1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66 int ret;
67
68 ret = snd_soc_component_read(component, e->reg, ®_val);
69 if (ret)
70 return ret;
71 val = (reg_val >> e->shift_l) & e->mask;
72 item = snd_soc_enum_val_to_item(e, val);
73 ucontrol->value.enumerated.item[0] = item;
74 if (e->shift_l != e->shift_r) {
75 val = (reg_val >> e->shift_r) & e->mask;
76 item = snd_soc_enum_val_to_item(e, val);
77 ucontrol->value.enumerated.item[1] = item;
78 }
79
80 return 0;
81 }
82 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
83
84 /**
85 * snd_soc_put_enum_double - enumerated double mixer put callback
86 * @kcontrol: mixer control
87 * @ucontrol: control element information
88 *
89 * Callback to set the value of a double enumerated mixer.
90 *
91 * Returns 0 for success.
92 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)93 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
94 struct snd_ctl_elem_value *ucontrol)
95 {
96 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
97 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
98 unsigned int *item = ucontrol->value.enumerated.item;
99 unsigned int val;
100 unsigned int mask;
101
102 if (item[0] >= e->items)
103 return -EINVAL;
104 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
105 mask = e->mask << e->shift_l;
106 if (e->shift_l != e->shift_r) {
107 if (item[1] >= e->items)
108 return -EINVAL;
109 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
110 mask |= e->mask << e->shift_r;
111 }
112
113 return snd_soc_component_update_bits(component, e->reg, mask, val);
114 }
115 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
116
117 /**
118 * snd_soc_read_signed - Read a codec register and interpret as signed value
119 * @component: component
120 * @reg: Register to read
121 * @mask: Mask to use after shifting the register value
122 * @shift: Right shift of register value
123 * @sign_bit: Bit that describes if a number is negative or not.
124 * @signed_val: Pointer to where the read value should be stored
125 *
126 * This functions reads a codec register. The register value is shifted right
127 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
128 * the given registervalue into a signed integer if sign_bit is non-zero.
129 *
130 * Returns 0 on sucess, otherwise an error value
131 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)132 static int snd_soc_read_signed(struct snd_soc_component *component,
133 unsigned int reg, unsigned int mask, unsigned int shift,
134 unsigned int sign_bit, int *signed_val)
135 {
136 int ret;
137 unsigned int val;
138
139 ret = snd_soc_component_read(component, reg, &val);
140 if (ret < 0)
141 return ret;
142
143 val = (val >> shift) & mask;
144
145 if (!sign_bit) {
146 *signed_val = val;
147 return 0;
148 }
149
150 /* non-negative number */
151 if (!(val & BIT(sign_bit))) {
152 *signed_val = val;
153 return 0;
154 }
155
156 ret = val;
157
158 /*
159 * The register most probably does not contain a full-sized int.
160 * Instead we have an arbitrary number of bits in a signed
161 * representation which has to be translated into a full-sized int.
162 * This is done by filling up all bits above the sign-bit.
163 */
164 ret |= ~((int)(BIT(sign_bit) - 1));
165
166 *signed_val = ret;
167
168 return 0;
169 }
170
171 /**
172 * snd_soc_info_volsw - single mixer info callback
173 * @kcontrol: mixer control
174 * @uinfo: control element information
175 *
176 * Callback to provide information about a single mixer control, or a double
177 * mixer control that spans 2 registers.
178 *
179 * Returns 0 for success.
180 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)181 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
182 struct snd_ctl_elem_info *uinfo)
183 {
184 struct soc_mixer_control *mc =
185 (struct soc_mixer_control *)kcontrol->private_value;
186 int platform_max;
187
188 if (!mc->platform_max)
189 mc->platform_max = mc->max;
190 platform_max = mc->platform_max;
191
192 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
193 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
194 else
195 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
196
197 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
198 uinfo->value.integer.min = 0;
199 uinfo->value.integer.max = platform_max - mc->min;
200 return 0;
201 }
202 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
203
204 /**
205 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
206 * @kcontrol: mixer control
207 * @uinfo: control element information
208 *
209 * Callback to provide information about a single mixer control, or a double
210 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
211 * have a range that represents both positive and negative values either side
212 * of zero but without a sign bit.
213 *
214 * Returns 0 for success.
