1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  skl-message.c - HDA DSP interface for FW registration, Pipe and Module
4  *  configurations
5  *
6  *  Copyright (C) 2015 Intel Corp
7  *  Author:Rafal Redzimski <rafal.f.redzimski@intel.com>
8  *	   Jeeja KP <jeeja.kp@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  */
11 
12 #include <linux/slab.h>
13 #include <linux/pci.h>
14 #include <sound/core.h>
15 #include <sound/pcm.h>
16 #include <uapi/sound/skl-tplg-interface.h>
17 #include "skl-sst-dsp.h"
18 #include "cnl-sst-dsp.h"
19 #include "skl-sst-ipc.h"
20 #include "skl.h"
21 #include "../common/sst-dsp.h"
22 #include "../common/sst-dsp-priv.h"
23 #include "skl-topology.h"
24 
skl_alloc_dma_buf(struct device * dev,struct snd_dma_buffer * dmab,size_t size)25 static int skl_alloc_dma_buf(struct device *dev,
26 		struct snd_dma_buffer *dmab, size_t size)
27 {
28 	return snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, dev, size, dmab);
29 }
30 
skl_free_dma_buf(struct device * dev,struct snd_dma_buffer * dmab)31 static int skl_free_dma_buf(struct device *dev, struct snd_dma_buffer *dmab)
32 {
33 	snd_dma_free_pages(dmab);
34 	return 0;
35 }
36 
37 #define SKL_ASTATE_PARAM_ID	4
38 
skl_dsp_set_astate_cfg(struct skl_dev * skl,u32 cnt,void * data)39 void skl_dsp_set_astate_cfg(struct skl_dev *skl, u32 cnt, void *data)
40 {
41 	struct skl_ipc_large_config_msg	msg = {0};
42 
43 	msg.large_param_id = SKL_ASTATE_PARAM_ID;
44 	msg.param_data_size = (cnt * sizeof(struct skl_astate_param) +
45 				sizeof(cnt));
46 
47 	skl_ipc_set_large_config(&skl->ipc, &msg, data);
48 }
49 
skl_dsp_setup_spib(struct device * dev,unsigned int size,int stream_tag,int enable)50 static int skl_dsp_setup_spib(struct device *dev, unsigned int size,
51 				int stream_tag, int enable)
52 {
53 	struct hdac_bus *bus = dev_get_drvdata(dev);
54 	struct hdac_stream *stream = snd_hdac_get_stream(bus,
55 			SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
56 	struct hdac_ext_stream *estream;
57 
58 	if (!stream)
59 		return -EINVAL;
60 
61 	estream = stream_to_hdac_ext_stream(stream);
62 	/* enable/disable SPIB for this hdac stream */
63 	snd_hdac_ext_stream_spbcap_enable(bus, enable, stream->index);
64 
65 	/* set the spib value */
66 	snd_hdac_ext_stream_set_spib(bus, estream, size);
67 
68 	return 0;
69 }
70 
skl_dsp_prepare(struct device * dev,unsigned int format,unsigned int size,struct snd_dma_buffer * dmab)71 static int skl_dsp_prepare(struct device *dev, unsigned int format,
72 			unsigned int size, struct snd_dma_buffer *dmab)
73 {
74 	struct hdac_bus *bus = dev_get_drvdata(dev);
75 	struct hdac_ext_stream *estream;
76 	struct hdac_stream *stream;
77 	struct snd_pcm_substream substream;
78 	int ret;
79 
80 	if (!bus)
81 		return -ENODEV;
82 
83 	memset(&substream, 0, sizeof(substream));
84 	substream.stream = SNDRV_PCM_STREAM_PLAYBACK;
85 
86 	estream = snd_hdac_ext_stream_assign(bus, &substream,
87 					HDAC_EXT_STREAM_TYPE_HOST);
88 	if (!estream)
89 		return -ENODEV;
90 
91 	stream = hdac_stream(estream);
92 
93 	/* assign decouple host dma channel */
94 	ret = snd_hdac_dsp_prepare(stream, format, size, dmab);
95 	if (ret < 0)
96 		return ret;
97 
98 	skl_dsp_setup_spib(dev, size, stream->stream_tag, true);
99 
100 	return stream->stream_tag;
101 }
102 
skl_dsp_trigger(struct device * dev,bool start,int stream_tag)103 static int skl_dsp_trigger(struct device *dev, bool start, int stream_tag)
104 {
105 	struct hdac_bus *bus = dev_get_drvdata(dev);
106 	struct hdac_stream *stream;
107 
108 	if (!bus)
109 		return -ENODEV;
110 
111 	stream = snd_hdac_get_stream(bus,
112 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
113 	if (!stream)
114 		return -EINVAL;
115 
116 	snd_hdac_dsp_trigger(stream, start);
117 
118 	return 0;
119 }
120 
skl_dsp_cleanup(struct device * dev,struct snd_dma_buffer * dmab,int stream_tag)121 static int skl_dsp_cleanup(struct device *dev,
122 		struct snd_dma_buffer *dmab, int stream_tag)
123 {
124 	struct hdac_bus *bus = dev_get_drvdata(dev);
125 	struct hdac_stream *stream;
126 	struct hdac_ext_stream *estream;
127 
128 	if (!bus)
129 		return -ENODEV;
130 
131 	stream = snd_hdac_get_stream(bus,
132 		SNDRV_PCM_STREAM_PLAYBACK, stream_tag);
133 	if (!stream)
134 		return -EINVAL;
135 
136 	estream = stream_to_hdac_ext_stream(stream);
137 	skl_dsp_setup_spib(dev, 0, stream_tag, false);
138 	snd_hdac_ext_stream_release(estream, HDAC_EXT_STREAM_TYPE_HOST);
139 
140 	snd_hdac_dsp_cleanup(stream, dmab);
141 
142 	return 0;
143 }
144 
skl_get_loader_ops(void)145 static struct skl_dsp_loader_ops skl_get_loader_ops(void)
146 {
147 	struct skl_dsp_loader_ops loader_ops;
148 
149 	memset(&loader_ops, 0, sizeof(struct skl_dsp_loader_ops));
150 
151 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
152 	loader_ops.free_dma_buf = skl_free_dma_buf;
