1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/arch/alpha/kernel/smp.c
4 *
5 * 2001-07-09 Phil Ezolt (Phillip.Ezolt@compaq.com)
6 * Renamed modified smp_call_function to smp_call_function_on_cpu()
7 * Created an function that conforms to the old calling convention
8 * of smp_call_function().
9 *
10 * This is helpful for DCPI.
11 *
12 */
13
14 #include <linux/errno.h>
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/interrupt.h>
24 #include <linux/init.h>
25 #include <linux/delay.h>
26 #include <linux/spinlock.h>
27 #include <linux/irq.h>
28 #include <linux/cache.h>
29 #include <linux/profile.h>
30 #include <linux/bitops.h>
31 #include <linux/cpu.h>
32
33 #include <asm/hwrpb.h>
34 #include <asm/ptrace.h>
35 #include <linux/atomic.h>
36
37 #include <asm/io.h>
38 #include <asm/irq.h>
39 #include <asm/pgtable.h>
40 #include <asm/pgalloc.h>
41 #include <asm/mmu_context.h>
42 #include <asm/tlbflush.h>
43
44 #include "proto.h"
45 #include "irq_impl.h"
46
47
48 #define DEBUG_SMP 0
49 #if DEBUG_SMP
50 #define DBGS(args) printk args
51 #else
52 #define DBGS(args)
53 #endif
54
55 /* A collection of per-processor data. */
56 struct cpuinfo_alpha cpu_data[NR_CPUS];
57 EXPORT_SYMBOL(cpu_data);
58
59 /* A collection of single bit ipi messages. */
60 static struct {
61 unsigned long bits ____cacheline_aligned;
62 } ipi_data[NR_CPUS] __cacheline_aligned;
63
64 enum ipi_message_type {
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CPU_STOP,
68 };
69
70 /* Set to a secondary's cpuid when it comes online. */
71 static int smp_secondary_alive = 0;
72
73 int smp_num_probed; /* Internal processor count */
74 int smp_num_cpus = 1; /* Number that came online. */
75 EXPORT_SYMBOL(smp_num_cpus);
76
77 /*
78 * Called by both boot and secondaries to move global data into
79 * per-processor storage.
80 */
81 static inline void __init
smp_store_cpu_info(int cpuid)82 smp_store_cpu_info(int cpuid)
83 {
84 cpu_data[cpuid].loops_per_jiffy = loops_per_jiffy;
85 cpu_data[cpuid].last_asn = ASN_FIRST_VERSION;
86 cpu_data[cpuid].need_new_asn = 0;
87 cpu_data[cpuid].asn_lock = 0;
88 }
89
90 /*
91 * Ideally sets up per-cpu profiling hooks. Doesn't do much now...
92 */
93 static inline void __init
smp_setup_percpu_timer(int cpuid)94 smp_setup_percpu_timer(int cpuid)
95 {
96 cpu_data[cpuid].prof_counter = 1;
97 cpu_data[cpuid].prof_multiplier = 1;
98 }
99
100 static void __init
wait_boot_cpu_to_stop(int cpuid)101 wait_boot_cpu_to_stop(int cpuid)
102 {
103 unsigned long stop = jiffies + 10*HZ;
104
105 while (time_before(jiffies, stop)) {
106 if (!smp_secondary_alive)
107 return;
108 barrier();
109 }
110
111 printk("wait_boot_cpu_to_stop: FAILED on CPU %d, hanging now\n", cpuid);
112 for (;;)
113 barrier();
114 }
115
116 /*
117 * Where secondaries begin a life of C.
