1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // soc-ops.c -- Generic ASoC operations
4 //
5 // Copyright 2005 Wolfson Microelectronics PLC.
6 // Copyright 2005 Openedhand Ltd.
7 // Copyright (C) 2010 Slimlogic Ltd.
8 // Copyright (C) 2010 Texas Instruments Inc.
9 //
10 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
11 // with code, comments and ideas from :-
12 // Richard Purdie <richard@openedhand.com>
13
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/init.h>
17 #include <linux/delay.h>
18 #include <linux/pm.h>
19 #include <linux/bitops.h>
20 #include <linux/ctype.h>
21 #include <linux/slab.h>
22 #include <sound/core.h>
23 #include <sound/jack.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/soc-dpcm.h>
28 #include <sound/initval.h>
29
30 /**
31 * snd_soc_info_enum_double - enumerated double mixer info callback
32 * @kcontrol: mixer control
33 * @uinfo: control element information
34 *
35 * Callback to provide information about a double enumerated
36 * mixer control.
37 *
38 * Returns 0 for success.
39 */
snd_soc_info_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)40 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
41 struct snd_ctl_elem_info *uinfo)
42 {
43 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
44
45 return snd_ctl_enum_info(uinfo, e->shift_l == e->shift_r ? 1 : 2,
46 e->items, e->texts);
47 }
48 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
49
50 /**
51 * snd_soc_get_enum_double - enumerated double mixer get callback
52 * @kcontrol: mixer control
53 * @ucontrol: control element information
54 *
55 * Callback to get the value of a double enumerated mixer.
56 *
57 * Returns 0 for success.
58 */
snd_soc_get_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)59 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
60 struct snd_ctl_elem_value *ucontrol)
61 {
62 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
63 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
64 unsigned int val, item;
65 unsigned int reg_val;
66
67 reg_val = snd_soc_component_read(component, e->reg);
68 val = (reg_val >> e->shift_l) & e->mask;
69 item = snd_soc_enum_val_to_item(e, val);
70 ucontrol->value.enumerated.item[0] = item;
71 if (e->shift_l != e->shift_r) {
72 val = (reg_val >> e->shift_r) & e->mask;
73 item = snd_soc_enum_val_to_item(e, val);
74 ucontrol->value.enumerated.item[1] = item;
75 }
76
77 return 0;
78 }
79 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
80
81 /**
82 * snd_soc_put_enum_double - enumerated double mixer put callback
83 * @kcontrol: mixer control
84 * @ucontrol: control element information
85 *
86 * Callback to set the value of a double enumerated mixer.
87 *
88 * Returns 0 for success.
89 */
snd_soc_put_enum_double(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)90 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
91 struct snd_ctl_elem_value *ucontrol)
92 {
93 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
94 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
95 unsigned int *item = ucontrol->value.enumerated.item;
96 unsigned int val;
97 unsigned int mask;
98
99 if (item[0] >= e->items)
100 return -EINVAL;
101 val = snd_soc_enum_item_to_val(e, item[0]) << e->shift_l;
102 mask = e->mask << e->shift_l;
103 if (e->shift_l != e->shift_r) {
104 if (item[1] >= e->items)
105 return -EINVAL;
106 val |= snd_soc_enum_item_to_val(e, item[1]) << e->shift_r;
107 mask |= e->mask << e->shift_r;
108 }
109
110 return snd_soc_component_update_bits(component, e->reg, mask, val);
111 }
112 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
113
114 /**
115 * snd_soc_read_signed - Read a codec register and interpret as signed value
116 * @component: component
117 * @reg: Register to read
118 * @mask: Mask to use after shifting the register value
119 * @shift: Right shift of register value
120 * @sign_bit: Bit that describes if a number is negative or not.
121 * @signed_val: Pointer to where the read value should be stored
122 *
123 * This functions reads a codec register. The register value is shifted right
124 * by 'shift' bits and masked with the given 'mask'. Afterwards it translates
125 * the given registervalue into a signed integer if sign_bit is non-zero.