215 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)216 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
217 struct snd_ctl_elem_info *uinfo)
218 {
219 struct soc_mixer_control *mc =
220 (struct soc_mixer_control *)kcontrol->private_value;
221
222 snd_soc_info_volsw(kcontrol, uinfo);
223 /* Max represents the number of levels in an SX control not the
224 * maximum value, so add the minimum value back on
225 */
226 uinfo->value.integer.max += mc->min;
227
228 return 0;
229 }
230 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
231
232 /**
233 * snd_soc_get_volsw - single mixer get callback
234 * @kcontrol: mixer control
235 * @ucontrol: control element information
236 *
237 * Callback to get the value of a single mixer control, or a double mixer
238 * control that spans 2 registers.
239 *
240 * Returns 0 for success.
241 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)242 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
243 struct snd_ctl_elem_value *ucontrol)
244 {
245 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
246 struct soc_mixer_control *mc =
247 (struct soc_mixer_control *)kcontrol->private_value;
248 unsigned int reg = mc->reg;
249 unsigned int reg2 = mc->rreg;
250 unsigned int shift = mc->shift;
251 unsigned int rshift = mc->rshift;
252 int max = mc->max;
253 int min = mc->min;
254 int sign_bit = mc->sign_bit;
255 unsigned int mask = (1 << fls(max)) - 1;
256 unsigned int invert = mc->invert;
257 int val;
258 int ret;
259
260 if (sign_bit)
261 mask = BIT(sign_bit + 1) - 1;
262
263 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
264 if (ret)
265 return ret;
266
267 ucontrol->value.integer.value[0] = val - min;
268 if (invert)
269 ucontrol->value.integer.value[0] =
270 max - ucontrol->value.integer.value[0];
271
272 if (snd_soc_volsw_is_stereo(mc)) {
273 if (reg == reg2)
274 ret = snd_soc_read_signed(component, reg, mask, rshift,
275 sign_bit, &val);
276 else
277 ret = snd_soc_read_signed(component, reg2, mask, shift,
278 sign_bit, &val);
279 if (ret)
280 return ret;
281
282 ucontrol->value.integer.value[1] = val - min;
283 if (invert)
284 ucontrol->value.integer.value[1] =
285 max - ucontrol->value.integer.value[1];
286 }
287
288 return 0;
289 }
290 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
291
292 /**
293 * snd_soc_put_volsw - single mixer put callback
294 * @kcontrol: mixer control
295 * @ucontrol: control element information
296 *
297 * Callback to set the value of a single mixer control, or a double mixer
298 * control that spans 2 registers.
299 *
300 * Returns 0 for success.
301 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)302 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
303 struct snd_ctl_elem_value *ucontrol)
304 {
305 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
306 struct soc_mixer_control *mc =
307 (struct soc_mixer_control *)kcontrol->private_value;
308 unsigned int reg = mc->reg;
309 unsigned int reg2 = mc->rreg;
310 unsigned int shift = mc->shift;
311 unsigned int rshift = mc->rshift;
312 int max = mc->max;
313 int min = mc->min;
314 unsigned int sign_bit = mc->sign_bit;
315 unsigned int mask = (1 << fls(max)) - 1;
316 unsigned int invert = mc->invert;
317 int err;
318 bool type_2r = false;
319 unsigned int val2 = 0;
320 unsigned int val, val_mask;
321
322 if (sign_bit)
323 mask = BIT(sign_bit + 1) - 1;
324
325 val = ((ucontrol->value.integer.value[0] + min) & mask);
326 if (invert)
327 val = max - val;
328 val_mask = mask << shift;
329 val = val << shift;
330 if (snd_soc_volsw_is_stereo(mc)) {
331 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
332 if (invert)
333 val2 = max - val2;
334 if (reg == reg2) {
335 val_mask |= mask << rshift;
336 val |= val2 << rshift;
337 } else {
338 val2 = val2 << shift;
339 type_2r = true;
340 }
341 }
342 err = snd_soc_component_update_bits(component, reg, val_mask, val);
343 if (err < 0)
344 return err;
345
346 if (type_2r)
347 err = snd_soc_component_update_bits(component, reg2, val_mask,
348 val2);
349
350 return err;
351 }
352 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
353
354 /**
355 * snd_soc_get_volsw_sx - single mixer get callback
356 * @kcontrol: mixer control
357 * @ucontrol: control element information
358 *
359 * Callback to get the value of a single mixer control, or a double mixer
360 * control that spans 2 registers.
361 *
362 * Returns 0 for success.
