1 /*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <linux/context_tracking.h>
26 #include <linux/mm_types.h>
27
28 #include <asm/udbg.h>
29 #include <asm/code-patching.h>
30
31 enum slb_index {
32 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
33 VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
34 KSTACK_INDEX = 2, /* Kernel stack map */
35 };
36
37 extern void slb_allocate(unsigned long ea);
38
39 #define slb_esid_mask(ssize) \
40 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
41
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)42 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
43 enum slb_index index)
44 {
45 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
46 }
47
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)48 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
49 unsigned long flags)
50 {
51 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
52 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
53 }
54
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)55 static inline void slb_shadow_update(unsigned long ea, int ssize,
56 unsigned long flags,
57 enum slb_index index)
58 {
59 struct slb_shadow *p = get_slb_shadow();
60
61 /*
62 * Clear the ESID first so the entry is not valid while we are
63 * updating it. No write barriers are needed here, provided
64 * we only update the current CPU's SLB shadow buffer.
65 */
66 WRITE_ONCE(p->save_area[index].esid, 0);
67 WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
68 WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
69 }
70
slb_shadow_clear(enum slb_index index)71 static inline void slb_shadow_clear(enum slb_index index)
72 {
73 WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
74 }
75
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)76 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
77 unsigned long flags,
78 enum slb_index index)
79 {
80 /*
81 * Updating the shadow buffer before writing the SLB ensures
82 * we don't get a stale entry here if we get preempted by PHYP
83 * between these two statements.
84 */
85 slb_shadow_update(ea, ssize, flags, index);
86
87 asm volatile("slbmte %0,%1" :
88 : "r" (mk_vsid_data(ea, ssize, flags)),
89 "r" (mk_esid_data(ea, ssize, index))
90 : "memory" );
91 }
92
93 /*
94 * Insert bolted entries into SLB (which may not be empty, so don't clear
95 * slb_cache_ptr).
96 */
__slb_restore_bolted_realmode(void)97 void __slb_restore_bolted_realmode(void)
98 {
99 struct slb_shadow *p = get_slb_shadow();
100 enum slb_index index;
101
102 /* No isync needed because realmode. */
103 for (index = 0; index < SLB_NUM_BOLTED; index++) {
104 asm volatile("slbmte %0,%1" :
105 : "r" (be64_to_cpu(p->save_area[index].vsid)),
106 "r" (be64_to_cpu(p->save_area[index].esid)));
107 }
108 }
109
110 /*
111 * Insert the bolted entries into an empty SLB.
112 * This is not the same as rebolt because the bolted segments are not
113 * changed, just loaded from the shadow area.
114 */
slb_restore_bolted_realmode(void)115 void slb_restore_bolted_realmode(void)
116 {
117 __slb_restore_bolted_realmode();
118 get_paca()->slb_cache_ptr = 0;
119 }
120
121 /*
122 * This flushes all SLB entries including 0, so it must be realmode.
123 */
slb_flush_all_realmode(void)124 void slb_flush_all_realmode(void)
125 {
126 /*
127 * This flushes all SLB entries including 0, so it must be realmode.
