1 /*
2 * Copyright 2018 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24 #include <linux/pci.h>
25
26 #include "hwmgr.h"
27 #include "pp_debug.h"
28 #include "ppatomctrl.h"
29 #include "ppsmc.h"
30 #include "atom.h"
31 #include "ivsrcid/thm/irqsrcs_thm_9_0.h"
32 #include "ivsrcid/smuio/irqsrcs_smuio_9_0.h"
33 #include "ivsrcid/ivsrcid_vislands30.h"
34
convert_to_vid(uint16_t vddc)35 uint8_t convert_to_vid(uint16_t vddc)
36 {
37 return (uint8_t) ((6200 - (vddc * VOLTAGE_SCALE)) / 25);
38 }
39
convert_to_vddc(uint8_t vid)40 uint16_t convert_to_vddc(uint8_t vid)
41 {
42 return (uint16_t) ((6200 - (vid * 25)) / VOLTAGE_SCALE);
43 }
44
phm_copy_clock_limits_array(struct pp_hwmgr * hwmgr,uint32_t ** pptable_info_array,const uint32_t * pptable_array,uint32_t power_saving_clock_count)45 int phm_copy_clock_limits_array(
46 struct pp_hwmgr *hwmgr,
47 uint32_t **pptable_info_array,
48 const uint32_t *pptable_array,
49 uint32_t power_saving_clock_count)
50 {
51 uint32_t array_size, i;
52 uint32_t *table;
53
54 array_size = sizeof(uint32_t) * power_saving_clock_count;
55 table = kzalloc(array_size, GFP_KERNEL);
56 if (NULL == table)
57 return -ENOMEM;
58
59 for (i = 0; i < power_saving_clock_count; i++)
60 table[i] = le32_to_cpu(pptable_array[i]);
61
62 *pptable_info_array = table;
63
64 return 0;
65 }
66
phm_copy_overdrive_settings_limits_array(struct pp_hwmgr * hwmgr,uint32_t ** pptable_info_array,const uint32_t * pptable_array,uint32_t od_setting_count)67 int phm_copy_overdrive_settings_limits_array(
68 struct pp_hwmgr *hwmgr,
69 uint32_t **pptable_info_array,
70 const uint32_t *pptable_array,
71 uint32_t od_setting_count)
72 {
73 uint32_t array_size, i;
74 uint32_t *table;
75
76 array_size = sizeof(uint32_t) * od_setting_count;
77 table = kzalloc(array_size, GFP_KERNEL);
78 if (NULL == table)
79 return -ENOMEM;
80
81 for (i = 0; i < od_setting_count; i++)
82 table[i] = le32_to_cpu(pptable_array[i]);
83
84 *pptable_info_array = table;
85
86 return 0;
87 }
88
phm_set_field_to_u32(u32 offset,u32 original_data,u32 field,u32 size)89 uint32_t phm_set_field_to_u32(u32 offset, u32 original_data, u32 field, u32 size)
90 {
91 u32 mask = 0;
92 u32 shift = 0;
93
94 shift = (offset % 4) << 3;
95 if (size == sizeof(uint8_t))
96 mask = 0xFF << shift;
97 else if (size == sizeof(uint16_t))
98 mask = 0xFFFF << shift;
99
100 original_data &= ~mask;
101 original_data |= (field << shift);
102 return original_data;
103 }
104
105 /**
106 * Returns once the part of the register indicated by the mask has
107 * reached the given value.
