1 /******************************************************************************
2  *
3  *	(C)Copyright 1998,1999 SysKonnect,
4  *	a business unit of Schneider & Koch & Co. Datensysteme GmbH.
5  *
6  *	See the file "skfddi.c" for further information.
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  *
13  *	The information in this file is provided "AS IS" without warranty.
14  *
15  ******************************************************************************/
16 
17 /*
18 	PCM
19 	Physical Connection Management
20 */
21 
22 /*
23  * Hardware independent state machine implemantation
24  * The following external SMT functions are referenced :
25  *
26  * 		queue_event()
27  * 		smt_timer_start()
28  * 		smt_timer_stop()
29  *
30  * 	The following external HW dependent functions are referenced :
31  * 		sm_pm_control()
32  *		sm_ph_linestate()
33  *		sm_pm_ls_latch()
34  *
35  * 	The following HW dependent events are required :
36  *		PC_QLS
37  *		PC_ILS
38  *		PC_HLS
39  *		PC_MLS
40  *		PC_NSE
41  *		PC_LEM
42  *
43  */
44 
45 
46 #include "h/types.h"
47 #include "h/fddi.h"
48 #include "h/smc.h"
49 #include "h/supern_2.h"
50 #define KERNEL
51 #include "h/smtstate.h"
52 
53 #ifndef	lint
54 static const char ID_sccs[] = "@(#)pcmplc.c	2.55 99/08/05 (C) SK " ;
55 #endif
56 
57 #ifdef	FDDI_MIB
58 extern int snmp_fddi_trap(
59 #ifdef	ANSIC
60 struct s_smc	* smc, int  type, int  index
61 #endif
62 );
63 #endif
64 #ifdef	CONCENTRATOR
65 extern int plc_is_installed(
66 #ifdef	ANSIC
67 struct s_smc *smc ,
68 int p
69 #endif
70 ) ;
71 #endif
72 /*
73  * FSM Macros
74  */
75 #define AFLAG		(0x20)
76 #define GO_STATE(x)	(mib->fddiPORTPCMState = (x)|AFLAG)
77 #define ACTIONS_DONE()	(mib->fddiPORTPCMState &= ~AFLAG)
78 #define ACTIONS(x)	(x|AFLAG)
79 
80 /*
81  * PCM states
82  */
83 #define PC0_OFF			0
84 #define PC1_BREAK		1
85 #define PC2_TRACE		2
86 #define PC3_CONNECT		3
87 #define PC4_NEXT		4
88 #define PC5_SIGNAL		5
89 #define PC6_JOIN		6
90 #define PC7_VERIFY		7
91 #define PC8_ACTIVE		8
92 #define PC9_MAINT		9
93 
94 /*
95  * symbolic state names
96  */
97 static const char * const pcm_states[] =  {
98 	"PC0_OFF","PC1_BREAK","PC2_TRACE","PC3_CONNECT","PC4_NEXT",
99 	"PC5_SIGNAL","PC6_JOIN","PC7_VERIFY","PC8_ACTIVE","PC9_MAINT"
100 } ;
101 
102 /*
103  * symbolic event names
104  */
105 static const char * const pcm_events[] = {
106 	"NONE","PC_START","PC_STOP","PC_LOOP","PC_JOIN","PC_SIGNAL",
107 	"PC_REJECT","PC_MAINT","PC_TRACE","PC_PDR",
108 	"PC_ENABLE","PC_DISABLE",
109 	"PC_QLS","PC_ILS","PC_MLS","PC_HLS","PC_LS_PDR","PC_LS_NONE",
110 	"PC_TIMEOUT_TB_MAX","PC_TIMEOUT_TB_MIN",
111 	"PC_TIMEOUT_C_MIN","PC_TIMEOUT_T_OUT",
112 	"PC_TIMEOUT_TL_MIN","PC_TIMEOUT_T_NEXT","PC_TIMEOUT_LCT",
113 	"PC_NSE","PC_LEM"
114 } ;
115 
116 #ifdef	MOT_ELM
117 /*
118  * PCL-S control register
119  * this register in the PLC-S controls the scrambling parameters
120  */
121 #define PLCS_CONTROL_C_U	0
122 #define PLCS_CONTROL_C_S	(PL_C_SDOFF_ENABLE | PL_C_SDON_ENABLE | \
123 				 PL_C_CIPHER_ENABLE)
124 #define	PLCS_FASSERT_U		0
125 #define	PLCS_FASSERT_S		0xFd76	/* 52.0 us */
126 #define	PLCS_FDEASSERT_U	0
127 #define	PLCS_FDEASSERT_S	0
128 #else	/* nMOT_ELM */
129 /*
130  * PCL-S control register
131  * this register in the PLC-S controls the scrambling parameters
132  * can be patched for ANSI compliance if standard changes
133  */
134 static const u_char plcs_control_c_u[17] = "PLC_CNTRL_C_U=\0\0" ;
135 static const u_char plcs_control_c_s[17] = "PLC_CNTRL_C_S=\01\02" ;
136 
137 #define PLCS_CONTROL_C_U (plcs_control_c_u[14] | (plcs_control_c_u[15]<<8))
138 #define PLCS_CONTROL_C_S (plcs_control_c_s[14] | (plcs_control_c_s[15]<<8))
139 #endif	/* nMOT_ELM */
140 
141 /*
142  * external vars
143  */
144 /* struct definition see 'cmtdef.h' (also used by CFM) */
145 
146 #define PS_OFF		0
147 #define PS_BIT3		1
148 #define PS_BIT4		2
149 #define PS_BIT7		3
150 #define PS_LCT		4
151 #define PS_BIT8		5
152 #define PS_JOIN		6
153 #define PS_ACTIVE	7
154 
155 #define LCT_LEM_MAX	255
156 
157 /*
158  * PLC timing parameter
159  */
160 
161 #define PLC_MS(m)	((int)((0x10000L-(m*100000L/2048))))
162 #define SLOW_TL_MIN	PLC_MS(6)
163 #define SLOW_C_MIN	PLC_MS(10)
164 
165 static	const struct plt {
166 	int	timer ;			/* relative plc timer address */
167 	int	para ;			/* default timing parameters */
168 } pltm[] = {
169 	{ PL_C_MIN, SLOW_C_MIN },	/* min t. to remain Connect State */
170 	{ PL_TL_MIN, SLOW_TL_MIN },	/* min t. to transmit a Line State */
171 	{ PL_TB_MIN, TP_TB_MIN },	/* min break time */
172 	{ PL_T_OUT, TP_T_OUT },		/* Signaling timeout */
173 	{ PL_LC_LENGTH, TP_LC_LENGTH },	/* Link Confidence Test Time */
174 	{ PL_T_SCRUB, TP_T_SCRUB },	/* Scrub Time == MAC TVX time ! */
175 	{ PL_NS_MAX, TP_NS_MAX },	/* max t. that noise is tolerated */
176 	{ 0,0 }
177 } ;
178 
179 /*
180  * interrupt mask
181  */
182 #ifdef	SUPERNET_3
183 /*
184  * Do we need the EBUF error during signaling, too, to detect SUPERNET_3
185  * PLL bug?
186  */
187 static const int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
188 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
189 #else	/* SUPERNET_3 */
190 /*
191  * We do NOT need the elasticity buffer error during signaling.
192  */
193 static int plc_imsk_na = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
194 			PL_PCM_ENABLED | PL_SELF_TEST ;
195 #endif	/* SUPERNET_3 */
196 static const int plc_imsk_act = PL_PCM_CODE | PL_TRACE_PROP | PL_PCM_BREAK |
197 			PL_PCM_ENABLED | PL_SELF_TEST | PL_EBUF_ERR;
198 
199 /* internal functions */
200 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd);
201 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy);
202 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy);
203 static void reset_lem_struct(struct s_phy *phy);
204 static void plc_init(struct s_smc *smc, int p);
205 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold);
206 static void sm_ph_lem_stop(struct s_smc *smc, int np);
207 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls);
208 static void real_init_plc(struct s_smc *smc);
209 
210 /*
211  * SMT timer interface
212  *      start PCM timer 0
213  */
start_pcm_timer0(struct s_smc * smc,u_long value,int event,struct s_phy * phy)214 static void start_pcm_timer0(struct s_smc *smc, u_long value, int event,
215 			     struct s_phy *phy)
216 {
217 	phy->timer0_exp = FALSE ;       /* clear timer event flag */
218 	smt_timer_start(smc,&phy->pcm_timer0,value,
219 		EV_TOKEN(EVENT_PCM+phy->np,event)) ;
220 }
221 /*
222  * SMT timer interface
223  *      stop PCM timer 0
224  */
stop_pcm_timer0(struct s_smc * smc,struct s_phy * phy)225 static void stop_pcm_timer0(struct s_smc *smc, struct s_phy *phy)
226 {
227 	if (phy->pcm_timer0.tm_active)
228 		smt_timer_stop(smc,&phy->pcm_timer0) ;
229 }
230 
231 /*
232 	init PCM state machine (called by driver)
233 	clear all PCM vars and flags
234 */
pcm_init(struct s_smc * smc)235 void pcm_init(struct s_smc *smc)
236 {
237 	int		i ;
238 	int		np ;
