1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/pm_runtime.h>
31
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35
36 #include "display/intel_atomic.h"
37 #include "display/intel_display_types.h"
38 #include "display/intel_fbc.h"
39 #include "display/intel_sprite.h"
40
41 #include "i915_drv.h"
42 #include "i915_irq.h"
43 #include "i915_trace.h"
44 #include "intel_pm.h"
45 #include "intel_sideband.h"
46 #include "../../../platform/x86/intel_ips.h"
47
48 /**
49 * DOC: RC6
50 *
51 * RC6 is a special power stage which allows the GPU to enter an very
52 * low-voltage mode when idle, using down to 0V while at this stage. This
53 * stage is entered automatically when the GPU is idle when RC6 support is
54 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
55 *
56 * There are different RC6 modes available in Intel GPU, which differentiate
57 * among each other with the latency required to enter and leave RC6 and
58 * voltage consumed by the GPU in different states.
59 *
60 * The combination of the following flags define which states GPU is allowed
61 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
62 * RC6pp is deepest RC6. Their support by hardware varies according to the
63 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
64 * which brings the most power savings; deeper states save more power, but
65 * require higher latency to switch to and wake up.
66 */
67
gen9_init_clock_gating(struct drm_i915_private * dev_priv)68 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
69 {
70 if (HAS_LLC(dev_priv)) {
71 /*
72 * WaCompressedResourceDisplayNewHashMode:skl,kbl
73 * Display WA #0390: skl,kbl
74 *
75 * Must match Sampler, Pixel Back End, and Media. See
76 * WaCompressedResourceSamplerPbeMediaNewHashMode.
77 */
78 I915_WRITE(CHICKEN_PAR1_1,
79 I915_READ(CHICKEN_PAR1_1) |
80 SKL_DE_COMPRESSED_HASH_MODE);
81 }
82
83 /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
84 I915_WRITE(CHICKEN_PAR1_1,
85 I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
86
87 /* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
88 I915_WRITE(GEN8_CHICKEN_DCPR_1,
89 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
90
91 /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
92 /* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
93 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
94 DISP_FBC_WM_DIS |
95 DISP_FBC_MEMORY_WAKE);
96
97 /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
98 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
99 ILK_DPFC_DISABLE_DUMMY0);
100
101 if (IS_SKYLAKE(dev_priv)) {
102 /* WaDisableDopClockGating */
103 I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
104 & ~GEN7_DOP_CLOCK_GATE_ENABLE);
105 }
106 }
107
bxt_init_clock_gating(struct drm_i915_private * dev_priv)108 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
109 {
110 gen9_init_clock_gating(dev_priv);
111
112 /* WaDisableSDEUnitClockGating:bxt */
113 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
115
116 /*
117 * FIXME:
118 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
119 */
120 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
121 GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
122
123 /*
124 * Wa: Backlight PWM may stop in the asserted state, causing backlight
125 * to stay fully on.
126 */
127 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
128 PWM1_GATING_DIS | PWM2_GATING_DIS);
129
130 /*
131 * Lower the display internal timeout.
132 * This is needed to avoid any hard hangs when DSI port PLL
133 * is off and a MMIO access is attempted by any privilege
134 * application, using batch buffers or any other means.
135 */
136 I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
137 }
138
glk_init_clock_gating(struct drm_i915_private * dev_priv)139 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
140 {
141 gen9_init_clock_gating(dev_priv);
142
143 /*
144 * WaDisablePWMClockGating:glk
145 * Backlight PWM may stop in the asserted state, causing backlight
146 * to stay fully on.
147 */
148 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
149 PWM1_GATING_DIS | PWM2_GATING_DIS);
150
151 /* WaDDIIOTimeout:glk */
152 if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
153 u32 val = I915_READ(CHICKEN_MISC_2);
154 val &= ~(GLK_CL0_PWR_DOWN |
155 GLK_CL1_PWR_DOWN |
156 GLK_CL2_PWR_DOWN);
157 I915_WRITE(CHICKEN_MISC_2, val);
158 }
159
160 }
161
i915_pineview_get_mem_freq(struct drm_i915_private * dev_priv)162 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
163 {
164 u32 tmp;
165
166 tmp = I915_READ(CLKCFG);
167
168 switch (tmp & CLKCFG_FSB_MASK) {
169 case CLKCFG_FSB_533:
170 dev_priv->fsb_freq = 533; /* 133*4 */
171 break;
172 case CLKCFG_FSB_800:
173 dev_priv->fsb_freq = 800; /* 200*4 */
174 break;
175 case CLKCFG_FSB_667:
176 dev_priv->fsb_freq = 667; /* 167*4 */
177 break;
178 case CLKCFG_FSB_400:
179 dev_priv->fsb_freq = 400; /* 100*4 */
180 break;
181 }
182
183 switch (tmp & CLKCFG_MEM_MASK) {
184 case CLKCFG_MEM_533:
185 dev_priv->mem_freq = 533;
186 break;
187 case CLKCFG_MEM_667:
188 dev_priv->mem_freq = 667;
189 break;
190 case CLKCFG_MEM_800:
191 dev_priv->mem_freq = 800;
192 break;
193 }
194
195 /* detect pineview DDR3 setting */
196 tmp = I915_READ(CSHRDDR3CTL);
197 dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
198 }
199
i915_ironlake_get_mem_freq(struct drm_i915_private * dev_priv)200 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
201 {
202 u16 ddrpll, csipll;
203
204 ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
205 csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
206
207 switch (ddrpll & 0xff) {
208 case 0xc:
209 dev_priv->mem_freq = 800;
210 break;
211 case 0x10:
212 dev_priv->mem_freq = 1066;
213 break;
214 case 0x14:
215 dev_priv->mem_freq = 1333;
216 break;
217 case 0x18:
218 dev_priv->mem_freq = 1600;
219 break;
220 default:
221 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
222 ddrpll & 0xff);
223 dev_priv->mem_freq = 0;
224 break;
225 }
226
227 dev_priv->ips.r_t = dev_priv->mem_freq;
228
229 switch (csipll & 0x3ff) {
230 case 0x00c:
231 dev_priv->fsb_freq = 3200;
232 break;
233 case 0x00e:
234 dev_priv->fsb_freq = 3733;
235 break;
236 case 0x010:
237 dev_priv->fsb_freq = 4266;
238 break;
239 case 0x012:
240 dev_priv->fsb_freq = 4800;
241 break;
242 case 0x014:
243 dev_priv->fsb_freq = 5333;
244 break;
245 case 0x016:
246 dev_priv->fsb_freq = 5866;
247 break;
248 case 0x018:
249 dev_priv->fsb_freq = 6400;
250 break;
251 default:
252 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
253 csipll & 0x3ff);
254 dev_priv->fsb_freq = 0;
255 break;
256 }
257
258 if (dev_priv->fsb_freq == 3200) {
259 dev_priv->ips.c_m = 0;
260 } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
261 dev_priv->ips.c_m = 1;
262 } else {
263 dev_priv->ips.c_m = 2;
264 }
265 }
266
267 static const struct cxsr_latency cxsr_latency_table[] = {
268 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
269 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
270 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
271 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
272 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
273
274 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
275 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
276 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
277 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
278 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
279
280 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
281 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
282 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
283 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
284 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
285
286 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
287 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
288 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
289 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
290 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
291
292 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
293 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
294 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
295 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
296 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
297
298 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
299 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
300 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
301 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
302 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
303 };
304
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)305 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
306 bool is_ddr3,
307 int fsb,
308 int mem)
309 {
310 const struct cxsr_latency *latency;
311 int i;
312
313 if (fsb == 0 || mem == 0)
314 return NULL;
315
316 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
317 latency = &cxsr_latency_table[i];
318 if (is_desktop == latency->is_desktop &&
319 is_ddr3 == latency->is_ddr3 &&
320 fsb == latency->fsb_freq && mem == latency->mem_freq)
321 return latency;
322 }
323
324 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
325
326 return NULL;
327 }
328
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)329 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
330 {
331 u32 val;
332
333 vlv_punit_get(dev_priv);
334
335 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
336 if (enable)
337 val &= ~FORCE_DDR_HIGH_FREQ;
338 else
339 val |= FORCE_DDR_HIGH_FREQ;
340 val &= ~FORCE_DDR_LOW_FREQ;
341 val |= FORCE_DDR_FREQ_REQ_ACK;
342 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
343
344 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
345 FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
346 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
347
348 vlv_punit_put(dev_priv);
349 }
350
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)351 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
352 {
353 u32 val;
354
355 vlv_punit_get(dev_priv);
356
357 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
358 if (enable)
359 val |= DSP_MAXFIFO_PM5_ENABLE;
360 else
361 val &= ~DSP_MAXFIFO_PM5_ENABLE;
362 vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
363
364 vlv_punit_put(dev_priv);
365 }
366
367 #define FW_WM(value, plane) \
368 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
369
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)370 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
371 {
372 bool was_enabled;
373 u32 val;
374
375 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
376 was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
377 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
378 POSTING_READ(FW_BLC_SELF_VLV);
379 } else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
380 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
382 POSTING_READ(FW_BLC_SELF);
383 } else if (IS_PINEVIEW(dev_priv)) {
384 val = I915_READ(DSPFW3);
385 was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
386 if (enable)
387 val |= PINEVIEW_SELF_REFRESH_EN;
388 else
389 val &= ~PINEVIEW_SELF_REFRESH_EN;
390 I915_WRITE(DSPFW3, val);
391 POSTING_READ(DSPFW3);
392 } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
393 was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
394 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
395 _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
396 I915_WRITE(FW_BLC_SELF, val);
397 POSTING_READ(FW_BLC_SELF);
398 } else if (IS_I915GM(dev_priv)) {
399 /*
400 * FIXME can't find a bit like this for 915G, and
401 * and yet it does have the related watermark in
402 * FW_BLC_SELF. What's going on?
403 */
404 was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
405 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
406 _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
407 I915_WRITE(INSTPM, val);
408 POSTING_READ(INSTPM);
409 } else {
410 return false;
411 }
412
413 trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
414
415 DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
416 enableddisabled(enable),
417 enableddisabled(was_enabled));
418
419 return was_enabled;
420 }
421
422 /**
423 * intel_set_memory_cxsr - Configure CxSR state
424 * @dev_priv: i915 device
425 * @enable: Allow vs. disallow CxSR
426 *
427 * Allow or disallow the system to enter a special CxSR
428 * (C-state self refresh) state. What typically happens in CxSR mode
429 * is that several display FIFOs may get combined into a single larger
430 * FIFO for a particular plane (so called max FIFO mode) to allow the
431 * system to defer memory fetches longer, and the memory will enter
432 * self refresh.
433 *
434 * Note that enabling CxSR does not guarantee that the system enter
435 * this special mode, nor does it guarantee that the system stays
436 * in that mode once entered. So this just allows/disallows the system
437 * to autonomously utilize the CxSR mode. Other factors such as core
438 * C-states will affect when/if the system actually enters/exits the
439 * CxSR mode.
440 *
441 * Note that on VLV/CHV this actually only controls the max FIFO mode,
442 * and the system is free to enter/exit memory self refresh at any time
443 * even when the use of CxSR has been disallowed.
444 *
445 * While the system is actually in the CxSR/max FIFO mode, some plane
446 * control registers will not get latched on vblank. Thus in order to
447 * guarantee the system will respond to changes in the plane registers
448 * we must always disallow CxSR prior to making changes to those registers.
449 * Unfortunately the system will re-evaluate the CxSR conditions at
450 * frame start which happens after vblank start (which is when the plane
451 * registers would get latched), so we can't proceed with the plane update
452 * during the same frame where we disallowed CxSR.
453 *
454 * Certain platforms also have a deeper HPLL SR mode. Fortunately the
455 * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
456 * the hardware w.r.t. HPLL SR when writing to plane registers.
457 * Disallowing just CxSR is sufficient.
458 */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)459 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
460 {
461 bool ret;
462
463 mutex_lock(&dev_priv->wm.wm_mutex);
464 ret = _intel_set_memory_cxsr(dev_priv, enable);
465 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
466 dev_priv->wm.vlv.cxsr = enable;
467 else if (IS_G4X(dev_priv))
468 dev_priv->wm.g4x.cxsr = enable;
469 mutex_unlock(&dev_priv->wm.wm_mutex);
470
471 return ret;
472 }
473
474 /*
475 * Latency for FIFO fetches is dependent on several factors:
476 * - memory configuration (speed, channels)
477 * - chipset
478 * - current MCH state
479 * It can be fairly high in some situations, so here we assume a fairly
480 * pessimal value. It's a tradeoff between extra memory fetches (if we
481 * set this value too high, the FIFO will fetch frequently to stay full)
482 * and power consumption (set it too low to save power and we might see
483 * FIFO underruns and display "flicker").
484 *
485 * A value of 5us seems to be a good balance; safe for very low end
486 * platforms but not overly aggressive on lower latency configs.
487 */
488 static const int pessimal_latency_ns = 5000;
489
490 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
491 ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
492
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)493 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
494 {
495 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
496 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
497 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
498 enum pipe pipe = crtc->pipe;
499 int sprite0_start, sprite1_start;
500
501 switch (pipe) {
502 u32 dsparb, dsparb2, dsparb3;
503 case PIPE_A:
504 dsparb = I915_READ(DSPARB);
505 dsparb2 = I915_READ(DSPARB2);
506 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
507 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
508 break;
509 case PIPE_B:
510 dsparb = I915_READ(DSPARB);
511 dsparb2 = I915_READ(DSPARB2);
512 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
513 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
514 break;
515 case PIPE_C:
516 dsparb2 = I915_READ(DSPARB2);
517 dsparb3 = I915_READ(DSPARB3);
518 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
519 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
520 break;
521 default:
522 MISSING_CASE(pipe);
523 return;
524 }
525
526 fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
527 fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
528 fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
529 fifo_state->plane[PLANE_CURSOR] = 63;
530 }
531
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)532 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
533 enum i9xx_plane_id i9xx_plane)
534 {
535 u32 dsparb = I915_READ(DSPARB);
536 int size;
537
538 size = dsparb & 0x7f;
539 if (i9xx_plane == PLANE_B)
540 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
541
542 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
543 dsparb, plane_name(i9xx_plane), size);
544
545 return size;
546 }
547
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)548 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
549 enum i9xx_plane_id i9xx_plane)
550 {
551 u32 dsparb = I915_READ(DSPARB);
552 int size;
553
554 size = dsparb & 0x1ff;
555 if (i9xx_plane == PLANE_B)
556 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
557 size >>= 1; /* Convert to cachelines */
558
559 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
560 dsparb, plane_name(i9xx_plane), size);
561
562 return size;
563 }
564
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)565 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
566 enum i9xx_plane_id i9xx_plane)
567 {
568 u32 dsparb = I915_READ(DSPARB);
569 int size;
570
571 size = dsparb & 0x7f;
572 size >>= 2; /* Convert to cachelines */
573
574 DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
575 dsparb, plane_name(i9xx_plane), size);
576
577 return size;
578 }
579
580 /* Pineview has different values for various configs */
581 static const struct intel_watermark_params pineview_display_wm = {
582 .fifo_size = PINEVIEW_DISPLAY_FIFO,
583 .max_wm = PINEVIEW_MAX_WM,
584 .default_wm = PINEVIEW_DFT_WM,
585 .guard_size = PINEVIEW_GUARD_WM,
586 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
587 };
588 static const struct intel_watermark_params pineview_display_hplloff_wm = {
589 .fifo_size = PINEVIEW_DISPLAY_FIFO,
590 .max_wm = PINEVIEW_MAX_WM,
591 .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
592 .guard_size = PINEVIEW_GUARD_WM,
593 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
594 };
595 static const struct intel_watermark_params pineview_cursor_wm = {
596 .fifo_size = PINEVIEW_CURSOR_FIFO,
597 .max_wm = PINEVIEW_CURSOR_MAX_WM,
598 .default_wm = PINEVIEW_CURSOR_DFT_WM,
599 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
600 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
601 };
602 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
603 .fifo_size = PINEVIEW_CURSOR_FIFO,
604 .max_wm = PINEVIEW_CURSOR_MAX_WM,
605 .default_wm = PINEVIEW_CURSOR_DFT_WM,
606 .guard_size = PINEVIEW_CURSOR_GUARD_WM,
607 .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
608 };
609 static const struct intel_watermark_params i965_cursor_wm_info = {
610 .fifo_size = I965_CURSOR_FIFO,
611 .max_wm = I965_CURSOR_MAX_WM,
612 .default_wm = I965_CURSOR_DFT_WM,
613 .guard_size = 2,
614 .cacheline_size = I915_FIFO_LINE_SIZE,
615 };
616 static const struct intel_watermark_params i945_wm_info = {
617 .fifo_size = I945_FIFO_SIZE,
618 .max_wm = I915_MAX_WM,
619 .default_wm = 1,
620 .guard_size = 2,
621 .cacheline_size = I915_FIFO_LINE_SIZE,
622 };
623 static const struct intel_watermark_params i915_wm_info = {
624 .fifo_size = I915_FIFO_SIZE,
625 .max_wm = I915_MAX_WM,
626 .default_wm = 1,
627 .guard_size = 2,
628 .cacheline_size = I915_FIFO_LINE_SIZE,
629 };
630 static const struct intel_watermark_params i830_a_wm_info = {
631 .fifo_size = I855GM_FIFO_SIZE,
632 .max_wm = I915_MAX_WM,
633 .default_wm = 1,
634 .guard_size = 2,
635 .cacheline_size = I830_FIFO_LINE_SIZE,
636 };
637 static const struct intel_watermark_params i830_bc_wm_info = {
638 .fifo_size = I855GM_FIFO_SIZE,
639 .max_wm = I915_MAX_WM/2,
640 .default_wm = 1,
641 .guard_size = 2,
642 .cacheline_size = I830_FIFO_LINE_SIZE,
643 };
644 static const struct intel_watermark_params i845_wm_info = {
645 .fifo_size = I830_FIFO_SIZE,
646 .max_wm = I915_MAX_WM,
647 .default_wm = 1,
648 .guard_size = 2,
649 .cacheline_size = I830_FIFO_LINE_SIZE,
650 };
651
652 /**
653 * intel_wm_method1 - Method 1 / "small buffer" watermark formula
654 * @pixel_rate: Pipe pixel rate in kHz
655 * @cpp: Plane bytes per pixel
656 * @latency: Memory wakeup latency in 0.1us units
657 *
658 * Compute the watermark using the method 1 or "small buffer"
659 * formula. The caller may additonally add extra cachelines
660 * to account for TLB misses and clock crossings.
661 *
662 * This method is concerned with the short term drain rate
663 * of the FIFO, ie. it does not account for blanking periods
664 * which would effectively reduce the average drain rate across
665 * a longer period. The name "small" refers to the fact the
666 * FIFO is relatively small compared to the amount of data
667 * fetched.
668 *
669 * The FIFO level vs. time graph might look something like:
670 *
671 * |\ |\
672 * | \ | \
673 * __---__---__ (- plane active, _ blanking)
674 * -> time
675 *
676 * or perhaps like this:
677 *
678 * |\|\ |\|\
679 * __----__----__ (- plane active, _ blanking)
680 * -> time
681 *
682 * Returns:
683 * The watermark in bytes
684 */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)685 static unsigned int intel_wm_method1(unsigned int pixel_rate,
686 unsigned int cpp,
687 unsigned int latency)
688 {
689 u64 ret;
690
691 ret = mul_u32_u32(pixel_rate, cpp * latency);
692 ret = DIV_ROUND_UP_ULL(ret, 10000);
693
694 return ret;
695 }
696
697 /**
698 * intel_wm_method2 - Method 2 / "large buffer" watermark formula
699 * @pixel_rate: Pipe pixel rate in kHz
700 * @htotal: Pipe horizontal total
701 * @width: Plane width in pixels
702 * @cpp: Plane bytes per pixel
703 * @latency: Memory wakeup latency in 0.1us units
704 *
705 * Compute the watermark using the method 2 or "large buffer"
706 * formula. The caller may additonally add extra cachelines
707 * to account for TLB misses and clock crossings.
708 *
709 * This method is concerned with the long term drain rate
710 * of the FIFO, ie. it does account for blanking periods
711 * which effectively reduce the average drain rate across
712 * a longer period. The name "large" refers to the fact the
713 * FIFO is relatively large compared to the amount of data
714 * fetched.
715 *
716 * The FIFO level vs. time graph might look something like:
717 *
718 * |\___ |\___
719 * | \___ | \___
720 * | \ | \
721 * __ --__--__--__--__--__--__ (- plane active, _ blanking)
722 * -> time
723 *
724 * Returns:
725 * The watermark in bytes
726 */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)727 static unsigned int intel_wm_method2(unsigned int pixel_rate,
728 unsigned int htotal,
729 unsigned int width,
730 unsigned int cpp,
731 unsigned int latency)
732 {
733 unsigned int ret;
734
735 /*
736 * FIXME remove once all users are computing
737 * watermarks in the correct place.
738 */
739 if (WARN_ON_ONCE(htotal == 0))
740 htotal = 1;
741
742 ret = (latency * pixel_rate) / (htotal * 10000);
743 ret = (ret + 1) * width * cpp;
744
745 return ret;
746 }
747
748 /**
749 * intel_calculate_wm - calculate watermark level
750 * @pixel_rate: pixel clock
751 * @wm: chip FIFO params
752 * @fifo_size: size of the FIFO buffer
753 * @cpp: bytes per pixel
754 * @latency_ns: memory latency for the platform
755 *
756 * Calculate the watermark level (the level at which the display plane will
757 * start fetching from memory again). Each chip has a different display
758 * FIFO size and allocation, so the caller needs to figure that out and pass
759 * in the correct intel_watermark_params structure.
760 *
761 * As the pixel clock runs, the FIFO will be drained at a rate that depends
762 * on the pixel size. When it reaches the watermark level, it'll start
763 * fetching FIFO line sized based chunks from memory until the FIFO fills
764 * past the watermark point. If the FIFO drains completely, a FIFO underrun
765 * will occur, and a display engine hang could result.
766 */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)767 static unsigned int intel_calculate_wm(int pixel_rate,
768 const struct intel_watermark_params *wm,
769 int fifo_size, int cpp,
770 unsigned int latency_ns)
771 {
772 int entries, wm_size;
773
774 /*
775 * Note: we need to make sure we don't overflow for various clock &
776 * latency values.
777 * clocks go from a few thousand to several hundred thousand.
778 * latency is usually a few thousand
779 */
780 entries = intel_wm_method1(pixel_rate, cpp,
781 latency_ns / 100);
782 entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
783 wm->guard_size;
784 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
785
786 wm_size = fifo_size - entries;
787 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
788
789 /* Don't promote wm_size to unsigned... */
790 if (wm_size > wm->max_wm)
791 wm_size = wm->max_wm;
792 if (wm_size <= 0)
793 wm_size = wm->default_wm;
794
795 /*
796 * Bspec seems to indicate that the value shouldn't be lower than
797 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
798 * Lets go for 8 which is the burst size since certain platforms
799 * already use a hardcoded 8 (which is what the spec says should be
800 * done).
801 */
802 if (wm_size <= 8)
803 wm_size = 8;
804
805 return wm_size;
806 }
807
is_disabling(int old,int new,int threshold)808 static bool is_disabling(int old, int new, int threshold)
809 {
810 return old >= threshold && new < threshold;
811 }
812
is_enabling(int old,int new,int threshold)813 static bool is_enabling(int old, int new, int threshold)
814 {
815 return old < threshold && new >= threshold;
816 }
817
intel_wm_num_levels(struct drm_i915_private * dev_priv)818 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
819 {
820 return dev_priv->wm.max_level + 1;
821 }
822
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)823 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
824 const struct intel_plane_state *plane_state)
825 {
826 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
827
828 /* FIXME check the 'enable' instead */
829 if (!crtc_state->base.active)
830 return false;
831
832 /*
833 * Treat cursor with fb as always visible since cursor updates
834 * can happen faster than the vrefresh rate, and the current
835 * watermark code doesn't handle that correctly. Cursor updates
836 * which set/clear the fb or change the cursor size are going
837 * to get throttled by intel_legacy_cursor_update() to work
838 * around this problem with the watermark code.
839 */
840 if (plane->id == PLANE_CURSOR)
841 return plane_state->base.fb != NULL;
842 else
843 return plane_state->base.visible;
844 }
845
single_enabled_crtc(struct drm_i915_private * dev_priv)846 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
847 {
848 struct intel_crtc *crtc, *enabled = NULL;
849
850 for_each_intel_crtc(&dev_priv->drm, crtc) {
851 if (intel_crtc_active(crtc)) {
852 if (enabled)
853 return NULL;
854 enabled = crtc;
855 }
856 }
857
858 return enabled;
859 }
860
pineview_update_wm(struct intel_crtc * unused_crtc)861 static void pineview_update_wm(struct intel_crtc *unused_crtc)
862 {
863 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
864 struct intel_crtc *crtc;
865 const struct cxsr_latency *latency;
866 u32 reg;
867 unsigned int wm;
868
869 latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
870 dev_priv->is_ddr3,
871 dev_priv->fsb_freq,
872 dev_priv->mem_freq);
873 if (!latency) {
874 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
875 intel_set_memory_cxsr(dev_priv, false);
876 return;
877 }
878
879 crtc = single_enabled_crtc(dev_priv);
880 if (crtc) {
881 const struct drm_display_mode *adjusted_mode =
882 &crtc->config->base.adjusted_mode;
883 const struct drm_framebuffer *fb =
884 crtc->base.primary->state->fb;
885 int cpp = fb->format->cpp[0];
886 int clock = adjusted_mode->crtc_clock;
887
888 /* Display SR */
889 wm = intel_calculate_wm(clock, &pineview_display_wm,
890 pineview_display_wm.fifo_size,
891 cpp, latency->display_sr);
892 reg = I915_READ(DSPFW1);
893 reg &= ~DSPFW_SR_MASK;
894 reg |= FW_WM(wm, SR);
895 I915_WRITE(DSPFW1, reg);
896 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
897
898 /* cursor SR */
899 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
900 pineview_display_wm.fifo_size,
901 4, latency->cursor_sr);
902 reg = I915_READ(DSPFW3);
903 reg &= ~DSPFW_CURSOR_SR_MASK;
904 reg |= FW_WM(wm, CURSOR_SR);
905 I915_WRITE(DSPFW3, reg);
906
907 /* Display HPLL off SR */
908 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
909 pineview_display_hplloff_wm.fifo_size,
910 cpp, latency->display_hpll_disable);
911 reg = I915_READ(DSPFW3);
912 reg &= ~DSPFW_HPLL_SR_MASK;
913 reg |= FW_WM(wm, HPLL_SR);
914 I915_WRITE(DSPFW3, reg);
915
916 /* cursor HPLL off SR */
917 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
918 pineview_display_hplloff_wm.fifo_size,
919 4, latency->cursor_hpll_disable);
920 reg = I915_READ(DSPFW3);
921 reg &= ~DSPFW_HPLL_CURSOR_MASK;
922 reg |= FW_WM(wm, HPLL_CURSOR);
923 I915_WRITE(DSPFW3, reg);
924 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
925
926 intel_set_memory_cxsr(dev_priv, true);
927 } else {
928 intel_set_memory_cxsr(dev_priv, false);
929 }
930 }
931
932 /*
933 * Documentation says:
934 * "If the line size is small, the TLB fetches can get in the way of the
935 * data fetches, causing some lag in the pixel data return which is not
936 * accounted for in the above formulas. The following adjustment only
937 * needs to be applied if eight whole lines fit in the buffer at once.
938 * The WM is adjusted upwards by the difference between the FIFO size
939 * and the size of 8 whole lines. This adjustment is always performed
940 * in the actual pixel depth regardless of whether FBC is enabled or not."
941 */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)942 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
943 {
944 int tlb_miss = fifo_size * 64 - width * cpp * 8;
945
946 return max(0, tlb_miss);
947 }
948
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)949 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
950 const struct g4x_wm_values *wm)
951 {
952 enum pipe pipe;
953
954 for_each_pipe(dev_priv, pipe)
955 trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
956
957 I915_WRITE(DSPFW1,
958 FW_WM(wm->sr.plane, SR) |
959 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
960 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
961 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
962 I915_WRITE(DSPFW2,
963 (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
964 FW_WM(wm->sr.fbc, FBC_SR) |
965 FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
966 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
967 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
968 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
969 I915_WRITE(DSPFW3,
970 (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
971 FW_WM(wm->sr.cursor, CURSOR_SR) |
972 FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
973 FW_WM(wm->hpll.plane, HPLL_SR));
974
975 POSTING_READ(DSPFW1);
976 }
977
978 #define FW_WM_VLV(value, plane) \
979 (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
980
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)981 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
982 const struct vlv_wm_values *wm)
983 {
984 enum pipe pipe;
985
986 for_each_pipe(dev_priv, pipe) {
987 trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
988
989 I915_WRITE(VLV_DDL(pipe),
990 (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
991 (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
992 (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
993 (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
994 }
995
996 /*
997 * Zero the (unused) WM1 watermarks, and also clear all the
998 * high order bits so that there are no out of bounds values
999 * present in the registers during the reprogramming.
1000 */
1001 I915_WRITE(DSPHOWM, 0);
1002 I915_WRITE(DSPHOWM1, 0);
1003 I915_WRITE(DSPFW4, 0);
1004 I915_WRITE(DSPFW5, 0);
1005 I915_WRITE(DSPFW6, 0);
1006
1007 I915_WRITE(DSPFW1,
1008 FW_WM(wm->sr.plane, SR) |
1009 FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1010 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1011 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1012 I915_WRITE(DSPFW2,
1013 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1014 FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1015 FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1016 I915_WRITE(DSPFW3,
1017 FW_WM(wm->sr.cursor, CURSOR_SR));
1018
1019 if (IS_CHERRYVIEW(dev_priv)) {
1020 I915_WRITE(DSPFW7_CHV,
1021 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1022 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1023 I915_WRITE(DSPFW8_CHV,
1024 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1025 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1026 I915_WRITE(DSPFW9_CHV,
1027 FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1028 FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1029 I915_WRITE(DSPHOWM,
1030 FW_WM(wm->sr.plane >> 9, SR_HI) |
1031 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1032 FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1033 FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1034 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1035 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1036 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1037 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1038 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1039 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1040 } else {
1041 I915_WRITE(DSPFW7,
1042 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1043 FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1044 I915_WRITE(DSPHOWM,
1045 FW_WM(wm->sr.plane >> 9, SR_HI) |
1046 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1047 FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1048 FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1049 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1050 FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1051 FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1052 }
1053
1054 POSTING_READ(DSPFW1);
1055 }
1056
1057 #undef FW_WM_VLV
1058
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1059 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1060 {
1061 /* all latencies in usec */
1062 dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1063 dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1064 dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1065
1066 dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1067 }
1068
g4x_plane_fifo_size(enum plane_id plane_id,int level)1069 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1070 {
1071 /*
1072 * DSPCNTR[13] supposedly controls whether the
1073 * primary plane can use the FIFO space otherwise
1074 * reserved for the sprite plane. It's not 100% clear
1075 * what the actual FIFO size is, but it looks like we
1076 * can happily set both primary and sprite watermarks
1077 * up to 127 cachelines. So that would seem to mean
1078 * that either DSPCNTR[13] doesn't do anything, or that
1079 * the total FIFO is >= 256 cachelines in size. Either
1080 * way, we don't seem to have to worry about this
1081 * repartitioning as the maximum watermark value the
1082 * register can hold for each plane is lower than the
1083 * minimum FIFO size.
1084 */
1085 switch (plane_id) {
1086 case PLANE_CURSOR:
1087 return 63;
1088 case PLANE_PRIMARY:
1089 return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1090 case PLANE_SPRITE0:
1091 return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1092 default:
1093 MISSING_CASE(plane_id);
1094 return 0;
1095 }
1096 }
1097
g4x_fbc_fifo_size(int level)1098 static int g4x_fbc_fifo_size(int level)
1099 {
1100 switch (level) {
1101 case G4X_WM_LEVEL_SR:
1102 return 7;
1103 case G4X_WM_LEVEL_HPLL:
1104 return 15;
1105 default:
1106 MISSING_CASE(level);
1107 return 0;
1108 }
1109 }
1110
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1111 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1112 const struct intel_plane_state *plane_state,
1113 int level)
1114 {
1115 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1116 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1117 const struct drm_display_mode *adjusted_mode =
1118 &crtc_state->base.adjusted_mode;
1119 unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1120 unsigned int clock, htotal, cpp, width, wm;
1121
1122 if (latency == 0)
1123 return USHRT_MAX;
1124
1125 if (!intel_wm_plane_visible(crtc_state, plane_state))
1126 return 0;
1127
1128 cpp = plane_state->base.fb->format->cpp[0];
1129
1130 /*
1131 * Not 100% sure which way ELK should go here as the
1132 * spec only says CL/CTG should assume 32bpp and BW
1133 * doesn't need to. But as these things followed the
1134 * mobile vs. desktop lines on gen3 as well, let's
1135 * assume ELK doesn't need this.
1136 *
1137 * The spec also fails to list such a restriction for
1138 * the HPLL watermark, which seems a little strange.
1139 * Let's use 32bpp for the HPLL watermark as well.
1140 */
1141 if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1142 level != G4X_WM_LEVEL_NORMAL)
1143 cpp = max(cpp, 4u);
1144
1145 clock = adjusted_mode->crtc_clock;
1146 htotal = adjusted_mode->crtc_htotal;
1147
1148 if (plane->id == PLANE_CURSOR)
1149 width = plane_state->base.crtc_w;
1150 else
1151 width = drm_rect_width(&plane_state->base.dst);
1152
1153 if (plane->id == PLANE_CURSOR) {
1154 wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1155 } else if (plane->id == PLANE_PRIMARY &&
1156 level == G4X_WM_LEVEL_NORMAL) {
1157 wm = intel_wm_method1(clock, cpp, latency);
1158 } else {
1159 unsigned int small, large;
1160
1161 small = intel_wm_method1(clock, cpp, latency);
1162 large = intel_wm_method2(clock, htotal, width, cpp, latency);
1163
1164 wm = min(small, large);
1165 }
1166
1167 wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1168 width, cpp);
1169
1170 wm = DIV_ROUND_UP(wm, 64) + 2;
1171
1172 return min_t(unsigned int, wm, USHRT_MAX);
1173 }
1174
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1175 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1176 int level, enum plane_id plane_id, u16 value)
1177 {
1178 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1179 bool dirty = false;
1180
1181 for (; level < intel_wm_num_levels(dev_priv); level++) {
1182 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1183
1184 dirty |= raw->plane[plane_id] != value;
1185 raw->plane[plane_id] = value;
1186 }
1187
1188 return dirty;
1189 }
1190
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1191 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1192 int level, u16 value)
1193 {
1194 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1195 bool dirty = false;
1196
1197 /* NORMAL level doesn't have an FBC watermark */
1198 level = max(level, G4X_WM_LEVEL_SR);
1199
1200 for (; level < intel_wm_num_levels(dev_priv); level++) {
1201 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1202
1203 dirty |= raw->fbc != value;
1204 raw->fbc = value;
1205 }
1206
1207 return dirty;
1208 }
1209
1210 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1211 const struct intel_plane_state *plane_state,
1212 u32 pri_val);
1213
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1214 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1215 const struct intel_plane_state *plane_state)
1216 {
1217 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1218 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1219 enum plane_id plane_id = plane->id;
1220 bool dirty = false;
1221 int level;
1222
1223 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1224 dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1225 if (plane_id == PLANE_PRIMARY)
1226 dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1227 goto out;
1228 }
1229
1230 for (level = 0; level < num_levels; level++) {
1231 struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1232 int wm, max_wm;
1233
1234 wm = g4x_compute_wm(crtc_state, plane_state, level);
1235 max_wm = g4x_plane_fifo_size(plane_id, level);
1236
1237 if (wm > max_wm)
1238 break;
1239
1240 dirty |= raw->plane[plane_id] != wm;
1241 raw->plane[plane_id] = wm;
1242
1243 if (plane_id != PLANE_PRIMARY ||
1244 level == G4X_WM_LEVEL_NORMAL)
1245 continue;
1246
1247 wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1248 raw->plane[plane_id]);
1249 max_wm = g4x_fbc_fifo_size(level);
1250
1251 /*
1252 * FBC wm is not mandatory as we
1253 * can always just disable its use.
