1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 int platform_max;
181
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
185
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 else
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
194 return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198 /**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
212 {
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
215
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
219 */
220 uinfo->value.integer.max += mc->min;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226 /**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238 {
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
246 int max = mc->max;
247 int min = mc->min;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
251 int val;
252 int ret;
253
254 if (sign_bit)
255 mask = BIT(sign_bit + 1) - 1;
256
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 if (ret)
259 return ret;
260
261 ucontrol->value.integer.value[0] = val - min;
262 if (invert)
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
265
266 if (snd_soc_volsw_is_stereo(mc)) {
267 if (reg == reg2)
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
269 sign_bit, &val);
270 else
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
272 sign_bit, &val);
273 if (ret)
274 return ret;
275
276 ucontrol->value.integer.value[1] = val - min;
277 if (invert)
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
280 }
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286 /**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
298 {
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
306 int max = mc->max;
307 int min = mc->min;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
311 int err;
312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
315
316 if (sign_bit)
317 mask = BIT(sign_bit + 1) - 1;
318
319 val = ((ucontrol->value.integer.value[0] + min) & mask);
320 if (invert)
321 val = max - val;
322 val_mask = mask << shift;
323 val = val << shift;
324 if (snd_soc_volsw_is_stereo(mc)) {
325 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
326 if (invert)
327 val2 = max - val2;
328 if (reg == reg2) {
329 val_mask |= mask << rshift;
330 val |= val2 << rshift;
331 } else {
332 val2 = val2 << shift;
333 type_2r = true;
334 }
335 }
336 err = snd_soc_component_update_bits(component, reg, val_mask, val);
337 if (err < 0)
338 return err;
339
340 if (type_2r)
341 err = snd_soc_component_update_bits(component, reg2, val_mask,
342 val2);
343
344 return err;
345 }
346 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
347
348 /**
349 * snd_soc_get_volsw_sx - single mixer get callback
350 * @kcontrol: mixer control
351 * @ucontrol: control element information
352 *
353 * Callback to get the value of a single mixer control, or a double mixer
354 * control that spans 2 registers.
355 *
356 * Returns 0 for success.
357 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)358 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
359 struct snd_ctl_elem_value *ucontrol)
360 {
361 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
362 struct soc_mixer_control *mc =
363 (struct soc_mixer_control *)kcontrol->private_value;
364 unsigned int reg = mc->reg;
365 unsigned int reg2 = mc->rreg;
366 unsigned int shift = mc->shift;
367 unsigned int rshift = mc->rshift;
368 int max = mc->max;
369 int min = mc->min;
370 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
371 unsigned int val;
372
373 val = snd_soc_component_read(component, reg);
374 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
375
376 if (snd_soc_volsw_is_stereo(mc)) {
377 val = snd_soc_component_read(component, reg2);
378 val = ((val >> rshift) - min) & mask;
379 ucontrol->value.integer.value[1] = val;
380 }
381
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
385
386 /**
387 * snd_soc_put_volsw_sx - double mixer set callback
388 * @kcontrol: mixer control
389 * @ucontrol: control element information
390 *
391 * Callback to set the value of a double mixer control that spans 2 registers.
392 *
393 * Returns 0 for success.
394 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)395 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
396 struct snd_ctl_elem_value *ucontrol)
397 {
398 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 struct soc_mixer_control *mc =
400 (struct soc_mixer_control *)kcontrol->private_value;
401
402 unsigned int reg = mc->reg;
403 unsigned int reg2 = mc->rreg;
404 unsigned int shift = mc->shift;
405 unsigned int rshift = mc->rshift;
406 int max = mc->max;
407 int min = mc->min;
408 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 int err = 0;
410 unsigned int val, val_mask, val2 = 0;
411
412 val_mask = mask << shift;
413 val = (ucontrol->value.integer.value[0] + min) & mask;
414 val = val << shift;
415
416 err = snd_soc_component_update_bits(component, reg, val_mask, val);
417 if (err < 0)
418 return err;
419
420 if (snd_soc_volsw_is_stereo(mc)) {
421 val_mask = mask << rshift;
422 val2 = (ucontrol->value.integer.value[1] + min) & mask;
423 val2 = val2 << rshift;
424
425 err = snd_soc_component_update_bits(component, reg2, val_mask,
426 val2);
427 }
428 return err;
429 }
430 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
431
432 /**
433 * snd_soc_info_volsw_range - single mixer info callback with range.
434 * @kcontrol: mixer control
435 * @uinfo: control element information
436 *
437 * Callback to provide information, within a range, about a single
438 * mixer control.
439 *
440 * returns 0 for success.