239 	struct s_phy	*phy ;
240 	struct fddi_mib_p	*mib ;
241 
242 	for (np = 0,phy = smc->y ; np < NUMPHYS ; np++,phy++) {
243 		/* Indicates the type of PHY being used */
244 		mib = phy->mib ;
245 		mib->fddiPORTPCMState = ACTIONS(PC0_OFF) ;
246 		phy->np = np ;
247 		switch (smc->s.sas) {
248 #ifdef	CONCENTRATOR
249 		case SMT_SAS :
250 			mib->fddiPORTMy_Type = (np == PS) ? TS : TM ;
251 			break ;
252 		case SMT_DAS :
253 			mib->fddiPORTMy_Type = (np == PA) ? TA :
254 					(np == PB) ? TB : TM ;
255 			break ;
256 		case SMT_NAC :
257 			mib->fddiPORTMy_Type = TM ;
258 			break;
259 #else
260 		case SMT_SAS :
261 			mib->fddiPORTMy_Type = (np == PS) ? TS : TNONE ;
262 			mib->fddiPORTHardwarePresent = (np == PS) ? TRUE :
263 					FALSE ;
264 #ifndef	SUPERNET_3
265 			smc->y[PA].mib->fddiPORTPCMState = PC0_OFF ;
266 #else
267 			smc->y[PB].mib->fddiPORTPCMState = PC0_OFF ;
268 #endif
269 			break ;
270 		case SMT_DAS :
271 			mib->fddiPORTMy_Type = (np == PB) ? TB : TA ;
272 			break ;
273 #endif
274 		}
275 		/*
276 		 * set PMD-type
277 		 */
278 		phy->pmd_scramble = 0 ;
279 		switch (phy->pmd_type[PMD_SK_PMD]) {
280 		case 'P' :
281 			mib->fddiPORTPMDClass = MIB_PMDCLASS_MULTI ;
282 			break ;
283 		case 'L' :
284 			mib->fddiPORTPMDClass = MIB_PMDCLASS_LCF ;
285 			break ;
286 		case 'D' :
287 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
288 			break ;
289 		case 'S' :
290 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
291 			phy->pmd_scramble = TRUE ;
292 			break ;
293 		case 'U' :
294 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
295 			phy->pmd_scramble = TRUE ;
296 			break ;
297 		case '1' :
298 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
299 			break ;
300 		case '2' :
301 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
302 			break ;
303 		case '3' :
304 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE2 ;
305 			break ;
306 		case '4' :
307 			mib->fddiPORTPMDClass = MIB_PMDCLASS_SINGLE1 ;
308 			break ;
309 		case 'H' :
310 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
311 			break ;
312 		case 'I' :
313 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
314 			break ;
315 		case 'G' :
316 			mib->fddiPORTPMDClass = MIB_PMDCLASS_TP ;
317 			break ;
318 		default:
319 			mib->fddiPORTPMDClass = MIB_PMDCLASS_UNKNOWN ;
320 			break ;
321 		}
322 		/*
323 		 * A and B port can be on primary and secondary path
324 		 */
325 		switch (mib->fddiPORTMy_Type) {
326 		case TA :
327 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
328 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
329 			mib->fddiPORTRequestedPaths[2] =
330 				MIB_P_PATH_LOCAL |
331 				MIB_P_PATH_CON_ALTER |
332 				MIB_P_PATH_SEC_PREFER ;
333 			mib->fddiPORTRequestedPaths[3] =
334 				MIB_P_PATH_LOCAL |
335 				MIB_P_PATH_CON_ALTER |
336 				MIB_P_PATH_SEC_PREFER |
337 				MIB_P_PATH_THRU ;
338 			break ;
339 		case TB :
340 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
341 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
342 			mib->fddiPORTRequestedPaths[2] =
343 				MIB_P_PATH_LOCAL |
344 				MIB_P_PATH_PRIM_PREFER ;
345 			mib->fddiPORTRequestedPaths[3] =
346 				MIB_P_PATH_LOCAL |
347 				MIB_P_PATH_PRIM_PREFER |
348 				MIB_P_PATH_CON_PREFER |
349 				MIB_P_PATH_THRU ;
350 			break ;
351 		case TS :
352 			mib->fddiPORTAvailablePaths |= MIB_PATH_S ;
353 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
354 			mib->fddiPORTRequestedPaths[2] =
355 				MIB_P_PATH_LOCAL |
356 				MIB_P_PATH_CON_ALTER |
357 				MIB_P_PATH_PRIM_PREFER ;
358 			mib->fddiPORTRequestedPaths[3] =
359 				MIB_P_PATH_LOCAL |
360 				MIB_P_PATH_CON_ALTER |
361 				MIB_P_PATH_PRIM_PREFER ;
362 			break ;
363 		case TM :
364 			mib->fddiPORTRequestedPaths[1] = MIB_P_PATH_LOCAL ;
365 			mib->fddiPORTRequestedPaths[2] =
366 				MIB_P_PATH_LOCAL |
367 				MIB_P_PATH_SEC_ALTER |
368 				MIB_P_PATH_PRIM_ALTER ;
369 			mib->fddiPORTRequestedPaths[3] = 0 ;
370 			break ;
371 		}
372 
373 		phy->pc_lem_fail = FALSE ;
374 		mib->fddiPORTPCMStateX = mib->fddiPORTPCMState ;
375 		mib->fddiPORTLCTFail_Ct = 0 ;
376 		mib->fddiPORTBS_Flag = 0 ;
377 		mib->fddiPORTCurrentPath = MIB_PATH_ISOLATED ;
378 		mib->fddiPORTNeighborType = TNONE ;
379 		phy->ls_flag = 0 ;
380 		phy->rc_flag = 0 ;
381 		phy->tc_flag = 0 ;
382 		phy->td_flag = 0 ;
383 		if (np >= PM)
384 			phy->phy_name = '0' + np - PM ;
385 		else
386 			phy->phy_name = 'A' + np ;
387 		phy->wc_flag = FALSE ;		/* set by SMT */
388 		memset((char *)&phy->lem,0,sizeof(struct lem_counter)) ;
389 		reset_lem_struct(phy) ;
390 		memset((char *)&phy->plc,0,sizeof(struct s_plc)) ;
391 		phy->plc.p_state = PS_OFF ;
392 		for (i = 0 ; i < NUMBITS ; i++) {
393 			phy->t_next[i] = 0 ;
394 		}
395 	}
396 	real_init_plc(smc) ;
397 }
398 
init_plc(struct s_smc * smc)399 void init_plc(struct s_smc *smc)
400 {
401 	SK_UNUSED(smc) ;
402 
403 	/*
404 	 * dummy
405 	 * this is an obsolete public entry point that has to remain
406 	 * for compat. It is used by various drivers.
407 	 * the work is now done in real_init_plc()
408 	 * which is called from pcm_init() ;
409 	 */
410 }
411 
real_init_plc(struct s_smc * smc)412 static void real_init_plc(struct s_smc *smc)
413 {
414 	int	p ;
415 
416 	for (p = 0 ; p < NUMPHYS ; p++)
417 		plc_init(smc,p) ;
418 }
419 
plc_init(struct s_smc * smc,int p)420 static void plc_init(struct s_smc *smc, int p)
421 {
422 	int	i ;
423 #ifndef	MOT_ELM
424 	int	rev ;	/* Revision of PLC-x */
425 #endif	/* MOT_ELM */
426 
427 	/* transit PCM state machine to MAINT state */
428 	outpw(PLC(p,PL_CNTRL_B),0) ;
429 	outpw(PLC(p,PL_CNTRL_B),PL_PCM_STOP) ;
430 	outpw(PLC(p,PL_CNTRL_A),0) ;
431 
432 	/*
433 	 * if PLC-S then set control register C
434 	 */
435 #ifndef	MOT_ELM
436 	rev = inpw(PLC(p,PL_STATUS_A)) & PLC_REV_MASK ;
437 	if (rev != PLC_REVISION_A)
438 #endif	/* MOT_ELM */
439 	{
440 		if (smc->y[p].pmd_scramble) {
441 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_S) ;
442 #ifdef	MOT_ELM
443 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_S) ;
444 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_S) ;
445 #endif	/* MOT_ELM */
446 		}
447 		else {
448 			outpw(PLC(p,PL_CNTRL_C),PLCS_CONTROL_C_U) ;
449 #ifdef	MOT_ELM
450 			outpw(PLC(p,PL_T_FOT_ASS),PLCS_FASSERT_U) ;
451 			outpw(PLC(p,PL_T_FOT_DEASS),PLCS_FDEASSERT_U) ;
452 #endif	/* MOT_ELM */
453 		}
454 	}
455 
456 	/*
457 	 * set timer register
458 	 */
459 	for ( i = 0 ; pltm[i].timer; i++)	/* set timer parameter reg */
460 		outpw(PLC(p,pltm[i].timer),pltm[i].para) ;
461 
462 	(void)inpw(PLC(p,PL_INTR_EVENT)) ;	/* clear interrupt event reg */
463 	plc_clear_irq(smc,p) ;
464 	outpw(PLC(p,PL_INTR_MASK),plc_imsk_na); /* enable non active irq's */
465 
466 	/*
467 	 * if PCM is configured for class s, it will NOT go to the
468 	 * REMOVE state if offline (page 3-36;)
469 	 * in the concentrator, all inactive PHYS always must be in
470 	 * the remove state
471 	 * there's no real need to use this feature at all ..