153 
154 	return loader_ops;
155 };
156 
bxt_get_loader_ops(void)157 static struct skl_dsp_loader_ops bxt_get_loader_ops(void)
158 {
159 	struct skl_dsp_loader_ops loader_ops;
160 
161 	memset(&loader_ops, 0, sizeof(loader_ops));
162 
163 	loader_ops.alloc_dma_buf = skl_alloc_dma_buf;
164 	loader_ops.free_dma_buf = skl_free_dma_buf;
165 	loader_ops.prepare = skl_dsp_prepare;
166 	loader_ops.trigger = skl_dsp_trigger;
167 	loader_ops.cleanup = skl_dsp_cleanup;
168 
169 	return loader_ops;
170 };
171 
172 static const struct skl_dsp_ops dsp_ops[] = {
173 	{
174 		.id = 0x9d70,
175 		.num_cores = 2,
176 		.loader_ops = skl_get_loader_ops,
177 		.init = skl_sst_dsp_init,
178 		.init_fw = skl_sst_init_fw,
179 		.cleanup = skl_sst_dsp_cleanup
180 	},
181 	{
182 		.id = 0x9d71,
183 		.num_cores = 2,
184 		.loader_ops = skl_get_loader_ops,
185 		.init = skl_sst_dsp_init,
186 		.init_fw = skl_sst_init_fw,
187 		.cleanup = skl_sst_dsp_cleanup
188 	},
189 	{
190 		.id = 0x5a98,
191 		.num_cores = 2,
192 		.loader_ops = bxt_get_loader_ops,
193 		.init = bxt_sst_dsp_init,
194 		.init_fw = bxt_sst_init_fw,
195 		.cleanup = bxt_sst_dsp_cleanup
196 	},
197 	{
198 		.id = 0x3198,
199 		.num_cores = 2,
200 		.loader_ops = bxt_get_loader_ops,
201 		.init = bxt_sst_dsp_init,
202 		.init_fw = bxt_sst_init_fw,
203 		.cleanup = bxt_sst_dsp_cleanup
204 	},
205 	{
206 		.id = 0x9dc8,
207 		.num_cores = 4,
208 		.loader_ops = bxt_get_loader_ops,
209 		.init = cnl_sst_dsp_init,
210 		.init_fw = cnl_sst_init_fw,
211 		.cleanup = cnl_sst_dsp_cleanup
212 	},
213 	{
214 		.id = 0xa348,
215 		.num_cores = 4,
216 		.loader_ops = bxt_get_loader_ops,
217 		.init = cnl_sst_dsp_init,
218 		.init_fw = cnl_sst_init_fw,
219 		.cleanup = cnl_sst_dsp_cleanup
220 	},
221 	{
222 		.id = 0x02c8,
223 		.num_cores = 4,
224 		.loader_ops = bxt_get_loader_ops,
225 		.init = cnl_sst_dsp_init,
226 		.init_fw = cnl_sst_init_fw,
227 		.cleanup = cnl_sst_dsp_cleanup
228 	},
229 	{
230 		.id = 0x06c8,
231 		.num_cores = 4,
232 		.loader_ops = bxt_get_loader_ops,
233 		.init = cnl_sst_dsp_init,
234 		.init_fw = cnl_sst_init_fw,
235 		.cleanup = cnl_sst_dsp_cleanup
236 	},
237 };
238 
skl_get_dsp_ops(int pci_id)239 const struct skl_dsp_ops *skl_get_dsp_ops(int pci_id)
240 {
241 	int i;
242 
243 	for (i = 0; i < ARRAY_SIZE(dsp_ops); i++) {
244 		if (dsp_ops[i].id == pci_id)
245 			return &dsp_ops[i];
246 	}
247 
248 	return NULL;
249 }
250 
skl_init_dsp(struct skl_dev * skl)251 int skl_init_dsp(struct skl_dev *skl)
252 {
253 	void __iomem *mmio_base;
254 	struct hdac_bus *bus = skl_to_bus(skl);
255 	struct skl_dsp_loader_ops loader_ops;
256 	int irq = bus->irq;
257 	const struct skl_dsp_ops *ops;
258 	struct skl_dsp_cores *cores;
259 	int ret;
260 
261 	/* enable ppcap interrupt */
262 	snd_hdac_ext_bus_ppcap_enable(bus, true);
263 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
264 
265 	/* read the BAR of the ADSP MMIO */
266 	mmio_base = pci_ioremap_bar(skl->pci, 4);
267 	if (mmio_base == NULL) {
268 		dev_err(bus->dev, "ioremap error\n");
269 		return -ENXIO;
270 	}
271 
272 	ops = skl_get_dsp_ops(skl->pci->device);
273 	if (!ops) {
274 		ret = -EIO;
275 		goto unmap_mmio;
276 	}
277 
278 	loader_ops = ops->loader_ops();
279 	ret = ops->init(bus->dev, mmio_base, irq,
280 				skl->fw_name, loader_ops,
281 				&skl);
282 
283 	if (ret < 0)
284 		goto unmap_mmio;
285 
286 	skl->dsp_ops = ops;
287 	cores = &skl->cores;
288 	cores->count = ops->num_cores;
289 
290 	cores->state = kcalloc(cores->count, sizeof(*cores->state), GFP_KERNEL);
291 	if (!cores->state) {
292 		ret = -ENOMEM;
293 		goto unmap_mmio;
294 	}
295 
296 	cores->usage_count = kcalloc(cores->count, sizeof(*cores->usage_count),
297 				     GFP_KERNEL);
298 	if (!cores->usage_count) {
299 		ret = -ENOMEM;
300 		goto free_core_state;
301 	}
302 
303 	dev_dbg(bus->dev, "dsp registration status=%d\n", ret);
304 
305 	return 0;
306 
307 free_core_state:
308 	kfree(cores->state);
309 
310 unmap_mmio:
311 	iounmap(mmio_base);
312 
313 	return ret;
314 }
315 
skl_free_dsp(struct skl_dev * skl)316 int skl_free_dsp(struct skl_dev *skl)
317 {
318 	struct hdac_bus *bus = skl_to_bus(skl);
319 
320 	/* disable  ppcap interrupt */
321 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
322 
323 	skl->dsp_ops->cleanup(bus->dev, skl);
324 
325 	kfree(skl->cores.state);
326 	kfree(skl->cores.usage_count);
327 
328 	if (skl->dsp->addr.lpe)
329 		iounmap(skl->dsp->addr.lpe);
330 
331 	return 0;
332 }
333 
334 /*
335  * In the case of "suspend_active" i.e, the Audio IP being active
336  * during system suspend, immediately excecute any pending D0i3 work
337  * before suspending. This is needed for the IP to work in low power
338  * mode during system suspend. In the case of normal suspend, cancel
339  * any pending D0i3 work.
