_SPI_CCLK;
294 ice->gpio.set_data(ice, tmp);
295 udelay(100);
296 /* set data */
297 if (addrdata & (1 << idx))
298 tmp |= GPIO_D4_SPI_CDTO;
299 else
300 tmp &= ~GPIO_D4_SPI_CDTO;
301 ice->gpio.set_data(ice, tmp);
302 udelay(100);
303 /* raise clock */
304 tmp |= GPIO_D5_SPI_CCLK;
305 ice->gpio.set_data(ice, tmp);
306 udelay(100);
307 }
308 /* all back to 1 */
309 tmp |= GPIO_SPI_ALL;
310 ice->gpio.set_data(ice, tmp);
311 udelay(100);
312
313 /* return all gpios to non-writable */
314 ice->gpio.set_mask(ice, 0xffffff);
315 /* restore GPIOs direction */
316 ice->gpio.set_dir(ice, orig_dir);
317 }
318
qtet_akm_set_regs(struct snd_akm4xxx * ak,unsigned char addr,unsigned char mask,unsigned char value)319 static void qtet_akm_set_regs(struct snd_akm4xxx *ak, unsigned char addr,
320 unsigned char mask, unsigned char value)
321 {
322 unsigned char tmp;
323 int chip;
324 for (chip = 0; chip < ak->num_chips; chip++) {
325 tmp = snd_akm4xxx_get(ak, chip, addr);
326 /* clear the bits */
327 tmp &= ~mask;
328 /* set the new bits */
329 tmp |= value;
330 snd_akm4xxx_write(ak, chip, addr, tmp);
331 }
332 }
333
334 /*
335 * change the rate of AK4620
336 */
qtet_akm_set_rate_val(struct snd_akm4xxx * ak,unsigned int rate)337 static void qtet_akm_set_rate_val(struct snd_akm4xxx *ak, unsigned int rate)
338 {
339 unsigned char ak4620_dfs;
340
341 if (rate == 0) /* no hint - S/PDIF input is master or the new spdif
342 input rate undetected, simply return */
343 return;
344
345 /* adjust DFS on codecs - see datasheet */
346 if (rate > 108000)
347 ak4620_dfs = AK4620_DFS1 | AK4620_CKS1;
348 else if (rate > 54000)
349 ak4620_dfs = AK4620_DFS0 | AK4620_CKS0;
350 else
351 ak4620_dfs = 0;
352
353 /* set new value */
354 qtet_akm_set_regs(ak, AK4620_DFS_REG, AK4620_DFS0 | AK4620_DFS1 |
355 AK4620_CKS0 | AK4620_CKS1, ak4620_dfs);
356 }
357
358 #define AK_CONTROL(xname, xch) { .name = xname, .num_channels = xch }
359
360 #define PCM_12_PLAYBACK_VOLUME "PCM 1/2 Playback Volume"
361 #define PCM_34_PLAYBACK_VOLUME "PCM 3/4 Playback Volume"
362 #define PCM_12_CAPTURE_VOLUME "PCM 1/2 Capture Volume"
363 #define PCM_34_CAPTURE_VOLUME "PCM 3/4 Capture Volume"
364
365 static const struct snd_akm4xxx_dac_channel qtet_dac[] = {
366 AK_CONTROL(PCM_12_PLAYBACK_VOLUME, 2),
367 AK_CONTROL(PCM_34_PLAYBACK_VOLUME, 2),
368 };
369
370 static const struct snd_akm4xxx_adc_channel qtet_adc[] = {
371 AK_CONTROL(PCM_12_CAPTURE_VOLUME, 2),
372 AK_CONTROL(PCM_34_CAPTURE_VOLUME, 2),
373 };
374
375 static const struct snd_akm4xxx akm_qtet_dac = {
376 .type = SND_AK4620,
377 .num_dacs = 4, /* DAC1 - Output 12
378 */
379 .num_adcs = 4, /* ADC1 - Input 12
380 */
381 .ops = {
382 .write = qtet_akm_write,
383 .set_rate_val = qtet_akm_set_rate_val,
384 },
385 .dac_info = qtet_dac,
386 .adc_info = qtet_adc,
387 };
388
389 /* Communication routines with the CPLD */
390
391
392 /* Writes data to external register reg, both reg and data are
393 * GPIO representations */
reg_write(struct snd_ice1712 * ice,unsigned int reg,unsigned int data)394 static void reg_write(struct snd_ice1712 *ice, unsigned int reg,
395 unsigned int data)
396 {
397 unsigned int tmp;
398
