1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * PowerPC64 SLB support.
4  *
5  * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
6  * Based on earlier code written by:
7  * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
8  *    Copyright (c) 2001 Dave Engebretsen
9  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
10  */
11 
12 #include <asm/asm-prototypes.h>
13 #include <asm/pgtable.h>
14 #include <asm/mmu.h>
15 #include <asm/mmu_context.h>
16 #include <asm/paca.h>
17 #include <asm/ppc-opcode.h>
18 #include <asm/cputable.h>
19 #include <asm/cacheflush.h>
20 #include <asm/smp.h>
21 #include <linux/compiler.h>
22 #include <linux/context_tracking.h>
23 #include <linux/mm_types.h>
24 
25 #include <asm/udbg.h>
26 #include <asm/code-patching.h>
27 
28 enum slb_index {
29 	LINEAR_INDEX	= 0, /* Kernel linear map  (0xc000000000000000) */
30 	KSTACK_INDEX	= 1, /* Kernel stack map */
31 };
32 
33 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea);
34 
35 #define slb_esid_mask(ssize)	\
36 	(((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
37 
mk_esid_data(unsigned long ea,int ssize,enum slb_index index)38 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
39 					 enum slb_index index)
40 {
41 	return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
42 }
43 
__mk_vsid_data(unsigned long vsid,int ssize,unsigned long flags)44 static inline unsigned long __mk_vsid_data(unsigned long vsid, int ssize,
45 					 unsigned long flags)
46 {
47 	return (vsid << slb_vsid_shift(ssize)) | flags |
48 		((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
49 }
50 
mk_vsid_data(unsigned long ea,int ssize,unsigned long flags)51 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
52 					 unsigned long flags)
53 {
54 	return __mk_vsid_data(get_kernel_vsid(ea, ssize), ssize, flags);
55 }
56 
assert_slb_presence(bool present,unsigned long ea)57 static void assert_slb_presence(bool present, unsigned long ea)
58 {
59 #ifdef CONFIG_DEBUG_VM
60 	unsigned long tmp;
61 
62 	WARN_ON_ONCE(mfmsr() & MSR_EE);
63 
64 	if (!cpu_has_feature(CPU_FTR_ARCH_206))
65 		return;
66 
67 	/*
68 	 * slbfee. requires bit 24 (PPC bit 39) be clear in RB. Hardware
69 	 * ignores all other bits from 0-27, so just clear them all.
70 	 */
71 	ea &= ~((1UL << 28) - 1);
72 	asm volatile(__PPC_SLBFEE_DOT(%0, %1) : "=r"(tmp) : "r"(ea) : "cr0");
73 
74 	WARN_ON(present == (tmp == 0));
75 #endif
76 }
77 
slb_shadow_update(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)78 static inline void slb_shadow_update(unsigned long ea, int ssize,
79 				     unsigned long flags,
80 				     enum slb_index index)
81 {
82 	struct slb_shadow *p = get_slb_shadow();
83 
84 	/*
85 	 * Clear the ESID first so the entry is not valid while we are
86 	 * updating it.  No write barriers are needed here, provided
87 	 * we only update the current CPU's SLB shadow buffer.
88 	 */
89 	WRITE_ONCE(p->save_area[index].esid, 0);
90 	WRITE_ONCE(p->save_area[index].vsid, cpu_to_be64(mk_vsid_data(ea, ssize, flags)));
91 	WRITE_ONCE(p->save_area[index].esid, cpu_to_be64(mk_esid_data(ea, ssize, index)));
92 }
93 
slb_shadow_clear(enum slb_index index)94 static inline void slb_shadow_clear(enum slb_index index)
95 {
96 	WRITE_ONCE(get_slb_shadow()->save_area[index].esid, cpu_to_be64(index));
97 }
98 
create_shadowed_slbe(unsigned long ea,int ssize,unsigned long flags,enum slb_index index)99 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
100 					unsigned long flags,
101 					enum slb_index index)
102 {
103 	/*
104 	 * Updating the shadow buffer before writing the SLB ensures
105 	 * we don't get a stale entry here if we get preempted by PHYP
106 	 * between these two statements.