340  */
skl_suspend_late_dsp(struct skl_dev * skl)341 int skl_suspend_late_dsp(struct skl_dev *skl)
342 {
343 	struct delayed_work *dwork;
344 
345 	if (!skl)
346 		return 0;
347 
348 	dwork = &skl->d0i3.work;
349 
350 	if (dwork->work.func) {
351 		if (skl->supend_active)
352 			flush_delayed_work(dwork);
353 		else
354 			cancel_delayed_work_sync(dwork);
355 	}
356 
357 	return 0;
358 }
359 
skl_suspend_dsp(struct skl_dev * skl)360 int skl_suspend_dsp(struct skl_dev *skl)
361 {
362 	struct hdac_bus *bus = skl_to_bus(skl);
363 	int ret;
364 
365 	/* if ppcap is not supported return 0 */
366 	if (!bus->ppcap)
367 		return 0;
368 
369 	ret = skl_dsp_sleep(skl->dsp);
370 	if (ret < 0)
371 		return ret;
372 
373 	/* disable ppcap interrupt */
374 	snd_hdac_ext_bus_ppcap_int_enable(bus, false);
375 	snd_hdac_ext_bus_ppcap_enable(bus, false);
376 
377 	return 0;
378 }
379 
skl_resume_dsp(struct skl_dev * skl)380 int skl_resume_dsp(struct skl_dev *skl)
381 {
382 	struct hdac_bus *bus = skl_to_bus(skl);
383 	int ret;
384 
385 	/* if ppcap is not supported return 0 */
386 	if (!bus->ppcap)
387 		return 0;
388 
389 	/* enable ppcap interrupt */
390 	snd_hdac_ext_bus_ppcap_enable(bus, true);
391 	snd_hdac_ext_bus_ppcap_int_enable(bus, true);
392 
393 	/* check if DSP 1st boot is done */
394 	if (skl->is_first_boot)
395 		return 0;
396 
397 	/*
398 	 * Disable dynamic clock and power gating during firmware
399 	 * and library download
400 	 */
401 	skl->enable_miscbdcge(skl->dev, false);
402 	skl->clock_power_gating(skl->dev, false);
403 
404 	ret = skl_dsp_wake(skl->dsp);
405 	skl->enable_miscbdcge(skl->dev, true);
406 	skl->clock_power_gating(skl->dev, true);
407 	if (ret < 0)
408 		return ret;
409 
410 	if (skl->cfg.astate_cfg != NULL) {
411 		skl_dsp_set_astate_cfg(skl, skl->cfg.astate_cfg->count,
412 					skl->cfg.astate_cfg);
413 	}
414 	return ret;
415 }
416 
skl_get_bit_depth(int params)417 enum skl_bitdepth skl_get_bit_depth(int params)
418 {
419 	switch (params) {
420 	case 8:
421 		return SKL_DEPTH_8BIT;
422 
423 	case 16:
424 		return SKL_DEPTH_16BIT;
425 
426 	case 24:
427 		return SKL_DEPTH_24BIT;
428 
429 	case 32:
430 		return SKL_DEPTH_32BIT;
431 
432 	default:
433 		return SKL_DEPTH_INVALID;
434 
435 	}
436 }
437 
438 /*
439  * Each module in DSP expects a base module configuration, which consists of
440  * PCM format information, which we calculate in driver and resource values
441  * which are read from widget information passed through topology binary
442  * This is send when we create a module with INIT_INSTANCE IPC msg
443  */
skl_set_base_module_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_base_cfg * base_cfg)444 static void skl_set_base_module_format(struct skl_dev *skl,
445 			struct skl_module_cfg *mconfig,
446 			struct skl_base_cfg *base_cfg)
447 {
448 	struct skl_module *module = mconfig->module;
449 	struct skl_module_res *res = &module->resources[mconfig->res_idx];
450 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
451 	struct skl_module_fmt *format = &fmt->inputs[0].fmt;
452 
453 	base_cfg->audio_fmt.number_of_channels = format->channels;
454 
455 	base_cfg->audio_fmt.s_freq = format->s_freq;
456 	base_cfg->audio_fmt.bit_depth = format->bit_depth;
457 	base_cfg->audio_fmt.valid_bit_depth = format->valid_bit_depth;
458 	base_cfg->audio_fmt.ch_cfg = format->ch_cfg;
459 	base_cfg->audio_fmt.sample_type = format->sample_type;
460 
461 	dev_dbg(skl->dev, "bit_depth=%x valid_bd=%x ch_config=%x\n",
462 			format->bit_depth, format->valid_bit_depth,
463 			format->ch_cfg);
464 
465 	base_cfg->audio_fmt.channel_map = format->ch_map;
466 
467 	base_cfg->audio_fmt.interleaving = format->interleaving_style;
468 
469 	base_cfg->cpc = res->cpc;
470 	base_cfg->ibs = res->ibs;
471 	base_cfg->obs = res->obs;
472 	base_cfg->is_pages = res->is_pages;
473 }
474 
475 /*
476  * Copies copier capabilities into copier module and updates copier module
477  * config size.
478  */
skl_copy_copier_caps(struct skl_module_cfg * mconfig,struct skl_cpr_cfg * cpr_mconfig)479 static void skl_copy_copier_caps(struct skl_module_cfg *mconfig,
480 				struct skl_cpr_cfg *cpr_mconfig)
481 {
482 	if (mconfig->formats_config.caps_size == 0)
483 		return;
484 
485 	memcpy(cpr_mconfig->gtw_cfg.config_data,
486 			mconfig->formats_config.caps,
487 			mconfig->formats_config.caps_size);
488 
489 	cpr_mconfig->gtw_cfg.config_length =
490 			(mconfig->formats_config.caps_size) / 4;
491 }
492 
493 #define SKL_NON_GATEWAY_CPR_NODE_ID 0xFFFFFFFF
494 /*
495  * Calculate the gatewat settings required for copier module, type of
496  * gateway and index of gateway to use
497  */
skl_get_node_id(struct skl_dev * skl,struct skl_module_cfg * mconfig)498 static u32 skl_get_node_id(struct skl_dev *skl,
499 			struct skl_module_cfg *mconfig)
500 {
501 	union skl_connector_node_id node_id = {0};
502 	union skl_ssp_dma_node ssp_node  = {0};
503 	struct skl_pipe_params *params = mconfig->pipe->p_params;
504 
505 	switch (mconfig->dev_type) {
506 	case SKL_DEVICE_BT:
507 		node_id.node.dma_type =
508 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
509 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
510 			SKL_DMA_I2S_LINK_INPUT_CLASS;
511 		node_id.node.vindex = params->host_dma_id +
512 					(mconfig->vbus_id << 3);
513 		break;
514 
515 	case SKL_DEVICE_I2S:
516 		node_id.node.dma_type =
517 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
518 			SKL_DMA_I2S_LINK_OUTPUT_CLASS :
519 			SKL_DMA_I2S_LINK_INPUT_CLASS;
520 		ssp_node.dma_node.time_slot_index = mconfig->time_slot;
521 		ssp_node.dma_node.i2s_instance = mconfig->vbus_id;
522 		node_id.node.vindex = ssp_node.val;
523 		break;
524 
525 	case SKL_DEVICE_DMIC:
526 		node_id.node.dma_type = SKL_DMA_DMIC_LINK_INPUT_CLASS;
527 		node_id.node.vindex = mconfig->vbus_id +
528 					 (mconfig->time_slot);
529 		break;
530 
531 	case SKL_DEVICE_HDALINK:
532 		node_id.node.dma_type =
533 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
534 			SKL_DMA_HDA_LINK_OUTPUT_CLASS :
535 			SKL_DMA_HDA_LINK_INPUT_CLASS;
536 		node_id.node.vindex = params->link_dma_id;
537 		break;
538 
539 	case SKL_DEVICE_HDAHOST:
540 		node_id.node.dma_type =
541 			(SKL_CONN_SOURCE == mconfig->hw_conn_type) ?