399 mutex_lock(&ice->gpio_mutex);
400 /* set direction of used GPIOs*/
401 /* all outputs */
402 tmp = 0x00ffff;
403 ice->gpio.set_dir(ice, tmp);
404 /* mask - writable bits */
405 ice->gpio.set_mask(ice, ~(tmp));
406 /* write the data */
407 tmp = ice->gpio.get_data(ice);
408 tmp &= ~GPIO_DATA_MASK;
409 tmp |= data;
410 ice->gpio.set_data(ice, tmp);
411 udelay(100);
412 /* drop output enable */
413 tmp &= ~GPIO_EX_GPIOE;
414 ice->gpio.set_data(ice, tmp);
415 udelay(100);
416 /* drop the register gpio */
417 tmp &= ~reg;
418 ice->gpio.set_data(ice, tmp);
419 udelay(100);
420 /* raise the register GPIO */
421 tmp |= reg;
422 ice->gpio.set_data(ice, tmp);
423 udelay(100);
424
425 /* raise all data gpios */
426 tmp |= GPIO_DATA_MASK;
427 ice->gpio.set_data(ice, tmp);
428 /* mask - immutable bits */
429 ice->gpio.set_mask(ice, 0xffffff);
430 /* outputs only 8-15 */
431 ice->gpio.set_dir(ice, 0x00ff00);
432 mutex_unlock(&ice->gpio_mutex);
433 }
434
get_scr(struct snd_ice1712 * ice)435 static unsigned int get_scr(struct snd_ice1712 *ice)
436 {
437 struct qtet_spec *spec = ice->spec;
438 return spec->scr;
439 }
440
get_mcr(struct snd_ice1712 * ice)441 static unsigned int get_mcr(struct snd_ice1712 *ice)
442 {
443 struct qtet_spec *spec = ice->spec;
444 return spec->mcr;
445 }
446
get_cpld(struct snd_ice1712 * ice)447 static unsigned int get_cpld(struct snd_ice1712 *ice)
448 {
449 struct qtet_spec *spec = ice->spec;
450 return spec->cpld;
451 }
452
set_scr(struct snd_ice1712 * ice,unsigned int val)453 static void set_scr(struct snd_ice1712 *ice, unsigned int val)
454 {
455 struct qtet_spec *spec = ice->spec;
456 reg_write(ice, GPIO_SCR, val);
457 spec->scr = val;
458 }
459
set_mcr(struct snd_ice1712 * ice,unsigned int val)460 static void set_mcr(struct snd_ice1712 *ice, unsigned int val)
461 {
462 struct qtet_spec *spec = ice->spec;
463 reg_write(ice, GPIO_MCR, val);
464 spec->mcr = val;
465 }
466
set_cpld(struct snd_ice1712 * ice,unsigned int val)467 static void set_cpld(struct snd_ice1712 *ice, unsigned int val)
468 {
469 struct qtet_spec *spec = ice->spec;
470 reg_write(ice, GPIO_CPLD_CSN, val);
471 spec->cpld = val;
472 }
473
proc_regs_read(struct snd_info_entry * entry,struct snd_info_buffer * buffer)474 static void proc_regs_read(struct snd_info_entry *entry,
475 struct snd_info_buffer *buffer)
476 {
477 struct snd_ice1712 *ice = entry->private_data;
478 char bin_buffer[36];
479
480 snd_iprintf(buffer, "SCR: %s\n", get_binary(bin_buffer,
481 get_scr(ice)));
482 snd_iprintf(buffer, "MCR: %s\n", get_binary(bin_buffer,
483 get_mcr(ice)));
484 snd_iprintf(buffer, "CPLD: %s\n", get_binary(bin_buffer,
485 get_cpld(ice)));
486 }
487
proc_init(struct snd_ice1712 * ice)488 static void proc_init(struct snd_ice1712 *ice)
489 {
490 snd_card_ro_proc_new(ice->card, "quartet", ice, proc_regs_read);
491 }
492
qtet_mute_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)493 static int qtet_mute_get(struct snd_kcontrol *kcontrol,
494 struct snd_ctl_elem_value *ucontrol)
495 {
496 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
497 unsigned int val;
498 val = get_scr(ice) & SCR_MUTE;
499 ucontrol->value.integer.value[0] = (val) ? 0 : 1;