118 */
119 void __init
smp_callin(void)120 smp_callin(void)
121 {
122 int cpuid = hard_smp_processor_id();
123
124 if (cpu_online(cpuid)) {
125 printk("??, cpu 0x%x already present??\n", cpuid);
126 BUG();
127 }
128 set_cpu_online(cpuid, true);
129
130 /* Turn on machine checks. */
131 wrmces(7);
132
133 /* Set trap vectors. */
134 trap_init();
135
136 /* Set interrupt vector. */
137 wrent(entInt, 0);
138
139 /* Get our local ticker going. */
140 smp_setup_percpu_timer(cpuid);
141 init_clockevent();
142
143 /* Call platform-specific callin, if specified */
144 if (alpha_mv.smp_callin)
145 alpha_mv.smp_callin();
146
147 /* All kernel threads share the same mm context. */
148 mmgrab(&init_mm);
149 current->active_mm = &init_mm;
150
151 /* inform the notifiers about the new cpu */
152 notify_cpu_starting(cpuid);
153
154 /* Must have completely accurate bogos. */
155 local_irq_enable();
156
157 /* Wait boot CPU to stop with irq enabled before running
158 calibrate_delay. */
159 wait_boot_cpu_to_stop(cpuid);
160 mb();
161 calibrate_delay();
162
163 smp_store_cpu_info(cpuid);
164 /* Allow master to continue only after we written loops_per_jiffy. */
165 wmb();
166 smp_secondary_alive = 1;
167
168 DBGS(("smp_callin: commencing CPU %d current %p active_mm %p\n",
169 cpuid, current, current->active_mm));
170
171 preempt_disable();
172 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
173 }
174
175 /* Wait until hwrpb->txrdy is clear for cpu. Return -1 on timeout. */
176 static int
wait_for_txrdy(unsigned long cpumask)177 wait_for_txrdy (unsigned long cpumask)
178 {
179 unsigned long timeout;
180
181 if (!(hwrpb->txrdy & cpumask))
182 return 0;
183
184 timeout = jiffies + 10*HZ;
185 while (time_before(jiffies, timeout)) {
186 if (!(hwrpb->txrdy & cpumask))
187 return 0;
188 udelay(10);
189 barrier();
190 }
191
192 return -1;
193 }
194
195 /*
196 * Send a message to a secondary's console. "START" is one such
197 * interesting message. ;-)
198 */
199 static void
send_secondary_console_msg(char * str,int cpuid)200 send_secondary_console_msg(char *str, int cpuid)
201 {
202 struct percpu_struct *cpu;
203 register char *cp1, *cp2;
204 unsigned long cpumask;
205 size_t len;
206
207 cpu = (struct percpu_struct *)
208 ((char*)hwrpb
209 + hwrpb->processor_offset
210 + cpuid * hwrpb->processor_size);
211
212 cpumask = (1UL << cpuid);
213 if (wait_for_txrdy(cpumask))
214 goto timeout;
215
216 cp2 = str;
217 len = strlen(cp2);
218 *(unsigned int *)&cpu->ipc_buffer[0] = len;
219 cp1 = (char *) &cpu->ipc_buffer[1];
220 memcpy(cp1, cp2, len);
221
222 /* atomic test and set */
223 wmb();
224 set_bit(cpuid, &hwrpb->rxrdy);
225
226 if (wait_for_txrdy(cpumask))
227 goto timeout;
228 return;
229
230 timeout:
231 printk("Processor %x not ready\n", cpuid);
232 }
233
234 /*
235 * A secondary console wants to send a message. Receive it.
236 */
237 static void
recv_secondary_console_msg(void)238 recv_secondary_console_msg(void)
239 {
240 int mycpu, i, cnt;
241 unsigned long txrdy = hwrpb->txrdy;
242 char *cp1, *cp2, buf[80];
243 struct percpu_struct *cpu;
244
245 DBGS(("recv_secondary_console_msg: TXRDY 0x%lx.\n", txrdy));
246
247 mycpu = hard_smp_processor_id();
248
249 for (i = 0; i < NR_CPUS; i++) {
250 if (!(txrdy & (1UL << i)))
251 continue;
252
253 DBGS(("recv_secondary_console_msg: "
254 "TXRDY contains CPU %d.\n", i));
255
256 cpu = (struct percpu_struct *)
257 ((char*)hwrpb
258 + hwrpb->processor_offset
259 + i * hwrpb->processor_size);
260
261 DBGS(("recv_secondary_console_msg: on %d from %d"
262 " HALT_REASON 0x%lx FLAGS 0x%lx\n",
263 mycpu, i, cpu->halt_reason, cpu->flags));
264
265 cnt = cpu->ipc_buffer[0] >> 32;
266 if (cnt <= 0 || cnt >= 80)
267 strcpy(buf, "<<< BOGUS MSG >>>");
268 else {
269 cp1 = (char *) &cpu->ipc_buffer[1];
270 cp2 = buf;
271 memcpy(cp2, cp1, cnt);
272 cp2[cnt] = '\0';
273
274 while ((cp2 = strchr(cp2, '\r')) != 0) {
275 *cp2 = ' ';
276 if (cp2[1] == '\n')
277 cp2[1] = ' ';
278 }
279 }
280
281 DBGS((KERN_INFO "recv_secondary_console_msg: on %d "
282 "message is '%s'\n", mycpu, buf));
283 }
284
285 hwrpb->txrdy = 0;
286 }
287
288 /*
289 * Convince the console to have a secondary cpu begin execution.