108 */
phm_wait_on_register(struct pp_hwmgr * hwmgr,uint32_t index,uint32_t value,uint32_t mask)109 int phm_wait_on_register(struct pp_hwmgr *hwmgr, uint32_t index,
110 uint32_t value, uint32_t mask)
111 {
112 uint32_t i;
113 uint32_t cur_value;
114
115 if (hwmgr == NULL || hwmgr->device == NULL) {
116 pr_err("Invalid Hardware Manager!");
117 return -EINVAL;
118 }
119
120 for (i = 0; i < hwmgr->usec_timeout; i++) {
121 cur_value = cgs_read_register(hwmgr->device, index);
122 if ((cur_value & mask) == (value & mask))
123 break;
124 udelay(1);
125 }
126
127 /* timeout means wrong logic*/
128 if (i == hwmgr->usec_timeout)
129 return -1;
130 return 0;
131 }
132
133
134 /**
135 * Returns once the part of the register indicated by the mask has
136 * reached the given value.The indirect space is described by giving
137 * the memory-mapped index of the indirect index register.
138 */
phm_wait_on_indirect_register(struct pp_hwmgr * hwmgr,uint32_t indirect_port,uint32_t index,uint32_t value,uint32_t mask)139 int phm_wait_on_indirect_register(struct pp_hwmgr *hwmgr,
140 uint32_t indirect_port,
141 uint32_t index,
142 uint32_t value,
143 uint32_t mask)
144 {
145 if (hwmgr == NULL || hwmgr->device == NULL) {
146 pr_err("Invalid Hardware Manager!");
147 return -EINVAL;
148 }
149
150 cgs_write_register(hwmgr->device, indirect_port, index);
151 return phm_wait_on_register(hwmgr, indirect_port + 1, mask, value);
152 }
153
phm_wait_for_register_unequal(struct pp_hwmgr * hwmgr,uint32_t index,uint32_t value,uint32_t mask)154 int phm_wait_for_register_unequal(struct pp_hwmgr *hwmgr,
155 uint32_t index,
156 uint32_t value, uint32_t mask)
157 {
158 uint32_t i;
159 uint32_t cur_value;
160
161 if (hwmgr == NULL || hwmgr->device == NULL)
162 return -EINVAL;
163
164 for (i = 0; i < hwmgr->usec_timeout; i++) {
165 cur_value = cgs_read_register(hwmgr->device,
166 index);
167 if ((cur_value & mask) != (value & mask))
168 break;
169 udelay(1);
170 }
171
172 /* timeout means wrong logic */
173 if (i == hwmgr->usec_timeout)
174 return -ETIME;
175 return 0;
176 }
177
phm_wait_for_indirect_register_unequal(struct pp_hwmgr * hwmgr,uint32_t indirect_port,uint32_t index,uint32_t value,uint32_t mask)178 int phm_wait_for_indirect_register_unequal(struct pp_hwmgr *hwmgr,
179 uint32_t indirect_port,
180 uint32_t index,
181 uint32_t value,
182 uint32_t mask)
183 {
184 if (hwmgr == NULL || hwmgr->device == NULL)
185 return -EINVAL;
186
187 cgs_write_register(hwmgr->device, indirect_port, index);
188 return phm_wait_for_register_unequal(hwmgr, indirect_port + 1,
189 value, mask);
190 }
191
phm_cf_want_uvd_power_gating(struct pp_hwmgr * hwmgr)192 bool phm_cf_want_uvd_power_gating(struct pp_hwmgr *hwmgr)
193 {
194 return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating);
195 }
196
phm_cf_want_vce_power_gating(struct pp_hwmgr * hwmgr)197 bool phm_cf_want_vce_power_gating(struct pp_hwmgr *hwmgr)
198 {
199 return phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating);
200 }
201
202
phm_trim_voltage_table(struct pp_atomctrl_voltage_table * vol_table)203 int phm_trim_voltage_table(struct pp_atomctrl_voltage_table *vol_table)
204 {
205 uint32_t i, j;
206 uint16_t vvalue;