500 return 0;
501 }
502
qtet_mute_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)503 static int qtet_mute_put(struct snd_kcontrol *kcontrol,
504 struct snd_ctl_elem_value *ucontrol)
505 {
506 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
507 unsigned int old, new, smute;
508 old = get_scr(ice) & SCR_MUTE;
509 if (ucontrol->value.integer.value[0]) {
510 /* unmute */
511 new = 0;
512 /* un-smuting DAC */
513 smute = 0;
514 } else {
515 /* mute */
516 new = SCR_MUTE;
517 /* smuting DAC */
518 smute = AK4620_SMUTE;
519 }
520 if (old != new) {
521 struct snd_akm4xxx *ak = ice->akm;
522 set_scr(ice, (get_scr(ice) & ~SCR_MUTE) | new);
523 /* set smute */
524 qtet_akm_set_regs(ak, AK4620_DEEMVOL_REG, AK4620_SMUTE, smute);
525 return 1;
526 }
527 /* no change */
528 return 0;
529 }
530
qtet_ain12_enum_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)531 static int qtet_ain12_enum_info(struct snd_kcontrol *kcontrol,
532 struct snd_ctl_elem_info *uinfo)
533 {
534 static const char * const texts[3] =
535 {"Line In 1/2", "Mic", "Mic + Low-cut"};
536 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(texts), texts);
537 }
538
qtet_ain12_sw_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)539 static int qtet_ain12_sw_get(struct snd_kcontrol *kcontrol,
540 struct snd_ctl_elem_value *ucontrol)
541 {
542 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
543 unsigned int val, result;
544 val = get_scr(ice) & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
545 switch (val) {
546 case SCR_AIN12_LINE:
547 result = 0;
548 break;
549 case SCR_AIN12_MIC:
550 result = 1;
551 break;
552 case SCR_AIN12_LOWCUT:
553 result = 2;
554 break;
555 default:
556 /* BUG - no other combinations allowed */
557 snd_BUG();
558 result = 0;
559 }
560 ucontrol->value.integer.value[0] = result;
561 return 0;
562 }
563
qtet_ain12_sw_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)564 static int qtet_ain12_sw_put(struct snd_kcontrol *kcontrol,
565 struct snd_ctl_elem_value *ucontrol)
566 {
567 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
568 unsigned int old, new, tmp, masked_old;
569 old = get_scr(ice);
570 masked_old = old & (SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
571 tmp = ucontrol->value.integer.value[0];
572 if (tmp == 2)
573 tmp = 3; /* binary 10 is not supported */
574 tmp <<= 4; /* shifting to SCR_AIN12_SEL0 */
575 if (tmp != masked_old) {
576 /* change requested */
577 switch (tmp) {
578 case SCR_AIN12_LINE:
579 new = old & ~(SCR_AIN12_SEL1 | SCR_AIN12_SEL0);
580 set_scr(ice, new);
581 /* turn off relay */
582 new &= ~SCR_RELAY;
583 set_scr(ice, new);
584 break;
585 case SCR_AIN12_MIC:
586 /* turn on relay */
587 new = old | SCR_RELAY;
588 set_scr(ice, new);
589 new = (new & ~SCR_AIN12_SEL1) | SCR_AIN12_SEL0;
590 set_scr(ice, new);
591 break;
592 case SCR_AIN12_LOWCUT:
593 /* turn on relay */
594 new = old | SCR_RELAY;
595 set_scr(ice, new);
596 new |= SCR_AIN12_SEL1 | SCR_AIN12_SEL0;
597 set_scr(ice, new);
598 break;
599 default:
600 snd_BUG();
601 }
602 return 1;
603 }
604 /* no change */
605 return 0;
606 }
607