472 	 */
473 #ifndef	CONCENTRATOR
474 	if ((smc->s.sas == SMT_SAS) && (p == PS)) {
475 		outpw(PLC(p,PL_CNTRL_B),PL_CLASS_S) ;
476 	}
477 #endif
478 }
479 
480 /*
481  * control PCM state machine
482  */
plc_go_state(struct s_smc * smc,int p,int state)483 static void plc_go_state(struct s_smc *smc, int p, int state)
484 {
485 	HW_PTR port ;
486 	int val ;
487 
488 	SK_UNUSED(smc) ;
489 
490 	port = (HW_PTR) (PLC(p,PL_CNTRL_B)) ;
491 	val = inpw(port) & ~(PL_PCM_CNTRL | PL_MAINT) ;
492 	outpw(port,val) ;
493 	outpw(port,val | state) ;
494 }
495 
496 /*
497  * read current line state (called by ECM & PCM)
498  */
sm_pm_get_ls(struct s_smc * smc,int phy)499 int sm_pm_get_ls(struct s_smc *smc, int phy)
500 {
501 	int	state ;
502 
503 #ifdef	CONCENTRATOR
504 	if (!plc_is_installed(smc,phy))
505 		return PC_QLS;
506 #endif
507 
508 	state = inpw(PLC(phy,PL_STATUS_A)) & PL_LINE_ST ;
509 	switch(state) {
510 	case PL_L_QLS:
511 		state = PC_QLS ;
512 		break ;
513 	case PL_L_MLS:
514 		state = PC_MLS ;
515 		break ;
516 	case PL_L_HLS:
517 		state = PC_HLS ;
518 		break ;
519 	case PL_L_ILS4:
520 	case PL_L_ILS16:
521 		state = PC_ILS ;
522 		break ;
523 	case PL_L_ALS:
524 		state = PC_LS_PDR ;
525 		break ;
526 	default :
527 		state = PC_LS_NONE ;
528 	}
529 	return state;
530 }
531 
plc_send_bits(struct s_smc * smc,struct s_phy * phy,int len)532 static int plc_send_bits(struct s_smc *smc, struct s_phy *phy, int len)
533 {
534 	int np = phy->np ;		/* PHY index */
535 	int	n ;
536 	int	i ;
537 
538 	SK_UNUSED(smc) ;
539 
540 	/* create bit vector */
541 	for (i = len-1,n = 0 ; i >= 0 ; i--) {
542 		n = (n<<1) | phy->t_val[phy->bitn+i] ;
543 	}
544 	if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
545 #if	0
546 		printf("PL_PCM_SIGNAL is set\n") ;
547 #endif
548 		return 1;
549 	}
550 	/* write bit[n] & length = 1 to regs */
551 	outpw(PLC(np,PL_VECTOR_LEN),len-1) ;	/* len=nr-1 */
552 	outpw(PLC(np,PL_XMIT_VECTOR),n) ;
553 #ifdef	DEBUG
554 #if 1
555 #ifdef	DEBUG_BRD
556 	if (smc->debug.d_plc & 0x80)
557 #else
558 	if (debug.d_plc & 0x80)
559 #endif
560 		printf("SIGNALING bit %d .. %d\n",phy->bitn,phy->bitn+len-1) ;
561 #endif
562 #endif
563 	return 0;
564 }
565 
566 /*
567  * config plc muxes
568  */
plc_config_mux(struct s_smc * smc,int mux)569 void plc_config_mux(struct s_smc *smc, int mux)
570 {
571 	if (smc->s.sas != SMT_DAS)
572 		return ;
573 	if (mux == MUX_WRAPB) {
574 		SETMASK(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
575 		SETMASK(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
576 	}
577 	else {
578 		CLEAR(PLC(PA,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
579 		CLEAR(PLC(PA,PL_CNTRL_A),PL_SC_REM_LOOP) ;
580 	}
581 	CLEAR(PLC(PB,PL_CNTRL_B),PL_CONFIG_CNTRL) ;
582 	CLEAR(PLC(PB,PL_CNTRL_A),PL_SC_REM_LOOP) ;
583 }
584 
585 /*
586 	PCM state machine
587 	called by dispatcher  & fddi_init() (driver)
588 	do
589 		display state change
590 		process event
591 	until SM is stable
592 */
pcm(struct s_smc * smc,const int np,int event)593 void pcm(struct s_smc *smc, const int np, int event)
594 {
595 	int	state ;
596 	int	oldstate ;
597 	struct s_phy	*phy ;
598 	struct fddi_mib_p	*mib ;
599 
600 #ifndef	CONCENTRATOR
601 	/*
602 	 * ignore 2nd PHY if SAS
603 	 */
604 	if ((np != PS) && (smc->s.sas == SMT_SAS))
605 		return ;
606 #endif
607 	phy = &smc->y[np] ;
608 	mib = phy->mib ;
609 	oldstate = mib->fddiPORTPCMState ;
610 	do {
611 		DB_PCM("PCM %c: state %s%s, event %s",
612 		       phy->phy_name,
613 		       mib->fddiPORTPCMState & AFLAG ? "ACTIONS " : "",
614 		       pcm_states[mib->fddiPORTPCMState & ~AFLAG],
615 		       pcm_events[event]);
616 		state = mib->fddiPORTPCMState ;
617 		pcm_fsm(smc,phy,event) ;
618 		event = 0 ;
619 	} while (state != mib->fddiPORTPCMState) ;
620 	/*
621 	 * because the PLC does the bit signaling for us,
622 	 * we're always in SIGNAL state
623 	 * the MIB want's to see CONNECT
624 	 * we therefore fake an entry in the MIB
625 	 */
626 	if (state == PC5_SIGNAL)
627 		mib->fddiPORTPCMStateX = PC3_CONNECT ;
628 	else
629 		mib->fddiPORTPCMStateX = state ;
630 
631 #ifndef	SLIM_SMT
632 	/*
633 	 * path change
634 	 */
635 	if (	mib->fddiPORTPCMState != oldstate &&
636 		((oldstate == PC8_ACTIVE) || (mib->fddiPORTPCMState == PC8_ACTIVE))) {
637 		smt_srf_event(smc,SMT_EVENT_PORT_PATH_CHANGE,
638 			(int) (INDEX_PORT+ phy->np),0) ;
639 	}
640 #endif
641 
642 #ifdef FDDI_MIB
643 	/* check whether a snmp-trap has to be sent */
644 
645 	if ( mib->fddiPORTPCMState != oldstate ) {
646 		/* a real state change took place */
647 		DB_SNMP ("PCM from %d to %d\n", oldstate, mib->fddiPORTPCMState);
648 		if ( mib->fddiPORTPCMState == PC0_OFF ) {
649 			/* send first trap */
650 			snmp_fddi_trap (smc, 1, (int) mib->fddiPORTIndex );
651 		} else if ( oldstate == PC0_OFF ) {
652 			/* send second trap */
653 			snmp_fddi_trap (smc, 2, (int) mib->fddiPORTIndex );
654 		} else if ( mib->fddiPORTPCMState != PC2_TRACE &&
655 			oldstate == PC8_ACTIVE ) {
656 			/* send third trap */
657 			snmp_fddi_trap (smc, 3, (int) mib->fddiPORTIndex );
658 		} else if ( mib->fddiPORTPCMState == PC8_ACTIVE ) {
659 			/* send fourth trap */
660 			snmp_fddi_trap (smc, 4, (int) mib->fddiPORTIndex );
661 		}
662 	}
663 #endif
664 
665 	pcm_state_change(smc,np,state) ;
666 }
667 
668 /*
669  * PCM state machine
670  */
pcm_fsm(struct s_smc * smc,struct s_phy * phy,int cmd)671 static void pcm_fsm(struct s_smc *smc, struct s_phy *phy, int cmd)
672 {
673 	int	i ;
674 	int	np = phy->np ;		/* PHY index */
675 	struct s_plc	*plc ;
676 	struct fddi_mib_p	*mib ;
677 #ifndef	MOT_ELM
678 	u_short	plc_rev ;		/* Revision of the plc */
679 #endif	/* nMOT_ELM */
680 
681 	plc = &phy->plc ;
682 	mib = phy->mib ;
683 
684 	/*
685 	 * general transitions independent of state
686 	 */
687 	switch (cmd) {
688 	case PC_STOP :
689 		/*PC00-PC80*/
690 		if (mib->fddiPORTPCMState != PC9_MAINT) {
691 			GO_STATE(PC0_OFF) ;
692 			AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
693 				FDDI_PORT_EVENT, (u_long) FDDI_PORT_STOP,
694 				smt_get_port_event_word(smc));
695 		}
696 		return ;
697 	case PC_START :
698 		/*PC01-PC81*/
699 		if (mib->fddiPORTPCMState != PC9_MAINT)
700 			GO_STATE(PC1_BREAK) ;
701 		return ;
702 	case PC_DISABLE :
703 		/* PC09-PC99 */
704 		GO_STATE(PC9_MAINT) ;
705 		AIX_EVENT(smc, (u_long) FDDI_RING_STATUS, (u_long)
706 			FDDI_PORT_EVENT, (u_long) FDDI_PORT_DISABLED,
707 			smt_get_port_event_word(smc));
708 		return ;
709 	case PC_TIMEOUT_LCT :
710 		/* if long or extended LCT */
711 		stop_pcm_timer0(smc,phy) ;
712 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
713 		/* end of LCT is indicate by PCM_CODE (initiate PCM event) */
714 		return ;
715 	}
716 
717 	switch(mib->fddiPORTPCMState) {
718 	case ACTIONS(PC0_OFF) :
719 		stop_pcm_timer0(smc,phy) ;
720 		outpw(PLC(np,PL_CNTRL_A),0) ;
721 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
722 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
723 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
724 		phy->cf_loop = FALSE ;
725 		phy->cf_join = FALSE ;
726 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
727 		plc_go_state(smc,np,PL_PCM_STOP) ;
728 		mib->fddiPORTConnectState = PCM_DISABLED ;
729 		ACTIONS_DONE() ;
730 		break ;
731 	case PC0_OFF:
732 		/*PC09*/
733 		if (cmd == PC_MAINT) {
734 			GO_STATE(PC9_MAINT) ;
735 			break ;
736 		}
737 		break ;
738 	case ACTIONS(PC1_BREAK) :
739 		/* Stop the LCT timer if we came from Signal state */
740 		stop_pcm_timer0(smc,phy) ;
741 		ACTIONS_DONE() ;
742 		plc_go_state(smc,np,0) ;
743 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
744 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
745 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
746 		/*
747 		 * if vector is already loaded, go to OFF to clear PCM_SIGNAL
748 		 */
749 #if	0
750 		if (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL) {
751 			plc_go_state(smc,np,PL_PCM_STOP) ;
752 			/* TB_MIN ? */
753 		}
754 #endif
755 		/*
756 		 * Go to OFF state in any case.
757 		 */
758 		plc_go_state(smc,np,PL_PCM_STOP) ;
759 
760 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE)
761 			mib->fddiPORTConnectState = PCM_CONNECTING ;
762 		phy->cf_loop = FALSE ;
763 		phy->cf_join = FALSE ;
764 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
765 		phy->ls_flag = FALSE ;
766 		phy->pc_mode = PM_NONE ;	/* needed by CFM */
767 		phy->bitn = 0 ;			/* bit signaling start bit */
768 		for (i = 0 ; i < 3 ; i++)
769 			pc_tcode_actions(smc,i,phy) ;
770 
771 		/* Set the non-active interrupt mask register */
772 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_na) ;
773 
774 		/*
775 		 * If the LCT was stopped. There might be a
776 		 * PCM_CODE interrupt event present.
777 		 * This must be cleared.
778 		 */
779 		(void)inpw(PLC(np,PL_INTR_EVENT)) ;
780 #ifndef	MOT_ELM
781 		/* Get the plc revision for revision dependent code */
782 		plc_rev = inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK ;
783 
784 		if (plc_rev != PLC_REV_SN3)
785 #endif	/* MOT_ELM */
786 		{
787 			/*
788 			 * No supernet III PLC, so set Xmit verctor and
789 			 * length BEFORE starting the state machine.
790 			 */
791 			if (plc_send_bits(smc,phy,3)) {
792 				return ;
793 			}
794 		}
795 
796 		/*
797 		 * Now give the Start command.
798 		 * - The start command shall be done before setting the bits
799 		 *   to be signaled. (In PLC-S description and PLCS in SN3.
800 		 * - The start command shall be issued AFTER setting the
801 		 *   XMIT vector and the XMIT length register.
802 		 *
803 		 * We do it exactly according this specs for the old PLC and
804 		 * the new PLCS inside the SN3.
805 		 * For the usual PLCS we try it the way it is done for the
806 		 * old PLC and set the XMIT registers again, if the PLC is
807 		 * not in SIGNAL state. This is done according to an PLCS
808 		 * errata workaround.
809 		 */
810 
811 		plc_go_state(smc,np,PL_PCM_START) ;
812 
813 		/*
814 		 * workaround for PLC-S eng. sample errata
815 		 */
816 #ifdef	MOT_ELM
817 		if (!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
818 #else	/* nMOT_ELM */
819 		if (((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) !=
820 			PLC_REVISION_A) &&
821 			!(inpw(PLC(np,PL_STATUS_B)) & PL_PCM_SIGNAL))
822 #endif	/* nMOT_ELM */
823 		{
824 			/*
825 			 * Set register again (PLCS errata) or the first time
826 			 * (new SN3 PLCS).