363 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)364 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
365 struct snd_ctl_elem_value *ucontrol)
366 {
367 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
368 struct soc_mixer_control *mc =
369 (struct soc_mixer_control *)kcontrol->private_value;
370 unsigned int reg = mc->reg;
371 unsigned int reg2 = mc->rreg;
372 unsigned int shift = mc->shift;
373 unsigned int rshift = mc->rshift;
374 int max = mc->max;
375 int min = mc->min;
376 unsigned int mask = (1 << (fls(min + max) - 1)) - 1;
377 unsigned int val;
378 int ret;
379
380 ret = snd_soc_component_read(component, reg, &val);
381 if (ret < 0)
382 return ret;
383
384 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
385
386 if (snd_soc_volsw_is_stereo(mc)) {
387 ret = snd_soc_component_read(component, reg2, &val);
388 if (ret < 0)
389 return ret;
390
391 val = ((val >> rshift) - min) & mask;
392 ucontrol->value.integer.value[1] = val;
393 }
394
395 return 0;
396 }
397 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
398
399 /**
400 * snd_soc_put_volsw_sx - double mixer set callback
401 * @kcontrol: mixer control
402 * @ucontrol: control element information
403 *
404 * Callback to set the value of a double mixer control that spans 2 registers.
405 *
406 * Returns 0 for success.
407 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)408 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
409 struct snd_ctl_elem_value *ucontrol)
410 {
411 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
412 struct soc_mixer_control *mc =
413 (struct soc_mixer_control *)kcontrol->private_value;
414
415 unsigned int reg = mc->reg;
416 unsigned int reg2 = mc->rreg;
417 unsigned int shift = mc->shift;
418 unsigned int rshift = mc->rshift;
419 int max = mc->max;
420 int min = mc->min;
421 unsigned int mask = (1 << (fls(min + max) - 1)) - 1;
422 int err = 0;
423 unsigned int val, val_mask, val2 = 0;
424
425 val_mask = mask << shift;
426 val = (ucontrol->value.integer.value[0] + min) & mask;
427 val = val << shift;
428
429 err = snd_soc_component_update_bits(component, reg, val_mask, val);
430 if (err < 0)
431 return err;
432
433 if (snd_soc_volsw_is_stereo(mc)) {
434 val_mask = mask << rshift;
435 val2 = (ucontrol->value.integer.value[1] + min) & mask;
436 val2 = val2 << rshift;
437
438 err = snd_soc_component_update_bits(component, reg2, val_mask,
439 val2);
440 }
441 return err;
442 }
443 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
444
445 /**
446 * snd_soc_info_volsw_range - single mixer info callback with range.
447 * @kcontrol: mixer control
448 * @uinfo: control element information
449 *
450 * Callback to provide information, within a range, about a single
451 * mixer control.
452 *
453 * returns 0 for success.
454 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)455 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
456 struct snd_ctl_elem_info *uinfo)
457 {
458 struct soc_mixer_control *mc =
459 (struct soc_mixer_control *)kcontrol->private_value;
460 int platform_max;
461 int min = mc->min;
462
463 if (!mc->platform_max)
464 mc->platform_max = mc->max;
465 platform_max = mc->platform_max;
466
467 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
468 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
469 uinfo->value.integer.min = 0;
470 uinfo->value.integer.max = platform_max - min;
471
472 return 0;
473 }
474 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
475
476 /**
477 * snd_soc_put_volsw_range - single mixer put value callback with range.
478 * @kcontrol: mixer control
479 * @ucontrol: control element information
480 *
481 * Callback to set the value, within a range, for a single mixer control.
482 *
483 * Returns 0 for success.
484 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)485 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
486 struct snd_ctl_elem_value *ucontrol)
487 {
488 struct soc_mixer_control *mc =
489 (struct soc_mixer_control *)kcontrol->private_value;
490 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
491 unsigned int reg = mc->reg;
492 unsigned int rreg = mc->rreg;
493 unsigned int shift = mc->shift;
494 int min = mc->min;
495 int max = mc->max;
496 unsigned int mask = (1 << fls(max)) - 1;
497 unsigned int invert = mc->invert;
498 unsigned int val, val_mask;
499 int ret;
500
501 if (invert)
502 val = (max - ucontrol->value.integer.value[0]) & mask;
503 else
504 val = ((ucontrol->value.integer.value[0] + min) & mask);
505 val_mask = mask << shift;
506 val = val << shift;
507
508 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
509 if (ret < 0)
510 return ret;
511
512 if (snd_soc_volsw_is_stereo(mc)) {
513 if (invert)
514 val = (max - ucontrol->value.integer.value[1]) & mask;
515 else
516 val = ((ucontrol->value.integer.value[1] + min) & mask);
517 val_mask = mask << shift;
518 val = val << shift;
519
520 ret = snd_soc_component_update_bits(component, rreg, val_mask,
521 val);
522 }
523
524 return ret;
525 }
526 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
527
528 /**
529 * snd_soc_get_volsw_range - single mixer get callback with range
530 * @kcontrol: mixer control
531 * @ucontrol: control element information
532 *
533 * Callback to get the value, within a range, of a single mixer control.