542 			SKL_DMA_HDA_HOST_OUTPUT_CLASS :
543 			SKL_DMA_HDA_HOST_INPUT_CLASS;
544 		node_id.node.vindex = params->host_dma_id;
545 		break;
546 
547 	default:
548 		node_id.val = 0xFFFFFFFF;
549 		break;
550 	}
551 
552 	return node_id.val;
553 }
554 
skl_setup_cpr_gateway_cfg(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_cpr_cfg * cpr_mconfig)555 static void skl_setup_cpr_gateway_cfg(struct skl_dev *skl,
556 			struct skl_module_cfg *mconfig,
557 			struct skl_cpr_cfg *cpr_mconfig)
558 {
559 	u32 dma_io_buf;
560 	struct skl_module_res *res;
561 	int res_idx = mconfig->res_idx;
562 
563 	cpr_mconfig->gtw_cfg.node_id = skl_get_node_id(skl, mconfig);
564 
565 	if (cpr_mconfig->gtw_cfg.node_id == SKL_NON_GATEWAY_CPR_NODE_ID) {
566 		cpr_mconfig->cpr_feature_mask = 0;
567 		return;
568 	}
569 
570 	if (skl->nr_modules) {
571 		res = &mconfig->module->resources[mconfig->res_idx];
572 		cpr_mconfig->gtw_cfg.dma_buffer_size = res->dma_buffer_size;
573 		goto skip_buf_size_calc;
574 	} else {
575 		res = &mconfig->module->resources[res_idx];
576 	}
577 
578 	switch (mconfig->hw_conn_type) {
579 	case SKL_CONN_SOURCE:
580 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
581 			dma_io_buf =  res->ibs;
582 		else
583 			dma_io_buf =  res->obs;
584 		break;
585 
586 	case SKL_CONN_SINK:
587 		if (mconfig->dev_type == SKL_DEVICE_HDAHOST)
588 			dma_io_buf =  res->obs;
589 		else
590 			dma_io_buf =  res->ibs;
591 		break;
592 
593 	default:
594 		dev_warn(skl->dev, "wrong connection type: %d\n",
595 				mconfig->hw_conn_type);
596 		return;
597 	}
598 
599 	cpr_mconfig->gtw_cfg.dma_buffer_size =
600 				mconfig->dma_buffer_size * dma_io_buf;
601 
602 	/* fallback to 2ms default value */
603 	if (!cpr_mconfig->gtw_cfg.dma_buffer_size) {
604 		if (mconfig->hw_conn_type == SKL_CONN_SOURCE)
605 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->obs;
606 		else
607 			cpr_mconfig->gtw_cfg.dma_buffer_size = 2 * res->ibs;
608 	}
609 
610 skip_buf_size_calc:
611 	cpr_mconfig->cpr_feature_mask = 0;
612 	cpr_mconfig->gtw_cfg.config_length  = 0;
613 
614 	skl_copy_copier_caps(mconfig, cpr_mconfig);
615 }
616 
617 #define DMA_CONTROL_ID 5
618 #define DMA_I2S_BLOB_SIZE 21
619 
skl_dsp_set_dma_control(struct skl_dev * skl,u32 * caps,u32 caps_size,u32 node_id)620 int skl_dsp_set_dma_control(struct skl_dev *skl, u32 *caps,
621 				u32 caps_size, u32 node_id)
622 {
623 	struct skl_dma_control *dma_ctrl;
624 	struct skl_ipc_large_config_msg msg = {0};
625 	int err = 0;
626 
627 
628 	/*
629 	 * if blob size zero, then return
630 	 */
631 	if (caps_size == 0)
632 		return 0;
633 
634 	msg.large_param_id = DMA_CONTROL_ID;
635 	msg.param_data_size = sizeof(struct skl_dma_control) + caps_size;
636 
637 	dma_ctrl = kzalloc(msg.param_data_size, GFP_KERNEL);
638 	if (dma_ctrl == NULL)
639 		return -ENOMEM;
640 
641 	dma_ctrl->node_id = node_id;
642 
643 	/*
644 	 * NHLT blob may contain additional configs along with i2s blob.
645 	 * firmware expects only the i2s blob size as the config_length.
646 	 * So fix to i2s blob size.
647 	 * size in dwords.
648 	 */
649 	dma_ctrl->config_length = DMA_I2S_BLOB_SIZE;
650 
651 	memcpy(dma_ctrl->config_data, caps, caps_size);
652 
653 	err = skl_ipc_set_large_config(&skl->ipc, &msg, (u32 *)dma_ctrl);
654 
655 	kfree(dma_ctrl);
656 	return err;
657 }
658 EXPORT_SYMBOL_GPL(skl_dsp_set_dma_control);
659 
skl_setup_out_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_audio_data_format * out_fmt)660 static void skl_setup_out_format(struct skl_dev *skl,
661 			struct skl_module_cfg *mconfig,
662 			struct skl_audio_data_format *out_fmt)
663 {
664 	struct skl_module *module = mconfig->module;
665 	struct skl_module_iface *fmt = &module->formats[mconfig->fmt_idx];
666 	struct skl_module_fmt *format = &fmt->outputs[0].fmt;
667 
668 	out_fmt->number_of_channels = (u8)format->channels;
669 	out_fmt->s_freq = format->s_freq;
670 	out_fmt->bit_depth = format->bit_depth;
671 	out_fmt->valid_bit_depth = format->valid_bit_depth;
672 	out_fmt->ch_cfg = format->ch_cfg;
673 
674 	out_fmt->channel_map = format->ch_map;
675 	out_fmt->interleaving = format->interleaving_style;
676 	out_fmt->sample_type = format->sample_type;
677 
678 	dev_dbg(skl->dev, "copier out format chan=%d fre=%d bitdepth=%d\n",
679 		out_fmt->number_of_channels, format->s_freq, format->bit_depth);
680 }
681 
682 /*
683  * DSP needs SRC module for frequency conversion, SRC takes base module
684  * configuration and the target frequency as extra parameter passed as src
685  * config
686  */
skl_set_src_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_src_module_cfg * src_mconfig)687 static void skl_set_src_format(struct skl_dev *skl,
688 			struct skl_module_cfg *mconfig,
689 			struct skl_src_module_cfg *src_mconfig)
690 {
691 	struct skl_module *module = mconfig->module;
692 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
693 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
694 
695 	skl_set_base_module_format(skl, mconfig,
696 		(struct skl_base_cfg *)src_mconfig);
697 
698 	src_mconfig->src_cfg = fmt->s_freq;
699 }
700 
701 /*
702  * DSP needs updown module to do channel conversion. updown module take base
703  * module configuration and channel configuration
704  * It also take coefficients and now we have defaults applied here
705  */
skl_set_updown_mixer_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_up_down_mixer_cfg * mixer_mconfig)706 static void skl_set_updown_mixer_format(struct skl_dev *skl,
707 			struct skl_module_cfg *mconfig,
708 			struct skl_up_down_mixer_cfg *mixer_mconfig)
709 {
710 	struct skl_module *module = mconfig->module;
711 	struct skl_module_iface *iface = &module->formats[mconfig->fmt_idx];
712 	struct skl_module_fmt *fmt = &iface->outputs[0].fmt;
713 
714 	skl_set_base_module_format(skl,	mconfig,
715 		(struct skl_base_cfg *)mixer_mconfig);
716 	mixer_mconfig->out_ch_cfg = fmt->ch_cfg;
717 	mixer_mconfig->ch_map = fmt->ch_map;
718 }
719 
720 /*
721  * 'copier' is DSP internal module which copies data from Host DMA (HDA host
722  * dma) or link (hda link, SSP, PDM)
723  * Here we calculate the copier module parameters, like PCM format, output
724  * format, gateway settings
725  * copier_module_config is sent as input buffer with INIT_INSTANCE IPC msg
726  */
skl_set_copier_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_cpr_cfg * cpr_mconfig)727 static void skl_set_copier_format(struct skl_dev *skl,
728 			struct skl_module_cfg *mconfig,
729 			struct skl_cpr_cfg *cpr_mconfig)
730 {
731 	struct skl_audio_data_format *out_fmt = &cpr_mconfig->out_fmt;
732 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)cpr_mconfig;
733 
734 	skl_set_base_module_format(skl, mconfig, base_cfg);
735 
736 	skl_setup_out_format(skl, mconfig, out_fmt);
737 	skl_setup_cpr_gateway_cfg(skl, mconfig, cpr_mconfig);
738 }
739 
740 /*
741  * Algo module are DSP pre processing modules. Algo module take base module
742  * configuration and params
743  */
744 
skl_set_algo_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_algo_cfg * algo_mcfg)745 static void skl_set_algo_format(struct skl_dev *skl,
746 			struct skl_module_cfg *mconfig,
747 			struct skl_algo_cfg *algo_mcfg)
748 {
749 	struct skl_base_cfg *base_cfg = (struct skl_base_cfg *)algo_mcfg;
750 
751 	skl_set_base_module_format(skl, mconfig, base_cfg);
752 
753 	if (mconfig->formats_config.caps_size == 0)
754 		return;
755 
756 	memcpy(algo_mcfg->params,
757 			mconfig->formats_config.caps,
758 			mconfig->formats_config.caps_size);
759 
760 }
761 
762 /*
763  * Mic select module allows selecting one or many input channels, thus
764  * acting as a demux.
