1 /*
2  * PowerPC64 SLB support.
3  *
4  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5  * Based on earlier code written by:
6  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7  *    Copyright (c) 2001 Dave Engebretsen
8  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *
11  *      This program is free software; you can redistribute it and/or
12  *      modify it under the terms of the GNU General Public License
13  *      as published by the Free Software Foundation; either version
14  *      2 of the License, or (at your option) any later version.
15  */
16 
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <linux/context_tracking.h>
26 #include <linux/mm_types.h>
27 
28 #include <asm/udbg.h>
29 #include <asm/code-patching.h>
30 
31 enum slb_index {
32 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
33 	VMALLOC_INDEX	= 1, /* Kernel virtual map (0xd000000000000000) */
34 	KSTACK_INDEX	= 2, /* Kernel stack map */
35 };
36 
37 extern void slb_allocate(unsigned long ea);
38 
39 #define slb_esid_mask(ssize)	\
40 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
41 
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)42 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
43 					 enum slb_index index)
44 {
45 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
46 }
47 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)48 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
49 					 unsigned long flags)
50 {
51 	return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
52 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
53 }
54 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)55 static inline void slb_shadow_update(unsigned long ea, int ssize,
56 				     unsigned long flags,
57 				     enum slb_index index)
58 {
59 	struct slb_shadow *p = get_slb_shadow();
60 
61 	/*
62 	 * Clear the ESID first so the entry is not valid while we are
63 	 * updating it.  No write barriers are needed here, provided
64 	 * we only update the current CPU's SLB shadow buffer.
65 	 */
66 	WRITE_ONCE(p->save_area[index].esid, 0);
67 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
68 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
69 }
70 
slb_shadow_clear(enum slb_index index)71 static inline void slb_shadow_clear(enum slb_index index)
72 {
73 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
74 }
75 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)76 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
77 					unsigned long flags,
78 					enum slb_index index)
79 {
80 	/*
81 	 * Updating the shadow buffer before writing the SLB ensures
82 	 * we don't get a stale entry here if we get preempted by PHYP
83 	 * between these two statements.
84 	 */
85 	slb_shadow_update(ea, ssize, flags, index);
86 
87 	asm volatile("slbmte  %0,%1" :
88 		     : "r" (mk_vsid_data(ea, ssize, flags)),
89 		       "r" (mk_esid_data(ea, ssize, index))
90 		     : "memory" );
91 }
92 
93 /*
94  * Insert bolted entries into SLB (which may not be empty, so don't clear
95  * slb_cache_ptr).
96  */
__slb_restore_bolted_realmode(void)97 void __slb_restore_bolted_realmode(void)
98 {
99 	struct slb_shadow *p = get_slb_shadow();
100 	enum slb_index index;
101 
102 	 /* No isync needed because realmode. */
103 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
104 		asm volatile("slbmte  %0,%1" :
105 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
106 		       "r" (be64_to_cpu(p->save_area[index].esid)));
107 	}
108 }
109 
110 /*
111  * Insert the bolted entries into an empty SLB.
112  * This is not the same as rebolt because the bolted segments are not
113  * changed, just loaded from the shadow area.
114  */
slb_restore_bolted_realmode(void)115 void slb_restore_bolted_realmode(void)
116 {
117 	__slb_restore_bolted_realmode();
118 	get_paca()->slb_cache_ptr = 0;
119 }
120 
121 /*
122  * This flushes all SLB entries including 0, so it must be realmode.
123  */
slb_flush_all_realmode(void)124 void slb_flush_all_realmode(void)
125 {
126 	/*
127 	 * This flushes all SLB entries including 0, so it must be realmode.
