1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27 
28 #include <linux/cpufreq.h>
29 #include <linux/module.h>
30 #include <linux/pm_runtime.h>
31 
32 #include <drm/drm_atomic_helper.h>
33 #include <drm/drm_fourcc.h>
34 #include <drm/drm_plane_helper.h>
35 
36 #include "display/intel_atomic.h"
37 #include "display/intel_display_types.h"
38 #include "display/intel_fbc.h"
39 #include "display/intel_sprite.h"
40 
41 #include "i915_drv.h"
42 #include "i915_irq.h"
43 #include "i915_trace.h"
44 #include "intel_pm.h"
45 #include "intel_sideband.h"
46 #include "../../../platform/x86/intel_ips.h"
47 
48 /**
49  * DOC: RC6
50  *
51  * RC6 is a special power stage which allows the GPU to enter an very
52  * low-voltage mode when idle, using down to 0V while at this stage.  This
53  * stage is entered automatically when the GPU is idle when RC6 support is
54  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
55  *
56  * There are different RC6 modes available in Intel GPU, which differentiate
57  * among each other with the latency required to enter and leave RC6 and
58  * voltage consumed by the GPU in different states.
59  *
60  * The combination of the following flags define which states GPU is allowed
61  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
62  * RC6pp is deepest RC6. Their support by hardware varies according to the
63  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
64  * which brings the most power savings; deeper states save more power, but
65  * require higher latency to switch to and wake up.
66  */
67 
gen9_init_clock_gating(struct drm_i915_private * dev_priv)68 static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
69 {
70 	if (HAS_LLC(dev_priv)) {
71 		/*
72 		 * WaCompressedResourceDisplayNewHashMode:skl,kbl
73 		 * Display WA #0390: skl,kbl
74 		 *
75 		 * Must match Sampler, Pixel Back End, and Media. See
76 		 * WaCompressedResourceSamplerPbeMediaNewHashMode.
77 		 */
78 		I915_WRITE(CHICKEN_PAR1_1,
79 			   I915_READ(CHICKEN_PAR1_1) |
80 			   SKL_DE_COMPRESSED_HASH_MODE);
81 	}
82 
83 	/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
84 	I915_WRITE(CHICKEN_PAR1_1,
85 		   I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
86 
87 	/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
88 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
89 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
90 
91 	/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
92 	/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
93 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
94 		   DISP_FBC_WM_DIS |
95 		   DISP_FBC_MEMORY_WAKE);
96 
97 	/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
98 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
99 		   ILK_DPFC_DISABLE_DUMMY0);
100 
101 	if (IS_SKYLAKE(dev_priv)) {
102 		/* WaDisableDopClockGating */
103 		I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
104 			   & ~GEN7_DOP_CLOCK_GATE_ENABLE);
105 	}
106 }
107 
bxt_init_clock_gating(struct drm_i915_private * dev_priv)108 static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
109 {
110 	gen9_init_clock_gating(dev_priv);
111 
112 	/* WaDisableSDEUnitClockGating:bxt */
113 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
114 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
115 
116 	/*
117 	 * FIXME:
118 	 * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
119 	 */
120 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
121 		   GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
122 
123 	/*
124 	 * Wa: Backlight PWM may stop in the asserted state, causing backlight
125 	 * to stay fully on.
126 	 */
127 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
128 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
129 
130 	/*
131 	 * Lower the display internal timeout.
132 	 * This is needed to avoid any hard hangs when DSI port PLL
133 	 * is off and a MMIO access is attempted by any privilege
134 	 * application, using batch buffers or any other means.
135 	 */
136 	I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
137 }
138 
glk_init_clock_gating(struct drm_i915_private * dev_priv)139 static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
140 {
141 	gen9_init_clock_gating(dev_priv);
142 
143 	/*
144 	 * WaDisablePWMClockGating:glk
145 	 * Backlight PWM may stop in the asserted state, causing backlight
146 	 * to stay fully on.
147 	 */
148 	I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
149 		   PWM1_GATING_DIS | PWM2_GATING_DIS);
150 
151 	/* WaDDIIOTimeout:glk */
152 	if (IS_GLK_REVID(dev_priv, 0, GLK_REVID_A1)) {
153 		u32 val = I915_READ(CHICKEN_MISC_2);
154 		val &= ~(GLK_CL0_PWR_DOWN |
155 			 GLK_CL1_PWR_DOWN |
156 			 GLK_CL2_PWR_DOWN);
157 		I915_WRITE(CHICKEN_MISC_2, val);
158 	}
159 
160 }
161 
i915_pineview_get_mem_freq(struct drm_i915_private * dev_priv)162 static void i915_pineview_get_mem_freq(struct drm_i915_private *dev_priv)
163 {
164 	u32 tmp;
165 
166 	tmp = I915_READ(CLKCFG);
167 
168 	switch (tmp & CLKCFG_FSB_MASK) {
169 	case CLKCFG_FSB_533:
170 		dev_priv->fsb_freq = 533; /* 133*4 */
171 		break;
172 	case CLKCFG_FSB_800:
173 		dev_priv->fsb_freq = 800; /* 200*4 */
174 		break;
175 	case CLKCFG_FSB_667:
176 		dev_priv->fsb_freq =  667; /* 167*4 */
177 		break;
178 	case CLKCFG_FSB_400:
179 		dev_priv->fsb_freq = 400; /* 100*4 */
180 		break;
181 	}
182 
183 	switch (tmp & CLKCFG_MEM_MASK) {
184 	case CLKCFG_MEM_533:
185 		dev_priv->mem_freq = 533;
186 		break;
187 	case CLKCFG_MEM_667:
188 		dev_priv->mem_freq = 667;
189 		break;
190 	case CLKCFG_MEM_800:
191 		dev_priv->mem_freq = 800;
192 		break;
193 	}
194 
195 	/* detect pineview DDR3 setting */
196 	tmp = I915_READ(CSHRDDR3CTL);
197 	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
198 }
199 
i915_ironlake_get_mem_freq(struct drm_i915_private * dev_priv)200 static void i915_ironlake_get_mem_freq(struct drm_i915_private *dev_priv)
201 {
202 	u16 ddrpll, csipll;
203 
204 	ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
205 	csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
206 
207 	switch (ddrpll & 0xff) {
208 	case 0xc:
209 		dev_priv->mem_freq = 800;
210 		break;
211 	case 0x10:
212 		dev_priv->mem_freq = 1066;
213 		break;
214 	case 0x14:
215 		dev_priv->mem_freq = 1333;
216 		break;
217 	case 0x18:
218 		dev_priv->mem_freq = 1600;
219 		break;
220 	default:
221 		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
222 				 ddrpll & 0xff);
223 		dev_priv->mem_freq = 0;
224 		break;
225 	}
226 
227 	dev_priv->ips.r_t = dev_priv->mem_freq;
228 
229 	switch (csipll & 0x3ff) {
230 	case 0x00c:
231 		dev_priv->fsb_freq = 3200;
232 		break;
233 	case 0x00e:
234 		dev_priv->fsb_freq = 3733;
235 		break;
236 	case 0x010:
237 		dev_priv->fsb_freq = 4266;
238 		break;
239 	case 0x012:
240 		dev_priv->fsb_freq = 4800;
241 		break;
242 	case 0x014:
243 		dev_priv->fsb_freq = 5333;
244 		break;
245 	case 0x016:
246 		dev_priv->fsb_freq = 5866;
247 		break;
248 	case 0x018:
249 		dev_priv->fsb_freq = 6400;
250 		break;
251 	default:
252 		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
253 				 csipll & 0x3ff);
254 		dev_priv->fsb_freq = 0;
255 		break;
256 	}
257 
258 	if (dev_priv->fsb_freq == 3200) {
259 		dev_priv->ips.c_m = 0;
260 	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
261 		dev_priv->ips.c_m = 1;
262 	} else {
263 		dev_priv->ips.c_m = 2;
264 	}
265 }
266 
267 static const struct cxsr_latency cxsr_latency_table[] = {
268 	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
269 	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
270 	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
271 	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
272 	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
273 
274 	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
275 	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
276 	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
277 	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
278 	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
279 
280 	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
281 	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
282 	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
283 	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
284 	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
285 
286 	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
287 	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
288 	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
289 	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
290 	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
291 
292 	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
293 	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
294 	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
295 	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
296 	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
297 
298 	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
299 	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
300 	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
301 	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
302 	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
303 };
304 
intel_get_cxsr_latency(bool is_desktop,bool is_ddr3,int fsb,int mem)305 static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
306 							 bool is_ddr3,
307 							 int fsb,
308 							 int mem)
309 {
310 	const struct cxsr_latency *latency;
311 	int i;
312 
313 	if (fsb == 0 || mem == 0)
314 		return NULL;
315 
316 	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
317 		latency = &cxsr_latency_table[i];
318 		if (is_desktop == latency->is_desktop &&
319 		    is_ddr3 == latency->is_ddr3 &&
320 		    fsb == latency->fsb_freq && mem == latency->mem_freq)
321 			return latency;
322 	}
323 
324 	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
325 
326 	return NULL;
327 }
328 
chv_set_memory_dvfs(struct drm_i915_private * dev_priv,bool enable)329 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
330 {
331 	u32 val;
332 
333 	vlv_punit_get(dev_priv);
334 
335 	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
336 	if (enable)
337 		val &= ~FORCE_DDR_HIGH_FREQ;
338 	else
339 		val |= FORCE_DDR_HIGH_FREQ;
340 	val &= ~FORCE_DDR_LOW_FREQ;
341 	val |= FORCE_DDR_FREQ_REQ_ACK;
342 	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
343 
344 	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
345 		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
346 		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
347 
348 	vlv_punit_put(dev_priv);
349 }
350 
chv_set_memory_pm5(struct drm_i915_private * dev_priv,bool enable)351 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
352 {
353 	u32 val;
354 
355 	vlv_punit_get(dev_priv);
356 
357 	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
358 	if (enable)
359 		val |= DSP_MAXFIFO_PM5_ENABLE;
360 	else
361 		val &= ~DSP_MAXFIFO_PM5_ENABLE;
362 	vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
363 
364 	vlv_punit_put(dev_priv);
365 }
366 
367 #define FW_WM(value, plane) \
368 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
369 
_intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)370 static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
371 {
372 	bool was_enabled;
373 	u32 val;
374 
375 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
376 		was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
377 		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
378 		POSTING_READ(FW_BLC_SELF_VLV);
379 	} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
380 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
381 		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
382 		POSTING_READ(FW_BLC_SELF);
383 	} else if (IS_PINEVIEW(dev_priv)) {
384 		val = I915_READ(DSPFW3);
385 		was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
386 		if (enable)
387 			val |= PINEVIEW_SELF_REFRESH_EN;
388 		else
389 			val &= ~PINEVIEW_SELF_REFRESH_EN;
390 		I915_WRITE(DSPFW3, val);
391 		POSTING_READ(DSPFW3);
392 	} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
393 		was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
394 		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
395 			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
396 		I915_WRITE(FW_BLC_SELF, val);
397 		POSTING_READ(FW_BLC_SELF);
398 	} else if (IS_I915GM(dev_priv)) {
399 		/*
400 		 * FIXME can't find a bit like this for 915G, and
401 		 * and yet it does have the related watermark in
402 		 * FW_BLC_SELF. What's going on?
403 		 */
404 		was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
405 		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
406 			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
407 		I915_WRITE(INSTPM, val);
408 		POSTING_READ(INSTPM);
409 	} else {
410 		return false;
411 	}
412 
413 	trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
414 
415 	DRM_DEBUG_KMS("memory self-refresh is %s (was %s)\n",
416 		      enableddisabled(enable),
417 		      enableddisabled(was_enabled));
418 
419 	return was_enabled;
420 }
421 
422 /**
423  * intel_set_memory_cxsr - Configure CxSR state
424  * @dev_priv: i915 device
425  * @enable: Allow vs. disallow CxSR
426  *
427  * Allow or disallow the system to enter a special CxSR
428  * (C-state self refresh) state. What typically happens in CxSR mode
429  * is that several display FIFOs may get combined into a single larger
430  * FIFO for a particular plane (so called max FIFO mode) to allow the
431  * system to defer memory fetches longer, and the memory will enter
432  * self refresh.
433  *
434  * Note that enabling CxSR does not guarantee that the system enter
435  * this special mode, nor does it guarantee that the system stays
436  * in that mode once entered. So this just allows/disallows the system
437  * to autonomously utilize the CxSR mode. Other factors such as core
438  * C-states will affect when/if the system actually enters/exits the
439  * CxSR mode.