765  *
766  * Mic select module take base module configuration and out-format
767  * configuration
768  */
skl_set_base_outfmt_format(struct skl_dev * skl,struct skl_module_cfg * mconfig,struct skl_base_outfmt_cfg * base_outfmt_mcfg)769 static void skl_set_base_outfmt_format(struct skl_dev *skl,
770 			struct skl_module_cfg *mconfig,
771 			struct skl_base_outfmt_cfg *base_outfmt_mcfg)
772 {
773 	struct skl_audio_data_format *out_fmt = &base_outfmt_mcfg->out_fmt;
774 	struct skl_base_cfg *base_cfg =
775 				(struct skl_base_cfg *)base_outfmt_mcfg;
776 
777 	skl_set_base_module_format(skl, mconfig, base_cfg);
778 	skl_setup_out_format(skl, mconfig, out_fmt);
779 }
780 
skl_get_module_param_size(struct skl_dev * skl,struct skl_module_cfg * mconfig)781 static u16 skl_get_module_param_size(struct skl_dev *skl,
782 			struct skl_module_cfg *mconfig)
783 {
784 	u16 param_size;
785 
786 	switch (mconfig->m_type) {
787 	case SKL_MODULE_TYPE_COPIER:
788 		param_size = sizeof(struct skl_cpr_cfg);
789 		param_size += mconfig->formats_config.caps_size;
790 		return param_size;
791 
792 	case SKL_MODULE_TYPE_SRCINT:
793 		return sizeof(struct skl_src_module_cfg);
794 
795 	case SKL_MODULE_TYPE_UPDWMIX:
796 		return sizeof(struct skl_up_down_mixer_cfg);
797 
798 	case SKL_MODULE_TYPE_ALGO:
799 		param_size = sizeof(struct skl_base_cfg);
800 		param_size += mconfig->formats_config.caps_size;
801 		return param_size;
802 
803 	case SKL_MODULE_TYPE_BASE_OUTFMT:
804 	case SKL_MODULE_TYPE_MIC_SELECT:
805 	case SKL_MODULE_TYPE_KPB:
806 		return sizeof(struct skl_base_outfmt_cfg);
807 
808 	default:
809 		/*
810 		 * return only base cfg when no specific module type is
811 		 * specified
812 		 */
813 		return sizeof(struct skl_base_cfg);
814 	}
815 
816 	return 0;
817 }
818 
819 /*
820  * DSP firmware supports various modules like copier, SRC, updown etc.
821  * These modules required various parameters to be calculated and sent for
822  * the module initialization to DSP. By default a generic module needs only
823  * base module format configuration
824  */
825 
skl_set_module_format(struct skl_dev * skl,struct skl_module_cfg * module_config,u16 * module_config_size,void ** param_data)826 static int skl_set_module_format(struct skl_dev *skl,
827 			struct skl_module_cfg *module_config,
828 			u16 *module_config_size,
829 			void **param_data)
830 {
831 	u16 param_size;
832 
833 	param_size  = skl_get_module_param_size(skl, module_config);
834 
835 	*param_data = kzalloc(param_size, GFP_KERNEL);
836 	if (NULL == *param_data)
837 		return -ENOMEM;
838 
839 	*module_config_size = param_size;
840 
841 	switch (module_config->m_type) {
842 	case SKL_MODULE_TYPE_COPIER:
843 		skl_set_copier_format(skl, module_config, *param_data);
844 		break;
845 
846 	case SKL_MODULE_TYPE_SRCINT:
847 		skl_set_src_format(skl, module_config, *param_data);
848 		break;
849 
850 	case SKL_MODULE_TYPE_UPDWMIX:
851 		skl_set_updown_mixer_format(skl, module_config, *param_data);
852 		break;
853 
854 	case SKL_MODULE_TYPE_ALGO:
855 		skl_set_algo_format(skl, module_config, *param_data);
856 		break;
857 
858 	case SKL_MODULE_TYPE_BASE_OUTFMT:
859 	case SKL_MODULE_TYPE_MIC_SELECT:
860 	case SKL_MODULE_TYPE_KPB:
861 		skl_set_base_outfmt_format(skl, module_config, *param_data);
862 		break;
863 
864 	default:
865 		skl_set_base_module_format(skl, module_config, *param_data);
866 		break;
867 
868 	}
869 
870 	dev_dbg(skl->dev, "Module type=%d id=%d config size: %d bytes\n",
871 			module_config->m_type, module_config->id.module_id,
872 			param_size);
873 	print_hex_dump_debug("Module params:", DUMP_PREFIX_OFFSET, 8, 4,
874 			*param_data, param_size, false);
875 	return 0;
876 }
877 
skl_get_queue_index(struct skl_module_pin * mpin,struct skl_module_inst_id id,int max)878 static int skl_get_queue_index(struct skl_module_pin *mpin,
879 				struct skl_module_inst_id id, int max)
880 {
881 	int i;
882 
883 	for (i = 0; i < max; i++)  {
884 		if (mpin[i].id.module_id == id.module_id &&
885 			mpin[i].id.instance_id == id.instance_id)
886 			return i;
887 	}
888 
889 	return -EINVAL;
890 }
891 
892 /*
893  * Allocates queue for each module.