qtet_php_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)608 static int qtet_php_get(struct snd_kcontrol *kcontrol,
609 struct snd_ctl_elem_value *ucontrol)
610 {
611 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
612 unsigned int val;
613 /* if phantom voltage =48V, phantom on */
614 val = get_scr(ice) & SCR_PHP_V;
615 ucontrol->value.integer.value[0] = val ? 1 : 0;
616 return 0;
617 }
618
qtet_php_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)619 static int qtet_php_put(struct snd_kcontrol *kcontrol,
620 struct snd_ctl_elem_value *ucontrol)
621 {
622 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
623 unsigned int old, new;
624 old = new = get_scr(ice);
625 if (ucontrol->value.integer.value[0] /* phantom on requested */
626 && (~old & SCR_PHP_V)) /* 0 = voltage 5V */ {
627 /* is off, turn on */
628 /* turn voltage on first, = 1 */
629 new = old | SCR_PHP_V;
630 set_scr(ice, new);
631 /* turn phantom on, = 0 */
632 new &= ~SCR_PHP;
633 set_scr(ice, new);
634 } else if (!ucontrol->value.integer.value[0] && (old & SCR_PHP_V)) {
635 /* phantom off requested and 1 = voltage 48V */
636 /* is on, turn off */
637 /* turn voltage off first, = 0 */
638 new = old & ~SCR_PHP_V;
639 set_scr(ice, new);
640 /* turn phantom off, = 1 */
641 new |= SCR_PHP;
642 set_scr(ice, new);
643 }
644 if (old != new)
645 return 1;
646 /* no change */
647 return 0;
648 }
649
650 #define PRIV_SW(xid, xbit, xreg) [xid] = {.bit = xbit,\
651 .set_register = set_##xreg,\
652 .get_register = get_##xreg, }
653
654
655 #define PRIV_ENUM2(xid, xbit, xreg, xtext1, xtext2) [xid] = {.bit = xbit,\
656 .set_register = set_##xreg,\
657 .get_register = get_##xreg,\
658 .texts = {xtext1, xtext2} }
659
660 static const struct qtet_kcontrol_private qtet_privates[] = {
661 PRIV_ENUM2(IN12_SEL, CPLD_IN12_SEL, cpld, "An In 1/2", "An In 3/4"),
662 PRIV_ENUM2(IN34_SEL, CPLD_IN34_SEL, cpld, "An In 3/4", "IEC958 In"),
663 PRIV_ENUM2(AIN34_SEL, SCR_AIN34_SEL, scr, "Line In 3/4", "Hi-Z"),
664 PRIV_ENUM2(COAX_OUT, CPLD_COAX_OUT, cpld, "IEC958", "I2S"),
665 PRIV_SW(IN12_MON12, MCR_IN12_MON12, mcr),
666 PRIV_SW(IN12_MON34, MCR_IN12_MON34, mcr),
667 PRIV_SW(IN34_MON12, MCR_IN34_MON12, mcr),
668 PRIV_SW(IN34_MON34, MCR_IN34_MON34, mcr),
669 PRIV_SW(OUT12_MON34, MCR_OUT12_MON34, mcr),
670 PRIV_SW(OUT34_MON12, MCR_OUT34_MON12, mcr),
671 };
672
qtet_enum_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)673 static int qtet_enum_info(struct snd_kcontrol *kcontrol,
674 struct snd_ctl_elem_info *uinfo)
675 {
676 struct qtet_kcontrol_private private =
677 qtet_privates[kcontrol->private_value];
678 return snd_ctl_enum_info(uinfo, 1, ARRAY_SIZE(private.texts),
679 private.texts);
680 }
681
qtet_sw_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)682 static int qtet_sw_get(struct snd_kcontrol *kcontrol,
683 struct snd_ctl_elem_value *ucontrol)
684 {
685 struct qtet_kcontrol_private private =
686 qtet_privates[kcontrol->private_value];
687 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
688 ucontrol->value.integer.value[0] =
689 (private.get_register(ice) & private.bit) ? 1 : 0;
690 return 0;
691 }
692
qtet_sw_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)693 static int qtet_sw_put(struct snd_kcontrol *kcontrol,