107 	 */
108 	slb_shadow_update(ea, ssize, flags, index);
109 
110 	assert_slb_presence(false, ea);
111 	asm volatile("slbmte  %0,%1" :
112 		     : "r" (mk_vsid_data(ea, ssize, flags)),
113 		       "r" (mk_esid_data(ea, ssize, index))
114 		     : "memory" );
115 }
116 
117 /*
118  * Insert bolted entries into SLB (which may not be empty, so don't clear
119  * slb_cache_ptr).
120  */
__slb_restore_bolted_realmode(void)121 void __slb_restore_bolted_realmode(void)
122 {
123 	struct slb_shadow *p = get_slb_shadow();
124 	enum slb_index index;
125 
126 	 /* No isync needed because realmode. */
127 	for (index = 0; index < SLB_NUM_BOLTED; index++) {
128 		asm volatile("slbmte  %0,%1" :
129 		     : "r" (be64_to_cpu(p->save_area[index].vsid)),
130 		       "r" (be64_to_cpu(p->save_area[index].esid)));
131 	}
132 
133 	assert_slb_presence(true, local_paca->kstack);
134 }
135 
136 /*
137  * Insert the bolted entries into an empty SLB.
138  */
slb_restore_bolted_realmode(void)139 void slb_restore_bolted_realmode(void)
140 {
141 	__slb_restore_bolted_realmode();
142 	get_paca()->slb_cache_ptr = 0;
143 
144 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
145 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
146 }
147 
148 /*
149  * This flushes all SLB entries including 0, so it must be realmode.
150  */
slb_flush_all_realmode(void)151 void slb_flush_all_realmode(void)
152 {
153 	asm volatile("slbmte %0,%0; slbia" : : "r" (0));
154 }
155 
156 /*
157  * This flushes non-bolted entries, it can be run in virtual mode. Must
158  * be called with interrupts disabled.
159  */
slb_flush_and_restore_bolted(void)160 void slb_flush_and_restore_bolted(void)
161 {
162 	struct slb_shadow *p = get_slb_shadow();
163 
164 	BUILD_BUG_ON(SLB_NUM_BOLTED != 2);
165 
166 	WARN_ON(!irqs_disabled());
167 
168 	/*
169 	 * We can't take a PMU exception in the following code, so hard
170 	 * disable interrupts.
171 	 */
172 	hard_irq_disable();
173 
174 	asm volatile("isync\n"
175 		     "slbia\n"
176 		     "slbmte  %0, %1\n"
177 		     "isync\n"
178 		     :: "r" (be64_to_cpu(p->save_area[KSTACK_INDEX].vsid)),
179 			"r" (be64_to_cpu(p->save_area[KSTACK_INDEX].esid))
180 		     : "memory");
181 	assert_slb_presence(true, get_paca()->kstack);
182 
183 	get_paca()->slb_cache_ptr = 0;
184 
185 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
186 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
187 }
188 
slb_save_contents(struct slb_entry * slb_ptr)189 void slb_save_contents(struct slb_entry *slb_ptr)
190 {
191 	int i;
192 	unsigned long e, v;
193 
194 	/* Save slb_cache_ptr value. */
195 	get_paca()->slb_save_cache_ptr = get_paca()->slb_cache_ptr;
196 
197 	if (!slb_ptr)
198 		return;
199 
200 	for (i = 0; i < mmu_slb_size; i++) {
201 		asm volatile("slbmfee  %0,%1" : "=r" (e) : "r" (i));
202 		asm volatile("slbmfev  %0,%1" : "=r" (v) : "r" (i));
203 		slb_ptr->esid = e;
204 		slb_ptr->vsid = v;
205 		slb_ptr++;
206 	}
207 }
208 
slb_dump_contents(struct slb_entry * slb_ptr)209 void slb_dump_contents(struct slb_entry *slb_ptr)
210 {
211 	int i, n;
212 	unsigned long e, v;
213 	unsigned long llp;
214 
215 	if (!slb_ptr)
216 		return;
217 
218 	pr_err("SLB contents of cpu 0x%x\n", smp_processor_id());