126 *
127 * Returns 0 on sucess, otherwise an error value
128 */
snd_soc_read_signed(struct snd_soc_component * component,unsigned int reg,unsigned int mask,unsigned int shift,unsigned int sign_bit,int * signed_val)129 static int snd_soc_read_signed(struct snd_soc_component *component,
130 unsigned int reg, unsigned int mask, unsigned int shift,
131 unsigned int sign_bit, int *signed_val)
132 {
133 int ret;
134 unsigned int val;
135
136 val = snd_soc_component_read(component, reg);
137 val = (val >> shift) & mask;
138
139 if (!sign_bit) {
140 *signed_val = val;
141 return 0;
142 }
143
144 /* non-negative number */
145 if (!(val & BIT(sign_bit))) {
146 *signed_val = val;
147 return 0;
148 }
149
150 ret = val;
151
152 /*
153 * The register most probably does not contain a full-sized int.
154 * Instead we have an arbitrary number of bits in a signed
155 * representation which has to be translated into a full-sized int.
156 * This is done by filling up all bits above the sign-bit.
157 */
158 ret |= ~((int)(BIT(sign_bit) - 1));
159
160 *signed_val = ret;
161
162 return 0;
163 }
164
165 /**
166 * snd_soc_info_volsw - single mixer info callback
167 * @kcontrol: mixer control
168 * @uinfo: control element information
169 *
170 * Callback to provide information about a single mixer control, or a double
171 * mixer control that spans 2 registers.
172 *
173 * Returns 0 for success.
174 */
snd_soc_info_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)175 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
176 struct snd_ctl_elem_info *uinfo)
177 {
178 struct soc_mixer_control *mc =
179 (struct soc_mixer_control *)kcontrol->private_value;
180 int platform_max;
181
182 if (!mc->platform_max)
183 mc->platform_max = mc->max;
184 platform_max = mc->platform_max;
185
186 if (platform_max == 1 && !strstr(kcontrol->id.name, " Volume"))
187 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
188 else
189 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
190
191 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
192 uinfo->value.integer.min = 0;
193 uinfo->value.integer.max = platform_max - mc->min;
194 return 0;
195 }
196 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
197
198 /**
199 * snd_soc_info_volsw_sx - Mixer info callback for SX TLV controls
200 * @kcontrol: mixer control
201 * @uinfo: control element information
202 *
203 * Callback to provide information about a single mixer control, or a double
204 * mixer control that spans 2 registers of the SX TLV type. SX TLV controls
205 * have a range that represents both positive and negative values either side
206 * of zero but without a sign bit.
207 *
208 * Returns 0 for success.
209 */
snd_soc_info_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)210 int snd_soc_info_volsw_sx(struct snd_kcontrol *kcontrol,
211 struct snd_ctl_elem_info *uinfo)
212 {
213 struct soc_mixer_control *mc =
214 (struct soc_mixer_control *)kcontrol->private_value;
215
216 snd_soc_info_volsw(kcontrol, uinfo);
217 /* Max represents the number of levels in an SX control not the
218 * maximum value, so add the minimum value back on
219 */
220 uinfo->value.integer.max += mc->min;
221
222 return 0;
223 }
224 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_sx);
225
226 /**
227 * snd_soc_get_volsw - single mixer get callback
228 * @kcontrol: mixer control
229 * @ucontrol: control element information
230 *
231 * Callback to get the value of a single mixer control, or a double mixer
232 * control that spans 2 registers.
233 *
234 * Returns 0 for success.
