1 // SPDX-License-Identifier: GPL-2.0
2 /* smp.c: Sparc64 SMP support.
3 *
4 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
5 */
6
7 #include <linux/export.h>
8 #include <linux/kernel.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/hotplug.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/threads.h>
14 #include <linux/smp.h>
15 #include <linux/interrupt.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/delay.h>
18 #include <linux/init.h>
19 #include <linux/spinlock.h>
20 #include <linux/fs.h>
21 #include <linux/seq_file.h>
22 #include <linux/cache.h>
23 #include <linux/jiffies.h>
24 #include <linux/profile.h>
25 #include <linux/memblock.h>
26 #include <linux/vmalloc.h>
27 #include <linux/ftrace.h>
28 #include <linux/cpu.h>
29 #include <linux/slab.h>
30 #include <linux/kgdb.h>
31
32 #include <asm/head.h>
33 #include <asm/ptrace.h>
34 #include <linux/atomic.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include <asm/cpudata.h>
38 #include <asm/hvtramp.h>
39 #include <asm/io.h>
40 #include <asm/timer.h>
41 #include <asm/setup.h>
42
43 #include <asm/irq.h>
44 #include <asm/irq_regs.h>
45 #include <asm/page.h>
46 #include <asm/oplib.h>
47 #include <linux/uaccess.h>
48 #include <asm/starfire.h>
49 #include <asm/tlb.h>
50 #include <asm/pgalloc.h>
51 #include <asm/sections.h>
52 #include <asm/prom.h>
53 #include <asm/mdesc.h>
54 #include <asm/ldc.h>
55 #include <asm/hypervisor.h>
56 #include <asm/pcr.h>
57
58 #include "cpumap.h"
59 #include "kernel.h"
60
61 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
62 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
63 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
64
65 cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
66 [0 ... NR_CPUS-1] = CPU_MASK_NONE };
67
68 cpumask_t cpu_core_sib_cache_map[NR_CPUS] __read_mostly = {
69 [0 ... NR_CPUS - 1] = CPU_MASK_NONE };
70
71 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
72 EXPORT_SYMBOL(cpu_core_map);
73 EXPORT_SYMBOL(cpu_core_sib_map);
74 EXPORT_SYMBOL(cpu_core_sib_cache_map);
75
76 static cpumask_t smp_commenced_mask;
77
78 static DEFINE_PER_CPU(bool, poke);
79 static bool cpu_poke;
80
smp_info(struct seq_file * m)81 void smp_info(struct seq_file *m)
82 {
83 int i;
84
85 seq_printf(m, "State:\n");
86 for_each_online_cpu(i)
87 seq_printf(m, "CPU%d:\t\tonline\n", i);
88 }
89
smp_bogo(struct seq_file * m)90 void smp_bogo(struct seq_file *m)
91 {
92 int i;
93
94 for_each_online_cpu(i)
95 seq_printf(m,
96 "Cpu%dClkTck\t: %016lx\n",
97 i, cpu_data(i).clock_tick);
98 }
99
100 extern void setup_sparc64_timer(void);
101
102 static volatile unsigned long callin_flag = 0;
103
smp_callin(void)104 void smp_callin(void)
105 {
106 int cpuid = hard_smp_processor_id();
107
108 __local_per_cpu_offset = __per_cpu_offset(cpuid);
109
110 if (tlb_type == hypervisor)
111 sun4v_ktsb_register();
112
113 __flush_tlb_all();
114
115 setup_sparc64_timer();
116
117 if (cheetah_pcache_forced_on)
118 cheetah_enable_pcache();
119
120 callin_flag = 1;
121 __asm__ __volatile__("membar #Sync\n\t"
122 "flush %%g6" : : : "memory");
123
124 /* Clear this or we will die instantly when we
125 * schedule back to this idler...
126 */
127 current_thread_info()->new_child = 0;
128
129 /* Attach to the address space of init_task. */
130 mmgrab(&init_mm);
131 current->active_mm = &init_mm;
132
133 /* inform the notifiers about the new cpu */
134 notify_cpu_starting(cpuid);
135
136 while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
137 rmb();
138
139 set_cpu_online(cpuid, true);
140
141 local_irq_enable();
142
143 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
144 }
145
cpu_panic(void)146 void cpu_panic(void)
147 {
148 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
149 panic("SMP bolixed\n");
150 }
151
152 /* This tick register synchronization scheme is taken entirely from
153 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
154 *
155 * The only change I've made is to rework it so that the master
156 * initiates the synchonization instead of the slave. -DaveM
157 */
158
159 #define MASTER 0
160 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
161
162 #define NUM_ROUNDS 64 /* magic value */
163 #define NUM_ITERS 5 /* likewise */
164
165 static DEFINE_RAW_SPINLOCK(itc_sync_lock);
166 static unsigned long go[SLAVE + 1];
167
168 #define DEBUG_TICK_SYNC 0
169
get_delta(long * rt,long * master)170 static inline long get_delta (long *rt, long *master)
171 {
172 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
173 unsigned long tcenter, t0, t1, tm;
174 unsigned long i;
175
176 for (i = 0; i < NUM_ITERS; i++) {
177 t0 = tick_ops->get_tick();
178 go[MASTER] = 1;
179 membar_safe("#StoreLoad");
180 while (!(tm = go[SLAVE]))
181 rmb();
182 go[SLAVE] = 0;
183 wmb();
184 t1 = tick_ops->get_tick();
185
186 if (t1 - t0 < best_t1 - best_t0)
187 best_t0 = t0, best_t1 = t1, best_tm = tm;
188 }
189
190 *rt = best_t1 - best_t0;
191 *master = best_tm - best_t0;
192
193 /* average best_t0 and best_t1 without overflow: */
194 tcenter = (best_t0/2 + best_t1/2);
195 if (best_t0 % 2 + best_t1 % 2 == 2)
196 tcenter++;
197 return tcenter - best_tm;
198 }
199
smp_synchronize_tick_client(void)200 void smp_synchronize_tick_client(void)
201 {
202 long i, delta, adj, adjust_latency = 0, done = 0;
203 unsigned long flags, rt, master_time_stamp;
204 #if DEBUG_TICK_SYNC
205 struct {
206 long rt; /* roundtrip time */
207 long master; /* master's timestamp */