894  * if dynamic, the pin_index is allocated 0 to max_pin.
895  * In static, the pin_index is fixed based on module_id and instance id
896  */
skl_alloc_queue(struct skl_module_pin * mpin,struct skl_module_cfg * tgt_cfg,int max)897 static int skl_alloc_queue(struct skl_module_pin *mpin,
898 			struct skl_module_cfg *tgt_cfg, int max)
899 {
900 	int i;
901 	struct skl_module_inst_id id = tgt_cfg->id;
902 	/*
903 	 * if pin in dynamic, find first free pin
904 	 * otherwise find match module and instance id pin as topology will
905 	 * ensure a unique pin is assigned to this so no need to
906 	 * allocate/free
907 	 */
908 	for (i = 0; i < max; i++)  {
909 		if (mpin[i].is_dynamic) {
910 			if (!mpin[i].in_use &&
911 				mpin[i].pin_state == SKL_PIN_UNBIND) {
912 
913 				mpin[i].in_use = true;
914 				mpin[i].id.module_id = id.module_id;
915 				mpin[i].id.instance_id = id.instance_id;
916 				mpin[i].id.pvt_id = id.pvt_id;
917 				mpin[i].tgt_mcfg = tgt_cfg;
918 				return i;
919 			}
920 		} else {
921 			if (mpin[i].id.module_id == id.module_id &&
922 				mpin[i].id.instance_id == id.instance_id &&
923 				mpin[i].pin_state == SKL_PIN_UNBIND) {
924 
925 				mpin[i].tgt_mcfg = tgt_cfg;
926 				return i;
927 			}
928 		}
929 	}
930 
931 	return -EINVAL;
932 }
933 
skl_free_queue(struct skl_module_pin * mpin,int q_index)934 static void skl_free_queue(struct skl_module_pin *mpin, int q_index)
935 {
936 	if (mpin[q_index].is_dynamic) {
937 		mpin[q_index].in_use = false;
938 		mpin[q_index].id.module_id = 0;
939 		mpin[q_index].id.instance_id = 0;
940 		mpin[q_index].id.pvt_id = 0;
941 	}
942 	mpin[q_index].pin_state = SKL_PIN_UNBIND;
943 	mpin[q_index].tgt_mcfg = NULL;
944 }
945 
946 /* Module state will be set to unint, if all the out pin state is UNBIND */
947 
skl_clear_module_state(struct skl_module_pin * mpin,int max,struct skl_module_cfg * mcfg)948 static void skl_clear_module_state(struct skl_module_pin *mpin, int max,
949 						struct skl_module_cfg *mcfg)
950 {
951 	int i;
952 	bool found = false;
953 
954 	for (i = 0; i < max; i++)  {
955 		if (mpin[i].pin_state == SKL_PIN_UNBIND)
956 			continue;
957 		found = true;
958 		break;
959 	}
960 
961 	if (!found)
962 		mcfg->m_state = SKL_MODULE_INIT_DONE;
963 	return;
964 }
965 
966 /*
967  * A module needs to be instanataited in DSP. A mdoule is present in a
968  * collection of module referred as a PIPE.
969  * We first calculate the module format, based on module type and then
970  * invoke the DSP by sending IPC INIT_INSTANCE using ipc helper
971  */
skl_init_module(struct skl_dev * skl,struct skl_module_cfg * mconfig)972 int skl_init_module(struct skl_dev *skl,
973 			struct skl_module_cfg *mconfig)
974 {
975 	u16 module_config_size = 0;
976 	void *param_data = NULL;
977 	int ret;
978 	struct skl_ipc_init_instance_msg msg;
979 
980 	dev_dbg(skl->dev, "%s: module_id = %d instance=%d\n", __func__,
981 		 mconfig->id.module_id, mconfig->id.pvt_id);
982 
983 	if (mconfig->pipe->state != SKL_PIPE_CREATED) {
984 		dev_err(skl->dev, "Pipe not created state= %d pipe_id= %d\n",
985 				 mconfig->pipe->state, mconfig->pipe->ppl_id);
986 		return -EIO;
987 	}
988 
989 	ret = skl_set_module_format(skl, mconfig,
990 			&module_config_size, &param_data);
991 	if (ret < 0) {
992 		dev_err(skl->dev, "Failed to set module format ret=%d\n", ret);
993 		return ret;
994 	}
995 
996 	msg.module_id = mconfig->id.module_id;
997 	msg.instance_id = mconfig->id.pvt_id;
998 	msg.ppl_instance_id = mconfig->pipe->ppl_id;
999 	msg.param_data_size = module_config_size;
1000 	msg.core_id = mconfig->core_id;
1001 	msg.domain = mconfig->domain;
1002 
1003 	ret = skl_ipc_init_instance(&skl->ipc, &msg, param_data);
1004 	if (ret < 0) {
1005 		dev_err(skl->dev, "Failed to init instance ret=%d\n", ret);
1006 		kfree(param_data);
1007 		return ret;
1008 	}
1009 	mconfig->m_state = SKL_MODULE_INIT_DONE;
1010 	kfree(param_data);
1011 	return ret;
1012 }
1013 
skl_dump_bind_info(struct skl_dev * skl,struct skl_module_cfg * src_module,struct skl_module_cfg * dst_module)1014 static void skl_dump_bind_info(struct skl_dev *skl, struct skl_module_cfg
1015 	*src_module, struct skl_module_cfg *dst_module)
1016 {
1017 	dev_dbg(skl->dev, "%s: src module_id = %d  src_instance=%d\n",
1018 		__func__, src_module->id.module_id, src_module->id.pvt_id);
1019 	dev_dbg(skl->dev, "%s: dst_module=%d dst_instance=%d\n", __func__,
1020 		 dst_module->id.module_id, dst_module->id.pvt_id);
1021 
1022 	dev_dbg(skl->dev, "src_module state = %d dst module state = %d\n",
1023 		src_module->m_state, dst_module->m_state);
1024 }
1025 
1026 /*
1027  * On module freeup, we need to unbind the module with modules
1028  * it is already bind.