235 */
snd_soc_get_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)236 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
237 struct snd_ctl_elem_value *ucontrol)
238 {
239 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
240 struct soc_mixer_control *mc =
241 (struct soc_mixer_control *)kcontrol->private_value;
242 unsigned int reg = mc->reg;
243 unsigned int reg2 = mc->rreg;
244 unsigned int shift = mc->shift;
245 unsigned int rshift = mc->rshift;
246 int max = mc->max;
247 int min = mc->min;
248 int sign_bit = mc->sign_bit;
249 unsigned int mask = (1 << fls(max)) - 1;
250 unsigned int invert = mc->invert;
251 int val;
252 int ret;
253
254 if (sign_bit)
255 mask = BIT(sign_bit + 1) - 1;
256
257 ret = snd_soc_read_signed(component, reg, mask, shift, sign_bit, &val);
258 if (ret)
259 return ret;
260
261 ucontrol->value.integer.value[0] = val - min;
262 if (invert)
263 ucontrol->value.integer.value[0] =
264 max - ucontrol->value.integer.value[0];
265
266 if (snd_soc_volsw_is_stereo(mc)) {
267 if (reg == reg2)
268 ret = snd_soc_read_signed(component, reg, mask, rshift,
269 sign_bit, &val);
270 else
271 ret = snd_soc_read_signed(component, reg2, mask, shift,
272 sign_bit, &val);
273 if (ret)
274 return ret;
275
276 ucontrol->value.integer.value[1] = val - min;
277 if (invert)
278 ucontrol->value.integer.value[1] =
279 max - ucontrol->value.integer.value[1];
280 }
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
285
286 /**
287 * snd_soc_put_volsw - single mixer put callback
288 * @kcontrol: mixer control
289 * @ucontrol: control element information
290 *
291 * Callback to set the value of a single mixer control, or a double mixer
292 * control that spans 2 registers.
293 *
294 * Returns 0 for success.
295 */
snd_soc_put_volsw(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)296 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
297 struct snd_ctl_elem_value *ucontrol)
298 {
299 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
300 struct soc_mixer_control *mc =
301 (struct soc_mixer_control *)kcontrol->private_value;
302 unsigned int reg = mc->reg;
303 unsigned int reg2 = mc->rreg;
304 unsigned int shift = mc->shift;
305 unsigned int rshift = mc->rshift;
306 int max = mc->max;
307 int min = mc->min;
308 unsigned int sign_bit = mc->sign_bit;
309 unsigned int mask = (1 << fls(max)) - 1;
310 unsigned int invert = mc->invert;
311 int err;
312 bool type_2r = false;
313 unsigned int val2 = 0;
314 unsigned int val, val_mask;
315
316 if (sign_bit)
317 mask = BIT(sign_bit + 1) - 1;
318
319 val = ((ucontrol->value.integer.value[0] + min) & mask);
320 if (invert)
321 val = max - val;
322 val_mask = mask << shift;
323 val = val << shift;
324 if (snd_soc_volsw_is_stereo(mc)) {
325 val2 = ((ucontrol->value.integer.value[1] + min) & mask);
326 if (invert)
327 val2 = max - val2;
328 if (reg == reg2) {
329 val_mask |= mask << rshift;
330 val |= val2 << rshift;
331 } else {
332 val2 = val2 << shift;
333 type_2r = true;
334 }
335 }
336 err = snd_soc_component_update_bits(component, reg, val_mask, val);
337 if (err < 0)
338 return err;
339
340 if (type_2r)
341 err = snd_soc_component_update_bits(component, reg2, val_mask,
342 val2);
343
344 return err;
345 }
346 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
347
348 /**
349 * snd_soc_get_volsw_sx - single mixer get callback
350 * @kcontrol: mixer control
351 * @ucontrol: control element information
352 *
353 * Callback to get the value of a single mixer control, or a double mixer
354 * control that spans 2 registers.
355 *
356 * Returns 0 for success.
357 */
snd_soc_get_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)358 int snd_soc_get_volsw_sx(struct snd_kcontrol *kcontrol,
359 struct snd_ctl_elem_value *ucontrol)
360 {
361 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
362 struct soc_mixer_control *mc =
363 (struct soc_mixer_control *)kcontrol->private_value;
364 unsigned int reg = mc->reg;
365 unsigned int reg2 = mc->rreg;
366 unsigned int shift = mc->shift;
367 unsigned int rshift = mc->rshift;
368 int max = mc->max;
369 int min = mc->min;
370 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
371 unsigned int val;
372
373 val = snd_soc_component_read(component, reg);
374 ucontrol->value.integer.value[0] = ((val >> shift) - min) & mask;
375
376 if (snd_soc_volsw_is_stereo(mc)) {
377 val = snd_soc_component_read(component, reg2);
378 val = ((val >> rshift) - min) & mask;
379 ucontrol->value.integer.value[1] = val;
380 }
381
382 return 0;
383 }
384 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_sx);
385
386 /**
387 * snd_soc_put_volsw_sx - double mixer set callback
388 * @kcontrol: mixer control
389 * @ucontrol: control element information
390 *
391 * Callback to set the value of a double mixer control that spans 2 registers.