1254 */
1255 if (wm > max_wm)
1256 wm = USHRT_MAX;
1257
1258 dirty |= raw->fbc != wm;
1259 raw->fbc = wm;
1260 }
1261
1262 /* mark watermarks as invalid */
1263 dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1264
1265 if (plane_id == PLANE_PRIMARY)
1266 dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1267
1268 out:
1269 if (dirty) {
1270 DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1271 plane->base.name,
1272 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1273 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1274 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1275
1276 if (plane_id == PLANE_PRIMARY)
1277 DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1278 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1279 crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1280 }
1281
1282 return dirty;
1283 }
1284
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1285 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1286 enum plane_id plane_id, int level)
1287 {
1288 const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1289
1290 return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1291 }
1292
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1293 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1294 int level)
1295 {
1296 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1297
1298 if (level > dev_priv->wm.max_level)
1299 return false;
1300
1301 return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1302 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1303 g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1304 }
1305
1306 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1307 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1308 struct g4x_wm_state *wm_state, int level)
1309 {
1310 if (level <= G4X_WM_LEVEL_NORMAL) {
1311 enum plane_id plane_id;
1312
1313 for_each_plane_id_on_crtc(crtc, plane_id)
1314 wm_state->wm.plane[plane_id] = USHRT_MAX;
1315 }
1316
1317 if (level <= G4X_WM_LEVEL_SR) {
1318 wm_state->cxsr = false;
1319 wm_state->sr.cursor = USHRT_MAX;
1320 wm_state->sr.plane = USHRT_MAX;
1321 wm_state->sr.fbc = USHRT_MAX;
1322 }
1323
1324 if (level <= G4X_WM_LEVEL_HPLL) {
1325 wm_state->hpll_en = false;
1326 wm_state->hpll.cursor = USHRT_MAX;
1327 wm_state->hpll.plane = USHRT_MAX;
1328 wm_state->hpll.fbc = USHRT_MAX;
1329 }
1330 }
1331
g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1332 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1333 {
1334 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1335 struct intel_atomic_state *state =
1336 to_intel_atomic_state(crtc_state->base.state);
1337 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1338 int num_active_planes = hweight32(crtc_state->active_planes &
1339 ~BIT(PLANE_CURSOR));
1340 const struct g4x_pipe_wm *raw;
1341 const struct intel_plane_state *old_plane_state;
1342 const struct intel_plane_state *new_plane_state;
1343 struct intel_plane *plane;
1344 enum plane_id plane_id;
1345 int i, level;
1346 unsigned int dirty = 0;
1347
1348 for_each_oldnew_intel_plane_in_state(state, plane,
1349 old_plane_state,
1350 new_plane_state, i) {
1351 if (new_plane_state->base.crtc != &crtc->base &&
1352 old_plane_state->base.crtc != &crtc->base)
1353 continue;
1354
1355 if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1356 dirty |= BIT(plane->id);
1357 }
1358
1359 if (!dirty)
1360 return 0;
1361
1362 level = G4X_WM_LEVEL_NORMAL;
1363 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1364 goto out;
1365
1366 raw = &crtc_state->wm.g4x.raw[level];
1367 for_each_plane_id_on_crtc(crtc, plane_id)
1368 wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1369
1370 level = G4X_WM_LEVEL_SR;
1371
1372 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1373 goto out;
1374
1375 raw = &crtc_state->wm.g4x.raw[level];
1376 wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1377 wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1378 wm_state->sr.fbc = raw->fbc;
1379
1380 wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1381
1382 level = G4X_WM_LEVEL_HPLL;
1383
1384 if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1385 goto out;
1386
1387 raw = &crtc_state->wm.g4x.raw[level];
1388 wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1389 wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1390 wm_state->hpll.fbc = raw->fbc;
1391
1392 wm_state->hpll_en = wm_state->cxsr;
1393
1394 level++;
1395
1396 out:
1397 if (level == G4X_WM_LEVEL_NORMAL)
1398 return -EINVAL;
1399
1400 /* invalidate the higher levels */
1401 g4x_invalidate_wms(crtc, wm_state, level);
1402
1403 /*
1404 * Determine if the FBC watermark(s) can be used. IF
1405 * this isn't the case we prefer to disable the FBC
1406 ( watermark(s) rather than disable the SR/HPLL
1407 * level(s) entirely.
1408 */
1409 wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1410
1411 if (level >= G4X_WM_LEVEL_SR &&
1412 wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1413 wm_state->fbc_en = false;
1414 else if (level >= G4X_WM_LEVEL_HPLL &&
1415 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1416 wm_state->fbc_en = false;
1417
1418 return 0;
1419 }
1420
g4x_compute_intermediate_wm(struct intel_crtc_state * new_crtc_state)1421 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1422 {
1423 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1424 struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1425 const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1426 struct intel_atomic_state *intel_state =
1427 to_intel_atomic_state(new_crtc_state->base.state);
1428 const struct intel_crtc_state *old_crtc_state =
1429 intel_atomic_get_old_crtc_state(intel_state, crtc);
1430 const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1431 enum plane_id plane_id;
1432
1433 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1434 *intermediate = *optimal;
1435
1436 intermediate->cxsr = false;
1437 intermediate->hpll_en = false;
1438 goto out;
1439 }
1440
1441 intermediate->cxsr = optimal->cxsr && active->cxsr &&
1442 !new_crtc_state->disable_cxsr;
1443 intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1444 !new_crtc_state->disable_cxsr;
1445 intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1446
1447 for_each_plane_id_on_crtc(crtc, plane_id) {
1448 intermediate->wm.plane[plane_id] =
1449 max(optimal->wm.plane[plane_id],
1450 active->wm.plane[plane_id]);
1451
1452 WARN_ON(intermediate->wm.plane[plane_id] >
1453 g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1454 }
1455
1456 intermediate->sr.plane = max(optimal->sr.plane,
1457 active->sr.plane);
1458 intermediate->sr.cursor = max(optimal->sr.cursor,
1459 active->sr.cursor);
1460 intermediate->sr.fbc = max(optimal->sr.fbc,
1461 active->sr.fbc);
1462
1463 intermediate->hpll.plane = max(optimal->hpll.plane,
1464 active->hpll.plane);
1465 intermediate->hpll.cursor = max(optimal->hpll.cursor,
1466 active->hpll.cursor);
1467 intermediate->hpll.fbc = max(optimal->hpll.fbc,
1468 active->hpll.fbc);
1469
1470 WARN_ON((intermediate->sr.plane >
1471 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1472 intermediate->sr.cursor >
1473 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1474 intermediate->cxsr);
1475 WARN_ON((intermediate->sr.plane >
1476 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1477 intermediate->sr.cursor >
1478 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1479 intermediate->hpll_en);
1480
1481 WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1482 intermediate->fbc_en && intermediate->cxsr);
1483 WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1484 intermediate->fbc_en && intermediate->hpll_en);
1485
1486 out:
1487 /*
1488 * If our intermediate WM are identical to the final WM, then we can
1489 * omit the post-vblank programming; only update if it's different.
1490 */
1491 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1492 new_crtc_state->wm.need_postvbl_update = true;
1493
1494 return 0;
1495 }
1496
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1497 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1498 struct g4x_wm_values *wm)
1499 {
1500 struct intel_crtc *crtc;
1501 int num_active_crtcs = 0;
1502
1503 wm->cxsr = true;
1504 wm->hpll_en = true;
1505 wm->fbc_en = true;
1506
1507 for_each_intel_crtc(&dev_priv->drm, crtc) {
1508 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1509
1510 if (!crtc->active)
1511 continue;
1512
1513 if (!wm_state->cxsr)
1514 wm->cxsr = false;
1515 if (!wm_state->hpll_en)
1516 wm->hpll_en = false;
1517 if (!wm_state->fbc_en)
1518 wm->fbc_en = false;
1519
1520 num_active_crtcs++;
1521 }
1522
1523 if (num_active_crtcs != 1) {
1524 wm->cxsr = false;
1525 wm->hpll_en = false;
1526 wm->fbc_en = false;
1527 }
1528
1529 for_each_intel_crtc(&dev_priv->drm, crtc) {
1530 const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1531 enum pipe pipe = crtc->pipe;
1532
1533 wm->pipe[pipe] = wm_state->wm;
1534 if (crtc->active && wm->cxsr)
1535 wm->sr = wm_state->sr;
1536 if (crtc->active && wm->hpll_en)
1537 wm->hpll = wm_state->hpll;
1538 }
1539 }
1540
g4x_program_watermarks(struct drm_i915_private * dev_priv)1541 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1542 {
1543 struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1544 struct g4x_wm_values new_wm = {};
1545
1546 g4x_merge_wm(dev_priv, &new_wm);
1547
1548 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1549 return;
1550
1551 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1552 _intel_set_memory_cxsr(dev_priv, false);
1553
1554 g4x_write_wm_values(dev_priv, &new_wm);
1555
1556 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1557 _intel_set_memory_cxsr(dev_priv, true);
1558
1559 *old_wm = new_wm;
1560 }
1561
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1562 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1563 struct intel_crtc_state *crtc_state)
1564 {
1565 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1566 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1567
1568 mutex_lock(&dev_priv->wm.wm_mutex);
1569 crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1570 g4x_program_watermarks(dev_priv);
1571 mutex_unlock(&dev_priv->wm.wm_mutex);
1572 }
1573
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1574 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1575 struct intel_crtc_state *crtc_state)
1576 {
1577 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1578 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1579
1580 if (!crtc_state->wm.need_postvbl_update)
1581 return;
1582
1583 mutex_lock(&dev_priv->wm.wm_mutex);
1584 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1585 g4x_program_watermarks(dev_priv);
1586 mutex_unlock(&dev_priv->wm.wm_mutex);
1587 }
1588
1589 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1590 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1591 unsigned int htotal,
1592 unsigned int width,
1593 unsigned int cpp,
1594 unsigned int latency)
1595 {
1596 unsigned int ret;
1597
1598 ret = intel_wm_method2(pixel_rate, htotal,
1599 width, cpp, latency);
1600 ret = DIV_ROUND_UP(ret, 64);
1601
1602 return ret;
1603 }
1604
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1605 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1606 {
1607 /* all latencies in usec */
1608 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1609
1610 dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1611
1612 if (IS_CHERRYVIEW(dev_priv)) {
1613 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1614 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1615
1616 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1617 }
1618 }
1619
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1620 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1621 const struct intel_plane_state *plane_state,
1622 int level)
1623 {
1624 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1625 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1626 const struct drm_display_mode *adjusted_mode =
1627 &crtc_state->base.adjusted_mode;
1628 unsigned int clock, htotal, cpp, width, wm;
1629
1630 if (dev_priv->wm.pri_latency[level] == 0)
1631 return USHRT_MAX;
1632
1633 if (!intel_wm_plane_visible(crtc_state, plane_state))
1634 return 0;
1635
1636 cpp = plane_state->base.fb->format->cpp[0];
1637 clock = adjusted_mode->crtc_clock;
1638 htotal = adjusted_mode->crtc_htotal;
1639 width = crtc_state->pipe_src_w;
1640
1641 if (plane->id == PLANE_CURSOR) {
1642 /*
1643 * FIXME the formula gives values that are
1644 * too big for the cursor FIFO, and hence we
1645 * would never be able to use cursors. For
1646 * now just hardcode the watermark.
1647 */
1648 wm = 63;
1649 } else {
1650 wm = vlv_wm_method2(clock, htotal, width, cpp,
1651 dev_priv->wm.pri_latency[level] * 10);
1652 }
1653
1654 return min_t(unsigned int, wm, USHRT_MAX);
1655 }
1656
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1657 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1658 {
1659 return (active_planes & (BIT(PLANE_SPRITE0) |
1660 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1661 }
1662
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1663 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1664 {
1665 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1666 const struct g4x_pipe_wm *raw =
1667 &crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1668 struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1669 unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1670 int num_active_planes = hweight32(active_planes);
1671 const int fifo_size = 511;
1672 int fifo_extra, fifo_left = fifo_size;
1673 int sprite0_fifo_extra = 0;
1674 unsigned int total_rate;
1675 enum plane_id plane_id;
1676
1677 /*
1678 * When enabling sprite0 after sprite1 has already been enabled
1679 * we tend to get an underrun unless sprite0 already has some
1680 * FIFO space allcoated. Hence we always allocate at least one
1681 * cacheline for sprite0 whenever sprite1 is enabled.
1682 *
1683 * All other plane enable sequences appear immune to this problem.
1684 */
1685 if (vlv_need_sprite0_fifo_workaround(active_planes))
1686 sprite0_fifo_extra = 1;
1687
1688 total_rate = raw->plane[PLANE_PRIMARY] +
1689 raw->plane[PLANE_SPRITE0] +
1690 raw->plane[PLANE_SPRITE1] +
1691 sprite0_fifo_extra;
1692
1693 if (total_rate > fifo_size)
1694 return -EINVAL;
1695
1696 if (total_rate == 0)
1697 total_rate = 1;
1698
1699 for_each_plane_id_on_crtc(crtc, plane_id) {
1700 unsigned int rate;
1701
1702 if ((active_planes & BIT(plane_id)) == 0) {
1703 fifo_state->plane[plane_id] = 0;
1704 continue;
1705 }
1706
1707 rate = raw->plane[plane_id];
1708 fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1709 fifo_left -= fifo_state->plane[plane_id];
1710 }
1711
1712 fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1713 fifo_left -= sprite0_fifo_extra;
1714
1715 fifo_state->plane[PLANE_CURSOR] = 63;
1716
1717 fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1718
1719 /* spread the remainder evenly */
1720 for_each_plane_id_on_crtc(crtc, plane_id) {
1721 int plane_extra;
1722
1723 if (fifo_left == 0)
1724 break;
1725
1726 if ((active_planes & BIT(plane_id)) == 0)
1727 continue;
1728
1729 plane_extra = min(fifo_extra, fifo_left);
1730 fifo_state->plane[plane_id] += plane_extra;
1731 fifo_left -= plane_extra;
1732 }
1733
1734 WARN_ON(active_planes != 0 && fifo_left != 0);
1735
1736 /* give it all to the first plane if none are active */
1737 if (active_planes == 0) {
1738 WARN_ON(fifo_left != fifo_size);
1739 fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1740 }
1741
1742 return 0;
1743 }
1744
1745 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1746 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1747 struct vlv_wm_state *wm_state, int level)
1748 {
1749 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1750
1751 for (; level < intel_wm_num_levels(dev_priv); level++) {
1752 enum plane_id plane_id;
1753
1754 for_each_plane_id_on_crtc(crtc, plane_id)
1755 wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1756
1757 wm_state->sr[level].cursor = USHRT_MAX;
1758 wm_state->sr[level].plane = USHRT_MAX;
1759 }
1760 }
1761
vlv_invert_wm_value(u16 wm,u16 fifo_size)1762 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1763 {
1764 if (wm > fifo_size)
1765 return USHRT_MAX;
1766 else
1767 return fifo_size - wm;
1768 }
1769
1770 /*
1771 * Starting from 'level' set all higher
1772 * levels to 'value' in the "raw" watermarks.
1773 */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1774 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1775 int level, enum plane_id plane_id, u16 value)
1776 {
1777 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1778 int num_levels = intel_wm_num_levels(dev_priv);
1779 bool dirty = false;
1780
1781 for (; level < num_levels; level++) {
1782 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1783
1784 dirty |= raw->plane[plane_id] != value;
1785 raw->plane[plane_id] = value;
1786 }
1787
1788 return dirty;
1789 }
1790
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1791 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1792 const struct intel_plane_state *plane_state)
1793 {
1794 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1795 enum plane_id plane_id = plane->id;
1796 int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1797 int level;
1798 bool dirty = false;
1799
1800 if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1801 dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1802 goto out;
1803 }
1804
1805 for (level = 0; level < num_levels; level++) {
1806 struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1807 int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1808 int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1809
1810 if (wm > max_wm)
1811 break;
1812
1813 dirty |= raw->plane[plane_id] != wm;
1814 raw->plane[plane_id] = wm;
1815 }
1816
1817 /* mark all higher levels as invalid */
1818 dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1819
1820 out:
1821 if (dirty)
1822 DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1823 plane->base.name,
1824 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1825 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1826 crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1827
1828 return dirty;
1829 }
1830
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1831 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1832 enum plane_id plane_id, int level)
1833 {
1834 const struct g4x_pipe_wm *raw =
1835 &crtc_state->wm.vlv.raw[level];
1836 const struct vlv_fifo_state *fifo_state =
1837 &crtc_state->wm.vlv.fifo_state;
1838
1839 return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1840 }
1841
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1842 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1843 {
1844 return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1845 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1846 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1847 vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1848 }
1849
vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1850 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1851 {
1852 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1853 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1854 struct intel_atomic_state *state =
1855 to_intel_atomic_state(crtc_state->base.state);
1856 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1857 const struct vlv_fifo_state *fifo_state =
1858 &crtc_state->wm.vlv.fifo_state;
1859 int num_active_planes = hweight32(crtc_state->active_planes &
1860 ~BIT(PLANE_CURSOR));
1861 bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1862 const struct intel_plane_state *old_plane_state;
1863 const struct intel_plane_state *new_plane_state;
1864 struct intel_plane *plane;
1865 enum plane_id plane_id;
1866 int level, ret, i;
1867 unsigned int dirty = 0;
1868
1869 for_each_oldnew_intel_plane_in_state(state, plane,
1870 old_plane_state,
1871 new_plane_state, i) {
1872 if (new_plane_state->base.crtc != &crtc->base &&
1873 old_plane_state->base.crtc != &crtc->base)
1874 continue;
1875
1876 if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1877 dirty |= BIT(plane->id);
1878 }
1879
1880 /*
1881 * DSPARB registers may have been reset due to the
1882 * power well being turned off. Make sure we restore
1883 * them to a consistent state even if no primary/sprite
1884 * planes are initially active.
1885 */
1886 if (needs_modeset)
1887 crtc_state->fifo_changed = true;
1888
1889 if (!dirty)
1890 return 0;
1891
1892 /* cursor changes don't warrant a FIFO recompute */
1893 if (dirty & ~BIT(PLANE_CURSOR)) {
1894 const struct intel_crtc_state *old_crtc_state =
1895 intel_atomic_get_old_crtc_state(state, crtc);
1896 const struct vlv_fifo_state *old_fifo_state =
1897 &old_crtc_state->wm.vlv.fifo_state;
1898
1899 ret = vlv_compute_fifo(crtc_state);
1900 if (ret)
1901 return ret;
1902
1903 if (needs_modeset ||
1904 memcmp(old_fifo_state, fifo_state,
1905 sizeof(*fifo_state)) != 0)
1906 crtc_state->fifo_changed = true;
1907 }
1908
1909 /* initially allow all levels */
1910 wm_state->num_levels = intel_wm_num_levels(dev_priv);
1911 /*
1912 * Note that enabling cxsr with no primary/sprite planes
1913 * enabled can wedge the pipe. Hence we only allow cxsr
1914 * with exactly one enabled primary/sprite plane.
1915 */
1916 wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1917
1918 for (level = 0; level < wm_state->num_levels; level++) {
1919 const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1920 const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1921
1922 if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1923 break;
1924
1925 for_each_plane_id_on_crtc(crtc, plane_id) {
1926 wm_state->wm[level].plane[plane_id] =
1927 vlv_invert_wm_value(raw->plane[plane_id],
1928 fifo_state->plane[plane_id]);
1929 }
1930
1931 wm_state->sr[level].plane =
1932 vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1933 raw->plane[PLANE_SPRITE0],
1934 raw->plane[PLANE_SPRITE1]),
1935 sr_fifo_size);
1936
1937 wm_state->sr[level].cursor =
1938 vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1939 63);
1940 }
1941
1942 if (level == 0)
1943 return -EINVAL;
1944
1945 /* limit to only levels we can actually handle */
1946 wm_state->num_levels = level;
1947
1948 /* invalidate the higher levels */
1949 vlv_invalidate_wms(crtc, wm_state, level);
1950
1951 return 0;
1952 }
1953
1954 #define VLV_FIFO(plane, value) \
1955 (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1956
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1957 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1958 struct intel_crtc_state *crtc_state)
1959 {
1960 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1961 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1962 struct intel_uncore *uncore = &dev_priv->uncore;
1963 const struct vlv_fifo_state *fifo_state =
1964 &crtc_state->wm.vlv.fifo_state;
1965 int sprite0_start, sprite1_start, fifo_size;
1966
1967 if (!crtc_state->fifo_changed)
1968 return;
1969
1970 sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1971 sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1972 fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1973
1974 WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1975 WARN_ON(fifo_size != 511);
1976
1977 trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1978
1979 /*
1980 * uncore.lock serves a double purpose here. It allows us to
1981 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1982 * it protects the DSPARB registers from getting clobbered by
1983 * parallel updates from multiple pipes.
1984 *
1985 * intel_pipe_update_start() has already disabled interrupts
1986 * for us, so a plain spin_lock() is sufficient here.
1987 */
1988 spin_lock(&uncore->lock);
1989
1990 switch (crtc->pipe) {
1991 u32 dsparb, dsparb2, dsparb3;
1992 case PIPE_A:
1993 dsparb = intel_uncore_read_fw(uncore, DSPARB);
1994 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1995
1996 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1997 VLV_FIFO(SPRITEB, 0xff));
1998 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1999 VLV_FIFO(SPRITEB, sprite1_start));
2000
2001 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2002 VLV_FIFO(SPRITEB_HI, 0x1));
2003 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2004 VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2005
2006 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2007 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2008 break;
2009 case PIPE_B:
2010 dsparb = intel_uncore_read_fw(uncore, DSPARB);
2011 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2012
2013 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2014 VLV_FIFO(SPRITED, 0xff));
2015 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2016 VLV_FIFO(SPRITED, sprite1_start));
2017
2018 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2019 VLV_FIFO(SPRITED_HI, 0xff));
2020 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2021 VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2022
2023 intel_uncore_write_fw(uncore, DSPARB, dsparb);
2024 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2025 break;
2026 case PIPE_C:
2027 dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2028 dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2029
2030 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2031 VLV_FIFO(SPRITEF, 0xff));
2032 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2033 VLV_FIFO(SPRITEF, sprite1_start));
2034
2035 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2036 VLV_FIFO(SPRITEF_HI, 0xff));
2037 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2038 VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2039
2040 intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2041 intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2042 break;
2043 default:
2044 break;
2045 }
2046
2047 intel_uncore_posting_read_fw(uncore, DSPARB);
2048
2049 spin_unlock(&uncore->lock);
2050 }
2051
2052 #undef VLV_FIFO
2053
vlv_compute_intermediate_wm(struct intel_crtc_state * new_crtc_state)2054 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2055 {
2056 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2057 struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2058 const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2059 struct intel_atomic_state *intel_state =
2060 to_intel_atomic_state(new_crtc_state->base.state);
2061 const struct intel_crtc_state *old_crtc_state =
2062 intel_atomic_get_old_crtc_state(intel_state, crtc);
2063 const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2064 int level;
2065
2066 if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2067 *intermediate = *optimal;
2068
2069 intermediate->cxsr = false;
2070 goto out;
2071 }
2072
2073 intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2074 intermediate->cxsr = optimal->cxsr && active->cxsr &&
2075 !new_crtc_state->disable_cxsr;
2076
2077 for (level = 0; level < intermediate->num_levels; level++) {
2078 enum plane_id plane_id;
2079
2080 for_each_plane_id_on_crtc(crtc, plane_id) {
2081 intermediate->wm[level].plane[plane_id] =
2082 min(optimal->wm[level].plane[plane_id],
2083 active->wm[level].plane[plane_id]);
2084 }
2085
2086 intermediate->sr[level].plane = min(optimal->sr[level].plane,
2087 active->sr[level].plane);
2088 intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2089 active->sr[level].cursor);
2090 }
2091
2092 vlv_invalidate_wms(crtc, intermediate, level);
2093
2094 out:
2095 /*
2096 * If our intermediate WM are identical to the final WM, then we can
2097 * omit the post-vblank programming; only update if it's different.
2098 */
2099 if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2100 new_crtc_state->wm.need_postvbl_update = true;
2101
2102 return 0;
2103 }
2104
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2105 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2106 struct vlv_wm_values *wm)
2107 {
2108 struct intel_crtc *crtc;
2109 int num_active_crtcs = 0;
2110
2111 wm->level = dev_priv->wm.max_level;
2112 wm->cxsr = true;
2113
2114 for_each_intel_crtc(&dev_priv->drm, crtc) {
2115 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116
2117 if (!crtc->active)
2118 continue;
2119
2120 if (!wm_state->cxsr)
2121 wm->cxsr = false;
2122
2123 num_active_crtcs++;
2124 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2125 }
2126
2127 if (num_active_crtcs != 1)
2128 wm->cxsr = false;
2129
2130 if (num_active_crtcs > 1)
2131 wm->level = VLV_WM_LEVEL_PM2;
2132
2133 for_each_intel_crtc(&dev_priv->drm, crtc) {
2134 const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2135 enum pipe pipe = crtc->pipe;
2136
2137 wm->pipe[pipe] = wm_state->wm[wm->level];
2138 if (crtc->active && wm->cxsr)
2139 wm->sr = wm_state->sr[wm->level];
2140
2141 wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2142 wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2143 wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2144 wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2145 }
2146 }
2147
vlv_program_watermarks(struct drm_i915_private * dev_priv)2148 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2149 {
2150 struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2151 struct vlv_wm_values new_wm = {};
2152
2153 vlv_merge_wm(dev_priv, &new_wm);
2154
2155 if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2156 return;
2157
2158 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2159 chv_set_memory_dvfs(dev_priv, false);
2160
2161 if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2162 chv_set_memory_pm5(dev_priv, false);
2163
2164 if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2165 _intel_set_memory_cxsr(dev_priv, false);
2166
2167 vlv_write_wm_values(dev_priv, &new_wm);
2168
2169 if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2170 _intel_set_memory_cxsr(dev_priv, true);
2171
2172 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2173 chv_set_memory_pm5(dev_priv, true);
2174
2175 if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2176 chv_set_memory_dvfs(dev_priv, true);
2177
2178 *old_wm = new_wm;
2179 }
2180
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2181 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2182 struct intel_crtc_state *crtc_state)
2183 {
2184 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2185 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2186
2187 mutex_lock(&dev_priv->wm.wm_mutex);
2188 crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2189 vlv_program_watermarks(dev_priv);
2190 mutex_unlock(&dev_priv->wm.wm_mutex);
2191 }
2192
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2193 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2194 struct intel_crtc_state *crtc_state)
2195 {
2196 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2197 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2198
2199 if (!crtc_state->wm.need_postvbl_update)
2200 return;
2201
2202 mutex_lock(&dev_priv->wm.wm_mutex);
2203 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2204 vlv_program_watermarks(dev_priv);
2205 mutex_unlock(&dev_priv->wm.wm_mutex);
2206 }
2207
i965_update_wm(struct intel_crtc * unused_crtc)2208 static void i965_update_wm(struct intel_crtc *unused_crtc)
2209 {
2210 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2211 struct intel_crtc *crtc;
2212 int srwm = 1;
2213 int cursor_sr = 16;
2214 bool cxsr_enabled;
2215
2216 /* Calc sr entries for one plane configs */
2217 crtc = single_enabled_crtc(dev_priv);
2218 if (crtc) {
2219 /* self-refresh has much higher latency */
2220 static const int sr_latency_ns = 12000;
2221 const struct drm_display_mode *adjusted_mode =
2222 &crtc->config->base.adjusted_mode;
2223 const struct drm_framebuffer *fb =
2224 crtc->base.primary->state->fb;
2225 int clock = adjusted_mode->crtc_clock;
2226 int htotal = adjusted_mode->crtc_htotal;
2227 int hdisplay = crtc->config->pipe_src_w;
2228 int cpp = fb->format->cpp[0];
2229 int entries;
2230
2231 entries = intel_wm_method2(clock, htotal,
2232 hdisplay, cpp, sr_latency_ns / 100);
2233 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2234 srwm = I965_FIFO_SIZE - entries;
2235 if (srwm < 0)
2236 srwm = 1;
2237 srwm &= 0x1ff;
2238 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2239 entries, srwm);
2240
2241 entries = intel_wm_method2(clock, htotal,
2242 crtc->base.cursor->state->crtc_w, 4,
2243 sr_latency_ns / 100);
2244 entries = DIV_ROUND_UP(entries,
2245 i965_cursor_wm_info.cacheline_size) +
2246 i965_cursor_wm_info.guard_size;
2247
2248 cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2249 if (cursor_sr > i965_cursor_wm_info.max_wm)
2250 cursor_sr = i965_cursor_wm_info.max_wm;
2251
2252 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2253 "cursor %d\n", srwm, cursor_sr);
2254
2255 cxsr_enabled = true;
2256 } else {
2257 cxsr_enabled = false;
2258 /* Turn off self refresh if both pipes are enabled */
2259 intel_set_memory_cxsr(dev_priv, false);
2260 }
2261
2262 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2263 srwm);
2264
2265 /* 965 has limitations... */
2266 I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2267 FW_WM(8, CURSORB) |
2268 FW_WM(8, PLANEB) |
2269 FW_WM(8, PLANEA));
2270 I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2271 FW_WM(8, PLANEC_OLD));
2272 /* update cursor SR watermark */
2273 I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2274
2275 if (cxsr_enabled)
2276 intel_set_memory_cxsr(dev_priv, true);
2277 }
2278
2279 #undef FW_WM
2280
i9xx_update_wm(struct intel_crtc * unused_crtc)2281 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2282 {
2283 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2284 const struct intel_watermark_params *wm_info;
2285 u32 fwater_lo;
2286 u32 fwater_hi;
2287 int cwm, srwm = 1;
2288 int fifo_size;
2289 int planea_wm, planeb_wm;
2290 struct intel_crtc *crtc, *enabled = NULL;
2291
2292 if (IS_I945GM(dev_priv))
2293 wm_info = &i945_wm_info;
2294 else if (!IS_GEN(dev_priv, 2))
2295 wm_info = &i915_wm_info;
2296 else
2297 wm_info = &i830_a_wm_info;
2298
2299 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2300 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2301 if (intel_crtc_active(crtc)) {
2302 const struct drm_display_mode *adjusted_mode =
2303 &crtc->config->base.adjusted_mode;
2304 const struct drm_framebuffer *fb =
2305 crtc->base.primary->state->fb;
2306 int cpp;
2307
2308 if (IS_GEN(dev_priv, 2))
2309 cpp = 4;
2310 else
2311 cpp = fb->format->cpp[0];
2312
2313 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2314 wm_info, fifo_size, cpp,
2315 pessimal_latency_ns);
2316 enabled = crtc;
2317 } else {
2318 planea_wm = fifo_size - wm_info->guard_size;
2319 if (planea_wm > (long)wm_info->max_wm)
2320 planea_wm = wm_info->max_wm;
2321 }
2322
2323 if (IS_GEN(dev_priv, 2))
2324 wm_info = &i830_bc_wm_info;
2325
2326 fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2327 crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2328 if (intel_crtc_active(crtc)) {
2329 const struct drm_display_mode *adjusted_mode =
2330 &crtc->config->base.adjusted_mode;
2331 const struct drm_framebuffer *fb =
2332 crtc->base.primary->state->fb;
2333 int cpp;
2334
2335 if (IS_GEN(dev_priv, 2))
2336 cpp = 4;
2337 else
2338 cpp = fb->format->cpp[0];
2339
2340 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2341 wm_info, fifo_size, cpp,
2342 pessimal_latency_ns);
2343 if (enabled == NULL)
2344 enabled = crtc;
2345 else
2346 enabled = NULL;
2347 } else {
2348 planeb_wm = fifo_size - wm_info->guard_size;
2349 if (planeb_wm > (long)wm_info->max_wm)
2350 planeb_wm = wm_info->max_wm;
2351 }
2352
2353 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2354
2355 if (IS_I915GM(dev_priv) && enabled) {
2356 struct drm_i915_gem_object *obj;
2357
2358 obj = intel_fb_obj(enabled->base.primary->state->fb);
2359
2360 /* self-refresh seems busted with untiled */
2361 if (!i915_gem_object_is_tiled(obj))
2362 enabled = NULL;
2363 }
2364
2365 /*
2366 * Overlay gets an aggressive default since video jitter is bad.
2367 */
2368 cwm = 2;
2369
2370 /* Play safe and disable self-refresh before adjusting watermarks. */
2371 intel_set_memory_cxsr(dev_priv, false);
2372
2373 /* Calc sr entries for one plane configs */
2374 if (HAS_FW_BLC(dev_priv) && enabled) {
2375 /* self-refresh has much higher latency */
2376 static const int sr_latency_ns = 6000;
2377 const struct drm_display_mode *adjusted_mode =
2378 &enabled->config->base.adjusted_mode;
2379 const struct drm_framebuffer *fb =
2380 enabled->base.primary->state->fb;
2381 int clock = adjusted_mode->crtc_clock;
2382 int htotal = adjusted_mode->crtc_htotal;
2383 int hdisplay = enabled->config->pipe_src_w;
2384 int cpp;
2385 int entries;
2386
2387 if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2388 cpp = 4;
2389 else
2390 cpp = fb->format->cpp[0];
2391
2392 entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2393 sr_latency_ns / 100);
2394 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2395 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2396 srwm = wm_info->fifo_size - entries;
2397 if (srwm < 0)
2398 srwm = 1;
2399
2400 if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2401 I915_WRITE(FW_BLC_SELF,
2402 FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2403 else
2404 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2405 }
2406
2407 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2408 planea_wm, planeb_wm, cwm, srwm);
2409
2410 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2411 fwater_hi = (cwm & 0x1f);
2412
2413 /* Set request length to 8 cachelines per fetch */
2414 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2415 fwater_hi = fwater_hi | (1 << 8);
2416
2417 I915_WRITE(FW_BLC, fwater_lo);
2418 I915_WRITE(FW_BLC2, fwater_hi);
2419
2420 if (enabled)
2421 intel_set_memory_cxsr(dev_priv, true);
2422 }
2423
i845_update_wm(struct intel_crtc * unused_crtc)2424 static void i845_update_wm(struct intel_crtc *unused_crtc)
2425 {
2426 struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2427 struct intel_crtc *crtc;
2428 const struct drm_display_mode *adjusted_mode;
2429 u32 fwater_lo;
2430 int planea_wm;
2431
2432 crtc = single_enabled_crtc(dev_priv);
2433 if (crtc == NULL)
2434 return;
2435
2436 adjusted_mode = &crtc->config->base.adjusted_mode;
2437 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2438 &i845_wm_info,
2439 dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2440 4, pessimal_latency_ns);
2441 fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2442 fwater_lo |= (3<<8) | planea_wm;
2443
2444 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2445
2446 I915_WRITE(FW_BLC, fwater_lo);
2447 }
2448
2449 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2450 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2451 unsigned int cpp,
2452 unsigned int latency)
2453 {
2454 unsigned int ret;
2455
2456 ret = intel_wm_method1(pixel_rate, cpp, latency);
2457 ret = DIV_ROUND_UP(ret, 64) + 2;
2458
2459 return ret;
2460 }
2461
2462 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2463 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2464 unsigned int htotal,
2465 unsigned int width,
2466 unsigned int cpp,
2467 unsigned int latency)
2468 {
2469 unsigned int ret;
2470
2471 ret = intel_wm_method2(pixel_rate, htotal,
2472 width, cpp, latency);
2473 ret = DIV_ROUND_UP(ret, 64) + 2;
2474
2475 return ret;
2476 }
2477
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2478 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2479 {
2480 /*
2481 * Neither of these should be possible since this function shouldn't be
2482 * called if the CRTC is off or the plane is invisible. But let's be
2483 * extra paranoid to avoid a potential divide-by-zero if we screw up
2484 * elsewhere in the driver.
2485 */
2486 if (WARN_ON(!cpp))
2487 return 0;
2488 if (WARN_ON(!horiz_pixels))
2489 return 0;
2490
2491 return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2492 }
2493
2494 struct ilk_wm_maximums {
2495 u16 pri;
2496 u16 spr;
2497 u16 cur;
2498 u16 fbc;
2499 };
2500
2501 /*
2502 * For both WM_PIPE and WM_LP.
2503 * mem_value must be in 0.1us units.
2504 */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2505 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2506 const struct intel_plane_state *plane_state,
2507 u32 mem_value, bool is_lp)
2508 {
2509 u32 method1, method2;
2510 int cpp;
2511
2512 if (mem_value == 0)
2513 return U32_MAX;
2514
2515 if (!intel_wm_plane_visible(crtc_state, plane_state))
2516 return 0;
2517
2518 cpp = plane_state->base.fb->format->cpp[0];
2519
2520 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2521
2522 if (!is_lp)
2523 return method1;
2524
2525 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2526 crtc_state->base.adjusted_mode.crtc_htotal,
2527 drm_rect_width(&plane_state->base.dst),
2528 cpp, mem_value);
2529
2530 return min(method1, method2);
2531 }
2532
2533 /*
2534 * For both WM_PIPE and WM_LP.
2535 * mem_value must be in 0.1us units.
2536 */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2537 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2538 const struct intel_plane_state *plane_state,
2539 u32 mem_value)
2540 {
2541 u32 method1, method2;
2542 int cpp;
2543
2544 if (mem_value == 0)
2545 return U32_MAX;
2546
2547 if (!intel_wm_plane_visible(crtc_state, plane_state))
2548 return 0;
2549
2550 cpp = plane_state->base.fb->format->cpp[0];
2551
2552 method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2553 method2 = ilk_wm_method2(crtc_state->pixel_rate,
2554 crtc_state->base.adjusted_mode.crtc_htotal,
2555 drm_rect_width(&plane_state->base.dst),
2556 cpp, mem_value);
2557 return min(method1, method2);
2558 }
2559
2560 /*
2561 * For both WM_PIPE and WM_LP.
2562 * mem_value must be in 0.1us units.
2563 */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2564 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2565 const struct intel_plane_state *plane_state,
2566 u32 mem_value)
2567 {
2568 int cpp;
2569
2570 if (mem_value == 0)
2571 return U32_MAX;
2572
2573 if (!intel_wm_plane_visible(crtc_state, plane_state))
2574 return 0;
2575
2576 cpp = plane_state->base.fb->format->cpp[0];
2577
2578 return ilk_wm_method2(crtc_state->pixel_rate,
2579 crtc_state->base.adjusted_mode.crtc_htotal,
2580 plane_state->base.crtc_w, cpp, mem_value);
2581 }
2582
2583 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2584 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2585 const struct intel_plane_state *plane_state,
2586 u32 pri_val)
2587 {
2588 int cpp;
2589
2590 if (!intel_wm_plane_visible(crtc_state, plane_state))
2591 return 0;
2592
2593 cpp = plane_state->base.fb->format->cpp[0];
2594
2595 return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2596 }
2597
2598 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2599 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2600 {
2601 if (INTEL_GEN(dev_priv) >= 8)
2602 return 3072;
2603 else if (INTEL_GEN(dev_priv) >= 7)
2604 return 768;
2605 else
2606 return 512;
2607 }
2608
2609 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2610 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2611 int level, bool is_sprite)
2612 {
2613 if (INTEL_GEN(dev_priv) >= 8)
2614 /* BDW primary/sprite plane watermarks */
2615 return level == 0 ? 255 : 2047;
2616 else if (INTEL_GEN(dev_priv) >= 7)
2617 /* IVB/HSW primary/sprite plane watermarks */
2618 return level == 0 ? 127 : 1023;
2619 else if (!is_sprite)
2620 /* ILK/SNB primary plane watermarks */
2621 return level == 0 ? 127 : 511;
2622 else
2623 /* ILK/SNB sprite plane watermarks */
2624 return level == 0 ? 63 : 255;
2625 }
2626
2627 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2628 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2629 {
2630 if (INTEL_GEN(dev_priv) >= 7)
2631 return level == 0 ? 63 : 255;
2632 else
2633 return level == 0 ? 31 : 63;
2634 }
2635
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2636 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2637 {
2638 if (INTEL_GEN(dev_priv) >= 8)
2639 return 31;
2640 else
2641 return 15;
2642 }
2643
2644 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2645 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2646 int level,
2647 const struct intel_wm_config *config,
2648 enum intel_ddb_partitioning ddb_partitioning,
2649 bool is_sprite)
2650 {
2651 unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2652
2653 /* if sprites aren't enabled, sprites get nothing */
2654 if (is_sprite && !config->sprites_enabled)
2655 return 0;
2656
2657 /* HSW allows LP1+ watermarks even with multiple pipes */
2658 if (level == 0 || config->num_pipes_active > 1) {
2659 fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2660
2661 /*
2662 * For some reason the non self refresh
2663 * FIFO size is only half of the self
2664 * refresh FIFO size on ILK/SNB.