290 */
291 static int
secondary_cpu_start(int cpuid,struct task_struct * idle)292 secondary_cpu_start(int cpuid, struct task_struct *idle)
293 {
294 struct percpu_struct *cpu;
295 struct pcb_struct *hwpcb, *ipcb;
296 unsigned long timeout;
297
298 cpu = (struct percpu_struct *)
299 ((char*)hwrpb
300 + hwrpb->processor_offset
301 + cpuid * hwrpb->processor_size);
302 hwpcb = (struct pcb_struct *) cpu->hwpcb;
303 ipcb = &task_thread_info(idle)->pcb;
304
305 /* Initialize the CPU's HWPCB to something just good enough for
306 us to get started. Immediately after starting, we'll swpctx
307 to the target idle task's pcb. Reuse the stack in the mean
308 time. Precalculate the target PCBB. */
309 hwpcb->ksp = (unsigned long)ipcb + sizeof(union thread_union) - 16;
310 hwpcb->usp = 0;
311 hwpcb->ptbr = ipcb->ptbr;
312 hwpcb->pcc = 0;
313 hwpcb->asn = 0;
314 hwpcb->unique = virt_to_phys(ipcb);
315 hwpcb->flags = ipcb->flags;
316 hwpcb->res1 = hwpcb->res2 = 0;
317
318 #if 0
319 DBGS(("KSP 0x%lx PTBR 0x%lx VPTBR 0x%lx UNIQUE 0x%lx\n",
320 hwpcb->ksp, hwpcb->ptbr, hwrpb->vptb, hwpcb->unique));
321 #endif
322 DBGS(("Starting secondary cpu %d: state 0x%lx pal_flags 0x%lx\n",
323 cpuid, idle->state, ipcb->flags));
324
325 /* Setup HWRPB fields that SRM uses to activate secondary CPU */
326 hwrpb->CPU_restart = __smp_callin;
327 hwrpb->CPU_restart_data = (unsigned long) __smp_callin;
328
329 /* Recalculate and update the HWRPB checksum */
330 hwrpb_update_checksum(hwrpb);
331
332 /*
333 * Send a "start" command to the specified processor.
334 */
335
336 /* SRM III 3.4.1.3 */
337 cpu->flags |= 0x22; /* turn on Context Valid and Restart Capable */
338 cpu->flags &= ~1; /* turn off Bootstrap In Progress */
339 wmb();
340
341 send_secondary_console_msg("START\r\n", cpuid);
342
343 /* Wait 10 seconds for an ACK from the console. */
344 timeout = jiffies + 10*HZ;
345 while (time_before(jiffies, timeout)) {
346 if (cpu->flags & 1)
347 goto started;
348 udelay(10);
349 barrier();
350 }
351 printk(KERN_ERR "SMP: Processor %d failed to start.\n", cpuid);
352 return -1;
353
354 started:
355 DBGS(("secondary_cpu_start: SUCCESS for CPU %d!!!\n", cpuid));
356 return 0;
357 }
358
359 /*
360 * Bring one cpu online.
361 */
362 static int
smp_boot_one_cpu(int cpuid,struct task_struct * idle)363 smp_boot_one_cpu(int cpuid, struct task_struct *idle)
364 {
365 unsigned long timeout;
366
367 /* Signal the secondary to wait a moment. */
368 smp_secondary_alive = -1;
369
370 /* Whirrr, whirrr, whirrrrrrrrr... */
371 if (secondary_cpu_start(cpuid, idle))
372 return -1;
373
374 /* Notify the secondary CPU it can run calibrate_delay. */
375 mb();
376 smp_secondary_alive = 0;
377
378 /* We've been acked by the console; wait one second for
379 the task to start up for real. */
380 timeout = jiffies + 1*HZ;
381 while (time_before(jiffies, timeout)) {
382 if (smp_secondary_alive == 1)
383 goto alive;
384 udelay(10);
385 barrier();
386 }
387
388 /* We failed to boot the CPU. */
389
390 printk(KERN_ERR "SMP: Processor %d is stuck.\n", cpuid);
391 return -1;
392
393 alive:
394 /* Another "Red Snapper". */
395 return 0;
396 }
397
398 /*
399 * Called from setup_arch. Detect an SMP system and which processors
400 * are present.