128 */
129 asm volatile("slbmte %0,%0; slbia" : : "r" (0));
130 }
131
__slb_flush_and_rebolt(void)132 static void __slb_flush_and_rebolt(void)
133 {
134 /* If you change this make sure you change SLB_NUM_BOLTED
135 * and PR KVM appropriately too. */
136 unsigned long linear_llp, vmalloc_llp, lflags, vflags;
137 unsigned long ksp_esid_data, ksp_vsid_data;
138
139 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
140 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
141 lflags = SLB_VSID_KERNEL | linear_llp;
142 vflags = SLB_VSID_KERNEL | vmalloc_llp;
143
144 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
145 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
146 ksp_esid_data &= ~SLB_ESID_V;
147 ksp_vsid_data = 0;
148 slb_shadow_clear(KSTACK_INDEX);
149 } else {
150 /* Update stack entry; others don't change */
151 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
152 ksp_vsid_data =
153 be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
154 }
155
156 /* We need to do this all in asm, so we're sure we don't touch
157 * the stack between the slbia and rebolting it. */
158 asm volatile("isync\n"
159 "slbia\n"
160 /* Slot 1 - first VMALLOC segment */
161 "slbmte %0,%1\n"
162 /* Slot 2 - kernel stack */
163 "slbmte %2,%3\n"
164 "isync"
165 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
166 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, VMALLOC_INDEX)),
167 "r"(ksp_vsid_data),
168 "r"(ksp_esid_data)
169 : "memory");
170 }
171
slb_flush_and_rebolt(void)172 void slb_flush_and_rebolt(void)
173 {
174
175 WARN_ON(!irqs_disabled());
176
177 /*
178 * We can't take a PMU exception in the following code, so hard
179 * disable interrupts.
180 */
181 hard_irq_disable();
182
183 __slb_flush_and_rebolt();
184 get_paca()->slb_cache_ptr = 0;
185 }
186
slb_vmalloc_update(void)187 void slb_vmalloc_update(void)
188 {
189 unsigned long vflags;
190
191 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
192 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
193 slb_flush_and_rebolt();
194 }
195
196 /* Helper function to compare esids. There are four cases to handle.
197 * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
198 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
199 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
200 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
201 */
esids_match(unsigned long addr1,unsigned long addr2)202 static inline int esids_match(unsigned long addr1, unsigned long addr2)
203 {
204 int esid_1t_count;
205
206 /* System is not 1T segment size capable. */
207 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
208 return (GET_ESID(addr1) == GET_ESID(addr2));
209
210 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
211 ((addr2 >> SID_SHIFT_1T) != 0));
212
213 /* both addresses are < 1T */
214 if (esid_1t_count == 0)
215 return (GET_ESID(addr1) == GET_ESID(addr2));
216
217 /* One address < 1T, the other > 1T. Not a match */
218 if (esid_1t_count == 1)
219 return 0;
220
221 /* Both addresses are > 1T. */
222 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
223 }
224
225 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)226 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
227 {
228 unsigned long offset;
229 unsigned long slbie_data = 0;
230 unsigned long pc = KSTK_EIP(tsk);
231 unsigned long stack = KSTK_ESP(tsk);
232 unsigned long exec_base;
233
234 /*
235 * We need interrupts hard-disabled here, not just soft-disabled,
236 * so that a PMU interrupt can't occur, which might try to access
237 * user memory (to get a stack trace) and possible cause an SLB miss
238 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
239 */
240 hard_irq_disable();
241 offset = get_paca()->slb_cache_ptr;
242 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
243 offset <= SLB_CACHE_ENTRIES) {
244 int i;
245 asm volatile("isync" : : : "memory");
246 for (i = 0; i < offset; i++) {
247 slbie_data = (unsigned long)get_paca()->slb_cache[i]
248 << SID_SHIFT; /* EA */
249 slbie_data |= user_segment_size(slbie_data)
250 << SLBIE_SSIZE_SHIFT;
251 slbie_data |= SLBIE_C; /* C set for user addresses */
252 asm volatile("slbie %0" : : "r" (slbie_data));
253 }
254 asm volatile("isync" : : : "memory");
255 } else {
256 __slb_flush_and_rebolt();
257 }
258
259 /* Workaround POWER5 < DD2.1 issue */
260 if (offset == 1 || offset > SLB_CACHE_ENTRIES)
261 asm volatile("slbie %0" : : "r" (slbie_data));
262
263 get_paca()->slb_cache_ptr = 0;
264 copy_mm_to_paca(mm);
265
266 /*
267 * preload some userspace segments into the SLB.
268 * Almost all 32 and 64bit PowerPC executables are linked at
269 * 0x10000000 so it makes sense to preload this segment.