441 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)442 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
443 struct snd_ctl_elem_info *uinfo)
444 {
445 struct soc_mixer_control *mc =
446 (struct soc_mixer_control *)kcontrol->private_value;
447 int platform_max;
448 int min = mc->min;
449
450 if (!mc->platform_max)
451 mc->platform_max = mc->max;
452 platform_max = mc->platform_max;
453
454 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
455 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
456 uinfo->value.integer.min = 0;
457 uinfo->value.integer.max = platform_max - min;
458
459 return 0;
460 }
461 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
462
463 /**
464 * snd_soc_put_volsw_range - single mixer put value callback with range.
465 * @kcontrol: mixer control
466 * @ucontrol: control element information
467 *
468 * Callback to set the value, within a range, for a single mixer control.
469 *
470 * Returns 0 for success.
471 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)472 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
473 struct snd_ctl_elem_value *ucontrol)
474 {
475 struct soc_mixer_control *mc =
476 (struct soc_mixer_control *)kcontrol->private_value;
477 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
478 unsigned int reg = mc->reg;
479 unsigned int rreg = mc->rreg;
480 unsigned int shift = mc->shift;
481 int min = mc->min;
482 int max = mc->max;
483 unsigned int mask = (1 << fls(max)) - 1;
484 unsigned int invert = mc->invert;
485 unsigned int val, val_mask;
486 int ret;
487
488 if (invert)
489 val = (max - ucontrol->value.integer.value[0]) & mask;
490 else
491 val = ((ucontrol->value.integer.value[0] + min) & mask);
492 val_mask = mask << shift;
493 val = val << shift;
494
495 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
496 if (ret < 0)
497 return ret;
498
499 if (snd_soc_volsw_is_stereo(mc)) {
500 if (invert)
501 val = (max - ucontrol->value.integer.value[1]) & mask;
502 else
503 val = ((ucontrol->value.integer.value[1] + min) & mask);
504 val_mask = mask << shift;
505 val = val << shift;
506
507 ret = snd_soc_component_update_bits(component, rreg, val_mask,
508 val);
509 }
510
511 return ret;
512 }
513 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
514
515 /**
516 * snd_soc_get_volsw_range - single mixer get callback with range
517 * @kcontrol: mixer control
518 * @ucontrol: control element information
519 *
520 * Callback to get the value, within a range, of a single mixer control.
521 *
522 * Returns 0 for success.
523 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)524 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
525 struct snd_ctl_elem_value *ucontrol)
526 {
527 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
528 struct soc_mixer_control *mc =
529 (struct soc_mixer_control *)kcontrol->private_value;
530 unsigned int reg = mc->reg;
531 unsigned int rreg = mc->rreg;
532 unsigned int shift = mc->shift;
533 int min = mc->min;
534 int max = mc->max;
535 unsigned int mask = (1 << fls(max)) - 1;
536 unsigned int invert = mc->invert;
537 unsigned int val;
538
539 val = snd_soc_component_read(component, reg);
540 ucontrol->value.integer.value[0] = (val >> shift) & mask;
541 if (invert)
542 ucontrol->value.integer.value[0] =
543 max - ucontrol->value.integer.value[0];
544 else
545 ucontrol->value.integer.value[0] =
546 ucontrol->value.integer.value[0] - min;
547
548 if (snd_soc_volsw_is_stereo(mc)) {
549 val = snd_soc_component_read(component, rreg);
550 ucontrol->value.integer.value[1] = (val >> shift) & mask;
551 if (invert)
552 ucontrol->value.integer.value[1] =
553 max - ucontrol->value.integer.value[1];
554 else
555 ucontrol->value.integer.value[1] =
556 ucontrol->value.integer.value[1] - min;
557 }
558
559 return 0;
560 }
561 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
562
563 /**
564 * snd_soc_limit_volume - Set new limit to an existing volume control.
565 *
566 * @card: where to look for the control
567 * @name: Name of the control
568 * @max: new maximum limit
569 *
570 * Return 0 for success, else error.
