1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc SMP support.
3 *
4 * Copyright (C) 1996 David S. Miller (davem@caip.rutgers.edu)
5 * Copyright (C) 1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
6 * Copyright (C) 2004 Keith M Wesolowski (wesolows@foobazco.org)
7 */
8
9 #include <asm/head.h>
10
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/delay.h>
24 #include <linux/profile.h>
25 #include <linux/cpu.h>
26
27 #include <asm/ptrace.h>
28 #include <linux/atomic.h>
29
30 #include <asm/irq.h>
31 #include <asm/page.h>
32 #include <asm/oplib.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlbflush.h>
35 #include <asm/cpudata.h>
36 #include <asm/timer.h>
37 #include <asm/leon.h>
38
39 #include "kernel.h"
40 #include "irq.h"
41
42 volatile unsigned long cpu_callin_map[NR_CPUS] = {0,};
43
44 cpumask_t smp_commenced_mask = CPU_MASK_NONE;
45
46 const struct sparc32_ipi_ops *sparc32_ipi_ops;
47
48 /* The only guaranteed locking primitive available on all Sparc
49 * processors is 'ldstub [%reg + immediate], %dest_reg' which atomically
50 * places the current byte at the effective address into dest_reg and
51 * places 0xff there afterwards. Pretty lame locking primitive
52 * compared to the Alpha and the Intel no? Most Sparcs have 'swap'
53 * instruction which is much better...
54 */
55
smp_store_cpu_info(int id)56 void smp_store_cpu_info(int id)
57 {
58 int cpu_node;
59 int mid;
60
61 cpu_data(id).udelay_val = loops_per_jiffy;
62
63 cpu_find_by_mid(id, &cpu_node);
64 cpu_data(id).clock_tick = prom_getintdefault(cpu_node,
65 "clock-frequency", 0);
66 cpu_data(id).prom_node = cpu_node;
67 mid = cpu_get_hwmid(cpu_node);
68
69 if (mid < 0) {
70 printk(KERN_NOTICE "No MID found for CPU%d at node 0x%08x", id, cpu_node);
71 mid = 0;
72 }
73 cpu_data(id).mid = mid;
74 }
75
smp_cpus_done(unsigned int max_cpus)76 void __init smp_cpus_done(unsigned int max_cpus)
77 {
78 unsigned long bogosum = 0;
79 int cpu, num = 0;
80
81 for_each_online_cpu(cpu) {
82 num++;
83 bogosum += cpu_data(cpu).udelay_val;
84 }
85
86 printk("Total of %d processors activated (%lu.%02lu BogoMIPS).\n",
87 num, bogosum/(500000/HZ),
88 (bogosum/(5000/HZ))%100);
89
90 switch(sparc_cpu_model) {
91 case sun4m:
92 smp4m_smp_done();
93 break;
94 case sun4d:
95 smp4d_smp_done();
96 break;
97 case sparc_leon:
98 leon_smp_done();
99 break;
100 case sun4e:
101 printk("SUN4E\n");
102 BUG();
103 break;
104 case sun4u:
105 printk("SUN4U\n");
106 BUG();
107 break;
108 default:
109 printk("UNKNOWN!\n");
110 BUG();
111 break;
112 }
113 }
114
cpu_panic(void)115 void cpu_panic(void)
116 {
117 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
118 panic("SMP bolixed\n");
119 }
120
121 struct linux_prom_registers smp_penguin_ctable = { 0 };
122
smp_send_reschedule(int cpu)123 void smp_send_reschedule(int cpu)
124 {
125 /*
126 * CPU model dependent way of implementing IPI generation targeting
127 * a single CPU. The trap handler needs only to do trap entry/return
128 * to call schedule.
129 */
130 sparc32_ipi_ops->resched(cpu);
131 }
132
smp_send_stop(void)133 void smp_send_stop(void)
134 {
135 }
136
arch_send_call_function_single_ipi(int cpu)137 void arch_send_call_function_single_ipi(int cpu)
138 {
139 /* trigger one IPI single call on one CPU */
140 sparc32_ipi_ops->single(cpu);
141 }
142
arch_send_call_function_ipi_mask(const struct cpumask * mask)143 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
144 {
145 int cpu;
146
147 /* trigger IPI mask call on each CPU */
148 for_each_cpu(cpu, mask)
149 sparc32_ipi_ops->mask_one(cpu);
150 }
151
smp_resched_interrupt(void)152 void smp_resched_interrupt(void)
153 {
154 irq_enter();
155 scheduler_ipi();
156 local_cpu_data().irq_resched_count++;
157 irq_exit();
158 /* re-schedule routine called by interrupt return code. */
159 }
160
smp_call_function_single_interrupt(void)161 void smp_call_function_single_interrupt(void)
162 {
163 irq_enter();
164 generic_smp_call_function_single_interrupt();
165 local_cpu_data().irq_call_count++;
166 irq_exit();
167 }
168
smp_call_function_interrupt(void)169 void smp_call_function_interrupt(void)
170 {
171 irq_enter();
172 generic_smp_call_function_interrupt();
173 local_cpu_data().irq_call_count++;
174 irq_exit();
175 }
176
setup_profiling_timer(unsigned int multiplier)177 int setup_profiling_timer(unsigned int multiplier)
178 {
179 return -EINVAL;
180 }
181
smp_prepare_cpus(unsigned int max_cpus)182 void __init smp_prepare_cpus(unsigned int max_cpus)
183 {
184 int i, cpuid, extra;
185
186 printk("Entering SMP Mode...\n");
187
188 extra = 0;
189 for (i = 0; !cpu_find_by_instance(i, NULL, &cpuid); i++) {
190 if (cpuid >= NR_CPUS)
191 extra++;
192 }
193 /* i = number of cpus */
194 if (extra && max_cpus > i - extra)
195 printk("Warning: NR_CPUS is too low to start all cpus\n");
196
197 smp_store_cpu_info(boot_cpu_id);
198
199 switch(sparc_cpu_model) {
200 case sun4m:
201 smp4m_boot_cpus();
202 break;
203 case sun4d:
204 smp4d_boot_cpus();
205 break;
206 case sparc_leon:
207 leon_boot_cpus();
208 break;
209 case sun4e:
210 printk("SUN4E\n");
211 BUG();
212 break;
213 case sun4u:
214 printk("SUN4U\n");
215 BUG();
216 break;
217 default:
218 printk("UNKNOWN!\n");
219 BUG();
220 break;
221 }
222 }
223
224 /* Set this up early so that things like the scheduler can init
225 * properly. We use the same cpu mask for both the present and
226 * possible cpu map.