208 long diff; /* difference between midpoint and master's timestamp */
209 long lat; /* estimate of itc adjustment latency */
210 } t[NUM_ROUNDS];
211 #endif
212
213 go[MASTER] = 1;
214
215 while (go[MASTER])
216 rmb();
217
218 local_irq_save(flags);
219 {
220 for (i = 0; i < NUM_ROUNDS; i++) {
221 delta = get_delta(&rt, &master_time_stamp);
222 if (delta == 0)
223 done = 1; /* let's lock on to this... */
224
225 if (!done) {
226 if (i > 0) {
227 adjust_latency += -delta;
228 adj = -delta + adjust_latency/4;
229 } else
230 adj = -delta;
231
232 tick_ops->add_tick(adj);
233 }
234 #if DEBUG_TICK_SYNC
235 t[i].rt = rt;
236 t[i].master = master_time_stamp;
237 t[i].diff = delta;
238 t[i].lat = adjust_latency/4;
239 #endif
240 }
241 }
242 local_irq_restore(flags);
243
244 #if DEBUG_TICK_SYNC
245 for (i = 0; i < NUM_ROUNDS; i++)
246 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
247 t[i].rt, t[i].master, t[i].diff, t[i].lat);
248 #endif
249
250 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
251 "(last diff %ld cycles, maxerr %lu cycles)\n",
252 smp_processor_id(), delta, rt);
253 }
254
255 static void smp_start_sync_tick_client(int cpu);
256
smp_synchronize_one_tick(int cpu)257 static void smp_synchronize_one_tick(int cpu)
258 {
259 unsigned long flags, i;
260
261 go[MASTER] = 0;
262
263 smp_start_sync_tick_client(cpu);
264
265 /* wait for client to be ready */
266 while (!go[MASTER])
267 rmb();
268
269 /* now let the client proceed into his loop */
270 go[MASTER] = 0;
271 membar_safe("#StoreLoad");
272
273 raw_spin_lock_irqsave(&itc_sync_lock, flags);
274 {
275 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
276 while (!go[MASTER])
277 rmb();
278 go[MASTER] = 0;
279 wmb();
280 go[SLAVE] = tick_ops->get_tick();
281 membar_safe("#StoreLoad");
282 }
283 }
284 raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
285 }
286
287 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
ldom_startcpu_cpuid(unsigned int cpu,unsigned long thread_reg,void ** descrp)288 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
289 void **descrp)
290 {
291 extern unsigned long sparc64_ttable_tl0;
292 extern unsigned long kern_locked_tte_data;
293 struct hvtramp_descr *hdesc;
294 unsigned long trampoline_ra;
295 struct trap_per_cpu *tb;
296 u64 tte_vaddr, tte_data;
297 unsigned long hv_err;
298 int i;
299
300 hdesc = kzalloc(sizeof(*hdesc) +
301 (sizeof(struct hvtramp_mapping) *
302 num_kernel_image_mappings - 1),
303 GFP_KERNEL);
304 if (!hdesc) {
305 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
306 "hvtramp_descr.\n");
307 return;
308 }
309 *descrp = hdesc;
310
311 hdesc->cpu = cpu;
312 hdesc->num_mappings = num_kernel_image_mappings;
313
314 tb = &trap_block[cpu];
315
316 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
317 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
318
319 hdesc->thread_reg = thread_reg;
320
321 tte_vaddr = (unsigned long) KERNBASE;
322 tte_data = kern_locked_tte_data;
323
324 for (i = 0; i < hdesc->num_mappings; i++) {
325 hdesc->maps[i].vaddr = tte_vaddr;
326 hdesc->maps[i].tte = tte_data;
327 tte_vaddr += 0x400000;
328 tte_data += 0x400000;
329 }
330
331 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
332
333 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
334 kimage_addr_to_ra(&sparc64_ttable_tl0),
335 __pa(hdesc));
336 if (hv_err)
337 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
338 "gives error %lu\n", hv_err);
339 }
340 #endif
341
342 extern unsigned long sparc64_cpu_startup;
343
344 /* The OBP cpu startup callback truncates the 3rd arg cookie to
345 * 32-bits (I think) so to be safe we have it read the pointer
346 * contained here so we work on >4GB machines. -DaveM
347 */
348 static struct thread_info *cpu_new_thread = NULL;
349
smp_boot_one_cpu(unsigned int cpu,struct task_struct * idle)350 static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
351 {
352 unsigned long entry =
353 (unsigned long)(&sparc64_cpu_startup);
354 unsigned long cookie =
355 (unsigned long)(&cpu_new_thread);
356 void *descr = NULL;
357 int timeout, ret;
358
359 callin_flag = 0;
360 cpu_new_thread = task_thread_info(idle);
361
362 if (tlb_type == hypervisor) {
363 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
364 if (ldom_domaining_enabled)
365 ldom_startcpu_cpuid(cpu,
366 (unsigned long) cpu_new_thread,
367 &descr);
368 else
369 #endif
370 prom_startcpu_cpuid(cpu, entry, cookie);
371 } else {
372 struct device_node *dp = of_find_node_by_cpuid(cpu);
373
374 prom_startcpu(dp->phandle, entry, cookie);
375 }
376
377 for (timeout = 0; timeout < 50000; timeout++) {
378 if (callin_flag)
379 break;
380 udelay(100);
381 }
382
383 if (callin_flag) {
384 ret = 0;
385 } else {
386 printk("Processor %d is stuck.\n", cpu);
387 ret = -ENODEV;
388 }
389 cpu_new_thread = NULL;
390
391 kfree(descr);
392
393 return ret;
394 }
395
spitfire_xcall_helper(u64 data0,u64 data1,u64 data2,u64 pstate,unsigned long cpu)396 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
397 {
398 u64 result, target;
399 int stuck, tmp;
400
401 if (this_is_starfire) {
402 /* map to real upaid */
403 cpu = (((cpu & 0x3c) << 1) |
404 ((cpu & 0x40) >> 4) |
405 (cpu & 0x3));
406 }
407
408 target = (cpu << 14) | 0x70;
409 again:
410 /* Ok, this is the real Spitfire Errata #54.
411 * One must read back from a UDB internal register
412 * after writes to the UDB interrupt dispatch, but
413 * before the membar Sync for that write.