827 			 */
828 			(void) plc_send_bits(smc,phy,3) ;
829 		}
830 		/*
831 		 * end of workaround
832 		 */
833 
834 		GO_STATE(PC5_SIGNAL) ;
835 		plc->p_state = PS_BIT3 ;
836 		plc->p_bits = 3 ;
837 		plc->p_start = 0 ;
838 
839 		break ;
840 	case PC1_BREAK :
841 		break ;
842 	case ACTIONS(PC2_TRACE) :
843 		plc_go_state(smc,np,PL_PCM_TRACE) ;
844 		ACTIONS_DONE() ;
845 		break ;
846 	case PC2_TRACE :
847 		break ;
848 
849 	case PC3_CONNECT :	/* these states are done by hardware */
850 	case PC4_NEXT :
851 		break ;
852 
853 	case ACTIONS(PC5_SIGNAL) :
854 		ACTIONS_DONE() ;
855 	case PC5_SIGNAL :
856 		if ((cmd != PC_SIGNAL) && (cmd != PC_TIMEOUT_LCT))
857 			break ;
858 		switch (plc->p_state) {
859 		case PS_BIT3 :
860 			for (i = 0 ; i <= 2 ; i++)
861 				pc_rcode_actions(smc,i,phy) ;
862 			pc_tcode_actions(smc,3,phy) ;
863 			plc->p_state = PS_BIT4 ;
864 			plc->p_bits = 1 ;
865 			plc->p_start = 3 ;
866 			phy->bitn = 3 ;
867 			if (plc_send_bits(smc,phy,1)) {
868 				return ;
869 			}
870 			break ;
871 		case PS_BIT4 :
872 			pc_rcode_actions(smc,3,phy) ;
873 			for (i = 4 ; i <= 6 ; i++)
874 				pc_tcode_actions(smc,i,phy) ;
875 			plc->p_state = PS_BIT7 ;
876 			plc->p_bits = 3 ;
877 			plc->p_start = 4 ;
878 			phy->bitn = 4 ;
879 			if (plc_send_bits(smc,phy,3)) {
880 				return ;
881 			}
882 			break ;
883 		case PS_BIT7 :
884 			for (i = 3 ; i <= 6 ; i++)
885 				pc_rcode_actions(smc,i,phy) ;
886 			plc->p_state = PS_LCT ;
887 			plc->p_bits = 0 ;
888 			plc->p_start = 7 ;
889 			phy->bitn = 7 ;
890 		sm_ph_lem_start(smc,np,(int)smc->s.lct_short) ; /* enable LEM */
891 			/* start LCT */
892 			i = inpw(PLC(np,PL_CNTRL_B)) & ~PL_PC_LOOP ;
893 			outpw(PLC(np,PL_CNTRL_B),i) ;	/* must be cleared */
894 			outpw(PLC(np,PL_CNTRL_B),i | PL_RLBP) ;
895 			break ;
896 		case PS_LCT :
897 			/* check for local LCT failure */
898 			pc_tcode_actions(smc,7,phy) ;
899 			/*
900 			 * set tval[7]
901 			 */
902 			plc->p_state = PS_BIT8 ;
903 			plc->p_bits = 1 ;
904 			plc->p_start = 7 ;
905 			phy->bitn = 7 ;
906 			if (plc_send_bits(smc,phy,1)) {
907 				return ;
908 			}
909 			break ;
910 		case PS_BIT8 :
911 			/* check for remote LCT failure */
912 			pc_rcode_actions(smc,7,phy) ;
913 			if (phy->t_val[7] || phy->r_val[7]) {
914 				plc_go_state(smc,np,PL_PCM_STOP) ;
915 				GO_STATE(PC1_BREAK) ;
916 				break ;
917 			}
918 			for (i = 8 ; i <= 9 ; i++)
919 				pc_tcode_actions(smc,i,phy) ;
920 			plc->p_state = PS_JOIN ;
921 			plc->p_bits = 2 ;
922 			plc->p_start = 8 ;
923 			phy->bitn = 8 ;
924 			if (plc_send_bits(smc,phy,2)) {
925 				return ;
926 			}
927 			break ;
928 		case PS_JOIN :
929 			for (i = 8 ; i <= 9 ; i++)
930 				pc_rcode_actions(smc,i,phy) ;
931 			plc->p_state = PS_ACTIVE ;
932 			GO_STATE(PC6_JOIN) ;
933 			break ;
934 		}
935 		break ;
936 
937 	case ACTIONS(PC6_JOIN) :
938 		/*
939 		 * prevent mux error when going from WRAP_A to WRAP_B
940 		 */
941 		if (smc->s.sas == SMT_DAS && np == PB &&
942 			(smc->y[PA].pc_mode == PM_TREE ||
943 			 smc->y[PB].pc_mode == PM_TREE)) {
944 			SETMASK(PLC(np,PL_CNTRL_A),
945 				PL_SC_REM_LOOP,PL_SC_REM_LOOP) ;
946 			SETMASK(PLC(np,PL_CNTRL_B),
947 				PL_CONFIG_CNTRL,PL_CONFIG_CNTRL) ;
948 		}
949 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
950 		SETMASK(PLC(np,PL_CNTRL_B),PL_PC_JOIN,PL_PC_JOIN) ;
951 		ACTIONS_DONE() ;
952 		cmd = 0 ;
953 		/* fall thru */
954 	case PC6_JOIN :
955 		switch (plc->p_state) {
956 		case PS_ACTIVE:
957 			/*PC88b*/
958 			if (!phy->cf_join) {
959 				phy->cf_join = TRUE ;
960 				queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
961 			}
962 			if (cmd == PC_JOIN)
963 				GO_STATE(PC8_ACTIVE) ;
964 			/*PC82*/
965 			if (cmd == PC_TRACE) {
966 				GO_STATE(PC2_TRACE) ;
967 				break ;
968 			}
969 			break ;
970 		}
971 		break ;
972 
973 	case PC7_VERIFY :
974 		break ;
975 
976 	case ACTIONS(PC8_ACTIVE) :
977 		/*
978 		 * start LEM for SMT
979 		 */
980 		sm_ph_lem_start(smc,(int)phy->np,LCT_LEM_MAX) ;
981 
982 		phy->tr_flag = FALSE ;
983 		mib->fddiPORTConnectState = PCM_ACTIVE ;
984 
985 		/* Set the active interrupt mask register */
986 		outpw(PLC(np,PL_INTR_MASK),plc_imsk_act) ;
987 
988 		ACTIONS_DONE() ;
989 		break ;
990 	case PC8_ACTIVE :
991 		/*PC81 is done by PL_TNE_EXPIRED irq */
992 		/*PC82*/
993 		if (cmd == PC_TRACE) {
994 			GO_STATE(PC2_TRACE) ;
995 			break ;
996 		}
997 		/*PC88c: is done by TRACE_PROP irq */
998 
999 		break ;
1000 	case ACTIONS(PC9_MAINT) :
1001 		stop_pcm_timer0(smc,phy) ;
1002 		CLEAR(PLC(np,PL_CNTRL_B),PL_PC_JOIN) ;
1003 		CLEAR(PLC(np,PL_CNTRL_B),PL_LONG) ;
1004 		CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;	/* disable LEM int. */
1005 		sm_ph_lem_stop(smc,np) ;		/* disable LEM */
1006 		phy->cf_loop = FALSE ;
1007 		phy->cf_join = FALSE ;
1008 		queue_event(smc,EVENT_CFM,CF_JOIN+np) ;
1009 		plc_go_state(smc,np,PL_PCM_STOP) ;
1010 		mib->fddiPORTConnectState = PCM_DISABLED ;
1011 		SETMASK(PLC(np,PL_CNTRL_B),PL_MAINT,PL_MAINT) ;
1012 		sm_ph_linestate(smc,np,(int) MIB2LS(mib->fddiPORTMaint_LS)) ;
1013 		outpw(PLC(np,PL_CNTRL_A),PL_SC_BYPASS) ;
1014 		ACTIONS_DONE() ;
1015 		break ;
1016 	case PC9_MAINT :
1017 		DB_PCMN(1, "PCM %c : MAINT", phy->phy_name);
1018 		/*PC90*/
1019 		if (cmd == PC_ENABLE) {
1020 			GO_STATE(PC0_OFF) ;
1021 			break ;
1022 		}
1023 		break ;
1024 
1025 	default:
1026 		SMT_PANIC(smc,SMT_E0118, SMT_E0118_MSG) ;
1027 		break ;
1028 	}
1029 }
1030 
1031 /*
1032  * force line state on a PHY output	(only in MAINT state)
1033  */
sm_ph_linestate(struct s_smc * smc,int phy,int ls)1034 static void sm_ph_linestate(struct s_smc *smc, int phy, int ls)
1035 {
1036 	int	cntrl ;
1037 
1038 	SK_UNUSED(smc) ;
1039 
1040 	cntrl = (inpw(PLC(phy,PL_CNTRL_B)) & ~PL_MAINT_LS) |
1041 						PL_PCM_STOP | PL_MAINT ;
1042 	switch(ls) {
1043 	case PC_QLS: 		/* Force Quiet */
1044 		cntrl |= PL_M_QUI0 ;
1045 		break ;
1046 	case PC_MLS: 		/* Force Master */
1047 		cntrl |= PL_M_MASTR ;
1048 		break ;
1049 	case PC_HLS: 		/* Force Halt */
1050 		cntrl |= PL_M_HALT ;
1051 		break ;
1052 	default :
1053 	case PC_ILS: 		/* Force Idle */
1054 		cntrl |= PL_M_IDLE ;
1055 		break ;
1056 	case PC_LS_PDR: 	/* Enable repeat filter */
1057 		cntrl |= PL_M_TPDR ;
1058 		break ;
1059 	}
1060 	outpw(PLC(phy,PL_CNTRL_B),cntrl) ;
1061 }
1062 
reset_lem_struct(struct s_phy * phy)1063 static void reset_lem_struct(struct s_phy *phy)
1064 {
1065 	struct lem_counter *lem = &phy->lem ;
1066 
1067 	phy->mib->fddiPORTLer_Estimate = 15 ;
1068 	lem->lem_float_ber = 15 * 100 ;
1069 }
1070 
1071 /*
1072  * link error monitor
1073  */
lem_evaluate(struct s_smc * smc,struct s_phy * phy)1074 static void lem_evaluate(struct s_smc *smc, struct s_phy *phy)
1075 {
1076 	int ber ;
1077 	u_long errors ;
1078 	struct lem_counter *lem = &phy->lem ;
1079 	struct fddi_mib_p	*mib ;
1080 	int			cond ;
1081 
1082 	mib = phy->mib ;
1083 
1084 	if (!lem->lem_on)
1085 		return ;
1086 
1087 	errors = inpw(PLC(((int) phy->np),PL_LINK_ERR_CTR)) ;
1088 	lem->lem_errors += errors ;
1089 	mib->fddiPORTLem_Ct += errors ;
1090 
1091 	errors = lem->lem_errors ;
1092 	/*
1093 	 * calculation is called on a intervall of 8 seconds
1094 	 *	-> this means, that one error in 8 sec. is one of 8*125*10E6
1095 	 *	the same as BER = 10E-9
1096 	 * Please note:
1097 	 *	-> 9 errors in 8 seconds mean:
1098 	 *	   BER = 9 * 10E-9  and this is
1099 	 *	    < 10E-8, so the limit of 10E-8 is not reached!