534 *
535 * Returns 0 for success.
536 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)537 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
538 struct snd_ctl_elem_value *ucontrol)
539 {
540 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
541 struct soc_mixer_control *mc =
542 (struct soc_mixer_control *)kcontrol->private_value;
543 unsigned int reg = mc->reg;
544 unsigned int rreg = mc->rreg;
545 unsigned int shift = mc->shift;
546 int min = mc->min;
547 int max = mc->max;
548 unsigned int mask = (1 << fls(max)) - 1;
549 unsigned int invert = mc->invert;
550 unsigned int val;
551 int ret;
552
553 ret = snd_soc_component_read(component, reg, &val);
554 if (ret)
555 return ret;
556
557 ucontrol->value.integer.value[0] = (val >> shift) & mask;
558 if (invert)
559 ucontrol->value.integer.value[0] =
560 max - ucontrol->value.integer.value[0];
561 else
562 ucontrol->value.integer.value[0] =
563 ucontrol->value.integer.value[0] - min;
564
565 if (snd_soc_volsw_is_stereo(mc)) {
566 ret = snd_soc_component_read(component, rreg, &val);
567 if (ret)
568 return ret;
569
570 ucontrol->value.integer.value[1] = (val >> shift) & mask;
571 if (invert)
572 ucontrol->value.integer.value[1] =
573 max - ucontrol->value.integer.value[1];
574 else
575 ucontrol->value.integer.value[1] =
576 ucontrol->value.integer.value[1] - min;
577 }
578
579 return 0;
580 }
581 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
582
583 /**
584 * snd_soc_limit_volume - Set new limit to an existing volume control.
585 *
586 * @card: where to look for the control
587 * @name: Name of the control
588 * @max: new maximum limit
589 *
590 * Return 0 for success, else error.
591 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)592 int snd_soc_limit_volume(struct snd_soc_card *card,
593 const char *name, int max)
594 {
595 struct snd_card *snd_card = card->snd_card;
596 struct snd_kcontrol *kctl;
597 struct soc_mixer_control *mc;
598 int found = 0;
599 int ret = -EINVAL;
600
601 /* Sanity check for name and max */
602 if (unlikely(!name || max <= 0))
603 return -EINVAL;
604
605 list_for_each_entry(kctl, &snd_card->controls, list) {
606 if (!strncmp(kctl->id.name, name, sizeof(kctl->id.name))) {
607 found = 1;
608 break;
609 }
610 }
611 if (found) {
612 mc = (struct soc_mixer_control *)kctl->private_value;
613 if (max <= mc->max) {
614 mc->platform_max = max;
615 ret = 0;
616 }
617 }
618 return ret;
619 }
620 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
621
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)622 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
623 struct snd_ctl_elem_info *uinfo)
624 {
625 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
626 struct soc_bytes *params = (void *)kcontrol->private_value;
627
628 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
629 uinfo->count = params->num_regs * component->val_bytes;
630
631 return 0;
632 }
633 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
634
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)635 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
636 struct snd_ctl_elem_value *ucontrol)
637 {
638 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
639 struct soc_bytes *params = (void *)kcontrol->private_value;
640 int ret;
641
642 if (component->regmap)
643 ret = regmap_raw_read(component->regmap, params->base,
644 ucontrol->value.bytes.data,
645 params->num_regs * component->val_bytes);
646 else
647 ret = -EINVAL;
648
649 /* Hide any masked bytes to ensure consistent data reporting */
650 if (ret == 0 && params->mask) {
651 switch (component->val_bytes) {
652 case 1:
653 ucontrol->value.bytes.data[0] &= ~params->mask;
654 break;
655 case 2:
656 ((u16 *)(&ucontrol->value.bytes.data))[0]
657 &= cpu_to_be16(~params->mask);
658 break;
659 case 4:
660 ((u32 *)(&ucontrol->value.bytes.data))[0]
661 &= cpu_to_be32(~params->mask);
662 break;
663 default:
664 return -EINVAL;
665 }
666 }
667
668 return ret;
669 }
670 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
671
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)672 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
673 struct snd_ctl_elem_value *ucontrol)
674 {
675 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
676 struct soc_bytes *params = (void *)kcontrol->private_value;
677 int ret, len;
678 unsigned int val, mask;
679 void *data;
680
681 if (!component->regmap || !params->num_regs)
682 return -EINVAL;
683
684 len = params->num_regs * component->val_bytes;
685
686 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
687 if (!data)
688 return -ENOMEM;
689
690 /*
691 * If we've got a mask then we need to preserve the register
692 * bits. We shouldn't modify the incoming data so take a
693 * copy.