219 	pr_err("Last SLB entry inserted at slot %d\n", get_paca()->stab_rr);
220 
221 	for (i = 0; i < mmu_slb_size; i++) {
222 		e = slb_ptr->esid;
223 		v = slb_ptr->vsid;
224 		slb_ptr++;
225 
226 		if (!e && !v)
227 			continue;
228 
229 		pr_err("%02d %016lx %016lx\n", i, e, v);
230 
231 		if (!(e & SLB_ESID_V)) {
232 			pr_err("\n");
233 			continue;
234 		}
235 		llp = v & SLB_VSID_LLP;
236 		if (v & SLB_VSID_B_1T) {
237 			pr_err("  1T  ESID=%9lx  VSID=%13lx LLP:%3lx\n",
238 			       GET_ESID_1T(e),
239 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT_1T, llp);
240 		} else {
241 			pr_err(" 256M ESID=%9lx  VSID=%13lx LLP:%3lx\n",
242 			       GET_ESID(e),
243 			       (v & ~SLB_VSID_B) >> SLB_VSID_SHIFT, llp);
244 		}
245 	}
246 	pr_err("----------------------------------\n");
247 
248 	/* Dump slb cache entires as well. */
249 	pr_err("SLB cache ptr value = %d\n", get_paca()->slb_save_cache_ptr);
250 	pr_err("Valid SLB cache entries:\n");
251 	n = min_t(int, get_paca()->slb_save_cache_ptr, SLB_CACHE_ENTRIES);
252 	for (i = 0; i < n; i++)
253 		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
254 	pr_err("Rest of SLB cache entries:\n");
255 	for (i = n; i < SLB_CACHE_ENTRIES; i++)
256 		pr_err("%02d EA[0-35]=%9x\n", i, get_paca()->slb_cache[i]);
257 }
258 
slb_vmalloc_update(void)259 void slb_vmalloc_update(void)
260 {
261 	/*
262 	 * vmalloc is not bolted, so just have to flush non-bolted.
263 	 */
264 	slb_flush_and_restore_bolted();
265 }
266 
preload_hit(struct thread_info * ti,unsigned long esid)267 static bool preload_hit(struct thread_info *ti, unsigned long esid)
268 {
269 	unsigned char i;
270 
271 	for (i = 0; i < ti->slb_preload_nr; i++) {
272 		unsigned char idx;
273 
274 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
275 		if (esid == ti->slb_preload_esid[idx])
276 			return true;
277 	}
278 	return false;
279 }
280 
preload_add(struct thread_info * ti,unsigned long ea)281 static bool preload_add(struct thread_info *ti, unsigned long ea)
282 {
283 	unsigned char idx;
284 	unsigned long esid;
285 
286 	if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
287 		/* EAs are stored >> 28 so 256MB segments don't need clearing */
288 		if (ea & ESID_MASK_1T)
289 			ea &= ESID_MASK_1T;
290 	}
291 
292 	esid = ea >> SID_SHIFT;
293 
294 	if (preload_hit(ti, esid))
295 		return false;
296 
297 	idx = (ti->slb_preload_tail + ti->slb_preload_nr) % SLB_PRELOAD_NR;
298 	ti->slb_preload_esid[idx] = esid;
299 	if (ti->slb_preload_nr == SLB_PRELOAD_NR)
300 		ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
301 	else
302 		ti->slb_preload_nr++;
303 
304 	return true;
305 }
306 
preload_age(struct thread_info * ti)307 static void preload_age(struct thread_info *ti)
308 {
309 	if (!ti->slb_preload_nr)
310 		return;
311 	ti->slb_preload_nr--;
312 	ti->slb_preload_tail = (ti->slb_preload_tail + 1) % SLB_PRELOAD_NR;
313 }
314 
slb_setup_new_exec(void)315 void slb_setup_new_exec(void)
316 {
317 	struct thread_info *ti = current_thread_info();
318 	struct mm_struct *mm = current->mm;
319 	unsigned long exec = 0x10000000;
320 
321 	WARN_ON(irqs_disabled());
322 
323 	/*
324 	 * preload cache can only be used to determine whether a SLB
325 	 * entry exists if it does not start to overflow.