1029  * Find the pin allocated and unbind then using bind_unbind IPC
1030  */
skl_unbind_modules(struct skl_dev * skl,struct skl_module_cfg * src_mcfg,struct skl_module_cfg * dst_mcfg)1031 int skl_unbind_modules(struct skl_dev *skl,
1032 			struct skl_module_cfg *src_mcfg,
1033 			struct skl_module_cfg *dst_mcfg)
1034 {
1035 	int ret;
1036 	struct skl_ipc_bind_unbind_msg msg;
1037 	struct skl_module_inst_id src_id = src_mcfg->id;
1038 	struct skl_module_inst_id dst_id = dst_mcfg->id;
1039 	int in_max = dst_mcfg->module->max_input_pins;
1040 	int out_max = src_mcfg->module->max_output_pins;
1041 	int src_index, dst_index, src_pin_state, dst_pin_state;
1042 
1043 	skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1044 
1045 	/* get src queue index */
1046 	src_index = skl_get_queue_index(src_mcfg->m_out_pin, dst_id, out_max);
1047 	if (src_index < 0)
1048 		return 0;
1049 
1050 	msg.src_queue = src_index;
1051 
1052 	/* get dst queue index */
1053 	dst_index  = skl_get_queue_index(dst_mcfg->m_in_pin, src_id, in_max);
1054 	if (dst_index < 0)
1055 		return 0;
1056 
1057 	msg.dst_queue = dst_index;
1058 
1059 	src_pin_state = src_mcfg->m_out_pin[src_index].pin_state;
1060 	dst_pin_state = dst_mcfg->m_in_pin[dst_index].pin_state;
1061 
1062 	if (src_pin_state != SKL_PIN_BIND_DONE ||
1063 		dst_pin_state != SKL_PIN_BIND_DONE)
1064 		return 0;
1065 
1066 	msg.module_id = src_mcfg->id.module_id;
1067 	msg.instance_id = src_mcfg->id.pvt_id;
1068 	msg.dst_module_id = dst_mcfg->id.module_id;
1069 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1070 	msg.bind = false;
1071 
1072 	ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1073 	if (!ret) {
1074 		/* free queue only if unbind is success */
1075 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1076 		skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1077 
1078 		/*
1079 		 * check only if src module bind state, bind is
1080 		 * always from src -> sink
1081 		 */
1082 		skl_clear_module_state(src_mcfg->m_out_pin, out_max, src_mcfg);
1083 	}
1084 
1085 	return ret;
1086 }
1087 
fill_pin_params(struct skl_audio_data_format * pin_fmt,struct skl_module_fmt * format)1088 static void fill_pin_params(struct skl_audio_data_format *pin_fmt,
1089 				struct skl_module_fmt *format)
1090 {
1091 	pin_fmt->number_of_channels = format->channels;
1092 	pin_fmt->s_freq = format->s_freq;
1093 	pin_fmt->bit_depth = format->bit_depth;
1094 	pin_fmt->valid_bit_depth = format->valid_bit_depth;
1095 	pin_fmt->ch_cfg = format->ch_cfg;
1096 	pin_fmt->sample_type = format->sample_type;
1097 	pin_fmt->channel_map = format->ch_map;
1098 	pin_fmt->interleaving = format->interleaving_style;
1099 }
1100 
1101 #define CPR_SINK_FMT_PARAM_ID 2
1102 
1103 /*
1104  * Once a module is instantiated it need to be 'bind' with other modules in
1105  * the pipeline. For binding we need to find the module pins which are bind
1106  * together
1107  * This function finds the pins and then sends bund_unbind IPC message to
1108  * DSP using IPC helper
1109  */
skl_bind_modules(struct skl_dev * skl,struct skl_module_cfg * src_mcfg,struct skl_module_cfg * dst_mcfg)1110 int skl_bind_modules(struct skl_dev *skl,
1111 			struct skl_module_cfg *src_mcfg,
1112 			struct skl_module_cfg *dst_mcfg)
1113 {
1114 	int ret = 0;
1115 	struct skl_ipc_bind_unbind_msg msg;
1116 	int in_max = dst_mcfg->module->max_input_pins;
1117 	int out_max = src_mcfg->module->max_output_pins;
1118 	int src_index, dst_index;
1119 	struct skl_module_fmt *format;
1120 	struct skl_cpr_pin_fmt pin_fmt;
1121 	struct skl_module *module;
1122 	struct skl_module_iface *fmt;
1123 
1124 	skl_dump_bind_info(skl, src_mcfg, dst_mcfg);
1125 
1126 	if (src_mcfg->m_state < SKL_MODULE_INIT_DONE ||
1127 		dst_mcfg->m_state < SKL_MODULE_INIT_DONE)
1128 		return 0;
1129 
1130 	src_index = skl_alloc_queue(src_mcfg->m_out_pin, dst_mcfg, out_max);
1131 	if (src_index < 0)
1132 		return -EINVAL;
1133 
1134 	msg.src_queue = src_index;
1135 	dst_index = skl_alloc_queue(dst_mcfg->m_in_pin, src_mcfg, in_max);
1136 	if (dst_index < 0) {
1137 		skl_free_queue(src_mcfg->m_out_pin, src_index);
1138 		return -EINVAL;
1139 	}
1140 
1141 	/*
1142 	 * Copier module requires the separate large_config_set_ipc to
1143 	 * configure the pins other than 0
1144 	 */
1145 	if (src_mcfg->m_type == SKL_MODULE_TYPE_COPIER && src_index > 0) {
1146 		pin_fmt.sink_id = src_index;
1147 		module = src_mcfg->module;
1148 		fmt = &module->formats[src_mcfg->fmt_idx];
1149 
1150 		/* Input fmt is same as that of src module input cfg */
1151 		format = &fmt->inputs[0].fmt;
1152 		fill_pin_params(&(pin_fmt.src_fmt), format);
1153 
1154 		format = &fmt->outputs[src_index].fmt;
1155 		fill_pin_params(&(pin_fmt.dst_fmt), format);
1156 		ret = skl_set_module_params(skl, (void *)&pin_fmt,
1157 					sizeof(struct skl_cpr_pin_fmt),
1158 					CPR_SINK_FMT_PARAM_ID, src_mcfg);
1159 
1160 		if (ret < 0)
1161 			goto out;
1162 	}
1163 
1164 	msg.dst_queue = dst_index;
1165 
1166 	dev_dbg(skl->dev, "src queue = %d dst queue =%d\n",
1167 			 msg.src_queue, msg.dst_queue);
1168 
1169 	msg.module_id = src_mcfg->id.module_id;
1170 	msg.instance_id = src_mcfg->id.pvt_id;
1171 	msg.dst_module_id = dst_mcfg->id.module_id;
1172 	msg.dst_instance_id = dst_mcfg->id.pvt_id;
1173 	msg.bind = true;
1174 
1175 	ret = skl_ipc_bind_unbind(&skl->ipc, &msg);
1176 
1177 	if (!ret) {
1178 		src_mcfg->m_state = SKL_MODULE_BIND_DONE;
1179 		src_mcfg->m_out_pin[src_index].pin_state = SKL_PIN_BIND_DONE;
1180 		dst_mcfg->m_in_pin[dst_index].pin_state = SKL_PIN_BIND_DONE;
1181 		return ret;
1182 	}
1183 out:
1184 	/* error case , if IPC fails, clear the queue index */
1185 	skl_free_queue(src_mcfg->m_out_pin, src_index);
1186 	skl_free_queue(dst_mcfg->m_in_pin, dst_index);
1187 
1188 	return ret;
1189 }
1190 
skl_set_pipe_state(struct skl_dev * skl,struct skl_pipe * pipe,enum skl_ipc_pipeline_state state)1191 static int skl_set_pipe_state(struct skl_dev *skl, struct skl_pipe *pipe,
1192 	enum skl_ipc_pipeline_state state)
1193 {
1194 	dev_dbg(skl->dev, "%s: pipe_state = %d\n", __func__, state);
1195 
1196 	return skl_ipc_set_pipeline_state(&skl->ipc, pipe->ppl_id, state);
1197 }
1198 
1199 /*
1200  * A pipeline is a collection of modules. Before a module in instantiated a
1201  * pipeline needs to be created for it.