694 */
695 if (params->mask) {
696 ret = regmap_read(component->regmap, params->base, &val);
697 if (ret != 0)
698 goto out;
699
700 val &= params->mask;
701
702 switch (component->val_bytes) {
703 case 1:
704 ((u8 *)data)[0] &= ~params->mask;
705 ((u8 *)data)[0] |= val;
706 break;
707 case 2:
708 mask = ~params->mask;
709 ret = regmap_parse_val(component->regmap,
710 &mask, &mask);
711 if (ret != 0)
712 goto out;
713
714 ((u16 *)data)[0] &= mask;
715
716 ret = regmap_parse_val(component->regmap,
717 &val, &val);
718 if (ret != 0)
719 goto out;
720
721 ((u16 *)data)[0] |= val;
722 break;
723 case 4:
724 mask = ~params->mask;
725 ret = regmap_parse_val(component->regmap,
726 &mask, &mask);
727 if (ret != 0)
728 goto out;
729
730 ((u32 *)data)[0] &= mask;
731
732 ret = regmap_parse_val(component->regmap,
733 &val, &val);
734 if (ret != 0)
735 goto out;
736
737 ((u32 *)data)[0] |= val;
738 break;
739 default:
740 ret = -EINVAL;
741 goto out;
742 }
743 }
744
745 ret = regmap_raw_write(component->regmap, params->base,
746 data, len);
747
748 out:
749 kfree(data);
750
751 return ret;
752 }
753 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
754
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)755 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
756 struct snd_ctl_elem_info *ucontrol)
757 {
758 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
759
760 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
761 ucontrol->count = params->max;
762
763 return 0;
764 }
765 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
766
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)767 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
768 unsigned int size, unsigned int __user *tlv)
769 {
770 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
771 unsigned int count = size < params->max ? size : params->max;
772 int ret = -ENXIO;
773
774 switch (op_flag) {
775 case SNDRV_CTL_TLV_OP_READ:
776 if (params->get)
777 ret = params->get(kcontrol, tlv, count);
778 break;
779 case SNDRV_CTL_TLV_OP_WRITE:
780 if (params->put)
781 ret = params->put(kcontrol, tlv, count);
782 break;
783 }
784 return ret;
785 }
786 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
787
788 /**
789 * snd_soc_info_xr_sx - signed multi register info callback
790 * @kcontrol: mreg control
791 * @uinfo: control element information
792 *
793 * Callback to provide information of a control that can
794 * span multiple codec registers which together
795 * forms a single signed value in a MSB/LSB manner.
796 *
797 * Returns 0 for success.
798 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)799 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
800 struct snd_ctl_elem_info *uinfo)
801 {
802 struct soc_mreg_control *mc =
803 (struct soc_mreg_control *)kcontrol->private_value;
804 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
805 uinfo->count = 1;
806 uinfo->value.integer.min = mc->min;
807 uinfo->value.integer.max = mc->max;
808
809 return 0;
810 }
811 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
812
813 /**
814 * snd_soc_get_xr_sx - signed multi register get callback
815 * @kcontrol: mreg control
816 * @ucontrol: control element information
817 *
818 * Callback to get the value of a control that can span
819 * multiple codec registers which together forms a single
820 * signed value in a MSB/LSB manner. The control supports
821 * specifying total no of bits used to allow for bitfields
822 * across the multiple codec registers.
823 *
824 * Returns 0 for success.