1100 	 */
1101 
1102 		if (!errors)		ber = 15 ;
1103 	else	if (errors <= 9)	ber = 9 ;
1104 	else	if (errors <= 99)	ber = 8 ;
1105 	else	if (errors <= 999)	ber = 7 ;
1106 	else	if (errors <= 9999)	ber = 6 ;
1107 	else	if (errors <= 99999)	ber = 5 ;
1108 	else	if (errors <= 999999)	ber = 4 ;
1109 	else	if (errors <= 9999999)	ber = 3 ;
1110 	else	if (errors <= 99999999)	ber = 2 ;
1111 	else	if (errors <= 999999999) ber = 1 ;
1112 	else				ber = 0 ;
1113 
1114 	/*
1115 	 * weighted average
1116 	 */
1117 	ber *= 100 ;
1118 	lem->lem_float_ber = lem->lem_float_ber * 7 + ber * 3 ;
1119 	lem->lem_float_ber /= 10 ;
1120 	mib->fddiPORTLer_Estimate = lem->lem_float_ber / 100 ;
1121 	if (mib->fddiPORTLer_Estimate < 4) {
1122 		mib->fddiPORTLer_Estimate = 4 ;
1123 	}
1124 
1125 	if (lem->lem_errors) {
1126 		DB_PCMN(1, "LEM %c :", phy->np == PB ? 'B' : 'A');
1127 		DB_PCMN(1, "errors      : %ld", lem->lem_errors);
1128 		DB_PCMN(1, "sum_errors  : %ld", mib->fddiPORTLem_Ct);
1129 		DB_PCMN(1, "current BER : 10E-%d", ber / 100);
1130 		DB_PCMN(1, "float BER   : 10E-(%d/100)", lem->lem_float_ber);
1131 		DB_PCMN(1, "avg. BER    : 10E-%d", mib->fddiPORTLer_Estimate);
1132 	}
1133 
1134 	lem->lem_errors = 0L ;
1135 
1136 #ifndef	SLIM_SMT
1137 	cond = (mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Alarm) ?
1138 		TRUE : FALSE ;
1139 #ifdef	SMT_EXT_CUTOFF
1140 	smt_ler_alarm_check(smc,phy,cond) ;
1141 #endif	/* nSMT_EXT_CUTOFF */
1142 	if (cond != mib->fddiPORTLerFlag) {
1143 		smt_srf_event(smc,SMT_COND_PORT_LER,
1144 			(int) (INDEX_PORT+ phy->np) ,cond) ;
1145 	}
1146 #endif
1147 
1148 	if (	mib->fddiPORTLer_Estimate <= mib->fddiPORTLer_Cutoff) {
1149 		phy->pc_lem_fail = TRUE ;		/* flag */
1150 		mib->fddiPORTLem_Reject_Ct++ ;
1151 		/*
1152 		 * "forgive 10e-2" if we cutoff so we can come
1153 		 * up again ..
1154 		 */
1155 		lem->lem_float_ber += 2*100 ;
1156 
1157 		/*PC81b*/
1158 #ifdef	CONCENTRATOR
1159 		DB_PCMN(1, "PCM: LER cutoff on port %d cutoff %d",
1160 			phy->np, mib->fddiPORTLer_Cutoff);
1161 #endif
1162 #ifdef	SMT_EXT_CUTOFF
1163 		smt_port_off_event(smc,phy->np);
1164 #else	/* nSMT_EXT_CUTOFF */
1165 		queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1166 #endif	/* nSMT_EXT_CUTOFF */
1167 	}
1168 }
1169 
1170 /*
1171  * called by SMT to calculate LEM bit error rate
1172  */
sm_lem_evaluate(struct s_smc * smc)1173 void sm_lem_evaluate(struct s_smc *smc)
1174 {
1175 	int np ;
1176 
1177 	for (np = 0 ; np < NUMPHYS ; np++)
1178 		lem_evaluate(smc,&smc->y[np]) ;
1179 }
1180 
lem_check_lct(struct s_smc * smc,struct s_phy * phy)1181 static void lem_check_lct(struct s_smc *smc, struct s_phy *phy)
1182 {
1183 	struct lem_counter	*lem = &phy->lem ;
1184 	struct fddi_mib_p	*mib ;
1185 	int errors ;
1186 
1187 	mib = phy->mib ;
1188 
1189 	phy->pc_lem_fail = FALSE ;		/* flag */
1190 	errors = inpw(PLC(((int)phy->np),PL_LINK_ERR_CTR)) ;
1191 	lem->lem_errors += errors ;
1192 	mib->fddiPORTLem_Ct += errors ;
1193 	if (lem->lem_errors) {
1194 		switch(phy->lc_test) {
1195 		case LC_SHORT:
1196 			if (lem->lem_errors >= smc->s.lct_short)
1197 				phy->pc_lem_fail = TRUE ;
1198 			break ;
1199 		case LC_MEDIUM:
1200 			if (lem->lem_errors >= smc->s.lct_medium)
1201 				phy->pc_lem_fail = TRUE ;
1202 			break ;
1203 		case LC_LONG:
1204 			if (lem->lem_errors >= smc->s.lct_long)
1205 				phy->pc_lem_fail = TRUE ;
1206 			break ;
1207 		case LC_EXTENDED:
1208 			if (lem->lem_errors >= smc->s.lct_extended)
1209 				phy->pc_lem_fail = TRUE ;
1210 			break ;
1211 		}
1212 		DB_PCMN(1, " >>errors : %lu", lem->lem_errors);
1213 	}
1214 	if (phy->pc_lem_fail) {
1215 		mib->fddiPORTLCTFail_Ct++ ;
1216 		mib->fddiPORTLem_Reject_Ct++ ;
1217 	}
1218 	else
1219 		mib->fddiPORTLCTFail_Ct = 0 ;
1220 }
1221 
1222 /*
1223  * LEM functions
1224  */
sm_ph_lem_start(struct s_smc * smc,int np,int threshold)1225 static void sm_ph_lem_start(struct s_smc *smc, int np, int threshold)
1226 {
1227 	struct lem_counter *lem = &smc->y[np].lem ;
1228 
1229 	lem->lem_on = 1 ;
1230 	lem->lem_errors = 0L ;
1231 
1232 	/* Do NOT reset mib->fddiPORTLer_Estimate here. It is called too
1233 	 * often.
1234 	 */
1235 
1236 	outpw(PLC(np,PL_LE_THRESHOLD),threshold) ;
1237 	(void)inpw(PLC(np,PL_LINK_ERR_CTR)) ;	/* clear error counter */
1238 
1239 	/* enable LE INT */
1240 	SETMASK(PLC(np,PL_INTR_MASK),PL_LE_CTR,PL_LE_CTR) ;
1241 }
1242 
sm_ph_lem_stop(struct s_smc * smc,int np)1243 static void sm_ph_lem_stop(struct s_smc *smc, int np)
1244 {
1245 	struct lem_counter *lem = &smc->y[np].lem ;
1246 
1247 	lem->lem_on = 0 ;
1248 	CLEAR(PLC(np,PL_INTR_MASK),PL_LE_CTR) ;
1249 }
1250 
1251 /* ARGSUSED */
sm_pm_ls_latch(struct s_smc * smc,int phy,int on_off)1252 void sm_pm_ls_latch(struct s_smc *smc, int phy, int on_off)
1253 /* int on_off;	en- or disable ident. ls */
1254 {
1255 	SK_UNUSED(smc) ;
1256 
1257 	phy = phy ; on_off = on_off ;
1258 }
1259 
1260 
1261 /*
1262  * PCM pseudo code
1263  * receive actions are called AFTER the bit n is received,
1264  * i.e. if pc_rcode_actions(5) is called, bit 6 is the next bit to be received
1265  */
1266 
1267 /*
1268  * PCM pseudo code 5.1 .. 6.1
1269  */
pc_rcode_actions(struct s_smc * smc,int bit,struct s_phy * phy)1270 static void pc_rcode_actions(struct s_smc *smc, int bit, struct s_phy *phy)
1271 {
1272 	struct fddi_mib_p	*mib ;
1273 
1274 	mib = phy->mib ;
1275 
1276 	DB_PCMN(1, "SIG rec %x %x:", bit, phy->r_val[bit]);
1277 	bit++ ;
1278 
1279 	switch(bit) {
1280 	case 0:
1281 	case 1:
1282 	case 2:
1283 		break ;
1284 	case 3 :
1285 		if (phy->r_val[1] == 0 && phy->r_val[2] == 0)
1286 			mib->fddiPORTNeighborType = TA ;
1287 		else if (phy->r_val[1] == 0 && phy->r_val[2] == 1)
1288 			mib->fddiPORTNeighborType = TB ;
1289 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 0)
1290 			mib->fddiPORTNeighborType = TS ;
1291 		else if (phy->r_val[1] == 1 && phy->r_val[2] == 1)
1292 			mib->fddiPORTNeighborType = TM ;
1293 		break ;
1294 	case 4:
1295 		if (mib->fddiPORTMy_Type == TM &&
1296 			mib->fddiPORTNeighborType == TM) {
1297 			DB_PCMN(1, "PCM %c : E100 withhold M-M",
1298 				phy->phy_name);
1299 			mib->fddiPORTPC_Withhold = PC_WH_M_M ;
1300 			RS_SET(smc,RS_EVENT) ;
1301 		}
1302 		else if (phy->t_val[3] || phy->r_val[3]) {