326 	 */
327 	if (ti->slb_preload_nr + 2 > SLB_PRELOAD_NR)
328 		return;
329 
330 	hard_irq_disable();
331 
332 	/*
333 	 * We have no good place to clear the slb preload cache on exec,
334 	 * flush_thread is about the earliest arch hook but that happens
335 	 * after we switch to the mm and have aleady preloaded the SLBEs.
336 	 *
337 	 * For the most part that's probably okay to use entries from the
338 	 * previous exec, they will age out if unused. It may turn out to
339 	 * be an advantage to clear the cache before switching to it,
340 	 * however.
341 	 */
342 
343 	/*
344 	 * preload some userspace segments into the SLB.
345 	 * Almost all 32 and 64bit PowerPC executables are linked at
346 	 * 0x10000000 so it makes sense to preload this segment.
347 	 */
348 	if (!is_kernel_addr(exec)) {
349 		if (preload_add(ti, exec))
350 			slb_allocate_user(mm, exec);
351 	}
352 
353 	/* Libraries and mmaps. */
354 	if (!is_kernel_addr(mm->mmap_base)) {
355 		if (preload_add(ti, mm->mmap_base))
356 			slb_allocate_user(mm, mm->mmap_base);
357 	}
358 
359 	/* see switch_slb */
360 	asm volatile("isync" : : : "memory");
361 
362 	local_irq_enable();
363 }
364 
preload_new_slb_context(unsigned long start,unsigned long sp)365 void preload_new_slb_context(unsigned long start, unsigned long sp)
366 {
367 	struct thread_info *ti = current_thread_info();
368 	struct mm_struct *mm = current->mm;
369 	unsigned long heap = mm->start_brk;
370 
371 	WARN_ON(irqs_disabled());
372 
373 	/* see above */
374 	if (ti->slb_preload_nr + 3 > SLB_PRELOAD_NR)
375 		return;
376 
377 	hard_irq_disable();
378 
379 	/* Userspace entry address. */
380 	if (!is_kernel_addr(start)) {
381 		if (preload_add(ti, start))
382 			slb_allocate_user(mm, start);
383 	}
384 
385 	/* Top of stack, grows down. */
386 	if (!is_kernel_addr(sp)) {
387 		if (preload_add(ti, sp))
388 			slb_allocate_user(mm, sp);
389 	}
390 
391 	/* Bottom of heap, grows up. */
392 	if (heap && !is_kernel_addr(heap)) {
393 		if (preload_add(ti, heap))
394 			slb_allocate_user(mm, heap);
395 	}
396 
397 	/* see switch_slb */
398 	asm volatile("isync" : : : "memory");
399 
400 	local_irq_enable();
401 }
402 
403 
404 /* Flush all user entries from the segment table of the current processor. */
switch_slb(struct task_struct * tsk,struct mm_struct * mm)405 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
406 {
407 	struct thread_info *ti = task_thread_info(tsk);
408 	unsigned char i;
409 
410 	/*
411 	 * We need interrupts hard-disabled here, not just soft-disabled,
412 	 * so that a PMU interrupt can't occur, which might try to access
413 	 * user memory (to get a stack trace) and possible cause an SLB miss
414 	 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
415 	 */
416 	hard_irq_disable();
417 	asm volatile("isync" : : : "memory");
418 	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
419 		/*
420 		 * SLBIA IH=3 invalidates all Class=1 SLBEs and their
421 		 * associated lookaside structures, which matches what
422 		 * switch_slb wants. So ARCH_300 does not use the slb
423 		 * cache.