401 */
402 void __init
setup_smp(void)403 setup_smp(void)
404 {
405 struct percpu_struct *cpubase, *cpu;
406 unsigned long i;
407
408 if (boot_cpuid != 0) {
409 printk(KERN_WARNING "SMP: Booting off cpu %d instead of 0?\n",
410 boot_cpuid);
411 }
412
413 if (hwrpb->nr_processors > 1) {
414 int boot_cpu_palrev;
415
416 DBGS(("setup_smp: nr_processors %ld\n",
417 hwrpb->nr_processors));
418
419 cpubase = (struct percpu_struct *)
420 ((char*)hwrpb + hwrpb->processor_offset);
421 boot_cpu_palrev = cpubase->pal_revision;
422
423 for (i = 0; i < hwrpb->nr_processors; i++) {
424 cpu = (struct percpu_struct *)
425 ((char *)cpubase + i*hwrpb->processor_size);
426 if ((cpu->flags & 0x1cc) == 0x1cc) {
427 smp_num_probed++;
428 set_cpu_possible(i, true);
429 set_cpu_present(i, true);
430 cpu->pal_revision = boot_cpu_palrev;
431 }
432
433 DBGS(("setup_smp: CPU %d: flags 0x%lx type 0x%lx\n",
434 i, cpu->flags, cpu->type));
435 DBGS(("setup_smp: CPU %d: PAL rev 0x%lx\n",
436 i, cpu->pal_revision));
437 }
438 } else {
439 smp_num_probed = 1;
440 }
441
442 printk(KERN_INFO "SMP: %d CPUs probed -- cpu_present_mask = %lx\n",
443 smp_num_probed, cpumask_bits(cpu_present_mask)[0]);
444 }
445
446 /*
447 * Called by smp_init prepare the secondaries
448 */
449 void __init
smp_prepare_cpus(unsigned int max_cpus)450 smp_prepare_cpus(unsigned int max_cpus)
451 {
452 /* Take care of some initial bookkeeping. */
453 memset(ipi_data, 0, sizeof(ipi_data));
454
455 current_thread_info()->cpu = boot_cpuid;
456
457 smp_store_cpu_info(boot_cpuid);
458 smp_setup_percpu_timer(boot_cpuid);
459
460 /* Nothing to do on a UP box, or when told not to. */
461 if (smp_num_probed == 1 || max_cpus == 0) {
462 init_cpu_possible(cpumask_of(boot_cpuid));
463 init_cpu_present(cpumask_of(boot_cpuid));
464 printk(KERN_INFO "SMP mode deactivated.\n");
465 return;
466 }
467
468 printk(KERN_INFO "SMP starting up secondaries.\n");
469
470 smp_num_cpus = smp_num_probed;
471 }
472
473 void
smp_prepare_boot_cpu(void)474 smp_prepare_boot_cpu(void)
475 {
476 }
477
478 int
__cpu_up(unsigned int cpu,struct task_struct * tidle)479 __cpu_up(unsigned int cpu, struct task_struct *tidle)
480 {
481 smp_boot_one_cpu(cpu, tidle);
482
483 return cpu_online(cpu) ? 0 : -ENOSYS;
484 }
485
486 void __init
smp_cpus_done(unsigned int max_cpus)487 smp_cpus_done(unsigned int max_cpus)
488 {
489 int cpu;
490 unsigned long bogosum = 0;
491
492 for(cpu = 0; cpu < NR_CPUS; cpu++)
493 if (cpu_online(cpu))
494 bogosum += cpu_data[cpu].loops_per_jiffy;
495
496 printk(KERN_INFO "SMP: Total of %d processors activated "
497 "(%lu.%02lu BogoMIPS).\n",
498 num_online_cpus(),
499 (bogosum + 2500) / (500000/HZ),
500 ((bogosum + 2500) / (5000/HZ)) % 100);
501 }
502
503 int
setup_profiling_timer(unsigned int multiplier)504 setup_profiling_timer(unsigned int multiplier)
505 {
506 return -EINVAL;
507 }
508
509 static void
send_ipi_message(const struct cpumask * to_whom,enum ipi_message_type operation)510 send_ipi_message(const struct cpumask *to_whom, enum ipi_message_type operation)
511 {
512 int i;
513
514 mb();
515 for_each_cpu(i, to_whom)
516 set_bit(operation, &ipi_data[i].bits);
517
518 mb();