207 bool found = false;
208 struct pp_atomctrl_voltage_table *table;
209
210 PP_ASSERT_WITH_CODE((NULL != vol_table),
211 "Voltage Table empty.", return -EINVAL);
212
213 table = kzalloc(sizeof(struct pp_atomctrl_voltage_table),
214 GFP_KERNEL);
215
216 if (NULL == table)
217 return -EINVAL;
218
219 table->mask_low = vol_table->mask_low;
220 table->phase_delay = vol_table->phase_delay;
221
222 for (i = 0; i < vol_table->count; i++) {
223 vvalue = vol_table->entries[i].value;
224 found = false;
225
226 for (j = 0; j < table->count; j++) {
227 if (vvalue == table->entries[j].value) {
228 found = true;
229 break;
230 }
231 }
232
233 if (!found) {
234 table->entries[table->count].value = vvalue;
235 table->entries[table->count].smio_low =
236 vol_table->entries[i].smio_low;
237 table->count++;
238 }
239 }
240
241 memcpy(vol_table, table, sizeof(struct pp_atomctrl_voltage_table));
242 kfree(table);
243 table = NULL;
244 return 0;
245 }
246
phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table * vol_table,phm_ppt_v1_clock_voltage_dependency_table * dep_table)247 int phm_get_svi2_mvdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
248 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
249 {
250 uint32_t i;
251 int result;
252
253 PP_ASSERT_WITH_CODE((0 != dep_table->count),
254 "Voltage Dependency Table empty.", return -EINVAL);
255
256 PP_ASSERT_WITH_CODE((NULL != vol_table),
257 "vol_table empty.", return -EINVAL);
258
259 vol_table->mask_low = 0;
260 vol_table->phase_delay = 0;
261 vol_table->count = dep_table->count;
262
263 for (i = 0; i < dep_table->count; i++) {
264 vol_table->entries[i].value = dep_table->entries[i].mvdd;
265 vol_table->entries[i].smio_low = 0;
266 }
267
268 result = phm_trim_voltage_table(vol_table);
269 PP_ASSERT_WITH_CODE((0 == result),
270 "Failed to trim MVDD table.", return result);
271
272 return 0;
273 }
274
phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table * vol_table,phm_ppt_v1_clock_voltage_dependency_table * dep_table)275 int phm_get_svi2_vddci_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
276 phm_ppt_v1_clock_voltage_dependency_table *dep_table)
277 {
278 uint32_t i;
279 int result;
280
281 PP_ASSERT_WITH_CODE((0 != dep_table->count),
282 "Voltage Dependency Table empty.", return -EINVAL);
283
284 PP_ASSERT_WITH_CODE((NULL != vol_table),
285 "vol_table empty.", return -EINVAL);
286
287 vol_table->mask_low = 0;
288 vol_table->phase_delay = 0;
289 vol_table->count = dep_table->count;
290
291 for (i = 0; i < dep_table->count; i++) {
292 vol_table->entries[i].value = dep_table->entries[i].vddci;
293 vol_table->entries[i].smio_low = 0;
294 }
295
296 result = phm_trim_voltage_table(vol_table);
297 PP_ASSERT_WITH_CODE((0 == result),
298 "Failed to trim VDDCI table.", return result);
299
300 return 0;
301 }
302
phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table * vol_table,phm_ppt_v1_voltage_lookup_table * lookup_table)303 int phm_get_svi2_vdd_voltage_table(struct pp_atomctrl_voltage_table *vol_table,
304 phm_ppt_v1_voltage_lookup_table *lookup_table)
305 {
306 int i = 0;
307
308 PP_ASSERT_WITH_CODE((0 != lookup_table->count),
309 "Voltage Lookup Table empty.", return -EINVAL);