414 * So we use the high UDB control register (ASI 0x7f,
415 * ADDR 0x20) for the dummy read. -DaveM
416 */
417 tmp = 0x40;
418 __asm__ __volatile__(
419 "wrpr %1, %2, %%pstate\n\t"
420 "stxa %4, [%0] %3\n\t"
421 "stxa %5, [%0+%8] %3\n\t"
422 "add %0, %8, %0\n\t"
423 "stxa %6, [%0+%8] %3\n\t"
424 "membar #Sync\n\t"
425 "stxa %%g0, [%7] %3\n\t"
426 "membar #Sync\n\t"
427 "mov 0x20, %%g1\n\t"
428 "ldxa [%%g1] 0x7f, %%g0\n\t"
429 "membar #Sync"
430 : "=r" (tmp)
431 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
432 "r" (data0), "r" (data1), "r" (data2), "r" (target),
433 "r" (0x10), "0" (tmp)
434 : "g1");
435
436 /* NOTE: PSTATE_IE is still clear. */
437 stuck = 100000;
438 do {
439 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "=r" (result)
441 : "i" (ASI_INTR_DISPATCH_STAT));
442 if (result == 0) {
443 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
444 : : "r" (pstate));
445 return;
446 }
447 stuck -= 1;
448 if (stuck == 0)
449 break;
450 } while (result & 0x1);
451 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
452 : : "r" (pstate));
453 if (stuck == 0) {
454 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
455 smp_processor_id(), result);
456 } else {
457 udelay(2);
458 goto again;
459 }
460 }
461
spitfire_xcall_deliver(struct trap_per_cpu * tb,int cnt)462 static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
463 {
464 u64 *mondo, data0, data1, data2;
465 u16 *cpu_list;
466 u64 pstate;
467 int i;
468
469 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
470 cpu_list = __va(tb->cpu_list_pa);
471 mondo = __va(tb->cpu_mondo_block_pa);
472 data0 = mondo[0];
473 data1 = mondo[1];
474 data2 = mondo[2];
475 for (i = 0; i < cnt; i++)
476 spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
477 }
478
479 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
480 * packet, but we have no use for that. However we do take advantage of
481 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
482 */
cheetah_xcall_deliver(struct trap_per_cpu * tb,int cnt)483 static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
484 {
485 int nack_busy_id, is_jbus, need_more;
486 u64 *mondo, pstate, ver, busy_mask;
487 u16 *cpu_list;
488
489 cpu_list = __va(tb->cpu_list_pa);
490 mondo = __va(tb->cpu_mondo_block_pa);
491
492 /* Unfortunately, someone at Sun had the brilliant idea to make the
493 * busy/nack fields hard-coded by ITID number for this Ultra-III
494 * derivative processor.
495 */
496 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
497 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
498 (ver >> 32) == __SERRANO_ID);
499
500 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
501
502 retry:
503 need_more = 0;
504 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
505 : : "r" (pstate), "i" (PSTATE_IE));
506
507 /* Setup the dispatch data registers. */
508 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
509 "stxa %1, [%4] %6\n\t"
510 "stxa %2, [%5] %6\n\t"
511 "membar #Sync\n\t"
512 : /* no outputs */
513 : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
514 "r" (0x40), "r" (0x50), "r" (0x60),
515 "i" (ASI_INTR_W));
516
517 nack_busy_id = 0;
518 busy_mask = 0;
519 {
520 int i;
521
522 for (i = 0; i < cnt; i++) {
523 u64 target, nr;
524
525 nr = cpu_list[i];
526 if (nr == 0xffff)
527 continue;
528
529 target = (nr << 14) | 0x70;
530 if (is_jbus) {
531 busy_mask |= (0x1UL << (nr * 2));
532 } else {
533 target |= (nack_busy_id << 24);
534 busy_mask |= (0x1UL <<
535 (nack_busy_id * 2));
536 }
537 __asm__ __volatile__(
538 "stxa %%g0, [%0] %1\n\t"
539 "membar #Sync\n\t"
540 : /* no outputs */
541 : "r" (target), "i" (ASI_INTR_W));
542 nack_busy_id++;
543 if (nack_busy_id == 32) {
544 need_more = 1;
545 break;
546 }
547 }
548 }
549
550 /* Now, poll for completion. */
551 {
552 u64 dispatch_stat, nack_mask;
553 long stuck;
554
555 stuck = 100000 * nack_busy_id;
556 nack_mask = busy_mask << 1;
557 do {
558 __asm__ __volatile__("ldxa [%%g0] %1, %0"
559 : "=r" (dispatch_stat)
560 : "i" (ASI_INTR_DISPATCH_STAT));
561 if (!(dispatch_stat & (busy_mask | nack_mask))) {
562 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
563 : : "r" (pstate));
564 if (unlikely(need_more)) {
565 int i, this_cnt = 0;
566 for (i = 0; i < cnt; i++) {
567 if (cpu_list[i] == 0xffff)
568 continue;
569 cpu_list[i] = 0xffff;
570 this_cnt++;
571 if (this_cnt == 32)
572 break;
573 }
574 goto retry;
575 }
576 return;
577 }
578 if (!--stuck)
579 break;
580 } while (dispatch_stat & busy_mask);
581
582 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
583 : : "r" (pstate));
584
585 if (dispatch_stat & busy_mask) {
586 /* Busy bits will not clear, continue instead
587 * of freezing up on this cpu.
588 */
589 printk("CPU[%d]: mondo stuckage result[%016llx]\n",
590 smp_processor_id(), dispatch_stat);
591 } else {
592 int i, this_busy_nack = 0;
593
594 /* Delay some random time with interrupts enabled
595 * to prevent deadlock.
596 */
597 udelay(2 * nack_busy_id);
598
599 /* Clear out the mask bits for cpus which did not
600 * NACK us.
601 */
602 for (i = 0; i < cnt; i++) {
603 u64 check_mask, nr;
604
605 nr = cpu_list[i];
606 if (nr == 0xffff)
607 continue;
608
609 if (is_jbus)
610 check_mask = (0x2UL << (2*nr));
611 else
612 check_mask = (0x2UL <<
613 this_busy_nack);
614 if ((dispatch_stat & check_mask) == 0)
615 cpu_list[i] = 0xffff;
616 this_busy_nack += 2;
617 if (this_busy_nack == 64)
618 break;
619 }
620
621 goto retry;
622 }
623 }
624 }
625
626 #define CPU_MONDO_COUNTER(cpuid) (cpu_mondo_counter[cpuid])
627 #define MONDO_USEC_WAIT_MIN 2
628 #define MONDO_USEC_WAIT_MAX 100
629 #define MONDO_RETRY_LIMIT 500000
630
631 /* Multi-cpu list version.