424 		 */
425 		asm volatile(PPC_SLBIA(3));
426 	} else {
427 		unsigned long offset = get_paca()->slb_cache_ptr;
428 
429 		if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
430 		    offset <= SLB_CACHE_ENTRIES) {
431 			unsigned long slbie_data = 0;
432 
433 			for (i = 0; i < offset; i++) {
434 				unsigned long ea;
435 
436 				ea = (unsigned long)
437 					get_paca()->slb_cache[i] << SID_SHIFT;
438 				/*
439 				 * Could assert_slb_presence(true) here, but
440 				 * hypervisor or machine check could have come
441 				 * in and removed the entry at this point.
442 				 */
443 
444 				slbie_data = ea;
445 				slbie_data |= user_segment_size(slbie_data)
446 						<< SLBIE_SSIZE_SHIFT;
447 				slbie_data |= SLBIE_C; /* user slbs have C=1 */
448 				asm volatile("slbie %0" : : "r" (slbie_data));
449 			}
450 
451 			/* Workaround POWER5 < DD2.1 issue */
452 			if (!cpu_has_feature(CPU_FTR_ARCH_207S) && offset == 1)
453 				asm volatile("slbie %0" : : "r" (slbie_data));
454 
455 		} else {
456 			struct slb_shadow *p = get_slb_shadow();
457 			unsigned long ksp_esid_data =
458 				be64_to_cpu(p->save_area[KSTACK_INDEX].esid);
459 			unsigned long ksp_vsid_data =
460 				be64_to_cpu(p->save_area[KSTACK_INDEX].vsid);
461 
462 			asm volatile(PPC_SLBIA(1) "\n"
463 				     "slbmte	%0,%1\n"
464 				     "isync"
465 				     :: "r"(ksp_vsid_data),
466 					"r"(ksp_esid_data));
467 
468 			get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
469 		}
470 
471 		get_paca()->slb_cache_ptr = 0;
472 	}
473 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
474 
475 	copy_mm_to_paca(mm);
476 
477 	/*
478 	 * We gradually age out SLBs after a number of context switches to
479 	 * reduce reload overhead of unused entries (like we do with FP/VEC
480 	 * reload). Each time we wrap 256 switches, take an entry out of the
481 	 * SLB preload cache.
482 	 */
483 	tsk->thread.load_slb++;
484 	if (!tsk->thread.load_slb) {
485 		unsigned long pc = KSTK_EIP(tsk);
486 
487 		preload_age(ti);
488 		preload_add(ti, pc);
489 	}
490 
491 	for (i = 0; i < ti->slb_preload_nr; i++) {
492 		unsigned char idx;
493 		unsigned long ea;
494 
495 		idx = (ti->slb_preload_tail + i) % SLB_PRELOAD_NR;
496 		ea = (unsigned long)ti->slb_preload_esid[idx] << SID_SHIFT;
497 
498 		slb_allocate_user(mm, ea);
499 	}
500 
501 	/*
502 	 * Synchronize slbmte preloads with possible subsequent user memory
503 	 * address accesses by the kernel (user mode won't happen until
504 	 * rfid, which is safe).