2665 */
2666 if (INTEL_GEN(dev_priv) <= 6)
2667 fifo_size /= 2;
2668 }
2669
2670 if (config->sprites_enabled) {
2671 /* level 0 is always calculated with 1:1 split */
2672 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2673 if (is_sprite)
2674 fifo_size *= 5;
2675 fifo_size /= 6;
2676 } else {
2677 fifo_size /= 2;
2678 }
2679 }
2680
2681 /* clamp to max that the registers can hold */
2682 return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2683 }
2684
2685 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2686 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2687 int level,
2688 const struct intel_wm_config *config)
2689 {
2690 /* HSW LP1+ watermarks w/ multiple pipes */
2691 if (level > 0 && config->num_pipes_active > 1)
2692 return 64;
2693
2694 /* otherwise just report max that registers can hold */
2695 return ilk_cursor_wm_reg_max(dev_priv, level);
2696 }
2697
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2698 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2699 int level,
2700 const struct intel_wm_config *config,
2701 enum intel_ddb_partitioning ddb_partitioning,
2702 struct ilk_wm_maximums *max)
2703 {
2704 max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2705 max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2706 max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2707 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2708 }
2709
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2710 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2711 int level,
2712 struct ilk_wm_maximums *max)
2713 {
2714 max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2715 max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2716 max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2717 max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2718 }
2719
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2720 static bool ilk_validate_wm_level(int level,
2721 const struct ilk_wm_maximums *max,
2722 struct intel_wm_level *result)
2723 {
2724 bool ret;
2725
2726 /* already determined to be invalid? */
2727 if (!result->enable)
2728 return false;
2729
2730 result->enable = result->pri_val <= max->pri &&
2731 result->spr_val <= max->spr &&
2732 result->cur_val <= max->cur;
2733
2734 ret = result->enable;
2735
2736 /*
2737 * HACK until we can pre-compute everything,
2738 * and thus fail gracefully if LP0 watermarks
2739 * are exceeded...
2740 */
2741 if (level == 0 && !result->enable) {
2742 if (result->pri_val > max->pri)
2743 DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2744 level, result->pri_val, max->pri);
2745 if (result->spr_val > max->spr)
2746 DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2747 level, result->spr_val, max->spr);
2748 if (result->cur_val > max->cur)
2749 DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2750 level, result->cur_val, max->cur);
2751
2752 result->pri_val = min_t(u32, result->pri_val, max->pri);
2753 result->spr_val = min_t(u32, result->spr_val, max->spr);
2754 result->cur_val = min_t(u32, result->cur_val, max->cur);
2755 result->enable = true;
2756 }
2757
2758 return ret;
2759 }
2760
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2761 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2762 const struct intel_crtc *intel_crtc,
2763 int level,
2764 struct intel_crtc_state *crtc_state,
2765 const struct intel_plane_state *pristate,
2766 const struct intel_plane_state *sprstate,
2767 const struct intel_plane_state *curstate,
2768 struct intel_wm_level *result)
2769 {
2770 u16 pri_latency = dev_priv->wm.pri_latency[level];
2771 u16 spr_latency = dev_priv->wm.spr_latency[level];
2772 u16 cur_latency = dev_priv->wm.cur_latency[level];
2773
2774 /* WM1+ latency values stored in 0.5us units */
2775 if (level > 0) {
2776 pri_latency *= 5;
2777 spr_latency *= 5;
2778 cur_latency *= 5;
2779 }
2780
2781 if (pristate) {
2782 result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2783 pri_latency, level);
2784 result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2785 }
2786
2787 if (sprstate)
2788 result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2789
2790 if (curstate)
2791 result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2792
2793 result->enable = true;
2794 }
2795
2796 static u32
hsw_compute_linetime_wm(const struct intel_crtc_state * crtc_state)2797 hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2798 {
2799 const struct intel_atomic_state *intel_state =
2800 to_intel_atomic_state(crtc_state->base.state);
2801 const struct drm_display_mode *adjusted_mode =
2802 &crtc_state->base.adjusted_mode;
2803 u32 linetime, ips_linetime;
2804
2805 if (!crtc_state->base.active)
2806 return 0;
2807 if (WARN_ON(adjusted_mode->crtc_clock == 0))
2808 return 0;
2809 if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2810 return 0;
2811
2812 /* The WM are computed with base on how long it takes to fill a single
2813 * row at the given clock rate, multiplied by 8.
2814 * */
2815 linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2816 adjusted_mode->crtc_clock);
2817 ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2818 intel_state->cdclk.logical.cdclk);
2819
2820 return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2821 PIPE_WM_LINETIME_TIME(linetime);
2822 }
2823
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[8])2824 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2825 u16 wm[8])
2826 {
2827 struct intel_uncore *uncore = &dev_priv->uncore;
2828
2829 if (INTEL_GEN(dev_priv) >= 9) {
2830 u32 val;
2831 int ret, i;
2832 int level, max_level = ilk_wm_max_level(dev_priv);
2833
2834 /* read the first set of memory latencies[0:3] */
2835 val = 0; /* data0 to be programmed to 0 for first set */
2836 ret = sandybridge_pcode_read(dev_priv,
2837 GEN9_PCODE_READ_MEM_LATENCY,
2838 &val, NULL);
2839
2840 if (ret) {
2841 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2842 return;
2843 }
2844
2845 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2846 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2847 GEN9_MEM_LATENCY_LEVEL_MASK;
2848 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2849 GEN9_MEM_LATENCY_LEVEL_MASK;
2850 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2851 GEN9_MEM_LATENCY_LEVEL_MASK;
2852
2853 /* read the second set of memory latencies[4:7] */
2854 val = 1; /* data0 to be programmed to 1 for second set */
2855 ret = sandybridge_pcode_read(dev_priv,
2856 GEN9_PCODE_READ_MEM_LATENCY,
2857 &val, NULL);
2858 if (ret) {
2859 DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2860 return;
2861 }
2862
2863 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2864 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2865 GEN9_MEM_LATENCY_LEVEL_MASK;
2866 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2867 GEN9_MEM_LATENCY_LEVEL_MASK;
2868 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2869 GEN9_MEM_LATENCY_LEVEL_MASK;
2870
2871 /*
2872 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2873 * need to be disabled. We make sure to sanitize the values out
2874 * of the punit to satisfy this requirement.
2875 */
2876 for (level = 1; level <= max_level; level++) {
2877 if (wm[level] == 0) {
2878 for (i = level + 1; i <= max_level; i++)
2879 wm[i] = 0;
2880 break;
2881 }
2882 }
2883
2884 /*
2885 * WaWmMemoryReadLatency:skl+,glk
2886 *
2887 * punit doesn't take into account the read latency so we need
2888 * to add 2us to the various latency levels we retrieve from the
2889 * punit when level 0 response data us 0us.
2890 */
2891 if (wm[0] == 0) {
2892 wm[0] += 2;
2893 for (level = 1; level <= max_level; level++) {
2894 if (wm[level] == 0)
2895 break;
2896 wm[level] += 2;
2897 }
2898 }
2899
2900 /*
2901 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2902 * If we could not get dimm info enable this WA to prevent from
2903 * any underrun. If not able to get Dimm info assume 16GB dimm
2904 * to avoid any underrun.
2905 */
2906 if (dev_priv->dram_info.is_16gb_dimm)
2907 wm[0] += 1;
2908
2909 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2910 u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2911
2912 wm[0] = (sskpd >> 56) & 0xFF;
2913 if (wm[0] == 0)
2914 wm[0] = sskpd & 0xF;
2915 wm[1] = (sskpd >> 4) & 0xFF;
2916 wm[2] = (sskpd >> 12) & 0xFF;
2917 wm[3] = (sskpd >> 20) & 0x1FF;
2918 wm[4] = (sskpd >> 32) & 0x1FF;
2919 } else if (INTEL_GEN(dev_priv) >= 6) {
2920 u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2921
2922 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2923 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2924 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2925 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2926 } else if (INTEL_GEN(dev_priv) >= 5) {
2927 u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2928
2929 /* ILK primary LP0 latency is 700 ns */
2930 wm[0] = 7;
2931 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2932 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2933 } else {
2934 MISSING_CASE(INTEL_DEVID(dev_priv));
2935 }
2936 }
2937
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2938 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2939 u16 wm[5])
2940 {
2941 /* ILK sprite LP0 latency is 1300 ns */
2942 if (IS_GEN(dev_priv, 5))
2943 wm[0] = 13;
2944 }
2945
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2946 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2947 u16 wm[5])
2948 {
2949 /* ILK cursor LP0 latency is 1300 ns */
2950 if (IS_GEN(dev_priv, 5))
2951 wm[0] = 13;
2952 }
2953
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2954 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2955 {
2956 /* how many WM levels are we expecting */
2957 if (INTEL_GEN(dev_priv) >= 9)
2958 return 7;
2959 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2960 return 4;
2961 else if (INTEL_GEN(dev_priv) >= 6)
2962 return 3;
2963 else
2964 return 2;
2965 }
2966
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[8])2967 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2968 const char *name,
2969 const u16 wm[8])
2970 {
2971 int level, max_level = ilk_wm_max_level(dev_priv);
2972
2973 for (level = 0; level <= max_level; level++) {
2974 unsigned int latency = wm[level];
2975
2976 if (latency == 0) {
2977 DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2978 name, level);
2979 continue;
2980 }
2981
2982 /*
2983 * - latencies are in us on gen9.
2984 * - before then, WM1+ latency values are in 0.5us units
2985 */
2986 if (INTEL_GEN(dev_priv) >= 9)
2987 latency *= 10;
2988 else if (level > 0)
2989 latency *= 5;
2990
2991 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2992 name, level, wm[level],
2993 latency / 10, latency % 10);
2994 }
2995 }
2996
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)2997 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2998 u16 wm[5], u16 min)
2999 {
3000 int level, max_level = ilk_wm_max_level(dev_priv);
3001
3002 if (wm[0] >= min)
3003 return false;
3004
3005 wm[0] = max(wm[0], min);
3006 for (level = 1; level <= max_level; level++)
3007 wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3008
3009 return true;
3010 }
3011
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3012 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3013 {
3014 bool changed;
3015
3016 /*
3017 * The BIOS provided WM memory latency values are often
3018 * inadequate for high resolution displays. Adjust them.
3019 */
3020 changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3021 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3022 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3023
3024 if (!changed)
3025 return;
3026
3027 DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3028 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3029 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3030 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3031 }
3032
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3033 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3034 {
3035 /*
3036 * On some SNB machines (Thinkpad X220 Tablet at least)
3037 * LP3 usage can cause vblank interrupts to be lost.
3038 * The DEIIR bit will go high but it looks like the CPU
3039 * never gets interrupted.
3040 *
3041 * It's not clear whether other interrupt source could
3042 * be affected or if this is somehow limited to vblank
3043 * interrupts only. To play it safe we disable LP3
3044 * watermarks entirely.
3045 */
3046 if (dev_priv->wm.pri_latency[3] == 0 &&
3047 dev_priv->wm.spr_latency[3] == 0 &&
3048 dev_priv->wm.cur_latency[3] == 0)
3049 return;
3050
3051 dev_priv->wm.pri_latency[3] = 0;
3052 dev_priv->wm.spr_latency[3] = 0;
3053 dev_priv->wm.cur_latency[3] = 0;
3054
3055 DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3056 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3057 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3058 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3059 }
3060
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3061 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3062 {
3063 intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3064
3065 memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3066 sizeof(dev_priv->wm.pri_latency));
3067 memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3068 sizeof(dev_priv->wm.pri_latency));
3069
3070 intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3071 intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3072
3073 intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3074 intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3075 intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3076
3077 if (IS_GEN(dev_priv, 6)) {
3078 snb_wm_latency_quirk(dev_priv);
3079 snb_wm_lp3_irq_quirk(dev_priv);
3080 }
3081 }
3082
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3083 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3084 {
3085 intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3086 intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3087 }
3088
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3089 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3090 struct intel_pipe_wm *pipe_wm)
3091 {
3092 /* LP0 watermark maximums depend on this pipe alone */
3093 const struct intel_wm_config config = {
3094 .num_pipes_active = 1,
3095 .sprites_enabled = pipe_wm->sprites_enabled,
3096 .sprites_scaled = pipe_wm->sprites_scaled,
3097 };
3098 struct ilk_wm_maximums max;
3099
3100 /* LP0 watermarks always use 1/2 DDB partitioning */
3101 ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3102
3103 /* At least LP0 must be valid */
3104 if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3105 DRM_DEBUG_KMS("LP0 watermark invalid\n");
3106 return false;
3107 }
3108
3109 return true;
3110 }
3111
3112 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_crtc_state * crtc_state)3113 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3114 {
3115 struct drm_atomic_state *state = crtc_state->base.state;
3116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3117 struct intel_pipe_wm *pipe_wm;
3118 struct drm_device *dev = state->dev;
3119 const struct drm_i915_private *dev_priv = to_i915(dev);
3120 struct drm_plane *plane;
3121 const struct drm_plane_state *plane_state;
3122 const struct intel_plane_state *pristate = NULL;
3123 const struct intel_plane_state *sprstate = NULL;
3124 const struct intel_plane_state *curstate = NULL;
3125 int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3126 struct ilk_wm_maximums max;
3127
3128 pipe_wm = &crtc_state->wm.ilk.optimal;
3129
3130 drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &crtc_state->base) {
3131 const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3132
3133 if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3134 pristate = ps;
3135 else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3136 sprstate = ps;
3137 else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3138 curstate = ps;
3139 }
3140
3141 pipe_wm->pipe_enabled = crtc_state->base.active;
3142 if (sprstate) {
3143 pipe_wm->sprites_enabled = sprstate->base.visible;
3144 pipe_wm->sprites_scaled = sprstate->base.visible &&
3145 (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3146 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3147 }
3148
3149 usable_level = max_level;
3150
3151 /* ILK/SNB: LP2+ watermarks only w/o sprites */
3152 if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3153 usable_level = 1;
3154
3155 /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3156 if (pipe_wm->sprites_scaled)
3157 usable_level = 0;
3158
3159 memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3160 ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3161 pristate, sprstate, curstate, &pipe_wm->wm[0]);
3162
3163 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3164 pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3165
3166 if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3167 return -EINVAL;
3168
3169 ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3170
3171 for (level = 1; level <= usable_level; level++) {
3172 struct intel_wm_level *wm = &pipe_wm->wm[level];
3173
3174 ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3175 pristate, sprstate, curstate, wm);
3176
3177 /*
3178 * Disable any watermark level that exceeds the
3179 * register maximums since such watermarks are
3180 * always invalid.
3181 */
3182 if (!ilk_validate_wm_level(level, &max, wm)) {
3183 memset(wm, 0, sizeof(*wm));
3184 break;
3185 }
3186 }
3187
3188 return 0;
3189 }
3190
3191 /*
3192 * Build a set of 'intermediate' watermark values that satisfy both the old
3193 * state and the new state. These can be programmed to the hardware
3194 * immediately.
3195 */
ilk_compute_intermediate_wm(struct intel_crtc_state * newstate)3196 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3197 {
3198 struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3199 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3200 struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3201 struct intel_atomic_state *intel_state =
3202 to_intel_atomic_state(newstate->base.state);
3203 const struct intel_crtc_state *oldstate =
3204 intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3205 const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3206 int level, max_level = ilk_wm_max_level(dev_priv);
3207
3208 /*
3209 * Start with the final, target watermarks, then combine with the
3210 * currently active watermarks to get values that are safe both before
3211 * and after the vblank.
3212 */
3213 *a = newstate->wm.ilk.optimal;
3214 if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3215 intel_state->skip_intermediate_wm)
3216 return 0;
3217
3218 a->pipe_enabled |= b->pipe_enabled;
3219 a->sprites_enabled |= b->sprites_enabled;
3220 a->sprites_scaled |= b->sprites_scaled;
3221
3222 for (level = 0; level <= max_level; level++) {
3223 struct intel_wm_level *a_wm = &a->wm[level];
3224 const struct intel_wm_level *b_wm = &b->wm[level];
3225
3226 a_wm->enable &= b_wm->enable;
3227 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3228 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3229 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3230 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3231 }
3232
3233 /*
3234 * We need to make sure that these merged watermark values are
3235 * actually a valid configuration themselves. If they're not,
3236 * there's no safe way to transition from the old state to
3237 * the new state, so we need to fail the atomic transaction.
3238 */
3239 if (!ilk_validate_pipe_wm(dev_priv, a))
3240 return -EINVAL;
3241
3242 /*
3243 * If our intermediate WM are identical to the final WM, then we can
3244 * omit the post-vblank programming; only update if it's different.
3245 */
3246 if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3247 newstate->wm.need_postvbl_update = true;
3248
3249 return 0;
3250 }
3251
3252 /*
3253 * Merge the watermarks from all active pipes for a specific level.
3254 */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3255 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3256 int level,
3257 struct intel_wm_level *ret_wm)
3258 {
3259 const struct intel_crtc *intel_crtc;
3260
3261 ret_wm->enable = true;
3262
3263 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3264 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3265 const struct intel_wm_level *wm = &active->wm[level];
3266
3267 if (!active->pipe_enabled)
3268 continue;
3269
3270 /*
3271 * The watermark values may have been used in the past,
3272 * so we must maintain them in the registers for some
3273 * time even if the level is now disabled.
3274 */
3275 if (!wm->enable)
3276 ret_wm->enable = false;
3277
3278 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3279 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3280 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3281 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3282 }
3283 }
3284
3285 /*
3286 * Merge all low power watermarks for all active pipes.
3287 */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3288 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3289 const struct intel_wm_config *config,
3290 const struct ilk_wm_maximums *max,
3291 struct intel_pipe_wm *merged)
3292 {
3293 int level, max_level = ilk_wm_max_level(dev_priv);
3294 int last_enabled_level = max_level;
3295
3296 /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3297 if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3298 config->num_pipes_active > 1)
3299 last_enabled_level = 0;
3300
3301 /* ILK: FBC WM must be disabled always */
3302 merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3303
3304 /* merge each WM1+ level */
3305 for (level = 1; level <= max_level; level++) {
3306 struct intel_wm_level *wm = &merged->wm[level];
3307
3308 ilk_merge_wm_level(dev_priv, level, wm);
3309
3310 if (level > last_enabled_level)
3311 wm->enable = false;
3312 else if (!ilk_validate_wm_level(level, max, wm))
3313 /* make sure all following levels get disabled */
3314 last_enabled_level = level - 1;
3315
3316 /*
3317 * The spec says it is preferred to disable
3318 * FBC WMs instead of disabling a WM level.
3319 */
3320 if (wm->fbc_val > max->fbc) {
3321 if (wm->enable)
3322 merged->fbc_wm_enabled = false;
3323 wm->fbc_val = 0;
3324 }
3325 }
3326
3327 /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3328 /*
3329 * FIXME this is racy. FBC might get enabled later.
3330 * What we should check here is whether FBC can be
3331 * enabled sometime later.
3332 */
3333 if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3334 intel_fbc_is_active(dev_priv)) {
3335 for (level = 2; level <= max_level; level++) {
3336 struct intel_wm_level *wm = &merged->wm[level];
3337
3338 wm->enable = false;
3339 }
3340 }
3341 }
3342
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3343 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3344 {
3345 /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3346 return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3347 }
3348
3349 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3350 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3351 int level)
3352 {
3353 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3354 return 2 * level;
3355 else
3356 return dev_priv->wm.pri_latency[level];
3357 }
3358
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3359 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3360 const struct intel_pipe_wm *merged,
3361 enum intel_ddb_partitioning partitioning,
3362 struct ilk_wm_values *results)
3363 {
3364 struct intel_crtc *intel_crtc;
3365 int level, wm_lp;
3366
3367 results->enable_fbc_wm = merged->fbc_wm_enabled;
3368 results->partitioning = partitioning;
3369
3370 /* LP1+ register values */
3371 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3372 const struct intel_wm_level *r;
3373
3374 level = ilk_wm_lp_to_level(wm_lp, merged);
3375
3376 r = &merged->wm[level];
3377
3378 /*
3379 * Maintain the watermark values even if the level is
3380 * disabled. Doing otherwise could cause underruns.
3381 */
3382 results->wm_lp[wm_lp - 1] =
3383 (ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3384 (r->pri_val << WM1_LP_SR_SHIFT) |
3385 r->cur_val;
3386
3387 if (r->enable)
3388 results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3389
3390 if (INTEL_GEN(dev_priv) >= 8)
3391 results->wm_lp[wm_lp - 1] |=
3392 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3393 else
3394 results->wm_lp[wm_lp - 1] |=
3395 r->fbc_val << WM1_LP_FBC_SHIFT;
3396
3397 /*
3398 * Always set WM1S_LP_EN when spr_val != 0, even if the
3399 * level is disabled. Doing otherwise could cause underruns.
3400 */
3401 if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3402 WARN_ON(wm_lp != 1);
3403 results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3404 } else
3405 results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3406 }
3407
3408 /* LP0 register values */
3409 for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3410 enum pipe pipe = intel_crtc->pipe;
3411 const struct intel_wm_level *r =
3412 &intel_crtc->wm.active.ilk.wm[0];
3413
3414 if (WARN_ON(!r->enable))
3415 continue;
3416
3417 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3418
3419 results->wm_pipe[pipe] =
3420 (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3421 (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3422 r->cur_val;
3423 }
3424 }
3425
3426 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3427 * case both are at the same level. Prefer r1 in case they're the same. */
3428 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3429 ilk_find_best_result(struct drm_i915_private *dev_priv,
3430 struct intel_pipe_wm *r1,
3431 struct intel_pipe_wm *r2)
3432 {
3433 int level, max_level = ilk_wm_max_level(dev_priv);
3434 int level1 = 0, level2 = 0;
3435
3436 for (level = 1; level <= max_level; level++) {
3437 if (r1->wm[level].enable)
3438 level1 = level;
3439 if (r2->wm[level].enable)
3440 level2 = level;
3441 }
3442
3443 if (level1 == level2) {
3444 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445 return r2;
3446 else
3447 return r1;
3448 } else if (level1 > level2) {
3449 return r1;
3450 } else {
3451 return r2;
3452 }
3453 }
3454
3455 /* dirty bits used to track which watermarks need changes */
3456 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3457 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3458 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3459 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3460 #define WM_DIRTY_FBC (1 << 24)
3461 #define WM_DIRTY_DDB (1 << 25)
3462
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3463 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3464 const struct ilk_wm_values *old,
3465 const struct ilk_wm_values *new)
3466 {
3467 unsigned int dirty = 0;
3468 enum pipe pipe;
3469 int wm_lp;
3470
3471 for_each_pipe(dev_priv, pipe) {
3472 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3473 dirty |= WM_DIRTY_LINETIME(pipe);
3474 /* Must disable LP1+ watermarks too */
3475 dirty |= WM_DIRTY_LP_ALL;
3476 }
3477
3478 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3479 dirty |= WM_DIRTY_PIPE(pipe);
3480 /* Must disable LP1+ watermarks too */
3481 dirty |= WM_DIRTY_LP_ALL;
3482 }
3483 }
3484
3485 if (old->enable_fbc_wm != new->enable_fbc_wm) {
3486 dirty |= WM_DIRTY_FBC;
3487 /* Must disable LP1+ watermarks too */
3488 dirty |= WM_DIRTY_LP_ALL;
3489 }
3490
3491 if (old->partitioning != new->partitioning) {
3492 dirty |= WM_DIRTY_DDB;
3493 /* Must disable LP1+ watermarks too */
3494 dirty |= WM_DIRTY_LP_ALL;
3495 }
3496
3497 /* LP1+ watermarks already deemed dirty, no need to continue */
3498 if (dirty & WM_DIRTY_LP_ALL)
3499 return dirty;
3500
3501 /* Find the lowest numbered LP1+ watermark in need of an update... */
3502 for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3503 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3504 old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3505 break;
3506 }
3507
3508 /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3509 for (; wm_lp <= 3; wm_lp++)
3510 dirty |= WM_DIRTY_LP(wm_lp);
3511
3512 return dirty;
3513 }
3514
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3515 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3516 unsigned int dirty)
3517 {
3518 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3519 bool changed = false;
3520
3521 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3522 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3523 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3524 changed = true;
3525 }
3526 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3527 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3528 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3529 changed = true;
3530 }
3531 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3532 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3533 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3534 changed = true;
3535 }
3536
3537 /*
3538 * Don't touch WM1S_LP_EN here.
3539 * Doing so could cause underruns.
3540 */
3541
3542 return changed;
3543 }
3544
3545 /*
3546 * The spec says we shouldn't write when we don't need, because every write
3547 * causes WMs to be re-evaluated, expending some power.
3548 */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3549 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3550 struct ilk_wm_values *results)
3551 {
3552 struct ilk_wm_values *previous = &dev_priv->wm.hw;
3553 unsigned int dirty;
3554 u32 val;
3555
3556 dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3557 if (!dirty)
3558 return;
3559
3560 _ilk_disable_lp_wm(dev_priv, dirty);
3561
3562 if (dirty & WM_DIRTY_PIPE(PIPE_A))
3563 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3564 if (dirty & WM_DIRTY_PIPE(PIPE_B))
3565 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3566 if (dirty & WM_DIRTY_PIPE(PIPE_C))
3567 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3568
3569 if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3570 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3571 if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3572 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3573 if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3574 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3575
3576 if (dirty & WM_DIRTY_DDB) {
3577 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3578 val = I915_READ(WM_MISC);
3579 if (results->partitioning == INTEL_DDB_PART_1_2)
3580 val &= ~WM_MISC_DATA_PARTITION_5_6;
3581 else
3582 val |= WM_MISC_DATA_PARTITION_5_6;
3583 I915_WRITE(WM_MISC, val);
3584 } else {
3585 val = I915_READ(DISP_ARB_CTL2);
3586 if (results->partitioning == INTEL_DDB_PART_1_2)
3587 val &= ~DISP_DATA_PARTITION_5_6;
3588 else
3589 val |= DISP_DATA_PARTITION_5_6;
3590 I915_WRITE(DISP_ARB_CTL2, val);
3591 }
3592 }
3593
3594 if (dirty & WM_DIRTY_FBC) {
3595 val = I915_READ(DISP_ARB_CTL);
3596 if (results->enable_fbc_wm)
3597 val &= ~DISP_FBC_WM_DIS;
3598 else
3599 val |= DISP_FBC_WM_DIS;
3600 I915_WRITE(DISP_ARB_CTL, val);
3601 }
3602
3603 if (dirty & WM_DIRTY_LP(1) &&
3604 previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3605 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3606
3607 if (INTEL_GEN(dev_priv) >= 7) {
3608 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3609 I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3610 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3611 I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3612 }
3613
3614 if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3615 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3616 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3617 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3618 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3619 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3620
3621 dev_priv->wm.hw = *results;
3622 }
3623
ilk_disable_lp_wm(struct drm_device * dev)3624 bool ilk_disable_lp_wm(struct drm_device *dev)
3625 {
3626 struct drm_i915_private *dev_priv = to_i915(dev);
3627
3628 return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3629 }
3630
intel_enabled_dbuf_slices_num(struct drm_i915_private * dev_priv)3631 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3632 {
3633 u8 enabled_slices;
3634
3635 /* Slice 1 will always be enabled */
3636 enabled_slices = 1;
3637
3638 /* Gen prior to GEN11 have only one DBuf slice */
3639 if (INTEL_GEN(dev_priv) < 11)
3640 return enabled_slices;
3641
3642 /*
3643 * FIXME: for now we'll only ever use 1 slice; pretend that we have
3644 * only that 1 slice enabled until we have a proper way for on-demand
3645 * toggling of the second slice.
3646 */
3647 if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3648 enabled_slices++;
3649
3650 return enabled_slices;
3651 }
3652
3653 /*
3654 * FIXME: We still don't have the proper code detect if we need to apply the WA,
3655 * so assume we'll always need it in order to avoid underruns.
3656 */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3657 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3658 {
3659 return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3660 }
3661
3662 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3663 intel_has_sagv(struct drm_i915_private *dev_priv)
3664 {
3665 return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3666 dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3667 }
3668
3669 /*
3670 * SAGV dynamically adjusts the system agent voltage and clock frequencies
3671 * depending on power and performance requirements. The display engine access
3672 * to system memory is blocked during the adjustment time. Because of the
3673 * blocking time, having this enabled can cause full system hangs and/or pipe
3674 * underruns if we don't meet all of the following requirements:
3675 *
3676 * - <= 1 pipe enabled
3677 * - All planes can enable watermarks for latencies >= SAGV engine block time
3678 * - We're not using an interlaced display configuration
3679 */
3680 int
intel_enable_sagv(struct drm_i915_private * dev_priv)3681 intel_enable_sagv(struct drm_i915_private *dev_priv)
3682 {
3683 int ret;
3684
3685 if (!intel_has_sagv(dev_priv))
3686 return 0;
3687
3688 if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3689 return 0;
3690
3691 DRM_DEBUG_KMS("Enabling SAGV\n");
3692 ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3693 GEN9_SAGV_ENABLE);
3694
3695 /* We don't need to wait for SAGV when enabling */
3696
3697 /*
3698 * Some skl systems, pre-release machines in particular,
3699 * don't actually have SAGV.
3700 */
3701 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3702 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3703 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3704 return 0;
3705 } else if (ret < 0) {
3706 DRM_ERROR("Failed to enable SAGV\n");
3707 return ret;
3708 }
3709
3710 dev_priv->sagv_status = I915_SAGV_ENABLED;
3711 return 0;
3712 }
3713
3714 int
intel_disable_sagv(struct drm_i915_private * dev_priv)3715 intel_disable_sagv(struct drm_i915_private *dev_priv)
3716 {
3717 int ret;
3718
3719 if (!intel_has_sagv(dev_priv))
3720 return 0;
3721
3722 if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3723 return 0;
3724
3725 DRM_DEBUG_KMS("Disabling SAGV\n");
3726 /* bspec says to keep retrying for at least 1 ms */
3727 ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3728 GEN9_SAGV_DISABLE,
3729 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3730 1);
3731 /*
3732 * Some skl systems, pre-release machines in particular,
3733 * don't actually have SAGV.
3734 */
3735 if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3736 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3737 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3738 return 0;
3739 } else if (ret < 0) {
3740 DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3741 return ret;
3742 }
3743
3744 dev_priv->sagv_status = I915_SAGV_DISABLED;
3745 return 0;
3746 }
3747
intel_can_enable_sagv(struct intel_atomic_state * state)3748 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3749 {
3750 struct drm_device *dev = state->base.dev;
3751 struct drm_i915_private *dev_priv = to_i915(dev);
3752 struct intel_crtc *crtc;
3753 struct intel_plane *plane;
3754 struct intel_crtc_state *crtc_state;
3755 enum pipe pipe;
3756 int level, latency;
3757 int sagv_block_time_us;
3758
3759 if (!intel_has_sagv(dev_priv))
3760 return false;
3761
3762 if (IS_GEN(dev_priv, 9))
3763 sagv_block_time_us = 30;
3764 else if (IS_GEN(dev_priv, 10))
3765 sagv_block_time_us = 20;
3766 else
3767 sagv_block_time_us = 10;
3768
3769 /*
3770 * If there are no active CRTCs, no additional checks need be performed
3771 */
3772 if (hweight32(state->active_crtcs) == 0)
3773 return true;
3774
3775 /*
3776 * SKL+ workaround: bspec recommends we disable SAGV when we have
3777 * more then one pipe enabled
3778 */
3779 if (hweight32(state->active_crtcs) > 1)
3780 return false;
3781
3782 /* Since we're now guaranteed to only have one active CRTC... */
3783 pipe = ffs(state->active_crtcs) - 1;
3784 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3785 crtc_state = to_intel_crtc_state(crtc->base.state);
3786
3787 if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3788 return false;
3789
3790 for_each_intel_plane_on_crtc(dev, crtc, plane) {
3791 struct skl_plane_wm *wm =
3792 &crtc_state->wm.skl.optimal.planes[plane->id];
3793
3794 /* Skip this plane if it's not enabled */
3795 if (!wm->wm[0].plane_en)
3796 continue;
3797
3798 /* Find the highest enabled wm level for this plane */
3799 for (level = ilk_wm_max_level(dev_priv);
3800 !wm->wm[level].plane_en; --level)
3801 { }
3802
3803 latency = dev_priv->wm.skl_latency[level];
3804
3805 if (skl_needs_memory_bw_wa(dev_priv) &&
3806 plane->base.state->fb->modifier ==
3807 I915_FORMAT_MOD_X_TILED)
3808 latency += 15;
3809
3810 /*
3811 * If any of the planes on this pipe don't enable wm levels that
3812 * incur memory latencies higher than sagv_block_time_us we
3813 * can't enable SAGV.
3814 */
3815 if (latency < sagv_block_time_us)
3816 return false;
3817 }
3818
3819 return true;
3820 }
3821
intel_get_ddb_size(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,const u64 total_data_rate,const int num_active,struct skl_ddb_allocation * ddb)3822 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3823 const struct intel_crtc_state *crtc_state,
3824 const u64 total_data_rate,
3825 const int num_active,
3826 struct skl_ddb_allocation *ddb)
3827 {
3828 const struct drm_display_mode *adjusted_mode;
3829 u64 total_data_bw;
3830 u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3831
3832 WARN_ON(ddb_size == 0);
3833
3834 if (INTEL_GEN(dev_priv) < 11)
3835 return ddb_size - 4; /* 4 blocks for bypass path allocation */
3836
3837 adjusted_mode = &crtc_state->base.adjusted_mode;
3838 total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3839
3840 /*
3841 * 12GB/s is maximum BW supported by single DBuf slice.
3842 *
3843 * FIXME dbuf slice code is broken:
3844 * - must wait for planes to stop using the slice before powering it off
3845 * - plane straddling both slices is illegal in multi-pipe scenarios
3846 * - should validate we stay within the hw bandwidth limits
3847 */
3848 if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3849 ddb->enabled_slices = 2;
3850 } else {
3851 ddb->enabled_slices = 1;
3852 ddb_size /= 2;
3853 }
3854
3855 return ddb_size;
3856 }
3857
3858 static void
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,const u64 total_data_rate,struct skl_ddb_allocation * ddb,struct skl_ddb_entry * alloc,int * num_active)3859 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3860 const struct intel_crtc_state *crtc_state,
3861 const u64 total_data_rate,
3862 struct skl_ddb_allocation *ddb,
3863 struct skl_ddb_entry *alloc, /* out */
3864 int *num_active /* out */)
3865 {
3866 struct drm_atomic_state *state = crtc_state->base.state;
3867 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3868 struct drm_crtc *for_crtc = crtc_state->base.crtc;
3869 const struct intel_crtc *crtc;
3870 u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3871 enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3872 u16 ddb_size;
3873 u32 i;
3874
3875 if (WARN_ON(!state) || !crtc_state->base.active) {
3876 alloc->start = 0;
3877 alloc->end = 0;
3878 *num_active = hweight32(dev_priv->active_crtcs);
3879 return;
3880 }
3881
3882 if (intel_state->active_pipe_changes)
3883 *num_active = hweight32(intel_state->active_crtcs);
3884 else
3885 *num_active = hweight32(dev_priv->active_crtcs);
3886
3887 ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3888 *num_active, ddb);
3889
3890 /*
3891 * If the state doesn't change the active CRTC's or there is no
3892 * modeset request, then there's no need to recalculate;
3893 * the existing pipe allocation limits should remain unchanged.
3894 * Note that we're safe from racing commits since any racing commit
3895 * that changes the active CRTC list or do modeset would need to
3896 * grab _all_ crtc locks, including the one we currently hold.
3897 */
3898 if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3899 /*
3900 * alloc may be cleared by clear_intel_crtc_state,
3901 * copy from old state to be sure
3902 */
3903 *alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3904 return;
3905 }
3906
3907 /*
3908 * Watermark/ddb requirement highly depends upon width of the
3909 * framebuffer, So instead of allocating DDB equally among pipes
3910 * distribute DDB based on resolution/width of the display.