440  *
441  * Note that on VLV/CHV this actually only controls the max FIFO mode,
442  * and the system is free to enter/exit memory self refresh at any time
443  * even when the use of CxSR has been disallowed.
444  *
445  * While the system is actually in the CxSR/max FIFO mode, some plane
446  * control registers will not get latched on vblank. Thus in order to
447  * guarantee the system will respond to changes in the plane registers
448  * we must always disallow CxSR prior to making changes to those registers.
449  * Unfortunately the system will re-evaluate the CxSR conditions at
450  * frame start which happens after vblank start (which is when the plane
451  * registers would get latched), so we can't proceed with the plane update
452  * during the same frame where we disallowed CxSR.
453  *
454  * Certain platforms also have a deeper HPLL SR mode. Fortunately the
455  * HPLL SR mode depends on CxSR itself, so we don't have to hand hold
456  * the hardware w.r.t. HPLL SR when writing to plane registers.
457  * Disallowing just CxSR is sufficient.
458  */
intel_set_memory_cxsr(struct drm_i915_private * dev_priv,bool enable)459 bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
460 {
461 	bool ret;
462 
463 	mutex_lock(&dev_priv->wm.wm_mutex);
464 	ret = _intel_set_memory_cxsr(dev_priv, enable);
465 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
466 		dev_priv->wm.vlv.cxsr = enable;
467 	else if (IS_G4X(dev_priv))
468 		dev_priv->wm.g4x.cxsr = enable;
469 	mutex_unlock(&dev_priv->wm.wm_mutex);
470 
471 	return ret;
472 }
473 
474 /*
475  * Latency for FIFO fetches is dependent on several factors:
476  *   - memory configuration (speed, channels)
477  *   - chipset
478  *   - current MCH state
479  * It can be fairly high in some situations, so here we assume a fairly
480  * pessimal value.  It's a tradeoff between extra memory fetches (if we
481  * set this value too high, the FIFO will fetch frequently to stay full)
482  * and power consumption (set it too low to save power and we might see
483  * FIFO underruns and display "flicker").
484  *
485  * A value of 5us seems to be a good balance; safe for very low end
486  * platforms but not overly aggressive on lower latency configs.
487  */
488 static const int pessimal_latency_ns = 5000;
489 
490 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
491 	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
492 
vlv_get_fifo_size(struct intel_crtc_state * crtc_state)493 static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
494 {
495 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
496 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
497 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
498 	enum pipe pipe = crtc->pipe;
499 	int sprite0_start, sprite1_start;
500 
501 	switch (pipe) {
502 		u32 dsparb, dsparb2, dsparb3;
503 	case PIPE_A:
504 		dsparb = I915_READ(DSPARB);
505 		dsparb2 = I915_READ(DSPARB2);
506 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
507 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
508 		break;
509 	case PIPE_B:
510 		dsparb = I915_READ(DSPARB);
511 		dsparb2 = I915_READ(DSPARB2);
512 		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
513 		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
514 		break;
515 	case PIPE_C:
516 		dsparb2 = I915_READ(DSPARB2);
517 		dsparb3 = I915_READ(DSPARB3);
518 		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
519 		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
520 		break;
521 	default:
522 		MISSING_CASE(pipe);
523 		return;
524 	}
525 
526 	fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
527 	fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
528 	fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
529 	fifo_state->plane[PLANE_CURSOR] = 63;
530 }
531 
i9xx_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)532 static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
533 			      enum i9xx_plane_id i9xx_plane)
534 {
535 	u32 dsparb = I915_READ(DSPARB);
536 	int size;
537 
538 	size = dsparb & 0x7f;
539 	if (i9xx_plane == PLANE_B)
540 		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
541 
542 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
543 		      dsparb, plane_name(i9xx_plane), size);
544 
545 	return size;
546 }
547 
i830_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)548 static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
549 			      enum i9xx_plane_id i9xx_plane)
550 {
551 	u32 dsparb = I915_READ(DSPARB);
552 	int size;
553 
554 	size = dsparb & 0x1ff;
555 	if (i9xx_plane == PLANE_B)
556 		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
557 	size >>= 1; /* Convert to cachelines */
558 
559 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
560 		      dsparb, plane_name(i9xx_plane), size);
561 
562 	return size;
563 }
564 
i845_get_fifo_size(struct drm_i915_private * dev_priv,enum i9xx_plane_id i9xx_plane)565 static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
566 			      enum i9xx_plane_id i9xx_plane)
567 {
568 	u32 dsparb = I915_READ(DSPARB);
569 	int size;
570 
571 	size = dsparb & 0x7f;
572 	size >>= 2; /* Convert to cachelines */
573 
574 	DRM_DEBUG_KMS("FIFO size - (0x%08x) %c: %d\n",
575 		      dsparb, plane_name(i9xx_plane), size);
576 
577 	return size;
578 }
579 
580 /* Pineview has different values for various configs */
581 static const struct intel_watermark_params pineview_display_wm = {
582 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
583 	.max_wm = PINEVIEW_MAX_WM,
584 	.default_wm = PINEVIEW_DFT_WM,
585 	.guard_size = PINEVIEW_GUARD_WM,
586 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
587 };
588 static const struct intel_watermark_params pineview_display_hplloff_wm = {
589 	.fifo_size = PINEVIEW_DISPLAY_FIFO,
590 	.max_wm = PINEVIEW_MAX_WM,
591 	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
592 	.guard_size = PINEVIEW_GUARD_WM,
593 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
594 };
595 static const struct intel_watermark_params pineview_cursor_wm = {
596 	.fifo_size = PINEVIEW_CURSOR_FIFO,
597 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
598 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
599 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
600 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
601 };
602 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
603 	.fifo_size = PINEVIEW_CURSOR_FIFO,
604 	.max_wm = PINEVIEW_CURSOR_MAX_WM,
605 	.default_wm = PINEVIEW_CURSOR_DFT_WM,
606 	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
607 	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
608 };
609 static const struct intel_watermark_params i965_cursor_wm_info = {
610 	.fifo_size = I965_CURSOR_FIFO,
611 	.max_wm = I965_CURSOR_MAX_WM,
612 	.default_wm = I965_CURSOR_DFT_WM,
613 	.guard_size = 2,
614 	.cacheline_size = I915_FIFO_LINE_SIZE,
615 };
616 static const struct intel_watermark_params i945_wm_info = {
617 	.fifo_size = I945_FIFO_SIZE,
618 	.max_wm = I915_MAX_WM,
619 	.default_wm = 1,
620 	.guard_size = 2,
621 	.cacheline_size = I915_FIFO_LINE_SIZE,
622 };
623 static const struct intel_watermark_params i915_wm_info = {
624 	.fifo_size = I915_FIFO_SIZE,
625 	.max_wm = I915_MAX_WM,
626 	.default_wm = 1,
627 	.guard_size = 2,
628 	.cacheline_size = I915_FIFO_LINE_SIZE,
629 };
630 static const struct intel_watermark_params i830_a_wm_info = {
631 	.fifo_size = I855GM_FIFO_SIZE,
632 	.max_wm = I915_MAX_WM,
633 	.default_wm = 1,
634 	.guard_size = 2,
635 	.cacheline_size = I830_FIFO_LINE_SIZE,
636 };
637 static const struct intel_watermark_params i830_bc_wm_info = {
638 	.fifo_size = I855GM_FIFO_SIZE,
639 	.max_wm = I915_MAX_WM/2,
640 	.default_wm = 1,
641 	.guard_size = 2,
642 	.cacheline_size = I830_FIFO_LINE_SIZE,
643 };
644 static const struct intel_watermark_params i845_wm_info = {
645 	.fifo_size = I830_FIFO_SIZE,
646 	.max_wm = I915_MAX_WM,
647 	.default_wm = 1,
648 	.guard_size = 2,
649 	.cacheline_size = I830_FIFO_LINE_SIZE,
650 };
651 
652 /**
653  * intel_wm_method1 - Method 1 / "small buffer" watermark formula
654  * @pixel_rate: Pipe pixel rate in kHz
655  * @cpp: Plane bytes per pixel
656  * @latency: Memory wakeup latency in 0.1us units
657  *
658  * Compute the watermark using the method 1 or "small buffer"
659  * formula. The caller may additonally add extra cachelines
660  * to account for TLB misses and clock crossings.
661  *
662  * This method is concerned with the short term drain rate
663  * of the FIFO, ie. it does not account for blanking periods
664  * which would effectively reduce the average drain rate across
665  * a longer period. The name "small" refers to the fact the
666  * FIFO is relatively small compared to the amount of data
667  * fetched.
668  *
669  * The FIFO level vs. time graph might look something like:
670  *
671  *   |\   |\
672  *   | \  | \
673  * __---__---__ (- plane active, _ blanking)
674  * -> time
675  *
676  * or perhaps like this:
677  *
678  *   |\|\  |\|\
679  * __----__----__ (- plane active, _ blanking)
680  * -> time
681  *
682  * Returns:
683  * The watermark in bytes
684  */
intel_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)685 static unsigned int intel_wm_method1(unsigned int pixel_rate,
686 				     unsigned int cpp,
687 				     unsigned int latency)
688 {
689 	u64 ret;
690 
691 	ret = mul_u32_u32(pixel_rate, cpp * latency);
692 	ret = DIV_ROUND_UP_ULL(ret, 10000);
693 
694 	return ret;
695 }
696 
697 /**
698  * intel_wm_method2 - Method 2 / "large buffer" watermark formula
699  * @pixel_rate: Pipe pixel rate in kHz
700  * @htotal: Pipe horizontal total
701  * @width: Plane width in pixels
702  * @cpp: Plane bytes per pixel
703  * @latency: Memory wakeup latency in 0.1us units
704  *
705  * Compute the watermark using the method 2 or "large buffer"
706  * formula. The caller may additonally add extra cachelines
707  * to account for TLB misses and clock crossings.
708  *
709  * This method is concerned with the long term drain rate
710  * of the FIFO, ie. it does account for blanking periods
711  * which effectively reduce the average drain rate across
712  * a longer period. The name "large" refers to the fact the
713  * FIFO is relatively large compared to the amount of data
714  * fetched.
715  *
716  * The FIFO level vs. time graph might look something like:
717  *
718  *    |\___       |\___
719  *    |    \___   |    \___
720  *    |        \  |        \
721  * __ --__--__--__--__--__--__ (- plane active, _ blanking)
722  * -> time
723  *
724  * Returns:
725  * The watermark in bytes
726  */
intel_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)727 static unsigned int intel_wm_method2(unsigned int pixel_rate,
728 				     unsigned int htotal,
729 				     unsigned int width,
730 				     unsigned int cpp,
731 				     unsigned int latency)
732 {
733 	unsigned int ret;
734 
735 	/*
736 	 * FIXME remove once all users are computing
737 	 * watermarks in the correct place.
738 	 */
739 	if (WARN_ON_ONCE(htotal == 0))
740 		htotal = 1;
741 
742 	ret = (latency * pixel_rate) / (htotal * 10000);
743 	ret = (ret + 1) * width * cpp;
744 
745 	return ret;
746 }
747 
748 /**
749  * intel_calculate_wm - calculate watermark level
750  * @pixel_rate: pixel clock
751  * @wm: chip FIFO params
752  * @fifo_size: size of the FIFO buffer
753  * @cpp: bytes per pixel
754  * @latency_ns: memory latency for the platform
755  *
756  * Calculate the watermark level (the level at which the display plane will
757  * start fetching from memory again).  Each chip has a different display
758  * FIFO size and allocation, so the caller needs to figure that out and pass
759  * in the correct intel_watermark_params structure.
760  *
761  * As the pixel clock runs, the FIFO will be drained at a rate that depends
762  * on the pixel size.  When it reaches the watermark level, it'll start
763  * fetching FIFO line sized based chunks from memory until the FIFO fills
764  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
765  * will occur, and a display engine hang could result.
766  */
intel_calculate_wm(int pixel_rate,const struct intel_watermark_params * wm,int fifo_size,int cpp,unsigned int latency_ns)767 static unsigned int intel_calculate_wm(int pixel_rate,
768 				       const struct intel_watermark_params *wm,
769 				       int fifo_size, int cpp,
770 				       unsigned int latency_ns)
771 {
772 	int entries, wm_size;
773 
774 	/*
775 	 * Note: we need to make sure we don't overflow for various clock &
776 	 * latency values.