270 */
271 exec_base = 0x10000000;
272
273 if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
274 is_kernel_addr(exec_base))
275 return;
276
277 slb_allocate(pc);
278
279 if (!esids_match(pc, stack))
280 slb_allocate(stack);
281
282 if (!esids_match(pc, exec_base) &&
283 !esids_match(stack, exec_base))
284 slb_allocate(exec_base);
285 }
286
patch_slb_encoding(unsigned int * insn_addr,unsigned int immed)287 static inline void patch_slb_encoding(unsigned int *insn_addr,
288 unsigned int immed)
289 {
290
291 /*
292 * This function patches either an li or a cmpldi instruction with
293 * a new immediate value. This relies on the fact that both li
294 * (which is actually addi) and cmpldi both take a 16-bit immediate
295 * value, and it is situated in the same location in the instruction,
296 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
297 * The signedness of the immediate operand differs between the two
298 * instructions however this code is only ever patching a small value,
299 * much less than 1 << 15, so we can get away with it.
300 * To patch the value we read the existing instruction, clear the
301 * immediate value, and or in our new value, then write the instruction
302 * back.
303 */
304 unsigned int insn = (*insn_addr & 0xffff0000) | immed;
305 patch_instruction(insn_addr, insn);
306 }
307
308 extern u32 slb_miss_kernel_load_linear[];
309 extern u32 slb_miss_kernel_load_io[];
310 extern u32 slb_compare_rr_to_size[];
311 extern u32 slb_miss_kernel_load_vmemmap[];
312
slb_set_size(u16 size)313 void slb_set_size(u16 size)
314 {
315 if (mmu_slb_size == size)
316 return;
317
318 mmu_slb_size = size;
319 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
320 }
321
slb_initialize(void)322 void slb_initialize(void)
323 {
324 unsigned long linear_llp, vmalloc_llp, io_llp;
325 unsigned long lflags, vflags;
326 static int slb_encoding_inited;
327 #ifdef CONFIG_SPARSEMEM_VMEMMAP
328 unsigned long vmemmap_llp;
329 #endif
330
331 /* Prepare our SLB miss handler based on our page size */
332 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
333 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
334 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
335 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
336 #ifdef CONFIG_SPARSEMEM_VMEMMAP
337 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
338 #endif
339 if (!slb_encoding_inited) {
340 slb_encoding_inited = 1;
341 patch_slb_encoding(slb_miss_kernel_load_linear,
342 SLB_VSID_KERNEL | linear_llp);
343 patch_slb_encoding(slb_miss_kernel_load_io,
344 SLB_VSID_KERNEL | io_llp);
345 patch_slb_encoding(slb_compare_rr_to_size,
346 mmu_slb_size);
347
348 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
349 pr_devel("SLB: io LLP = %04lx\n", io_llp);
350
351 #ifdef CONFIG_SPARSEMEM_VMEMMAP
352 patch_slb_encoding(slb_miss_kernel_load_vmemmap,
353 SLB_VSID_KERNEL | vmemmap_llp);
354 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
355 #endif
356 }
357
358 get_paca()->stab_rr = SLB_NUM_BOLTED;
359
360 lflags = SLB_VSID_KERNEL | linear_llp;
361 vflags = SLB_VSID_KERNEL | vmalloc_llp;
362
363 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
364 asm volatile("isync":::"memory");
365 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
366 asm volatile("isync; slbia; isync":::"memory");
367 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
368 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
369
370 /* For the boot cpu, we're running on the stack in init_thread_union,
371 * which is in the first segment of the linear mapping, and also
372 * get_paca()->kstack hasn't been initialized yet.
373 * For secondary cpus, we need to bolt the kernel stack entry now.
374 */
375 slb_shadow_clear(KSTACK_INDEX);
376 if (raw_smp_processor_id() != boot_cpuid &&
377 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
378 create_shadowed_slbe(get_paca()->kstack,
379 mmu_kernel_ssize, lflags, KSTACK_INDEX);
380
381 asm volatile("isync":::"memory");
382 }
383
insert_slb_entry(unsigned long vsid,unsigned long ea,int bpsize,int ssize)384 static void insert_slb_entry(unsigned long vsid, unsigned long ea,
385 int bpsize, int ssize)
386 {
387 unsigned long flags, vsid_data, esid_data;
388 enum slb_index index;
389 int slb_cache_index;
390
391 /*
392 * We are irq disabled, hence should be safe to access PACA.