632 *
633 * Deliver xcalls to 'cnt' number of cpus in 'cpu_list'.
634 * Sometimes not all cpus receive the mondo, requiring us to re-send
635 * the mondo until all cpus have received, or cpus are truly stuck
636 * unable to receive mondo, and we timeout.
637 * Occasionally a target cpu strand is borrowed briefly by hypervisor to
638 * perform guest service, such as PCIe error handling. Consider the
639 * service time, 1 second overall wait is reasonable for 1 cpu.
640 * Here two in-between mondo check wait time are defined: 2 usec for
641 * single cpu quick turn around and up to 100usec for large cpu count.
642 * Deliver mondo to large number of cpus could take longer, we adjusts
643 * the retry count as long as target cpus are making forward progress.
644 */
hypervisor_xcall_deliver(struct trap_per_cpu * tb,int cnt)645 static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
646 {
647 int this_cpu, tot_cpus, prev_sent, i, rem;
648 int usec_wait, retries, tot_retries;
649 u16 first_cpu = 0xffff;
650 unsigned long xc_rcvd = 0;
651 unsigned long status;
652 int ecpuerror_id = 0;
653 int enocpu_id = 0;
654 u16 *cpu_list;
655 u16 cpu;
656
657 this_cpu = smp_processor_id();
658 cpu_list = __va(tb->cpu_list_pa);
659 usec_wait = cnt * MONDO_USEC_WAIT_MIN;
660 if (usec_wait > MONDO_USEC_WAIT_MAX)
661 usec_wait = MONDO_USEC_WAIT_MAX;
662 retries = tot_retries = 0;
663 tot_cpus = cnt;
664 prev_sent = 0;
665
666 do {
667 int n_sent, mondo_delivered, target_cpu_busy;
668
669 status = sun4v_cpu_mondo_send(cnt,
670 tb->cpu_list_pa,
671 tb->cpu_mondo_block_pa);
672
673 /* HV_EOK means all cpus received the xcall, we're done. */
674 if (likely(status == HV_EOK))
675 goto xcall_done;
676
677 /* If not these non-fatal errors, panic */
678 if (unlikely((status != HV_EWOULDBLOCK) &&
679 (status != HV_ECPUERROR) &&
680 (status != HV_ENOCPU)))
681 goto fatal_errors;
682
683 /* First, see if we made any forward progress.
684 *
685 * Go through the cpu_list, count the target cpus that have
686 * received our mondo (n_sent), and those that did not (rem).
687 * Re-pack cpu_list with the cpus remain to be retried in the
688 * front - this simplifies tracking the truly stalled cpus.
689 *
690 * The hypervisor indicates successful sends by setting
691 * cpu list entries to the value 0xffff.
692 *
693 * EWOULDBLOCK means some target cpus did not receive the
694 * mondo and retry usually helps.
695 *
696 * ECPUERROR means at least one target cpu is in error state,
697 * it's usually safe to skip the faulty cpu and retry.
698 *
699 * ENOCPU means one of the target cpu doesn't belong to the
700 * domain, perhaps offlined which is unexpected, but not
701 * fatal and it's okay to skip the offlined cpu.
702 */
703 rem = 0;
704 n_sent = 0;
705 for (i = 0; i < cnt; i++) {
706 cpu = cpu_list[i];
707 if (likely(cpu == 0xffff)) {
708 n_sent++;
709 } else if ((status == HV_ECPUERROR) &&
710 (sun4v_cpu_state(cpu) == HV_CPU_STATE_ERROR)) {
711 ecpuerror_id = cpu + 1;
712 } else if (status == HV_ENOCPU && !cpu_online(cpu)) {
713 enocpu_id = cpu + 1;
714 } else {
715 cpu_list[rem++] = cpu;
716 }
717 }
718
719 /* No cpu remained, we're done. */
720 if (rem == 0)
721 break;
722
723 /* Otherwise, update the cpu count for retry. */
724 cnt = rem;
725
726 /* Record the overall number of mondos received by the
727 * first of the remaining cpus.
728 */
729 if (first_cpu != cpu_list[0]) {
730 first_cpu = cpu_list[0];
731 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
732 }
733
734 /* Was any mondo delivered successfully? */
735 mondo_delivered = (n_sent > prev_sent);
736 prev_sent = n_sent;
737
738 /* or, was any target cpu busy processing other mondos? */
739 target_cpu_busy = (xc_rcvd < CPU_MONDO_COUNTER(first_cpu));
740 xc_rcvd = CPU_MONDO_COUNTER(first_cpu);
741
742 /* Retry count is for no progress. If we're making progress,
743 * reset the retry count.
744 */
745 if (likely(mondo_delivered || target_cpu_busy)) {
746 tot_retries += retries;
747 retries = 0;
748 } else if (unlikely(retries > MONDO_RETRY_LIMIT)) {
749 goto fatal_mondo_timeout;
750 }
751
752 /* Delay a little bit to let other cpus catch up on
753 * their cpu mondo queue work.
754 */
755 if (!mondo_delivered)
756 udelay(usec_wait);
757
758 retries++;
759 } while (1);
760
761 xcall_done:
762 if (unlikely(ecpuerror_id > 0)) {
763 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) was in error state\n",
764 this_cpu, ecpuerror_id - 1);
765 } else if (unlikely(enocpu_id > 0)) {
766 pr_crit("CPU[%d]: SUN4V mondo cpu error, target cpu(%d) does not belong to the domain\n",
767 this_cpu, enocpu_id - 1);
768 }
769 return;
770
771 fatal_errors:
772 /* fatal errors include bad alignment, etc */
773 pr_crit("CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) mondo_block_pa(%lx)\n",
774 this_cpu, tot_cpus, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
775 panic("Unexpected SUN4V mondo error %lu\n", status);
776
777 fatal_mondo_timeout:
778 /* some cpus being non-responsive to the cpu mondo */
779 pr_crit("CPU[%d]: SUN4V mondo timeout, cpu(%d) made no forward progress after %d retries. Total target cpus(%d).\n",
780 this_cpu, first_cpu, (tot_retries + retries), tot_cpus);
781 panic("SUN4V mondo timeout panic\n");
782 }
783
784 static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
785
xcall_deliver(u64 data0,u64 data1,u64 data2,const cpumask_t * mask)786 static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
787 {
788 struct trap_per_cpu *tb;
789 int this_cpu, i, cnt;
790 unsigned long flags;
791 u16 *cpu_list;
792 u64 *mondo;
793
794 /* We have to do this whole thing with interrupts fully disabled.