777 	 * clocks go from a few thousand to several hundred thousand.
778 	 * latency is usually a few thousand
779 	 */
780 	entries = intel_wm_method1(pixel_rate, cpp,
781 				   latency_ns / 100);
782 	entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
783 		wm->guard_size;
784 	DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
785 
786 	wm_size = fifo_size - entries;
787 	DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
788 
789 	/* Don't promote wm_size to unsigned... */
790 	if (wm_size > wm->max_wm)
791 		wm_size = wm->max_wm;
792 	if (wm_size <= 0)
793 		wm_size = wm->default_wm;
794 
795 	/*
796 	 * Bspec seems to indicate that the value shouldn't be lower than
797 	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
798 	 * Lets go for 8 which is the burst size since certain platforms
799 	 * already use a hardcoded 8 (which is what the spec says should be
800 	 * done).
801 	 */
802 	if (wm_size <= 8)
803 		wm_size = 8;
804 
805 	return wm_size;
806 }
807 
is_disabling(int old,int new,int threshold)808 static bool is_disabling(int old, int new, int threshold)
809 {
810 	return old >= threshold && new < threshold;
811 }
812 
is_enabling(int old,int new,int threshold)813 static bool is_enabling(int old, int new, int threshold)
814 {
815 	return old < threshold && new >= threshold;
816 }
817 
intel_wm_num_levels(struct drm_i915_private * dev_priv)818 static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
819 {
820 	return dev_priv->wm.max_level + 1;
821 }
822 
intel_wm_plane_visible(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)823 static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
824 				   const struct intel_plane_state *plane_state)
825 {
826 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
827 
828 	/* FIXME check the 'enable' instead */
829 	if (!crtc_state->base.active)
830 		return false;
831 
832 	/*
833 	 * Treat cursor with fb as always visible since cursor updates
834 	 * can happen faster than the vrefresh rate, and the current
835 	 * watermark code doesn't handle that correctly. Cursor updates
836 	 * which set/clear the fb or change the cursor size are going
837 	 * to get throttled by intel_legacy_cursor_update() to work
838 	 * around this problem with the watermark code.
839 	 */
840 	if (plane->id == PLANE_CURSOR)
841 		return plane_state->base.fb != NULL;
842 	else
843 		return plane_state->base.visible;
844 }
845 
single_enabled_crtc(struct drm_i915_private * dev_priv)846 static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
847 {
848 	struct intel_crtc *crtc, *enabled = NULL;
849 
850 	for_each_intel_crtc(&dev_priv->drm, crtc) {
851 		if (intel_crtc_active(crtc)) {
852 			if (enabled)
853 				return NULL;
854 			enabled = crtc;
855 		}
856 	}
857 
858 	return enabled;
859 }
860 
pineview_update_wm(struct intel_crtc * unused_crtc)861 static void pineview_update_wm(struct intel_crtc *unused_crtc)
862 {
863 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
864 	struct intel_crtc *crtc;
865 	const struct cxsr_latency *latency;
866 	u32 reg;
867 	unsigned int wm;
868 
869 	latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
870 					 dev_priv->is_ddr3,
871 					 dev_priv->fsb_freq,
872 					 dev_priv->mem_freq);
873 	if (!latency) {
874 		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
875 		intel_set_memory_cxsr(dev_priv, false);
876 		return;
877 	}
878 
879 	crtc = single_enabled_crtc(dev_priv);
880 	if (crtc) {
881 		const struct drm_display_mode *adjusted_mode =
882 			&crtc->config->base.adjusted_mode;
883 		const struct drm_framebuffer *fb =
884 			crtc->base.primary->state->fb;
885 		int cpp = fb->format->cpp[0];
886 		int clock = adjusted_mode->crtc_clock;
887 
888 		/* Display SR */
889 		wm = intel_calculate_wm(clock, &pineview_display_wm,
890 					pineview_display_wm.fifo_size,
891 					cpp, latency->display_sr);
892 		reg = I915_READ(DSPFW1);
893 		reg &= ~DSPFW_SR_MASK;
894 		reg |= FW_WM(wm, SR);
895 		I915_WRITE(DSPFW1, reg);
896 		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
897 
898 		/* cursor SR */
899 		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
900 					pineview_display_wm.fifo_size,
901 					4, latency->cursor_sr);
902 		reg = I915_READ(DSPFW3);
903 		reg &= ~DSPFW_CURSOR_SR_MASK;
904 		reg |= FW_WM(wm, CURSOR_SR);
905 		I915_WRITE(DSPFW3, reg);
906 
907 		/* Display HPLL off SR */
908 		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
909 					pineview_display_hplloff_wm.fifo_size,
910 					cpp, latency->display_hpll_disable);
911 		reg = I915_READ(DSPFW3);
912 		reg &= ~DSPFW_HPLL_SR_MASK;
913 		reg |= FW_WM(wm, HPLL_SR);
914 		I915_WRITE(DSPFW3, reg);
915 
916 		/* cursor HPLL off SR */
917 		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
918 					pineview_display_hplloff_wm.fifo_size,
919 					4, latency->cursor_hpll_disable);
920 		reg = I915_READ(DSPFW3);
921 		reg &= ~DSPFW_HPLL_CURSOR_MASK;
922 		reg |= FW_WM(wm, HPLL_CURSOR);
923 		I915_WRITE(DSPFW3, reg);
924 		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
925 
926 		intel_set_memory_cxsr(dev_priv, true);
927 	} else {
928 		intel_set_memory_cxsr(dev_priv, false);
929 	}
930 }
931 
932 /*
933  * Documentation says:
934  * "If the line size is small, the TLB fetches can get in the way of the
935  *  data fetches, causing some lag in the pixel data return which is not
936  *  accounted for in the above formulas. The following adjustment only
937  *  needs to be applied if eight whole lines fit in the buffer at once.
938  *  The WM is adjusted upwards by the difference between the FIFO size
939  *  and the size of 8 whole lines. This adjustment is always performed
940  *  in the actual pixel depth regardless of whether FBC is enabled or not."
941  */
g4x_tlb_miss_wa(int fifo_size,int width,int cpp)942 static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
943 {
944 	int tlb_miss = fifo_size * 64 - width * cpp * 8;
945 
946 	return max(0, tlb_miss);
947 }
948 
g4x_write_wm_values(struct drm_i915_private * dev_priv,const struct g4x_wm_values * wm)949 static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
950 				const struct g4x_wm_values *wm)
951 {
952 	enum pipe pipe;
953 
954 	for_each_pipe(dev_priv, pipe)
955 		trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
956 
957 	I915_WRITE(DSPFW1,
958 		   FW_WM(wm->sr.plane, SR) |
959 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
960 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
961 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
962 	I915_WRITE(DSPFW2,
963 		   (wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
964 		   FW_WM(wm->sr.fbc, FBC_SR) |
965 		   FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
966 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
967 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
968 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
969 	I915_WRITE(DSPFW3,
970 		   (wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
971 		   FW_WM(wm->sr.cursor, CURSOR_SR) |
972 		   FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
973 		   FW_WM(wm->hpll.plane, HPLL_SR));
974 
975 	POSTING_READ(DSPFW1);
976 }
977 
978 #define FW_WM_VLV(value, plane) \
979 	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
980 
vlv_write_wm_values(struct drm_i915_private * dev_priv,const struct vlv_wm_values * wm)981 static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
982 				const struct vlv_wm_values *wm)
983 {
984 	enum pipe pipe;
985 
986 	for_each_pipe(dev_priv, pipe) {
987 		trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
988 
989 		I915_WRITE(VLV_DDL(pipe),
990 			   (wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
991 			   (wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
992 			   (wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
993 			   (wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
994 	}
995 
996 	/*
997 	 * Zero the (unused) WM1 watermarks, and also clear all the
998 	 * high order bits so that there are no out of bounds values
999 	 * present in the registers during the reprogramming.
1000 	 */
1001 	I915_WRITE(DSPHOWM, 0);
1002 	I915_WRITE(DSPHOWM1, 0);
1003 	I915_WRITE(DSPFW4, 0);
1004 	I915_WRITE(DSPFW5, 0);
1005 	I915_WRITE(DSPFW6, 0);
1006 
1007 	I915_WRITE(DSPFW1,
1008 		   FW_WM(wm->sr.plane, SR) |
1009 		   FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
1010 		   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
1011 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
1012 	I915_WRITE(DSPFW2,
1013 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
1014 		   FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
1015 		   FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
1016 	I915_WRITE(DSPFW3,
1017 		   FW_WM(wm->sr.cursor, CURSOR_SR));
1018 
1019 	if (IS_CHERRYVIEW(dev_priv)) {
1020 		I915_WRITE(DSPFW7_CHV,
1021 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1022 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1023 		I915_WRITE(DSPFW8_CHV,
1024 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
1025 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
1026 		I915_WRITE(DSPFW9_CHV,
1027 			   FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
1028 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
1029 		I915_WRITE(DSPHOWM,
1030 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1031 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
1032 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
1033 			   FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
1034 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1035 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1036 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1037 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1038 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1039 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1040 	} else {
1041 		I915_WRITE(DSPFW7,
1042 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
1043 			   FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
1044 		I915_WRITE(DSPHOWM,
1045 			   FW_WM(wm->sr.plane >> 9, SR_HI) |
1046 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
1047 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
1048 			   FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
1049 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
1050 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
1051 			   FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
1052 	}
1053 
1054 	POSTING_READ(DSPFW1);
1055 }
1056 
1057 #undef FW_WM_VLV
1058 
g4x_setup_wm_latency(struct drm_i915_private * dev_priv)1059 static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
1060 {
1061 	/* all latencies in usec */
1062 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
1063 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
1064 	dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
1065 
1066 	dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
1067 }
1068 
g4x_plane_fifo_size(enum plane_id plane_id,int level)1069 static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
1070 {
1071 	/*
1072 	 * DSPCNTR[13] supposedly controls whether the
1073 	 * primary plane can use the FIFO space otherwise
1074 	 * reserved for the sprite plane. It's not 100% clear
1075 	 * what the actual FIFO size is, but it looks like we
1076 	 * can happily set both primary and sprite watermarks
1077 	 * up to 127 cachelines. So that would seem to mean
1078 	 * that either DSPCNTR[13] doesn't do anything, or that
1079 	 * the total FIFO is >= 256 cachelines in size. Either
1080 	 * way, we don't seem to have to worry about this
1081 	 * repartitioning as the maximum watermark value the
1082 	 * register can hold for each plane is lower than the
1083 	 * minimum FIFO size.
1084 	 */
1085 	switch (plane_id) {
1086 	case PLANE_CURSOR:
1087 		return 63;
1088 	case PLANE_PRIMARY:
1089 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
1090 	case PLANE_SPRITE0:
1091 		return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
1092 	default:
1093 		MISSING_CASE(plane_id);
1094 		return 0;
1095 	}
1096 }
1097 
g4x_fbc_fifo_size(int level)1098 static int g4x_fbc_fifo_size(int level)
1099 {
1100 	switch (level) {
1101 	case G4X_WM_LEVEL_SR:
1102 		return 7;
1103 	case G4X_WM_LEVEL_HPLL:
1104 		return 15;
1105 	default:
1106 		MISSING_CASE(level);
1107 		return 0;
1108 	}
1109 }
1110 
g4x_compute_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1111 static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
1112 			  const struct intel_plane_state *plane_state,
1113 			  int level)
1114 {
1115 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1116 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1117 	const struct drm_display_mode *adjusted_mode =
1118 		&crtc_state->base.adjusted_mode;
1119 	unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
1120 	unsigned int clock, htotal, cpp, width, wm;
1121 
1122 	if (latency == 0)
1123 		return USHRT_MAX;
1124 
1125 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1126 		return 0;
1127 
1128 	cpp = plane_state->base.fb->format->cpp[0];
1129 
1130 	/*
1131 	 * Not 100% sure which way ELK should go here as the
1132 	 * spec only says CL/CTG should assume 32bpp and BW
1133 	 * doesn't need to. But as these things followed the
1134 	 * mobile vs. desktop lines on gen3 as well, let's
1135 	 * assume ELK doesn't need this.
1136 	 *
1137 	 * The spec also fails to list such a restriction for
1138 	 * the HPLL watermark, which seems a little strange.
1139 	 * Let's use 32bpp for the HPLL watermark as well.