3911 */
3912 for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3913 const struct drm_display_mode *adjusted_mode =
3914 &crtc_state->base.adjusted_mode;
3915 enum pipe pipe = crtc->pipe;
3916 int hdisplay, vdisplay;
3917
3918 if (!crtc_state->base.enable)
3919 continue;
3920
3921 drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3922 total_width += hdisplay;
3923
3924 if (pipe < for_pipe)
3925 width_before_pipe += hdisplay;
3926 else if (pipe == for_pipe)
3927 pipe_width = hdisplay;
3928 }
3929
3930 alloc->start = ddb_size * width_before_pipe / total_width;
3931 alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3932 }
3933
3934 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3935 int width, const struct drm_format_info *format,
3936 u64 modifier, unsigned int rotation,
3937 u32 plane_pixel_rate, struct skl_wm_params *wp,
3938 int color_plane);
3939 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3940 int level,
3941 const struct skl_wm_params *wp,
3942 const struct skl_wm_level *result_prev,
3943 struct skl_wm_level *result /* out */);
3944
3945 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)3946 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3947 int num_active)
3948 {
3949 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3950 int level, max_level = ilk_wm_max_level(dev_priv);
3951 struct skl_wm_level wm = {};
3952 int ret, min_ddb_alloc = 0;
3953 struct skl_wm_params wp;
3954
3955 ret = skl_compute_wm_params(crtc_state, 256,
3956 drm_format_info(DRM_FORMAT_ARGB8888),
3957 DRM_FORMAT_MOD_LINEAR,
3958 DRM_MODE_ROTATE_0,
3959 crtc_state->pixel_rate, &wp, 0);
3960 WARN_ON(ret);
3961
3962 for (level = 0; level <= max_level; level++) {
3963 skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3964 if (wm.min_ddb_alloc == U16_MAX)
3965 break;
3966
3967 min_ddb_alloc = wm.min_ddb_alloc;
3968 }
3969
3970 return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3971 }
3972
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)3973 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3974 struct skl_ddb_entry *entry, u32 reg)
3975 {
3976
3977 entry->start = reg & DDB_ENTRY_MASK;
3978 entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3979
3980 if (entry->end)
3981 entry->end += 1;
3982 }
3983
3984 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)3985 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3986 const enum pipe pipe,
3987 const enum plane_id plane_id,
3988 struct skl_ddb_entry *ddb_y,
3989 struct skl_ddb_entry *ddb_uv)
3990 {
3991 u32 val, val2;
3992 u32 fourcc = 0;
3993
3994 /* Cursor doesn't support NV12/planar, so no extra calculation needed */
3995 if (plane_id == PLANE_CURSOR) {
3996 val = I915_READ(CUR_BUF_CFG(pipe));
3997 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3998 return;
3999 }
4000
4001 val = I915_READ(PLANE_CTL(pipe, plane_id));
4002
4003 /* No DDB allocated for disabled planes */
4004 if (val & PLANE_CTL_ENABLE)
4005 fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4006 val & PLANE_CTL_ORDER_RGBX,
4007 val & PLANE_CTL_ALPHA_MASK);
4008
4009 if (INTEL_GEN(dev_priv) >= 11) {
4010 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4011 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4012 } else {
4013 val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4014 val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4015
4016 if (is_planar_yuv_format(fourcc))
4017 swap(val, val2);
4018
4019 skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4020 skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4021 }
4022 }
4023
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4024 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4025 struct skl_ddb_entry *ddb_y,
4026 struct skl_ddb_entry *ddb_uv)
4027 {
4028 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4029 enum intel_display_power_domain power_domain;
4030 enum pipe pipe = crtc->pipe;
4031 intel_wakeref_t wakeref;
4032 enum plane_id plane_id;
4033
4034 power_domain = POWER_DOMAIN_PIPE(pipe);
4035 wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4036 if (!wakeref)
4037 return;
4038
4039 for_each_plane_id_on_crtc(crtc, plane_id)
4040 skl_ddb_get_hw_plane_state(dev_priv, pipe,
4041 plane_id,
4042 &ddb_y[plane_id],
4043 &ddb_uv[plane_id]);
4044
4045 intel_display_power_put(dev_priv, power_domain, wakeref);
4046 }
4047
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)4048 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4049 struct skl_ddb_allocation *ddb /* out */)
4050 {
4051 ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4052 }
4053
4054 /*
4055 * Determines the downscale amount of a plane for the purposes of watermark calculations.
4056 * The bspec defines downscale amount as:
4057 *
4058 * """
4059 * Horizontal down scale amount = maximum[1, Horizontal source size /
4060 * Horizontal destination size]
4061 * Vertical down scale amount = maximum[1, Vertical source size /
4062 * Vertical destination size]
4063 * Total down scale amount = Horizontal down scale amount *
4064 * Vertical down scale amount
4065 * """
4066 *
4067 * Return value is provided in 16.16 fixed point form to retain fractional part.
4068 * Caller should take care of dividing & rounding off the value.
4069 */
4070 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4071 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4072 const struct intel_plane_state *plane_state)
4073 {
4074 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4075 u32 src_w, src_h, dst_w, dst_h;
4076 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4077 uint_fixed_16_16_t downscale_h, downscale_w;
4078
4079 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4080 return u32_to_fixed16(0);
4081
4082 /* n.b., src is 16.16 fixed point, dst is whole integer */
4083 if (plane->id == PLANE_CURSOR) {
4084 /*
4085 * Cursors only support 0/180 degree rotation,
4086 * hence no need to account for rotation here.
4087 */
4088 src_w = plane_state->base.src_w >> 16;
4089 src_h = plane_state->base.src_h >> 16;
4090 dst_w = plane_state->base.crtc_w;
4091 dst_h = plane_state->base.crtc_h;
4092 } else {
4093 /*
4094 * Src coordinates are already rotated by 270 degrees for
4095 * the 90/270 degree plane rotation cases (to match the
4096 * GTT mapping), hence no need to account for rotation here.
4097 */
4098 src_w = drm_rect_width(&plane_state->base.src) >> 16;
4099 src_h = drm_rect_height(&plane_state->base.src) >> 16;
4100 dst_w = drm_rect_width(&plane_state->base.dst);
4101 dst_h = drm_rect_height(&plane_state->base.dst);
4102 }
4103
4104 fp_w_ratio = div_fixed16(src_w, dst_w);
4105 fp_h_ratio = div_fixed16(src_h, dst_h);
4106 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4107 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4108
4109 return mul_fixed16(downscale_w, downscale_h);
4110 }
4111
4112 static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state * crtc_state)4113 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4114 {
4115 uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4116
4117 if (!crtc_state->base.enable)
4118 return pipe_downscale;
4119
4120 if (crtc_state->pch_pfit.enabled) {
4121 u32 src_w, src_h, dst_w, dst_h;
4122 u32 pfit_size = crtc_state->pch_pfit.size;
4123 uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4124 uint_fixed_16_16_t downscale_h, downscale_w;
4125
4126 src_w = crtc_state->pipe_src_w;
4127 src_h = crtc_state->pipe_src_h;
4128 dst_w = pfit_size >> 16;
4129 dst_h = pfit_size & 0xffff;
4130
4131 if (!dst_w || !dst_h)
4132 return pipe_downscale;
4133
4134 fp_w_ratio = div_fixed16(src_w, dst_w);
4135 fp_h_ratio = div_fixed16(src_h, dst_h);
4136 downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4137 downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4138
4139 pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4140 }
4141
4142 return pipe_downscale;
4143 }
4144
skl_check_pipe_max_pixel_rate(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)4145 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4146 struct intel_crtc_state *crtc_state)
4147 {
4148 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4149 struct drm_atomic_state *state = crtc_state->base.state;
4150 struct drm_plane *plane;
4151 const struct drm_plane_state *drm_plane_state;
4152 int crtc_clock, dotclk;
4153 u32 pipe_max_pixel_rate;
4154 uint_fixed_16_16_t pipe_downscale;
4155 uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4156
4157 if (!crtc_state->base.enable)
4158 return 0;
4159
4160 drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4161 uint_fixed_16_16_t plane_downscale;
4162 uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4163 int bpp;
4164 const struct intel_plane_state *plane_state =
4165 to_intel_plane_state(drm_plane_state);
4166
4167 if (!intel_wm_plane_visible(crtc_state, plane_state))
4168 continue;
4169
4170 if (WARN_ON(!plane_state->base.fb))
4171 return -EINVAL;
4172
4173 plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
4174 bpp = plane_state->base.fb->format->cpp[0] * 8;
4175 if (bpp == 64)
4176 plane_downscale = mul_fixed16(plane_downscale,
4177 fp_9_div_8);
4178
4179 max_downscale = max_fixed16(plane_downscale, max_downscale);
4180 }
4181 pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4182
4183 pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4184
4185 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4186 dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4187
4188 if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4189 dotclk *= 2;
4190
4191 pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4192
4193 if (pipe_max_pixel_rate < crtc_clock) {
4194 DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4195 return -EINVAL;
4196 }
4197
4198 return 0;
4199 }
4200
4201 static u64
skl_plane_relative_data_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,const int plane)4202 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4203 const struct intel_plane_state *plane_state,
4204 const int plane)
4205 {
4206 struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane);
4207 u32 data_rate;
4208 u32 width = 0, height = 0;
4209 struct drm_framebuffer *fb;
4210 u32 format;
4211 uint_fixed_16_16_t down_scale_amount;
4212 u64 rate;
4213
4214 if (!plane_state->base.visible)
4215 return 0;
4216
4217 fb = plane_state->base.fb;
4218 format = fb->format->format;
4219
4220 if (intel_plane->id == PLANE_CURSOR)
4221 return 0;
4222 if (plane == 1 && !is_planar_yuv_format(format))
4223 return 0;
4224
4225 /*
4226 * Src coordinates are already rotated by 270 degrees for
4227 * the 90/270 degree plane rotation cases (to match the
4228 * GTT mapping), hence no need to account for rotation here.
4229 */
4230 width = drm_rect_width(&plane_state->base.src) >> 16;
4231 height = drm_rect_height(&plane_state->base.src) >> 16;
4232
4233 /* UV plane does 1/2 pixel sub-sampling */
4234 if (plane == 1 && is_planar_yuv_format(format)) {
4235 width /= 2;
4236 height /= 2;
4237 }
4238
4239 data_rate = width * height;
4240
4241 down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4242
4243 rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4244
4245 rate *= fb->format->cpp[plane];
4246 return rate;
4247 }
4248
4249 static u64
skl_get_total_relative_data_rate(struct intel_crtc_state * crtc_state,u64 * plane_data_rate,u64 * uv_plane_data_rate)4250 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4251 u64 *plane_data_rate,
4252 u64 *uv_plane_data_rate)
4253 {
4254 struct drm_atomic_state *state = crtc_state->base.state;
4255 struct drm_plane *plane;
4256 const struct drm_plane_state *drm_plane_state;
4257 u64 total_data_rate = 0;
4258
4259 if (WARN_ON(!state))
4260 return 0;
4261
4262 /* Calculate and cache data rate for each plane */
4263 drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4264 enum plane_id plane_id = to_intel_plane(plane)->id;
4265 const struct intel_plane_state *plane_state =
4266 to_intel_plane_state(drm_plane_state);
4267 u64 rate;
4268
4269 /* packed/y */
4270 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4271 plane_data_rate[plane_id] = rate;
4272 total_data_rate += rate;
4273
4274 /* uv-plane */
4275 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4276 uv_plane_data_rate[plane_id] = rate;
4277 total_data_rate += rate;
4278 }
4279
4280 return total_data_rate;
4281 }
4282
4283 static u64
icl_get_total_relative_data_rate(struct intel_crtc_state * crtc_state,u64 * plane_data_rate)4284 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4285 u64 *plane_data_rate)
4286 {
4287 struct drm_plane *plane;
4288 const struct drm_plane_state *drm_plane_state;
4289 u64 total_data_rate = 0;
4290
4291 if (WARN_ON(!crtc_state->base.state))
4292 return 0;
4293
4294 /* Calculate and cache data rate for each plane */
4295 drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4296 const struct intel_plane_state *plane_state =
4297 to_intel_plane_state(drm_plane_state);
4298 enum plane_id plane_id = to_intel_plane(plane)->id;
4299 u64 rate;
4300
4301 if (!plane_state->linked_plane) {
4302 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4303 plane_data_rate[plane_id] = rate;
4304 total_data_rate += rate;
4305 } else {
4306 enum plane_id y_plane_id;
4307
4308 /*
4309 * The slave plane might not iterate in
4310 * drm_atomic_crtc_state_for_each_plane_state(),
4311 * and needs the master plane state which may be
4312 * NULL if we try get_new_plane_state(), so we
4313 * always calculate from the master.
4314 */
4315 if (plane_state->slave)
4316 continue;
4317
4318 /* Y plane rate is calculated on the slave */
4319 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4320 y_plane_id = plane_state->linked_plane->id;
4321 plane_data_rate[y_plane_id] = rate;
4322 total_data_rate += rate;
4323
4324 rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4325 plane_data_rate[plane_id] = rate;
4326 total_data_rate += rate;
4327 }
4328 }
4329
4330 return total_data_rate;
4331 }
4332
4333 static int
skl_allocate_pipe_ddb(struct intel_crtc_state * crtc_state,struct skl_ddb_allocation * ddb)4334 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4335 struct skl_ddb_allocation *ddb /* out */)
4336 {
4337 struct drm_atomic_state *state = crtc_state->base.state;
4338 struct drm_crtc *crtc = crtc_state->base.crtc;
4339 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4340 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4341 struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4342 u16 alloc_size, start = 0;
4343 u16 total[I915_MAX_PLANES] = {};
4344 u16 uv_total[I915_MAX_PLANES] = {};
4345 u64 total_data_rate;
4346 enum plane_id plane_id;
4347 int num_active;
4348 u64 plane_data_rate[I915_MAX_PLANES] = {};
4349 u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4350 u32 blocks;
4351 int level;
4352
4353 /* Clear the partitioning for disabled planes. */
4354 memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4355 memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4356
4357 if (WARN_ON(!state))
4358 return 0;
4359
4360 if (!crtc_state->base.active) {
4361 alloc->start = alloc->end = 0;
4362 return 0;
4363 }
4364
4365 if (INTEL_GEN(dev_priv) >= 11)
4366 total_data_rate =
4367 icl_get_total_relative_data_rate(crtc_state,
4368 plane_data_rate);
4369 else
4370 total_data_rate =
4371 skl_get_total_relative_data_rate(crtc_state,
4372 plane_data_rate,
4373 uv_plane_data_rate);
4374
4375
4376 skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4377 ddb, alloc, &num_active);
4378 alloc_size = skl_ddb_entry_size(alloc);
4379 if (alloc_size == 0)
4380 return 0;
4381
4382 /* Allocate fixed number of blocks for cursor. */
4383 total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4384 alloc_size -= total[PLANE_CURSOR];
4385 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4386 alloc->end - total[PLANE_CURSOR];
4387 crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4388
4389 if (total_data_rate == 0)
4390 return 0;
4391
4392 /*
4393 * Find the highest watermark level for which we can satisfy the block
4394 * requirement of active planes.
4395 */
4396 for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4397 blocks = 0;
4398 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4399 const struct skl_plane_wm *wm =
4400 &crtc_state->wm.skl.optimal.planes[plane_id];
4401
4402 if (plane_id == PLANE_CURSOR) {
4403 if (WARN_ON(wm->wm[level].min_ddb_alloc >
4404 total[PLANE_CURSOR])) {
4405 blocks = U32_MAX;
4406 break;
4407 }
4408 continue;
4409 }
4410
4411 blocks += wm->wm[level].min_ddb_alloc;
4412 blocks += wm->uv_wm[level].min_ddb_alloc;
4413 }
4414
4415 if (blocks <= alloc_size) {
4416 alloc_size -= blocks;
4417 break;
4418 }
4419 }
4420
4421 if (level < 0) {
4422 DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4423 DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4424 alloc_size);
4425 return -EINVAL;
4426 }
4427
4428 /*
4429 * Grant each plane the blocks it requires at the highest achievable
4430 * watermark level, plus an extra share of the leftover blocks
4431 * proportional to its relative data rate.
4432 */
4433 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4434 const struct skl_plane_wm *wm =
4435 &crtc_state->wm.skl.optimal.planes[plane_id];
4436 u64 rate;
4437 u16 extra;
4438
4439 if (plane_id == PLANE_CURSOR)
4440 continue;
4441
4442 /*
4443 * We've accounted for all active planes; remaining planes are
4444 * all disabled.
4445 */
4446 if (total_data_rate == 0)
4447 break;
4448
4449 rate = plane_data_rate[plane_id];
4450 extra = min_t(u16, alloc_size,
4451 DIV64_U64_ROUND_UP(alloc_size * rate,
4452 total_data_rate));
4453 total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4454 alloc_size -= extra;
4455 total_data_rate -= rate;
4456
4457 if (total_data_rate == 0)
4458 break;
4459
4460 rate = uv_plane_data_rate[plane_id];
4461 extra = min_t(u16, alloc_size,
4462 DIV64_U64_ROUND_UP(alloc_size * rate,
4463 total_data_rate));
4464 uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4465 alloc_size -= extra;
4466 total_data_rate -= rate;
4467 }
4468 WARN_ON(alloc_size != 0 || total_data_rate != 0);
4469
4470 /* Set the actual DDB start/end points for each plane */
4471 start = alloc->start;
4472 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4473 struct skl_ddb_entry *plane_alloc =
4474 &crtc_state->wm.skl.plane_ddb_y[plane_id];
4475 struct skl_ddb_entry *uv_plane_alloc =
4476 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
4477
4478 if (plane_id == PLANE_CURSOR)
4479 continue;
4480
4481 /* Gen11+ uses a separate plane for UV watermarks */
4482 WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4483
4484 /* Leave disabled planes at (0,0) */
4485 if (total[plane_id]) {
4486 plane_alloc->start = start;
4487 start += total[plane_id];
4488 plane_alloc->end = start;
4489 }
4490
4491 if (uv_total[plane_id]) {
4492 uv_plane_alloc->start = start;
4493 start += uv_total[plane_id];
4494 uv_plane_alloc->end = start;
4495 }
4496 }
4497
4498 /*
4499 * When we calculated watermark values we didn't know how high
4500 * of a level we'd actually be able to hit, so we just marked
4501 * all levels as "enabled." Go back now and disable the ones
4502 * that aren't actually possible.
4503 */
4504 for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4505 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4506 struct skl_plane_wm *wm =
4507 &crtc_state->wm.skl.optimal.planes[plane_id];
4508
4509 /*
4510 * We only disable the watermarks for each plane if
4511 * they exceed the ddb allocation of said plane. This
4512 * is done so that we don't end up touching cursor
4513 * watermarks needlessly when some other plane reduces
4514 * our max possible watermark level.
4515 *
4516 * Bspec has this to say about the PLANE_WM enable bit:
4517 * "All the watermarks at this level for all enabled
4518 * planes must be enabled before the level will be used."
4519 * So this is actually safe to do.
4520 */
4521 if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4522 wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4523 memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4524
4525 /*
4526 * Wa_1408961008:icl, ehl
4527 * Underruns with WM1+ disabled
4528 */
4529 if (IS_GEN(dev_priv, 11) &&
4530 level == 1 && wm->wm[0].plane_en) {
4531 wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4532 wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4533 wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4534 }
4535 }
4536 }
4537
4538 /*
4539 * Go back and disable the transition watermark if it turns out we
4540 * don't have enough DDB blocks for it.
4541 */
4542 for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4543 struct skl_plane_wm *wm =
4544 &crtc_state->wm.skl.optimal.planes[plane_id];
4545
4546 if (wm->trans_wm.plane_res_b >= total[plane_id])
4547 memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4548 }
4549
4550 return 0;
4551 }
4552
4553 /*
4554 * The max latency should be 257 (max the punit can code is 255 and we add 2us
4555 * for the read latency) and cpp should always be <= 8, so that
4556 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4557 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4558 */
4559 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)4560 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4561 u8 cpp, u32 latency, u32 dbuf_block_size)
4562 {
4563 u32 wm_intermediate_val;
4564 uint_fixed_16_16_t ret;
4565
4566 if (latency == 0)
4567 return FP_16_16_MAX;
4568
4569 wm_intermediate_val = latency * pixel_rate * cpp;
4570 ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4571
4572 if (INTEL_GEN(dev_priv) >= 10)
4573 ret = add_fixed16_u32(ret, 1);
4574
4575 return ret;
4576 }
4577
4578 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)4579 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4580 uint_fixed_16_16_t plane_blocks_per_line)
4581 {
4582 u32 wm_intermediate_val;
4583 uint_fixed_16_16_t ret;
4584
4585 if (latency == 0)
4586 return FP_16_16_MAX;
4587
4588 wm_intermediate_val = latency * pixel_rate;
4589 wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4590 pipe_htotal * 1000);
4591 ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4592 return ret;
4593 }
4594
4595 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)4596 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4597 {
4598 u32 pixel_rate;
4599 u32 crtc_htotal;
4600 uint_fixed_16_16_t linetime_us;
4601
4602 if (!crtc_state->base.active)
4603 return u32_to_fixed16(0);
4604
4605 pixel_rate = crtc_state->pixel_rate;
4606
4607 if (WARN_ON(pixel_rate == 0))
4608 return u32_to_fixed16(0);
4609
4610 crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4611 linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4612
4613 return linetime_us;
4614 }
4615
4616 static u32
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4617 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4618 const struct intel_plane_state *plane_state)
4619 {
4620 u64 adjusted_pixel_rate;
4621 uint_fixed_16_16_t downscale_amount;
4622
4623 /* Shouldn't reach here on disabled planes... */
4624 if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4625 return 0;
4626
4627 /*
4628 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4629 * with additional adjustments for plane-specific scaling.
4630 */
4631 adjusted_pixel_rate = crtc_state->pixel_rate;
4632 downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4633
4634 return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4635 downscale_amount);
4636 }
4637
4638 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)4639 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4640 int width, const struct drm_format_info *format,
4641 u64 modifier, unsigned int rotation,
4642 u32 plane_pixel_rate, struct skl_wm_params *wp,
4643 int color_plane)
4644 {
4645 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4646 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4647 u32 interm_pbpl;
4648
4649 /* only planar format has two planes */
4650 if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4651 DRM_DEBUG_KMS("Non planar format have single plane\n");
4652 return -EINVAL;
4653 }
4654
4655 wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4656 modifier == I915_FORMAT_MOD_Yf_TILED ||
4657 modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4658 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4659 wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4660 wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4661 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4662 wp->is_planar = is_planar_yuv_format(format->format);
4663
4664 wp->width = width;
4665 if (color_plane == 1 && wp->is_planar)
4666 wp->width /= 2;
4667
4668 wp->cpp = format->cpp[color_plane];
4669 wp->plane_pixel_rate = plane_pixel_rate;
4670
4671 if (INTEL_GEN(dev_priv) >= 11 &&
4672 modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
4673 wp->dbuf_block_size = 256;
4674 else
4675 wp->dbuf_block_size = 512;
4676
4677 if (drm_rotation_90_or_270(rotation)) {
4678 switch (wp->cpp) {
4679 case 1:
4680 wp->y_min_scanlines = 16;
4681 break;
4682 case 2:
4683 wp->y_min_scanlines = 8;
4684 break;
4685 case 4:
4686 wp->y_min_scanlines = 4;
4687 break;
4688 default:
4689 MISSING_CASE(wp->cpp);
4690 return -EINVAL;
4691 }
4692 } else {
4693 wp->y_min_scanlines = 4;
4694 }
4695
4696 if (skl_needs_memory_bw_wa(dev_priv))
4697 wp->y_min_scanlines *= 2;
4698
4699 wp->plane_bytes_per_line = wp->width * wp->cpp;
4700 if (wp->y_tiled) {
4701 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4702 wp->y_min_scanlines,
4703 wp->dbuf_block_size);
4704
4705 if (INTEL_GEN(dev_priv) >= 10)
4706 interm_pbpl++;
4707
4708 wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4709 wp->y_min_scanlines);
4710 } else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4711 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4712 wp->dbuf_block_size);
4713 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4714 } else {
4715 interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4716 wp->dbuf_block_size) + 1;
4717 wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4718 }
4719
4720 wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4721 wp->plane_blocks_per_line);
4722
4723 wp->linetime_us = fixed16_to_u32_round_up(
4724 intel_get_linetime_us(crtc_state));
4725
4726 return 0;
4727 }
4728
4729 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)4730 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4731 const struct intel_plane_state *plane_state,
4732 struct skl_wm_params *wp, int color_plane)
4733 {
4734 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4735 const struct drm_framebuffer *fb = plane_state->base.fb;
4736 int width;
4737
4738 if (plane->id == PLANE_CURSOR) {
4739 width = plane_state->base.crtc_w;
4740 } else {
4741 /*
4742 * Src coordinates are already rotated by 270 degrees for
4743 * the 90/270 degree plane rotation cases (to match the
4744 * GTT mapping), hence no need to account for rotation here.
4745 */
4746 width = drm_rect_width(&plane_state->base.src) >> 16;
4747 }
4748
4749 return skl_compute_wm_params(crtc_state, width,
4750 fb->format, fb->modifier,
4751 plane_state->base.rotation,
4752 skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4753 wp, color_plane);
4754 }
4755
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)4756 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4757 {
4758 if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4759 return true;
4760
4761 /* The number of lines are ignored for the level 0 watermark. */
4762 return level > 0;
4763 }
4764
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,int level,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)4765 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4766 int level,
4767 const struct skl_wm_params *wp,
4768 const struct skl_wm_level *result_prev,
4769 struct skl_wm_level *result /* out */)
4770 {
4771 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4772 u32 latency = dev_priv->wm.skl_latency[level];
4773 uint_fixed_16_16_t method1, method2;
4774 uint_fixed_16_16_t selected_result;
4775 u32 res_blocks, res_lines, min_ddb_alloc = 0;
4776
4777 if (latency == 0) {
4778 /* reject it */
4779 result->min_ddb_alloc = U16_MAX;
4780 return;
4781 }
4782
4783 /*
4784 * WaIncreaseLatencyIPCEnabled: kbl,cfl
4785 * Display WA #1141: kbl,cfl
4786 */
4787 if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4788 dev_priv->ipc_enabled)
4789 latency += 4;
4790
4791 if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4792 latency += 15;
4793
4794 method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4795 wp->cpp, latency, wp->dbuf_block_size);
4796 method2 = skl_wm_method2(wp->plane_pixel_rate,
4797 crtc_state->base.adjusted_mode.crtc_htotal,
4798 latency,
4799 wp->plane_blocks_per_line);
4800
4801 if (wp->y_tiled) {
4802 selected_result = max_fixed16(method2, wp->y_tile_minimum);
4803 } else {
4804 if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4805 wp->dbuf_block_size < 1) &&
4806 (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4807 selected_result = method2;
4808 } else if (latency >= wp->linetime_us) {
4809 if (IS_GEN(dev_priv, 9) &&
4810 !IS_GEMINILAKE(dev_priv))
4811 selected_result = min_fixed16(method1, method2);
4812 else
4813 selected_result = method2;
4814 } else {
4815 selected_result = method1;
4816 }
4817 }
4818
4819 res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4820 res_lines = div_round_up_fixed16(selected_result,
4821 wp->plane_blocks_per_line);
4822
4823 if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4824 /* Display WA #1125: skl,bxt,kbl */
4825 if (level == 0 && wp->rc_surface)
4826 res_blocks +=
4827 fixed16_to_u32_round_up(wp->y_tile_minimum);
4828
4829 /* Display WA #1126: skl,bxt,kbl */
4830 if (level >= 1 && level <= 7) {
4831 if (wp->y_tiled) {
4832 res_blocks +=
4833 fixed16_to_u32_round_up(wp->y_tile_minimum);
4834 res_lines += wp->y_min_scanlines;
4835 } else {
4836 res_blocks++;
4837 }
4838
4839 /*
4840 * Make sure result blocks for higher latency levels are
4841 * atleast as high as level below the current level.
4842 * Assumption in DDB algorithm optimization for special
4843 * cases. Also covers Display WA #1125 for RC.
4844 */
4845 if (result_prev->plane_res_b > res_blocks)
4846 res_blocks = result_prev->plane_res_b;
4847 }
4848 }
4849
4850 if (INTEL_GEN(dev_priv) >= 11) {
4851 if (wp->y_tiled) {
4852 int extra_lines;
4853
4854 if (res_lines % wp->y_min_scanlines == 0)
4855 extra_lines = wp->y_min_scanlines;
4856 else
4857 extra_lines = wp->y_min_scanlines * 2 -
4858 res_lines % wp->y_min_scanlines;
4859
4860 min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4861 wp->plane_blocks_per_line);
4862 } else {
4863 min_ddb_alloc = res_blocks +
4864 DIV_ROUND_UP(res_blocks, 10);
4865 }
4866 }
4867
4868 if (!skl_wm_has_lines(dev_priv, level))
4869 res_lines = 0;
4870
4871 if (res_lines > 31) {
4872 /* reject it */
4873 result->min_ddb_alloc = U16_MAX;
4874 return;
4875 }
4876
4877 /*
4878 * If res_lines is valid, assume we can use this watermark level
4879 * for now. We'll come back and disable it after we calculate the
4880 * DDB allocation if it turns out we don't actually have enough
4881 * blocks to satisfy it.
4882 */
4883 result->plane_res_b = res_blocks;
4884 result->plane_res_l = res_lines;
4885 /* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4886 result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4887 result->plane_en = true;
4888 }
4889
4890 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)4891 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4892 const struct skl_wm_params *wm_params,
4893 struct skl_wm_level *levels)
4894 {
4895 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4896 int level, max_level = ilk_wm_max_level(dev_priv);
4897 struct skl_wm_level *result_prev = &levels[0];
4898
4899 for (level = 0; level <= max_level; level++) {
4900 struct skl_wm_level *result = &levels[level];
4901
4902 skl_compute_plane_wm(crtc_state, level, wm_params,
4903 result_prev, result);
4904
4905 result_prev = result;
4906 }
4907 }
4908
4909 static u32
skl_compute_linetime_wm(const struct intel_crtc_state * crtc_state)4910 skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4911 {
4912 struct drm_atomic_state *state = crtc_state->base.state;
4913 struct drm_i915_private *dev_priv = to_i915(state->dev);
4914 uint_fixed_16_16_t linetime_us;
4915 u32 linetime_wm;
4916
4917 linetime_us = intel_get_linetime_us(crtc_state);
4918 linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4919
4920 /* Display WA #1135: BXT:ALL GLK:ALL */
4921 if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4922 linetime_wm /= 2;
4923
4924 return linetime_wm;
4925 }
4926
skl_compute_transition_wm(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wp,struct skl_plane_wm * wm)4927 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4928 const struct skl_wm_params *wp,
4929 struct skl_plane_wm *wm)
4930 {
4931 struct drm_device *dev = crtc_state->base.crtc->dev;
4932 const struct drm_i915_private *dev_priv = to_i915(dev);
4933 u16 trans_min, trans_y_tile_min;
4934 const u16 trans_amount = 10; /* This is configurable amount */
4935 u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4936
4937 /* Transition WM are not recommended by HW team for GEN9 */
4938 if (INTEL_GEN(dev_priv) <= 9)
4939 return;
4940
4941 /* Transition WM don't make any sense if ipc is disabled */
4942 if (!dev_priv->ipc_enabled)
4943 return;
4944
4945 trans_min = 14;
4946 if (INTEL_GEN(dev_priv) >= 11)
4947 trans_min = 4;
4948
4949 trans_offset_b = trans_min + trans_amount;
4950
4951 /*
4952 * The spec asks for Selected Result Blocks for wm0 (the real value),
4953 * not Result Blocks (the integer value). Pay attention to the capital
4954 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4955 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4956 * and since we later will have to get the ceiling of the sum in the
4957 * transition watermarks calculation, we can just pretend Selected
4958 * Result Blocks is Result Blocks minus 1 and it should work for the
4959 * current platforms.
4960 */
4961 wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4962
4963 if (wp->y_tiled) {
4964 trans_y_tile_min =
4965 (u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4966 res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4967 trans_offset_b;
4968 } else {
4969 res_blocks = wm0_sel_res_b + trans_offset_b;
4970
4971 /* WA BUG:1938466 add one block for non y-tile planes */
4972 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4973 res_blocks += 1;
4974
4975 }
4976
4977 /*
4978 * Just assume we can enable the transition watermark. After
4979 * computing the DDB we'll come back and disable it if that
4980 * assumption turns out to be false.
4981 */
4982 wm->trans_wm.plane_res_b = res_blocks + 1;
4983 wm->trans_wm.plane_en = true;
4984 }
4985
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id,int color_plane)4986 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4987 const struct intel_plane_state *plane_state,
4988 enum plane_id plane_id, int color_plane)
4989 {
4990 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4991 struct skl_wm_params wm_params;
4992 int ret;
4993
4994 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4995 &wm_params, color_plane);
4996 if (ret)
4997 return ret;
4998
4999 skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5000 skl_compute_transition_wm(crtc_state, &wm_params, wm);
5001
5002 return 0;
5003 }
5004
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id)5005 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5006 const struct intel_plane_state *plane_state,
5007 enum plane_id plane_id)
5008 {
5009 struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5010 struct skl_wm_params wm_params;
5011 int ret;
5012
5013 wm->is_planar = true;
5014
5015 /* uv plane watermarks must also be validated for NV12/Planar */
5016 ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5017 &wm_params, 1);
5018 if (ret)
5019 return ret;
5020
5021 skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5022
5023 return 0;
5024 }
5025
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5026 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5027 const struct intel_plane_state *plane_state)
5028 {
5029 struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5030 const struct drm_framebuffer *fb = plane_state->base.fb;
5031 enum plane_id plane_id = plane->id;
5032 int ret;
5033
5034 if (!intel_wm_plane_visible(crtc_state, plane_state))
5035 return 0;
5036
5037 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5038 plane_id, 0);
5039 if (ret)
5040 return ret;
5041
5042 if (fb->format->is_yuv && fb->format->num_planes > 1) {
5043 ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5044 plane_id);
5045 if (ret)
5046 return ret;
5047 }
5048
5049 return 0;
5050 }
5051
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5052 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5053 const struct intel_plane_state *plane_state)
5054 {
5055 enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5056 int ret;
5057
5058 /* Watermarks calculated in master */
5059 if (plane_state->slave)
5060 return 0;
5061
5062 if (plane_state->linked_plane) {
5063 const struct drm_framebuffer *fb = plane_state->base.fb;
5064 enum plane_id y_plane_id = plane_state->linked_plane->id;
5065
5066 WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5067 WARN_ON(!fb->format->is_yuv ||
5068 fb->format->num_planes == 1);
5069
5070 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5071 y_plane_id, 0);
5072 if (ret)
5073 return ret;
5074
5075 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5076 plane_id, 1);
5077 if (ret)
5078 return ret;
5079 } else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5080 ret = skl_build_plane_wm_single(crtc_state, plane_state,
5081 plane_id, 0);
5082 if (ret)
5083 return ret;
5084 }
5085
5086 return 0;
5087 }
5088
skl_build_pipe_wm(struct intel_crtc_state * crtc_state)5089 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5090 {
5091 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5092 struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5093 struct drm_plane *plane;
5094 const struct drm_plane_state *drm_plane_state;
5095 int ret;
5096
5097 /*
5098 * We'll only calculate watermarks for planes that are actually
5099 * enabled, so make sure all other planes are set as disabled.