795 * Otherwise if we send an xcall from interrupt context it will
796 * corrupt both our mondo block and cpu list state.
797 *
798 * One consequence of this is that we cannot use timeout mechanisms
799 * that depend upon interrupts being delivered locally. So, for
800 * example, we cannot sample jiffies and expect it to advance.
801 *
802 * Fortunately, udelay() uses %stick/%tick so we can use that.
803 */
804 local_irq_save(flags);
805
806 this_cpu = smp_processor_id();
807 tb = &trap_block[this_cpu];
808
809 mondo = __va(tb->cpu_mondo_block_pa);
810 mondo[0] = data0;
811 mondo[1] = data1;
812 mondo[2] = data2;
813 wmb();
814
815 cpu_list = __va(tb->cpu_list_pa);
816
817 /* Setup the initial cpu list. */
818 cnt = 0;
819 for_each_cpu(i, mask) {
820 if (i == this_cpu || !cpu_online(i))
821 continue;
822 cpu_list[cnt++] = i;
823 }
824
825 if (cnt)
826 xcall_deliver_impl(tb, cnt);
827
828 local_irq_restore(flags);
829 }
830
831 /* Send cross call to all processors mentioned in MASK_P
832 * except self. Really, there are only two cases currently,
833 * "cpu_online_mask" and "mm_cpumask(mm)".
834 */
smp_cross_call_masked(unsigned long * func,u32 ctx,u64 data1,u64 data2,const cpumask_t * mask)835 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
836 {
837 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
838
839 xcall_deliver(data0, data1, data2, mask);
840 }
841
842 /* Send cross call to all processors except self. */
smp_cross_call(unsigned long * func,u32 ctx,u64 data1,u64 data2)843 static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
844 {
845 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
846 }
847
848 extern unsigned long xcall_sync_tick;
849
smp_start_sync_tick_client(int cpu)850 static void smp_start_sync_tick_client(int cpu)
851 {
852 xcall_deliver((u64) &xcall_sync_tick, 0, 0,
853 cpumask_of(cpu));
854 }
855
856 extern unsigned long xcall_call_function;
857
arch_send_call_function_ipi_mask(const struct cpumask * mask)858 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
859 {
860 xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
861 }
862
863 extern unsigned long xcall_call_function_single;
864
arch_send_call_function_single_ipi(int cpu)865 void arch_send_call_function_single_ipi(int cpu)
866 {
867 xcall_deliver((u64) &xcall_call_function_single, 0, 0,
868 cpumask_of(cpu));
869 }
870
smp_call_function_client(int irq,struct pt_regs * regs)871 void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
872 {
873 clear_softint(1 << irq);
874 irq_enter();
875 generic_smp_call_function_interrupt();
876 irq_exit();
877 }
878
smp_call_function_single_client(int irq,struct pt_regs * regs)879 void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
880 {
881 clear_softint(1 << irq);
882 irq_enter();
883 generic_smp_call_function_single_interrupt();
884 irq_exit();
885 }
886
tsb_sync(void * info)887 static void tsb_sync(void *info)
888 {
889 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
890 struct mm_struct *mm = info;
891
892 /* It is not valid to test "current->active_mm == mm" here.
893 *
894 * The value of "current" is not changed atomically with
895 * switch_mm(). But that's OK, we just need to check the
896 * current cpu's trap block PGD physical address.
897 */
898 if (tp->pgd_paddr == __pa(mm->pgd))
899 tsb_context_switch(mm);
900 }
901
smp_tsb_sync(struct mm_struct * mm)902 void smp_tsb_sync(struct mm_struct *mm)
903 {
904 smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
905 }
906
907 extern unsigned long xcall_flush_tlb_mm;
908 extern unsigned long xcall_flush_tlb_page;
909 extern unsigned long xcall_flush_tlb_kernel_range;
910 extern unsigned long xcall_fetch_glob_regs;
911 extern unsigned long xcall_fetch_glob_pmu;
912 extern unsigned long xcall_fetch_glob_pmu_n4;
913 extern unsigned long xcall_receive_signal;
914 extern unsigned long xcall_new_mmu_context_version;
915 #ifdef CONFIG_KGDB
916 extern unsigned long xcall_kgdb_capture;
917 #endif
918
919 #ifdef DCACHE_ALIASING_POSSIBLE
920 extern unsigned long xcall_flush_dcache_page_cheetah;
921 #endif
922 extern unsigned long xcall_flush_dcache_page_spitfire;
923
__local_flush_dcache_folio(struct folio * folio)924 static inline void __local_flush_dcache_folio(struct folio *folio)
925 {
926 unsigned int i, nr = folio_nr_pages(folio);
927
928 #ifdef DCACHE_ALIASING_POSSIBLE
929 for (i = 0; i < nr; i++)
930 __flush_dcache_page(folio_address(folio) + i * PAGE_SIZE,
931 ((tlb_type == spitfire) &&
932 folio_flush_mapping(folio) != NULL));
933 #else
934 if (folio_flush_mapping(folio) != NULL &&
935 tlb_type == spitfire) {
936 unsigned long pfn = folio_pfn(folio)
937 for (i = 0; i < nr; i++)
938 __flush_icache_page((pfn + i) * PAGE_SIZE);
939 }
940 #endif
941 }
942
smp_flush_dcache_folio_impl(struct folio * folio,int cpu)943 void smp_flush_dcache_folio_impl(struct folio *folio, int cpu)
944 {
945 int this_cpu;
946
947 if (tlb_type == hypervisor)
948 return;
949
950 #ifdef CONFIG_DEBUG_DCFLUSH
951 atomic_inc(&dcpage_flushes);
952 #endif
953
954 this_cpu = get_cpu();
955
956 if (cpu == this_cpu) {
957 __local_flush_dcache_folio(folio);
958 } else if (cpu_online(cpu)) {
959 void *pg_addr = folio_address(folio);
960 u64 data0 = 0;
961
962 if (tlb_type == spitfire) {
963 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
964 if (folio_flush_mapping(folio) != NULL)
965 data0 |= ((u64)1 << 32);
966 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
967 #ifdef DCACHE_ALIASING_POSSIBLE
968 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
969 #endif
970 }
971 if (data0) {
972 unsigned int i, nr = folio_nr_pages(folio);
973
974 for (i = 0; i < nr; i++) {
975 xcall_deliver(data0, __pa(pg_addr),
976 (u64) pg_addr, cpumask_of(cpu));