694 struct snd_ctl_elem_value *ucontrol)
695 {
696 struct qtet_kcontrol_private private =
697 qtet_privates[kcontrol->private_value];
698 struct snd_ice1712 *ice = snd_kcontrol_chip(kcontrol);
699 unsigned int old, new;
700 old = private.get_register(ice);
701 if (ucontrol->value.integer.value[0])
702 new = old | private.bit;
703 else
704 new = old & ~private.bit;
705 if (old != new) {
706 private.set_register(ice, new);
707 return 1;
708 }
709 /* no change */
710 return 0;
711 }
712
713 #define qtet_sw_info snd_ctl_boolean_mono_info
714
715 #define QTET_CONTROL(xname, xtype, xpriv) \
716 {.iface = SNDRV_CTL_ELEM_IFACE_MIXER,\
717 .name = xname,\
718 .info = qtet_##xtype##_info,\
719 .get = qtet_sw_get,\
720 .put = qtet_sw_put,\
721 .private_value = xpriv }
722
723 static const struct snd_kcontrol_new qtet_controls[] = {
724 {
725 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
726 .name = "Master Playback Switch",
727 .info = qtet_sw_info,
728 .get = qtet_mute_get,
729 .put = qtet_mute_put,
730 .private_value = 0
731 },
732 {
733 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
734 .name = "Phantom Power",
735 .info = qtet_sw_info,
736 .get = qtet_php_get,
737 .put = qtet_php_put,
738 .private_value = 0
739 },
740 {
741 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
742 .name = "Analog In 1/2 Capture Switch",
743 .info = qtet_ain12_enum_info,
744 .get = qtet_ain12_sw_get,
745 .put = qtet_ain12_sw_put,
746 .private_value = 0
747 },
748 QTET_CONTROL("Analog In 3/4 Capture Switch", enum, AIN34_SEL),
749 QTET_CONTROL("PCM In 1/2 Capture Switch", enum, IN12_SEL),
750 QTET_CONTROL("PCM In 3/4 Capture Switch", enum, IN34_SEL),
751 QTET_CONTROL("Coax Output Source", enum, COAX_OUT),
752 QTET_CONTROL("Analog In 1/2 to Monitor 1/2", sw, IN12_MON12),
753 QTET_CONTROL("Analog In 1/2 to Monitor 3/4", sw, IN12_MON34),
754 QTET_CONTROL("Analog In 3/4 to Monitor 1/2", sw, IN34_MON12),
755 QTET_CONTROL("Analog In 3/4 to Monitor 3/4", sw, IN34_MON34),
756 QTET_CONTROL("Output 1/2 to Monitor 3/4", sw, OUT12_MON34),
757 QTET_CONTROL("Output 3/4 to Monitor 1/2", sw, OUT34_MON12),
758 };
759
760 static const char * const follower_vols[] = {
761 PCM_12_PLAYBACK_VOLUME,
762 PCM_34_PLAYBACK_VOLUME,
763 NULL
764 };
765
766 static
767 DECLARE_TLV_DB_SCALE(qtet_master_db_scale, -6350, 50, 1);
768
ctl_find(struct snd_card * card,const char * name)769 static struct snd_kcontrol *ctl_find(struct snd_card *card,
770 const char *name)
771 {
772 struct snd_ctl_elem_id sid = {0};
773
774 strscpy(sid.name, name, sizeof(sid.name));
775 sid.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
776 return snd_ctl_find_id(card, &sid);
777 }
778
add_followers(struct snd_card * card,struct snd_kcontrol * master,const char * const * list)779 static void add_followers(struct snd_card *card,
780 struct snd_kcontrol *master, const char * const *list)
781 {
782 for (; *list; list++) {
783 struct snd_kcontrol *follower = ctl_find(card, *list);
784 if (follower)
785 snd_ctl_add_follower(master, follower);
786 }
787 }
788
qtet_add_controls(struct snd_ice1712 * ice)789 static int qtet_add_controls(struct snd_ice1712 *ice)