128 	 */
129 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
130 }
131 
__slb_flush_and_rebolt(void)132 static void __slb_flush_and_rebolt(void)
133 {
134 	/* If you change this make sure you change SLB_NUM_BOLTED
135 	 * and PR KVM appropriately too. */
136 	unsigned long linear_llp, vmalloc_llp, lflags, vflags;
137 	unsigned long ksp_esid_data, ksp_vsid_data;
138 
139 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
140 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
141 	lflags = SLB_VSID_KERNEL | linear_llp;
142 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
143 
144 	ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
145 	if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
146 		ksp_esid_data &= ~SLB_ESID_V;
147 		ksp_vsid_data = 0;
148 		slb_shadow_clear(KSTACK_INDEX);
149 	} else {
150 		/* Update stack entry; others don't change */
151 		slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
152 		ksp_vsid_data =
153 			be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
154 	}
155 
156 	/* We need to do this all in asm, so we're sure we don't touch
157 	 * the stack between the slbia and rebolting it. */
158 	asm volatile("isync\n"
159 		     "slbia\n"
160 		     /* Slot 1 - first VMALLOC segment */
161 		     "slbmte	%0,%1\n"
162 		     /* Slot 2 - kernel stack */
163 		     "slbmte	%2,%3\n"
164 		     "isync"
165 		     :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
166 		        "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
167 		        "r"(ksp_vsid_data),
168 		        "r"(ksp_esid_data)
169 		     : "memory");
170 }
171 
slb_flush_and_rebolt(void)172 void slb_flush_and_rebolt(void)
173 {
174 
175 	WARN_ON(!irqs_disabled());
176 
177 	/*
178 	 * We can't take a PMU exception in the following code, so hard
179 	 * disable interrupts.
180 	 */
181 	hard_irq_disable();
182 
183 	__slb_flush_and_rebolt();
184 	get_paca()->slb_cache_ptr = 0;
185 }
186 
slb_vmalloc_update(void)187 void slb_vmalloc_update(void)
188 {
189 	unsigned long vflags;
190 
191 	vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
192 	slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
193 	slb_flush_and_rebolt();
194 }
195 
196 /* Helper function to compare esids.  There are four cases to handle.
197  * 1. The system is not 1T segment size capable.  Use the GET_ESID compare.
198  * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
199  * 3. The system is 1T capable, only one of the two addresses is > 1T.  This is not a match.
200  * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
201  */
esids_match(unsigned long addr1,unsigned long addr2)202 static inline int esids_match(unsigned long addr1, unsigned long addr2)
203 {
204 	int esid_1t_count;
205 
206 	/* System is not 1T segment size capable. */
207 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
208 		return (GET_ESID(addr1) == GET_ESID(addr2));
209 
210 	esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
211 				((addr2 >> SID_SHIFT_1T) != 0));
212 
213 	/* both addresses are < 1T */
214 	if (esid_1t_count == 0)
215 		return (GET_ESID(addr1) == GET_ESID(addr2));
216 
217 	/* One address < 1T, the other > 1T.  Not a match */
218 	if (esid_1t_count == 1)
219 		return 0;
220 
221 	/* Both addresses are > 1T. */
222 	return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
223 }
224 
225 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)226 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
227 {
228 	unsigned long offset;
229 	unsigned long slbie_data = 0;
230 	unsigned long pc = KSTK_EIP(tsk);
231 	unsigned long stack = KSTK_ESP(tsk);
232 	unsigned long exec_base;
233 
234 	/*
235 	 * We need interrupts hard-disabled here, not just soft-disabled,
236 	 * so that a PMU interrupt can't occur, which might try to access
237 	 * user memory (to get a stack trace) and possible cause an SLB miss
238 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
239 	 */
240 	hard_irq_disable();
241 	offset = get_paca()->slb_cache_ptr;
242 	if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
243 	    offset <= SLB_CACHE_ENTRIES) {
244 		int i;
245 		asm volatile("isync" : : : "memory");
246 		for (i = 0; i < offset; i++) {
247 			slbie_data = (unsigned long)get_paca()->slb_cache[i]
248 				<< SID_SHIFT; /* EA */
249 			slbie_data |= user_segment_size(slbie_data)
250 				<< SLBIE_SSIZE_SHIFT;
251 			slbie_data |= SLBIE_C; /* C set for user addresses */
252 			asm volatile("slbie %0" : : "r" (slbie_data));
253 		}
254 		asm volatile("isync" : : : "memory");
255 	} else {
256 		__slb_flush_and_rebolt();
257 	}
258 
259 	/* Workaround POWER5 < DD2.1 issue */
260 	if (offset == 1 || offset > SLB_CACHE_ENTRIES)
261 		asm volatile("slbie %0" : : "r" (slbie_data));
262 
263 	get_paca()->slb_cache_ptr = 0;
264 	copy_mm_to_paca(mm);
265 
266 	/*
267 	 * preload some userspace segments into the SLB.