1303 			mib->fddiPORTPC_Withhold = PC_WH_NONE ;
1304 			if (mib->fddiPORTMy_Type == TM ||
1305 			    mib->fddiPORTNeighborType == TM)
1306 				phy->pc_mode = PM_TREE ;
1307 			else
1308 				phy->pc_mode = PM_PEER ;
1309 
1310 			/* reevaluate the selection criteria (wc_flag) */
1311 			all_selection_criteria (smc);
1312 
1313 			if (phy->wc_flag) {
1314 				mib->fddiPORTPC_Withhold = PC_WH_PATH ;
1315 			}
1316 		}
1317 		else {
1318 			mib->fddiPORTPC_Withhold = PC_WH_OTHER ;
1319 			RS_SET(smc,RS_EVENT) ;
1320 			DB_PCMN(1, "PCM %c : E101 withhold other",
1321 				phy->phy_name);
1322 		}
1323 		phy->twisted = ((mib->fddiPORTMy_Type != TS) &&
1324 				(mib->fddiPORTMy_Type != TM) &&
1325 				(mib->fddiPORTNeighborType ==
1326 				mib->fddiPORTMy_Type)) ;
1327 		if (phy->twisted) {
1328 			DB_PCMN(1, "PCM %c : E102 !!! TWISTED !!!",
1329 				phy->phy_name);
1330 		}
1331 		break ;
1332 	case 5 :
1333 		break ;
1334 	case 6:
1335 		if (phy->t_val[4] || phy->r_val[4]) {
1336 			if ((phy->t_val[4] && phy->t_val[5]) ||
1337 			    (phy->r_val[4] && phy->r_val[5]) )
1338 				phy->lc_test = LC_EXTENDED ;
1339 			else
1340 				phy->lc_test = LC_LONG ;
1341 		}
1342 		else if (phy->t_val[5] || phy->r_val[5])
1343 			phy->lc_test = LC_MEDIUM ;
1344 		else
1345 			phy->lc_test = LC_SHORT ;
1346 		switch (phy->lc_test) {
1347 		case LC_SHORT :				/* 50ms */
1348 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LENGTH ) ;
1349 			phy->t_next[7] = smc->s.pcm_lc_short ;
1350 			break ;
1351 		case LC_MEDIUM :			/* 500ms */
1352 			outpw(PLC((int)phy->np,PL_LC_LENGTH), TP_LC_LONGLN ) ;
1353 			phy->t_next[7] = smc->s.pcm_lc_medium ;
1354 			break ;
1355 		case LC_LONG :
1356 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1357 			phy->t_next[7] = smc->s.pcm_lc_long ;
1358 			break ;
1359 		case LC_EXTENDED :
1360 			SETMASK(PLC((int)phy->np,PL_CNTRL_B),PL_LONG,PL_LONG) ;
1361 			phy->t_next[7] = smc->s.pcm_lc_extended ;
1362 			break ;
1363 		}
1364 		if (phy->t_next[7] > smc->s.pcm_lc_medium) {
1365 			start_pcm_timer0(smc,phy->t_next[7],PC_TIMEOUT_LCT,phy);
1366 		}
1367 		DB_PCMN(1, "LCT timer = %ld us", phy->t_next[7]);
1368 		phy->t_next[9] = smc->s.pcm_t_next_9 ;
1369 		break ;
1370 	case 7:
1371 		if (phy->t_val[6]) {
1372 			phy->cf_loop = TRUE ;
1373 		}
1374 		phy->td_flag = TRUE ;
1375 		break ;
1376 	case 8:
1377 		if (phy->t_val[7] || phy->r_val[7]) {
1378 			DB_PCMN(1, "PCM %c : E103 LCT fail %s",
1379 				phy->phy_name,
1380 				phy->t_val[7] ? "local" : "remote");
1381 			queue_event(smc,(int)(EVENT_PCM+phy->np),PC_START) ;
1382 		}
1383 		break ;
1384 	case 9:
1385 		if (phy->t_val[8] || phy->r_val[8]) {
1386 			if (phy->t_val[8])
1387 				phy->cf_loop = TRUE ;
1388 			phy->td_flag = TRUE ;
1389 		}
1390 		break ;
1391 	case 10:
1392 		if (phy->r_val[9]) {
1393 			/* neighbor intends to have MAC on output */ ;
1394 			mib->fddiPORTMacIndicated.R_val = TRUE ;
1395 		}
1396 		else {
1397 			/* neighbor does not intend to have MAC on output */ ;
1398 			mib->fddiPORTMacIndicated.R_val = FALSE ;
1399 		}
1400 		break ;
1401 	}
1402 }
1403 
1404 /*
1405  * PCM pseudo code 5.1 .. 6.1
1406  */
pc_tcode_actions(struct s_smc * smc,const int bit,struct s_phy * phy)1407 static void pc_tcode_actions(struct s_smc *smc, const int bit, struct s_phy *phy)
1408 {
1409 	int	np = phy->np ;
1410 	struct fddi_mib_p	*mib ;
1411 
1412 	mib = phy->mib ;
1413 
1414 	switch(bit) {
1415 	case 0:
1416 		phy->t_val[0] = 0 ;		/* no escape used */
1417 		break ;
1418 	case 1:
1419 		if (mib->fddiPORTMy_Type == TS || mib->fddiPORTMy_Type == TM)
1420 			phy->t_val[1] = 1 ;
1421 		else
1422 			phy->t_val[1] = 0 ;
1423 		break ;
1424 	case 2 :
1425 		if (mib->fddiPORTMy_Type == TB || mib->fddiPORTMy_Type == TM)
1426 			phy->t_val[2] = 1 ;
1427 		else
1428 			phy->t_val[2] = 0 ;
1429 		break ;
1430 	case 3:
1431 		{
1432 		int	type,ne ;
1433 		int	policy ;
1434 
1435 		type = mib->fddiPORTMy_Type ;
1436 		ne = mib->fddiPORTNeighborType ;
1437 		policy = smc->mib.fddiSMTConnectionPolicy ;
1438 
1439 		phy->t_val[3] = 1 ;	/* Accept connection */
1440 		switch (type) {
1441 		case TA :
1442 			if (
1443 				((policy & POLICY_AA) && ne == TA) ||
1444 				((policy & POLICY_AB) && ne == TB) ||
1445 				((policy & POLICY_AS) && ne == TS) ||
1446 				((policy & POLICY_AM) && ne == TM) )
1447 				phy->t_val[3] = 0 ;	/* Reject */
1448 			break ;
1449 		case TB :
1450 			if (
1451 				((policy & POLICY_BA) && ne == TA) ||
1452 				((policy & POLICY_BB) && ne == TB) ||
1453 				((policy & POLICY_BS) && ne == TS) ||
1454 				((policy & POLICY_BM) && ne == TM) )
1455 				phy->t_val[3] = 0 ;	/* Reject */
1456 			break ;
1457 		case TS :
1458 			if (
1459 				((policy & POLICY_SA) && ne == TA) ||
1460 				((policy & POLICY_SB) && ne == TB) ||
1461 				((policy & POLICY_SS) && ne == TS) ||
1462 				((policy & POLICY_SM) && ne == TM) )
1463 				phy->t_val[3] = 0 ;	/* Reject */
1464 			break ;
1465 		case TM :
1466 			if (	ne == TM ||
1467 				((policy & POLICY_MA) && ne == TA) ||
1468 				((policy & POLICY_MB) && ne == TB) ||
1469 				((policy & POLICY_MS) && ne == TS) ||
1470 				((policy & POLICY_MM) && ne == TM) )
1471 				phy->t_val[3] = 0 ;	/* Reject */
1472 			break ;
1473 		}
1474 #ifndef	SLIM_SMT
1475 		/*
1476 		 * detect undesirable connection attempt event
1477 		 */
1478 		if (	(type == TA && ne == TA ) ||
1479 			(type == TA && ne == TS ) ||
1480 			(type == TB && ne == TB ) ||
1481 			(type == TB && ne == TS ) ||
1482 			(type == TS && ne == TA ) ||
1483 			(type == TS && ne == TB ) ) {
1484 			smt_srf_event(smc,SMT_EVENT_PORT_CONNECTION,
1485 				(int) (INDEX_PORT+ phy->np) ,0) ;
1486 		}
1487 #endif
1488 		}
1489 		break ;
1490 	case 4:
1491 		if (mib->fddiPORTPC_Withhold == PC_WH_NONE) {
1492 			if (phy->pc_lem_fail) {
1493 				phy->t_val[4] = 1 ;	/* long */
1494 				phy->t_val[5] = 0 ;
1495 			}
1496 			else {
1497 				phy->t_val[4] = 0 ;
1498 				if (mib->fddiPORTLCTFail_Ct > 0)
1499 					phy->t_val[5] = 1 ;	/* medium */
1500 				else
1501 					phy->t_val[5] = 0 ;	/* short */
1502 
1503 				/*
1504 				 * Implementers choice: use medium
1505 				 * instead of short when undesired
1506 				 * connection attempt is made.