5100 */
5101 memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5102
5103 drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state,
5104 &crtc_state->base) {
5105 const struct intel_plane_state *plane_state =
5106 to_intel_plane_state(drm_plane_state);
5107
5108 if (INTEL_GEN(dev_priv) >= 11)
5109 ret = icl_build_plane_wm(crtc_state, plane_state);
5110 else
5111 ret = skl_build_plane_wm(crtc_state, plane_state);
5112 if (ret)
5113 return ret;
5114 }
5115
5116 pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5117
5118 return 0;
5119 }
5120
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5121 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5122 i915_reg_t reg,
5123 const struct skl_ddb_entry *entry)
5124 {
5125 if (entry->end)
5126 I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5127 else
5128 I915_WRITE_FW(reg, 0);
5129 }
5130
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5131 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5132 i915_reg_t reg,
5133 const struct skl_wm_level *level)
5134 {
5135 u32 val = 0;
5136
5137 if (level->plane_en)
5138 val |= PLANE_WM_EN;
5139 if (level->ignore_lines)
5140 val |= PLANE_WM_IGNORE_LINES;
5141 val |= level->plane_res_b;
5142 val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5143
5144 I915_WRITE_FW(reg, val);
5145 }
5146
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5147 void skl_write_plane_wm(struct intel_plane *plane,
5148 const struct intel_crtc_state *crtc_state)
5149 {
5150 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5151 int level, max_level = ilk_wm_max_level(dev_priv);
5152 enum plane_id plane_id = plane->id;
5153 enum pipe pipe = plane->pipe;
5154 const struct skl_plane_wm *wm =
5155 &crtc_state->wm.skl.optimal.planes[plane_id];
5156 const struct skl_ddb_entry *ddb_y =
5157 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5158 const struct skl_ddb_entry *ddb_uv =
5159 &crtc_state->wm.skl.plane_ddb_uv[plane_id];
5160
5161 for (level = 0; level <= max_level; level++) {
5162 skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5163 &wm->wm[level]);
5164 }
5165 skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5166 &wm->trans_wm);
5167
5168 if (INTEL_GEN(dev_priv) >= 11) {
5169 skl_ddb_entry_write(dev_priv,
5170 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5171 return;
5172 }
5173
5174 if (wm->is_planar)
5175 swap(ddb_y, ddb_uv);
5176
5177 skl_ddb_entry_write(dev_priv,
5178 PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5179 skl_ddb_entry_write(dev_priv,
5180 PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5181 }
5182
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5183 void skl_write_cursor_wm(struct intel_plane *plane,
5184 const struct intel_crtc_state *crtc_state)
5185 {
5186 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5187 int level, max_level = ilk_wm_max_level(dev_priv);
5188 enum plane_id plane_id = plane->id;
5189 enum pipe pipe = plane->pipe;
5190 const struct skl_plane_wm *wm =
5191 &crtc_state->wm.skl.optimal.planes[plane_id];
5192 const struct skl_ddb_entry *ddb =
5193 &crtc_state->wm.skl.plane_ddb_y[plane_id];
5194
5195 for (level = 0; level <= max_level; level++) {
5196 skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5197 &wm->wm[level]);
5198 }
5199 skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5200
5201 skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5202 }
5203
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5204 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5205 const struct skl_wm_level *l2)
5206 {
5207 return l1->plane_en == l2->plane_en &&
5208 l1->ignore_lines == l2->ignore_lines &&
5209 l1->plane_res_l == l2->plane_res_l &&
5210 l1->plane_res_b == l2->plane_res_b;
5211 }
5212
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5213 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5214 const struct skl_plane_wm *wm1,
5215 const struct skl_plane_wm *wm2)
5216 {
5217 int level, max_level = ilk_wm_max_level(dev_priv);
5218
5219 for (level = 0; level <= max_level; level++) {
5220 if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5221 !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5222 return false;
5223 }
5224
5225 return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5226 }
5227
skl_pipe_wm_equals(struct intel_crtc * crtc,const struct skl_pipe_wm * wm1,const struct skl_pipe_wm * wm2)5228 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5229 const struct skl_pipe_wm *wm1,
5230 const struct skl_pipe_wm *wm2)
5231 {
5232 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5233 enum plane_id plane_id;
5234
5235 for_each_plane_id_on_crtc(crtc, plane_id) {
5236 if (!skl_plane_wm_equals(dev_priv,
5237 &wm1->planes[plane_id],
5238 &wm2->planes[plane_id]))
5239 return false;
5240 }
5241
5242 return wm1->linetime == wm2->linetime;
5243 }
5244
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5245 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5246 const struct skl_ddb_entry *b)
5247 {
5248 return a->start < b->end && b->start < a->end;
5249 }
5250
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)5251 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5252 const struct skl_ddb_entry *entries,
5253 int num_entries, int ignore_idx)
5254 {
5255 int i;
5256
5257 for (i = 0; i < num_entries; i++) {
5258 if (i != ignore_idx &&
5259 skl_ddb_entries_overlap(ddb, &entries[i]))
5260 return true;
5261 }
5262
5263 return false;
5264 }
5265
5266 static u32
pipes_modified(struct intel_atomic_state * state)5267 pipes_modified(struct intel_atomic_state *state)
5268 {
5269 struct intel_crtc *crtc;
5270 struct intel_crtc_state *crtc_state;
5271 u32 i, ret = 0;
5272
5273 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5274 ret |= drm_crtc_mask(&crtc->base);
5275
5276 return ret;
5277 }
5278
5279 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)5280 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5281 struct intel_crtc_state *new_crtc_state)
5282 {
5283 struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5284 struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5285 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5286 struct intel_plane *plane;
5287
5288 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5289 struct intel_plane_state *plane_state;
5290 enum plane_id plane_id = plane->id;
5291
5292 if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5293 &new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5294 skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5295 &new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5296 continue;
5297
5298 plane_state = intel_atomic_get_plane_state(state, plane);
5299 if (IS_ERR(plane_state))
5300 return PTR_ERR(plane_state);
5301
5302 new_crtc_state->update_planes |= BIT(plane_id);
5303 }
5304
5305 return 0;
5306 }
5307
5308 static int
skl_compute_ddb(struct intel_atomic_state * state)5309 skl_compute_ddb(struct intel_atomic_state *state)
5310 {
5311 const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5312 struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5313 struct intel_crtc_state *old_crtc_state;
5314 struct intel_crtc_state *new_crtc_state;
5315 struct intel_crtc *crtc;
5316 int ret, i;
5317
5318 memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5319
5320 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5321 new_crtc_state, i) {
5322 ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5323 if (ret)
5324 return ret;
5325
5326 ret = skl_ddb_add_affected_planes(old_crtc_state,
5327 new_crtc_state);
5328 if (ret)
5329 return ret;
5330 }
5331
5332 return 0;
5333 }
5334
enast(bool enable)5335 static char enast(bool enable)
5336 {
5337 return enable ? '*' : ' ';
5338 }
5339
5340 static void
skl_print_wm_changes(struct intel_atomic_state * state)5341 skl_print_wm_changes(struct intel_atomic_state *state)
5342 {
5343 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5344 const struct intel_crtc_state *old_crtc_state;
5345 const struct intel_crtc_state *new_crtc_state;
5346 struct intel_plane *plane;
5347 struct intel_crtc *crtc;
5348 int i;
5349
5350 if ((drm_debug & DRM_UT_KMS) == 0)
5351 return;
5352
5353 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5354 new_crtc_state, i) {
5355 const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5356
5357 old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5358 new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5359
5360 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5361 enum plane_id plane_id = plane->id;
5362 const struct skl_ddb_entry *old, *new;
5363
5364 old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5365 new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5366
5367 if (skl_ddb_entry_equal(old, new))
5368 continue;
5369
5370 DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5371 plane->base.base.id, plane->base.name,
5372 old->start, old->end, new->start, new->end,
5373 skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5374 }
5375
5376 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5377 enum plane_id plane_id = plane->id;
5378 const struct skl_plane_wm *old_wm, *new_wm;
5379
5380 old_wm = &old_pipe_wm->planes[plane_id];
5381 new_wm = &new_pipe_wm->planes[plane_id];
5382
5383 if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5384 continue;
5385
5386 DRM_DEBUG_KMS("[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5387 " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5388 plane->base.base.id, plane->base.name,
5389 enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5390 enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5391 enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5392 enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5393 enast(old_wm->trans_wm.plane_en),
5394 enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5395 enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5396 enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5397 enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5398 enast(new_wm->trans_wm.plane_en));
5399
5400 DRM_DEBUG_KMS("[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5401 " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5402 plane->base.base.id, plane->base.name,
5403 enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5404 enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5405 enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5406 enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5407 enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5408 enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5409 enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5410 enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5411 enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5412
5413 enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5414 enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5415 enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5416 enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5417 enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5418 enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5419 enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5420 enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5421 enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5422
5423 DRM_DEBUG_KMS("[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5424 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5425 plane->base.base.id, plane->base.name,
5426 old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5427 old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5428 old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5429 old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5430 old_wm->trans_wm.plane_res_b,
5431 new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5432 new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5433 new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5434 new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5435 new_wm->trans_wm.plane_res_b);
5436
5437 DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5438 " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5439 plane->base.base.id, plane->base.name,
5440 old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5441 old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5442 old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5443 old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5444 old_wm->trans_wm.min_ddb_alloc,
5445 new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5446 new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5447 new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5448 new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5449 new_wm->trans_wm.min_ddb_alloc);
5450 }
5451 }
5452 }
5453
5454 static int
skl_ddb_add_affected_pipes(struct intel_atomic_state * state,bool * changed)5455 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5456 {
5457 struct drm_device *dev = state->base.dev;
5458 const struct drm_i915_private *dev_priv = to_i915(dev);
5459 struct intel_crtc *crtc;
5460 struct intel_crtc_state *crtc_state;
5461 u32 realloc_pipes = pipes_modified(state);
5462 int ret, i;
5463
5464 /*
5465 * When we distrust bios wm we always need to recompute to set the
5466 * expected DDB allocations for each CRTC.
5467 */
5468 if (dev_priv->wm.distrust_bios_wm)
5469 (*changed) = true;
5470
5471 /*
5472 * If this transaction isn't actually touching any CRTC's, don't
5473 * bother with watermark calculation. Note that if we pass this
5474 * test, we're guaranteed to hold at least one CRTC state mutex,
5475 * which means we can safely use values like dev_priv->active_crtcs
5476 * since any racing commits that want to update them would need to
5477 * hold _all_ CRTC state mutexes.
5478 */
5479 for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5480 (*changed) = true;
5481
5482 if (!*changed)
5483 return 0;
5484
5485 /*
5486 * If this is our first atomic update following hardware readout,
5487 * we can't trust the DDB that the BIOS programmed for us. Let's
5488 * pretend that all pipes switched active status so that we'll
5489 * ensure a full DDB recompute.
5490 */
5491 if (dev_priv->wm.distrust_bios_wm) {
5492 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5493 state->base.acquire_ctx);
5494 if (ret)
5495 return ret;
5496
5497 state->active_pipe_changes = ~0;
5498
5499 /*
5500 * We usually only initialize state->active_crtcs if we
5501 * we're doing a modeset; make sure this field is always
5502 * initialized during the sanitization process that happens
5503 * on the first commit too.
5504 */
5505 if (!state->modeset)
5506 state->active_crtcs = dev_priv->active_crtcs;
5507 }
5508
5509 /*
5510 * If the modeset changes which CRTC's are active, we need to
5511 * recompute the DDB allocation for *all* active pipes, even
5512 * those that weren't otherwise being modified in any way by this
5513 * atomic commit. Due to the shrinking of the per-pipe allocations
5514 * when new active CRTC's are added, it's possible for a pipe that
5515 * we were already using and aren't changing at all here to suddenly
5516 * become invalid if its DDB needs exceeds its new allocation.
5517 *
5518 * Note that if we wind up doing a full DDB recompute, we can't let
5519 * any other display updates race with this transaction, so we need
5520 * to grab the lock on *all* CRTC's.
5521 */
5522 if (state->active_pipe_changes || state->modeset) {
5523 realloc_pipes = ~0;
5524 state->wm_results.dirty_pipes = ~0;
5525 }
5526
5527 /*
5528 * We're not recomputing for the pipes not included in the commit, so
5529 * make sure we start with the current state.
5530 */
5531 for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5532 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5533 if (IS_ERR(crtc_state))
5534 return PTR_ERR(crtc_state);
5535 }
5536
5537 return 0;
5538 }
5539
5540 /*
5541 * To make sure the cursor watermark registers are always consistent
5542 * with our computed state the following scenario needs special
5543 * treatment:
5544 *
5545 * 1. enable cursor
5546 * 2. move cursor entirely offscreen
5547 * 3. disable cursor
5548 *
5549 * Step 2. does call .disable_plane() but does not zero the watermarks
5550 * (since we consider an offscreen cursor still active for the purposes
5551 * of watermarks). Step 3. would not normally call .disable_plane()
5552 * because the actual plane visibility isn't changing, and we don't
5553 * deallocate the cursor ddb until the pipe gets disabled. So we must
5554 * force step 3. to call .disable_plane() to update the watermark
5555 * registers properly.
5556 *
5557 * Other planes do not suffer from this issues as their watermarks are
5558 * calculated based on the actual plane visibility. The only time this
5559 * can trigger for the other planes is during the initial readout as the
5560 * default value of the watermarks registers is not zero.
5561 */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)5562 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5563 struct intel_crtc *crtc)
5564 {
5565 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5566 const struct intel_crtc_state *old_crtc_state =
5567 intel_atomic_get_old_crtc_state(state, crtc);
5568 struct intel_crtc_state *new_crtc_state =
5569 intel_atomic_get_new_crtc_state(state, crtc);
5570 struct intel_plane *plane;
5571
5572 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5573 struct intel_plane_state *plane_state;
5574 enum plane_id plane_id = plane->id;
5575
5576 /*
5577 * Force a full wm update for every plane on modeset.
5578 * Required because the reset value of the wm registers
5579 * is non-zero, whereas we want all disabled planes to
5580 * have zero watermarks. So if we turn off the relevant
5581 * power well the hardware state will go out of sync
5582 * with the software state.
5583 */
5584 if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5585 skl_plane_wm_equals(dev_priv,
5586 &old_crtc_state->wm.skl.optimal.planes[plane_id],
5587 &new_crtc_state->wm.skl.optimal.planes[plane_id]))
5588 continue;
5589
5590 plane_state = intel_atomic_get_plane_state(state, plane);
5591 if (IS_ERR(plane_state))
5592 return PTR_ERR(plane_state);
5593
5594 new_crtc_state->update_planes |= BIT(plane_id);
5595 }
5596
5597 return 0;
5598 }
5599
5600 static int
skl_compute_wm(struct intel_atomic_state * state)5601 skl_compute_wm(struct intel_atomic_state *state)
5602 {
5603 struct intel_crtc *crtc;
5604 struct intel_crtc_state *new_crtc_state;
5605 struct intel_crtc_state *old_crtc_state;
5606 struct skl_ddb_values *results = &state->wm_results;
5607 bool changed = false;
5608 int ret, i;
5609
5610 /* Clear all dirty flags */
5611 results->dirty_pipes = 0;
5612
5613 ret = skl_ddb_add_affected_pipes(state, &changed);
5614 if (ret || !changed)
5615 return ret;
5616
5617 /*
5618 * Calculate WM's for all pipes that are part of this transaction.
5619 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5620 * weren't otherwise being modified (and set bits in dirty_pipes) if
5621 * pipe allocations had to change.
5622 */
5623 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5624 new_crtc_state, i) {
5625 ret = skl_build_pipe_wm(new_crtc_state);
5626 if (ret)
5627 return ret;
5628
5629 ret = skl_wm_add_affected_planes(state, crtc);
5630 if (ret)
5631 return ret;
5632
5633 if (!skl_pipe_wm_equals(crtc,
5634 &old_crtc_state->wm.skl.optimal,
5635 &new_crtc_state->wm.skl.optimal))
5636 results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5637 }
5638
5639 ret = skl_compute_ddb(state);
5640 if (ret)
5641 return ret;
5642
5643 skl_print_wm_changes(state);
5644
5645 return 0;
5646 }
5647
skl_atomic_update_crtc_wm(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5648 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5649 struct intel_crtc_state *crtc_state)
5650 {
5651 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5652 struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5653 struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5654 enum pipe pipe = crtc->pipe;
5655
5656 if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5657 return;
5658
5659 I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5660 }
5661
skl_initial_wm(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5662 static void skl_initial_wm(struct intel_atomic_state *state,
5663 struct intel_crtc_state *crtc_state)
5664 {
5665 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5666 struct drm_device *dev = intel_crtc->base.dev;
5667 struct drm_i915_private *dev_priv = to_i915(dev);
5668 struct skl_ddb_values *results = &state->wm_results;
5669
5670 if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5671 return;
5672
5673 mutex_lock(&dev_priv->wm.wm_mutex);
5674
5675 if (crtc_state->base.active_changed)
5676 skl_atomic_update_crtc_wm(state, crtc_state);
5677
5678 mutex_unlock(&dev_priv->wm.wm_mutex);
5679 }
5680
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)5681 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5682 struct intel_wm_config *config)
5683 {
5684 struct intel_crtc *crtc;
5685
5686 /* Compute the currently _active_ config */
5687 for_each_intel_crtc(&dev_priv->drm, crtc) {
5688 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5689
5690 if (!wm->pipe_enabled)
5691 continue;
5692
5693 config->sprites_enabled |= wm->sprites_enabled;
5694 config->sprites_scaled |= wm->sprites_scaled;
5695 config->num_pipes_active++;
5696 }
5697 }
5698
ilk_program_watermarks(struct drm_i915_private * dev_priv)5699 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5700 {
5701 struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5702 struct ilk_wm_maximums max;
5703 struct intel_wm_config config = {};
5704 struct ilk_wm_values results = {};
5705 enum intel_ddb_partitioning partitioning;
5706
5707 ilk_compute_wm_config(dev_priv, &config);
5708
5709 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5710 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5711
5712 /* 5/6 split only in single pipe config on IVB+ */
5713 if (INTEL_GEN(dev_priv) >= 7 &&
5714 config.num_pipes_active == 1 && config.sprites_enabled) {
5715 ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5716 ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5717
5718 best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5719 } else {
5720 best_lp_wm = &lp_wm_1_2;
5721 }
5722
5723 partitioning = (best_lp_wm == &lp_wm_1_2) ?
5724 INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5725
5726 ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5727
5728 ilk_write_wm_values(dev_priv, &results);
5729 }
5730
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5731 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5732 struct intel_crtc_state *crtc_state)
5733 {
5734 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5735 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5736
5737 mutex_lock(&dev_priv->wm.wm_mutex);
5738 crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5739 ilk_program_watermarks(dev_priv);
5740 mutex_unlock(&dev_priv->wm.wm_mutex);
5741 }
5742
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5743 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5744 struct intel_crtc_state *crtc_state)
5745 {
5746 struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5747 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5748
5749 if (!crtc_state->wm.need_postvbl_update)
5750 return;
5751
5752 mutex_lock(&dev_priv->wm.wm_mutex);
5753 crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5754 ilk_program_watermarks(dev_priv);
5755 mutex_unlock(&dev_priv->wm.wm_mutex);
5756 }
5757
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)5758 static inline void skl_wm_level_from_reg_val(u32 val,
5759 struct skl_wm_level *level)
5760 {
5761 level->plane_en = val & PLANE_WM_EN;
5762 level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5763 level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5764 level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5765 PLANE_WM_LINES_MASK;
5766 }
5767
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)5768 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5769 struct skl_pipe_wm *out)
5770 {
5771 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5772 enum pipe pipe = crtc->pipe;
5773 int level, max_level;
5774 enum plane_id plane_id;
5775 u32 val;
5776
5777 max_level = ilk_wm_max_level(dev_priv);
5778
5779 for_each_plane_id_on_crtc(crtc, plane_id) {
5780 struct skl_plane_wm *wm = &out->planes[plane_id];
5781
5782 for (level = 0; level <= max_level; level++) {
5783 if (plane_id != PLANE_CURSOR)
5784 val = I915_READ(PLANE_WM(pipe, plane_id, level));
5785 else
5786 val = I915_READ(CUR_WM(pipe, level));
5787
5788 skl_wm_level_from_reg_val(val, &wm->wm[level]);
5789 }
5790
5791 if (plane_id != PLANE_CURSOR)
5792 val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5793 else
5794 val = I915_READ(CUR_WM_TRANS(pipe));
5795
5796 skl_wm_level_from_reg_val(val, &wm->trans_wm);
5797 }
5798
5799 if (!crtc->active)
5800 return;
5801
5802 out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5803 }
5804
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)5805 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5806 {
5807 struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5808 struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5809 struct intel_crtc *crtc;
5810 struct intel_crtc_state *crtc_state;
5811
5812 skl_ddb_get_hw_state(dev_priv, ddb);
5813 for_each_intel_crtc(&dev_priv->drm, crtc) {
5814 crtc_state = to_intel_crtc_state(crtc->base.state);
5815
5816 skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5817
5818 if (crtc->active)
5819 hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5820 }
5821
5822 if (dev_priv->active_crtcs) {
5823 /* Fully recompute DDB on first atomic commit */
5824 dev_priv->wm.distrust_bios_wm = true;
5825 }
5826 }
5827
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)5828 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5829 {
5830 struct drm_device *dev = crtc->base.dev;
5831 struct drm_i915_private *dev_priv = to_i915(dev);
5832 struct ilk_wm_values *hw = &dev_priv->wm.hw;
5833 struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5834 struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5835 enum pipe pipe = crtc->pipe;
5836 static const i915_reg_t wm0_pipe_reg[] = {
5837 [PIPE_A] = WM0_PIPEA_ILK,
5838 [PIPE_B] = WM0_PIPEB_ILK,
5839 [PIPE_C] = WM0_PIPEC_IVB,
5840 };
5841
5842 hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5843 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5844 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5845
5846 memset(active, 0, sizeof(*active));
5847
5848 active->pipe_enabled = crtc->active;
5849
5850 if (active->pipe_enabled) {
5851 u32 tmp = hw->wm_pipe[pipe];
5852
5853 /*
5854 * For active pipes LP0 watermark is marked as
5855 * enabled, and LP1+ watermaks as disabled since
5856 * we can't really reverse compute them in case
5857 * multiple pipes are active.
5858 */
5859 active->wm[0].enable = true;
5860 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5861 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5862 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5863 active->linetime = hw->wm_linetime[pipe];
5864 } else {
5865 int level, max_level = ilk_wm_max_level(dev_priv);
5866
5867 /*
5868 * For inactive pipes, all watermark levels
5869 * should be marked as enabled but zeroed,
5870 * which is what we'd compute them to.
5871 */
5872 for (level = 0; level <= max_level; level++)
5873 active->wm[level].enable = true;
5874 }
5875
5876 crtc->wm.active.ilk = *active;
5877 }
5878
5879 #define _FW_WM(value, plane) \
5880 (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5881 #define _FW_WM_VLV(value, plane) \
5882 (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5883
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)5884 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5885 struct g4x_wm_values *wm)
5886 {
5887 u32 tmp;
5888
5889 tmp = I915_READ(DSPFW1);
5890 wm->sr.plane = _FW_WM(tmp, SR);
5891 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5892 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5893 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5894
5895 tmp = I915_READ(DSPFW2);
5896 wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5897 wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5898 wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5899 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5900 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5901 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5902
5903 tmp = I915_READ(DSPFW3);
5904 wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5905 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5906 wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5907 wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5908 }
5909
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)5910 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5911 struct vlv_wm_values *wm)
5912 {
5913 enum pipe pipe;
5914 u32 tmp;
5915
5916 for_each_pipe(dev_priv, pipe) {
5917 tmp = I915_READ(VLV_DDL(pipe));
5918
5919 wm->ddl[pipe].plane[PLANE_PRIMARY] =
5920 (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5921 wm->ddl[pipe].plane[PLANE_CURSOR] =
5922 (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5923 wm->ddl[pipe].plane[PLANE_SPRITE0] =
5924 (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5925 wm->ddl[pipe].plane[PLANE_SPRITE1] =
5926 (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5927 }
5928
5929 tmp = I915_READ(DSPFW1);
5930 wm->sr.plane = _FW_WM(tmp, SR);
5931 wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5932 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5933 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5934
5935 tmp = I915_READ(DSPFW2);
5936 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5937 wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5938 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5939
5940 tmp = I915_READ(DSPFW3);
5941 wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5942
5943 if (IS_CHERRYVIEW(dev_priv)) {
5944 tmp = I915_READ(DSPFW7_CHV);
5945 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5946 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5947
5948 tmp = I915_READ(DSPFW8_CHV);
5949 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5950 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5951
5952 tmp = I915_READ(DSPFW9_CHV);
5953 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5954 wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5955
5956 tmp = I915_READ(DSPHOWM);
5957 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5958 wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5959 wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5960 wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5961 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5962 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5963 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5964 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5965 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5966 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5967 } else {
5968 tmp = I915_READ(DSPFW7);
5969 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5970 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5971
5972 tmp = I915_READ(DSPHOWM);
5973 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5974 wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5975 wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5976 wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5977 wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5978 wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5979 wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5980 }
5981 }
5982
5983 #undef _FW_WM
5984 #undef _FW_WM_VLV
5985
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)5986 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5987 {
5988 struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5989 struct intel_crtc *crtc;
5990
5991 g4x_read_wm_values(dev_priv, wm);
5992
5993 wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5994
5995 for_each_intel_crtc(&dev_priv->drm, crtc) {
5996 struct intel_crtc_state *crtc_state =
5997 to_intel_crtc_state(crtc->base.state);
5998 struct g4x_wm_state *active = &crtc->wm.active.g4x;
5999 struct g4x_pipe_wm *raw;
6000 enum pipe pipe = crtc->pipe;
6001 enum plane_id plane_id;
6002 int level, max_level;
6003
6004 active->cxsr = wm->cxsr;
6005 active->hpll_en = wm->hpll_en;
6006 active->fbc_en = wm->fbc_en;
6007
6008 active->sr = wm->sr;
6009 active->hpll = wm->hpll;
6010
6011 for_each_plane_id_on_crtc(crtc, plane_id) {
6012 active->wm.plane[plane_id] =
6013 wm->pipe[pipe].plane[plane_id];
6014 }
6015
6016 if (wm->cxsr && wm->hpll_en)
6017 max_level = G4X_WM_LEVEL_HPLL;
6018 else if (wm->cxsr)
6019 max_level = G4X_WM_LEVEL_SR;
6020 else
6021 max_level = G4X_WM_LEVEL_NORMAL;
6022
6023 level = G4X_WM_LEVEL_NORMAL;
6024 raw = &crtc_state->wm.g4x.raw[level];
6025 for_each_plane_id_on_crtc(crtc, plane_id)
6026 raw->plane[plane_id] = active->wm.plane[plane_id];
6027
6028 if (++level > max_level)
6029 goto out;
6030
6031 raw = &crtc_state->wm.g4x.raw[level];
6032 raw->plane[PLANE_PRIMARY] = active->sr.plane;
6033 raw->plane[PLANE_CURSOR] = active->sr.cursor;
6034 raw->plane[PLANE_SPRITE0] = 0;
6035 raw->fbc = active->sr.fbc;
6036
6037 if (++level > max_level)
6038 goto out;
6039
6040 raw = &crtc_state->wm.g4x.raw[level];
6041 raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6042 raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6043 raw->plane[PLANE_SPRITE0] = 0;
6044 raw->fbc = active->hpll.fbc;
6045
6046 out:
6047 for_each_plane_id_on_crtc(crtc, plane_id)
6048 g4x_raw_plane_wm_set(crtc_state, level,
6049 plane_id, USHRT_MAX);
6050 g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6051
6052 crtc_state->wm.g4x.optimal = *active;
6053 crtc_state->wm.g4x.intermediate = *active;
6054
6055 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6056 pipe_name(pipe),
6057 wm->pipe[pipe].plane[PLANE_PRIMARY],
6058 wm->pipe[pipe].plane[PLANE_CURSOR],
6059 wm->pipe[pipe].plane[PLANE_SPRITE0]);
6060 }
6061
6062 DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6063 wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6064 DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6065 wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6066 DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6067 yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6068 }
6069
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6070 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6071 {
6072 struct intel_plane *plane;
6073 struct intel_crtc *crtc;
6074
6075 mutex_lock(&dev_priv->wm.wm_mutex);
6076
6077 for_each_intel_plane(&dev_priv->drm, plane) {
6078 struct intel_crtc *crtc =
6079 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6080 struct intel_crtc_state *crtc_state =
6081 to_intel_crtc_state(crtc->base.state);
6082 struct intel_plane_state *plane_state =
6083 to_intel_plane_state(plane->base.state);
6084 struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6085 enum plane_id plane_id = plane->id;
6086 int level;
6087
6088 if (plane_state->base.visible)
6089 continue;
6090
6091 for (level = 0; level < 3; level++) {
6092 struct g4x_pipe_wm *raw =
6093 &crtc_state->wm.g4x.raw[level];
6094
6095 raw->plane[plane_id] = 0;
6096 wm_state->wm.plane[plane_id] = 0;
6097 }
6098
6099 if (plane_id == PLANE_PRIMARY) {
6100 for (level = 0; level < 3; level++) {
6101 struct g4x_pipe_wm *raw =
6102 &crtc_state->wm.g4x.raw[level];
6103 raw->fbc = 0;
6104 }
6105
6106 wm_state->sr.fbc = 0;
6107 wm_state->hpll.fbc = 0;
6108 wm_state->fbc_en = false;
6109 }
6110 }
6111
6112 for_each_intel_crtc(&dev_priv->drm, crtc) {
6113 struct intel_crtc_state *crtc_state =
6114 to_intel_crtc_state(crtc->base.state);
6115
6116 crtc_state->wm.g4x.intermediate =
6117 crtc_state->wm.g4x.optimal;
6118 crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6119 }
6120
6121 g4x_program_watermarks(dev_priv);
6122
6123 mutex_unlock(&dev_priv->wm.wm_mutex);
6124 }
6125
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6126 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6127 {
6128 struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6129 struct intel_crtc *crtc;
6130 u32 val;
6131
6132 vlv_read_wm_values(dev_priv, wm);
6133
6134 wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6135 wm->level = VLV_WM_LEVEL_PM2;
6136
6137 if (IS_CHERRYVIEW(dev_priv)) {
6138 vlv_punit_get(dev_priv);
6139
6140 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6141 if (val & DSP_MAXFIFO_PM5_ENABLE)
6142 wm->level = VLV_WM_LEVEL_PM5;
6143
6144 /*
6145 * If DDR DVFS is disabled in the BIOS, Punit
6146 * will never ack the request. So if that happens
6147 * assume we don't have to enable/disable DDR DVFS
6148 * dynamically. To test that just set the REQ_ACK
6149 * bit to poke the Punit, but don't change the
6150 * HIGH/LOW bits so that we don't actually change
6151 * the current state.
6152 */
6153 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6154 val |= FORCE_DDR_FREQ_REQ_ACK;
6155 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6156
6157 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6158 FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6159 DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6160 "assuming DDR DVFS is disabled\n");
6161 dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6162 } else {
6163 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6164 if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6165 wm->level = VLV_WM_LEVEL_DDR_DVFS;
6166 }
6167
6168 vlv_punit_put(dev_priv);
6169 }
6170
6171 for_each_intel_crtc(&dev_priv->drm, crtc) {
6172 struct intel_crtc_state *crtc_state =
6173 to_intel_crtc_state(crtc->base.state);
6174 struct vlv_wm_state *active = &crtc->wm.active.vlv;
6175 const struct vlv_fifo_state *fifo_state =
6176 &crtc_state->wm.vlv.fifo_state;
6177 enum pipe pipe = crtc->pipe;
6178 enum plane_id plane_id;
6179 int level;
6180
6181 vlv_get_fifo_size(crtc_state);
6182
6183 active->num_levels = wm->level + 1;
6184 active->cxsr = wm->cxsr;
6185
6186 for (level = 0; level < active->num_levels; level++) {
6187 struct g4x_pipe_wm *raw =
6188 &crtc_state->wm.vlv.raw[level];
6189
6190 active->sr[level].plane = wm->sr.plane;
6191 active->sr[level].cursor = wm->sr.cursor;
6192
6193 for_each_plane_id_on_crtc(crtc, plane_id) {
6194 active->wm[level].plane[plane_id] =
6195 wm->pipe[pipe].plane[plane_id];
6196
6197 raw->plane[plane_id] =
6198 vlv_invert_wm_value(active->wm[level].plane[plane_id],
6199 fifo_state->plane[plane_id]);
6200 }
6201 }
6202
6203 for_each_plane_id_on_crtc(crtc, plane_id)
6204 vlv_raw_plane_wm_set(crtc_state, level,
6205 plane_id, USHRT_MAX);
6206 vlv_invalidate_wms(crtc, active, level);
6207
6208 crtc_state->wm.vlv.optimal = *active;
6209 crtc_state->wm.vlv.intermediate = *active;
6210
6211 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6212 pipe_name(pipe),
6213 wm->pipe[pipe].plane[PLANE_PRIMARY],
6214 wm->pipe[pipe].plane[PLANE_CURSOR],
6215 wm->pipe[pipe].plane[PLANE_SPRITE0],
6216 wm->pipe[pipe].plane[PLANE_SPRITE1]);
6217 }
6218
6219 DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6220 wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6221 }
6222
vlv_wm_sanitize(struct drm_i915_private * dev_priv)6223 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6224 {
6225 struct intel_plane *plane;
6226 struct intel_crtc *crtc;
6227
6228 mutex_lock(&dev_priv->wm.wm_mutex);
6229
6230 for_each_intel_plane(&dev_priv->drm, plane) {
6231 struct intel_crtc *crtc =
6232 intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6233 struct intel_crtc_state *crtc_state =
6234 to_intel_crtc_state(crtc->base.state);
6235 struct intel_plane_state *plane_state =
6236 to_intel_plane_state(plane->base.state);
6237 struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6238 const struct vlv_fifo_state *fifo_state =
6239 &crtc_state->wm.vlv.fifo_state;
6240 enum plane_id plane_id = plane->id;
6241 int level;
6242
6243 if (plane_state->base.visible)
6244 continue;
6245
6246 for (level = 0; level < wm_state->num_levels; level++) {
6247 struct g4x_pipe_wm *raw =
6248 &crtc_state->wm.vlv.raw[level];
6249
6250 raw->plane[plane_id] = 0;
6251
6252 wm_state->wm[level].plane[plane_id] =
6253 vlv_invert_wm_value(raw->plane[plane_id],
6254 fifo_state->plane[plane_id]);
6255 }
6256 }
6257
6258 for_each_intel_crtc(&dev_priv->drm, crtc) {
6259 struct intel_crtc_state *crtc_state =
6260 to_intel_crtc_state(crtc->base.state);
6261
6262 crtc_state->wm.vlv.intermediate =
6263 crtc_state->wm.vlv.optimal;
6264 crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6265 }
6266
6267 vlv_program_watermarks(dev_priv);
6268
6269 mutex_unlock(&dev_priv->wm.wm_mutex);
6270 }
6271
6272 /*
6273 * FIXME should probably kill this and improve
6274 * the real watermark readout/sanitation instead
6275 */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)6276 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6277 {
6278 I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6279 I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6280 I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6281
6282 /*
6283 * Don't touch WM1S_LP_EN here.
6284 * Doing so could cause underruns.
6285 */
6286 }
6287
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)6288 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6289 {
6290 struct ilk_wm_values *hw = &dev_priv->wm.hw;
6291 struct intel_crtc *crtc;
6292
6293 ilk_init_lp_watermarks(dev_priv);
6294
6295 for_each_intel_crtc(&dev_priv->drm, crtc)
6296 ilk_pipe_wm_get_hw_state(crtc);
6297
6298 hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6299 hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6300 hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6301
6302 hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6303 if (INTEL_GEN(dev_priv) >= 7) {
6304 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6305 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6306 }
6307
6308 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6309 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6310 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6311 else if (IS_IVYBRIDGE(dev_priv))
6312 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6313 INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6314
6315 hw->enable_fbc_wm =
6316 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6317 }
6318
6319 /**
6320 * intel_update_watermarks - update FIFO watermark values based on current modes
6321 * @crtc: the #intel_crtc on which to compute the WM
6322 *
6323 * Calculate watermark values for the various WM regs based on current mode
6324 * and plane configuration.
6325 *
6326 * There are several cases to deal with here:
6327 * - normal (i.e. non-self-refresh)
6328 * - self-refresh (SR) mode
6329 * - lines are large relative to FIFO size (buffer can hold up to 2)
6330 * - lines are small relative to FIFO size (buffer can hold more than 2
6331 * lines), so need to account for TLB latency
6332 *
6333 * The normal calculation is:
6334 * watermark = dotclock * bytes per pixel * latency
6335 * where latency is platform & configuration dependent (we assume pessimal
6336 * values here).
6337 *
6338 * The SR calculation is:
6339 * watermark = (trunc(latency/line time)+1) * surface width *
6340 * bytes per pixel
6341 * where
6342 * line time = htotal / dotclock
6343 * surface width = hdisplay for normal plane and 64 for cursor
6344 * and latency is assumed to be high, as above.
6345 *
6346 * The final value programmed to the register should always be rounded up,
6347 * and include an extra 2 entries to account for clock crossings.
6348 *
6349 * We don't use the sprite, so we can ignore that. And on Crestline we have
6350 * to set the non-SR watermarks to 8.
6351 */
intel_update_watermarks(struct intel_crtc * crtc)6352 void intel_update_watermarks(struct intel_crtc *crtc)
6353 {
6354 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6355
6356 if (dev_priv->display.update_wm)
6357 dev_priv->display.update_wm(crtc);
6358 }
6359
intel_enable_ipc(struct drm_i915_private * dev_priv)6360 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6361 {
6362 u32 val;
6363
6364 if (!HAS_IPC(dev_priv))
6365 return;
6366
6367 val = I915_READ(DISP_ARB_CTL2);
6368
6369 if (dev_priv->ipc_enabled)
6370 val |= DISP_IPC_ENABLE;
6371 else
6372 val &= ~DISP_IPC_ENABLE;
6373
6374 I915_WRITE(DISP_ARB_CTL2, val);
6375 }
6376
intel_can_enable_ipc(struct drm_i915_private * dev_priv)6377 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6378 {
6379 /* Display WA #0477 WaDisableIPC: skl */
6380 if (IS_SKYLAKE(dev_priv))
6381 return false;
6382
6383 /* Display WA #1141: SKL:all KBL:all CFL */
6384 if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6385 return dev_priv->dram_info.symmetric_memory;
6386
6387 return true;
6388 }
6389
intel_init_ipc(struct drm_i915_private * dev_priv)6390 void intel_init_ipc(struct drm_i915_private *dev_priv)
6391 {
6392 if (!HAS_IPC(dev_priv))
6393 return;
6394
6395 dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6396
6397 intel_enable_ipc(dev_priv);
6398 }
6399
6400 /*
6401 * Lock protecting IPS related data structures
6402 */
6403 DEFINE_SPINLOCK(mchdev_lock);
6404
ironlake_set_drps(struct drm_i915_private * i915,u8 val)6405 bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6406 {
6407 struct intel_uncore *uncore = &i915->uncore;
6408 u16 rgvswctl;
6409
6410 lockdep_assert_held(&mchdev_lock);
6411
6412 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6413 if (rgvswctl & MEMCTL_CMD_STS) {
6414 DRM_DEBUG("gpu busy, RCS change rejected\n");
6415 return false; /* still busy with another command */
6416 }
6417
6418 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6419 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6420 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6421 intel_uncore_posting_read16(uncore, MEMSWCTL);
6422
6423 rgvswctl |= MEMCTL_CMD_STS;
6424 intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6425
6426 return true;
6427 }
6428
ironlake_enable_drps(struct drm_i915_private * dev_priv)6429 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6430 {
6431 struct intel_uncore *uncore = &dev_priv->uncore;
6432 u32 rgvmodectl;
6433 u8 fmax, fmin, fstart, vstart;
6434
6435 spin_lock_irq(&mchdev_lock);
6436
6437 rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6438
6439 /* Enable temp reporting */
6440 intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6441 intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6442
6443 /* 100ms RC evaluation intervals */
6444 intel_uncore_write(uncore, RCUPEI, 100000);
6445 intel_uncore_write(uncore, RCDNEI, 100000);
6446
6447 /* Set max/min thresholds to 90ms and 80ms respectively */
6448 intel_uncore_write(uncore, RCBMAXAVG, 90000);
6449 intel_uncore_write(uncore, RCBMINAVG, 80000);
6450
6451 intel_uncore_write(uncore, MEMIHYST, 1);
6452
6453 /* Set up min, max, and cur for interrupt handling */
6454 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6455 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6456 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6457 MEMMODE_FSTART_SHIFT;
6458
6459 vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
6460 PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6461
6462 dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6463 dev_priv->ips.fstart = fstart;
6464
6465 dev_priv->ips.max_delay = fstart;
6466 dev_priv->ips.min_delay = fmin;
6467 dev_priv->ips.cur_delay = fstart;
6468
6469 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6470 fmax, fmin, fstart);
6471
6472 intel_uncore_write(uncore,
6473 MEMINTREN,
6474 MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6475
6476 /*
6477 * Interrupts will be enabled in ironlake_irq_postinstall
6478 */
6479
6480 intel_uncore_write(uncore, VIDSTART, vstart);
6481 intel_uncore_posting_read(uncore, VIDSTART);
6482
6483 rgvmodectl |= MEMMODE_SWMODE_EN;
6484 intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6485
6486 if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
6487 MEMCTL_CMD_STS) == 0, 10))
6488 DRM_ERROR("stuck trying to change perf mode\n");
6489 mdelay(1);
6490
6491 ironlake_set_drps(dev_priv, fstart);
6492
6493 dev_priv->ips.last_count1 =
6494 intel_uncore_read(uncore, DMIEC) +
6495 intel_uncore_read(uncore, DDREC) +
6496 intel_uncore_read(uncore, CSIEC);
6497 dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6498 dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6499 dev_priv->ips.last_time2 = ktime_get_raw_ns();
6500
6501 spin_unlock_irq(&mchdev_lock);
6502 }
6503
ironlake_disable_drps(struct drm_i915_private * i915)6504 static void ironlake_disable_drps(struct drm_i915_private *i915)
6505 {
6506 struct intel_uncore *uncore = &i915->uncore;
6507 u16 rgvswctl;
6508
6509 spin_lock_irq(&mchdev_lock);
6510
6511 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6512
6513 /* Ack interrupts, disable EFC interrupt */
6514 intel_uncore_write(uncore,
6515 MEMINTREN,
6516 intel_uncore_read(uncore, MEMINTREN) &
6517 ~MEMINT_EVAL_CHG_EN);
6518 intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
6519 intel_uncore_write(uncore,
6520 DEIER,
6521 intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
6522 intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
6523 intel_uncore_write(uncore,
6524 DEIMR,
6525 intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6526
6527 /* Go back to the starting frequency */
6528 ironlake_set_drps(i915, i915->ips.fstart);
6529 mdelay(1);
6530 rgvswctl |= MEMCTL_CMD_STS;
6531 intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6532 mdelay(1);
6533
6534 spin_unlock_irq(&mchdev_lock);
6535 }
6536
6537 /* There's a funny hw issue where the hw returns all 0 when reading from
6538 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6539 * ourselves, instead of doing a rmw cycle (which might result in us clearing
6540 * all limits and the gpu stuck at whatever frequency it is at atm).