977 #ifdef CONFIG_DEBUG_DCFLUSH
978 atomic_inc(&dcpage_flushes_xcall);
979 #endif
980 pg_addr += PAGE_SIZE;
981 }
982 }
983 }
984
985 put_cpu();
986 }
987
flush_dcache_folio_all(struct mm_struct * mm,struct folio * folio)988 void flush_dcache_folio_all(struct mm_struct *mm, struct folio *folio)
989 {
990 void *pg_addr;
991 u64 data0;
992
993 if (tlb_type == hypervisor)
994 return;
995
996 preempt_disable();
997
998 #ifdef CONFIG_DEBUG_DCFLUSH
999 atomic_inc(&dcpage_flushes);
1000 #endif
1001 data0 = 0;
1002 pg_addr = folio_address(folio);
1003 if (tlb_type == spitfire) {
1004 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
1005 if (folio_flush_mapping(folio) != NULL)
1006 data0 |= ((u64)1 << 32);
1007 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1008 #ifdef DCACHE_ALIASING_POSSIBLE
1009 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1010 #endif
1011 }
1012 if (data0) {
1013 unsigned int i, nr = folio_nr_pages(folio);
1014
1015 for (i = 0; i < nr; i++) {
1016 xcall_deliver(data0, __pa(pg_addr),
1017 (u64) pg_addr, cpu_online_mask);
1018 #ifdef CONFIG_DEBUG_DCFLUSH
1019 atomic_inc(&dcpage_flushes_xcall);
1020 #endif
1021 pg_addr += PAGE_SIZE;
1022 }
1023 }
1024 __local_flush_dcache_folio(folio);
1025
1026 preempt_enable();
1027 }
1028
1029 #ifdef CONFIG_KGDB
kgdb_roundup_cpus(void)1030 void kgdb_roundup_cpus(void)
1031 {
1032 smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
1033 }
1034 #endif
1035
smp_fetch_global_regs(void)1036 void smp_fetch_global_regs(void)
1037 {
1038 smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1039 }
1040
smp_fetch_global_pmu(void)1041 void smp_fetch_global_pmu(void)
1042 {
1043 if (tlb_type == hypervisor &&
1044 sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1045 smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1046 else
1047 smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1048 }
1049
1050 /* We know that the window frames of the user have been flushed
1051 * to the stack before we get here because all callers of us
1052 * are flush_tlb_*() routines, and these run after flush_cache_*()
1053 * which performs the flushw.
1054 *
1055 * mm->cpu_vm_mask is a bit mask of which cpus an address
1056 * space has (potentially) executed on, this is the heuristic
1057 * we use to limit cross calls.
1058 */
1059
1060 /* This currently is only used by the hugetlb arch pre-fault
1061 * hook on UltraSPARC-III+ and later when changing the pagesize
1062 * bits of the context register for an address space.
1063 */
smp_flush_tlb_mm(struct mm_struct * mm)1064 void smp_flush_tlb_mm(struct mm_struct *mm)
1065 {
1066 u32 ctx = CTX_HWBITS(mm->context);
1067
1068 get_cpu();
1069
1070 smp_cross_call_masked(&xcall_flush_tlb_mm,
1071 ctx, 0, 0,
1072 mm_cpumask(mm));
1073
1074 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1075
1076 put_cpu();
1077 }
1078
1079 struct tlb_pending_info {
1080 unsigned long ctx;
1081 unsigned long nr;
1082 unsigned long *vaddrs;
1083 };
1084
tlb_pending_func(void * info)1085 static void tlb_pending_func(void *info)
1086 {
1087 struct tlb_pending_info *t = info;
1088
1089 __flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1090 }
1091
smp_flush_tlb_pending(struct mm_struct * mm,unsigned long nr,unsigned long * vaddrs)1092 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1093 {
1094 u32 ctx = CTX_HWBITS(mm->context);
1095 struct tlb_pending_info info;
1096
1097 get_cpu();
1098
1099 info.ctx = ctx;
1100 info.nr = nr;
1101 info.vaddrs = vaddrs;
1102
1103 smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104 &info, 1);
1105
1106 __flush_tlb_pending(ctx, nr, vaddrs);
1107
1108 put_cpu();
1109 }
1110
smp_flush_tlb_page(struct mm_struct * mm,unsigned long vaddr)1111 void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112 {
1113 unsigned long context = CTX_HWBITS(mm->context);
1114
1115 get_cpu();
1116
1117 smp_cross_call_masked(&xcall_flush_tlb_page,
1118 context, vaddr, 0,
1119 mm_cpumask(mm));
1120
1121 __flush_tlb_page(context, vaddr);
1122
1123 put_cpu();
1124 }
1125
smp_flush_tlb_kernel_range(unsigned long start,unsigned long end)1126 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1127 {
1128 start &= PAGE_MASK;
1129 end = PAGE_ALIGN(end);
1130 if (start != end) {
1131 smp_cross_call(&xcall_flush_tlb_kernel_range,
1132 0, start, end);
1133
1134 __flush_tlb_kernel_range(start, end);
1135 }
1136 }
1137
1138 /* CPU capture. */
1139 /* #define CAPTURE_DEBUG */
1140 extern unsigned long xcall_capture;
1141
1142 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1143 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1144 static unsigned long penguins_are_doing_time;
1145
smp_capture(void)1146 void smp_capture(void)
1147 {
1148 int result = atomic_add_return(1, &smp_capture_depth);
1149
1150 if (result == 1) {
1151 int ncpus = num_online_cpus();
1152
1153 #ifdef CAPTURE_DEBUG
1154 printk("CPU[%d]: Sending penguins to jail...",
1155 smp_processor_id());
1156 #endif
1157 penguins_are_doing_time = 1;
1158 atomic_inc(&smp_capture_registry);
1159 smp_cross_call(&xcall_capture, 0, 0, 0);
1160 while (atomic_read(&smp_capture_registry) != ncpus)
1161 rmb();
1162 #ifdef CAPTURE_DEBUG
1163 printk("done\n");
1164 #endif
1165 }
1166 }
1167
smp_release(void)1168 void smp_release(void)
1169 {
1170 if (atomic_dec_and_test(&smp_capture_depth)) {
1171 #ifdef CAPTURE_DEBUG
1172 printk("CPU[%d]: Giving pardon to "
1173 "imprisoned penguins\n",
1174 smp_processor_id());
1175 #endif
1176 penguins_are_doing_time = 0;
1177 membar_safe("#StoreLoad");
1178 atomic_dec(&smp_capture_registry);
1179 }
1180 }
1181
1182 /* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1183 * set, so they can service tlb flush xcalls...