1507 				 */
1508 				if (phy->wc_flag)
1509 					phy->t_val[5] = 1 ;	/* medium */
1510 			}
1511 			mib->fddiPORTConnectState = PCM_CONNECTING ;
1512 		}
1513 		else {
1514 			mib->fddiPORTConnectState = PCM_STANDBY ;
1515 			phy->t_val[4] = 1 ;	/* extended */
1516 			phy->t_val[5] = 1 ;
1517 		}
1518 		break ;
1519 	case 5:
1520 		break ;
1521 	case 6:
1522 		/* we do NOT have a MAC for LCT */
1523 		phy->t_val[6] = 0 ;
1524 		break ;
1525 	case 7:
1526 		phy->cf_loop = FALSE ;
1527 		lem_check_lct(smc,phy) ;
1528 		if (phy->pc_lem_fail) {
1529 			DB_PCMN(1, "PCM %c : E104 LCT failed", phy->phy_name);
1530 			phy->t_val[7] = 1 ;
1531 		}
1532 		else
1533 			phy->t_val[7] = 0 ;
1534 		break ;
1535 	case 8:
1536 		phy->t_val[8] = 0 ;	/* Don't request MAC loopback */
1537 		break ;
1538 	case 9:
1539 		phy->cf_loop = 0 ;
1540 		if ((mib->fddiPORTPC_Withhold != PC_WH_NONE) ||
1541 		     ((smc->s.sas == SMT_DAS) && (phy->wc_flag))) {
1542 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1543 			break ;
1544 		}
1545 		phy->t_val[9] = FALSE ;
1546 		switch (smc->s.sas) {
1547 		case SMT_DAS :
1548 			/*
1549 			 * MAC intended on output
1550 			 */
1551 			if (phy->pc_mode == PM_TREE) {
1552 				if ((np == PB) || ((np == PA) &&
1553 				(smc->y[PB].mib->fddiPORTConnectState !=
1554 					PCM_ACTIVE)))
1555 					phy->t_val[9] = TRUE ;
1556 			}
1557 			else {
1558 				if (np == PB)
1559 					phy->t_val[9] = TRUE ;
1560 			}
1561 			break ;
1562 		case SMT_SAS :
1563 			if (np == PS)
1564 				phy->t_val[9] = TRUE ;
1565 			break ;
1566 #ifdef	CONCENTRATOR
1567 		case SMT_NAC :
1568 			/*
1569 			 * MAC intended on output
1570 			 */
1571 			if (np == PB)
1572 				phy->t_val[9] = TRUE ;
1573 			break ;
1574 #endif
1575 		}
1576 		mib->fddiPORTMacIndicated.T_val = phy->t_val[9] ;
1577 		break ;
1578 	}
1579 	DB_PCMN(1, "SIG snd %x %x:", bit, phy->t_val[bit]);
1580 }
1581 
1582 /*
1583  * return status twisted (called by SMT)
1584  */
pcm_status_twisted(struct s_smc * smc)1585 int pcm_status_twisted(struct s_smc *smc)
1586 {
1587 	int	twist = 0 ;
1588 	if (smc->s.sas != SMT_DAS)
1589 		return 0;
1590 	if (smc->y[PA].twisted && (smc->y[PA].mib->fddiPORTPCMState == PC8_ACTIVE))
1591 		twist |= 1 ;
1592 	if (smc->y[PB].twisted && (smc->y[PB].mib->fddiPORTPCMState == PC8_ACTIVE))
1593 		twist |= 2 ;
1594 	return twist;
1595 }
1596 
1597 /*
1598  * return status	(called by SMT)
1599  *	type
1600  *	state
1601  *	remote phy type
1602  *	remote mac yes/no
1603  */
pcm_status_state(struct s_smc * smc,int np,int * type,int * state,int * remote,int * mac)1604 void pcm_status_state(struct s_smc *smc, int np, int *type, int *state,
1605 		      int *remote, int *mac)
1606 {
1607 	struct s_phy	*phy = &smc->y[np] ;
1608 	struct fddi_mib_p	*mib ;
1609 
1610 	mib = phy->mib ;
1611 
1612 	/* remote PHY type and MAC - set only if active */
1613 	*mac = 0 ;
1614 	*type = mib->fddiPORTMy_Type ;		/* our PHY type */
1615 	*state = mib->fddiPORTConnectState ;
1616 	*remote = mib->fddiPORTNeighborType ;
1617 
1618 	switch(mib->fddiPORTPCMState) {
1619 	case PC8_ACTIVE :
1620 		*mac = mib->fddiPORTMacIndicated.R_val ;
1621 		break ;
1622 	}
1623 }
1624 
1625 /*
1626  * return rooted station status (called by SMT)
1627  */
pcm_rooted_station(struct s_smc * smc)1628 int pcm_rooted_station(struct s_smc *smc)
1629 {
1630 	int	n ;
1631 
1632 	for (n = 0 ; n < NUMPHYS ; n++) {
1633 		if (smc->y[n].mib->fddiPORTPCMState == PC8_ACTIVE &&
1634 		    smc->y[n].mib->fddiPORTNeighborType == TM)
1635 			return 0;
1636 	}
1637 	return 1;
1638 }
1639 
1640 /*
1641  * Interrupt actions for PLC & PCM events
1642  */
plc_irq(struct s_smc * smc,int np,unsigned int cmd)1643 void plc_irq(struct s_smc *smc, int np, unsigned int cmd)
1644 /* int np;	PHY index */
1645 {
1646 	struct s_phy *phy = &smc->y[np] ;
1647 	struct s_plc *plc = &phy->plc ;
1648 	int		n ;
1649 #ifdef	SUPERNET_3
1650 	int		corr_mask ;
1651 #endif	/* SUPERNET_3 */
1652 	int		i ;
1653 
1654 	if (np >= smc->s.numphys) {
1655 		plc->soft_err++ ;
1656 		return ;
1657 	}
1658 	if (cmd & PL_EBUF_ERR) {	/* elastic buff. det. over-|underflow*/
1659 		/*
1660 		 * Check whether the SRF Condition occurred.
1661 		 */
1662 		if (!plc->ebuf_cont && phy->mib->fddiPORTPCMState == PC8_ACTIVE){
1663 			/*
1664 			 * This is the real Elasticity Error.
1665 			 * More than one in a row are treated as a
1666 			 * single one.
1667 			 * Only count this in the active state.
1668 			 */
1669 			phy->mib->fddiPORTEBError_Ct ++ ;
1670 
1671 		}
1672 
1673 		plc->ebuf_err++ ;
1674 		if (plc->ebuf_cont <= 1000) {
1675 			/*
1676 			 * Prevent counter from being wrapped after
1677 			 * hanging years in that interrupt.
1678 			 */
1679 			plc->ebuf_cont++ ;	/* Ebuf continuous error */
1680 		}
1681 
1682 #ifdef	SUPERNET_3
1683 		if (plc->ebuf_cont == 1000 &&
1684 			((inpw(PLC(np,PL_STATUS_A)) & PLC_REV_MASK) ==
1685 			PLC_REV_SN3)) {
1686 			/*
1687 			 * This interrupt remeained high for at least
1688 			 * 1000 consecutive interrupt calls.
1689 			 *
1690 			 * This is caused by a hardware error of the
1691 			 * ORION part of the Supernet III chipset.
1692 			 *
1693 			 * Disable this bit from the mask.
1694 			 */
1695 			corr_mask = (plc_imsk_na & ~PL_EBUF_ERR) ;
1696 			outpw(PLC(np,PL_INTR_MASK),corr_mask);
1697 
1698 			/*
1699 			 * Disconnect from the ring.
1700 			 * Call the driver with the reset indication.
1701 			 */
1702 			queue_event(smc,EVENT_ECM,EC_DISCONNECT) ;
1703 
1704 			/*
1705 			 * Make an error log entry.
1706 			 */
1707 			SMT_ERR_LOG(smc,SMT_E0136, SMT_E0136_MSG) ;
1708 
1709 			/*
1710 			 * Indicate the Reset.
1711 			 */
1712 			drv_reset_indication(smc) ;
1713 		}
1714 #endif	/* SUPERNET_3 */
1715 	} else {
1716 		/* Reset the continuous error variable */
1717 		plc->ebuf_cont = 0 ;	/* reset Ebuf continuous error */
1718 	}
1719 	if (cmd & PL_PHYINV) {		/* physical layer invalid signal */
1720 		plc->phyinv++ ;
1721 	}
1722 	if (cmd & PL_VSYM_CTR) {	/* violation symbol counter has incr.*/
1723 		plc->vsym_ctr++ ;
1724 	}
1725 	if (cmd & PL_MINI_CTR) {	/* dep. on PLC_CNTRL_A's MINI_CTR_INT*/
1726 		plc->mini_ctr++ ;
1727 	}
1728 	if (cmd & PL_LE_CTR) {		/* link error event counter */
1729 		int	j ;
1730 
1731 		/*
1732 		 * note: PL_LINK_ERR_CTR MUST be read to clear it
1733 		 */
1734 		j = inpw(PLC(np,PL_LE_THRESHOLD)) ;
1735 		i = inpw(PLC(np,PL_LINK_ERR_CTR)) ;
1736 
1737 		if (i < j) {
1738 			/* wrapped around */
1739 			i += 256 ;
1740 		}
1741 
1742 		if (phy->lem.lem_on) {
1743 			/* Note: Lem errors shall only be counted when
1744 			 * link is ACTIVE or LCT is active.
1745 			 */
1746 			phy->lem.lem_errors += i ;
1747 			phy->mib->fddiPORTLem_Ct += i ;
1748 		}
1749 	}
1750 	if (cmd & PL_TPC_EXPIRED) {	/* TPC timer reached zero */
1751 		if (plc->p_state == PS_LCT) {
1752 			/*
1753 			 * end of LCT
1754 			 */
1755 			;
1756 		}
1757 		plc->tpc_exp++ ;
1758 	}
1759 	if (cmd & PL_LS_MATCH) {	/* LS == LS in PLC_CNTRL_B's MATCH_LS*/
1760 		switch (inpw(PLC(np,PL_CNTRL_B)) & PL_MATCH_LS) {
1761 		case PL_I_IDLE :	phy->curr_ls = PC_ILS ;		break ;
1762 		case PL_I_HALT :	phy->curr_ls = PC_HLS ;		break ;
1763 		case PL_I_MASTR :	phy->curr_ls = PC_MLS ;		break ;
1764 		case PL_I_QUIET :	phy->curr_ls = PC_QLS ;		break ;
1765 		}
1766 	}
1767 	if (cmd & PL_PCM_BREAK) {	/* PCM has entered the BREAK state */
1768 		int	reason;
1769 
1770 		reason = inpw(PLC(np,PL_STATUS_B)) & PL_BREAK_REASON ;
1771 
1772 		switch (reason) {
1773 		case PL_B_PCS :		plc->b_pcs++ ;	break ;
1774 		case PL_B_TPC :		plc->b_tpc++ ;	break ;
1775 		case PL_B_TNE :		plc->b_tne++ ;	break ;
1776 		case PL_B_QLS :		plc->b_qls++ ;	break ;
1777 		case PL_B_ILS :		plc->b_ils++ ;	break ;
1778 		case PL_B_HLS :		plc->b_hls++ ;	break ;
1779 		}
1780 
1781 		/*jd 05-Aug-1999 changed: Bug #10419 */
1782 		DB_PCMN(1, "PLC %d: MDcF = %x", np, smc->e.DisconnectFlag);
1783 		if (smc->e.DisconnectFlag == FALSE) {
1784 			DB_PCMN(1, "PLC %d: restart (reason %x)", np, reason);
1785 			queue_event(smc,EVENT_PCM+np,PC_START) ;
1786 		}
1787 		else {
1788 			DB_PCMN(1, "PLC %d: NO!! restart (reason %x)",
1789 				np, reason);
1790 		}
1791 		return ;
1792 	}
1793 	/*
1794 	 * If both CODE & ENABLE are set ignore enable
1795 	 */
1796 	if (cmd & PL_PCM_CODE) { /* receive last sign.-bit | LCT complete */
1797 		queue_event(smc,EVENT_PCM+np,PC_SIGNAL) ;
1798 		n = inpw(PLC(np,PL_RCV_VECTOR)) ;
1799 		for (i = 0 ; i < plc->p_bits ; i++) {
1800 			phy->r_val[plc->p_start+i] = n & 1 ;
1801 			n >>= 1 ;
1802 		}
1803 	}
1804 	else if (cmd & PL_PCM_ENABLED) { /* asserted SC_JOIN, scrub.completed*/
1805 		queue_event(smc,EVENT_PCM+np,PC_JOIN) ;
1806 	}
1807 	if (cmd & PL_TRACE_PROP) {	/* MLS while PC8_ACTIV || PC2_TRACE */
1808 		/*PC22b*/
1809 		if (!phy->tr_flag) {
1810 			DB_PCMN(1, "PCM : irq TRACE_PROP %d %d",
1811 				np, smc->mib.fddiSMTECMState);
1812 			phy->tr_flag = TRUE ;
1813 			smc->e.trace_prop |= ENTITY_BIT(ENTITY_PHY(np)) ;
1814 			queue_event(smc,EVENT_ECM,EC_TRACE_PROP) ;
1815 		}
1816 	}
1817 	/*
1818 	 * filter PLC glitch ???