392 *
393 * Returns 0 for success.
394 */
snd_soc_put_volsw_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)395 int snd_soc_put_volsw_sx(struct snd_kcontrol *kcontrol,
396 struct snd_ctl_elem_value *ucontrol)
397 {
398 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
399 struct soc_mixer_control *mc =
400 (struct soc_mixer_control *)kcontrol->private_value;
401
402 unsigned int reg = mc->reg;
403 unsigned int reg2 = mc->rreg;
404 unsigned int shift = mc->shift;
405 unsigned int rshift = mc->rshift;
406 int max = mc->max;
407 int min = mc->min;
408 unsigned int mask = (1U << (fls(min + max) - 1)) - 1;
409 int err = 0;
410 unsigned int val, val_mask;
411
412 val_mask = mask << shift;
413 val = (ucontrol->value.integer.value[0] + min) & mask;
414 val = val << shift;
415
416 err = snd_soc_component_update_bits(component, reg, val_mask, val);
417 if (err < 0)
418 return err;
419
420 if (snd_soc_volsw_is_stereo(mc)) {
421 unsigned int val2;
422
423 val_mask = mask << rshift;
424 val2 = (ucontrol->value.integer.value[1] + min) & mask;
425 val2 = val2 << rshift;
426
427 err = snd_soc_component_update_bits(component, reg2, val_mask,
428 val2);
429 }
430 return err;
431 }
432 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_sx);
433
434 /**
435 * snd_soc_info_volsw_range - single mixer info callback with range.
436 * @kcontrol: mixer control
437 * @uinfo: control element information
438 *
439 * Callback to provide information, within a range, about a single
440 * mixer control.
441 *
442 * returns 0 for success.
443 */
snd_soc_info_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)444 int snd_soc_info_volsw_range(struct snd_kcontrol *kcontrol,
445 struct snd_ctl_elem_info *uinfo)
446 {
447 struct soc_mixer_control *mc =
448 (struct soc_mixer_control *)kcontrol->private_value;
449 int platform_max;
450 int min = mc->min;
451
452 if (!mc->platform_max)
453 mc->platform_max = mc->max;
454 platform_max = mc->platform_max;
455
456 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
457 uinfo->count = snd_soc_volsw_is_stereo(mc) ? 2 : 1;
458 uinfo->value.integer.min = 0;
459 uinfo->value.integer.max = platform_max - min;
460
461 return 0;
462 }
463 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_range);
464
465 /**
466 * snd_soc_put_volsw_range - single mixer put value callback with range.
467 * @kcontrol: mixer control
468 * @ucontrol: control element information
469 *
470 * Callback to set the value, within a range, for a single mixer control.
471 *
472 * Returns 0 for success.