1140 	 */
1141 	if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
1142 	    level != G4X_WM_LEVEL_NORMAL)
1143 		cpp = max(cpp, 4u);
1144 
1145 	clock = adjusted_mode->crtc_clock;
1146 	htotal = adjusted_mode->crtc_htotal;
1147 
1148 	if (plane->id == PLANE_CURSOR)
1149 		width = plane_state->base.crtc_w;
1150 	else
1151 		width = drm_rect_width(&plane_state->base.dst);
1152 
1153 	if (plane->id == PLANE_CURSOR) {
1154 		wm = intel_wm_method2(clock, htotal, width, cpp, latency);
1155 	} else if (plane->id == PLANE_PRIMARY &&
1156 		   level == G4X_WM_LEVEL_NORMAL) {
1157 		wm = intel_wm_method1(clock, cpp, latency);
1158 	} else {
1159 		unsigned int small, large;
1160 
1161 		small = intel_wm_method1(clock, cpp, latency);
1162 		large = intel_wm_method2(clock, htotal, width, cpp, latency);
1163 
1164 		wm = min(small, large);
1165 	}
1166 
1167 	wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
1168 			      width, cpp);
1169 
1170 	wm = DIV_ROUND_UP(wm, 64) + 2;
1171 
1172 	return min_t(unsigned int, wm, USHRT_MAX);
1173 }
1174 
g4x_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1175 static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1176 				 int level, enum plane_id plane_id, u16 value)
1177 {
1178 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1179 	bool dirty = false;
1180 
1181 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1182 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1183 
1184 		dirty |= raw->plane[plane_id] != value;
1185 		raw->plane[plane_id] = value;
1186 	}
1187 
1188 	return dirty;
1189 }
1190 
g4x_raw_fbc_wm_set(struct intel_crtc_state * crtc_state,int level,u16 value)1191 static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
1192 			       int level, u16 value)
1193 {
1194 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1195 	bool dirty = false;
1196 
1197 	/* NORMAL level doesn't have an FBC watermark */
1198 	level = max(level, G4X_WM_LEVEL_SR);
1199 
1200 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1201 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1202 
1203 		dirty |= raw->fbc != value;
1204 		raw->fbc = value;
1205 	}
1206 
1207 	return dirty;
1208 }
1209 
1210 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
1211 			      const struct intel_plane_state *plane_state,
1212 			      u32 pri_val);
1213 
g4x_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1214 static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1215 				     const struct intel_plane_state *plane_state)
1216 {
1217 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1218 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1219 	enum plane_id plane_id = plane->id;
1220 	bool dirty = false;
1221 	int level;
1222 
1223 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1224 		dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1225 		if (plane_id == PLANE_PRIMARY)
1226 			dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
1227 		goto out;
1228 	}
1229 
1230 	for (level = 0; level < num_levels; level++) {
1231 		struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1232 		int wm, max_wm;
1233 
1234 		wm = g4x_compute_wm(crtc_state, plane_state, level);
1235 		max_wm = g4x_plane_fifo_size(plane_id, level);
1236 
1237 		if (wm > max_wm)
1238 			break;
1239 
1240 		dirty |= raw->plane[plane_id] != wm;
1241 		raw->plane[plane_id] = wm;
1242 
1243 		if (plane_id != PLANE_PRIMARY ||
1244 		    level == G4X_WM_LEVEL_NORMAL)
1245 			continue;
1246 
1247 		wm = ilk_compute_fbc_wm(crtc_state, plane_state,
1248 					raw->plane[plane_id]);
1249 		max_wm = g4x_fbc_fifo_size(level);
1250 
1251 		/*
1252 		 * FBC wm is not mandatory as we
1253 		 * can always just disable its use.
1254 		 */
1255 		if (wm > max_wm)
1256 			wm = USHRT_MAX;
1257 
1258 		dirty |= raw->fbc != wm;
1259 		raw->fbc = wm;
1260 	}
1261 
1262 	/* mark watermarks as invalid */
1263 	dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1264 
1265 	if (plane_id == PLANE_PRIMARY)
1266 		dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
1267 
1268  out:
1269 	if (dirty) {
1270 		DRM_DEBUG_KMS("%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
1271 			      plane->base.name,
1272 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
1273 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
1274 			      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
1275 
1276 		if (plane_id == PLANE_PRIMARY)
1277 			DRM_DEBUG_KMS("FBC watermarks: SR=%d, HPLL=%d\n",
1278 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
1279 				      crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
1280 	}
1281 
1282 	return dirty;
1283 }
1284 
g4x_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1285 static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1286 				      enum plane_id plane_id, int level)
1287 {
1288 	const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
1289 
1290 	return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
1291 }
1292 
g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1293 static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
1294 				     int level)
1295 {
1296 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1297 
1298 	if (level > dev_priv->wm.max_level)
1299 		return false;
1300 
1301 	return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1302 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1303 		g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1304 }
1305 
1306 /* mark all levels starting from 'level' as invalid */
g4x_invalidate_wms(struct intel_crtc * crtc,struct g4x_wm_state * wm_state,int level)1307 static void g4x_invalidate_wms(struct intel_crtc *crtc,
1308 			       struct g4x_wm_state *wm_state, int level)
1309 {
1310 	if (level <= G4X_WM_LEVEL_NORMAL) {
1311 		enum plane_id plane_id;
1312 
1313 		for_each_plane_id_on_crtc(crtc, plane_id)
1314 			wm_state->wm.plane[plane_id] = USHRT_MAX;
1315 	}
1316 
1317 	if (level <= G4X_WM_LEVEL_SR) {
1318 		wm_state->cxsr = false;
1319 		wm_state->sr.cursor = USHRT_MAX;
1320 		wm_state->sr.plane = USHRT_MAX;
1321 		wm_state->sr.fbc = USHRT_MAX;
1322 	}
1323 
1324 	if (level <= G4X_WM_LEVEL_HPLL) {
1325 		wm_state->hpll_en = false;
1326 		wm_state->hpll.cursor = USHRT_MAX;
1327 		wm_state->hpll.plane = USHRT_MAX;
1328 		wm_state->hpll.fbc = USHRT_MAX;
1329 	}
1330 }
1331 
g4x_compute_pipe_wm(struct intel_crtc_state * crtc_state)1332 static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1333 {
1334 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1335 	struct intel_atomic_state *state =
1336 		to_intel_atomic_state(crtc_state->base.state);
1337 	struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
1338 	int num_active_planes = hweight32(crtc_state->active_planes &
1339 					  ~BIT(PLANE_CURSOR));
1340 	const struct g4x_pipe_wm *raw;
1341 	const struct intel_plane_state *old_plane_state;
1342 	const struct intel_plane_state *new_plane_state;
1343 	struct intel_plane *plane;
1344 	enum plane_id plane_id;
1345 	int i, level;
1346 	unsigned int dirty = 0;
1347 
1348 	for_each_oldnew_intel_plane_in_state(state, plane,
1349 					     old_plane_state,
1350 					     new_plane_state, i) {
1351 		if (new_plane_state->base.crtc != &crtc->base &&
1352 		    old_plane_state->base.crtc != &crtc->base)
1353 			continue;
1354 
1355 		if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
1356 			dirty |= BIT(plane->id);
1357 	}
1358 
1359 	if (!dirty)
1360 		return 0;
1361 
1362 	level = G4X_WM_LEVEL_NORMAL;
1363 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1364 		goto out;
1365 
1366 	raw = &crtc_state->wm.g4x.raw[level];
1367 	for_each_plane_id_on_crtc(crtc, plane_id)
1368 		wm_state->wm.plane[plane_id] = raw->plane[plane_id];
1369 
1370 	level = G4X_WM_LEVEL_SR;
1371 
1372 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1373 		goto out;
1374 
1375 	raw = &crtc_state->wm.g4x.raw[level];
1376 	wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
1377 	wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
1378 	wm_state->sr.fbc = raw->fbc;
1379 
1380 	wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
1381 
1382 	level = G4X_WM_LEVEL_HPLL;
1383 
1384 	if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
1385 		goto out;
1386 
1387 	raw = &crtc_state->wm.g4x.raw[level];
1388 	wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
1389 	wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
1390 	wm_state->hpll.fbc = raw->fbc;
1391 
1392 	wm_state->hpll_en = wm_state->cxsr;
1393 
1394 	level++;
1395 
1396  out:
1397 	if (level == G4X_WM_LEVEL_NORMAL)
1398 		return -EINVAL;
1399 
1400 	/* invalidate the higher levels */
1401 	g4x_invalidate_wms(crtc, wm_state, level);
1402 
1403 	/*
1404 	 * Determine if the FBC watermark(s) can be used. IF
1405 	 * this isn't the case we prefer to disable the FBC
1406 	 ( watermark(s) rather than disable the SR/HPLL
1407 	 * level(s) entirely.
1408 	 */
1409 	wm_state->fbc_en = level > G4X_WM_LEVEL_NORMAL;
1410 
1411 	if (level >= G4X_WM_LEVEL_SR &&
1412 	    wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
1413 		wm_state->fbc_en = false;
1414 	else if (level >= G4X_WM_LEVEL_HPLL &&
1415 		 wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
1416 		wm_state->fbc_en = false;
1417 
1418 	return 0;
1419 }
1420 
g4x_compute_intermediate_wm(struct intel_crtc_state * new_crtc_state)1421 static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
1422 {
1423 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1424 	struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
1425 	const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
1426 	struct intel_atomic_state *intel_state =
1427 		to_intel_atomic_state(new_crtc_state->base.state);
1428 	const struct intel_crtc_state *old_crtc_state =
1429 		intel_atomic_get_old_crtc_state(intel_state, crtc);
1430 	const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
1431 	enum plane_id plane_id;
1432 
1433 	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
1434 		*intermediate = *optimal;
1435 
1436 		intermediate->cxsr = false;
1437 		intermediate->hpll_en = false;
1438 		goto out;
1439 	}
1440 
1441 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
1442 		!new_crtc_state->disable_cxsr;
1443 	intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
1444 		!new_crtc_state->disable_cxsr;
1445 	intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
1446 
1447 	for_each_plane_id_on_crtc(crtc, plane_id) {
1448 		intermediate->wm.plane[plane_id] =
1449 			max(optimal->wm.plane[plane_id],
1450 			    active->wm.plane[plane_id]);
1451 
1452 		WARN_ON(intermediate->wm.plane[plane_id] >
1453 			g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
1454 	}
1455 
1456 	intermediate->sr.plane = max(optimal->sr.plane,
1457 				     active->sr.plane);
1458 	intermediate->sr.cursor = max(optimal->sr.cursor,
1459 				      active->sr.cursor);
1460 	intermediate->sr.fbc = max(optimal->sr.fbc,
1461 				   active->sr.fbc);
1462 
1463 	intermediate->hpll.plane = max(optimal->hpll.plane,
1464 				       active->hpll.plane);
1465 	intermediate->hpll.cursor = max(optimal->hpll.cursor,
1466 					active->hpll.cursor);
1467 	intermediate->hpll.fbc = max(optimal->hpll.fbc,
1468 				     active->hpll.fbc);
1469 
1470 	WARN_ON((intermediate->sr.plane >
1471 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
1472 		 intermediate->sr.cursor >
1473 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
1474 		intermediate->cxsr);
1475 	WARN_ON((intermediate->sr.plane >
1476 		 g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
1477 		 intermediate->sr.cursor >
1478 		 g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
1479 		intermediate->hpll_en);
1480 
1481 	WARN_ON(intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
1482 		intermediate->fbc_en && intermediate->cxsr);
1483 	WARN_ON(intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
1484 		intermediate->fbc_en && intermediate->hpll_en);
1485 
1486 out:
1487 	/*
1488 	 * If our intermediate WM are identical to the final WM, then we can
1489 	 * omit the post-vblank programming; only update if it's different.