505 	 */
506 	asm volatile("isync" : : : "memory");
507 }
508 
slb_set_size(u16 size)509 void slb_set_size(u16 size)
510 {
511 	mmu_slb_size = size;
512 }
513 
slb_initialize(void)514 void slb_initialize(void)
515 {
516 	unsigned long linear_llp, vmalloc_llp, io_llp;
517 	unsigned long lflags;
518 	static int slb_encoding_inited;
519 #ifdef CONFIG_SPARSEMEM_VMEMMAP
520 	unsigned long vmemmap_llp;
521 #endif
522 
523 	/* Prepare our SLB miss handler based on our page size */
524 	linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
525 	io_llp = mmu_psize_defs[mmu_io_psize].sllp;
526 	vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
527 	get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
528 #ifdef CONFIG_SPARSEMEM_VMEMMAP
529 	vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
530 #endif
531 	if (!slb_encoding_inited) {
532 		slb_encoding_inited = 1;
533 		pr_devel("SLB: linear  LLP = %04lx\n", linear_llp);
534 		pr_devel("SLB: io      LLP = %04lx\n", io_llp);
535 #ifdef CONFIG_SPARSEMEM_VMEMMAP
536 		pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
537 #endif
538 	}
539 
540 	get_paca()->stab_rr = SLB_NUM_BOLTED - 1;
541 	get_paca()->slb_kern_bitmap = (1U << SLB_NUM_BOLTED) - 1;
542 	get_paca()->slb_used_bitmap = get_paca()->slb_kern_bitmap;
543 
544 	lflags = SLB_VSID_KERNEL | linear_llp;
545 
546 	/* Invalidate the entire SLB (even entry 0) & all the ERATS */
547 	asm volatile("isync":::"memory");
548 	asm volatile("slbmte  %0,%0"::"r" (0) : "memory");
549 	asm volatile("isync; slbia; isync":::"memory");
550 	create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
551 
552 	/*
553 	 * For the boot cpu, we're running on the stack in init_thread_union,
554 	 * which is in the first segment of the linear mapping, and also
555 	 * get_paca()->kstack hasn't been initialized yet.
556 	 * For secondary cpus, we need to bolt the kernel stack entry now.
557 	 */
558 	slb_shadow_clear(KSTACK_INDEX);
559 	if (raw_smp_processor_id() != boot_cpuid &&
560 	    (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
561 		create_shadowed_slbe(get_paca()->kstack,
562 				     mmu_kernel_ssize, lflags, KSTACK_INDEX);
563 
564 	asm volatile("isync":::"memory");
565 }
566 
slb_cache_update(unsigned long esid_data)567 static void slb_cache_update(unsigned long esid_data)
568 {
569 	int slb_cache_index;
570 
571 	if (cpu_has_feature(CPU_FTR_ARCH_300))
572 		return; /* ISAv3.0B and later does not use slb_cache */
573 
574 	/*
575 	 * Now update slb cache entries
576 	 */
577 	slb_cache_index = local_paca->slb_cache_ptr;
578 	if (slb_cache_index < SLB_CACHE_ENTRIES) {
579 		/*
580 		 * We have space in slb cache for optimized switch_slb().
581 		 * Top 36 bits from esid_data as per ISA
582 		 */
583 		local_paca->slb_cache[slb_cache_index++] = esid_data >> 28;
584 		local_paca->slb_cache_ptr++;
585 	} else {
586 		/*
587 		 * Our cache is full and the current cache content strictly
588 		 * doesn't indicate the active SLB conents. Bump the ptr
589 		 * so that switch_slb() will ignore the cache.
590 		 */
591 		local_paca->slb_cache_ptr = SLB_CACHE_ENTRIES + 1;
592 	}
593 }
594 
alloc_slb_index(bool kernel)595 static enum slb_index alloc_slb_index(bool kernel)
596 {
597 	enum slb_index index;
598 
599 	/*
600 	 * The allocation bitmaps can become out of synch with the SLB
601 	 * when the _switch code does slbie when bolting a new stack
602 	 * segment and it must not be anywhere else in the SLB. This leaves
603 	 * a kernel allocated entry that is unused in the SLB. With very
604 	 * large systems or small segment sizes, the bitmaps could slowly
605 	 * fill with these entries. They will eventually be cleared out
606 	 * by the round robin allocator in that case, so it's probably not
607 	 * worth accounting for.
608 	 */
609 
610 	/*
611 	 * SLBs beyond 32 entries are allocated with stab_rr only
612 	 * POWER7/8/9 have 32 SLB entries, this could be expanded if a
613 	 * future CPU has more.