268 	 * Almost all 32 and 64bit PowerPC executables are linked at
269 	 * 0x10000000 so it makes sense to preload this segment.
270 	 */
271 	exec_base = 0x10000000;
272 
273 	if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
274 	    is_kernel_addr(exec_base))
275 		return;
276 
277 	slb_allocate(pc);
278 
279 	if (!esids_match(pc, stack))
280 		slb_allocate(stack);
281 
282 	if (!esids_match(pc, exec_base) &&
283 	    !esids_match(stack, exec_base))
284 		slb_allocate(exec_base);
285 }
286 
patch_slb_encoding(unsigned int * insn_addr,unsigned int immed)287 static inline void patch_slb_encoding(unsigned int *insn_addr,
288 				      unsigned int immed)
289 {
290 
291 	/*
292 	 * This function patches either an li or a cmpldi instruction with
293 	 * a new immediate value. This relies on the fact that both li
294 	 * (which is actually addi) and cmpldi both take a 16-bit immediate
295 	 * value, and it is situated in the same location in the instruction,
296 	 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
297 	 * The signedness of the immediate operand differs between the two
298 	 * instructions however this code is only ever patching a small value,
299 	 * much less than 1 << 15, so we can get away with it.
300 	 * To patch the value we read the existing instruction, clear the
301 	 * immediate value, and or in our new value, then write the instruction
302 	 * back.
303 	 */
304 	unsigned int insn = (*insn_addr & 0xffff0000) | immed;
305 	patch_instruction(insn_addr, insn);
306 }
307 
308 extern u32 slb_miss_kernel_load_linear[];
309 extern u32 slb_miss_kernel_load_io[];
310 extern u32 slb_compare_rr_to_size[];
311 extern u32 slb_miss_kernel_load_vmemmap[];
312 
slb_set_size(u16 size)313 void slb_set_size(u16 size)
314 {
315 	if (mmu_slb_size == size)
316 		return;
317 
318 	mmu_slb_size = size;
319 	patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
320 }
321 
slb_initialize(void)322 void slb_initialize(void)
323 {
324 	unsigned long linear_llp, vmalloc_llp, io_llp;
325 	unsigned long lflags, vflags;
326 	static int slb_encoding_inited;
327 #ifdef CONFIG_SPARSEMEM_VMEMMAP
328 	unsigned long vmemmap_llp;
329 #endif
330 
331 	/* Prepare our SLB miss handler based on our page size */
332 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
333 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
334 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
335 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
336 #ifdef CONFIG_SPARSEMEM_VMEMMAP
337 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
338 #endif
339 	if (!slb_encoding_inited) {
340 		slb_encoding_inited = 1;
341 		patch_slb_encoding(slb_miss_kernel_load_linear,
342 				   SLB_VSID_KERNEL | linear_llp);
343 		patch_slb_encoding(slb_miss_kernel_load_io,
344 				   SLB_VSID_KERNEL | io_llp);
345 		patch_slb_encoding(slb_compare_rr_to_size,
346 				   mmu_slb_size);
347 
348 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
349 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
350 
351 #ifdef CONFIG_SPARSEMEM_VMEMMAP
352 		patch_slb_encoding(slb_miss_kernel_load_vmemmap,
353 				   SLB_VSID_KERNEL | vmemmap_llp);
354 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
355 #endif
356 	}
357 
358 	get_paca()->stab_rr = SLB_NUM_BOLTED;
359 
360 	lflags = SLB_VSID_KERNEL | linear_llp;
361 	vflags = SLB_VSID_KERNEL | vmalloc_llp;
362 
363 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
364 	asm volatile("isync":::"memory");
365 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
366 	asm volatile("isync; slbia; isync":::"memory");
367 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
368 	create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
369 
370 	/* For the boot cpu, we're running on the stack in init_thread_union,
371 	 * which is in the first segment of the linear mapping, and also
372 	 * get_paca()->kstack hasn't been initialized yet.