571 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)572 int snd_soc_limit_volume(struct snd_soc_card *card,
573 const char *name, int max)
574 {
575 struct snd_kcontrol *kctl;
576 struct soc_mixer_control *mc;
577 int ret = -EINVAL;
578
579 /* Sanity check for name and max */
580 if (unlikely(!name || max <= 0))
581 return -EINVAL;
582
583 kctl = snd_soc_card_get_kcontrol(card, name);
584 if (kctl) {
585 mc = (struct soc_mixer_control *)kctl->private_value;
586 if (max <= mc->max) {
587 mc->platform_max = max;
588 ret = 0;
589 }
590 }
591 return ret;
592 }
593 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
594
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)595 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
596 struct snd_ctl_elem_info *uinfo)
597 {
598 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
599 struct soc_bytes *params = (void *)kcontrol->private_value;
600
601 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
602 uinfo->count = params->num_regs * component->val_bytes;
603
604 return 0;
605 }
606 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
607
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)608 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
609 struct snd_ctl_elem_value *ucontrol)
610 {
611 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
612 struct soc_bytes *params = (void *)kcontrol->private_value;
613 int ret;
614
615 if (component->regmap)
616 ret = regmap_raw_read(component->regmap, params->base,
617 ucontrol->value.bytes.data,
618 params->num_regs * component->val_bytes);
619 else
620 ret = -EINVAL;
621
622 /* Hide any masked bytes to ensure consistent data reporting */
623 if (ret == 0 && params->mask) {
624 switch (component->val_bytes) {
625 case 1:
626 ucontrol->value.bytes.data[0] &= ~params->mask;
627 break;
628 case 2:
629 ((u16 *)(&ucontrol->value.bytes.data))[0]
630 &= cpu_to_be16(~params->mask);
631 break;
632 case 4:
633 ((u32 *)(&ucontrol->value.bytes.data))[0]
634 &= cpu_to_be32(~params->mask);
635 break;
636 default:
637 return -EINVAL;
638 }
639 }
640
641 return ret;
642 }
643 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
644
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)645 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
646 struct snd_ctl_elem_value *ucontrol)
647 {
648 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
649 struct soc_bytes *params = (void *)kcontrol->private_value;
650 int ret, len;
651 unsigned int val, mask;
652 void *data;
653
654 if (!component->regmap || !params->num_regs)
655 return -EINVAL;
656
657 len = params->num_regs * component->val_bytes;
658
659 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
660 if (!data)
661 return -ENOMEM;
662
663 /*
664 * If we've got a mask then we need to preserve the register
665 * bits. We shouldn't modify the incoming data so take a
666 * copy.
667 */
668 if (params->mask) {
669 ret = regmap_read(component->regmap, params->base, &val);
670 if (ret != 0)
671 goto out;
672
673 val &= params->mask;
674
675 switch (component->val_bytes) {
676 case 1:
677 ((u8 *)data)[0] &= ~params->mask;
678 ((u8 *)data)[0] |= val;
679 break;
680 case 2:
681 mask = ~params->mask;
682 ret = regmap_parse_val(component->regmap,
683 &mask, &mask);
684 if (ret != 0)
685 goto out;
686
687 ((u16 *)data)[0] &= mask;
688
689 ret = regmap_parse_val(component->regmap,
690 &val, &val);
691 if (ret != 0)
692 goto out;
693
694 ((u16 *)data)[0] |= val;
695 break;
696 case 4:
697 mask = ~params->mask;
698 ret = regmap_parse_val(component->regmap,
699 &mask, &mask);
700 if (ret != 0)
701 goto out;
702
703 ((u32 *)data)[0] &= mask;
704
705 ret = regmap_parse_val(component->regmap,
706 &val, &val);
707 if (ret != 0)
708 goto out;
709
710 ((u32 *)data)[0] |= val;
711 break;
712 default:
713 ret = -EINVAL;
714 goto out;
715 }
716 }
717
718 ret = regmap_raw_write(component->regmap, params->base,
719 data, len);
720
721 out:
722 kfree(data);
723
724 return ret;
725 }
726 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
727
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)728 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
729 struct snd_ctl_elem_info *ucontrol)
730 {
731 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
732
733 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
734 ucontrol->count = params->max;
735
736 return 0;
737 }
738 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
739
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)740 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
741 unsigned int size, unsigned int __user *tlv)
742 {
743 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
744 unsigned int count = size < params->max ? size : params->max;
745 int ret = -ENXIO;
746
747 switch (op_flag) {
748 case SNDRV_CTL_TLV_OP_READ:
749 if (params->get)
750 ret = params->get(kcontrol, tlv, count);
751 break;
752 case SNDRV_CTL_TLV_OP_WRITE:
753 if (params->put)
754 ret = params->put(kcontrol, tlv, count);
755 break;
756 }
757 return ret;
758 }
759 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
760
761 /**
762 * snd_soc_info_xr_sx - signed multi register info callback
763 * @kcontrol: mreg control
764 * @uinfo: control element information
765 *
766 * Callback to provide information of a control that can
767 * span multiple codec registers which together
768 * forms a single signed value in a MSB/LSB manner.
769 *
770 * Returns 0 for success.
771 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)772 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
773 struct snd_ctl_elem_info *uinfo)
774 {
775 struct soc_mreg_control *mc =
776 (struct soc_mreg_control *)kcontrol->private_value;
777 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
778 uinfo->count = 1;
779 uinfo->value.integer.min = mc->min;
780 uinfo->value.integer.max = mc->max;
781
782 return 0;
783 }
784 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
785
786 /**
787 * snd_soc_get_xr_sx - signed multi register get callback
788 * @kcontrol: mreg control
789 * @ucontrol: control element information
790 *
791 * Callback to get the value of a control that can span
792 * multiple codec registers which together forms a single
793 * signed value in a MSB/LSB manner. The control supports
794 * specifying total no of bits used to allow for bitfields
795 * across the multiple codec registers.