6541 */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)6542 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6543 {
6544 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6545 u32 limits;
6546
6547 /* Only set the down limit when we've reached the lowest level to avoid
6548 * getting more interrupts, otherwise leave this clear. This prevents a
6549 * race in the hw when coming out of rc6: There's a tiny window where
6550 * the hw runs at the minimal clock before selecting the desired
6551 * frequency, if the down threshold expires in that window we will not
6552 * receive a down interrupt. */
6553 if (INTEL_GEN(dev_priv) >= 9) {
6554 limits = (rps->max_freq_softlimit) << 23;
6555 if (val <= rps->min_freq_softlimit)
6556 limits |= (rps->min_freq_softlimit) << 14;
6557 } else {
6558 limits = rps->max_freq_softlimit << 24;
6559 if (val <= rps->min_freq_softlimit)
6560 limits |= rps->min_freq_softlimit << 16;
6561 }
6562
6563 return limits;
6564 }
6565
rps_set_power(struct drm_i915_private * dev_priv,int new_power)6566 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6567 {
6568 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6569 u32 threshold_up = 0, threshold_down = 0; /* in % */
6570 u32 ei_up = 0, ei_down = 0;
6571
6572 lockdep_assert_held(&rps->power.mutex);
6573
6574 if (new_power == rps->power.mode)
6575 return;
6576
6577 /* Note the units here are not exactly 1us, but 1280ns. */
6578 switch (new_power) {
6579 case LOW_POWER:
6580 /* Upclock if more than 95% busy over 16ms */
6581 ei_up = 16000;
6582 threshold_up = 95;
6583
6584 /* Downclock if less than 85% busy over 32ms */
6585 ei_down = 32000;
6586 threshold_down = 85;
6587 break;
6588
6589 case BETWEEN:
6590 /* Upclock if more than 90% busy over 13ms */
6591 ei_up = 13000;
6592 threshold_up = 90;
6593
6594 /* Downclock if less than 75% busy over 32ms */
6595 ei_down = 32000;
6596 threshold_down = 75;
6597 break;
6598
6599 case HIGH_POWER:
6600 /* Upclock if more than 85% busy over 10ms */
6601 ei_up = 10000;
6602 threshold_up = 85;
6603
6604 /* Downclock if less than 60% busy over 32ms */
6605 ei_down = 32000;
6606 threshold_down = 60;
6607 break;
6608 }
6609
6610 /* When byt can survive without system hang with dynamic
6611 * sw freq adjustments, this restriction can be lifted.
6612 */
6613 if (IS_VALLEYVIEW(dev_priv))
6614 goto skip_hw_write;
6615
6616 I915_WRITE(GEN6_RP_UP_EI,
6617 GT_INTERVAL_FROM_US(dev_priv, ei_up));
6618 I915_WRITE(GEN6_RP_UP_THRESHOLD,
6619 GT_INTERVAL_FROM_US(dev_priv,
6620 ei_up * threshold_up / 100));
6621
6622 I915_WRITE(GEN6_RP_DOWN_EI,
6623 GT_INTERVAL_FROM_US(dev_priv, ei_down));
6624 I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6625 GT_INTERVAL_FROM_US(dev_priv,
6626 ei_down * threshold_down / 100));
6627
6628 I915_WRITE(GEN6_RP_CONTROL,
6629 (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6630 GEN6_RP_MEDIA_HW_NORMAL_MODE |
6631 GEN6_RP_MEDIA_IS_GFX |
6632 GEN6_RP_ENABLE |
6633 GEN6_RP_UP_BUSY_AVG |
6634 GEN6_RP_DOWN_IDLE_AVG);
6635
6636 skip_hw_write:
6637 rps->power.mode = new_power;
6638 rps->power.up_threshold = threshold_up;
6639 rps->power.down_threshold = threshold_down;
6640 }
6641
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)6642 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6643 {
6644 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6645 int new_power;
6646
6647 new_power = rps->power.mode;
6648 switch (rps->power.mode) {
6649 case LOW_POWER:
6650 if (val > rps->efficient_freq + 1 &&
6651 val > rps->cur_freq)
6652 new_power = BETWEEN;
6653 break;
6654
6655 case BETWEEN:
6656 if (val <= rps->efficient_freq &&
6657 val < rps->cur_freq)
6658 new_power = LOW_POWER;
6659 else if (val >= rps->rp0_freq &&
6660 val > rps->cur_freq)
6661 new_power = HIGH_POWER;
6662 break;
6663
6664 case HIGH_POWER:
6665 if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6666 val < rps->cur_freq)
6667 new_power = BETWEEN;
6668 break;
6669 }
6670 /* Max/min bins are special */
6671 if (val <= rps->min_freq_softlimit)
6672 new_power = LOW_POWER;
6673 if (val >= rps->max_freq_softlimit)
6674 new_power = HIGH_POWER;
6675
6676 mutex_lock(&rps->power.mutex);
6677 if (rps->power.interactive)
6678 new_power = HIGH_POWER;
6679 rps_set_power(dev_priv, new_power);
6680 mutex_unlock(&rps->power.mutex);
6681 }
6682
intel_rps_mark_interactive(struct drm_i915_private * i915,bool interactive)6683 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6684 {
6685 struct intel_rps *rps = &i915->gt_pm.rps;
6686
6687 if (INTEL_GEN(i915) < 6)
6688 return;
6689
6690 mutex_lock(&rps->power.mutex);
6691 if (interactive) {
6692 if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6693 rps_set_power(i915, HIGH_POWER);
6694 } else {
6695 GEM_BUG_ON(!rps->power.interactive);
6696 rps->power.interactive--;
6697 }
6698 mutex_unlock(&rps->power.mutex);
6699 }
6700
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)6701 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6702 {
6703 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6704 u32 mask = 0;
6705
6706 /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6707 if (val > rps->min_freq_softlimit)
6708 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6709 if (val < rps->max_freq_softlimit)
6710 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6711
6712 mask &= dev_priv->pm_rps_events;
6713
6714 return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6715 }
6716
6717 /* gen6_set_rps is called to update the frequency request, but should also be
6718 * called when the range (min_delay and max_delay) is modified so that we can
6719 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_i915_private * dev_priv,u8 val)6720 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6721 {
6722 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6723
6724 /* min/max delay may still have been modified so be sure to
6725 * write the limits value.
6726 */
6727 if (val != rps->cur_freq) {
6728 gen6_set_rps_thresholds(dev_priv, val);
6729
6730 if (INTEL_GEN(dev_priv) >= 9)
6731 I915_WRITE(GEN6_RPNSWREQ,
6732 GEN9_FREQUENCY(val));
6733 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6734 I915_WRITE(GEN6_RPNSWREQ,
6735 HSW_FREQUENCY(val));
6736 else
6737 I915_WRITE(GEN6_RPNSWREQ,
6738 GEN6_FREQUENCY(val) |
6739 GEN6_OFFSET(0) |
6740 GEN6_AGGRESSIVE_TURBO);
6741 }
6742
6743 /* Make sure we continue to get interrupts
6744 * until we hit the minimum or maximum frequencies.
6745 */
6746 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6747 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6748
6749 rps->cur_freq = val;
6750 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6751
6752 return 0;
6753 }
6754
valleyview_set_rps(struct drm_i915_private * dev_priv,u8 val)6755 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6756 {
6757 int err;
6758
6759 if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6760 "Odd GPU freq value\n"))
6761 val &= ~1;
6762
6763 I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6764
6765 if (val != dev_priv->gt_pm.rps.cur_freq) {
6766 vlv_punit_get(dev_priv);
6767 err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6768 vlv_punit_put(dev_priv);
6769 if (err)
6770 return err;
6771
6772 gen6_set_rps_thresholds(dev_priv, val);
6773 }
6774
6775 dev_priv->gt_pm.rps.cur_freq = val;
6776 trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6777
6778 return 0;
6779 }
6780
6781 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6782 *
6783 * * If Gfx is Idle, then
6784 * 1. Forcewake Media well.
6785 * 2. Request idle freq.
6786 * 3. Release Forcewake of Media well.
6787 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)6788 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6789 {
6790 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6791 u32 val = rps->idle_freq;
6792 int err;
6793
6794 if (rps->cur_freq <= val)
6795 return;
6796
6797 /* The punit delays the write of the frequency and voltage until it
6798 * determines the GPU is awake. During normal usage we don't want to
6799 * waste power changing the frequency if the GPU is sleeping (rc6).
6800 * However, the GPU and driver is now idle and we do not want to delay
6801 * switching to minimum voltage (reducing power whilst idle) as we do
6802 * not expect to be woken in the near future and so must flush the
6803 * change by waking the device.
6804 *
6805 * We choose to take the media powerwell (either would do to trick the
6806 * punit into committing the voltage change) as that takes a lot less
6807 * power than the render powerwell.
6808 */
6809 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6810 err = valleyview_set_rps(dev_priv, val);
6811 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6812
6813 if (err)
6814 DRM_ERROR("Failed to set RPS for idle\n");
6815 }
6816
gen6_rps_busy(struct drm_i915_private * dev_priv)6817 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6818 {
6819 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6820
6821 mutex_lock(&rps->lock);
6822 if (rps->enabled) {
6823 u8 freq;
6824
6825 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6826 gen6_rps_reset_ei(dev_priv);
6827 I915_WRITE(GEN6_PMINTRMSK,
6828 gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6829
6830 gen6_enable_rps_interrupts(dev_priv);
6831
6832 /* Use the user's desired frequency as a guide, but for better
6833 * performance, jump directly to RPe as our starting frequency.
6834 */
6835 freq = max(rps->cur_freq,
6836 rps->efficient_freq);
6837
6838 if (intel_set_rps(dev_priv,
6839 clamp(freq,
6840 rps->min_freq_softlimit,
6841 rps->max_freq_softlimit)))
6842 DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6843 }
6844 mutex_unlock(&rps->lock);
6845 }
6846
gen6_rps_idle(struct drm_i915_private * dev_priv)6847 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6848 {
6849 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6850
6851 /* Flush our bottom-half so that it does not race with us
6852 * setting the idle frequency and so that it is bounded by
6853 * our rpm wakeref. And then disable the interrupts to stop any
6854 * futher RPS reclocking whilst we are asleep.
6855 */
6856 gen6_disable_rps_interrupts(dev_priv);
6857
6858 mutex_lock(&rps->lock);
6859 if (rps->enabled) {
6860 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6861 vlv_set_rps_idle(dev_priv);
6862 else
6863 gen6_set_rps(dev_priv, rps->idle_freq);
6864 rps->last_adj = 0;
6865 I915_WRITE(GEN6_PMINTRMSK,
6866 gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6867 }
6868 mutex_unlock(&rps->lock);
6869 }
6870
gen6_rps_boost(struct i915_request * rq)6871 void gen6_rps_boost(struct i915_request *rq)
6872 {
6873 struct intel_rps *rps = &rq->i915->gt_pm.rps;
6874 unsigned long flags;
6875 bool boost;
6876
6877 /* This is intentionally racy! We peek at the state here, then
6878 * validate inside the RPS worker.
6879 */
6880 if (!rps->enabled)
6881 return;
6882
6883 if (i915_request_signaled(rq))
6884 return;
6885
6886 /* Serializes with i915_request_retire() */
6887 boost = false;
6888 spin_lock_irqsave(&rq->lock, flags);
6889 if (!i915_request_has_waitboost(rq) &&
6890 !dma_fence_is_signaled_locked(&rq->fence)) {
6891 boost = !atomic_fetch_inc(&rps->num_waiters);
6892 rq->flags |= I915_REQUEST_WAITBOOST;
6893 }
6894 spin_unlock_irqrestore(&rq->lock, flags);
6895 if (!boost)
6896 return;
6897
6898 if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6899 schedule_work(&rps->work);
6900
6901 atomic_inc(&rps->boosts);
6902 }
6903
intel_set_rps(struct drm_i915_private * dev_priv,u8 val)6904 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6905 {
6906 struct intel_rps *rps = &dev_priv->gt_pm.rps;
6907 int err;
6908
6909 lockdep_assert_held(&rps->lock);
6910 GEM_BUG_ON(val > rps->max_freq);
6911 GEM_BUG_ON(val < rps->min_freq);
6912
6913 if (!rps->enabled) {
6914 rps->cur_freq = val;
6915 return 0;
6916 }
6917
6918 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6919 err = valleyview_set_rps(dev_priv, val);
6920 else
6921 err = gen6_set_rps(dev_priv, val);
6922
6923 return err;
6924 }
6925
gen9_disable_rc6(struct drm_i915_private * dev_priv)6926 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6927 {
6928 I915_WRITE(GEN6_RC_CONTROL, 0);
6929 I915_WRITE(GEN9_PG_ENABLE, 0);
6930 }
6931
gen9_disable_rps(struct drm_i915_private * dev_priv)6932 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6933 {
6934 I915_WRITE(GEN6_RP_CONTROL, 0);
6935 }
6936
gen6_disable_rc6(struct drm_i915_private * dev_priv)6937 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6938 {
6939 I915_WRITE(GEN6_RC_CONTROL, 0);
6940 }
6941
gen6_disable_rps(struct drm_i915_private * dev_priv)6942 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6943 {
6944 I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6945 I915_WRITE(GEN6_RP_CONTROL, 0);
6946 }
6947
cherryview_disable_rc6(struct drm_i915_private * dev_priv)6948 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6949 {
6950 I915_WRITE(GEN6_RC_CONTROL, 0);
6951 }
6952
cherryview_disable_rps(struct drm_i915_private * dev_priv)6953 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6954 {
6955 I915_WRITE(GEN6_RP_CONTROL, 0);
6956 }
6957
valleyview_disable_rc6(struct drm_i915_private * dev_priv)6958 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6959 {
6960 /* We're doing forcewake before Disabling RC6,
6961 * This what the BIOS expects when going into suspend */
6962 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6963
6964 I915_WRITE(GEN6_RC_CONTROL, 0);
6965
6966 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6967 }
6968
valleyview_disable_rps(struct drm_i915_private * dev_priv)6969 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6970 {
6971 I915_WRITE(GEN6_RP_CONTROL, 0);
6972 }
6973
bxt_check_bios_rc6_setup(struct drm_i915_private * dev_priv)6974 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6975 {
6976 bool enable_rc6 = true;
6977 unsigned long rc6_ctx_base;
6978 u32 rc_ctl;
6979 int rc_sw_target;
6980
6981 rc_ctl = I915_READ(GEN6_RC_CONTROL);
6982 rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6983 RC_SW_TARGET_STATE_SHIFT;
6984 DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6985 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6986 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6987 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6988 rc_sw_target);
6989
6990 if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6991 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6992 enable_rc6 = false;
6993 }
6994
6995 /*
6996 * The exact context size is not known for BXT, so assume a page size
6997 * for this check.
6998 */
6999 rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
7000 if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
7001 (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
7002 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
7003 enable_rc6 = false;
7004 }
7005
7006 if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
7007 ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
7008 ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
7009 ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
7010 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
7011 enable_rc6 = false;
7012 }
7013
7014 if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
7015 !I915_READ(GEN8_PUSHBUS_ENABLE) ||
7016 !I915_READ(GEN8_PUSHBUS_SHIFT)) {
7017 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
7018 enable_rc6 = false;
7019 }
7020
7021 if (!I915_READ(GEN6_GFXPAUSE)) {
7022 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
7023 enable_rc6 = false;
7024 }
7025
7026 if (!I915_READ(GEN8_MISC_CTRL0)) {
7027 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7028 enable_rc6 = false;
7029 }
7030
7031 return enable_rc6;
7032 }
7033
sanitize_rc6(struct drm_i915_private * i915)7034 static bool sanitize_rc6(struct drm_i915_private *i915)
7035 {
7036 struct intel_device_info *info = mkwrite_device_info(i915);
7037
7038 /* Powersaving is controlled by the host when inside a VM */
7039 if (intel_vgpu_active(i915)) {
7040 info->has_rc6 = 0;
7041 info->has_rps = false;
7042 }
7043
7044 if (info->has_rc6 &&
7045 IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7046 DRM_INFO("RC6 disabled by BIOS\n");
7047 info->has_rc6 = 0;
7048 }
7049
7050 /*
7051 * We assume that we do not have any deep rc6 levels if we don't have
7052 * have the previous rc6 level supported, i.e. we use HAS_RC6()
7053 * as the initial coarse check for rc6 in general, moving on to
7054 * progressively finer/deeper levels.
7055 */
7056 if (!info->has_rc6 && info->has_rc6p)
7057 info->has_rc6p = 0;
7058
7059 return info->has_rc6;
7060 }
7061
gen6_init_rps_frequencies(struct drm_i915_private * dev_priv)7062 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7063 {
7064 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7065
7066 /* All of these values are in units of 50MHz */
7067
7068 /* static values from HW: RP0 > RP1 > RPn (min_freq) */
7069 if (IS_GEN9_LP(dev_priv)) {
7070 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7071 rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
7072 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
7073 rps->min_freq = (rp_state_cap >> 0) & 0xff;
7074 } else {
7075 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7076 rps->rp0_freq = (rp_state_cap >> 0) & 0xff;
7077 rps->rp1_freq = (rp_state_cap >> 8) & 0xff;
7078 rps->min_freq = (rp_state_cap >> 16) & 0xff;
7079 }
7080 /* hw_max = RP0 until we check for overclocking */
7081 rps->max_freq = rps->rp0_freq;
7082
7083 rps->efficient_freq = rps->rp1_freq;
7084 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7085 IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7086 u32 ddcc_status = 0;
7087
7088 if (sandybridge_pcode_read(dev_priv,
7089 HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7090 &ddcc_status, NULL) == 0)
7091 rps->efficient_freq =
7092 clamp_t(u8,
7093 ((ddcc_status >> 8) & 0xff),
7094 rps->min_freq,
7095 rps->max_freq);
7096 }
7097
7098 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7099 /* Store the frequency values in 16.66 MHZ units, which is
7100 * the natural hardware unit for SKL
7101 */
7102 rps->rp0_freq *= GEN9_FREQ_SCALER;
7103 rps->rp1_freq *= GEN9_FREQ_SCALER;
7104 rps->min_freq *= GEN9_FREQ_SCALER;
7105 rps->max_freq *= GEN9_FREQ_SCALER;
7106 rps->efficient_freq *= GEN9_FREQ_SCALER;
7107 }
7108 }
7109
reset_rps(struct drm_i915_private * dev_priv,int (* set)(struct drm_i915_private *,u8))7110 static void reset_rps(struct drm_i915_private *dev_priv,
7111 int (*set)(struct drm_i915_private *, u8))
7112 {
7113 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7114 u8 freq = rps->cur_freq;
7115
7116 /* force a reset */
7117 rps->power.mode = -1;
7118 rps->cur_freq = -1;
7119
7120 if (set(dev_priv, freq))
7121 DRM_ERROR("Failed to reset RPS to initial values\n");
7122 }
7123
7124 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_i915_private * dev_priv)7125 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7126 {
7127 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7128
7129 /* Program defaults and thresholds for RPS */
7130 if (IS_GEN(dev_priv, 9))
7131 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7132 GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7133
7134 /* 1 second timeout*/
7135 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7136 GT_INTERVAL_FROM_US(dev_priv, 1000000));
7137
7138 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7139
7140 /* Leaning on the below call to gen6_set_rps to program/setup the
7141 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7142 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7143 reset_rps(dev_priv, gen6_set_rps);
7144
7145 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7146 }
7147
gen11_enable_rc6(struct drm_i915_private * dev_priv)7148 static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
7149 {
7150 struct intel_engine_cs *engine;
7151 enum intel_engine_id id;
7152
7153 /* 1a: Software RC state - RC0 */
7154 I915_WRITE(GEN6_RC_STATE, 0);
7155
7156 /*
7157 * 1b: Get forcewake during program sequence. Although the driver
7158 * hasn't enabled a state yet where we need forcewake, BIOS may have.
7159 */
7160 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7161
7162 /* 2a: Disable RC states. */
7163 I915_WRITE(GEN6_RC_CONTROL, 0);
7164
7165 /* 2b: Program RC6 thresholds.*/
7166 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7167 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7168
7169 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7170 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7171 for_each_engine(engine, dev_priv, id)
7172 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7173
7174 if (HAS_GT_UC(dev_priv))
7175 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7176
7177 I915_WRITE(GEN6_RC_SLEEP, 0);
7178
7179 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
7180
7181 /*
7182 * 2c: Program Coarse Power Gating Policies.
7183 *
7184 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7185 * use instead is a more conservative estimate for the maximum time
7186 * it takes us to service a CS interrupt and submit a new ELSP - that
7187 * is the time which the GPU is idle waiting for the CPU to select the
7188 * next request to execute. If the idle hysteresis is less than that
7189 * interrupt service latency, the hardware will automatically gate
7190 * the power well and we will then incur the wake up cost on top of
7191 * the service latency. A similar guide from plane_state is that we
7192 * do not want the enable hysteresis to less than the wakeup latency.
7193 *
7194 * igt/gem_exec_nop/sequential provides a rough estimate for the
7195 * service latency, and puts it around 10us for Broadwell (and other
7196 * big core) and around 40us for Broxton (and other low power cores).
7197 * [Note that for legacy ringbuffer submission, this is less than 1us!]
7198 * However, the wakeup latency on Broxton is closer to 100us. To be
7199 * conservative, we have to factor in a context switch on top (due
7200 * to ksoftirqd).
7201 */
7202 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7203 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7204
7205 /* 3a: Enable RC6 */
7206 I915_WRITE(GEN6_RC_CONTROL,
7207 GEN6_RC_CTL_HW_ENABLE |
7208 GEN6_RC_CTL_RC6_ENABLE |
7209 GEN6_RC_CTL_EI_MODE(1));
7210
7211 /* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
7212 I915_WRITE(GEN9_PG_ENABLE,
7213 GEN9_RENDER_PG_ENABLE |
7214 GEN9_MEDIA_PG_ENABLE |
7215 GEN11_MEDIA_SAMPLER_PG_ENABLE);
7216
7217 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7218 }
7219
gen9_enable_rc6(struct drm_i915_private * dev_priv)7220 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7221 {
7222 struct intel_engine_cs *engine;
7223 enum intel_engine_id id;
7224 u32 rc6_mode;
7225
7226 /* 1a: Software RC state - RC0 */
7227 I915_WRITE(GEN6_RC_STATE, 0);
7228
7229 /* 1b: Get forcewake during program sequence. Although the driver
7230 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7231 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7232
7233 /* 2a: Disable RC states. */
7234 I915_WRITE(GEN6_RC_CONTROL, 0);
7235
7236 /* 2b: Program RC6 thresholds.*/
7237 if (INTEL_GEN(dev_priv) >= 10) {
7238 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7239 I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7240 } else if (IS_SKYLAKE(dev_priv)) {
7241 /*
7242 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7243 * when CPG is enabled
7244 */
7245 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7246 } else {
7247 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7248 }
7249
7250 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7251 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7252 for_each_engine(engine, dev_priv, id)
7253 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7254
7255 if (HAS_GT_UC(dev_priv))
7256 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7257
7258 I915_WRITE(GEN6_RC_SLEEP, 0);
7259
7260 /*
7261 * 2c: Program Coarse Power Gating Policies.
7262 *
7263 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7264 * use instead is a more conservative estimate for the maximum time
7265 * it takes us to service a CS interrupt and submit a new ELSP - that
7266 * is the time which the GPU is idle waiting for the CPU to select the
7267 * next request to execute. If the idle hysteresis is less than that
7268 * interrupt service latency, the hardware will automatically gate
7269 * the power well and we will then incur the wake up cost on top of
7270 * the service latency. A similar guide from plane_state is that we
7271 * do not want the enable hysteresis to less than the wakeup latency.
7272 *
7273 * igt/gem_exec_nop/sequential provides a rough estimate for the
7274 * service latency, and puts it around 10us for Broadwell (and other
7275 * big core) and around 40us for Broxton (and other low power cores).
7276 * [Note that for legacy ringbuffer submission, this is less than 1us!]
7277 * However, the wakeup latency on Broxton is closer to 100us. To be
7278 * conservative, we have to factor in a context switch on top (due
7279 * to ksoftirqd).
7280 */
7281 I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7282 I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7283
7284 /* 3a: Enable RC6 */
7285 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7286
7287 /* WaRsUseTimeoutMode:cnl (pre-prod) */
7288 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7289 rc6_mode = GEN7_RC_CTL_TO_MODE;
7290 else
7291 rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7292
7293 I915_WRITE(GEN6_RC_CONTROL,
7294 GEN6_RC_CTL_HW_ENABLE |
7295 GEN6_RC_CTL_RC6_ENABLE |
7296 rc6_mode);
7297
7298 /*
7299 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7300 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7301 */
7302 if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7303 I915_WRITE(GEN9_PG_ENABLE, 0);
7304 else
7305 I915_WRITE(GEN9_PG_ENABLE,
7306 GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7307
7308 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7309 }
7310
gen8_enable_rc6(struct drm_i915_private * dev_priv)7311 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7312 {
7313 struct intel_engine_cs *engine;
7314 enum intel_engine_id id;
7315
7316 /* 1a: Software RC state - RC0 */
7317 I915_WRITE(GEN6_RC_STATE, 0);
7318
7319 /* 1b: Get forcewake during program sequence. Although the driver
7320 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7321 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7322
7323 /* 2a: Disable RC states. */
7324 I915_WRITE(GEN6_RC_CONTROL, 0);
7325
7326 /* 2b: Program RC6 thresholds.*/
7327 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7328 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7329 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7330 for_each_engine(engine, dev_priv, id)
7331 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7332 I915_WRITE(GEN6_RC_SLEEP, 0);
7333 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7334
7335 /* 3: Enable RC6 */
7336
7337 I915_WRITE(GEN6_RC_CONTROL,
7338 GEN6_RC_CTL_HW_ENABLE |
7339 GEN7_RC_CTL_TO_MODE |
7340 GEN6_RC_CTL_RC6_ENABLE);
7341
7342 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7343 }
7344
gen8_enable_rps(struct drm_i915_private * dev_priv)7345 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7346 {
7347 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7348
7349 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7350
7351 /* 1 Program defaults and thresholds for RPS*/
7352 I915_WRITE(GEN6_RPNSWREQ,
7353 HSW_FREQUENCY(rps->rp1_freq));
7354 I915_WRITE(GEN6_RC_VIDEO_FREQ,
7355 HSW_FREQUENCY(rps->rp1_freq));
7356 /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7357 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7358
7359 /* Docs recommend 900MHz, and 300 MHz respectively */
7360 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7361 rps->max_freq_softlimit << 24 |
7362 rps->min_freq_softlimit << 16);
7363
7364 I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7365 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7366 I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7367 I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7368
7369 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7370
7371 /* 2: Enable RPS */
7372 I915_WRITE(GEN6_RP_CONTROL,
7373 GEN6_RP_MEDIA_TURBO |
7374 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7375 GEN6_RP_MEDIA_IS_GFX |
7376 GEN6_RP_ENABLE |
7377 GEN6_RP_UP_BUSY_AVG |
7378 GEN6_RP_DOWN_IDLE_AVG);
7379
7380 reset_rps(dev_priv, gen6_set_rps);
7381
7382 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7383 }
7384
gen6_enable_rc6(struct drm_i915_private * dev_priv)7385 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7386 {
7387 struct intel_engine_cs *engine;
7388 enum intel_engine_id id;
7389 u32 rc6vids, rc6_mask;
7390 u32 gtfifodbg;
7391 int ret;
7392
7393 I915_WRITE(GEN6_RC_STATE, 0);
7394
7395 /* Clear the DBG now so we don't confuse earlier errors */
7396 gtfifodbg = I915_READ(GTFIFODBG);
7397 if (gtfifodbg) {
7398 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7399 I915_WRITE(GTFIFODBG, gtfifodbg);
7400 }
7401
7402 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7403
7404 /* disable the counters and set deterministic thresholds */
7405 I915_WRITE(GEN6_RC_CONTROL, 0);
7406
7407 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7408 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7409 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7410 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7411 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7412
7413 for_each_engine(engine, dev_priv, id)
7414 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7415
7416 I915_WRITE(GEN6_RC_SLEEP, 0);
7417 I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7418 if (IS_IVYBRIDGE(dev_priv))
7419 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7420 else
7421 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7422 I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7423 I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7424
7425 /* We don't use those on Haswell */
7426 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7427 if (HAS_RC6p(dev_priv))
7428 rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7429 if (HAS_RC6pp(dev_priv))
7430 rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7431 I915_WRITE(GEN6_RC_CONTROL,
7432 rc6_mask |
7433 GEN6_RC_CTL_EI_MODE(1) |
7434 GEN6_RC_CTL_HW_ENABLE);
7435
7436 rc6vids = 0;
7437 ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
7438 &rc6vids, NULL);
7439 if (IS_GEN(dev_priv, 6) && ret) {
7440 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7441 } else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7442 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7443 GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7444 rc6vids &= 0xffff00;
7445 rc6vids |= GEN6_ENCODE_RC6_VID(450);
7446 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7447 if (ret)
7448 DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7449 }
7450
7451 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7452 }
7453
gen6_enable_rps(struct drm_i915_private * dev_priv)7454 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7455 {
7456 /* Here begins a magic sequence of register writes to enable
7457 * auto-downclocking.
7458 *
7459 * Perhaps there might be some value in exposing these to
7460 * userspace...
7461 */
7462 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7463
7464 /* Power down if completely idle for over 50ms */
7465 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7466 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7467
7468 reset_rps(dev_priv, gen6_set_rps);
7469
7470 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7471 }
7472
gen6_update_ring_freq(struct drm_i915_private * dev_priv)7473 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7474 {
7475 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7476 const int min_freq = 15;
7477 const int scaling_factor = 180;
7478 unsigned int gpu_freq;
7479 unsigned int max_ia_freq, min_ring_freq;
7480 unsigned int max_gpu_freq, min_gpu_freq;
7481 struct cpufreq_policy *policy;
7482
7483 lockdep_assert_held(&rps->lock);
7484
7485 if (rps->max_freq <= rps->min_freq)
7486 return;
7487
7488 policy = cpufreq_cpu_get(0);
7489 if (policy) {
7490 max_ia_freq = policy->cpuinfo.max_freq;
7491 cpufreq_cpu_put(policy);
7492 } else {
7493 /*
7494 * Default to measured freq if none found, PCU will ensure we
7495 * don't go over
7496 */
7497 max_ia_freq = tsc_khz;
7498 }
7499
7500 /* Convert from kHz to MHz */
7501 max_ia_freq /= 1000;
7502
7503 min_ring_freq = I915_READ(DCLK) & 0xf;
7504 /* convert DDR frequency from units of 266.6MHz to bandwidth */
7505 min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7506
7507 min_gpu_freq = rps->min_freq;
7508 max_gpu_freq = rps->max_freq;
7509 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7510 /* Convert GT frequency to 50 HZ units */
7511 min_gpu_freq /= GEN9_FREQ_SCALER;
7512 max_gpu_freq /= GEN9_FREQ_SCALER;
7513 }
7514
7515 /*
7516 * For each potential GPU frequency, load a ring frequency we'd like
7517 * to use for memory access. We do this by specifying the IA frequency
7518 * the PCU should use as a reference to determine the ring frequency.
7519 */
7520 for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7521 const int diff = max_gpu_freq - gpu_freq;
7522 unsigned int ia_freq = 0, ring_freq = 0;
7523
7524 if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7525 /*
7526 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7527 * No floor required for ring frequency on SKL.
7528 */
7529 ring_freq = gpu_freq;
7530 } else if (INTEL_GEN(dev_priv) >= 8) {
7531 /* max(2 * GT, DDR). NB: GT is 50MHz units */
7532 ring_freq = max(min_ring_freq, gpu_freq);
7533 } else if (IS_HASWELL(dev_priv)) {
7534 ring_freq = mult_frac(gpu_freq, 5, 4);
7535 ring_freq = max(min_ring_freq, ring_freq);
7536 /* leave ia_freq as the default, chosen by cpufreq */
7537 } else {
7538 /* On older processors, there is no separate ring
7539 * clock domain, so in order to boost the bandwidth
7540 * of the ring, we need to upclock the CPU (ia_freq).
7541 *
7542 * For GPU frequencies less than 750MHz,
7543 * just use the lowest ring freq.
7544 */
7545 if (gpu_freq < min_freq)
7546 ia_freq = 800;
7547 else
7548 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7549 ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7550 }
7551
7552 sandybridge_pcode_write(dev_priv,
7553 GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7554 ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7555 ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7556 gpu_freq);
7557 }
7558 }
7559
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)7560 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7561 {
7562 u32 val, rp0;
7563
7564 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7565
7566 switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7567 case 8:
7568 /* (2 * 4) config */
7569 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7570 break;
7571 case 12:
7572 /* (2 * 6) config */
7573 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7574 break;
7575 case 16:
7576 /* (2 * 8) config */
7577 default:
7578 /* Setting (2 * 8) Min RP0 for any other combination */
7579 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7580 break;
7581 }
7582
7583 rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7584
7585 return rp0;
7586 }
7587
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)7588 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7589 {
7590 u32 val, rpe;
7591
7592 val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7593 rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7594
7595 return rpe;
7596 }
7597
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)7598 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7599 {
7600 u32 val, rp1;
7601
7602 val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7603 rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7604
7605 return rp1;
7606 }
7607
cherryview_rps_min_freq(struct drm_i915_private * dev_priv)7608 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7609 {
7610 u32 val, rpn;
7611
7612 val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7613 rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7614 FB_GFX_FREQ_FUSE_MASK);
7615
7616 return rpn;
7617 }
7618
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)7619 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7620 {
7621 u32 val, rp1;
7622
7623 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7624
7625 rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7626
7627 return rp1;
7628 }
7629
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)7630 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7631 {
7632 u32 val, rp0;
7633
7634 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7635
7636 rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7637 /* Clamp to max */
7638 rp0 = min_t(u32, rp0, 0xea);
7639
7640 return rp0;
7641 }
7642
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)7643 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7644 {
7645 u32 val, rpe;
7646
7647 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7648 rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7649 val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7650 rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7651
7652 return rpe;
7653 }
7654
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)7655 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7656 {
7657 u32 val;
7658
7659 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7660 /*
7661 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7662 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7663 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7664 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7665 * to make sure it matches what Punit accepts.
7666 */
7667 return max_t(u32, val, 0xc0);
7668 }
7669
7670 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)7671 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7672 {
7673 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7674
7675 WARN_ON(pctx_addr != dev_priv->dsm.start +
7676 dev_priv->vlv_pctx->stolen->start);
7677 }
7678
7679
7680 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)7681 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7682 {
7683 unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7684
7685 WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7686 }
7687
cherryview_setup_pctx(struct drm_i915_private * dev_priv)7688 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7689 {
7690 resource_size_t pctx_paddr, paddr;
7691 resource_size_t pctx_size = 32*1024;
7692 u32 pcbr;
7693
7694 pcbr = I915_READ(VLV_PCBR);
7695 if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7696 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7697 paddr = dev_priv->dsm.end + 1 - pctx_size;
7698 GEM_BUG_ON(paddr > U32_MAX);
7699
7700 pctx_paddr = (paddr & (~4095));
7701 I915_WRITE(VLV_PCBR, pctx_paddr);
7702 }
7703
7704 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7705 }
7706
valleyview_setup_pctx(struct drm_i915_private * dev_priv)7707 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7708 {
7709 struct drm_i915_gem_object *pctx;
7710 resource_size_t pctx_paddr;
7711 resource_size_t pctx_size = 24*1024;
7712 u32 pcbr;
7713
7714 pcbr = I915_READ(VLV_PCBR);
7715 if (pcbr) {
7716 /* BIOS set it up already, grab the pre-alloc'd space */
7717 resource_size_t pcbr_offset;
7718
7719 pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7720 pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7721 pcbr_offset,
7722 I915_GTT_OFFSET_NONE,
7723 pctx_size);
7724 goto out;
7725 }
7726
7727 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7728
7729 /*
7730 * From the Gunit register HAS:
7731 * The Gfx driver is expected to program this register and ensure
7732 * proper allocation within Gfx stolen memory. For example, this
7733 * register should be programmed such than the PCBR range does not
7734 * overlap with other ranges, such as the frame buffer, protected
7735 * memory, or any other relevant ranges.