373 	 * For secondary cpus, we need to bolt the kernel stack entry now.
374 	 */
375 	slb_shadow_clear(KSTACK_INDEX);
376 	if (raw_smp_processor_id() != boot_cpuid &&
377 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
378 		create_shadowed_slbe(get_paca()->kstack,
379 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
380 
381 	asm volatile("isync":::"memory");
382 }
383 
insert_slb_entry(unsigned long vsid,unsigned long ea,int bpsize,int ssize)384 static void insert_slb_entry(unsigned long vsid, unsigned long ea,
385 			     int bpsize, int ssize)
386 {
387 	unsigned long flags, vsid_data, esid_data;
388 	enum slb_index index;
389 	int slb_cache_index;
390 
391 	/*
392 	 * We are irq disabled, hence should be safe to access PACA.
393 	 */
394 	VM_WARN_ON(!irqs_disabled());
395 
396 	/*
397 	 * We can't take a PMU exception in the following code, so hard
398 	 * disable interrupts.
399 	 */
400 	hard_irq_disable();
401 
402 	index = get_paca()->stab_rr;
403 
404 	/*
405 	 * simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
406 	 */
407 	if (index < (mmu_slb_size - 1))
408 		index++;
409 	else
410 		index = SLB_NUM_BOLTED;
411 
412 	get_paca()->stab_rr = index;
413 
414 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
415 	vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
416 		    ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
417 	esid_data = mk_esid_data(ea, ssize, index);
418 
419 	/*
420 	 * No need for an isync before or after this slbmte. The exception
421 	 * we enter with and the rfid we exit with are context synchronizing.
422 	 * Also we only handle user segments here.
423 	 */
424 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
425 		     : "memory");
426 
427 	/*
428 	 * Now update slb cache entries
429 	 */
430 	slb_cache_index = get_paca()->slb_cache_ptr;
431 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
432 		/*
433 		 * We have space in slb cache for optimized switch_slb().
434 		 * Top 36 bits from esid_data as per ISA
435 		 */
436 		get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
437 		get_paca()->slb_cache_ptr++;
438 	} else {
439 		/*
440 		 * Our cache is full and the current cache content strictly
441 		 * doesn't indicate the active SLB conents. Bump the ptr
442 		 * so that switch_slb() will ignore the cache.
443 		 */
444 		get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
445 	}
446 }
447 
handle_multi_context_slb_miss(int context_id,unsigned long ea)448 static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
449 {
450 	struct mm_struct *mm = current->mm;
451 	unsigned long vsid;
452 	int bpsize;
453 
454 	/*
455 	 * We are always above 1TB, hence use high user segment size.
456 	 */
457 	vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
458 	bpsize = get_slice_psize(mm, ea);
459 	insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
460 }
461 
slb_miss_large_addr(struct pt_regs * regs)462 void slb_miss_large_addr(struct pt_regs *regs)
463 {
464 	enum ctx_state prev_state = exception_enter();
465 	unsigned long ea = regs->dar;
466 	int context;
467 
468 	if (REGION_ID(ea) != USER_REGION_ID)
469 		goto slb_bad_addr;
470 
471 	/*
472 	 * Are we beyound what the page table layout supports ?
473 	 */
474 	if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
475 		goto slb_bad_addr;
476 
477 	/* Lower address should have been handled by asm code */
478 	if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
479 		goto slb_bad_addr;
480 
481 	/*
482 	 * consider this as bad access if we take a SLB miss
483 	 * on an address above addr limit.
484 	 */
485 	if (ea >= current->mm->context.slb_addr_limit)
486 		goto slb_bad_addr;
487 
488 	context = get_ea_context(&current->mm->context, ea);
489 	if (!context)
490 		goto slb_bad_addr;
491 
492 	handle_multi_context_slb_miss(context, ea);
493 	exception_exit(prev_state);
494 	return;
495 
496 slb_bad_addr:
497 	if (user_mode(regs))
498 		_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
499 	else
500 		bad_page_fault(regs, ea, SIGSEGV);
501 	exception_exit(prev_state);
502 }
503