393 */
394 VM_WARN_ON(!irqs_disabled());
395
396 /*
397 * We can't take a PMU exception in the following code, so hard
398 * disable interrupts.
399 */
400 hard_irq_disable();
401
402 index = get_paca()->stab_rr;
403
404 /*
405 * simple round-robin replacement of slb starting at SLB_NUM_BOLTED.
406 */
407 if (index < (mmu_slb_size - 1))
408 index++;
409 else
410 index = SLB_NUM_BOLTED;
411
412 get_paca()->stab_rr = index;
413
414 flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
415 vsid_data = (vsid << slb_vsid_shift(ssize)) | flags |
416 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
417 esid_data = mk_esid_data(ea, ssize, index);
418
419 /*
420 * No need for an isync before or after this slbmte. The exception
421 * we enter with and the rfid we exit with are context synchronizing.
422 * Also we only handle user segments here.
423 */
424 asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data)
425 : "memory");
426
427 /*
428 * Now update slb cache entries
429 */
430 slb_cache_index = get_paca()->slb_cache_ptr;
431 if (slb_cache_index < SLB_CACHE_ENTRIES) {
432 /*
433 * We have space in slb cache for optimized switch_slb().
434 * Top 36 bits from esid_data as per ISA
435 */
436 get_paca()->slb_cache[slb_cache_index++] = esid_data >> 28;
437 get_paca()->slb_cache_ptr++;
438 } else {
439 /*
440 * Our cache is full and the current cache content strictly
441 * doesn't indicate the active SLB conents. Bump the ptr
442 * so that switch_slb() will ignore the cache.
443 */
444 get_paca()->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
445 }
446 }
447
handle_multi_context_slb_miss(int context_id,unsigned long ea)448 static void handle_multi_context_slb_miss(int context_id, unsigned long ea)
449 {
450 struct mm_struct *mm = current->mm;
451 unsigned long vsid;
452 int bpsize;
453
454 /*
455 * We are always above 1TB, hence use high user segment size.
456 */
457 vsid = get_vsid(context_id, ea, mmu_highuser_ssize);
458 bpsize = get_slice_psize(mm, ea);
459 insert_slb_entry(vsid, ea, bpsize, mmu_highuser_ssize);
460 }
461
slb_miss_large_addr(struct pt_regs * regs)462 void slb_miss_large_addr(struct pt_regs *regs)
463 {
464 enum ctx_state prev_state = exception_enter();
465 unsigned long ea = regs->dar;
466 int context;
467
468 if (REGION_ID(ea) != USER_REGION_ID)
469 goto slb_bad_addr;
470
471 /*
472 * Are we beyound what the page table layout supports ?
473 */
474 if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
475 goto slb_bad_addr;
476
477 /* Lower address should have been handled by asm code */
478 if (ea < (1UL << MAX_EA_BITS_PER_CONTEXT))
479 goto slb_bad_addr;
480
481 /*
482 * consider this as bad access if we take a SLB miss
483 * on an address above addr limit.
484 */
485 if (ea >= current->mm->context.slb_addr_limit)
486 goto slb_bad_addr;
487
488 context = get_ea_context(¤t->mm->context, ea);
489 if (!context)
490 goto slb_bad_addr;
491
492 handle_multi_context_slb_miss(context, ea);
493 exception_exit(prev_state);
494 return;
495
496 slb_bad_addr:
497 if (user_mode(regs))
498 _exception(SIGSEGV, regs, SEGV_BNDERR, ea);
499 else
500 bad_page_fault(regs, ea, SIGSEGV);
501 exception_exit(prev_state);
502 }
503