7736 */
7737 pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7738 if (!pctx) {
7739 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7740 goto out;
7741 }
7742
7743 GEM_BUG_ON(range_overflows_t(u64,
7744 dev_priv->dsm.start,
7745 pctx->stolen->start,
7746 U32_MAX));
7747 pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7748 I915_WRITE(VLV_PCBR, pctx_paddr);
7749
7750 out:
7751 DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7752 dev_priv->vlv_pctx = pctx;
7753 }
7754
valleyview_cleanup_pctx(struct drm_i915_private * dev_priv)7755 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7756 {
7757 struct drm_i915_gem_object *pctx;
7758
7759 pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7760 if (pctx)
7761 i915_gem_object_put(pctx);
7762 }
7763
vlv_init_gpll_ref_freq(struct drm_i915_private * dev_priv)7764 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7765 {
7766 dev_priv->gt_pm.rps.gpll_ref_freq =
7767 vlv_get_cck_clock(dev_priv, "GPLL ref",
7768 CCK_GPLL_CLOCK_CONTROL,
7769 dev_priv->czclk_freq);
7770
7771 DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7772 dev_priv->gt_pm.rps.gpll_ref_freq);
7773 }
7774
valleyview_init_gt_powersave(struct drm_i915_private * dev_priv)7775 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7776 {
7777 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7778 u32 val;
7779
7780 valleyview_setup_pctx(dev_priv);
7781
7782 vlv_iosf_sb_get(dev_priv,
7783 BIT(VLV_IOSF_SB_PUNIT) |
7784 BIT(VLV_IOSF_SB_NC) |
7785 BIT(VLV_IOSF_SB_CCK));
7786
7787 vlv_init_gpll_ref_freq(dev_priv);
7788
7789 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7790 switch ((val >> 6) & 3) {
7791 case 0:
7792 case 1:
7793 dev_priv->mem_freq = 800;
7794 break;
7795 case 2:
7796 dev_priv->mem_freq = 1066;
7797 break;
7798 case 3:
7799 dev_priv->mem_freq = 1333;
7800 break;
7801 }
7802 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7803
7804 rps->max_freq = valleyview_rps_max_freq(dev_priv);
7805 rps->rp0_freq = rps->max_freq;
7806 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7807 intel_gpu_freq(dev_priv, rps->max_freq),
7808 rps->max_freq);
7809
7810 rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7811 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7812 intel_gpu_freq(dev_priv, rps->efficient_freq),
7813 rps->efficient_freq);
7814
7815 rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7816 DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7817 intel_gpu_freq(dev_priv, rps->rp1_freq),
7818 rps->rp1_freq);
7819
7820 rps->min_freq = valleyview_rps_min_freq(dev_priv);
7821 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7822 intel_gpu_freq(dev_priv, rps->min_freq),
7823 rps->min_freq);
7824
7825 vlv_iosf_sb_put(dev_priv,
7826 BIT(VLV_IOSF_SB_PUNIT) |
7827 BIT(VLV_IOSF_SB_NC) |
7828 BIT(VLV_IOSF_SB_CCK));
7829 }
7830
cherryview_init_gt_powersave(struct drm_i915_private * dev_priv)7831 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7832 {
7833 struct intel_rps *rps = &dev_priv->gt_pm.rps;
7834 u32 val;
7835
7836 cherryview_setup_pctx(dev_priv);
7837
7838 vlv_iosf_sb_get(dev_priv,
7839 BIT(VLV_IOSF_SB_PUNIT) |
7840 BIT(VLV_IOSF_SB_NC) |
7841 BIT(VLV_IOSF_SB_CCK));
7842
7843 vlv_init_gpll_ref_freq(dev_priv);
7844
7845 val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7846
7847 switch ((val >> 2) & 0x7) {
7848 case 3:
7849 dev_priv->mem_freq = 2000;
7850 break;
7851 default:
7852 dev_priv->mem_freq = 1600;
7853 break;
7854 }
7855 DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7856
7857 rps->max_freq = cherryview_rps_max_freq(dev_priv);
7858 rps->rp0_freq = rps->max_freq;
7859 DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7860 intel_gpu_freq(dev_priv, rps->max_freq),
7861 rps->max_freq);
7862
7863 rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7864 DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7865 intel_gpu_freq(dev_priv, rps->efficient_freq),
7866 rps->efficient_freq);
7867
7868 rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7869 DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7870 intel_gpu_freq(dev_priv, rps->rp1_freq),
7871 rps->rp1_freq);
7872
7873 rps->min_freq = cherryview_rps_min_freq(dev_priv);
7874 DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7875 intel_gpu_freq(dev_priv, rps->min_freq),
7876 rps->min_freq);
7877
7878 vlv_iosf_sb_put(dev_priv,
7879 BIT(VLV_IOSF_SB_PUNIT) |
7880 BIT(VLV_IOSF_SB_NC) |
7881 BIT(VLV_IOSF_SB_CCK));
7882
7883 WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7884 rps->min_freq) & 1,
7885 "Odd GPU freq values\n");
7886 }
7887
valleyview_cleanup_gt_powersave(struct drm_i915_private * dev_priv)7888 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7889 {
7890 valleyview_cleanup_pctx(dev_priv);
7891 }
7892
cherryview_enable_rc6(struct drm_i915_private * dev_priv)7893 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7894 {
7895 struct intel_engine_cs *engine;
7896 enum intel_engine_id id;
7897 u32 gtfifodbg, rc6_mode, pcbr;
7898
7899 gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7900 GT_FIFO_FREE_ENTRIES_CHV);
7901 if (gtfifodbg) {
7902 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7903 gtfifodbg);
7904 I915_WRITE(GTFIFODBG, gtfifodbg);
7905 }
7906
7907 cherryview_check_pctx(dev_priv);
7908
7909 /* 1a & 1b: Get forcewake during program sequence. Although the driver
7910 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7911 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7912
7913 /* Disable RC states. */
7914 I915_WRITE(GEN6_RC_CONTROL, 0);
7915
7916 /* 2a: Program RC6 thresholds.*/
7917 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7918 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7919 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7920
7921 for_each_engine(engine, dev_priv, id)
7922 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7923 I915_WRITE(GEN6_RC_SLEEP, 0);
7924
7925 /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7926 I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7927
7928 /* Allows RC6 residency counter to work */
7929 I915_WRITE(VLV_COUNTER_CONTROL,
7930 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7931 VLV_MEDIA_RC6_COUNT_EN |
7932 VLV_RENDER_RC6_COUNT_EN));
7933
7934 /* For now we assume BIOS is allocating and populating the PCBR */
7935 pcbr = I915_READ(VLV_PCBR);
7936
7937 /* 3: Enable RC6 */
7938 rc6_mode = 0;
7939 if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7940 rc6_mode = GEN7_RC_CTL_TO_MODE;
7941 I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7942
7943 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7944 }
7945
cherryview_enable_rps(struct drm_i915_private * dev_priv)7946 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7947 {
7948 u32 val;
7949
7950 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7951
7952 /* 1: Program defaults and thresholds for RPS*/
7953 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7954 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7955 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7956 I915_WRITE(GEN6_RP_UP_EI, 66000);
7957 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7958
7959 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7960
7961 /* 2: Enable RPS */
7962 I915_WRITE(GEN6_RP_CONTROL,
7963 GEN6_RP_MEDIA_HW_NORMAL_MODE |
7964 GEN6_RP_MEDIA_IS_GFX |
7965 GEN6_RP_ENABLE |
7966 GEN6_RP_UP_BUSY_AVG |
7967 GEN6_RP_DOWN_IDLE_AVG);
7968
7969 /* Setting Fixed Bias */
7970 vlv_punit_get(dev_priv);
7971
7972 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
7973 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7974
7975 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7976
7977 vlv_punit_put(dev_priv);
7978
7979 /* RPS code assumes GPLL is used */
7980 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7981
7982 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7983 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7984
7985 reset_rps(dev_priv, valleyview_set_rps);
7986
7987 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7988 }
7989
valleyview_enable_rc6(struct drm_i915_private * dev_priv)7990 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7991 {
7992 struct intel_engine_cs *engine;
7993 enum intel_engine_id id;
7994 u32 gtfifodbg;
7995
7996 valleyview_check_pctx(dev_priv);
7997
7998 gtfifodbg = I915_READ(GTFIFODBG);
7999 if (gtfifodbg) {
8000 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
8001 gtfifodbg);
8002 I915_WRITE(GTFIFODBG, gtfifodbg);
8003 }
8004
8005 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8006
8007 /* Disable RC states. */
8008 I915_WRITE(GEN6_RC_CONTROL, 0);
8009
8010 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
8011 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8012 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8013
8014 for_each_engine(engine, dev_priv, id)
8015 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8016
8017 I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8018
8019 /* Allows RC6 residency counter to work */
8020 I915_WRITE(VLV_COUNTER_CONTROL,
8021 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
8022 VLV_MEDIA_RC0_COUNT_EN |
8023 VLV_RENDER_RC0_COUNT_EN |
8024 VLV_MEDIA_RC6_COUNT_EN |
8025 VLV_RENDER_RC6_COUNT_EN));
8026
8027 I915_WRITE(GEN6_RC_CONTROL,
8028 GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8029
8030 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8031 }
8032
valleyview_enable_rps(struct drm_i915_private * dev_priv)8033 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
8034 {
8035 u32 val;
8036
8037 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8038
8039 I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8040 I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
8041 I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
8042 I915_WRITE(GEN6_RP_UP_EI, 66000);
8043 I915_WRITE(GEN6_RP_DOWN_EI, 350000);
8044
8045 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8046
8047 I915_WRITE(GEN6_RP_CONTROL,
8048 GEN6_RP_MEDIA_TURBO |
8049 GEN6_RP_MEDIA_HW_NORMAL_MODE |
8050 GEN6_RP_MEDIA_IS_GFX |
8051 GEN6_RP_ENABLE |
8052 GEN6_RP_UP_BUSY_AVG |
8053 GEN6_RP_DOWN_IDLE_CONT);
8054
8055 vlv_punit_get(dev_priv);
8056
8057 /* Setting Fixed Bias */
8058 val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
8059 vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
8060
8061 val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8062
8063 vlv_punit_put(dev_priv);
8064
8065 /* RPS code assumes GPLL is used */
8066 WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
8067
8068 DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8069 DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
8070
8071 reset_rps(dev_priv, valleyview_set_rps);
8072
8073 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8074 }
8075
intel_pxfreq(u32 vidfreq)8076 static unsigned long intel_pxfreq(u32 vidfreq)
8077 {
8078 unsigned long freq;
8079 int div = (vidfreq & 0x3f0000) >> 16;
8080 int post = (vidfreq & 0x3000) >> 12;
8081 int pre = (vidfreq & 0x7);
8082
8083 if (!pre)
8084 return 0;
8085
8086 freq = ((div * 133333) / ((1<<post) * pre));
8087
8088 return freq;
8089 }
8090
8091 static const struct cparams {
8092 u16 i;
8093 u16 t;
8094 u16 m;
8095 u16 c;
8096 } cparams[] = {
8097 { 1, 1333, 301, 28664 },
8098 { 1, 1066, 294, 24460 },
8099 { 1, 800, 294, 25192 },
8100 { 0, 1333, 276, 27605 },
8101 { 0, 1066, 276, 27605 },
8102 { 0, 800, 231, 23784 },
8103 };
8104
__i915_chipset_val(struct drm_i915_private * dev_priv)8105 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8106 {
8107 u64 total_count, diff, ret;
8108 u32 count1, count2, count3, m = 0, c = 0;
8109 unsigned long now = jiffies_to_msecs(jiffies), diff1;
8110 int i;
8111
8112 lockdep_assert_held(&mchdev_lock);
8113
8114 diff1 = now - dev_priv->ips.last_time1;
8115
8116 /* Prevent division-by-zero if we are asking too fast.
8117 * Also, we don't get interesting results if we are polling
8118 * faster than once in 10ms, so just return the saved value
8119 * in such cases.
8120 */
8121 if (diff1 <= 10)
8122 return dev_priv->ips.chipset_power;
8123
8124 count1 = I915_READ(DMIEC);
8125 count2 = I915_READ(DDREC);
8126 count3 = I915_READ(CSIEC);
8127
8128 total_count = count1 + count2 + count3;
8129
8130 /* FIXME: handle per-counter overflow */
8131 if (total_count < dev_priv->ips.last_count1) {
8132 diff = ~0UL - dev_priv->ips.last_count1;
8133 diff += total_count;
8134 } else {
8135 diff = total_count - dev_priv->ips.last_count1;
8136 }
8137
8138 for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8139 if (cparams[i].i == dev_priv->ips.c_m &&
8140 cparams[i].t == dev_priv->ips.r_t) {
8141 m = cparams[i].m;
8142 c = cparams[i].c;
8143 break;
8144 }
8145 }
8146
8147 diff = div_u64(diff, diff1);
8148 ret = ((m * diff) + c);
8149 ret = div_u64(ret, 10);
8150
8151 dev_priv->ips.last_count1 = total_count;
8152 dev_priv->ips.last_time1 = now;
8153
8154 dev_priv->ips.chipset_power = ret;
8155
8156 return ret;
8157 }
8158
i915_chipset_val(struct drm_i915_private * dev_priv)8159 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
8160 {
8161 intel_wakeref_t wakeref;
8162 unsigned long val = 0;
8163
8164 if (!IS_GEN(dev_priv, 5))
8165 return 0;
8166
8167 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8168 spin_lock_irq(&mchdev_lock);
8169 val = __i915_chipset_val(dev_priv);
8170 spin_unlock_irq(&mchdev_lock);
8171 }
8172
8173 return val;
8174 }
8175
i915_mch_val(struct drm_i915_private * i915)8176 unsigned long i915_mch_val(struct drm_i915_private *i915)
8177 {
8178 unsigned long m, x, b;
8179 u32 tsfs;
8180
8181 tsfs = intel_uncore_read(&i915->uncore, TSFS);
8182
8183 m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8184 x = intel_uncore_read8(&i915->uncore, TR1);
8185
8186 b = tsfs & TSFS_INTR_MASK;
8187
8188 return ((m * x) / 127) - b;
8189 }
8190
_pxvid_to_vd(u8 pxvid)8191 static int _pxvid_to_vd(u8 pxvid)
8192 {
8193 if (pxvid == 0)
8194 return 0;
8195
8196 if (pxvid >= 8 && pxvid < 31)
8197 pxvid = 31;
8198
8199 return (pxvid + 2) * 125;
8200 }
8201
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)8202 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8203 {
8204 const int vd = _pxvid_to_vd(pxvid);
8205 const int vm = vd - 1125;
8206
8207 if (INTEL_INFO(dev_priv)->is_mobile)
8208 return vm > 0 ? vm : 0;
8209
8210 return vd;
8211 }
8212
__i915_update_gfx_val(struct drm_i915_private * dev_priv)8213 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8214 {
8215 u64 now, diff, diffms;
8216 u32 count;
8217
8218 lockdep_assert_held(&mchdev_lock);
8219
8220 now = ktime_get_raw_ns();
8221 diffms = now - dev_priv->ips.last_time2;
8222 do_div(diffms, NSEC_PER_MSEC);
8223
8224 /* Don't divide by 0 */
8225 if (!diffms)
8226 return;
8227
8228 count = I915_READ(GFXEC);
8229
8230 if (count < dev_priv->ips.last_count2) {
8231 diff = ~0UL - dev_priv->ips.last_count2;
8232 diff += count;
8233 } else {
8234 diff = count - dev_priv->ips.last_count2;
8235 }
8236
8237 dev_priv->ips.last_count2 = count;
8238 dev_priv->ips.last_time2 = now;
8239
8240 /* More magic constants... */
8241 diff = diff * 1181;
8242 diff = div_u64(diff, diffms * 10);
8243 dev_priv->ips.gfx_power = diff;
8244 }
8245
i915_update_gfx_val(struct drm_i915_private * dev_priv)8246 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8247 {
8248 intel_wakeref_t wakeref;
8249
8250 if (!IS_GEN(dev_priv, 5))
8251 return;
8252
8253 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8254 spin_lock_irq(&mchdev_lock);
8255 __i915_update_gfx_val(dev_priv);
8256 spin_unlock_irq(&mchdev_lock);
8257 }
8258 }
8259
__i915_gfx_val(struct drm_i915_private * dev_priv)8260 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8261 {
8262 unsigned long t, corr, state1, corr2, state2;
8263 u32 pxvid, ext_v;
8264
8265 lockdep_assert_held(&mchdev_lock);
8266
8267 pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8268 pxvid = (pxvid >> 24) & 0x7f;
8269 ext_v = pvid_to_extvid(dev_priv, pxvid);
8270
8271 state1 = ext_v;
8272
8273 t = i915_mch_val(dev_priv);
8274
8275 /* Revel in the empirically derived constants */
8276
8277 /* Correction factor in 1/100000 units */
8278 if (t > 80)
8279 corr = ((t * 2349) + 135940);
8280 else if (t >= 50)
8281 corr = ((t * 964) + 29317);
8282 else /* < 50 */
8283 corr = ((t * 301) + 1004);
8284
8285 corr = corr * ((150142 * state1) / 10000 - 78642);
8286 corr /= 100000;
8287 corr2 = (corr * dev_priv->ips.corr);
8288
8289 state2 = (corr2 * state1) / 10000;
8290 state2 /= 100; /* convert to mW */
8291
8292 __i915_update_gfx_val(dev_priv);
8293
8294 return dev_priv->ips.gfx_power + state2;
8295 }
8296
i915_gfx_val(struct drm_i915_private * dev_priv)8297 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8298 {
8299 intel_wakeref_t wakeref;
8300 unsigned long val = 0;
8301
8302 if (!IS_GEN(dev_priv, 5))
8303 return 0;
8304
8305 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8306 spin_lock_irq(&mchdev_lock);
8307 val = __i915_gfx_val(dev_priv);
8308 spin_unlock_irq(&mchdev_lock);
8309 }
8310
8311 return val;
8312 }
8313
8314 static struct drm_i915_private __rcu *i915_mch_dev;
8315
mchdev_get(void)8316 static struct drm_i915_private *mchdev_get(void)
8317 {
8318 struct drm_i915_private *i915;
8319
8320 rcu_read_lock();
8321 i915 = rcu_dereference(i915_mch_dev);
8322 if (!kref_get_unless_zero(&i915->drm.ref))
8323 i915 = NULL;
8324 rcu_read_unlock();
8325
8326 return i915;
8327 }
8328
8329 /**
8330 * i915_read_mch_val - return value for IPS use
8331 *
8332 * Calculate and return a value for the IPS driver to use when deciding whether
8333 * we have thermal and power headroom to increase CPU or GPU power budget.
8334 */
i915_read_mch_val(void)8335 unsigned long i915_read_mch_val(void)
8336 {
8337 struct drm_i915_private *i915;
8338 unsigned long chipset_val = 0;
8339 unsigned long graphics_val = 0;
8340 intel_wakeref_t wakeref;
8341
8342 i915 = mchdev_get();
8343 if (!i915)
8344 return 0;
8345
8346 with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
8347 spin_lock_irq(&mchdev_lock);
8348 chipset_val = __i915_chipset_val(i915);
8349 graphics_val = __i915_gfx_val(i915);
8350 spin_unlock_irq(&mchdev_lock);
8351 }
8352
8353 drm_dev_put(&i915->drm);
8354 return chipset_val + graphics_val;
8355 }
8356 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8357
8358 /**
8359 * i915_gpu_raise - raise GPU frequency limit
8360 *
8361 * Raise the limit; IPS indicates we have thermal headroom.
8362 */
i915_gpu_raise(void)8363 bool i915_gpu_raise(void)
8364 {
8365 struct drm_i915_private *i915;
8366
8367 i915 = mchdev_get();
8368 if (!i915)
8369 return false;
8370
8371 spin_lock_irq(&mchdev_lock);
8372 if (i915->ips.max_delay > i915->ips.fmax)
8373 i915->ips.max_delay--;
8374 spin_unlock_irq(&mchdev_lock);
8375
8376 drm_dev_put(&i915->drm);
8377 return true;
8378 }
8379 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8380
8381 /**
8382 * i915_gpu_lower - lower GPU frequency limit
8383 *
8384 * IPS indicates we're close to a thermal limit, so throttle back the GPU
8385 * frequency maximum.
8386 */
i915_gpu_lower(void)8387 bool i915_gpu_lower(void)
8388 {
8389 struct drm_i915_private *i915;
8390
8391 i915 = mchdev_get();
8392 if (!i915)
8393 return false;
8394
8395 spin_lock_irq(&mchdev_lock);
8396 if (i915->ips.max_delay < i915->ips.min_delay)
8397 i915->ips.max_delay++;
8398 spin_unlock_irq(&mchdev_lock);
8399
8400 drm_dev_put(&i915->drm);
8401 return true;
8402 }
8403 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8404
8405 /**
8406 * i915_gpu_busy - indicate GPU business to IPS
8407 *
8408 * Tell the IPS driver whether or not the GPU is busy.
8409 */
i915_gpu_busy(void)8410 bool i915_gpu_busy(void)
8411 {
8412 struct drm_i915_private *i915;
8413 bool ret;
8414
8415 i915 = mchdev_get();
8416 if (!i915)
8417 return false;
8418
8419 ret = i915->gt.awake;
8420
8421 drm_dev_put(&i915->drm);
8422 return ret;
8423 }
8424 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8425
8426 /**
8427 * i915_gpu_turbo_disable - disable graphics turbo
8428 *
8429 * Disable graphics turbo by resetting the max frequency and setting the
8430 * current frequency to the default.
8431 */
i915_gpu_turbo_disable(void)8432 bool i915_gpu_turbo_disable(void)
8433 {
8434 struct drm_i915_private *i915;
8435 bool ret;
8436
8437 i915 = mchdev_get();
8438 if (!i915)
8439 return false;
8440
8441 spin_lock_irq(&mchdev_lock);
8442 i915->ips.max_delay = i915->ips.fstart;
8443 ret = ironlake_set_drps(i915, i915->ips.fstart);
8444 spin_unlock_irq(&mchdev_lock);
8445
8446 drm_dev_put(&i915->drm);
8447 return ret;
8448 }
8449 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8450
8451 /**
8452 * Tells the intel_ips driver that the i915 driver is now loaded, if
8453 * IPS got loaded first.
8454 *
8455 * This awkward dance is so that neither module has to depend on the
8456 * other in order for IPS to do the appropriate communication of
8457 * GPU turbo limits to i915.
8458 */
8459 static void
ips_ping_for_i915_load(void)8460 ips_ping_for_i915_load(void)
8461 {
8462 void (*link)(void);
8463
8464 link = symbol_get(ips_link_to_i915_driver);
8465 if (link) {
8466 link();
8467 symbol_put(ips_link_to_i915_driver);
8468 }
8469 }
8470
intel_gpu_ips_init(struct drm_i915_private * dev_priv)8471 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8472 {
8473 /* We only register the i915 ips part with intel-ips once everything is
8474 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8475 rcu_assign_pointer(i915_mch_dev, dev_priv);
8476
8477 ips_ping_for_i915_load();
8478 }
8479
intel_gpu_ips_teardown(void)8480 void intel_gpu_ips_teardown(void)
8481 {
8482 rcu_assign_pointer(i915_mch_dev, NULL);
8483 }
8484
intel_init_emon(struct drm_i915_private * dev_priv)8485 static void intel_init_emon(struct drm_i915_private *dev_priv)
8486 {
8487 u32 lcfuse;
8488 u8 pxw[16];
8489 int i;
8490
8491 /* Disable to program */
8492 I915_WRITE(ECR, 0);
8493 POSTING_READ(ECR);
8494
8495 /* Program energy weights for various events */
8496 I915_WRITE(SDEW, 0x15040d00);
8497 I915_WRITE(CSIEW0, 0x007f0000);
8498 I915_WRITE(CSIEW1, 0x1e220004);
8499 I915_WRITE(CSIEW2, 0x04000004);
8500
8501 for (i = 0; i < 5; i++)
8502 I915_WRITE(PEW(i), 0);
8503 for (i = 0; i < 3; i++)
8504 I915_WRITE(DEW(i), 0);
8505
8506 /* Program P-state weights to account for frequency power adjustment */
8507 for (i = 0; i < 16; i++) {
8508 u32 pxvidfreq = I915_READ(PXVFREQ(i));
8509 unsigned long freq = intel_pxfreq(pxvidfreq);
8510 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8511 PXVFREQ_PX_SHIFT;
8512 unsigned long val;
8513
8514 val = vid * vid;
8515 val *= (freq / 1000);
8516 val *= 255;
8517 val /= (127*127*900);
8518 if (val > 0xff)
8519 DRM_ERROR("bad pxval: %ld\n", val);
8520 pxw[i] = val;
8521 }
8522 /* Render standby states get 0 weight */
8523 pxw[14] = 0;
8524 pxw[15] = 0;
8525
8526 for (i = 0; i < 4; i++) {
8527 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8528 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8529 I915_WRITE(PXW(i), val);
8530 }
8531
8532 /* Adjust magic regs to magic values (more experimental results) */
8533 I915_WRITE(OGW0, 0);
8534 I915_WRITE(OGW1, 0);
8535 I915_WRITE(EG0, 0x00007f00);
8536 I915_WRITE(EG1, 0x0000000e);
8537 I915_WRITE(EG2, 0x000e0000);
8538 I915_WRITE(EG3, 0x68000300);
8539 I915_WRITE(EG4, 0x42000000);
8540 I915_WRITE(EG5, 0x00140031);
8541 I915_WRITE(EG6, 0);
8542 I915_WRITE(EG7, 0);
8543
8544 for (i = 0; i < 8; i++)
8545 I915_WRITE(PXWL(i), 0);
8546
8547 /* Enable PMON + select events */
8548 I915_WRITE(ECR, 0x80000019);
8549
8550 lcfuse = I915_READ(LCFUSE02);
8551
8552 dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8553 }
8554
i915_rc6_ctx_corrupted(struct drm_i915_private * dev_priv)8555 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
8556 {
8557 return !I915_READ(GEN8_RC6_CTX_INFO);
8558 }
8559
i915_rc6_ctx_wa_init(struct drm_i915_private * i915)8560 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
8561 {
8562 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8563 return;
8564
8565 if (i915_rc6_ctx_corrupted(i915)) {
8566 DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
8567 i915->gt_pm.rc6.ctx_corrupted = true;
8568 i915->gt_pm.rc6.ctx_corrupted_wakeref =
8569 intel_runtime_pm_get(&i915->runtime_pm);
8570 }
8571 }
8572
i915_rc6_ctx_wa_cleanup(struct drm_i915_private * i915)8573 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
8574 {
8575 if (i915->gt_pm.rc6.ctx_corrupted) {
8576 intel_runtime_pm_put(&i915->runtime_pm,
8577 i915->gt_pm.rc6.ctx_corrupted_wakeref);
8578 i915->gt_pm.rc6.ctx_corrupted = false;
8579 }
8580 }
8581
8582 /**
8583 * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
8584 * @i915: i915 device
8585 *
8586 * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
8587 */
i915_rc6_ctx_wa_suspend(struct drm_i915_private * i915)8588 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
8589 {
8590 if (i915->gt_pm.rc6.ctx_corrupted)
8591 intel_runtime_pm_put(&i915->runtime_pm,
8592 i915->gt_pm.rc6.ctx_corrupted_wakeref);
8593 }
8594
8595 /**
8596 * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
8597 * @i915: i915 device
8598 *
8599 * Perform any steps needed to re-init the RC6 CTX WA after system resume.
8600 */
i915_rc6_ctx_wa_resume(struct drm_i915_private * i915)8601 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
8602 {
8603 if (!i915->gt_pm.rc6.ctx_corrupted)
8604 return;
8605
8606 if (i915_rc6_ctx_corrupted(i915)) {
8607 i915->gt_pm.rc6.ctx_corrupted_wakeref =
8608 intel_runtime_pm_get(&i915->runtime_pm);
8609 return;
8610 }
8611
8612 DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
8613 i915->gt_pm.rc6.ctx_corrupted = false;
8614 }
8615
8616 static void intel_disable_rc6(struct drm_i915_private *dev_priv);
8617
8618 /**
8619 * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
8620 * @i915: i915 device
8621 *
8622 * Check if an RC6 CTX corruption has happened since the last check and if so
8623 * disable RC6 and runtime power management.
8624 *
8625 * Return false if no context corruption has happened since the last call of
8626 * this function, true otherwise.
8627 */
i915_rc6_ctx_wa_check(struct drm_i915_private * i915)8628 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
8629 {
8630 if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8631 return false;
8632
8633 if (i915->gt_pm.rc6.ctx_corrupted)
8634 return false;
8635
8636 if (!i915_rc6_ctx_corrupted(i915))
8637 return false;
8638
8639 DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
8640
8641 intel_disable_rc6(i915);
8642 i915->gt_pm.rc6.ctx_corrupted = true;
8643 i915->gt_pm.rc6.ctx_corrupted_wakeref =
8644 intel_runtime_pm_get_noresume(&i915->runtime_pm);
8645
8646 return true;
8647 }
8648
intel_init_gt_powersave(struct drm_i915_private * dev_priv)8649 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8650 {
8651 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8652
8653 /*
8654 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8655 * requirement.
8656 */
8657 if (!sanitize_rc6(dev_priv)) {
8658 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8659 pm_runtime_get(&dev_priv->drm.pdev->dev);
8660 }
8661
8662 i915_rc6_ctx_wa_init(dev_priv);
8663
8664 /* Initialize RPS limits (for userspace) */
8665 if (IS_CHERRYVIEW(dev_priv))
8666 cherryview_init_gt_powersave(dev_priv);
8667 else if (IS_VALLEYVIEW(dev_priv))
8668 valleyview_init_gt_powersave(dev_priv);
8669 else if (INTEL_GEN(dev_priv) >= 6)
8670 gen6_init_rps_frequencies(dev_priv);
8671
8672 /* Derive initial user preferences/limits from the hardware limits */
8673 rps->max_freq_softlimit = rps->max_freq;
8674 rps->min_freq_softlimit = rps->min_freq;
8675
8676 /* After setting max-softlimit, find the overclock max freq */
8677 if (IS_GEN(dev_priv, 6) ||
8678 IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8679 u32 params = 0;
8680
8681 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
8682 ¶ms, NULL);
8683 if (params & BIT(31)) { /* OC supported */
8684 DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8685 (rps->max_freq & 0xff) * 50,
8686 (params & 0xff) * 50);
8687 rps->max_freq = params & 0xff;
8688 }
8689 }
8690
8691 /* Finally allow us to boost to max by default */
8692 rps->boost_freq = rps->max_freq;
8693 rps->idle_freq = rps->min_freq;
8694 rps->cur_freq = rps->idle_freq;
8695 }
8696
intel_cleanup_gt_powersave(struct drm_i915_private * dev_priv)8697 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8698 {
8699 if (IS_VALLEYVIEW(dev_priv))
8700 valleyview_cleanup_gt_powersave(dev_priv);
8701
8702 i915_rc6_ctx_wa_cleanup(dev_priv);
8703
8704 if (!HAS_RC6(dev_priv))
8705 pm_runtime_put(&dev_priv->drm.pdev->dev);
8706 }
8707
intel_sanitize_gt_powersave(struct drm_i915_private * dev_priv)8708 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8709 {
8710 dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8711 dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8712 intel_disable_gt_powersave(dev_priv);
8713
8714 if (INTEL_GEN(dev_priv) >= 11)
8715 gen11_reset_rps_interrupts(dev_priv);
8716 else if (INTEL_GEN(dev_priv) >= 6)
8717 gen6_reset_rps_interrupts(dev_priv);
8718 }
8719
intel_disable_llc_pstate(struct drm_i915_private * i915)8720 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8721 {
8722 lockdep_assert_held(&i915->gt_pm.rps.lock);
8723
8724 if (!i915->gt_pm.llc_pstate.enabled)
8725 return;
8726
8727 /* Currently there is no HW configuration to be done to disable. */
8728
8729 i915->gt_pm.llc_pstate.enabled = false;
8730 }
8731
__intel_disable_rc6(struct drm_i915_private * dev_priv)8732 static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
8733 {
8734 lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8735
8736 if (!dev_priv->gt_pm.rc6.enabled)
8737 return;
8738
8739 if (INTEL_GEN(dev_priv) >= 9)
8740 gen9_disable_rc6(dev_priv);
8741 else if (IS_CHERRYVIEW(dev_priv))
8742 cherryview_disable_rc6(dev_priv);
8743 else if (IS_VALLEYVIEW(dev_priv))
8744 valleyview_disable_rc6(dev_priv);
8745 else if (INTEL_GEN(dev_priv) >= 6)
8746 gen6_disable_rc6(dev_priv);
8747
8748 dev_priv->gt_pm.rc6.enabled = false;
8749 }
8750
intel_disable_rc6(struct drm_i915_private * dev_priv)8751 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8752 {
8753 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8754
8755 mutex_lock(&rps->lock);
8756 __intel_disable_rc6(dev_priv);
8757 mutex_unlock(&rps->lock);
8758 }
8759
intel_disable_rps(struct drm_i915_private * dev_priv)8760 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8761 {
8762 lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8763
8764 if (!dev_priv->gt_pm.rps.enabled)
8765 return;
8766
8767 if (INTEL_GEN(dev_priv) >= 9)
8768 gen9_disable_rps(dev_priv);
8769 else if (IS_CHERRYVIEW(dev_priv))
8770 cherryview_disable_rps(dev_priv);
8771 else if (IS_VALLEYVIEW(dev_priv))
8772 valleyview_disable_rps(dev_priv);
8773 else if (INTEL_GEN(dev_priv) >= 6)
8774 gen6_disable_rps(dev_priv);
8775 else if (IS_IRONLAKE_M(dev_priv))
8776 ironlake_disable_drps(dev_priv);
8777
8778 dev_priv->gt_pm.rps.enabled = false;
8779 }
8780
intel_disable_gt_powersave(struct drm_i915_private * dev_priv)8781 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8782 {
8783 mutex_lock(&dev_priv->gt_pm.rps.lock);
8784
8785 __intel_disable_rc6(dev_priv);
8786 intel_disable_rps(dev_priv);
8787 if (HAS_LLC(dev_priv))
8788 intel_disable_llc_pstate(dev_priv);
8789
8790 mutex_unlock(&dev_priv->gt_pm.rps.lock);
8791 }
8792
intel_enable_llc_pstate(struct drm_i915_private * i915)8793 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8794 {
8795 lockdep_assert_held(&i915->gt_pm.rps.lock);
8796
8797 if (i915->gt_pm.llc_pstate.enabled)
8798 return;
8799
8800 gen6_update_ring_freq(i915);
8801
8802 i915->gt_pm.llc_pstate.enabled = true;
8803 }
8804
intel_enable_rc6(struct drm_i915_private * dev_priv)8805 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8806 {
8807 lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8808
8809 if (dev_priv->gt_pm.rc6.enabled)
8810 return;
8811
8812 if (dev_priv->gt_pm.rc6.ctx_corrupted)
8813 return;
8814
8815 if (IS_CHERRYVIEW(dev_priv))
8816 cherryview_enable_rc6(dev_priv);
8817 else if (IS_VALLEYVIEW(dev_priv))
8818 valleyview_enable_rc6(dev_priv);
8819 else if (INTEL_GEN(dev_priv) >= 11)
8820 gen11_enable_rc6(dev_priv);
8821 else if (INTEL_GEN(dev_priv) >= 9)
8822 gen9_enable_rc6(dev_priv);
8823 else if (IS_BROADWELL(dev_priv))
8824 gen8_enable_rc6(dev_priv);
8825 else if (INTEL_GEN(dev_priv) >= 6)
8826 gen6_enable_rc6(dev_priv);
8827
8828 dev_priv->gt_pm.rc6.enabled = true;
8829 }
8830
intel_enable_rps(struct drm_i915_private * dev_priv)8831 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8832 {
8833 struct intel_rps *rps = &dev_priv->gt_pm.rps;
8834
8835 lockdep_assert_held(&rps->lock);
8836
8837 if (rps->enabled)
8838 return;
8839
8840 if (IS_CHERRYVIEW(dev_priv)) {
8841 cherryview_enable_rps(dev_priv);
8842 } else if (IS_VALLEYVIEW(dev_priv)) {
8843 valleyview_enable_rps(dev_priv);
8844 } else if (INTEL_GEN(dev_priv) >= 9) {
8845 gen9_enable_rps(dev_priv);
8846 } else if (IS_BROADWELL(dev_priv)) {
8847 gen8_enable_rps(dev_priv);
8848 } else if (INTEL_GEN(dev_priv) >= 6) {
8849 gen6_enable_rps(dev_priv);
8850 } else if (IS_IRONLAKE_M(dev_priv)) {
8851 ironlake_enable_drps(dev_priv);
8852 intel_init_emon(dev_priv);
8853 }
8854
8855 WARN_ON(rps->max_freq < rps->min_freq);
8856 WARN_ON(rps->idle_freq > rps->max_freq);
8857
8858 WARN_ON(rps->efficient_freq < rps->min_freq);
8859 WARN_ON(rps->efficient_freq > rps->max_freq);
8860
8861 rps->enabled = true;
8862 }
8863
intel_enable_gt_powersave(struct drm_i915_private * dev_priv)8864 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8865 {
8866 /* Powersaving is controlled by the host when inside a VM */
8867 if (intel_vgpu_active(dev_priv))
8868 return;
8869
8870 mutex_lock(&dev_priv->gt_pm.rps.lock);
8871
8872 if (HAS_RC6(dev_priv))
8873 intel_enable_rc6(dev_priv);
8874 if (HAS_RPS(dev_priv))
8875 intel_enable_rps(dev_priv);
8876 if (HAS_LLC(dev_priv))
8877 intel_enable_llc_pstate(dev_priv);
8878
8879 mutex_unlock(&dev_priv->gt_pm.rps.lock);
8880 }
8881
ibx_init_clock_gating(struct drm_i915_private * dev_priv)8882 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8883 {
8884 /*
8885 * On Ibex Peak and Cougar Point, we need to disable clock
8886 * gating for the panel power sequencer or it will fail to
8887 * start up when no ports are active.