227 */
smp_setup_cpu_possible_map(void)228 void __init smp_setup_cpu_possible_map(void)
229 {
230 int instance, mid;
231
232 instance = 0;
233 while (!cpu_find_by_instance(instance, NULL, &mid)) {
234 if (mid < NR_CPUS) {
235 set_cpu_possible(mid, true);
236 set_cpu_present(mid, true);
237 }
238 instance++;
239 }
240 }
241
smp_prepare_boot_cpu(void)242 void __init smp_prepare_boot_cpu(void)
243 {
244 int cpuid = hard_smp_processor_id();
245
246 if (cpuid >= NR_CPUS) {
247 prom_printf("Serious problem, boot cpu id >= NR_CPUS\n");
248 prom_halt();
249 }
250 if (cpuid != 0)
251 printk("boot cpu id != 0, this could work but is untested\n");
252
253 current_thread_info()->cpu = cpuid;
254 set_cpu_online(cpuid, true);
255 set_cpu_possible(cpuid, true);
256 }
257
__cpu_up(unsigned int cpu,struct task_struct * tidle)258 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
259 {
260 int ret=0;
261
262 switch(sparc_cpu_model) {
263 case sun4m:
264 ret = smp4m_boot_one_cpu(cpu, tidle);
265 break;
266 case sun4d:
267 ret = smp4d_boot_one_cpu(cpu, tidle);
268 break;
269 case sparc_leon:
270 ret = leon_boot_one_cpu(cpu, tidle);
271 break;
272 case sun4e:
273 printk("SUN4E\n");
274 BUG();
275 break;
276 case sun4u:
277 printk("SUN4U\n");
278 BUG();
279 break;
280 default:
281 printk("UNKNOWN!\n");
282 BUG();
283 break;
284 }
285
286 if (!ret) {
287 cpumask_set_cpu(cpu, &smp_commenced_mask);
288 while (!cpu_online(cpu))
289 mb();
290 }
291 return ret;
292 }
293
arch_cpu_pre_starting(void * arg)294 static void arch_cpu_pre_starting(void *arg)
295 {
296 local_ops->cache_all();
297 local_ops->tlb_all();
298
299 switch(sparc_cpu_model) {
300 case sun4m:
301 sun4m_cpu_pre_starting(arg);
302 break;
303 case sun4d:
304 sun4d_cpu_pre_starting(arg);
305 break;
306 case sparc_leon:
307 leon_cpu_pre_starting(arg);
308 break;
309 default:
310 BUG();
311 }
312 }
313
arch_cpu_pre_online(void * arg)314 static void arch_cpu_pre_online(void *arg)
315 {
316 unsigned int cpuid = hard_smp_processor_id();
317
318 register_percpu_ce(cpuid);
319
320 calibrate_delay();
321 smp_store_cpu_info(cpuid);
322
323 local_ops->cache_all();
324 local_ops->tlb_all();
325
326 switch(sparc_cpu_model) {
327 case sun4m:
328 sun4m_cpu_pre_online(arg);
329 break;
330 case sun4d:
331 sun4d_cpu_pre_online(arg);
332 break;
333 case sparc_leon:
334 leon_cpu_pre_online(arg);
335 break;
336 default:
337 BUG();
338 }
339 }
340
sparc_start_secondary(void * arg)341 static void sparc_start_secondary(void *arg)
342 {
343 unsigned int cpu;
344
345 /*
346 * SMP booting is extremely fragile in some architectures. So run
347 * the cpu initialization code first before anything else.
348 */
349 arch_cpu_pre_starting(arg);
350
351 preempt_disable();
352 cpu = smp_processor_id();
353
354 notify_cpu_starting(cpu);
355 arch_cpu_pre_online(arg);
356
357 /* Set the CPU in the cpu_online_mask */
358 set_cpu_online(cpu, true);
359
360 /* Enable local interrupts now */
361 local_irq_enable();
362
363 wmb();
364 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
365
366 /* We should never reach here! */
367 BUG();
368 }
369
smp_callin(void)370 void smp_callin(void)
371 {
372 sparc_start_secondary(NULL);
373 }
374
smp_bogo(struct seq_file * m)375 void smp_bogo(struct seq_file *m)
376 {
377 int i;
378
379 for_each_online_cpu(i) {
380 seq_printf(m,
381 "Cpu%dBogo\t: %lu.%02lu\n",
382 i,
383 cpu_data(i).udelay_val/(500000/HZ),
384 (cpu_data(i).udelay_val/(5000/HZ))%100);
385 }
386 }
387
smp_info(struct seq_file * m)388 void smp_info(struct seq_file *m)
389 {
390 int i;
391
392 seq_printf(m, "State:\n");
393 for_each_online_cpu(i)
394 seq_printf(m, "CPU%d\t\t: online\n", i);
395 }
396