1184 */
1185 extern void prom_world(int);
1186
smp_penguin_jailcell(int irq,struct pt_regs * regs)1187 void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1188 {
1189 clear_softint(1 << irq);
1190
1191 preempt_disable();
1192
1193 __asm__ __volatile__("flushw");
1194 prom_world(1);
1195 atomic_inc(&smp_capture_registry);
1196 membar_safe("#StoreLoad");
1197 while (penguins_are_doing_time)
1198 rmb();
1199 atomic_dec(&smp_capture_registry);
1200 prom_world(0);
1201
1202 preempt_enable();
1203 }
1204
smp_prepare_cpus(unsigned int max_cpus)1205 void __init smp_prepare_cpus(unsigned int max_cpus)
1206 {
1207 }
1208
smp_prepare_boot_cpu(void)1209 void smp_prepare_boot_cpu(void)
1210 {
1211 }
1212
smp_setup_processor_id(void)1213 void __init smp_setup_processor_id(void)
1214 {
1215 if (tlb_type == spitfire)
1216 xcall_deliver_impl = spitfire_xcall_deliver;
1217 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1218 xcall_deliver_impl = cheetah_xcall_deliver;
1219 else
1220 xcall_deliver_impl = hypervisor_xcall_deliver;
1221 }
1222
smp_fill_in_cpu_possible_map(void)1223 void __init smp_fill_in_cpu_possible_map(void)
1224 {
1225 int possible_cpus = num_possible_cpus();
1226 int i;
1227
1228 if (possible_cpus > nr_cpu_ids)
1229 possible_cpus = nr_cpu_ids;
1230
1231 for (i = 0; i < possible_cpus; i++)
1232 set_cpu_possible(i, true);
1233 for (; i < NR_CPUS; i++)
1234 set_cpu_possible(i, false);
1235 }
1236
smp_fill_in_sib_core_maps(void)1237 void smp_fill_in_sib_core_maps(void)
1238 {
1239 unsigned int i;
1240
1241 for_each_present_cpu(i) {
1242 unsigned int j;
1243
1244 cpumask_clear(&cpu_core_map[i]);
1245 if (cpu_data(i).core_id == 0) {
1246 cpumask_set_cpu(i, &cpu_core_map[i]);
1247 continue;
1248 }
1249
1250 for_each_present_cpu(j) {
1251 if (cpu_data(i).core_id ==
1252 cpu_data(j).core_id)
1253 cpumask_set_cpu(j, &cpu_core_map[i]);
1254 }
1255 }
1256
1257 for_each_present_cpu(i) {
1258 unsigned int j;
1259
1260 for_each_present_cpu(j) {
1261 if (cpu_data(i).max_cache_id ==
1262 cpu_data(j).max_cache_id)
1263 cpumask_set_cpu(j, &cpu_core_sib_cache_map[i]);
1264
1265 if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1266 cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1267 }
1268 }
1269
1270 for_each_present_cpu(i) {
1271 unsigned int j;
1272
1273 cpumask_clear(&per_cpu(cpu_sibling_map, i));
1274 if (cpu_data(i).proc_id == -1) {
1275 cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1276 continue;
1277 }
1278
1279 for_each_present_cpu(j) {
1280 if (cpu_data(i).proc_id ==
1281 cpu_data(j).proc_id)
1282 cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1283 }
1284 }
1285 }
1286
__cpu_up(unsigned int cpu,struct task_struct * tidle)1287 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1288 {
1289 int ret = smp_boot_one_cpu(cpu, tidle);
1290
1291 if (!ret) {
1292 cpumask_set_cpu(cpu, &smp_commenced_mask);
1293 while (!cpu_online(cpu))
1294 mb();
1295 if (!cpu_online(cpu)) {
1296 ret = -ENODEV;
1297 } else {
1298 /* On SUN4V, writes to %tick and %stick are
1299 * not allowed.
1300 */
1301 if (tlb_type != hypervisor)
1302 smp_synchronize_one_tick(cpu);
1303 }
1304 }
1305 return ret;
1306 }
1307
1308 #ifdef CONFIG_HOTPLUG_CPU
cpu_play_dead(void)1309 void cpu_play_dead(void)
1310 {
1311 int cpu = smp_processor_id();
1312 unsigned long pstate;
1313
1314 idle_task_exit();
1315
1316 if (tlb_type == hypervisor) {
1317 struct trap_per_cpu *tb = &trap_block[cpu];
1318
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1320 tb->cpu_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1322 tb->dev_mondo_pa, 0);
1323 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1324 tb->resum_mondo_pa, 0);
1325 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1326 tb->nonresum_mondo_pa, 0);
1327 }
1328
1329 cpumask_clear_cpu(cpu, &smp_commenced_mask);
1330 membar_safe("#Sync");
1331
1332 local_irq_disable();
1333
1334 __asm__ __volatile__(
1335 "rdpr %%pstate, %0\n\t"
1336 "wrpr %0, %1, %%pstate"
1337 : "=r" (pstate)
1338 : "i" (PSTATE_IE));
1339
1340 while (1)
1341 barrier();
1342 }
1343
__cpu_disable(void)1344 int __cpu_disable(void)
1345 {
1346 int cpu = smp_processor_id();
1347 cpuinfo_sparc *c;
1348 int i;
1349
1350 for_each_cpu(i, &cpu_core_map[cpu])
1351 cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1352 cpumask_clear(&cpu_core_map[cpu]);
1353
1354 for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1355 cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1356 cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1357
1358 c = &cpu_data(cpu);
1359
1360 c->core_id = 0;
1361 c->proc_id = -1;
1362
1363 smp_wmb();
1364
1365 /* Make sure no interrupts point to this cpu. */
1366 fixup_irqs();
1367
1368 local_irq_enable();
1369 mdelay(1);
1370 local_irq_disable();
1371
1372 set_cpu_online(cpu, false);
1373
1374 cpu_map_rebuild();
1375
1376 return 0;
1377 }
1378
__cpu_die(unsigned int cpu)1379 void __cpu_die(unsigned int cpu)
1380 {
1381 int i;
1382
1383 for (i = 0; i < 100; i++) {
1384 smp_rmb();
1385 if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1386 break;