796 *
797 * Returns 0 for success.
798 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)799 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
800 struct snd_ctl_elem_value *ucontrol)
801 {
802 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
803 struct soc_mreg_control *mc =
804 (struct soc_mreg_control *)kcontrol->private_value;
805 unsigned int regbase = mc->regbase;
806 unsigned int regcount = mc->regcount;
807 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
808 unsigned int regwmask = (1UL<<regwshift)-1;
809 unsigned int invert = mc->invert;
810 unsigned long mask = (1UL<<mc->nbits)-1;
811 long min = mc->min;
812 long max = mc->max;
813 long val = 0;
814 unsigned int regval;
815 unsigned int i;
816
817 for (i = 0; i < regcount; i++) {
818 regval = snd_soc_component_read(component, regbase+i);
819 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
820 }
821 val &= mask;
822 if (min < 0 && val > max)
823 val |= ~mask;
824 if (invert)
825 val = max - val;
826 ucontrol->value.integer.value[0] = val;
827
828 return 0;
829 }
830 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
831
832 /**
833 * snd_soc_put_xr_sx - signed multi register get callback
834 * @kcontrol: mreg control
835 * @ucontrol: control element information
836 *
837 * Callback to set the value of a control that can span
838 * multiple codec registers which together forms a single
839 * signed value in a MSB/LSB manner. The control supports
840 * specifying total no of bits used to allow for bitfields
841 * across the multiple codec registers.
842 *
843 * Returns 0 for success.
844 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)845 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
846 struct snd_ctl_elem_value *ucontrol)
847 {
848 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
849 struct soc_mreg_control *mc =
850 (struct soc_mreg_control *)kcontrol->private_value;
851 unsigned int regbase = mc->regbase;
852 unsigned int regcount = mc->regcount;
853 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
854 unsigned int regwmask = (1UL<<regwshift)-1;
855 unsigned int invert = mc->invert;
856 unsigned long mask = (1UL<<mc->nbits)-1;
857 long max = mc->max;
858 long val = ucontrol->value.integer.value[0];
859 unsigned int i, regval, regmask;
860 int err;
861
862 if (invert)
863 val = max - val;
864 val &= mask;
865 for (i = 0; i < regcount; i++) {
866 regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
867 regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
868 err = snd_soc_component_update_bits(component, regbase+i,
869 regmask, regval);
870 if (err < 0)
871 return err;
872 }
873
874 return 0;
875 }
876 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
877
878 /**
879 * snd_soc_get_strobe - strobe get callback
880 * @kcontrol: mixer control
881 * @ucontrol: control element information
882 *
883 * Callback get the value of a strobe mixer control.
884 *
885 * Returns 0 for success.
886 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)887 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
888 struct snd_ctl_elem_value *ucontrol)
889 {
890 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
891 struct soc_mixer_control *mc =
892 (struct soc_mixer_control *)kcontrol->private_value;
893 unsigned int reg = mc->reg;
894 unsigned int shift = mc->shift;
895 unsigned int mask = 1 << shift;
896 unsigned int invert = mc->invert != 0;
897 unsigned int val;
898
899 val = snd_soc_component_read(component, reg);
900 val &= mask;
901
902 if (shift != 0 && val != 0)
903 val = val >> shift;
904 ucontrol->value.enumerated.item[0] = val ^ invert;
905
906 return 0;
907 }
908 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
909
910 /**
911 * snd_soc_put_strobe - strobe put callback
912 * @kcontrol: mixer control
913 * @ucontrol: control element information
914 *
915 * Callback strobe a register bit to high then low (or the inverse)
916 * in one pass of a single mixer enum control.
917 *
918 * Returns 1 for success.
919 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)920 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
921 struct snd_ctl_elem_value *ucontrol)
922 {
923 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
924 struct soc_mixer_control *mc =
925 (struct soc_mixer_control *)kcontrol->private_value;
926 unsigned int reg = mc->reg;
927 unsigned int shift = mc->shift;
928 unsigned int mask = 1 << shift;
929 unsigned int invert = mc->invert != 0;
930 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
931 unsigned int val1 = (strobe ^ invert) ? mask : 0;
932 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
933 int err;
934
935 err = snd_soc_component_update_bits(component, reg, mask, val1);
936 if (err < 0)
937 return err;
938
939 return snd_soc_component_update_bits(component, reg, mask, val2);
940 }
941 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
942