8888 */
8889 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8890 }
8891
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)8892 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8893 {
8894 enum pipe pipe;
8895
8896 for_each_pipe(dev_priv, pipe) {
8897 I915_WRITE(DSPCNTR(pipe),
8898 I915_READ(DSPCNTR(pipe)) |
8899 DISPPLANE_TRICKLE_FEED_DISABLE);
8900
8901 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8902 POSTING_READ(DSPSURF(pipe));
8903 }
8904 }
8905
ilk_init_clock_gating(struct drm_i915_private * dev_priv)8906 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8907 {
8908 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8909
8910 /*
8911 * Required for FBC
8912 * WaFbcDisableDpfcClockGating:ilk
8913 */
8914 dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8915 ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8916 ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8917
8918 I915_WRITE(PCH_3DCGDIS0,
8919 MARIUNIT_CLOCK_GATE_DISABLE |
8920 SVSMUNIT_CLOCK_GATE_DISABLE);
8921 I915_WRITE(PCH_3DCGDIS1,
8922 VFMUNIT_CLOCK_GATE_DISABLE);
8923
8924 /*
8925 * According to the spec the following bits should be set in
8926 * order to enable memory self-refresh
8927 * The bit 22/21 of 0x42004
8928 * The bit 5 of 0x42020
8929 * The bit 15 of 0x45000
8930 */
8931 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8932 (I915_READ(ILK_DISPLAY_CHICKEN2) |
8933 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8934 dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8935 I915_WRITE(DISP_ARB_CTL,
8936 (I915_READ(DISP_ARB_CTL) |
8937 DISP_FBC_WM_DIS));
8938
8939 /*
8940 * Based on the document from hardware guys the following bits
8941 * should be set unconditionally in order to enable FBC.
8942 * The bit 22 of 0x42000
8943 * The bit 22 of 0x42004
8944 * The bit 7,8,9 of 0x42020.
8945 */
8946 if (IS_IRONLAKE_M(dev_priv)) {
8947 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
8948 I915_WRITE(ILK_DISPLAY_CHICKEN1,
8949 I915_READ(ILK_DISPLAY_CHICKEN1) |
8950 ILK_FBCQ_DIS);
8951 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8952 I915_READ(ILK_DISPLAY_CHICKEN2) |
8953 ILK_DPARB_GATE);
8954 }
8955
8956 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8957
8958 I915_WRITE(ILK_DISPLAY_CHICKEN2,
8959 I915_READ(ILK_DISPLAY_CHICKEN2) |
8960 ILK_ELPIN_409_SELECT);
8961 I915_WRITE(_3D_CHICKEN2,
8962 _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8963 _3D_CHICKEN2_WM_READ_PIPELINED);
8964
8965 /* WaDisableRenderCachePipelinedFlush:ilk */
8966 I915_WRITE(CACHE_MODE_0,
8967 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8968
8969 /* WaDisable_RenderCache_OperationalFlush:ilk */
8970 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8971
8972 g4x_disable_trickle_feed(dev_priv);
8973
8974 ibx_init_clock_gating(dev_priv);
8975 }
8976
cpt_init_clock_gating(struct drm_i915_private * dev_priv)8977 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8978 {
8979 int pipe;
8980 u32 val;
8981
8982 /*
8983 * On Ibex Peak and Cougar Point, we need to disable clock
8984 * gating for the panel power sequencer or it will fail to
8985 * start up when no ports are active.
8986 */
8987 I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8988 PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8989 PCH_CPUNIT_CLOCK_GATE_DISABLE);
8990 I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8991 DPLS_EDP_PPS_FIX_DIS);
8992 /* The below fixes the weird display corruption, a few pixels shifted
8993 * downward, on (only) LVDS of some HP laptops with IVY.
8994 */
8995 for_each_pipe(dev_priv, pipe) {
8996 val = I915_READ(TRANS_CHICKEN2(pipe));
8997 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8998 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8999 if (dev_priv->vbt.fdi_rx_polarity_inverted)
9000 val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
9001 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
9002 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
9003 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
9004 I915_WRITE(TRANS_CHICKEN2(pipe), val);
9005 }
9006 /* WADP0ClockGatingDisable */
9007 for_each_pipe(dev_priv, pipe) {
9008 I915_WRITE(TRANS_CHICKEN1(pipe),
9009 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9010 }
9011 }
9012
gen6_check_mch_setup(struct drm_i915_private * dev_priv)9013 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
9014 {
9015 u32 tmp;
9016
9017 tmp = I915_READ(MCH_SSKPD);
9018 if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
9019 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
9020 tmp);
9021 }
9022
gen6_init_clock_gating(struct drm_i915_private * dev_priv)9023 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
9024 {
9025 u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
9026
9027 I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
9028
9029 I915_WRITE(ILK_DISPLAY_CHICKEN2,
9030 I915_READ(ILK_DISPLAY_CHICKEN2) |
9031 ILK_ELPIN_409_SELECT);
9032
9033 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
9034 I915_WRITE(_3D_CHICKEN,
9035 _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
9036
9037 /* WaDisable_RenderCache_OperationalFlush:snb */
9038 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9039
9040 /*
9041 * BSpec recoomends 8x4 when MSAA is used,
9042 * however in practice 16x4 seems fastest.
9043 *
9044 * Note that PS/WM thread counts depend on the WIZ hashing
9045 * disable bit, which we don't touch here, but it's good
9046 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9047 */
9048 I915_WRITE(GEN6_GT_MODE,
9049 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9050
9051 I915_WRITE(CACHE_MODE_0,
9052 _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
9053
9054 I915_WRITE(GEN6_UCGCTL1,
9055 I915_READ(GEN6_UCGCTL1) |
9056 GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
9057 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9058
9059 /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
9060 * gating disable must be set. Failure to set it results in
9061 * flickering pixels due to Z write ordering failures after
9062 * some amount of runtime in the Mesa "fire" demo, and Unigine
9063 * Sanctuary and Tropics, and apparently anything else with
9064 * alpha test or pixel discard.
9065 *
9066 * According to the spec, bit 11 (RCCUNIT) must also be set,
9067 * but we didn't debug actual testcases to find it out.
9068 *
9069 * WaDisableRCCUnitClockGating:snb
9070 * WaDisableRCPBUnitClockGating:snb
9071 */
9072 I915_WRITE(GEN6_UCGCTL2,
9073 GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
9074 GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
9075
9076 /* WaStripsFansDisableFastClipPerformanceFix:snb */
9077 I915_WRITE(_3D_CHICKEN3,
9078 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
9079
9080 /*
9081 * Bspec says:
9082 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
9083 * 3DSTATE_SF number of SF output attributes is more than 16."
9084 */
9085 I915_WRITE(_3D_CHICKEN3,
9086 _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
9087
9088 /*
9089 * According to the spec the following bits should be
9090 * set in order to enable memory self-refresh and fbc:
9091 * The bit21 and bit22 of 0x42000
9092 * The bit21 and bit22 of 0x42004
9093 * The bit5 and bit7 of 0x42020
9094 * The bit14 of 0x70180
9095 * The bit14 of 0x71180
9096 *
9097 * WaFbcAsynchFlipDisableFbcQueue:snb
9098 */
9099 I915_WRITE(ILK_DISPLAY_CHICKEN1,
9100 I915_READ(ILK_DISPLAY_CHICKEN1) |
9101 ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
9102 I915_WRITE(ILK_DISPLAY_CHICKEN2,
9103 I915_READ(ILK_DISPLAY_CHICKEN2) |
9104 ILK_DPARB_GATE | ILK_VSDPFD_FULL);
9105 I915_WRITE(ILK_DSPCLK_GATE_D,
9106 I915_READ(ILK_DSPCLK_GATE_D) |
9107 ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
9108 ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
9109
9110 g4x_disable_trickle_feed(dev_priv);
9111
9112 cpt_init_clock_gating(dev_priv);
9113
9114 gen6_check_mch_setup(dev_priv);
9115 }
9116
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)9117 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
9118 {
9119 u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
9120
9121 /*
9122 * WaVSThreadDispatchOverride:ivb,vlv
9123 *
9124 * This actually overrides the dispatch
9125 * mode for all thread types.
9126 */
9127 reg &= ~GEN7_FF_SCHED_MASK;
9128 reg |= GEN7_FF_TS_SCHED_HW;
9129 reg |= GEN7_FF_VS_SCHED_HW;
9130 reg |= GEN7_FF_DS_SCHED_HW;
9131
9132 I915_WRITE(GEN7_FF_THREAD_MODE, reg);
9133 }
9134
lpt_init_clock_gating(struct drm_i915_private * dev_priv)9135 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9136 {
9137 /*
9138 * TODO: this bit should only be enabled when really needed, then
9139 * disabled when not needed anymore in order to save power.
9140 */
9141 if (HAS_PCH_LPT_LP(dev_priv))
9142 I915_WRITE(SOUTH_DSPCLK_GATE_D,
9143 I915_READ(SOUTH_DSPCLK_GATE_D) |
9144 PCH_LP_PARTITION_LEVEL_DISABLE);
9145
9146 /* WADPOClockGatingDisable:hsw */
9147 I915_WRITE(TRANS_CHICKEN1(PIPE_A),
9148 I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9149 TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9150 }
9151
lpt_suspend_hw(struct drm_i915_private * dev_priv)9152 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9153 {
9154 if (HAS_PCH_LPT_LP(dev_priv)) {
9155 u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9156
9157 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9158 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9159 }
9160 }
9161
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)9162 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
9163 int general_prio_credits,
9164 int high_prio_credits)
9165 {
9166 u32 misccpctl;
9167 u32 val;
9168
9169 /* WaTempDisableDOPClkGating:bdw */
9170 misccpctl = I915_READ(GEN7_MISCCPCTL);
9171 I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
9172
9173 val = I915_READ(GEN8_L3SQCREG1);
9174 val &= ~L3_PRIO_CREDITS_MASK;
9175 val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
9176 val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
9177 I915_WRITE(GEN8_L3SQCREG1, val);
9178
9179 /*
9180 * Wait at least 100 clocks before re-enabling clock gating.
9181 * See the definition of L3SQCREG1 in BSpec.
9182 */
9183 POSTING_READ(GEN8_L3SQCREG1);
9184 udelay(1);
9185 I915_WRITE(GEN7_MISCCPCTL, misccpctl);
9186 }
9187
icl_init_clock_gating(struct drm_i915_private * dev_priv)9188 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
9189 {
9190 /* This is not an Wa. Enable to reduce Sampler power */
9191 I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
9192 I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9193
9194 /* WaEnable32PlaneMode:icl */
9195 I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
9196 _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
9197 }
9198
cnp_init_clock_gating(struct drm_i915_private * dev_priv)9199 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
9200 {
9201 if (!HAS_PCH_CNP(dev_priv))
9202 return;
9203
9204 /* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9205 I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
9206 CNP_PWM_CGE_GATING_DISABLE);
9207 }
9208
cnl_init_clock_gating(struct drm_i915_private * dev_priv)9209 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9210 {
9211 u32 val;
9212 cnp_init_clock_gating(dev_priv);
9213
9214 /* This is not an Wa. Enable for better image quality */
9215 I915_WRITE(_3D_CHICKEN3,
9216 _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
9217
9218 /* WaEnableChickenDCPR:cnl */
9219 I915_WRITE(GEN8_CHICKEN_DCPR_1,
9220 I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
9221
9222 /* WaFbcWakeMemOn:cnl */
9223 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
9224 DISP_FBC_MEMORY_WAKE);
9225
9226 val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
9227 /* ReadHitWriteOnlyDisable:cnl */
9228 val |= RCCUNIT_CLKGATE_DIS;
9229 /* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
9230 if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9231 val |= SARBUNIT_CLKGATE_DIS;
9232 I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9233
9234 /* Wa_2201832410:cnl */
9235 val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
9236 val |= GWUNIT_CLKGATE_DIS;
9237 I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
9238
9239 /* WaDisableVFclkgate:cnl */
9240 /* WaVFUnitClockGatingDisable:cnl */
9241 val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
9242 val |= VFUNIT_CLKGATE_DIS;
9243 I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9244 }
9245
cfl_init_clock_gating(struct drm_i915_private * dev_priv)9246 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
9247 {
9248 cnp_init_clock_gating(dev_priv);
9249 gen9_init_clock_gating(dev_priv);
9250
9251 /* WaFbcNukeOnHostModify:cfl */
9252 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9253 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9254 }
9255
kbl_init_clock_gating(struct drm_i915_private * dev_priv)9256 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9257 {
9258 gen9_init_clock_gating(dev_priv);
9259
9260 /* WaDisableSDEUnitClockGating:kbl */
9261 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9262 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9263 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9264
9265 /* WaDisableGamClockGating:kbl */
9266 if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9267 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9268 GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9269
9270 /* WaFbcNukeOnHostModify:kbl */
9271 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9272 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9273 }
9274
skl_init_clock_gating(struct drm_i915_private * dev_priv)9275 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9276 {
9277 gen9_init_clock_gating(dev_priv);
9278
9279 /* WAC6entrylatency:skl */
9280 I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9281 FBC_LLC_FULLY_OPEN);
9282
9283 /* WaFbcNukeOnHostModify:skl */
9284 I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9285 ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9286 }
9287
bdw_init_clock_gating(struct drm_i915_private * dev_priv)9288 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9289 {
9290 enum pipe pipe;
9291
9292 /* WaSwitchSolVfFArbitrationPriority:bdw */
9293 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9294
9295 /* WaPsrDPAMaskVBlankInSRD:bdw */
9296 I915_WRITE(CHICKEN_PAR1_1,
9297 I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9298
9299 /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9300 for_each_pipe(dev_priv, pipe) {
9301 I915_WRITE(CHICKEN_PIPESL_1(pipe),
9302 I915_READ(CHICKEN_PIPESL_1(pipe)) |
9303 BDW_DPRS_MASK_VBLANK_SRD);
9304 }
9305
9306 /* WaVSRefCountFullforceMissDisable:bdw */
9307 /* WaDSRefCountFullforceMissDisable:bdw */
9308 I915_WRITE(GEN7_FF_THREAD_MODE,
9309 I915_READ(GEN7_FF_THREAD_MODE) &
9310 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9311
9312 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9313 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9314
9315 /* WaDisableSDEUnitClockGating:bdw */
9316 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9317 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9318
9319 /* WaProgramL3SqcReg1Default:bdw */
9320 gen8_set_l3sqc_credits(dev_priv, 30, 2);
9321
9322 /* WaKVMNotificationOnConfigChange:bdw */
9323 I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9324 | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9325
9326 lpt_init_clock_gating(dev_priv);
9327
9328 /* WaDisableDopClockGating:bdw
9329 *
9330 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9331 * clock gating.
9332 */
9333 I915_WRITE(GEN6_UCGCTL1,
9334 I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9335 }
9336
hsw_init_clock_gating(struct drm_i915_private * dev_priv)9337 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9338 {
9339 /* L3 caching of data atomics doesn't work -- disable it. */
9340 I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9341 I915_WRITE(HSW_ROW_CHICKEN3,
9342 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9343
9344 /* This is required by WaCatErrorRejectionIssue:hsw */
9345 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9346 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9347 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9348
9349 /* WaVSRefCountFullforceMissDisable:hsw */
9350 I915_WRITE(GEN7_FF_THREAD_MODE,
9351 I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9352
9353 /* WaDisable_RenderCache_OperationalFlush:hsw */
9354 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9355
9356 /* enable HiZ Raw Stall Optimization */
9357 I915_WRITE(CACHE_MODE_0_GEN7,
9358 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9359
9360 /* WaDisable4x2SubspanOptimization:hsw */
9361 I915_WRITE(CACHE_MODE_1,
9362 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9363
9364 /*
9365 * BSpec recommends 8x4 when MSAA is used,
9366 * however in practice 16x4 seems fastest.
9367 *
9368 * Note that PS/WM thread counts depend on the WIZ hashing
9369 * disable bit, which we don't touch here, but it's good
9370 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9371 */
9372 I915_WRITE(GEN7_GT_MODE,
9373 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9374
9375 /* WaSampleCChickenBitEnable:hsw */
9376 I915_WRITE(HALF_SLICE_CHICKEN3,
9377 _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9378
9379 /* WaSwitchSolVfFArbitrationPriority:hsw */
9380 I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9381
9382 lpt_init_clock_gating(dev_priv);
9383 }
9384
ivb_init_clock_gating(struct drm_i915_private * dev_priv)9385 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9386 {
9387 u32 snpcr;
9388
9389 I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9390
9391 /* WaDisableEarlyCull:ivb */
9392 I915_WRITE(_3D_CHICKEN3,
9393 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9394
9395 /* WaDisableBackToBackFlipFix:ivb */
9396 I915_WRITE(IVB_CHICKEN3,
9397 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9398 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9399
9400 /* WaDisablePSDDualDispatchEnable:ivb */
9401 if (IS_IVB_GT1(dev_priv))
9402 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9403 _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9404
9405 /* WaDisable_RenderCache_OperationalFlush:ivb */
9406 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9407
9408 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9409 I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9410 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9411
9412 /* WaApplyL3ControlAndL3ChickenMode:ivb */
9413 I915_WRITE(GEN7_L3CNTLREG1,
9414 GEN7_WA_FOR_GEN7_L3_CONTROL);
9415 I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9416 GEN7_WA_L3_CHICKEN_MODE);
9417 if (IS_IVB_GT1(dev_priv))
9418 I915_WRITE(GEN7_ROW_CHICKEN2,
9419 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9420 else {
9421 /* must write both registers */
9422 I915_WRITE(GEN7_ROW_CHICKEN2,
9423 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9424 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9425 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9426 }
9427
9428 /* WaForceL3Serialization:ivb */
9429 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9430 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9431
9432 /*
9433 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9434 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9435 */
9436 I915_WRITE(GEN6_UCGCTL2,
9437 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9438
9439 /* This is required by WaCatErrorRejectionIssue:ivb */
9440 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9441 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9442 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9443
9444 g4x_disable_trickle_feed(dev_priv);
9445
9446 gen7_setup_fixed_func_scheduler(dev_priv);
9447
9448 if (0) { /* causes HiZ corruption on ivb:gt1 */
9449 /* enable HiZ Raw Stall Optimization */
9450 I915_WRITE(CACHE_MODE_0_GEN7,
9451 _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9452 }
9453
9454 /* WaDisable4x2SubspanOptimization:ivb */
9455 I915_WRITE(CACHE_MODE_1,
9456 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9457
9458 /*
9459 * BSpec recommends 8x4 when MSAA is used,
9460 * however in practice 16x4 seems fastest.
9461 *
9462 * Note that PS/WM thread counts depend on the WIZ hashing
9463 * disable bit, which we don't touch here, but it's good
9464 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9465 */
9466 I915_WRITE(GEN7_GT_MODE,
9467 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9468
9469 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9470 snpcr &= ~GEN6_MBC_SNPCR_MASK;
9471 snpcr |= GEN6_MBC_SNPCR_MED;
9472 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9473
9474 if (!HAS_PCH_NOP(dev_priv))
9475 cpt_init_clock_gating(dev_priv);
9476
9477 gen6_check_mch_setup(dev_priv);
9478 }
9479
vlv_init_clock_gating(struct drm_i915_private * dev_priv)9480 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9481 {
9482 /* WaDisableEarlyCull:vlv */
9483 I915_WRITE(_3D_CHICKEN3,
9484 _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9485
9486 /* WaDisableBackToBackFlipFix:vlv */
9487 I915_WRITE(IVB_CHICKEN3,
9488 CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9489 CHICKEN3_DGMG_DONE_FIX_DISABLE);
9490
9491 /* WaPsdDispatchEnable:vlv */
9492 /* WaDisablePSDDualDispatchEnable:vlv */
9493 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9494 _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9495 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9496
9497 /* WaDisable_RenderCache_OperationalFlush:vlv */
9498 I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9499
9500 /* WaForceL3Serialization:vlv */
9501 I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9502 ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9503
9504 /* WaDisableDopClockGating:vlv */
9505 I915_WRITE(GEN7_ROW_CHICKEN2,
9506 _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9507
9508 /* This is required by WaCatErrorRejectionIssue:vlv */
9509 I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9510 I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9511 GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9512
9513 gen7_setup_fixed_func_scheduler(dev_priv);
9514
9515 /*
9516 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9517 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9518 */
9519 I915_WRITE(GEN6_UCGCTL2,
9520 GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9521
9522 /* WaDisableL3Bank2xClockGate:vlv
9523 * Disabling L3 clock gating- MMIO 940c[25] = 1
9524 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9525 I915_WRITE(GEN7_UCGCTL4,
9526 I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9527
9528 /*
9529 * BSpec says this must be set, even though
9530 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9531 */
9532 I915_WRITE(CACHE_MODE_1,
9533 _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9534
9535 /*
9536 * BSpec recommends 8x4 when MSAA is used,
9537 * however in practice 16x4 seems fastest.
9538 *
9539 * Note that PS/WM thread counts depend on the WIZ hashing
9540 * disable bit, which we don't touch here, but it's good
9541 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9542 */
9543 I915_WRITE(GEN7_GT_MODE,
9544 _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9545
9546 /*
9547 * WaIncreaseL3CreditsForVLVB0:vlv
9548 * This is the hardware default actually.
9549 */
9550 I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9551
9552 /*
9553 * WaDisableVLVClockGating_VBIIssue:vlv
9554 * Disable clock gating on th GCFG unit to prevent a delay
9555 * in the reporting of vblank events.
9556 */
9557 I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9558 }
9559
chv_init_clock_gating(struct drm_i915_private * dev_priv)9560 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9561 {
9562 /* WaVSRefCountFullforceMissDisable:chv */
9563 /* WaDSRefCountFullforceMissDisable:chv */
9564 I915_WRITE(GEN7_FF_THREAD_MODE,
9565 I915_READ(GEN7_FF_THREAD_MODE) &
9566 ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9567
9568 /* WaDisableSemaphoreAndSyncFlipWait:chv */
9569 I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9570 _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9571
9572 /* WaDisableCSUnitClockGating:chv */
9573 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9574 GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9575
9576 /* WaDisableSDEUnitClockGating:chv */
9577 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9578 GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9579
9580 /*
9581 * WaProgramL3SqcReg1Default:chv
9582 * See gfxspecs/Related Documents/Performance Guide/
9583 * LSQC Setting Recommendations.
9584 */
9585 gen8_set_l3sqc_credits(dev_priv, 38, 2);
9586 }
9587
g4x_init_clock_gating(struct drm_i915_private * dev_priv)9588 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9589 {
9590 u32 dspclk_gate;
9591
9592 I915_WRITE(RENCLK_GATE_D1, 0);
9593 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9594 GS_UNIT_CLOCK_GATE_DISABLE |
9595 CL_UNIT_CLOCK_GATE_DISABLE);
9596 I915_WRITE(RAMCLK_GATE_D, 0);
9597 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9598 OVRUNIT_CLOCK_GATE_DISABLE |
9599 OVCUNIT_CLOCK_GATE_DISABLE;
9600 if (IS_GM45(dev_priv))
9601 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9602 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9603
9604 /* WaDisableRenderCachePipelinedFlush */
9605 I915_WRITE(CACHE_MODE_0,
9606 _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9607
9608 /* WaDisable_RenderCache_OperationalFlush:g4x */
9609 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9610
9611 g4x_disable_trickle_feed(dev_priv);
9612 }
9613
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)9614 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9615 {
9616 struct intel_uncore *uncore = &dev_priv->uncore;
9617
9618 intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9619 intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
9620 intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
9621 intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
9622 intel_uncore_write16(uncore, DEUC, 0);
9623 intel_uncore_write(uncore,
9624 MI_ARB_STATE,
9625 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9626
9627 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9628 intel_uncore_write(uncore,
9629 CACHE_MODE_0,
9630 _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9631 }
9632
i965g_init_clock_gating(struct drm_i915_private * dev_priv)9633 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9634 {
9635 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9636 I965_RCC_CLOCK_GATE_DISABLE |
9637 I965_RCPB_CLOCK_GATE_DISABLE |
9638 I965_ISC_CLOCK_GATE_DISABLE |
9639 I965_FBC_CLOCK_GATE_DISABLE);
9640 I915_WRITE(RENCLK_GATE_D2, 0);
9641 I915_WRITE(MI_ARB_STATE,
9642 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9643
9644 /* WaDisable_RenderCache_OperationalFlush:gen4 */
9645 I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9646 }
9647
gen3_init_clock_gating(struct drm_i915_private * dev_priv)9648 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9649 {
9650 u32 dstate = I915_READ(D_STATE);
9651
9652 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9653 DSTATE_DOT_CLOCK_GATING;
9654 I915_WRITE(D_STATE, dstate);
9655
9656 if (IS_PINEVIEW(dev_priv))
9657 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9658
9659 /* IIR "flip pending" means done if this bit is set */
9660 I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9661
9662 /* interrupts should cause a wake up from C3 */
9663 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9664
9665 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9666 I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9667
9668 I915_WRITE(MI_ARB_STATE,
9669 _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9670 }
9671
i85x_init_clock_gating(struct drm_i915_private * dev_priv)9672 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9673 {
9674 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9675
9676 /* interrupts should cause a wake up from C3 */
9677 I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9678 _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9679
9680 I915_WRITE(MEM_MODE,
9681 _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9682 }
9683
i830_init_clock_gating(struct drm_i915_private * dev_priv)9684 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9685 {
9686 I915_WRITE(MEM_MODE,
9687 _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9688 _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9689 }
9690
intel_init_clock_gating(struct drm_i915_private * dev_priv)9691 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9692 {
9693 dev_priv->display.init_clock_gating(dev_priv);
9694 }
9695
intel_suspend_hw(struct drm_i915_private * dev_priv)9696 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9697 {
9698 if (HAS_PCH_LPT(dev_priv))
9699 lpt_suspend_hw(dev_priv);
9700 }
9701
nop_init_clock_gating(struct drm_i915_private * dev_priv)9702 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9703 {
9704 DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9705 }
9706
9707 /**
9708 * intel_init_clock_gating_hooks - setup the clock gating hooks
9709 * @dev_priv: device private
9710 *
9711 * Setup the hooks that configure which clocks of a given platform can be
9712 * gated and also apply various GT and display specific workarounds for these
9713 * platforms. Note that some GT specific workarounds are applied separately
9714 * when GPU contexts or batchbuffers start their execution.
9715 */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)9716 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9717 {
9718 if (IS_GEN(dev_priv, 12))
9719 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9720 else if (IS_GEN(dev_priv, 11))
9721 dev_priv->display.init_clock_gating = icl_init_clock_gating;
9722 else if (IS_CANNONLAKE(dev_priv))
9723 dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9724 else if (IS_COFFEELAKE(dev_priv))
9725 dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9726 else if (IS_SKYLAKE(dev_priv))
9727 dev_priv->display.init_clock_gating = skl_init_clock_gating;
9728 else if (IS_KABYLAKE(dev_priv))
9729 dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9730 else if (IS_BROXTON(dev_priv))
9731 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9732 else if (IS_GEMINILAKE(dev_priv))
9733 dev_priv->display.init_clock_gating = glk_init_clock_gating;
9734 else if (IS_BROADWELL(dev_priv))
9735 dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9736 else if (IS_CHERRYVIEW(dev_priv))
9737 dev_priv->display.init_clock_gating = chv_init_clock_gating;
9738 else if (IS_HASWELL(dev_priv))
9739 dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9740 else if (IS_IVYBRIDGE(dev_priv))
9741 dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9742 else if (IS_VALLEYVIEW(dev_priv))
9743 dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9744 else if (IS_GEN(dev_priv, 6))
9745 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9746 else if (IS_GEN(dev_priv, 5))
9747 dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9748 else if (IS_G4X(dev_priv))
9749 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9750 else if (IS_I965GM(dev_priv))
9751 dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9752 else if (IS_I965G(dev_priv))
9753 dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9754 else if (IS_GEN(dev_priv, 3))
9755 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9756 else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9757 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9758 else if (IS_GEN(dev_priv, 2))
9759 dev_priv->display.init_clock_gating = i830_init_clock_gating;
9760 else {
9761 MISSING_CASE(INTEL_DEVID(dev_priv));
9762 dev_priv->display.init_clock_gating = nop_init_clock_gating;
9763 }
9764 }
9765
9766 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)9767 void intel_init_pm(struct drm_i915_private *dev_priv)
9768 {
9769 /* For cxsr */
9770 if (IS_PINEVIEW(dev_priv))
9771 i915_pineview_get_mem_freq(dev_priv);
9772 else if (IS_GEN(dev_priv, 5))
9773 i915_ironlake_get_mem_freq(dev_priv);
9774
9775 /* For FIFO watermark updates */
9776 if (INTEL_GEN(dev_priv) >= 9) {
9777 skl_setup_wm_latency(dev_priv);
9778 dev_priv->display.initial_watermarks = skl_initial_wm;
9779 dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9780 dev_priv->display.compute_global_watermarks = skl_compute_wm;
9781 } else if (HAS_PCH_SPLIT(dev_priv)) {
9782 ilk_setup_wm_latency(dev_priv);
9783
9784 if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9785 dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9786 (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9787 dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9788 dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9789 dev_priv->display.compute_intermediate_wm =
9790 ilk_compute_intermediate_wm;
9791 dev_priv->display.initial_watermarks =
9792 ilk_initial_watermarks;
9793 dev_priv->display.optimize_watermarks =
9794 ilk_optimize_watermarks;
9795 } else {
9796 DRM_DEBUG_KMS("Failed to read display plane latency. "
9797 "Disable CxSR\n");
9798 }
9799 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9800 vlv_setup_wm_latency(dev_priv);
9801 dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9802 dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9803 dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9804 dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9805 dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9806 } else if (IS_G4X(dev_priv)) {
9807 g4x_setup_wm_latency(dev_priv);
9808 dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9809 dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9810 dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9811 dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9812 } else if (IS_PINEVIEW(dev_priv)) {
9813 if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9814 dev_priv->is_ddr3,
9815 dev_priv->fsb_freq,
9816 dev_priv->mem_freq)) {
9817 DRM_INFO("failed to find known CxSR latency "
9818 "(found ddr%s fsb freq %d, mem freq %d), "
9819 "disabling CxSR\n",
9820 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9821 dev_priv->fsb_freq, dev_priv->mem_freq);
9822 /* Disable CxSR and never update its watermark again */
9823 intel_set_memory_cxsr(dev_priv, false);
9824 dev_priv->display.update_wm = NULL;
9825 } else
9826 dev_priv->display.update_wm = pineview_update_wm;
9827 } else if (IS_GEN(dev_priv, 4)) {
9828 dev_priv->display.update_wm = i965_update_wm;
9829 } else if (IS_GEN(dev_priv, 3)) {
9830 dev_priv->display.update_wm = i9xx_update_wm;
9831 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9832 } else if (IS_GEN(dev_priv, 2)) {
9833 if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9834 dev_priv->display.update_wm = i845_update_wm;
9835 dev_priv->display.get_fifo_size = i845_get_fifo_size;
9836 } else {
9837 dev_priv->display.update_wm = i9xx_update_wm;
9838 dev_priv->display.get_fifo_size = i830_get_fifo_size;
9839 }
9840 } else {
9841 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9842 }
9843 }
9844
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)9845 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9846 {
9847 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9848
9849 /*
9850 * N = val - 0xb7
9851 * Slow = Fast = GPLL ref * N
9852 */
9853 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9854 }
9855
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)9856 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9857 {
9858 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9859
9860 return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9861 }
9862
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)9863 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9864 {
9865 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9866
9867 /*
9868 * N = val / 2
9869 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9870 */
9871 return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9872 }
9873
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)9874 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9875 {
9876 struct intel_rps *rps = &dev_priv->gt_pm.rps;
9877
9878 /* CHV needs even values */
9879 return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9880 }
9881
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)9882 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9883 {
9884 if (INTEL_GEN(dev_priv) >= 9)
9885 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9886 GEN9_FREQ_SCALER);
9887 else if (IS_CHERRYVIEW(dev_priv))
9888 return chv_gpu_freq(dev_priv, val);
9889 else if (IS_VALLEYVIEW(dev_priv))
9890 return byt_gpu_freq(dev_priv, val);
9891 else
9892 return val * GT_FREQUENCY_MULTIPLIER;
9893 }
9894
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)9895 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9896 {
9897 if (INTEL_GEN(dev_priv) >= 9)
9898 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9899 GT_FREQUENCY_MULTIPLIER);
9900 else if (IS_CHERRYVIEW(dev_priv))
9901 return chv_freq_opcode(dev_priv, val);
9902 else if (IS_VALLEYVIEW(dev_priv))
9903 return byt_freq_opcode(dev_priv, val);
9904 else
9905 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9906 }
9907
intel_pm_setup(struct drm_i915_private * dev_priv)9908 void intel_pm_setup(struct drm_i915_private *dev_priv)
9909 {
9910 mutex_init(&dev_priv->gt_pm.rps.lock);
9911 mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9912
9913 atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9914
9915 dev_priv->runtime_pm.suspended = false;
9916 atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9917 }
9918
vlv_residency_raw(struct drm_i915_private * dev_priv,const i915_reg_t reg)9919 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9920 const i915_reg_t reg)
9921 {
9922 u32 lower, upper, tmp;
9923 int loop = 2;
9924
9925 /*
9926 * The register accessed do not need forcewake. We borrow
9927 * uncore lock to prevent concurrent access to range reg.
9928 */
9929 lockdep_assert_held(&dev_priv->uncore.lock);
9930
9931 /*
9932 * vlv and chv residency counters are 40 bits in width.
9933 * With a control bit, we can choose between upper or lower
9934 * 32bit window into this counter.
9935 *
9936 * Although we always use the counter in high-range mode elsewhere,
9937 * userspace may attempt to read the value before rc6 is initialised,
9938 * before we have set the default VLV_COUNTER_CONTROL value. So always
9939 * set the high bit to be safe.
9940 */
9941 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9942 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9943 upper = I915_READ_FW(reg);
9944 do {
9945 tmp = upper;
9946
9947 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9948 _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9949 lower = I915_READ_FW(reg);
9950
9951 I915_WRITE_FW(VLV_COUNTER_CONTROL,
9952 _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9953 upper = I915_READ_FW(reg);
9954 } while (upper != tmp && --loop);
9955
9956 /*
9957 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9958 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9959 * now.
9960 */
9961
9962 return lower | (u64)upper << 8;
9963 }
9964
intel_rc6_residency_ns(struct drm_i915_private * dev_priv,const i915_reg_t reg)9965 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9966 const i915_reg_t reg)
9967 {
9968 struct intel_uncore *uncore = &dev_priv->uncore;
9969 u64 time_hw, prev_hw, overflow_hw;
9970 unsigned int fw_domains;
9971 unsigned long flags;
9972 unsigned int i;
9973 u32 mul, div;
9974
9975 if (!HAS_RC6(dev_priv))
9976 return 0;
9977
9978 /*
9979 * Store previous hw counter values for counter wrap-around handling.
9980 *
9981 * There are only four interesting registers and they live next to each
9982 * other so we can use the relative address, compared to the smallest
9983 * one as the index into driver storage.
9984 */
9985 i = (i915_mmio_reg_offset(reg) -
9986 i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9987 if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9988 return 0;
9989
9990 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
9991
9992 spin_lock_irqsave(&uncore->lock, flags);
9993 intel_uncore_forcewake_get__locked(uncore, fw_domains);
9994
9995 /* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9996 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9997 mul = 1000000;
9998 div = dev_priv->czclk_freq;
9999 overflow_hw = BIT_ULL(40);
10000 time_hw = vlv_residency_raw(dev_priv, reg);
10001 } else {
10002 /* 833.33ns units on Gen9LP, 1.28us elsewhere. */
10003 if (IS_GEN9_LP(dev_priv)) {
10004 mul = 10000;
10005 div = 12;
10006 } else {
10007 mul = 1280;
10008 div = 1;
10009 }
10010
10011 overflow_hw = BIT_ULL(32);
10012 time_hw = intel_uncore_read_fw(uncore, reg);
10013 }
10014
10015 /*
10016 * Counter wrap handling.
10017 *
10018 * But relying on a sufficient frequency of queries otherwise counters
10019 * can still wrap.
10020 */
10021 prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
10022 dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
10023
10024 /* RC6 delta from last sample. */
10025 if (time_hw >= prev_hw)
10026 time_hw -= prev_hw;
10027 else
10028 time_hw += overflow_hw - prev_hw;
10029
10030 /* Add delta to RC6 extended raw driver copy. */
10031 time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
10032 dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
10033
10034 intel_uncore_forcewake_put__locked(uncore, fw_domains);
10035 spin_unlock_irqrestore(&uncore->lock, flags);
10036
10037 return mul_u64_u32_div(time_hw, mul, div);
10038 }
10039
intel_rc6_residency_us(struct drm_i915_private * dev_priv,i915_reg_t reg)10040 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
10041 i915_reg_t reg)
10042 {
10043 return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
10044 }
10045
intel_get_cagf(struct drm_i915_private * dev_priv,u32 rpstat)10046 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
10047 {
10048 u32 cagf;
10049
10050 if (INTEL_GEN(dev_priv) >= 9)
10051 cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
10052 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
10053 cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
10054 else
10055 cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
10056
10057 return cagf;
10058 }
10059