473 */
snd_soc_put_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)474 int snd_soc_put_volsw_range(struct snd_kcontrol *kcontrol,
475 struct snd_ctl_elem_value *ucontrol)
476 {
477 struct soc_mixer_control *mc =
478 (struct soc_mixer_control *)kcontrol->private_value;
479 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
480 unsigned int reg = mc->reg;
481 unsigned int rreg = mc->rreg;
482 unsigned int shift = mc->shift;
483 int min = mc->min;
484 int max = mc->max;
485 unsigned int mask = (1 << fls(max)) - 1;
486 unsigned int invert = mc->invert;
487 unsigned int val, val_mask;
488 int ret;
489
490 if (invert)
491 val = (max - ucontrol->value.integer.value[0]) & mask;
492 else
493 val = ((ucontrol->value.integer.value[0] + min) & mask);
494 val_mask = mask << shift;
495 val = val << shift;
496
497 ret = snd_soc_component_update_bits(component, reg, val_mask, val);
498 if (ret < 0)
499 return ret;
500
501 if (snd_soc_volsw_is_stereo(mc)) {
502 if (invert)
503 val = (max - ucontrol->value.integer.value[1]) & mask;
504 else
505 val = ((ucontrol->value.integer.value[1] + min) & mask);
506 val_mask = mask << shift;
507 val = val << shift;
508
509 ret = snd_soc_component_update_bits(component, rreg, val_mask,
510 val);
511 }
512
513 return ret;
514 }
515 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_range);
516
517 /**
518 * snd_soc_get_volsw_range - single mixer get callback with range
519 * @kcontrol: mixer control
520 * @ucontrol: control element information
521 *
522 * Callback to get the value, within a range, of a single mixer control.
523 *
524 * Returns 0 for success.
525 */
snd_soc_get_volsw_range(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)526 int snd_soc_get_volsw_range(struct snd_kcontrol *kcontrol,
527 struct snd_ctl_elem_value *ucontrol)
528 {
529 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
530 struct soc_mixer_control *mc =
531 (struct soc_mixer_control *)kcontrol->private_value;
532 unsigned int reg = mc->reg;
533 unsigned int rreg = mc->rreg;
534 unsigned int shift = mc->shift;
535 int min = mc->min;
536 int max = mc->max;
537 unsigned int mask = (1 << fls(max)) - 1;
538 unsigned int invert = mc->invert;
539 unsigned int val;
540
541 val = snd_soc_component_read(component, reg);
542 ucontrol->value.integer.value[0] = (val >> shift) & mask;
543 if (invert)
544 ucontrol->value.integer.value[0] =
545 max - ucontrol->value.integer.value[0];
546 else
547 ucontrol->value.integer.value[0] =
548 ucontrol->value.integer.value[0] - min;
549
550 if (snd_soc_volsw_is_stereo(mc)) {
551 val = snd_soc_component_read(component, rreg);
552 ucontrol->value.integer.value[1] = (val >> shift) & mask;
553 if (invert)
554 ucontrol->value.integer.value[1] =
555 max - ucontrol->value.integer.value[1];
556 else
557 ucontrol->value.integer.value[1] =
558 ucontrol->value.integer.value[1] - min;
559 }
560
561 return 0;
562 }
563 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_range);
564
565 /**
566 * snd_soc_limit_volume - Set new limit to an existing volume control.
567 *
568 * @card: where to look for the control
569 * @name: Name of the control
570 * @max: new maximum limit
571 *
572 * Return 0 for success, else error.
573 */
snd_soc_limit_volume(struct snd_soc_card * card,const char * name,int max)574 int snd_soc_limit_volume(struct snd_soc_card *card,
575 const char *name, int max)
576 {
577 struct snd_kcontrol *kctl;
578 int ret = -EINVAL;
579
580 /* Sanity check for name and max */
581 if (unlikely(!name || max <= 0))
582 return -EINVAL;
583
584 kctl = snd_soc_card_get_kcontrol(card, name);
585 if (kctl) {
586 struct soc_mixer_control *mc = (struct soc_mixer_control *)kctl->private_value;
587 if (max <= mc->max) {
588 mc->platform_max = max;
589 ret = 0;