310
311 PP_ASSERT_WITH_CODE((NULL != vol_table),
312 "vol_table empty.", return -EINVAL);
313
314 vol_table->mask_low = 0;
315 vol_table->phase_delay = 0;
316
317 vol_table->count = lookup_table->count;
318
319 for (i = 0; i < vol_table->count; i++) {
320 vol_table->entries[i].value = lookup_table->entries[i].us_vdd;
321 vol_table->entries[i].smio_low = 0;
322 }
323
324 return 0;
325 }
326
phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,struct pp_atomctrl_voltage_table * vol_table)327 void phm_trim_voltage_table_to_fit_state_table(uint32_t max_vol_steps,
328 struct pp_atomctrl_voltage_table *vol_table)
329 {
330 unsigned int i, diff;
331
332 if (vol_table->count <= max_vol_steps)
333 return;
334
335 diff = vol_table->count - max_vol_steps;
336
337 for (i = 0; i < max_vol_steps; i++)
338 vol_table->entries[i] = vol_table->entries[i + diff];
339
340 vol_table->count = max_vol_steps;
341
342 return;
343 }
344
phm_reset_single_dpm_table(void * table,uint32_t count,int max)345 int phm_reset_single_dpm_table(void *table,
346 uint32_t count, int max)
347 {
348 int i;
349
350 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
351
352 dpm_table->count = count > max ? max : count;
353
354 for (i = 0; i < dpm_table->count; i++)
355 dpm_table->dpm_level[i].enabled = false;
356
357 return 0;
358 }
359
phm_setup_pcie_table_entry(void * table,uint32_t index,uint32_t pcie_gen,uint32_t pcie_lanes)360 void phm_setup_pcie_table_entry(
361 void *table,
362 uint32_t index, uint32_t pcie_gen,
363 uint32_t pcie_lanes)
364 {
365 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
366 dpm_table->dpm_level[index].value = pcie_gen;
367 dpm_table->dpm_level[index].param1 = pcie_lanes;
368 dpm_table->dpm_level[index].enabled = 1;
369 }
370
phm_get_dpm_level_enable_mask_value(void * table)371 int32_t phm_get_dpm_level_enable_mask_value(void *table)
372 {
373 int32_t i;
374 int32_t mask = 0;
375 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
376
377 for (i = dpm_table->count; i > 0; i--) {
378 mask = mask << 1;
379 if (dpm_table->dpm_level[i - 1].enabled)
380 mask |= 0x1;
381 else
382 mask &= 0xFFFFFFFE;
383 }
384
385 return mask;
386 }
387
phm_get_voltage_index(struct phm_ppt_v1_voltage_lookup_table * lookup_table,uint16_t voltage)388 uint8_t phm_get_voltage_index(
389 struct phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t voltage)
390 {
391 uint8_t count = (uint8_t) (lookup_table->count);
392 uint8_t i;
393
394 PP_ASSERT_WITH_CODE((NULL != lookup_table),
395 "Lookup Table empty.", return 0);
396 PP_ASSERT_WITH_CODE((0 != count),
397 "Lookup Table empty.", return 0);
398
399 for (i = 0; i < lookup_table->count; i++) {
400 /* find first voltage equal or bigger than requested */
401 if (lookup_table->entries[i].us_vdd >= voltage)
402 return i;
403 }
404 /* voltage is bigger than max voltage in the table */
405 return i - 1;
406 }
407
phm_get_voltage_id(pp_atomctrl_voltage_table * voltage_table,uint32_t voltage)408 uint8_t phm_get_voltage_id(pp_atomctrl_voltage_table *voltage_table,
409 uint32_t voltage)
410 {
411 uint8_t count = (uint8_t) (voltage_table->count);
412 uint8_t i = 0;
413