790 {
791 struct qtet_spec *spec = ice->spec;
792 int err, i;
793 struct snd_kcontrol *vmaster;
794 err = snd_ice1712_akm4xxx_build_controls(ice);
795 if (err < 0)
796 return err;
797 for (i = 0; i < ARRAY_SIZE(qtet_controls); i++) {
798 err = snd_ctl_add(ice->card,
799 snd_ctl_new1(&qtet_controls[i], ice));
800 if (err < 0)
801 return err;
802 }
803
804 /* Create virtual master control */
805 vmaster = snd_ctl_make_virtual_master("Master Playback Volume",
806 qtet_master_db_scale);
807 if (!vmaster)
808 return -ENOMEM;
809 add_followers(ice->card, vmaster, follower_vols);
810 err = snd_ctl_add(ice->card, vmaster);
811 if (err < 0)
812 return err;
813 /* only capture SPDIF over AK4113 */
814 return snd_ak4113_build(spec->ak4113,
815 ice->pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream);
816 }
817
qtet_is_spdif_master(struct snd_ice1712 * ice)818 static inline int qtet_is_spdif_master(struct snd_ice1712 *ice)
819 {
820 /* CPLD_SYNC_SEL: 0 = internal, 1 = external (i.e. spdif master) */
821 return (get_cpld(ice) & CPLD_SYNC_SEL) ? 1 : 0;
822 }
823
qtet_get_rate(struct snd_ice1712 * ice)824 static unsigned int qtet_get_rate(struct snd_ice1712 *ice)
825 {
826 int i;
827 unsigned char result;
828
829 result = get_cpld(ice) & CPLD_CKS_MASK;
830 for (i = 0; i < ARRAY_SIZE(cks_vals); i++)
831 if (cks_vals[i] == result)
832 return qtet_rates[i];
833 return 0;
834 }
835
get_cks_val(int rate)836 static int get_cks_val(int rate)
837 {
838 int i;
839 for (i = 0; i < ARRAY_SIZE(qtet_rates); i++)
840 if (qtet_rates[i] == rate)
841 return cks_vals[i];
842 return 0;
843 }
844
845 /* setting new rate */
qtet_set_rate(struct snd_ice1712 * ice,unsigned int rate)846 static void qtet_set_rate(struct snd_ice1712 *ice, unsigned int rate)
847 {
848 unsigned int new;
849 unsigned char val;
850 /* switching ice1724 to external clock - supplied by ext. circuits */
851 val = inb(ICEMT1724(ice, RATE));
852 outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
853
854 new = (get_cpld(ice) & ~CPLD_CKS_MASK) | get_cks_val(rate);
855 /* switch to internal clock, drop CPLD_SYNC_SEL */
856 new &= ~CPLD_SYNC_SEL;
857 /* dev_dbg(ice->card->dev, "QT - set_rate: old %x, new %x\n",
858 get_cpld(ice), new); */
859 set_cpld(ice, new);
860 }
861
qtet_set_mclk(struct snd_ice1712 * ice,unsigned int rate)862 static inline unsigned char qtet_set_mclk(struct snd_ice1712 *ice,
863 unsigned int rate)
864 {
865 /* no change in master clock */
866 return 0;
867 }
868
869 /* setting clock to external - SPDIF */
qtet_set_spdif_clock(struct snd_ice1712 * ice,int type)870 static int qtet_set_spdif_clock(struct snd_ice1712 *ice, int type)
871 {
872 unsigned int old, new;
873
874 old = new = get_cpld(ice);
875 new &= ~(CPLD_CKS_MASK | CPLD_WORD_SEL);
876 switch (type) {
877 case EXT_SPDIF_TYPE:
878 new |= CPLD_EXT_SPDIF;
879 break;
880 case EXT_WORDCLOCK_1FS_TYPE:
881 new |= CPLD_EXT_WORDCLOCK_1FS;
882 break;
883 case EXT_WORDCLOCK_256FS_TYPE:
884 new |= CPLD_EXT_WORDCLOCK_256FS;
885 break;
886 default:
887 snd_BUG();
888 }
889 if (old != new) {
890 set_cpld(ice, new);
891 /* changed */
892 return 1;
893 }
894 return 0;
895 }