614 	 */
615 	if (local_paca->slb_used_bitmap != U32_MAX) {
616 		index = ffz(local_paca->slb_used_bitmap);
617 		local_paca->slb_used_bitmap |= 1U << index;
618 		if (kernel)
619 			local_paca->slb_kern_bitmap |= 1U << index;
620 	} else {
621 		/* round-robin replacement of slb starting at SLB_NUM_BOLTED. */
622 		index = local_paca->stab_rr;
623 		if (index < (mmu_slb_size - 1))
624 			index++;
625 		else
626 			index = SLB_NUM_BOLTED;
627 		local_paca->stab_rr = index;
628 		if (index < 32) {
629 			if (kernel)
630 				local_paca->slb_kern_bitmap |= 1U << index;
631 			else
632 				local_paca->slb_kern_bitmap &= ~(1U << index);
633 		}
634 	}
635 	BUG_ON(index < SLB_NUM_BOLTED);
636 
637 	return index;
638 }
639 
slb_insert_entry(unsigned long ea,unsigned long context,unsigned long flags,int ssize,bool kernel)640 static long slb_insert_entry(unsigned long ea, unsigned long context,
641 				unsigned long flags, int ssize, bool kernel)
642 {
643 	unsigned long vsid;
644 	unsigned long vsid_data, esid_data;
645 	enum slb_index index;
646 
647 	vsid = get_vsid(context, ea, ssize);
648 	if (!vsid)
649 		return -EFAULT;
650 
651 	/*
652 	 * There must not be a kernel SLB fault in alloc_slb_index or before
653 	 * slbmte here or the allocation bitmaps could get out of whack with
654 	 * the SLB.
655 	 *
656 	 * User SLB faults or preloads take this path which might get inlined
657 	 * into the caller, so add compiler barriers here to ensure unsafe
658 	 * memory accesses do not come between.
659 	 */
660 	barrier();
661 
662 	index = alloc_slb_index(kernel);
663 
664 	vsid_data = __mk_vsid_data(vsid, ssize, flags);
665 	esid_data = mk_esid_data(ea, ssize, index);
666 
667 	/*
668 	 * No need for an isync before or after this slbmte. The exception
669 	 * we enter with and the rfid we exit with are context synchronizing.
670 	 * User preloads should add isync afterwards in case the kernel
671 	 * accesses user memory before it returns to userspace with rfid.
672 	 */
673 	assert_slb_presence(false, ea);
674 	asm volatile("slbmte %0, %1" : : "r" (vsid_data), "r" (esid_data));
675 
676 	barrier();
677 
678 	if (!kernel)
679 		slb_cache_update(esid_data);
680 
681 	return 0;
682 }
683 
slb_allocate_kernel(unsigned long ea,unsigned long id)684 static long slb_allocate_kernel(unsigned long ea, unsigned long id)
685 {
686 	unsigned long context;
687 	unsigned long flags;
688 	int ssize;
689 
690 	if (id == LINEAR_MAP_REGION_ID) {
691 
692 		/* We only support upto MAX_PHYSMEM_BITS */
693 		if ((ea & EA_MASK) > (1UL << MAX_PHYSMEM_BITS))
694 			return -EFAULT;
695 
696 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_linear_psize].sllp;
697 
698 #ifdef CONFIG_SPARSEMEM_VMEMMAP
699 	} else if (id == VMEMMAP_REGION_ID) {
700 
701 		if (ea >= H_VMEMMAP_END)
702 			return -EFAULT;
703 
704 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmemmap_psize].sllp;
705 #endif
706 	} else if (id == VMALLOC_REGION_ID) {
707 
708 		if (ea >= H_VMALLOC_END)
709 			return -EFAULT;
710 
711 		flags = local_paca->vmalloc_sllp;
712 
713 	} else if (id == IO_REGION_ID) {
714 
715 		if (ea >= H_KERN_IO_END)
716 			return -EFAULT;
717 
718 		flags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_io_psize].sllp;
719 
720 	} else {
721 		return -EFAULT;
722 	}
723 
724 	ssize = MMU_SEGSIZE_1T;
725 	if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
726 		ssize = MMU_SEGSIZE_256M;
727 
728 	context = get_kernel_context(ea);
729 
730 	return slb_insert_entry(ea, context, flags, ssize, true);
731 }
732 
slb_allocate_user(struct mm_struct * mm,unsigned long ea)733 static long slb_allocate_user(struct mm_struct *mm, unsigned long ea)
734 {
735 	unsigned long context;
736 	unsigned long flags;
737 	int bpsize;
738 	int ssize;
739 
740 	/*
741 	 * consider this as bad access if we take a SLB miss
742 	 * on an address above addr limit.