414 PP_ASSERT_WITH_CODE((NULL != voltage_table),
415 "Voltage Table empty.", return 0;);
416 PP_ASSERT_WITH_CODE((0 != count),
417 "Voltage Table empty.", return 0;);
418
419 for (i = 0; i < count; i++) {
420 /* find first voltage bigger than requested */
421 if (voltage_table->entries[i].value >= voltage)
422 return i;
423 }
424
425 /* voltage is bigger than max voltage in the table */
426 return i - 1;
427 }
428
phm_find_closest_vddci(struct pp_atomctrl_voltage_table * vddci_table,uint16_t vddci)429 uint16_t phm_find_closest_vddci(struct pp_atomctrl_voltage_table *vddci_table, uint16_t vddci)
430 {
431 uint32_t i;
432
433 for (i = 0; i < vddci_table->count; i++) {
434 if (vddci_table->entries[i].value >= vddci)
435 return vddci_table->entries[i].value;
436 }
437
438 pr_debug("vddci is larger than max value in vddci_table\n");
439 return vddci_table->entries[i-1].value;
440 }
441
phm_find_boot_level(void * table,uint32_t value,uint32_t * boot_level)442 int phm_find_boot_level(void *table,
443 uint32_t value, uint32_t *boot_level)
444 {
445 int result = -EINVAL;
446 uint32_t i;
447 struct vi_dpm_table *dpm_table = (struct vi_dpm_table *)table;
448
449 for (i = 0; i < dpm_table->count; i++) {
450 if (value == dpm_table->dpm_level[i].value) {
451 *boot_level = i;
452 result = 0;
453 }
454 }
455
456 return result;
457 }
458
phm_get_sclk_for_voltage_evv(struct pp_hwmgr * hwmgr,phm_ppt_v1_voltage_lookup_table * lookup_table,uint16_t virtual_voltage_id,int32_t * sclk)459 int phm_get_sclk_for_voltage_evv(struct pp_hwmgr *hwmgr,
460 phm_ppt_v1_voltage_lookup_table *lookup_table,
461 uint16_t virtual_voltage_id, int32_t *sclk)
462 {
463 uint8_t entry_id;
464 uint8_t voltage_id;
465 struct phm_ppt_v1_information *table_info =
466 (struct phm_ppt_v1_information *)(hwmgr->pptable);
467
468 PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL);
469
470 /* search for leakage voltage ID 0xff01 ~ 0xff08 and sckl */
471 for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) {
472 voltage_id = table_info->vdd_dep_on_sclk->entries[entry_id].vddInd;
473 if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id)
474 break;
475 }
476
477 if (entry_id >= table_info->vdd_dep_on_sclk->count) {
478 pr_debug("Can't find requested voltage id in vdd_dep_on_sclk table\n");
479 return -EINVAL;
480 }
481
482 *sclk = table_info->vdd_dep_on_sclk->entries[entry_id].clk;
483
484 return 0;
485 }
486
487 /**
488 * Initialize Dynamic State Adjustment Rule Settings
489 *
490 * @param hwmgr the address of the powerplay hardware manager.
491 */
phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr * hwmgr)492 int phm_initializa_dynamic_state_adjustment_rule_settings(struct pp_hwmgr *hwmgr)
493 {
494 uint32_t table_size;
495 struct phm_clock_voltage_dependency_table *table_clk_vlt;
496 struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
497
498 /* initialize vddc_dep_on_dal_pwrl table */
499 table_size = sizeof(uint32_t) + 4 * sizeof(struct phm_clock_voltage_dependency_record);
500 table_clk_vlt = kzalloc(table_size, GFP_KERNEL);
501
502 if (NULL == table_clk_vlt) {
503 pr_err("Can not allocate space for vddc_dep_on_dal_pwrl! \n");
504 return -ENOMEM;
505 } else {