1819 	 * QLS || HLS only while in PC2_TRACE state
1820 	 */
1821 	if ((cmd & PL_SELF_TEST) && (phy->mib->fddiPORTPCMState == PC2_TRACE)) {
1822 		/*PC22a*/
1823 		if (smc->e.path_test == PT_PASSED) {
1824 			DB_PCMN(1, "PCM : state = %s %d",
1825 				get_pcmstate(smc, np),
1826 				phy->mib->fddiPORTPCMState);
1827 
1828 			smc->e.path_test = PT_PENDING ;
1829 			queue_event(smc,EVENT_ECM,EC_PATH_TEST) ;
1830 		}
1831 	}
1832 	if (cmd & PL_TNE_EXPIRED) {	/* TNE: length of noise events */
1833 		/* break_required (TNE > NS_Max) */
1834 		if (phy->mib->fddiPORTPCMState == PC8_ACTIVE) {
1835 			if (!phy->tr_flag) {
1836 				DB_PCMN(1, "PCM %c : PC81 %s",
1837 					phy->phy_name, "NSE");
1838 				queue_event(smc, EVENT_PCM + np, PC_START);
1839 				return;
1840 			}
1841 		}
1842 	}
1843 #if	0
1844 	if (cmd & PL_NP_ERR) {		/* NP has requested to r/w an inv reg*/
1845 		/*
1846 		 * It's a bug by AMD
1847 		 */
1848 		plc->np_err++ ;
1849 	}
1850 	/* pin inactiv (GND) */
1851 	if (cmd & PL_PARITY_ERR) {	/* p. error dedected on TX9-0 inp */
1852 		plc->parity_err++ ;
1853 	}
1854 	if (cmd & PL_LSDO) {		/* carrier detected */
1855 		;
1856 	}
1857 #endif
1858 }
1859 
1860 #ifdef	DEBUG
1861 /*
1862  * fill state struct
1863  */
pcm_get_state(struct s_smc * smc,struct smt_state * state)1864 void pcm_get_state(struct s_smc *smc, struct smt_state *state)
1865 {
1866 	struct s_phy	*phy ;
1867 	struct pcm_state *pcs ;
1868 	int	i ;
1869 	int	ii ;
1870 	short	rbits ;
1871 	short	tbits ;
1872 	struct fddi_mib_p	*mib ;
1873 
1874 	for (i = 0, phy = smc->y, pcs = state->pcm_state ; i < NUMPHYS ;
1875 		i++ , phy++, pcs++ ) {
1876 		mib = phy->mib ;
1877 		pcs->pcm_type = (u_char) mib->fddiPORTMy_Type ;
1878 		pcs->pcm_state = (u_char) mib->fddiPORTPCMState ;
1879 		pcs->pcm_mode = phy->pc_mode ;
1880 		pcs->pcm_neighbor = (u_char) mib->fddiPORTNeighborType ;
1881 		pcs->pcm_bsf = mib->fddiPORTBS_Flag ;
1882 		pcs->pcm_lsf = phy->ls_flag ;
1883 		pcs->pcm_lct_fail = (u_char) mib->fddiPORTLCTFail_Ct ;
1884 		pcs->pcm_ls_rx = LS2MIB(sm_pm_get_ls(smc,i)) ;
1885 		for (ii = 0, rbits = tbits = 0 ; ii < NUMBITS ; ii++) {
1886 			rbits <<= 1 ;
1887 			tbits <<= 1 ;
1888 			if (phy->r_val[NUMBITS-1-ii])
1889 				rbits |= 1 ;
1890 			if (phy->t_val[NUMBITS-1-ii])
1891 				tbits |= 1 ;
1892 		}
1893 		pcs->pcm_r_val = rbits ;
1894 		pcs->pcm_t_val = tbits ;
1895 	}
1896 }
1897 
get_pcm_state(struct s_smc * smc,int np)1898 int get_pcm_state(struct s_smc *smc, int np)
1899 {
1900 	int pcs ;
1901 
1902 	SK_UNUSED(smc) ;
1903 
1904 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1905 		case PL_PC0 :	pcs = PC_STOP ;		break ;
1906 		case PL_PC1 :	pcs = PC_START ;	break ;
1907 		case PL_PC2 :	pcs = PC_TRACE ;	break ;
1908 		case PL_PC3 :	pcs = PC_SIGNAL ;	break ;
1909 		case PL_PC4 :	pcs = PC_SIGNAL ;	break ;
1910 		case PL_PC5 :	pcs = PC_SIGNAL ;	break ;
1911 		case PL_PC6 :	pcs = PC_JOIN ;		break ;
1912 		case PL_PC7 :	pcs = PC_JOIN ;		break ;
1913 		case PL_PC8 :	pcs = PC_ENABLE ;	break ;
1914 		case PL_PC9 :	pcs = PC_MAINT ;	break ;
1915 		default :	pcs = PC_DISABLE ; 	break ;
1916 	}
1917 	return pcs;
1918 }
1919 
get_linestate(struct s_smc * smc,int np)1920 char *get_linestate(struct s_smc *smc, int np)
1921 {
1922 	char *ls = "" ;
1923 
1924 	SK_UNUSED(smc) ;
1925 
1926 	switch (inpw(PLC(np,PL_STATUS_A)) & PL_LINE_ST) {
1927 		case PL_L_NLS :	ls = "NOISE" ;	break ;
1928 		case PL_L_ALS :	ls = "ACTIV" ;	break ;
1929 		case PL_L_UND :	ls = "UNDEF" ;	break ;
1930 		case PL_L_ILS4:	ls = "ILS 4" ;	break ;
1931 		case PL_L_QLS :	ls = "QLS" ;	break ;
1932 		case PL_L_MLS :	ls = "MLS" ;	break ;
1933 		case PL_L_HLS :	ls = "HLS" ;	break ;
1934 		case PL_L_ILS16:ls = "ILS16" ;	break ;
1935 #ifdef	lint
1936 		default:	ls = "unknown" ; break ;
1937 #endif
1938 	}
1939 	return ls;
1940 }
1941 
get_pcmstate(struct s_smc * smc,int np)1942 char *get_pcmstate(struct s_smc *smc, int np)
1943 {
1944 	char *pcs ;
1945 
1946 	SK_UNUSED(smc) ;
1947 
1948 	switch (inpw(PLC(np,PL_STATUS_B)) & PL_PCM_STATE) {
1949 		case PL_PC0 :	pcs = "OFF" ;		break ;
1950 		case PL_PC1 :	pcs = "BREAK" ;		break ;
1951 		case PL_PC2 :	pcs = "TRACE" ;		break ;
1952 		case PL_PC3 :	pcs = "CONNECT";	break ;
1953 		case PL_PC4 :	pcs = "NEXT" ;		break ;
1954 		case PL_PC5 :	pcs = "SIGNAL" ;	break ;
1955 		case PL_PC6 :	pcs = "JOIN" ;		break ;
1956 		case PL_PC7 :	pcs = "VERIFY" ;	break ;
1957 		case PL_PC8 :	pcs = "ACTIV" ;		break ;
1958 		case PL_PC9 :	pcs = "MAINT" ;		break ;
1959 		default :	pcs = "UNKNOWN" ; 	break ;
1960 	}
1961 	return pcs;
1962 }
1963 
list_phy(struct s_smc * smc)1964 void list_phy(struct s_smc *smc)
1965 {
1966 	struct s_plc *plc ;
1967 	int np ;
1968 
1969 	for (np = 0 ; np < NUMPHYS ; np++) {
1970 		plc  = &smc->y[np].plc ;
1971 		printf("PHY %d:\tERRORS\t\t\tBREAK_REASONS\t\tSTATES:\n",np) ;
1972 		printf("\tsoft_error: %ld \t\tPC_Start : %ld\n",
1973 						plc->soft_err,plc->b_pcs);
1974 		printf("\tparity_err: %ld \t\tTPC exp. : %ld\t\tLine: %s\n",
1975 			plc->parity_err,plc->b_tpc,get_linestate(smc,np)) ;
1976 		printf("\tebuf_error: %ld \t\tTNE exp. : %ld\n",
1977 						plc->ebuf_err,plc->b_tne) ;
1978 		printf("\tphyinvalid: %ld \t\tQLS det. : %ld\t\tPCM : %s\n",
1979 			plc->phyinv,plc->b_qls,get_pcmstate(smc,np)) ;
1980 		printf("\tviosym_ctr: %ld \t\tILS det. : %ld\n",
1981 						plc->vsym_ctr,plc->b_ils)  ;
1982 		printf("\tmingap_ctr: %ld \t\tHLS det. : %ld\n",
1983 						plc->mini_ctr,plc->b_hls) ;
1984 		printf("\tnodepr_err: %ld\n",plc->np_err) ;
1985 		printf("\tTPC_exp : %ld\n",plc->tpc_exp) ;
1986 		printf("\tLEM_err : %ld\n",smc->y[np].lem.lem_errors) ;
1987 	}
1988 }
1989 
1990 
1991 #ifdef	CONCENTRATOR
pcm_lem_dump(struct s_smc * smc)1992 void pcm_lem_dump(struct s_smc *smc)
1993 {
1994 	int		i ;
1995 	struct s_phy	*phy ;
1996 	struct fddi_mib_p	*mib ;
1997 
1998 	char		*entostring() ;
1999 
2000 	printf("PHY	errors	BER\n") ;
2001 	printf("----------------------\n") ;
2002 	for (i = 0,phy = smc->y ; i < NUMPHYS ; i++,phy++) {
2003 		if (!plc_is_installed(smc,i))
2004 			continue ;
2005 		mib = phy->mib ;
2006 		printf("%s\t%ld\t10E-%d\n",
2007 			entostring(smc,ENTITY_PHY(i)),
2008 			mib->fddiPORTLem_Ct,
2009 			mib->fddiPORTLer_Estimate) ;
2010 	}
2011 }
2012 #endif
2013 #endif
2014