590 }
591 }
592 return ret;
593 }
594 EXPORT_SYMBOL_GPL(snd_soc_limit_volume);
595
snd_soc_bytes_info(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)596 int snd_soc_bytes_info(struct snd_kcontrol *kcontrol,
597 struct snd_ctl_elem_info *uinfo)
598 {
599 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
600 struct soc_bytes *params = (void *)kcontrol->private_value;
601
602 uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
603 uinfo->count = params->num_regs * component->val_bytes;
604
605 return 0;
606 }
607 EXPORT_SYMBOL_GPL(snd_soc_bytes_info);
608
snd_soc_bytes_get(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)609 int snd_soc_bytes_get(struct snd_kcontrol *kcontrol,
610 struct snd_ctl_elem_value *ucontrol)
611 {
612 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
613 struct soc_bytes *params = (void *)kcontrol->private_value;
614 int ret;
615
616 if (component->regmap)
617 ret = regmap_raw_read(component->regmap, params->base,
618 ucontrol->value.bytes.data,
619 params->num_regs * component->val_bytes);
620 else
621 ret = -EINVAL;
622
623 /* Hide any masked bytes to ensure consistent data reporting */
624 if (ret == 0 && params->mask) {
625 switch (component->val_bytes) {
626 case 1:
627 ucontrol->value.bytes.data[0] &= ~params->mask;
628 break;
629 case 2:
630 ((u16 *)(&ucontrol->value.bytes.data))[0]
631 &= cpu_to_be16(~params->mask);
632 break;
633 case 4:
634 ((u32 *)(&ucontrol->value.bytes.data))[0]
635 &= cpu_to_be32(~params->mask);
636 break;
637 default:
638 return -EINVAL;
639 }
640 }
641
642 return ret;
643 }
644 EXPORT_SYMBOL_GPL(snd_soc_bytes_get);
645
snd_soc_bytes_put(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)646 int snd_soc_bytes_put(struct snd_kcontrol *kcontrol,
647 struct snd_ctl_elem_value *ucontrol)
648 {
649 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
650 struct soc_bytes *params = (void *)kcontrol->private_value;
651 int ret, len;
652 unsigned int val, mask;
653 void *data;
654
655 if (!component->regmap || !params->num_regs)
656 return -EINVAL;
657
658 len = params->num_regs * component->val_bytes;
659
660 data = kmemdup(ucontrol->value.bytes.data, len, GFP_KERNEL | GFP_DMA);
661 if (!data)
662 return -ENOMEM;
663
664 /*
665 * If we've got a mask then we need to preserve the register
666 * bits. We shouldn't modify the incoming data so take a
667 * copy.
668 */
669 if (params->mask) {
670 ret = regmap_read(component->regmap, params->base, &val);
671 if (ret != 0)
672 goto out;
673
674 val &= params->mask;
675
676 switch (component->val_bytes) {
677 case 1:
678 ((u8 *)data)[0] &= ~params->mask;
679 ((u8 *)data)[0] |= val;
680 break;
681 case 2:
682 mask = ~params->mask;
683 ret = regmap_parse_val(component->regmap,
684 &mask, &mask);
685 if (ret != 0)
686 goto out;
687
688 ((u16 *)data)[0] &= mask;
689
690 ret = regmap_parse_val(component->regmap,
691 &val, &val);
692 if (ret != 0)
693 goto out;
694
695 ((u16 *)data)[0] |= val;
696 break;
697 case 4:
698 mask = ~params->mask;
699 ret = regmap_parse_val(component->regmap,
700 &mask, &mask);
701 if (ret != 0)
702 goto out;
703
704 ((u32 *)data)[0] &= mask;
705
706 ret = regmap_parse_val(component->regmap,
707 &val, &val);
708 if (ret != 0)
709 goto out;
710
711 ((u32 *)data)[0] |= val;
712 break;
713 default:
714 ret = -EINVAL;
715 goto out;
716 }
717 }
718
719 ret = regmap_raw_write(component->regmap, params->base,
720 data, len);
721
722 out:
723 kfree(data);
724
725 return ret;
726 }
727 EXPORT_SYMBOL_GPL(snd_soc_bytes_put);
728
snd_soc_bytes_info_ext(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * ucontrol)729 int snd_soc_bytes_info_ext(struct snd_kcontrol *kcontrol,
730 struct snd_ctl_elem_info *ucontrol)
731 {
732 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