506 table_clk_vlt->count = 4;
507 table_clk_vlt->entries[0].clk = PP_DAL_POWERLEVEL_ULTRALOW;
508 table_clk_vlt->entries[0].v = 0;
509 table_clk_vlt->entries[1].clk = PP_DAL_POWERLEVEL_LOW;
510 table_clk_vlt->entries[1].v = 720;
511 table_clk_vlt->entries[2].clk = PP_DAL_POWERLEVEL_NOMINAL;
512 table_clk_vlt->entries[2].v = 810;
513 table_clk_vlt->entries[3].clk = PP_DAL_POWERLEVEL_PERFORMANCE;
514 table_clk_vlt->entries[3].v = 900;
515 if (pptable_info != NULL)
516 pptable_info->vddc_dep_on_dal_pwrl = table_clk_vlt;
517 hwmgr->dyn_state.vddc_dep_on_dal_pwrl = table_clk_vlt;
518 }
519
520 return 0;
521 }
522
phm_get_lowest_enabled_level(struct pp_hwmgr * hwmgr,uint32_t mask)523 uint32_t phm_get_lowest_enabled_level(struct pp_hwmgr *hwmgr, uint32_t mask)
524 {
525 uint32_t level = 0;
526
527 while (0 == (mask & (1 << level)))
528 level++;
529
530 return level;
531 }
532
phm_apply_dal_min_voltage_request(struct pp_hwmgr * hwmgr)533 void phm_apply_dal_min_voltage_request(struct pp_hwmgr *hwmgr)
534 {
535 struct phm_ppt_v1_information *table_info =
536 (struct phm_ppt_v1_information *)hwmgr->pptable;
537 struct phm_clock_voltage_dependency_table *table =
538 table_info->vddc_dep_on_dal_pwrl;
539 struct phm_ppt_v1_clock_voltage_dependency_table *vddc_table;
540 enum PP_DAL_POWERLEVEL dal_power_level = hwmgr->dal_power_level;
541 uint32_t req_vddc = 0, req_volt, i;
542
543 if (!table || table->count <= 0
544 || dal_power_level < PP_DAL_POWERLEVEL_ULTRALOW
545 || dal_power_level > PP_DAL_POWERLEVEL_PERFORMANCE)
546 return;
547
548 for (i = 0; i < table->count; i++) {
549 if (dal_power_level == table->entries[i].clk) {
550 req_vddc = table->entries[i].v;
551 break;
552 }
553 }
554
555 vddc_table = table_info->vdd_dep_on_sclk;
556 for (i = 0; i < vddc_table->count; i++) {
557 if (req_vddc <= vddc_table->entries[i].vddc) {
558 req_volt = (((uint32_t)vddc_table->entries[i].vddc) * VOLTAGE_SCALE);
559 smum_send_msg_to_smc_with_parameter(hwmgr,
560 PPSMC_MSG_VddC_Request, req_volt);
561 return;
562 }
563 }
564 pr_err("DAL requested level can not"
565 " found a available voltage in VDDC DPM Table \n");
566 }
567
phm_get_voltage_evv_on_sclk(struct pp_hwmgr * hwmgr,uint8_t voltage_type,uint32_t sclk,uint16_t id,uint16_t * voltage)568 int phm_get_voltage_evv_on_sclk(struct pp_hwmgr *hwmgr, uint8_t voltage_type,
569 uint32_t sclk, uint16_t id, uint16_t *voltage)
570 {
571 uint32_t vol;
572 int ret = 0;
573
574 if (hwmgr->chip_id < CHIP_TONGA) {
575 ret = atomctrl_get_voltage_evv(hwmgr, id, voltage);
576 } else if (hwmgr->chip_id < CHIP_POLARIS10) {
577 ret = atomctrl_get_voltage_evv_on_sclk(hwmgr, voltage_type, sclk, id, voltage);
578 if (*voltage >= 2000 || *voltage == 0)
579 *voltage = 1150;
580 } else {
581 ret = atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, voltage_type, sclk, id, &vol);
582 *voltage = (uint16_t)(vol/100);
583 }
584 return ret;
585 }
586
587
phm_irq_process(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)588 int phm_irq_process(struct amdgpu_device *adev,
589 struct amdgpu_irq_src *source,
590 struct amdgpu_iv_entry *entry)
591 {
592 uint32_t client_id = entry->client_id;
593 uint32_t src_id = entry->src_id;
594