1490 	 */
1491 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
1492 		new_crtc_state->wm.need_postvbl_update = true;
1493 
1494 	return 0;
1495 }
1496 
g4x_merge_wm(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)1497 static void g4x_merge_wm(struct drm_i915_private *dev_priv,
1498 			 struct g4x_wm_values *wm)
1499 {
1500 	struct intel_crtc *crtc;
1501 	int num_active_crtcs = 0;
1502 
1503 	wm->cxsr = true;
1504 	wm->hpll_en = true;
1505 	wm->fbc_en = true;
1506 
1507 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1508 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1509 
1510 		if (!crtc->active)
1511 			continue;
1512 
1513 		if (!wm_state->cxsr)
1514 			wm->cxsr = false;
1515 		if (!wm_state->hpll_en)
1516 			wm->hpll_en = false;
1517 		if (!wm_state->fbc_en)
1518 			wm->fbc_en = false;
1519 
1520 		num_active_crtcs++;
1521 	}
1522 
1523 	if (num_active_crtcs != 1) {
1524 		wm->cxsr = false;
1525 		wm->hpll_en = false;
1526 		wm->fbc_en = false;
1527 	}
1528 
1529 	for_each_intel_crtc(&dev_priv->drm, crtc) {
1530 		const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
1531 		enum pipe pipe = crtc->pipe;
1532 
1533 		wm->pipe[pipe] = wm_state->wm;
1534 		if (crtc->active && wm->cxsr)
1535 			wm->sr = wm_state->sr;
1536 		if (crtc->active && wm->hpll_en)
1537 			wm->hpll = wm_state->hpll;
1538 	}
1539 }
1540 
g4x_program_watermarks(struct drm_i915_private * dev_priv)1541 static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
1542 {
1543 	struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
1544 	struct g4x_wm_values new_wm = {};
1545 
1546 	g4x_merge_wm(dev_priv, &new_wm);
1547 
1548 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
1549 		return;
1550 
1551 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
1552 		_intel_set_memory_cxsr(dev_priv, false);
1553 
1554 	g4x_write_wm_values(dev_priv, &new_wm);
1555 
1556 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
1557 		_intel_set_memory_cxsr(dev_priv, true);
1558 
1559 	*old_wm = new_wm;
1560 }
1561 
g4x_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1562 static void g4x_initial_watermarks(struct intel_atomic_state *state,
1563 				   struct intel_crtc_state *crtc_state)
1564 {
1565 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1566 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1567 
1568 	mutex_lock(&dev_priv->wm.wm_mutex);
1569 	crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
1570 	g4x_program_watermarks(dev_priv);
1571 	mutex_unlock(&dev_priv->wm.wm_mutex);
1572 }
1573 
g4x_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1574 static void g4x_optimize_watermarks(struct intel_atomic_state *state,
1575 				    struct intel_crtc_state *crtc_state)
1576 {
1577 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1578 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1579 
1580 	if (!crtc_state->wm.need_postvbl_update)
1581 		return;
1582 
1583 	mutex_lock(&dev_priv->wm.wm_mutex);
1584 	crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
1585 	g4x_program_watermarks(dev_priv);
1586 	mutex_unlock(&dev_priv->wm.wm_mutex);
1587 }
1588 
1589 /* latency must be in 0.1us units. */
vlv_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)1590 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
1591 				   unsigned int htotal,
1592 				   unsigned int width,
1593 				   unsigned int cpp,
1594 				   unsigned int latency)
1595 {
1596 	unsigned int ret;
1597 
1598 	ret = intel_wm_method2(pixel_rate, htotal,
1599 			       width, cpp, latency);
1600 	ret = DIV_ROUND_UP(ret, 64);
1601 
1602 	return ret;
1603 }
1604 
vlv_setup_wm_latency(struct drm_i915_private * dev_priv)1605 static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
1606 {
1607 	/* all latencies in usec */
1608 	dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
1609 
1610 	dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
1611 
1612 	if (IS_CHERRYVIEW(dev_priv)) {
1613 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
1614 		dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
1615 
1616 		dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
1617 	}
1618 }
1619 
vlv_compute_wm_level(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,int level)1620 static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
1621 				const struct intel_plane_state *plane_state,
1622 				int level)
1623 {
1624 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1625 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
1626 	const struct drm_display_mode *adjusted_mode =
1627 		&crtc_state->base.adjusted_mode;
1628 	unsigned int clock, htotal, cpp, width, wm;
1629 
1630 	if (dev_priv->wm.pri_latency[level] == 0)
1631 		return USHRT_MAX;
1632 
1633 	if (!intel_wm_plane_visible(crtc_state, plane_state))
1634 		return 0;
1635 
1636 	cpp = plane_state->base.fb->format->cpp[0];
1637 	clock = adjusted_mode->crtc_clock;
1638 	htotal = adjusted_mode->crtc_htotal;
1639 	width = crtc_state->pipe_src_w;
1640 
1641 	if (plane->id == PLANE_CURSOR) {
1642 		/*
1643 		 * FIXME the formula gives values that are
1644 		 * too big for the cursor FIFO, and hence we
1645 		 * would never be able to use cursors. For
1646 		 * now just hardcode the watermark.
1647 		 */
1648 		wm = 63;
1649 	} else {
1650 		wm = vlv_wm_method2(clock, htotal, width, cpp,
1651 				    dev_priv->wm.pri_latency[level] * 10);
1652 	}
1653 
1654 	return min_t(unsigned int, wm, USHRT_MAX);
1655 }
1656 
vlv_need_sprite0_fifo_workaround(unsigned int active_planes)1657 static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
1658 {
1659 	return (active_planes & (BIT(PLANE_SPRITE0) |
1660 				 BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
1661 }
1662 
vlv_compute_fifo(struct intel_crtc_state * crtc_state)1663 static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
1664 {
1665 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1666 	const struct g4x_pipe_wm *raw =
1667 		&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
1668 	struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
1669 	unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
1670 	int num_active_planes = hweight32(active_planes);
1671 	const int fifo_size = 511;
1672 	int fifo_extra, fifo_left = fifo_size;
1673 	int sprite0_fifo_extra = 0;
1674 	unsigned int total_rate;
1675 	enum plane_id plane_id;
1676 
1677 	/*
1678 	 * When enabling sprite0 after sprite1 has already been enabled
1679 	 * we tend to get an underrun unless sprite0 already has some
1680 	 * FIFO space allcoated. Hence we always allocate at least one
1681 	 * cacheline for sprite0 whenever sprite1 is enabled.
1682 	 *
1683 	 * All other plane enable sequences appear immune to this problem.
1684 	 */
1685 	if (vlv_need_sprite0_fifo_workaround(active_planes))
1686 		sprite0_fifo_extra = 1;
1687 
1688 	total_rate = raw->plane[PLANE_PRIMARY] +
1689 		raw->plane[PLANE_SPRITE0] +
1690 		raw->plane[PLANE_SPRITE1] +
1691 		sprite0_fifo_extra;
1692 
1693 	if (total_rate > fifo_size)
1694 		return -EINVAL;
1695 
1696 	if (total_rate == 0)
1697 		total_rate = 1;
1698 
1699 	for_each_plane_id_on_crtc(crtc, plane_id) {
1700 		unsigned int rate;
1701 
1702 		if ((active_planes & BIT(plane_id)) == 0) {
1703 			fifo_state->plane[plane_id] = 0;
1704 			continue;
1705 		}
1706 
1707 		rate = raw->plane[plane_id];
1708 		fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
1709 		fifo_left -= fifo_state->plane[plane_id];
1710 	}
1711 
1712 	fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
1713 	fifo_left -= sprite0_fifo_extra;
1714 
1715 	fifo_state->plane[PLANE_CURSOR] = 63;
1716 
1717 	fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
1718 
1719 	/* spread the remainder evenly */
1720 	for_each_plane_id_on_crtc(crtc, plane_id) {
1721 		int plane_extra;
1722 
1723 		if (fifo_left == 0)
1724 			break;
1725 
1726 		if ((active_planes & BIT(plane_id)) == 0)
1727 			continue;
1728 
1729 		plane_extra = min(fifo_extra, fifo_left);
1730 		fifo_state->plane[plane_id] += plane_extra;
1731 		fifo_left -= plane_extra;
1732 	}
1733 
1734 	WARN_ON(active_planes != 0 && fifo_left != 0);
1735 
1736 	/* give it all to the first plane if none are active */
1737 	if (active_planes == 0) {
1738 		WARN_ON(fifo_left != fifo_size);
1739 		fifo_state->plane[PLANE_PRIMARY] = fifo_left;
1740 	}
1741 
1742 	return 0;
1743 }
1744 
1745 /* mark all levels starting from 'level' as invalid */
vlv_invalidate_wms(struct intel_crtc * crtc,struct vlv_wm_state * wm_state,int level)1746 static void vlv_invalidate_wms(struct intel_crtc *crtc,
1747 			       struct vlv_wm_state *wm_state, int level)
1748 {
1749 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1750 
1751 	for (; level < intel_wm_num_levels(dev_priv); level++) {
1752 		enum plane_id plane_id;
1753 
1754 		for_each_plane_id_on_crtc(crtc, plane_id)
1755 			wm_state->wm[level].plane[plane_id] = USHRT_MAX;
1756 
1757 		wm_state->sr[level].cursor = USHRT_MAX;
1758 		wm_state->sr[level].plane = USHRT_MAX;
1759 	}
1760 }
1761 
vlv_invert_wm_value(u16 wm,u16 fifo_size)1762 static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
1763 {
1764 	if (wm > fifo_size)
1765 		return USHRT_MAX;
1766 	else
1767 		return fifo_size - wm;
1768 }
1769 
1770 /*
1771  * Starting from 'level' set all higher
1772  * levels to 'value' in the "raw" watermarks.
1773  */
vlv_raw_plane_wm_set(struct intel_crtc_state * crtc_state,int level,enum plane_id plane_id,u16 value)1774 static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
1775 				 int level, enum plane_id plane_id, u16 value)
1776 {
1777 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1778 	int num_levels = intel_wm_num_levels(dev_priv);
1779 	bool dirty = false;
1780 
1781 	for (; level < num_levels; level++) {
1782 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1783 
1784 		dirty |= raw->plane[plane_id] != value;
1785 		raw->plane[plane_id] = value;
1786 	}
1787 
1788 	return dirty;
1789 }
1790 
vlv_raw_plane_wm_compute(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)1791 static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
1792 				     const struct intel_plane_state *plane_state)
1793 {
1794 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
1795 	enum plane_id plane_id = plane->id;
1796 	int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
1797 	int level;
1798 	bool dirty = false;
1799 
1800 	if (!intel_wm_plane_visible(crtc_state, plane_state)) {
1801 		dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
1802 		goto out;
1803 	}
1804 
1805 	for (level = 0; level < num_levels; level++) {
1806 		struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1807 		int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
1808 		int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
1809 
1810 		if (wm > max_wm)
1811 			break;
1812 
1813 		dirty |= raw->plane[plane_id] != wm;
1814 		raw->plane[plane_id] = wm;
1815 	}
1816 
1817 	/* mark all higher levels as invalid */
1818 	dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
1819 
1820 out:
1821 	if (dirty)
1822 		DRM_DEBUG_KMS("%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
1823 			      plane->base.name,
1824 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
1825 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
1826 			      crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
1827 
1828 	return dirty;
1829 }
1830 
vlv_raw_plane_wm_is_valid(const struct intel_crtc_state * crtc_state,enum plane_id plane_id,int level)1831 static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
1832 				      enum plane_id plane_id, int level)
1833 {
1834 	const struct g4x_pipe_wm *raw =
1835 		&crtc_state->wm.vlv.raw[level];
1836 	const struct vlv_fifo_state *fifo_state =
1837 		&crtc_state->wm.vlv.fifo_state;
1838 
1839 	return raw->plane[plane_id] <= fifo_state->plane[plane_id];
1840 }
1841 
vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state * crtc_state,int level)1842 static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
1843 {
1844 	return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
1845 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
1846 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
1847 		vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
1848 }
1849 
vlv_compute_pipe_wm(struct intel_crtc_state * crtc_state)1850 static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
1851 {
1852 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1853 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1854 	struct intel_atomic_state *state =
1855 		to_intel_atomic_state(crtc_state->base.state);
1856 	struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
1857 	const struct vlv_fifo_state *fifo_state =
1858 		&crtc_state->wm.vlv.fifo_state;
1859 	int num_active_planes = hweight32(crtc_state->active_planes &
1860 					  ~BIT(PLANE_CURSOR));
1861 	bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->base);
1862 	const struct intel_plane_state *old_plane_state;
1863 	const struct intel_plane_state *new_plane_state;
1864 	struct intel_plane *plane;
1865 	enum plane_id plane_id;
1866 	int level, ret, i;
1867 	unsigned int dirty = 0;
1868 
1869 	for_each_oldnew_intel_plane_in_state(state, plane,
1870 					     old_plane_state,
1871 					     new_plane_state, i) {
1872 		if (new_plane_state->base.crtc != &crtc->base &&
1873 		    old_plane_state->base.crtc != &crtc->base)
1874 			continue;
1875 
1876 		if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
1877 			dirty |= BIT(plane->id);
1878 	}
1879 
1880 	/*
1881 	 * DSPARB registers may have been reset due to the
1882 	 * power well being turned off. Make sure we restore
1883 	 * them to a consistent state even if no primary/sprite
1884 	 * planes are initially active.