896
qtet_get_spdif_master_type(struct snd_ice1712 * ice)897 static int qtet_get_spdif_master_type(struct snd_ice1712 *ice)
898 {
899 unsigned int val;
900 int result;
901 val = get_cpld(ice);
902 /* checking only rate/clock-related bits */
903 val &= (CPLD_CKS_MASK | CPLD_WORD_SEL | CPLD_SYNC_SEL);
904 if (!(val & CPLD_SYNC_SEL)) {
905 /* switched to internal clock, is not any external type */
906 result = -1;
907 } else {
908 switch (val) {
909 case (CPLD_EXT_SPDIF):
910 result = EXT_SPDIF_TYPE;
911 break;
912 case (CPLD_EXT_WORDCLOCK_1FS):
913 result = EXT_WORDCLOCK_1FS_TYPE;
914 break;
915 case (CPLD_EXT_WORDCLOCK_256FS):
916 result = EXT_WORDCLOCK_256FS_TYPE;
917 break;
918 default:
919 /* undefined combination of external clock setup */
920 snd_BUG();
921 result = 0;
922 }
923 }
924 return result;
925 }
926
927 /* Called when ak4113 detects change in the input SPDIF stream */
qtet_ak4113_change(struct ak4113 * ak4113,unsigned char c0,unsigned char c1)928 static void qtet_ak4113_change(struct ak4113 *ak4113, unsigned char c0,
929 unsigned char c1)
930 {
931 struct snd_ice1712 *ice = ak4113->change_callback_private;
932 int rate;
933 if ((qtet_get_spdif_master_type(ice) == EXT_SPDIF_TYPE) &&
934 c1) {
935 /* only for SPDIF master mode, rate was changed */
936 rate = snd_ak4113_external_rate(ak4113);
937 /* dev_dbg(ice->card->dev, "ak4113 - input rate changed to %d\n",
938 rate); */
939 qtet_akm_set_rate_val(ice->akm, rate);
940 }
941 }
942
943 /*
944 * If clock slaved to SPDIF-IN, setting runtime rate
945 * to the detected external rate
946 */
qtet_spdif_in_open(struct snd_ice1712 * ice,struct snd_pcm_substream * substream)947 static void qtet_spdif_in_open(struct snd_ice1712 *ice,
948 struct snd_pcm_substream *substream)
949 {
950 struct qtet_spec *spec = ice->spec;
951 struct snd_pcm_runtime *runtime = substream->runtime;
952 int rate;
953
954 if (qtet_get_spdif_master_type(ice) != EXT_SPDIF_TYPE)
955 /* not external SPDIF, no rate limitation */
956 return;
957 /* only external SPDIF can detect incoming sample rate */
958 rate = snd_ak4113_external_rate(spec->ak4113);
959 if (rate >= runtime->hw.rate_min && rate <= runtime->hw.rate_max) {
960 runtime->hw.rate_min = rate;
961 runtime->hw.rate_max = rate;
962 }
963 }
964
965 /*
966 * initialize the chip
967 */
qtet_init(struct snd_ice1712 * ice)968 static int qtet_init(struct snd_ice1712 *ice)
969 {
970 static const unsigned char ak4113_init_vals[] = {
971 /* AK4113_REG_PWRDN */ AK4113_RST | AK4113_PWN |
972 AK4113_OCKS0 | AK4113_OCKS1,
973 /* AK4113_REQ_FORMAT */ AK4113_DIF_I24I2S | AK4113_VTX |
974 AK4113_DEM_OFF | AK4113_DEAU,
975 /* AK4113_REG_IO0 */ AK4113_OPS2 | AK4113_TXE |
976 AK4113_XTL_24_576M,
977 /* AK4113_REG_IO1 */ AK4113_EFH_1024LRCLK | AK4113_IPS(0),
978 /* AK4113_REG_INT0_MASK */ 0,
979 /* AK4113_REG_INT1_MASK */ 0,
980 /* AK4113_REG_DATDTS */ 0,
981 };
982 int err;
983 struct qtet_spec *spec;
984 struct snd_akm4xxx *ak;
985 unsigned char val;
986
987 /* switching ice1724 to external clock - supplied by ext. circuits */
988 val = inb(ICEMT1724(ice, RATE));
989 outb(val | VT1724_SPDIF_MASTER, ICEMT1724(ice, RATE));
990