595 if (client_id == AMDGPU_IRQ_CLIENTID_LEGACY) {
596 if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_LOW_TO_HIGH)
597 pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
598 PCI_BUS_NUM(adev->pdev->devfn),
599 PCI_SLOT(adev->pdev->devfn),
600 PCI_FUNC(adev->pdev->devfn));
601 else if (src_id == VISLANDS30_IV_SRCID_CG_TSS_THERMAL_HIGH_TO_LOW)
602 pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
603 PCI_BUS_NUM(adev->pdev->devfn),
604 PCI_SLOT(adev->pdev->devfn),
605 PCI_FUNC(adev->pdev->devfn));
606 else if (src_id == VISLANDS30_IV_SRCID_GPIO_19)
607 pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
608 PCI_BUS_NUM(adev->pdev->devfn),
609 PCI_SLOT(adev->pdev->devfn),
610 PCI_FUNC(adev->pdev->devfn));
611 } else if (client_id == SOC15_IH_CLIENTID_THM) {
612 if (src_id == 0)
613 pr_warn("GPU over temperature range detected on PCIe %d:%d.%d!\n",
614 PCI_BUS_NUM(adev->pdev->devfn),
615 PCI_SLOT(adev->pdev->devfn),
616 PCI_FUNC(adev->pdev->devfn));
617 else
618 pr_warn("GPU under temperature range detected on PCIe %d:%d.%d!\n",
619 PCI_BUS_NUM(adev->pdev->devfn),
620 PCI_SLOT(adev->pdev->devfn),
621 PCI_FUNC(adev->pdev->devfn));
622 } else if (client_id == SOC15_IH_CLIENTID_ROM_SMUIO)
623 pr_warn("GPU Critical Temperature Fault detected on PCIe %d:%d.%d!\n",
624 PCI_BUS_NUM(adev->pdev->devfn),
625 PCI_SLOT(adev->pdev->devfn),
626 PCI_FUNC(adev->pdev->devfn));
627
628 return 0;
629 }
630
631 static const struct amdgpu_irq_src_funcs smu9_irq_funcs = {
632 .process = phm_irq_process,
633 };
634
smu9_register_irq_handlers(struct pp_hwmgr * hwmgr)635 int smu9_register_irq_handlers(struct pp_hwmgr *hwmgr)
636 {
637 struct amdgpu_irq_src *source =
638 kzalloc(sizeof(struct amdgpu_irq_src), GFP_KERNEL);
639
640 if (!source)
641 return -ENOMEM;
642
643 source->funcs = &smu9_irq_funcs;
644
645 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
646 SOC15_IH_CLIENTID_THM,
647 THM_9_0__SRCID__THM_DIG_THERM_L2H,
648 source);
649 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
650 SOC15_IH_CLIENTID_THM,
651 THM_9_0__SRCID__THM_DIG_THERM_H2L,
652 source);
653
654 /* Register CTF(GPIO_19) interrupt */
655 amdgpu_irq_add_id((struct amdgpu_device *)(hwmgr->adev),
656 SOC15_IH_CLIENTID_ROM_SMUIO,
657 SMUIO_9_0__SRCID__SMUIO_GPIO19,
658 source);
659
660 return 0;
661 }
662
smu_atom_get_data_table(void * dev,uint32_t table,uint16_t * size,uint8_t * frev,uint8_t * crev)663 void *smu_atom_get_data_table(void *dev, uint32_t table, uint16_t *size,
664 uint8_t *frev, uint8_t *crev)
665 {
666 struct amdgpu_device *adev = dev;
667 uint16_t data_start;
668
669 if (amdgpu_atom_parse_data_header(
670 adev->mode_info.atom_context, table, size,
671 frev, crev, &data_start))
672 return (uint8_t *)adev->mode_info.atom_context->bios +
673 data_start;
674
675 return NULL;
676 }
677
smu_get_voltage_dependency_table_ppt_v1(const struct phm_ppt_v1_clock_voltage_dependency_table * allowed_dep_table,struct phm_ppt_v1_clock_voltage_dependency_table * dep_table)678 int smu_get_voltage_dependency_table_ppt_v1(
679 const struct phm_ppt_v1_clock_voltage_dependency_table *allowed_dep_table,
680 struct phm_ppt_v1_clock_voltage_dependency_table *dep_table)
681 {