1885 	 */
1886 	if (needs_modeset)
1887 		crtc_state->fifo_changed = true;
1888 
1889 	if (!dirty)
1890 		return 0;
1891 
1892 	/* cursor changes don't warrant a FIFO recompute */
1893 	if (dirty & ~BIT(PLANE_CURSOR)) {
1894 		const struct intel_crtc_state *old_crtc_state =
1895 			intel_atomic_get_old_crtc_state(state, crtc);
1896 		const struct vlv_fifo_state *old_fifo_state =
1897 			&old_crtc_state->wm.vlv.fifo_state;
1898 
1899 		ret = vlv_compute_fifo(crtc_state);
1900 		if (ret)
1901 			return ret;
1902 
1903 		if (needs_modeset ||
1904 		    memcmp(old_fifo_state, fifo_state,
1905 			   sizeof(*fifo_state)) != 0)
1906 			crtc_state->fifo_changed = true;
1907 	}
1908 
1909 	/* initially allow all levels */
1910 	wm_state->num_levels = intel_wm_num_levels(dev_priv);
1911 	/*
1912 	 * Note that enabling cxsr with no primary/sprite planes
1913 	 * enabled can wedge the pipe. Hence we only allow cxsr
1914 	 * with exactly one enabled primary/sprite plane.
1915 	 */
1916 	wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
1917 
1918 	for (level = 0; level < wm_state->num_levels; level++) {
1919 		const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
1920 		const int sr_fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1921 
1922 		if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
1923 			break;
1924 
1925 		for_each_plane_id_on_crtc(crtc, plane_id) {
1926 			wm_state->wm[level].plane[plane_id] =
1927 				vlv_invert_wm_value(raw->plane[plane_id],
1928 						    fifo_state->plane[plane_id]);
1929 		}
1930 
1931 		wm_state->sr[level].plane =
1932 			vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
1933 						 raw->plane[PLANE_SPRITE0],
1934 						 raw->plane[PLANE_SPRITE1]),
1935 					    sr_fifo_size);
1936 
1937 		wm_state->sr[level].cursor =
1938 			vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
1939 					    63);
1940 	}
1941 
1942 	if (level == 0)
1943 		return -EINVAL;
1944 
1945 	/* limit to only levels we can actually handle */
1946 	wm_state->num_levels = level;
1947 
1948 	/* invalidate the higher levels */
1949 	vlv_invalidate_wms(crtc, wm_state, level);
1950 
1951 	return 0;
1952 }
1953 
1954 #define VLV_FIFO(plane, value) \
1955 	(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1956 
vlv_atomic_update_fifo(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)1957 static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
1958 				   struct intel_crtc_state *crtc_state)
1959 {
1960 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1961 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1962 	struct intel_uncore *uncore = &dev_priv->uncore;
1963 	const struct vlv_fifo_state *fifo_state =
1964 		&crtc_state->wm.vlv.fifo_state;
1965 	int sprite0_start, sprite1_start, fifo_size;
1966 
1967 	if (!crtc_state->fifo_changed)
1968 		return;
1969 
1970 	sprite0_start = fifo_state->plane[PLANE_PRIMARY];
1971 	sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
1972 	fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
1973 
1974 	WARN_ON(fifo_state->plane[PLANE_CURSOR] != 63);
1975 	WARN_ON(fifo_size != 511);
1976 
1977 	trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
1978 
1979 	/*
1980 	 * uncore.lock serves a double purpose here. It allows us to
1981 	 * use the less expensive I915_{READ,WRITE}_FW() functions, and
1982 	 * it protects the DSPARB registers from getting clobbered by
1983 	 * parallel updates from multiple pipes.
1984 	 *
1985 	 * intel_pipe_update_start() has already disabled interrupts
1986 	 * for us, so a plain spin_lock() is sufficient here.
1987 	 */
1988 	spin_lock(&uncore->lock);
1989 
1990 	switch (crtc->pipe) {
1991 		u32 dsparb, dsparb2, dsparb3;
1992 	case PIPE_A:
1993 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
1994 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
1995 
1996 		dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1997 			    VLV_FIFO(SPRITEB, 0xff));
1998 		dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1999 			   VLV_FIFO(SPRITEB, sprite1_start));
2000 
2001 		dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
2002 			     VLV_FIFO(SPRITEB_HI, 0x1));
2003 		dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
2004 			   VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
2005 
2006 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2007 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2008 		break;
2009 	case PIPE_B:
2010 		dsparb = intel_uncore_read_fw(uncore, DSPARB);
2011 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2012 
2013 		dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
2014 			    VLV_FIFO(SPRITED, 0xff));
2015 		dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
2016 			   VLV_FIFO(SPRITED, sprite1_start));
2017 
2018 		dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
2019 			     VLV_FIFO(SPRITED_HI, 0xff));
2020 		dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
2021 			   VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
2022 
2023 		intel_uncore_write_fw(uncore, DSPARB, dsparb);
2024 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2025 		break;
2026 	case PIPE_C:
2027 		dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
2028 		dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
2029 
2030 		dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
2031 			     VLV_FIFO(SPRITEF, 0xff));
2032 		dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
2033 			    VLV_FIFO(SPRITEF, sprite1_start));
2034 
2035 		dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
2036 			     VLV_FIFO(SPRITEF_HI, 0xff));
2037 		dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
2038 			   VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
2039 
2040 		intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
2041 		intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
2042 		break;
2043 	default:
2044 		break;
2045 	}
2046 
2047 	intel_uncore_posting_read_fw(uncore, DSPARB);
2048 
2049 	spin_unlock(&uncore->lock);
2050 }
2051 
2052 #undef VLV_FIFO
2053 
vlv_compute_intermediate_wm(struct intel_crtc_state * new_crtc_state)2054 static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
2055 {
2056 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
2057 	struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
2058 	const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
2059 	struct intel_atomic_state *intel_state =
2060 		to_intel_atomic_state(new_crtc_state->base.state);
2061 	const struct intel_crtc_state *old_crtc_state =
2062 		intel_atomic_get_old_crtc_state(intel_state, crtc);
2063 	const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
2064 	int level;
2065 
2066 	if (!new_crtc_state->base.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->base)) {
2067 		*intermediate = *optimal;
2068 
2069 		intermediate->cxsr = false;
2070 		goto out;
2071 	}
2072 
2073 	intermediate->num_levels = min(optimal->num_levels, active->num_levels);
2074 	intermediate->cxsr = optimal->cxsr && active->cxsr &&
2075 		!new_crtc_state->disable_cxsr;
2076 
2077 	for (level = 0; level < intermediate->num_levels; level++) {
2078 		enum plane_id plane_id;
2079 
2080 		for_each_plane_id_on_crtc(crtc, plane_id) {
2081 			intermediate->wm[level].plane[plane_id] =
2082 				min(optimal->wm[level].plane[plane_id],
2083 				    active->wm[level].plane[plane_id]);
2084 		}
2085 
2086 		intermediate->sr[level].plane = min(optimal->sr[level].plane,
2087 						    active->sr[level].plane);
2088 		intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
2089 						     active->sr[level].cursor);
2090 	}
2091 
2092 	vlv_invalidate_wms(crtc, intermediate, level);
2093 
2094 out:
2095 	/*
2096 	 * If our intermediate WM are identical to the final WM, then we can
2097 	 * omit the post-vblank programming; only update if it's different.
2098 	 */
2099 	if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
2100 		new_crtc_state->wm.need_postvbl_update = true;
2101 
2102 	return 0;
2103 }
2104 
vlv_merge_wm(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)2105 static void vlv_merge_wm(struct drm_i915_private *dev_priv,
2106 			 struct vlv_wm_values *wm)
2107 {
2108 	struct intel_crtc *crtc;
2109 	int num_active_crtcs = 0;
2110 
2111 	wm->level = dev_priv->wm.max_level;
2112 	wm->cxsr = true;
2113 
2114 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2115 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2116 
2117 		if (!crtc->active)
2118 			continue;
2119 
2120 		if (!wm_state->cxsr)
2121 			wm->cxsr = false;
2122 
2123 		num_active_crtcs++;
2124 		wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
2125 	}
2126 
2127 	if (num_active_crtcs != 1)
2128 		wm->cxsr = false;
2129 
2130 	if (num_active_crtcs > 1)
2131 		wm->level = VLV_WM_LEVEL_PM2;
2132 
2133 	for_each_intel_crtc(&dev_priv->drm, crtc) {
2134 		const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
2135 		enum pipe pipe = crtc->pipe;
2136 
2137 		wm->pipe[pipe] = wm_state->wm[wm->level];
2138 		if (crtc->active && wm->cxsr)
2139 			wm->sr = wm_state->sr[wm->level];
2140 
2141 		wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
2142 		wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
2143 		wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
2144 		wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
2145 	}
2146 }
2147 
vlv_program_watermarks(struct drm_i915_private * dev_priv)2148 static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
2149 {
2150 	struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
2151 	struct vlv_wm_values new_wm = {};
2152 
2153 	vlv_merge_wm(dev_priv, &new_wm);
2154 
2155 	if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
2156 		return;
2157 
2158 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2159 		chv_set_memory_dvfs(dev_priv, false);
2160 
2161 	if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2162 		chv_set_memory_pm5(dev_priv, false);
2163 
2164 	if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
2165 		_intel_set_memory_cxsr(dev_priv, false);
2166 
2167 	vlv_write_wm_values(dev_priv, &new_wm);
2168 
2169 	if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
2170 		_intel_set_memory_cxsr(dev_priv, true);
2171 
2172 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
2173 		chv_set_memory_pm5(dev_priv, true);
2174 
2175 	if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
2176 		chv_set_memory_dvfs(dev_priv, true);
2177 
2178 	*old_wm = new_wm;
2179 }
2180 
vlv_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2181 static void vlv_initial_watermarks(struct intel_atomic_state *state,
2182 				   struct intel_crtc_state *crtc_state)
2183 {
2184 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2185 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2186 
2187 	mutex_lock(&dev_priv->wm.wm_mutex);
2188 	crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
2189 	vlv_program_watermarks(dev_priv);
2190 	mutex_unlock(&dev_priv->wm.wm_mutex);
2191 }
2192 
vlv_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)2193 static void vlv_optimize_watermarks(struct intel_atomic_state *state,
2194 				    struct intel_crtc_state *crtc_state)
2195 {
2196 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
2197 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2198 
2199 	if (!crtc_state->wm.need_postvbl_update)
2200 		return;
2201 
2202 	mutex_lock(&dev_priv->wm.wm_mutex);
2203 	crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
2204 	vlv_program_watermarks(dev_priv);
2205 	mutex_unlock(&dev_priv->wm.wm_mutex);
2206 }
2207 