519 for_each_cpu(i, to_whom)
520 wripir(i);
521 }
522
523 void
handle_ipi(struct pt_regs * regs)524 handle_ipi(struct pt_regs *regs)
525 {
526 int this_cpu = smp_processor_id();
527 unsigned long *pending_ipis = &ipi_data[this_cpu].bits;
528 unsigned long ops;
529
530 #if 0
531 DBGS(("handle_ipi: on CPU %d ops 0x%lx PC 0x%lx\n",
532 this_cpu, *pending_ipis, regs->pc));
533 #endif
534
535 mb(); /* Order interrupt and bit testing. */
536 while ((ops = xchg(pending_ipis, 0)) != 0) {
537 mb(); /* Order bit clearing and data access. */
538 do {
539 unsigned long which;
540
541 which = ops & -ops;
542 ops &= ~which;
543 which = __ffs(which);
544
545 switch (which) {
546 case IPI_RESCHEDULE:
547 scheduler_ipi();
548 break;
549
550 case IPI_CALL_FUNC:
551 generic_smp_call_function_interrupt();
552 break;
553
554 case IPI_CPU_STOP:
555 halt();
556
557 default:
558 printk(KERN_CRIT "Unknown IPI on CPU %d: %lu\n",
559 this_cpu, which);
560 break;
561 }
562 } while (ops);
563
564 mb(); /* Order data access and bit testing. */
565 }
566
567 cpu_data[this_cpu].ipi_count++;
568
569 if (hwrpb->txrdy)
570 recv_secondary_console_msg();
571 }
572
573 void
smp_send_reschedule(int cpu)574 smp_send_reschedule(int cpu)
575 {
576 #ifdef DEBUG_IPI_MSG
577 if (cpu == hard_smp_processor_id())
578 printk(KERN_WARNING
579 "smp_send_reschedule: Sending IPI to self.\n");
580 #endif
581 send_ipi_message(cpumask_of(cpu), IPI_RESCHEDULE);
582 }
583
584 void
smp_send_stop(void)585 smp_send_stop(void)
586 {
587 cpumask_t to_whom;
588 cpumask_copy(&to_whom, cpu_possible_mask);
589 cpumask_clear_cpu(smp_processor_id(), &to_whom);
590 #ifdef DEBUG_IPI_MSG
591 if (hard_smp_processor_id() != boot_cpu_id)
592 printk(KERN_WARNING "smp_send_stop: Not on boot cpu.\n");
593 #endif
594 send_ipi_message(&to_whom, IPI_CPU_STOP);
595 }
596
arch_send_call_function_ipi_mask(const struct cpumask * mask)597 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
598 {
599 send_ipi_message(mask, IPI_CALL_FUNC);
600 }
601
arch_send_call_function_single_ipi(int cpu)602 void arch_send_call_function_single_ipi(int cpu)
603 {
604 send_ipi_message(cpumask_of(cpu), IPI_CALL_FUNC);
605 }
606
607 static void
ipi_imb(void * ignored)608 ipi_imb(void *ignored)
609 {
610 imb();
611 }
612
613 void
smp_imb(void)614 smp_imb(void)
615 {
616 /* Must wait other processors to flush their icache before continue. */
617 on_each_cpu(ipi_imb, NULL, 1);
618 }
619 EXPORT_SYMBOL(smp_imb);
620
621 static void
ipi_flush_tlb_all(void * ignored)622 ipi_flush_tlb_all(void *ignored)
623 {
624 tbia();
625 }
626
627 void
flush_tlb_all(void)628 flush_tlb_all(void)
629 {
630 /* Although we don't have any data to pass, we do want to
631 synchronize with the other processors. */
632 on_each_cpu(ipi_flush_tlb_all, NULL, 1);
633 }
634
635 #define asn_locked() (cpu_data[smp_processor_id()].asn_lock)
636
637 static void
ipi_flush_tlb_mm(void * x)638 ipi_flush_tlb_mm(void *x)
639 {
640 struct mm_struct *mm = (struct mm_struct *) x;
641 if (mm == current->active_mm && !asn_locked())
642 flush_tlb_current(mm);
643 else
644 flush_tlb_other(mm);
645 }
646
647 void
flush_tlb_mm(struct mm_struct * mm)648 flush_tlb_mm(struct mm_struct *mm)