743 	 */
744 	if (ea >= mm_ctx_slb_addr_limit(&mm->context))
745 		return -EFAULT;
746 
747 	context = get_user_context(&mm->context, ea);
748 	if (!context)
749 		return -EFAULT;
750 
751 	if (unlikely(ea >= H_PGTABLE_RANGE)) {
752 		WARN_ON(1);
753 		return -EFAULT;
754 	}
755 
756 	ssize = user_segment_size(ea);
757 
758 	bpsize = get_slice_psize(mm, ea);
759 	flags = SLB_VSID_USER | mmu_psize_defs[bpsize].sllp;
760 
761 	return slb_insert_entry(ea, context, flags, ssize, false);
762 }
763 
do_slb_fault(struct pt_regs * regs,unsigned long ea)764 long do_slb_fault(struct pt_regs *regs, unsigned long ea)
765 {
766 	unsigned long id = get_region_id(ea);
767 
768 	/* IRQs are not reconciled here, so can't check irqs_disabled */
769 	VM_WARN_ON(mfmsr() & MSR_EE);
770 
771 	if (unlikely(!(regs->msr & MSR_RI)))
772 		return -EINVAL;
773 
774 	/*
775 	 * SLB kernel faults must be very careful not to touch anything
776 	 * that is not bolted. E.g., PACA and global variables are okay,
777 	 * mm->context stuff is not.
778 	 *
779 	 * SLB user faults can access all of kernel memory, but must be
780 	 * careful not to touch things like IRQ state because it is not
781 	 * "reconciled" here. The difficulty is that we must use
782 	 * fast_exception_return to return from kernel SLB faults without
783 	 * looking at possible non-bolted memory. We could test user vs
784 	 * kernel faults in the interrupt handler asm and do a full fault,
785 	 * reconcile, ret_from_except for user faults which would make them
786 	 * first class kernel code. But for performance it's probably nicer
787 	 * if they go via fast_exception_return too.
788 	 */
789 	if (id >= LINEAR_MAP_REGION_ID) {
790 		long err;
791 #ifdef CONFIG_DEBUG_VM
792 		/* Catch recursive kernel SLB faults. */
793 		BUG_ON(local_paca->in_kernel_slb_handler);
794 		local_paca->in_kernel_slb_handler = 1;
795 #endif
796 		err = slb_allocate_kernel(ea, id);
797 #ifdef CONFIG_DEBUG_VM
798 		local_paca->in_kernel_slb_handler = 0;
799 #endif
800 		return err;
801 	} else {
802 		struct mm_struct *mm = current->mm;
803 		long err;
804 
805 		if (unlikely(!mm))
806 			return -EFAULT;
807 
808 		err = slb_allocate_user(mm, ea);
809 		if (!err)
810 			preload_add(current_thread_info(), ea);
811 
812 		return err;
813 	}
814 }
815 
do_bad_slb_fault(struct pt_regs * regs,unsigned long ea,long err)816 void do_bad_slb_fault(struct pt_regs *regs, unsigned long ea, long err)
817 {
818 	if (err == -EFAULT) {
819 		if (user_mode(regs))
820 			_exception(SIGSEGV, regs, SEGV_BNDERR, ea);
821 		else
822 			bad_page_fault(regs, ea, SIGSEGV);
823 	} else if (err == -EINVAL) {
824 		unrecoverable_exception(regs);
825 	} else {
826 		BUG();
827 	}
828 }
829