733
734 ucontrol->type = SNDRV_CTL_ELEM_TYPE_BYTES;
735 ucontrol->count = params->max;
736
737 return 0;
738 }
739 EXPORT_SYMBOL_GPL(snd_soc_bytes_info_ext);
740
snd_soc_bytes_tlv_callback(struct snd_kcontrol * kcontrol,int op_flag,unsigned int size,unsigned int __user * tlv)741 int snd_soc_bytes_tlv_callback(struct snd_kcontrol *kcontrol, int op_flag,
742 unsigned int size, unsigned int __user *tlv)
743 {
744 struct soc_bytes_ext *params = (void *)kcontrol->private_value;
745 unsigned int count = size < params->max ? size : params->max;
746 int ret = -ENXIO;
747
748 switch (op_flag) {
749 case SNDRV_CTL_TLV_OP_READ:
750 if (params->get)
751 ret = params->get(kcontrol, tlv, count);
752 break;
753 case SNDRV_CTL_TLV_OP_WRITE:
754 if (params->put)
755 ret = params->put(kcontrol, tlv, count);
756 break;
757 }
758 return ret;
759 }
760 EXPORT_SYMBOL_GPL(snd_soc_bytes_tlv_callback);
761
762 /**
763 * snd_soc_info_xr_sx - signed multi register info callback
764 * @kcontrol: mreg control
765 * @uinfo: control element information
766 *
767 * Callback to provide information of a control that can
768 * span multiple codec registers which together
769 * forms a single signed value in a MSB/LSB manner.
770 *
771 * Returns 0 for success.
772 */
snd_soc_info_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_info * uinfo)773 int snd_soc_info_xr_sx(struct snd_kcontrol *kcontrol,
774 struct snd_ctl_elem_info *uinfo)
775 {
776 struct soc_mreg_control *mc =
777 (struct soc_mreg_control *)kcontrol->private_value;
778 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
779 uinfo->count = 1;
780 uinfo->value.integer.min = mc->min;
781 uinfo->value.integer.max = mc->max;
782
783 return 0;
784 }
785 EXPORT_SYMBOL_GPL(snd_soc_info_xr_sx);
786
787 /**
788 * snd_soc_get_xr_sx - signed multi register get callback
789 * @kcontrol: mreg control
790 * @ucontrol: control element information
791 *
792 * Callback to get the value of a control that can span
793 * multiple codec registers which together forms a single
794 * signed value in a MSB/LSB manner. The control supports
795 * specifying total no of bits used to allow for bitfields
796 * across the multiple codec registers.
797 *
798 * Returns 0 for success.
799 */
snd_soc_get_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)800 int snd_soc_get_xr_sx(struct snd_kcontrol *kcontrol,
801 struct snd_ctl_elem_value *ucontrol)
802 {
803 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
804 struct soc_mreg_control *mc =
805 (struct soc_mreg_control *)kcontrol->private_value;
806 unsigned int regbase = mc->regbase;
807 unsigned int regcount = mc->regcount;
808 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
809 unsigned int regwmask = (1UL<<regwshift)-1;
810 unsigned int invert = mc->invert;
811 unsigned long mask = (1UL<<mc->nbits)-1;
812 long min = mc->min;
813 long max = mc->max;
814 long val = 0;
815 unsigned int i;
816
817 for (i = 0; i < regcount; i++) {
818 unsigned int regval = snd_soc_component_read(component, regbase+i);
819 val |= (regval & regwmask) << (regwshift*(regcount-i-1));
820 }
821 val &= mask;
822 if (min < 0 && val > max)
823 val |= ~mask;
824 if (invert)
825 val = max - val;
826 ucontrol->value.integer.value[0] = val;
827
828 return 0;
829 }
830 EXPORT_SYMBOL_GPL(snd_soc_get_xr_sx);
831
832 /**
833 * snd_soc_put_xr_sx - signed multi register get callback
834 * @kcontrol: mreg control
835 * @ucontrol: control element information
836 *
837 * Callback to set the value of a control that can span
838 * multiple codec registers which together forms a single
839 * signed value in a MSB/LSB manner. The control supports
840 * specifying total no of bits used to allow for bitfields
841 * across the multiple codec registers.