825 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)826 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
827 struct snd_ctl_elem_value *ucontrol)
828 {
829 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
830 struct soc_mreg_control *mc =
831 (struct soc_mreg_control *)kcontrol->private_value;
832 unsigned int regbase = mc->regbase;
833 unsigned int regcount = mc->regcount;
834 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
835 unsigned int regwmask = (1<<regwshift)-1;
836 unsigned int invert = mc->invert;
837 unsigned long mask = (1UL<<mc->nbits)-1;
838 long min = mc->min;
839 long max = mc->max;
840 long val = 0;
841 unsigned int regval;
842 unsigned int i;
843 int ret;
844
845 for (i = 0; i < regcount; i++) {
846 ret = snd_soc_component_read(component, regbase+i, ®val);
847 if (ret)
848 return ret;
849 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
850 }
851 val &= mask;
852 if (min < 0 && val > max)
853 val |= ~mask;
854 if (invert)
855 val = max - val;
856 ucontrol->value.integer.value[0] = val;
857
858 return 0;
859 }
860 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
861
862 /**
863 * snd_soc_put_xr_sx - signed multi register get callback
864 * @kcontrol: mreg control
865 * @ucontrol: control element information
866 *
867 * Callback to set the value of a control that can span
868 * multiple codec registers which together forms a single
869 * signed value in a MSB/LSB manner. The control supports
870 * specifying total no of bits used to allow for bitfields
871 * across the multiple codec registers.
872 *
873 * Returns 0 for success.
874 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)875 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
876 struct snd_ctl_elem_value *ucontrol)
877 {
878 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
879 struct soc_mreg_control *mc =
880 (struct soc_mreg_control *)kcontrol->private_value;
881 unsigned int regbase = mc->regbase;
882 unsigned int regcount = mc->regcount;
883 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
884 unsigned int regwmask = (1<<regwshift)-1;
885 unsigned int invert = mc->invert;
886 unsigned long mask = (1UL<<mc->nbits)-1;
887 long max = mc->max;
888 long val = ucontrol->value.integer.value[0];
889 unsigned int i, regval, regmask;
890 int err;
891
892 if (invert)
893 val = max - val;
894 val &= mask;
895 for (i = 0; i < regcount; i++) {
896 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
897 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
898 err = snd_soc_component_update_bits(component, regbase+i,
899 regmask, regval);
900 if (err < 0)
901 return err;
902 }
903
904 return 0;
905 }
906 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
907
908 /**
909 * snd_soc_get_strobe - strobe get callback
910 * @kcontrol: mixer control
911 * @ucontrol: control element information
912 *
913 * Callback get the value of a strobe mixer control.
914 *
915 * Returns 0 for success.
916 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)917 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
918 struct snd_ctl_elem_value *ucontrol)
919 {
920 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
921 struct soc_mixer_control *mc =
922 (struct soc_mixer_control *)kcontrol->private_value;
923 unsigned int reg = mc->reg;
924 unsigned int shift = mc->shift;
925 unsigned int mask = 1 << shift;
926 unsigned int invert = mc->invert != 0;
927 unsigned int val;
928 int ret;
929
930 ret = snd_soc_component_read(component, reg, &val);
931 if (ret)
932 return ret;
933
934 val &= mask;
935
936 if (shift != 0 && val != 0)
937 val = val >> shift;
938 ucontrol->value.enumerated.item[0] = val ^ invert;
939
940 return 0;
941 }
942 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
943
944 /**
945 * snd_soc_put_strobe - strobe put callback
946 * @kcontrol: mixer control
947 * @ucontrol: control element information
948 *
949 * Callback strobe a register bit to high then low (or the inverse)
950 * in one pass of a single mixer enum control.
951 *
952 * Returns 1 for success.
953 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)954 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
955 struct snd_ctl_elem_value *ucontrol)
956 {
957 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
958 struct soc_mixer_control *mc =
959 (struct soc_mixer_control *)kcontrol->private_value;
960 unsigned int reg = mc->reg;
961 unsigned int shift = mc->shift;
962 unsigned int mask = 1 << shift;
963 unsigned int invert = mc->invert != 0;
964 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
965 unsigned int val1 = (strobe ^ invert) ? mask : 0;
966 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
967 int err;
968
969 err = snd_soc_component_update_bits(component, reg, mask, val1);
970 if (err < 0)
971 return err;
972
973 return snd_soc_component_update_bits(component, reg, mask, val2);
974 }
975 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
976