649 {
650 preempt_disable();
651
652 if (mm == current->active_mm) {
653 flush_tlb_current(mm);
654 if (atomic_read(&mm->mm_users) <= 1) {
655 int cpu, this_cpu = smp_processor_id();
656 for (cpu = 0; cpu < NR_CPUS; cpu++) {
657 if (!cpu_online(cpu) || cpu == this_cpu)
658 continue;
659 if (mm->context[cpu])
660 mm->context[cpu] = 0;
661 }
662 preempt_enable();
663 return;
664 }
665 }
666
667 smp_call_function(ipi_flush_tlb_mm, mm, 1);
668
669 preempt_enable();
670 }
671 EXPORT_SYMBOL(flush_tlb_mm);
672
673 struct flush_tlb_page_struct {
674 struct vm_area_struct *vma;
675 struct mm_struct *mm;
676 unsigned long addr;
677 };
678
679 static void
ipi_flush_tlb_page(void * x)680 ipi_flush_tlb_page(void *x)
681 {
682 struct flush_tlb_page_struct *data = (struct flush_tlb_page_struct *)x;
683 struct mm_struct * mm = data->mm;
684
685 if (mm == current->active_mm && !asn_locked())
686 flush_tlb_current_page(mm, data->vma, data->addr);
687 else
688 flush_tlb_other(mm);
689 }
690
691 void
flush_tlb_page(struct vm_area_struct * vma,unsigned long addr)692 flush_tlb_page(struct vm_area_struct *vma, unsigned long addr)
693 {
694 struct flush_tlb_page_struct data;
695 struct mm_struct *mm = vma->vm_mm;
696
697 preempt_disable();
698
699 if (mm == current->active_mm) {
700 flush_tlb_current_page(mm, vma, addr);
701 if (atomic_read(&mm->mm_users) <= 1) {
702 int cpu, this_cpu = smp_processor_id();
703 for (cpu = 0; cpu < NR_CPUS; cpu++) {
704 if (!cpu_online(cpu) || cpu == this_cpu)
705 continue;
706 if (mm->context[cpu])
707 mm->context[cpu] = 0;
708 }
709 preempt_enable();
710 return;
711 }
712 }
713
714 data.vma = vma;
715 data.mm = mm;
716 data.addr = addr;
717
718 smp_call_function(ipi_flush_tlb_page, &data, 1);
719
720 preempt_enable();
721 }
722 EXPORT_SYMBOL(flush_tlb_page);
723
724 void
flush_tlb_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)725 flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
726 {
727 /* On the Alpha we always flush the whole user tlb. */
728 flush_tlb_mm(vma->vm_mm);
729 }
730 EXPORT_SYMBOL(flush_tlb_range);
731
732 static void
ipi_flush_icache_page(void * x)733 ipi_flush_icache_page(void *x)
734 {
735 struct mm_struct *mm = (struct mm_struct *) x;
736 if (mm == current->active_mm && !asn_locked())
737 __load_new_mm_context(mm);
738 else
739 flush_tlb_other(mm);
740 }
741
742 void
flush_icache_user_range(struct vm_area_struct * vma,struct page * page,unsigned long addr,int len)743 flush_icache_user_range(struct vm_area_struct *vma, struct page *page,
744 unsigned long addr, int len)
745 {
746 struct mm_struct *mm = vma->vm_mm;
747
748 if ((vma->vm_flags & VM_EXEC) == 0)
749 return;
750
751 preempt_disable();
752
753 if (mm == current->active_mm) {
754 __load_new_mm_context(mm);
755 if (atomic_read(&mm->mm_users) <= 1) {
756 int cpu, this_cpu = smp_processor_id();
757 for (cpu = 0; cpu < NR_CPUS; cpu++) {
758 if (!cpu_online(cpu) || cpu == this_cpu)
759 continue;
760 if (mm->context[cpu])
761 mm->context[cpu] = 0;
762 }
763 preempt_enable();
764 return;
765 }
766 }
767
768 smp_call_function(ipi_flush_icache_page, mm, 1);
769
770 preempt_enable();
771 }
772