682 uint8_t i = 0;
683 PP_ASSERT_WITH_CODE((0 != allowed_dep_table->count),
684 "Voltage Lookup Table empty",
685 return -EINVAL);
686
687 dep_table->count = allowed_dep_table->count;
688 for (i=0; i<dep_table->count; i++) {
689 dep_table->entries[i].clk = allowed_dep_table->entries[i].clk;
690 dep_table->entries[i].vddInd = allowed_dep_table->entries[i].vddInd;
691 dep_table->entries[i].vdd_offset = allowed_dep_table->entries[i].vdd_offset;
692 dep_table->entries[i].vddc = allowed_dep_table->entries[i].vddc;
693 dep_table->entries[i].vddgfx = allowed_dep_table->entries[i].vddgfx;
694 dep_table->entries[i].vddci = allowed_dep_table->entries[i].vddci;
695 dep_table->entries[i].mvdd = allowed_dep_table->entries[i].mvdd;
696 dep_table->entries[i].phases = allowed_dep_table->entries[i].phases;
697 dep_table->entries[i].cks_enable = allowed_dep_table->entries[i].cks_enable;
698 dep_table->entries[i].cks_voffset = allowed_dep_table->entries[i].cks_voffset;
699 }
700
701 return 0;
702 }
703
smu_set_watermarks_for_clocks_ranges(void * wt_table,struct dm_pp_wm_sets_with_clock_ranges_soc15 * wm_with_clock_ranges)704 int smu_set_watermarks_for_clocks_ranges(void *wt_table,
705 struct dm_pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges)
706 {
707 uint32_t i;
708 struct watermarks *table = wt_table;
709
710 if (!table || !wm_with_clock_ranges)
711 return -EINVAL;
712
713 if (wm_with_clock_ranges->num_wm_dmif_sets > 4 || wm_with_clock_ranges->num_wm_mcif_sets > 4)
714 return -EINVAL;
715
716 for (i = 0; i < wm_with_clock_ranges->num_wm_dmif_sets; i++) {
717 table->WatermarkRow[1][i].MinClock =
718 cpu_to_le16((uint16_t)
719 (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_dcfclk_clk_in_khz /
720 1000));
721 table->WatermarkRow[1][i].MaxClock =
722 cpu_to_le16((uint16_t)
723 (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_dcfclk_clk_in_khz /
724 1000));
725 table->WatermarkRow[1][i].MinUclk =
726 cpu_to_le16((uint16_t)
727 (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_min_mem_clk_in_khz /
728 1000));
729 table->WatermarkRow[1][i].MaxUclk =
730 cpu_to_le16((uint16_t)
731 (wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_max_mem_clk_in_khz /
732 1000));
733 table->WatermarkRow[1][i].WmSetting = (uint8_t)
734 wm_with_clock_ranges->wm_dmif_clocks_ranges[i].wm_set_id;
735 }
736
737 for (i = 0; i < wm_with_clock_ranges->num_wm_mcif_sets; i++) {
738 table->WatermarkRow[0][i].MinClock =
739 cpu_to_le16((uint16_t)
740 (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_socclk_clk_in_khz /
741 1000));
742 table->WatermarkRow[0][i].MaxClock =
743 cpu_to_le16((uint16_t)
744 (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_socclk_clk_in_khz /
745 1000));
746 table->WatermarkRow[0][i].MinUclk =
747 cpu_to_le16((uint16_t)
748 (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_min_mem_clk_in_khz /
749 1000));
750 table->WatermarkRow[0][i].MaxUclk =
751 cpu_to_le16((uint16_t)
752 (wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_max_mem_clk_in_khz /
753 1000));
754 table->WatermarkRow[0][i].WmSetting = (uint8_t)
755 wm_with_clock_ranges->wm_mcif_clocks_ranges[i].wm_set_id;
756 }
757 return 0;
758 }
759