1387 msleep(100);
1388 }
1389 if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1390 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1391 } else {
1392 #if defined(CONFIG_SUN_LDOMS)
1393 unsigned long hv_err;
1394 int limit = 100;
1395
1396 do {
1397 hv_err = sun4v_cpu_stop(cpu);
1398 if (hv_err == HV_EOK) {
1399 set_cpu_present(cpu, false);
1400 break;
1401 }
1402 } while (--limit > 0);
1403 if (limit <= 0) {
1404 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1405 hv_err);
1406 }
1407 #endif
1408 }
1409 }
1410 #endif
1411
smp_cpus_done(unsigned int max_cpus)1412 void __init smp_cpus_done(unsigned int max_cpus)
1413 {
1414 }
1415
send_cpu_ipi(int cpu)1416 static void send_cpu_ipi(int cpu)
1417 {
1418 xcall_deliver((u64) &xcall_receive_signal,
1419 0, 0, cpumask_of(cpu));
1420 }
1421
scheduler_poke(void)1422 void scheduler_poke(void)
1423 {
1424 if (!cpu_poke)
1425 return;
1426
1427 if (!__this_cpu_read(poke))
1428 return;
1429
1430 __this_cpu_write(poke, false);
1431 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1432 }
1433
send_cpu_poke(int cpu)1434 static unsigned long send_cpu_poke(int cpu)
1435 {
1436 unsigned long hv_err;
1437
1438 per_cpu(poke, cpu) = true;
1439 hv_err = sun4v_cpu_poke(cpu);
1440 if (hv_err != HV_EOK) {
1441 per_cpu(poke, cpu) = false;
1442 pr_err_ratelimited("%s: sun4v_cpu_poke() fails err=%lu\n",
1443 __func__, hv_err);
1444 }
1445
1446 return hv_err;
1447 }
1448
arch_smp_send_reschedule(int cpu)1449 void arch_smp_send_reschedule(int cpu)
1450 {
1451 if (cpu == smp_processor_id()) {
1452 WARN_ON_ONCE(preemptible());
1453 set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1454 return;
1455 }
1456
1457 /* Use cpu poke to resume idle cpu if supported. */
1458 if (cpu_poke && idle_cpu(cpu)) {
1459 unsigned long ret;
1460
1461 ret = send_cpu_poke(cpu);
1462 if (ret == HV_EOK)
1463 return;
1464 }
1465
1466 /* Use IPI in following cases:
1467 * - cpu poke not supported
1468 * - cpu not idle
1469 * - send_cpu_poke() returns with error
1470 */
1471 send_cpu_ipi(cpu);
1472 }
1473
smp_init_cpu_poke(void)1474 void smp_init_cpu_poke(void)
1475 {
1476 unsigned long major;
1477 unsigned long minor;
1478 int ret;
1479
1480 if (tlb_type != hypervisor)
1481 return;
1482
1483 ret = sun4v_hvapi_get(HV_GRP_CORE, &major, &minor);
1484 if (ret) {
1485 pr_debug("HV_GRP_CORE is not registered\n");
1486 return;
1487 }
1488
1489 if (major == 1 && minor >= 6) {
1490 /* CPU POKE is registered. */
1491 cpu_poke = true;
1492 return;
1493 }
1494
1495 pr_debug("CPU_POKE not supported\n");
1496 }
1497
smp_receive_signal_client(int irq,struct pt_regs * regs)1498 void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1499 {
1500 clear_softint(1 << irq);
1501 scheduler_ipi();
1502 }
1503
stop_this_cpu(void * dummy)1504 static void stop_this_cpu(void *dummy)
1505 {
1506 set_cpu_online(smp_processor_id(), false);
1507 prom_stopself();
1508 }
1509
smp_send_stop(void)1510 void smp_send_stop(void)
1511 {
1512 int cpu;
1513
1514 if (tlb_type == hypervisor) {
1515 int this_cpu = smp_processor_id();
1516 #ifdef CONFIG_SERIAL_SUNHV
1517 sunhv_migrate_hvcons_irq(this_cpu);
1518 #endif
1519 for_each_online_cpu(cpu) {
1520 if (cpu == this_cpu)
1521 continue;
1522
1523 set_cpu_online(cpu, false);
1524 #ifdef CONFIG_SUN_LDOMS
1525 if (ldom_domaining_enabled) {
1526 unsigned long hv_err;
1527 hv_err = sun4v_cpu_stop(cpu);
1528 if (hv_err)
1529 printk(KERN_ERR "sun4v_cpu_stop() "
1530 "failed err=%lu\n", hv_err);
1531 } else
1532 #endif
1533 prom_stopcpu_cpuid(cpu);
1534 }
1535 } else
1536 smp_call_function(stop_this_cpu, NULL, 0);
1537 }
1538
pcpu_cpu_distance(unsigned int from,unsigned int to)1539 static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1540 {
1541 if (cpu_to_node(from) == cpu_to_node(to))
1542 return LOCAL_DISTANCE;
1543 else
1544 return REMOTE_DISTANCE;
1545 }
1546
pcpu_cpu_to_node(int cpu)1547 static int __init pcpu_cpu_to_node(int cpu)
1548 {
1549 return cpu_to_node(cpu);
1550 }
1551
setup_per_cpu_areas(void)1552 void __init setup_per_cpu_areas(void)
1553 {
1554 unsigned long delta;
1555 unsigned int cpu;
1556 int rc = -EINVAL;
1557
1558 if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1559 rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1560 PERCPU_DYNAMIC_RESERVE, 4 << 20,
1561 pcpu_cpu_distance,
1562 pcpu_cpu_to_node);
1563 if (rc)
1564 pr_warn("PERCPU: %s allocator failed (%d), "
1565 "falling back to page size\n",
1566 pcpu_fc_names[pcpu_chosen_fc], rc);
1567 }
1568 if (rc < 0)
1569 rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1570 pcpu_cpu_to_node);
1571 if (rc < 0)
1572 panic("cannot initialize percpu area (err=%d)", rc);
1573
1574 delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1575 for_each_possible_cpu(cpu)
1576 __per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1577
1578 /* Setup %g5 for the boot cpu. */
1579 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1580
1581 of_fill_in_cpu_data();
1582 if (tlb_type == hypervisor)
1583 mdesc_fill_in_cpu_data(cpu_all_mask);
1584 }
1585