842 *
843 * Returns 0 for success.
844 */
snd_soc_put_xr_sx(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)845 int snd_soc_put_xr_sx(struct snd_kcontrol *kcontrol,
846 struct snd_ctl_elem_value *ucontrol)
847 {
848 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
849 struct soc_mreg_control *mc =
850 (struct soc_mreg_control *)kcontrol->private_value;
851 unsigned int regbase = mc->regbase;
852 unsigned int regcount = mc->regcount;
853 unsigned int regwshift = component->val_bytes * BITS_PER_BYTE;
854 unsigned int regwmask = (1UL<<regwshift)-1;
855 unsigned int invert = mc->invert;
856 unsigned long mask = (1UL<<mc->nbits)-1;
857 long max = mc->max;
858 long val = ucontrol->value.integer.value[0];
859 unsigned int i;
860
861 if (invert)
862 val = max - val;
863 val &= mask;
864 for (i = 0; i < regcount; i++) {
865 unsigned int regval = (val >> (regwshift*(regcount-i-1))) & regwmask;
866 unsigned int regmask = (mask >> (regwshift*(regcount-i-1))) & regwmask;
867 int err = snd_soc_component_update_bits(component, regbase+i,
868 regmask, regval);
869 if (err < 0)
870 return err;
871 }
872
873 return 0;
874 }
875 EXPORT_SYMBOL_GPL(snd_soc_put_xr_sx);
876
877 /**
878 * snd_soc_get_strobe - strobe get callback
879 * @kcontrol: mixer control
880 * @ucontrol: control element information
881 *
882 * Callback get the value of a strobe mixer control.
883 *
884 * Returns 0 for success.
885 */
snd_soc_get_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)886 int snd_soc_get_strobe(struct snd_kcontrol *kcontrol,
887 struct snd_ctl_elem_value *ucontrol)
888 {
889 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
890 struct soc_mixer_control *mc =
891 (struct soc_mixer_control *)kcontrol->private_value;
892 unsigned int reg = mc->reg;
893 unsigned int shift = mc->shift;
894 unsigned int mask = 1 << shift;
895 unsigned int invert = mc->invert != 0;
896 unsigned int val;
897
898 val = snd_soc_component_read(component, reg);
899 val &= mask;
900
901 if (shift != 0 && val != 0)
902 val = val >> shift;
903 ucontrol->value.enumerated.item[0] = val ^ invert;
904
905 return 0;
906 }
907 EXPORT_SYMBOL_GPL(snd_soc_get_strobe);
908
909 /**
910 * snd_soc_put_strobe - strobe put callback
911 * @kcontrol: mixer control
912 * @ucontrol: control element information
913 *
914 * Callback strobe a register bit to high then low (or the inverse)
915 * in one pass of a single mixer enum control.
916 *
917 * Returns 1 for success.
918 */
snd_soc_put_strobe(struct snd_kcontrol * kcontrol,struct snd_ctl_elem_value * ucontrol)919 int snd_soc_put_strobe(struct snd_kcontrol *kcontrol,
920 struct snd_ctl_elem_value *ucontrol)
921 {
922 struct snd_soc_component *component = snd_kcontrol_chip(kcontrol);
923 struct soc_mixer_control *mc =
924 (struct soc_mixer_control *)kcontrol->private_value;
925 unsigned int reg = mc->reg;
926 unsigned int shift = mc->shift;
927 unsigned int mask = 1 << shift;
928 unsigned int invert = mc->invert != 0;
929 unsigned int strobe = ucontrol->value.enumerated.item[0] != 0;
930 unsigned int val1 = (strobe ^ invert) ? mask : 0;
931 unsigned int val2 = (strobe ^ invert) ? 0 : mask;
932 int err;
933
934 err = snd_soc_component_update_bits(component, reg, mask, val1);
935 if (err < 0)
936 return err;
937
938 return snd_soc_component_update_bits(component, reg, mask, val2);
939 }
940 EXPORT_SYMBOL_GPL(snd_soc_put_strobe);
941