991 spec = kzalloc(sizeof(*spec), GFP_KERNEL);
992 if (!spec)
993 return -ENOMEM;
994 /* qtet is clocked by Xilinx array */
995 ice->hw_rates = &qtet_rates_info;
996 ice->is_spdif_master = qtet_is_spdif_master;
997 ice->get_rate = qtet_get_rate;
998 ice->set_rate = qtet_set_rate;
999 ice->set_mclk = qtet_set_mclk;
1000 ice->set_spdif_clock = qtet_set_spdif_clock;
1001 ice->get_spdif_master_type = qtet_get_spdif_master_type;
1002 ice->ext_clock_names = ext_clock_names;
1003 ice->ext_clock_count = ARRAY_SIZE(ext_clock_names);
1004 /* since Qtet can detect correct SPDIF-in rate, all streams can be
1005 * limited to this specific rate */
1006 ice->spdif.ops.open = ice->pro_open = qtet_spdif_in_open;
1007 ice->spec = spec;
1008
1009 /* Mute Off */
1010 /* SCR Initialize*/
1011 /* keep codec power down first */
1012 set_scr(ice, SCR_PHP);
1013 udelay(1);
1014 /* codec power up */
1015 set_scr(ice, SCR_PHP | SCR_CODEC_PDN);
1016
1017 /* MCR Initialize */
1018 set_mcr(ice, 0);
1019
1020 /* CPLD Initialize */
1021 set_cpld(ice, 0);
1022
1023
1024 ice->num_total_dacs = 2;
1025 ice->num_total_adcs = 2;
1026
1027 ice->akm = kcalloc(2, sizeof(struct snd_akm4xxx), GFP_KERNEL);
1028 ak = ice->akm;
1029 if (!ak)
1030 return -ENOMEM;
1031 /* only one codec with two chips */
1032 ice->akm_codecs = 1;
1033 err = snd_ice1712_akm4xxx_init(ak, &akm_qtet_dac, NULL, ice);
1034 if (err < 0)
1035 return err;
1036 err = snd_ak4113_create(ice->card,
1037 qtet_ak4113_read,
1038 qtet_ak4113_write,
1039 ak4113_init_vals,
1040 ice, &spec->ak4113);
1041 if (err < 0)
1042 return err;
1043 /* callback for codecs rate setting */
1044 spec->ak4113->change_callback = qtet_ak4113_change;
1045 spec->ak4113->change_callback_private = ice;
1046 /* AK41143 in Quartet can detect external rate correctly
1047 * (i.e. check_flags = 0) */
1048 spec->ak4113->check_flags = 0;
1049
1050 proc_init(ice);
1051
1052 qtet_set_rate(ice, 44100);
1053 return 0;
1054 }
1055
1056 static const unsigned char qtet_eeprom[] = {
1057 [ICE_EEP2_SYSCONF] = 0x28, /* clock 256(24MHz), mpu401, 1xADC,
1058 1xDACs, SPDIF in */
1059 [ICE_EEP2_ACLINK] = 0x80, /* I2S */
1060 [ICE_EEP2_I2S] = 0x78, /* 96k, 24bit, 192k */
1061 [ICE_EEP2_SPDIF] = 0xc3, /* out-en, out-int, in, out-ext */
1062 [ICE_EEP2_GPIO_DIR] = 0x00, /* 0-7 inputs, switched to output
1063 only during output operations */
1064 [ICE_EEP2_GPIO_DIR1] = 0xff, /* 8-15 outputs */
1065 [ICE_EEP2_GPIO_DIR2] = 0x00,
1066 [ICE_EEP2_GPIO_MASK] = 0xff, /* changed only for OUT operations */
1067 [ICE_EEP2_GPIO_MASK1] = 0x00,
1068 [ICE_EEP2_GPIO_MASK2] = 0xff,
1069
1070 [ICE_EEP2_GPIO_STATE] = 0x00, /* inputs */
1071 [ICE_EEP2_GPIO_STATE1] = 0x7d, /* all 1, but GPIO_CPLD_RW
1072 and GPIO15 always zero */
1073 [ICE_EEP2_GPIO_STATE2] = 0x00, /* inputs */
1074 };
1075
1076 /* entry point */
1077 struct snd_ice1712_card_info snd_vt1724_qtet_cards[] = {
1078 {
1079 .subvendor = VT1724_SUBDEVICE_QTET,
1080 .name = "Infrasonic Quartet",
1081 .model = "quartet",
1082 .chip_init = qtet_init,
1083 .build_controls = qtet_add_controls,
1084 .eeprom_size = sizeof(qtet_eeprom),
1085 .eeprom_data = qtet_eeprom,
1086 },
1087 { } /* terminator */
1088 };
1089