i965_update_wm(struct intel_crtc * unused_crtc)2208 static void i965_update_wm(struct intel_crtc *unused_crtc)
2209 {
2210 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2211 	struct intel_crtc *crtc;
2212 	int srwm = 1;
2213 	int cursor_sr = 16;
2214 	bool cxsr_enabled;
2215 
2216 	/* Calc sr entries for one plane configs */
2217 	crtc = single_enabled_crtc(dev_priv);
2218 	if (crtc) {
2219 		/* self-refresh has much higher latency */
2220 		static const int sr_latency_ns = 12000;
2221 		const struct drm_display_mode *adjusted_mode =
2222 			&crtc->config->base.adjusted_mode;
2223 		const struct drm_framebuffer *fb =
2224 			crtc->base.primary->state->fb;
2225 		int clock = adjusted_mode->crtc_clock;
2226 		int htotal = adjusted_mode->crtc_htotal;
2227 		int hdisplay = crtc->config->pipe_src_w;
2228 		int cpp = fb->format->cpp[0];
2229 		int entries;
2230 
2231 		entries = intel_wm_method2(clock, htotal,
2232 					   hdisplay, cpp, sr_latency_ns / 100);
2233 		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
2234 		srwm = I965_FIFO_SIZE - entries;
2235 		if (srwm < 0)
2236 			srwm = 1;
2237 		srwm &= 0x1ff;
2238 		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
2239 			      entries, srwm);
2240 
2241 		entries = intel_wm_method2(clock, htotal,
2242 					   crtc->base.cursor->state->crtc_w, 4,
2243 					   sr_latency_ns / 100);
2244 		entries = DIV_ROUND_UP(entries,
2245 				       i965_cursor_wm_info.cacheline_size) +
2246 			i965_cursor_wm_info.guard_size;
2247 
2248 		cursor_sr = i965_cursor_wm_info.fifo_size - entries;
2249 		if (cursor_sr > i965_cursor_wm_info.max_wm)
2250 			cursor_sr = i965_cursor_wm_info.max_wm;
2251 
2252 		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
2253 			      "cursor %d\n", srwm, cursor_sr);
2254 
2255 		cxsr_enabled = true;
2256 	} else {
2257 		cxsr_enabled = false;
2258 		/* Turn off self refresh if both pipes are enabled */
2259 		intel_set_memory_cxsr(dev_priv, false);
2260 	}
2261 
2262 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2263 		      srwm);
2264 
2265 	/* 965 has limitations... */
2266 	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
2267 		   FW_WM(8, CURSORB) |
2268 		   FW_WM(8, PLANEB) |
2269 		   FW_WM(8, PLANEA));
2270 	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
2271 		   FW_WM(8, PLANEC_OLD));
2272 	/* update cursor SR watermark */
2273 	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
2274 
2275 	if (cxsr_enabled)
2276 		intel_set_memory_cxsr(dev_priv, true);
2277 }
2278 
2279 #undef FW_WM
2280 
i9xx_update_wm(struct intel_crtc * unused_crtc)2281 static void i9xx_update_wm(struct intel_crtc *unused_crtc)
2282 {
2283 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2284 	const struct intel_watermark_params *wm_info;
2285 	u32 fwater_lo;
2286 	u32 fwater_hi;
2287 	int cwm, srwm = 1;
2288 	int fifo_size;
2289 	int planea_wm, planeb_wm;
2290 	struct intel_crtc *crtc, *enabled = NULL;
2291 
2292 	if (IS_I945GM(dev_priv))
2293 		wm_info = &i945_wm_info;
2294 	else if (!IS_GEN(dev_priv, 2))
2295 		wm_info = &i915_wm_info;
2296 	else
2297 		wm_info = &i830_a_wm_info;
2298 
2299 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
2300 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
2301 	if (intel_crtc_active(crtc)) {
2302 		const struct drm_display_mode *adjusted_mode =
2303 			&crtc->config->base.adjusted_mode;
2304 		const struct drm_framebuffer *fb =
2305 			crtc->base.primary->state->fb;
2306 		int cpp;
2307 
2308 		if (IS_GEN(dev_priv, 2))
2309 			cpp = 4;
2310 		else
2311 			cpp = fb->format->cpp[0];
2312 
2313 		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2314 					       wm_info, fifo_size, cpp,
2315 					       pessimal_latency_ns);
2316 		enabled = crtc;
2317 	} else {
2318 		planea_wm = fifo_size - wm_info->guard_size;
2319 		if (planea_wm > (long)wm_info->max_wm)
2320 			planea_wm = wm_info->max_wm;
2321 	}
2322 
2323 	if (IS_GEN(dev_priv, 2))
2324 		wm_info = &i830_bc_wm_info;
2325 
2326 	fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
2327 	crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
2328 	if (intel_crtc_active(crtc)) {
2329 		const struct drm_display_mode *adjusted_mode =
2330 			&crtc->config->base.adjusted_mode;
2331 		const struct drm_framebuffer *fb =
2332 			crtc->base.primary->state->fb;
2333 		int cpp;
2334 
2335 		if (IS_GEN(dev_priv, 2))
2336 			cpp = 4;
2337 		else
2338 			cpp = fb->format->cpp[0];
2339 
2340 		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2341 					       wm_info, fifo_size, cpp,
2342 					       pessimal_latency_ns);
2343 		if (enabled == NULL)
2344 			enabled = crtc;
2345 		else
2346 			enabled = NULL;
2347 	} else {
2348 		planeb_wm = fifo_size - wm_info->guard_size;
2349 		if (planeb_wm > (long)wm_info->max_wm)
2350 			planeb_wm = wm_info->max_wm;
2351 	}
2352 
2353 	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2354 
2355 	if (IS_I915GM(dev_priv) && enabled) {
2356 		struct drm_i915_gem_object *obj;
2357 
2358 		obj = intel_fb_obj(enabled->base.primary->state->fb);
2359 
2360 		/* self-refresh seems busted with untiled */
2361 		if (!i915_gem_object_is_tiled(obj))
2362 			enabled = NULL;
2363 	}
2364 
2365 	/*
2366 	 * Overlay gets an aggressive default since video jitter is bad.
2367 	 */
2368 	cwm = 2;
2369 
2370 	/* Play safe and disable self-refresh before adjusting watermarks. */
2371 	intel_set_memory_cxsr(dev_priv, false);
2372 
2373 	/* Calc sr entries for one plane configs */
2374 	if (HAS_FW_BLC(dev_priv) && enabled) {
2375 		/* self-refresh has much higher latency */
2376 		static const int sr_latency_ns = 6000;
2377 		const struct drm_display_mode *adjusted_mode =
2378 			&enabled->config->base.adjusted_mode;
2379 		const struct drm_framebuffer *fb =
2380 			enabled->base.primary->state->fb;
2381 		int clock = adjusted_mode->crtc_clock;
2382 		int htotal = adjusted_mode->crtc_htotal;
2383 		int hdisplay = enabled->config->pipe_src_w;
2384 		int cpp;
2385 		int entries;
2386 
2387 		if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
2388 			cpp = 4;
2389 		else
2390 			cpp = fb->format->cpp[0];
2391 
2392 		entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
2393 					   sr_latency_ns / 100);
2394 		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
2395 		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
2396 		srwm = wm_info->fifo_size - entries;
2397 		if (srwm < 0)
2398 			srwm = 1;
2399 
2400 		if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
2401 			I915_WRITE(FW_BLC_SELF,
2402 				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
2403 		else
2404 			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
2405 	}
2406 
2407 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2408 		      planea_wm, planeb_wm, cwm, srwm);
2409 
2410 	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2411 	fwater_hi = (cwm & 0x1f);
2412 
2413 	/* Set request length to 8 cachelines per fetch */
2414 	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2415 	fwater_hi = fwater_hi | (1 << 8);
2416 
2417 	I915_WRITE(FW_BLC, fwater_lo);
2418 	I915_WRITE(FW_BLC2, fwater_hi);
2419 
2420 	if (enabled)
2421 		intel_set_memory_cxsr(dev_priv, true);
2422 }
2423 
i845_update_wm(struct intel_crtc * unused_crtc)2424 static void i845_update_wm(struct intel_crtc *unused_crtc)
2425 {
2426 	struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
2427 	struct intel_crtc *crtc;
2428 	const struct drm_display_mode *adjusted_mode;
2429 	u32 fwater_lo;
2430 	int planea_wm;
2431 
2432 	crtc = single_enabled_crtc(dev_priv);
2433 	if (crtc == NULL)
2434 		return;
2435 
2436 	adjusted_mode = &crtc->config->base.adjusted_mode;
2437 	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
2438 				       &i845_wm_info,
2439 				       dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
2440 				       4, pessimal_latency_ns);
2441 	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2442 	fwater_lo |= (3<<8) | planea_wm;
2443 
2444 	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2445 
2446 	I915_WRITE(FW_BLC, fwater_lo);
2447 }
2448 
2449 /* latency must be in 0.1us units. */
ilk_wm_method1(unsigned int pixel_rate,unsigned int cpp,unsigned int latency)2450 static unsigned int ilk_wm_method1(unsigned int pixel_rate,
2451 				   unsigned int cpp,
2452 				   unsigned int latency)
2453 {
2454 	unsigned int ret;
2455 
2456 	ret = intel_wm_method1(pixel_rate, cpp, latency);
2457 	ret = DIV_ROUND_UP(ret, 64) + 2;
2458 
2459 	return ret;
2460 }
2461 
2462 /* latency must be in 0.1us units. */
ilk_wm_method2(unsigned int pixel_rate,unsigned int htotal,unsigned int width,unsigned int cpp,unsigned int latency)2463 static unsigned int ilk_wm_method2(unsigned int pixel_rate,
2464 				   unsigned int htotal,
2465 				   unsigned int width,
2466 				   unsigned int cpp,
2467 				   unsigned int latency)
2468 {
2469 	unsigned int ret;
2470 
2471 	ret = intel_wm_method2(pixel_rate, htotal,
2472 			       width, cpp, latency);
2473 	ret = DIV_ROUND_UP(ret, 64) + 2;
2474 
2475 	return ret;
2476 }
2477 
ilk_wm_fbc(u32 pri_val,u32 horiz_pixels,u8 cpp)2478 static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
2479 {
2480 	/*
2481 	 * Neither of these should be possible since this function shouldn't be
2482 	 * called if the CRTC is off or the plane is invisible.  But let's be
2483 	 * extra paranoid to avoid a potential divide-by-zero if we screw up
2484 	 * elsewhere in the driver.
2485 	 */
2486 	if (WARN_ON(!cpp))
2487 		return 0;
2488 	if (WARN_ON(!horiz_pixels))
2489 		return 0;
2490 
2491 	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
2492 }
2493 
2494 struct ilk_wm_maximums {
2495 	u16 pri;
2496 	u16 spr;
2497 	u16 cur;
2498 	u16 fbc;
2499 };
2500 
2501 /*
2502  * For both WM_PIPE and WM_LP.
2503  * mem_value must be in 0.1us units.
2504  */
ilk_compute_pri_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value,bool is_lp)2505 static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
2506 			      const struct intel_plane_state *plane_state,
2507 			      u32 mem_value, bool is_lp)
2508 {
2509 	u32 method1, method2;
2510 	int cpp;
2511 
2512 	if (mem_value == 0)
2513 		return U32_MAX;
2514 
2515 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2516 		return 0;
2517 
2518 	cpp = plane_state->base.fb->format->cpp[0];
2519 
2520 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2521 
2522 	if (!is_lp)
2523 		return method1;
2524 
2525 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2526 				 crtc_state->base.adjusted_mode.crtc_htotal,
2527 				 drm_rect_width(&plane_state->base.dst),
2528 				 cpp, mem_value);
2529 
2530 	return min(method1, method2);
2531 }
2532 
2533 /*
2534  * For both WM_PIPE and WM_LP.
2535  * mem_value must be in 0.1us units.
2536  */
ilk_compute_spr_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2537 static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
2538 			      const struct intel_plane_state *plane_state,
2539 			      u32 mem_value)
2540 {
2541 	u32 method1, method2;
2542 	int cpp;
2543 
2544 	if (mem_value == 0)
2545 		return U32_MAX;
2546 
2547 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2548 		return 0;
2549 
2550 	cpp = plane_state->base.fb->format->cpp[0];
2551 
2552 	method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
2553 	method2 = ilk_wm_method2(crtc_state->pixel_rate,
2554 				 crtc_state->base.adjusted_mode.crtc_htotal,
2555 				 drm_rect_width(&plane_state->base.dst),
2556 				 cpp, mem_value);
2557 	return min(method1, method2);
2558 }
2559 
2560 /*
2561  * For both WM_PIPE and WM_LP.
2562  * mem_value must be in 0.1us units.