1202  * This function creates pipeline, by sending create pipeline IPC messages
1203  * to FW
1204  */
skl_create_pipeline(struct skl_dev * skl,struct skl_pipe * pipe)1205 int skl_create_pipeline(struct skl_dev *skl, struct skl_pipe *pipe)
1206 {
1207 	int ret;
1208 
1209 	dev_dbg(skl->dev, "%s: pipe_id = %d\n", __func__, pipe->ppl_id);
1210 
1211 	ret = skl_ipc_create_pipeline(&skl->ipc, pipe->memory_pages,
1212 				pipe->pipe_priority, pipe->ppl_id,
1213 				pipe->lp_mode);
1214 	if (ret < 0) {
1215 		dev_err(skl->dev, "Failed to create pipeline\n");
1216 		return ret;
1217 	}
1218 
1219 	pipe->state = SKL_PIPE_CREATED;
1220 
1221 	return 0;
1222 }
1223 
1224 /*
1225  * A pipeline needs to be deleted on cleanup. If a pipeline is running,
1226  * then pause it first. Before actual deletion, pipeline should enter
1227  * reset state. Finish the procedure by sending delete pipeline IPC.
1228  * DSP will stop the DMA engines and release resources
1229  */
skl_delete_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1230 int skl_delete_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1231 {
1232 	int ret;
1233 
1234 	dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1235 
1236 	/* If pipe was not created in FW, do not try to delete it */
1237 	if (pipe->state < SKL_PIPE_CREATED)
1238 		return 0;
1239 
1240 	/* If pipe is started, do stop the pipe in FW. */
1241 	if (pipe->state >= SKL_PIPE_STARTED) {
1242 		ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1243 		if (ret < 0) {
1244 			dev_err(skl->dev, "Failed to stop pipeline\n");
1245 			return ret;
1246 		}
1247 
1248 		pipe->state = SKL_PIPE_PAUSED;
1249 	}
1250 
1251 	/* reset pipe state before deletion */
1252 	ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1253 	if (ret < 0) {
1254 		dev_err(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1255 		return ret;
1256 	}
1257 
1258 	pipe->state = SKL_PIPE_RESET;
1259 
1260 	ret = skl_ipc_delete_pipeline(&skl->ipc, pipe->ppl_id);
1261 	if (ret < 0) {
1262 		dev_err(skl->dev, "Failed to delete pipeline\n");
1263 		return ret;
1264 	}
1265 
1266 	pipe->state = SKL_PIPE_INVALID;
1267 
1268 	return ret;
1269 }
1270 
1271 /*
1272  * A pipeline is also a scheduling entity in DSP which can be run, stopped
1273  * For processing data the pipe need to be run by sending IPC set pipe state
1274  * to DSP
1275  */
skl_run_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1276 int skl_run_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1277 {
1278 	int ret;
1279 
1280 	dev_dbg(skl->dev, "%s: pipe = %d\n", __func__, pipe->ppl_id);
1281 
1282 	/* If pipe was not created in FW, do not try to pause or delete */
1283 	if (pipe->state < SKL_PIPE_CREATED)
1284 		return 0;
1285 
1286 	/* Pipe has to be paused before it is started */
1287 	ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1288 	if (ret < 0) {
1289 		dev_err(skl->dev, "Failed to pause pipe\n");
1290 		return ret;
1291 	}
1292 
1293 	pipe->state = SKL_PIPE_PAUSED;
1294 
1295 	ret = skl_set_pipe_state(skl, pipe, PPL_RUNNING);
1296 	if (ret < 0) {
1297 		dev_err(skl->dev, "Failed to start pipe\n");
1298 		return ret;
1299 	}
1300 
1301 	pipe->state = SKL_PIPE_STARTED;
1302 
1303 	return 0;
1304 }
1305 
1306 /*
1307  * Stop the pipeline by sending set pipe state IPC
1308  * DSP doesnt implement stop so we always send pause message
1309  */
skl_stop_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1310 int skl_stop_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1311 {
1312 	int ret;
1313 
1314 	dev_dbg(skl->dev, "In %s pipe=%d\n", __func__, pipe->ppl_id);
1315 
1316 	/* If pipe was not created in FW, do not try to pause or delete */
1317 	if (pipe->state < SKL_PIPE_PAUSED)
1318 		return 0;
1319 
1320 	ret = skl_set_pipe_state(skl, pipe, PPL_PAUSED);
1321 	if (ret < 0) {
1322 		dev_dbg(skl->dev, "Failed to stop pipe\n");
1323 		return ret;
1324 	}
1325 
1326 	pipe->state = SKL_PIPE_PAUSED;
1327 
1328 	return 0;
1329 }
1330 
1331 /*
1332  * Reset the pipeline by sending set pipe state IPC this will reset the DMA
1333  * from the DSP side
1334  */
skl_reset_pipe(struct skl_dev * skl,struct skl_pipe * pipe)1335 int skl_reset_pipe(struct skl_dev *skl, struct skl_pipe *pipe)
1336 {
1337 	int ret;
1338 
1339 	/* If pipe was not created in FW, do not try to pause or delete */
1340 	if (pipe->state < SKL_PIPE_PAUSED)
1341 		return 0;
1342 
1343 	ret = skl_set_pipe_state(skl, pipe, PPL_RESET);
1344 	if (ret < 0) {
1345 		dev_dbg(skl->dev, "Failed to reset pipe ret=%d\n", ret);
1346 		return ret;
1347 	}
1348 
1349 	pipe->state = SKL_PIPE_RESET;
1350 
1351 	return 0;
1352 }
1353 
1354 /* Algo parameter set helper function */
skl_set_module_params(struct skl_dev * skl,u32 * params,int size,u32 param_id,struct skl_module_cfg * mcfg)1355 int skl_set_module_params(struct skl_dev *skl, u32 *params, int size,
1356 				u32 param_id, struct skl_module_cfg *mcfg)
1357 {
1358 	struct skl_ipc_large_config_msg msg;
1359 
1360 	msg.module_id = mcfg->id.module_id;
1361 	msg.instance_id = mcfg->id.pvt_id;
1362 	msg.param_data_size = size;
1363 	msg.large_param_id = param_id;
1364 
1365 	return skl_ipc_set_large_config(&skl->ipc, &msg, params);
1366 }
1367 
skl_get_module_params(struct skl_dev * skl,u32 * params,int size,u32 param_id,struct skl_module_cfg * mcfg)1368 int skl_get_module_params(struct skl_dev *skl, u32 *params, int size,
1369 			  u32 param_id, struct skl_module_cfg *mcfg)
1370 {
1371 	struct skl_ipc_large_config_msg msg;
1372 	size_t bytes = size;
1373 
1374 	msg.module_id = mcfg->id.module_id;
1375 	msg.instance_id = mcfg->id.pvt_id;
1376 	msg.param_data_size = size;
1377 	msg.large_param_id = param_id;
1378 
1379 	return skl_ipc_get_large_config(&skl->ipc, &msg, &params, &bytes);
1380 }
1381