2563  */
ilk_compute_cur_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 mem_value)2564 static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
2565 			      const struct intel_plane_state *plane_state,
2566 			      u32 mem_value)
2567 {
2568 	int cpp;
2569 
2570 	if (mem_value == 0)
2571 		return U32_MAX;
2572 
2573 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2574 		return 0;
2575 
2576 	cpp = plane_state->base.fb->format->cpp[0];
2577 
2578 	return ilk_wm_method2(crtc_state->pixel_rate,
2579 			      crtc_state->base.adjusted_mode.crtc_htotal,
2580 			      plane_state->base.crtc_w, cpp, mem_value);
2581 }
2582 
2583 /* Only for WM_LP. */
ilk_compute_fbc_wm(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,u32 pri_val)2584 static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
2585 			      const struct intel_plane_state *plane_state,
2586 			      u32 pri_val)
2587 {
2588 	int cpp;
2589 
2590 	if (!intel_wm_plane_visible(crtc_state, plane_state))
2591 		return 0;
2592 
2593 	cpp = plane_state->base.fb->format->cpp[0];
2594 
2595 	return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->base.dst), cpp);
2596 }
2597 
2598 static unsigned int
ilk_display_fifo_size(const struct drm_i915_private * dev_priv)2599 ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
2600 {
2601 	if (INTEL_GEN(dev_priv) >= 8)
2602 		return 3072;
2603 	else if (INTEL_GEN(dev_priv) >= 7)
2604 		return 768;
2605 	else
2606 		return 512;
2607 }
2608 
2609 static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private * dev_priv,int level,bool is_sprite)2610 ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
2611 		     int level, bool is_sprite)
2612 {
2613 	if (INTEL_GEN(dev_priv) >= 8)
2614 		/* BDW primary/sprite plane watermarks */
2615 		return level == 0 ? 255 : 2047;
2616 	else if (INTEL_GEN(dev_priv) >= 7)
2617 		/* IVB/HSW primary/sprite plane watermarks */
2618 		return level == 0 ? 127 : 1023;
2619 	else if (!is_sprite)
2620 		/* ILK/SNB primary plane watermarks */
2621 		return level == 0 ? 127 : 511;
2622 	else
2623 		/* ILK/SNB sprite plane watermarks */
2624 		return level == 0 ? 63 : 255;
2625 }
2626 
2627 static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private * dev_priv,int level)2628 ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
2629 {
2630 	if (INTEL_GEN(dev_priv) >= 7)
2631 		return level == 0 ? 63 : 255;
2632 	else
2633 		return level == 0 ? 31 : 63;
2634 }
2635 
ilk_fbc_wm_reg_max(const struct drm_i915_private * dev_priv)2636 static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
2637 {
2638 	if (INTEL_GEN(dev_priv) >= 8)
2639 		return 31;
2640 	else
2641 		return 15;
2642 }
2643 
2644 /* Calculate the maximum primary/sprite plane watermark */
ilk_plane_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,bool is_sprite)2645 static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
2646 				     int level,
2647 				     const struct intel_wm_config *config,
2648 				     enum intel_ddb_partitioning ddb_partitioning,
2649 				     bool is_sprite)
2650 {
2651 	unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
2652 
2653 	/* if sprites aren't enabled, sprites get nothing */
2654 	if (is_sprite && !config->sprites_enabled)
2655 		return 0;
2656 
2657 	/* HSW allows LP1+ watermarks even with multiple pipes */
2658 	if (level == 0 || config->num_pipes_active > 1) {
2659 		fifo_size /= INTEL_INFO(dev_priv)->num_pipes;
2660 
2661 		/*
2662 		 * For some reason the non self refresh
2663 		 * FIFO size is only half of the self
2664 		 * refresh FIFO size on ILK/SNB.
2665 		 */
2666 		if (INTEL_GEN(dev_priv) <= 6)
2667 			fifo_size /= 2;
2668 	}
2669 
2670 	if (config->sprites_enabled) {
2671 		/* level 0 is always calculated with 1:1 split */
2672 		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
2673 			if (is_sprite)
2674 				fifo_size *= 5;
2675 			fifo_size /= 6;
2676 		} else {
2677 			fifo_size /= 2;
2678 		}
2679 	}
2680 
2681 	/* clamp to max that the registers can hold */
2682 	return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
2683 }
2684 
2685 /* Calculate the maximum cursor plane watermark */
ilk_cursor_wm_max(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config)2686 static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
2687 				      int level,
2688 				      const struct intel_wm_config *config)
2689 {
2690 	/* HSW LP1+ watermarks w/ multiple pipes */
2691 	if (level > 0 && config->num_pipes_active > 1)
2692 		return 64;
2693 
2694 	/* otherwise just report max that registers can hold */
2695 	return ilk_cursor_wm_reg_max(dev_priv, level);
2696 }
2697 
ilk_compute_wm_maximums(const struct drm_i915_private * dev_priv,int level,const struct intel_wm_config * config,enum intel_ddb_partitioning ddb_partitioning,struct ilk_wm_maximums * max)2698 static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
2699 				    int level,
2700 				    const struct intel_wm_config *config,
2701 				    enum intel_ddb_partitioning ddb_partitioning,
2702 				    struct ilk_wm_maximums *max)
2703 {
2704 	max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
2705 	max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
2706 	max->cur = ilk_cursor_wm_max(dev_priv, level, config);
2707 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2708 }
2709 
ilk_compute_wm_reg_maximums(const struct drm_i915_private * dev_priv,int level,struct ilk_wm_maximums * max)2710 static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
2711 					int level,
2712 					struct ilk_wm_maximums *max)
2713 {
2714 	max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
2715 	max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
2716 	max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
2717 	max->fbc = ilk_fbc_wm_reg_max(dev_priv);
2718 }
2719 
ilk_validate_wm_level(int level,const struct ilk_wm_maximums * max,struct intel_wm_level * result)2720 static bool ilk_validate_wm_level(int level,
2721 				  const struct ilk_wm_maximums *max,
2722 				  struct intel_wm_level *result)
2723 {
2724 	bool ret;
2725 
2726 	/* already determined to be invalid? */
2727 	if (!result->enable)
2728 		return false;
2729 
2730 	result->enable = result->pri_val <= max->pri &&
2731 			 result->spr_val <= max->spr &&
2732 			 result->cur_val <= max->cur;
2733 
2734 	ret = result->enable;
2735 
2736 	/*
2737 	 * HACK until we can pre-compute everything,
2738 	 * and thus fail gracefully if LP0 watermarks
2739 	 * are exceeded...
2740 	 */
2741 	if (level == 0 && !result->enable) {
2742 		if (result->pri_val > max->pri)
2743 			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
2744 				      level, result->pri_val, max->pri);
2745 		if (result->spr_val > max->spr)
2746 			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2747 				      level, result->spr_val, max->spr);
2748 		if (result->cur_val > max->cur)
2749 			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2750 				      level, result->cur_val, max->cur);
2751 
2752 		result->pri_val = min_t(u32, result->pri_val, max->pri);
2753 		result->spr_val = min_t(u32, result->spr_val, max->spr);
2754 		result->cur_val = min_t(u32, result->cur_val, max->cur);
2755 		result->enable = true;
2756 	}
2757 
2758 	return ret;
2759 }
2760 
ilk_compute_wm_level(const struct drm_i915_private * dev_priv,const struct intel_crtc * intel_crtc,int level,struct intel_crtc_state * crtc_state,const struct intel_plane_state * pristate,const struct intel_plane_state * sprstate,const struct intel_plane_state * curstate,struct intel_wm_level * result)2761 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2762 				 const struct intel_crtc *intel_crtc,
2763 				 int level,
2764 				 struct intel_crtc_state *crtc_state,
2765 				 const struct intel_plane_state *pristate,
2766 				 const struct intel_plane_state *sprstate,
2767 				 const struct intel_plane_state *curstate,
2768 				 struct intel_wm_level *result)
2769 {
2770 	u16 pri_latency = dev_priv->wm.pri_latency[level];
2771 	u16 spr_latency = dev_priv->wm.spr_latency[level];
2772 	u16 cur_latency = dev_priv->wm.cur_latency[level];
2773 
2774 	/* WM1+ latency values stored in 0.5us units */
2775 	if (level > 0) {
2776 		pri_latency *= 5;
2777 		spr_latency *= 5;
2778 		cur_latency *= 5;
2779 	}
2780 
2781 	if (pristate) {
2782 		result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
2783 						     pri_latency, level);
2784 		result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
2785 	}
2786 
2787 	if (sprstate)
2788 		result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
2789 
2790 	if (curstate)
2791 		result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
2792 
2793 	result->enable = true;
2794 }
2795 
2796 static u32
hsw_compute_linetime_wm(const struct intel_crtc_state * crtc_state)2797 hsw_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
2798 {
2799 	const struct intel_atomic_state *intel_state =
2800 		to_intel_atomic_state(crtc_state->base.state);
2801 	const struct drm_display_mode *adjusted_mode =
2802 		&crtc_state->base.adjusted_mode;
2803 	u32 linetime, ips_linetime;
2804 
2805 	if (!crtc_state->base.active)
2806 		return 0;
2807 	if (WARN_ON(adjusted_mode->crtc_clock == 0))
2808 		return 0;
2809 	if (WARN_ON(intel_state->cdclk.logical.cdclk == 0))
2810 		return 0;
2811 
2812 	/* The WM are computed with base on how long it takes to fill a single
2813 	 * row at the given clock rate, multiplied by 8.
2814 	 * */
2815 	linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2816 				     adjusted_mode->crtc_clock);
2817 	ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2818 					 intel_state->cdclk.logical.cdclk);
2819 
2820 	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2821 	       PIPE_WM_LINETIME_TIME(linetime);
2822 }
2823 
intel_read_wm_latency(struct drm_i915_private * dev_priv,u16 wm[8])2824 static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
2825 				  u16 wm[8])
2826 {
2827 	struct intel_uncore *uncore = &dev_priv->uncore;
2828 
2829 	if (INTEL_GEN(dev_priv) >= 9) {
2830 		u32 val;
2831 		int ret, i;
2832 		int level, max_level = ilk_wm_max_level(dev_priv);
2833 
2834 		/* read the first set of memory latencies[0:3] */
2835 		val = 0; /* data0 to be programmed to 0 for first set */
2836 		ret = sandybridge_pcode_read(dev_priv,
2837 					     GEN9_PCODE_READ_MEM_LATENCY,
2838 					     &val, NULL);
2839 
2840 		if (ret) {
2841 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2842 			return;
2843 		}
2844 
2845 		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2846 		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2847 				GEN9_MEM_LATENCY_LEVEL_MASK;
2848 		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2849 				GEN9_MEM_LATENCY_LEVEL_MASK;
2850 		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2851 				GEN9_MEM_LATENCY_LEVEL_MASK;
2852 
2853 		/* read the second set of memory latencies[4:7] */
2854 		val = 1; /* data0 to be programmed to 1 for second set */
2855 		ret = sandybridge_pcode_read(dev_priv,
2856 					     GEN9_PCODE_READ_MEM_LATENCY,
2857 					     &val, NULL);
2858 		if (ret) {
2859 			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2860 			return;
2861 		}
2862 
2863 		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2864 		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2865 				GEN9_MEM_LATENCY_LEVEL_MASK;
2866 		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2867 				GEN9_MEM_LATENCY_LEVEL_MASK;
2868 		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2869 				GEN9_MEM_LATENCY_LEVEL_MASK;
2870 
2871 		/*
2872 		 * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2873 		 * need to be disabled. We make sure to sanitize the values out
2874 		 * of the punit to satisfy this requirement.
2875 		 */
2876 		for (level = 1; level <= max_level; level++) {
2877 			if (wm[level] == 0) {
2878 				for (i = level + 1; i <= max_level; i++)
2879 					wm[i] = 0;
2880 				break;
2881 			}
2882 		}
2883 
2884 		/*
2885 		 * WaWmMemoryReadLatency:skl+,glk
2886 		 *
2887 		 * punit doesn't take into account the read latency so we need
2888 		 * to add 2us to the various latency levels we retrieve from the
2889 		 * punit when level 0 response data us 0us.
2890 		 */
2891 		if (wm[0] == 0) {
2892 			wm[0] += 2;
2893 			for (level = 1; level <= max_level; level++) {
2894 				if (wm[level] == 0)
2895 					break;
2896 				wm[level] += 2;
2897 			}
2898 		}
2899 
2900 		/*
2901 		 * WA Level-0 adjustment for 16GB DIMMs: SKL+
2902 		 * If we could not get dimm info enable this WA to prevent from
2903 		 * any underrun. If not able to get Dimm info assume 16GB dimm
2904 		 * to avoid any underrun.
2905 		 */
2906 		if (dev_priv->dram_info.is_16gb_dimm)
2907 			wm[0] += 1;
2908 
2909 	} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2910 		u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
2911 
2912 		wm[0] = (sskpd >> 56) & 0xFF;
2913 		if (wm[0] == 0)
2914 			wm[0] = sskpd & 0xF;
2915 		wm[1] = (sskpd >> 4) & 0xFF;
2916 		wm[2] = (sskpd >> 12) & 0xFF;
2917 		wm[3] = (sskpd >> 20) & 0x1FF;
2918 		wm[4] = (sskpd >> 32) & 0x1FF;
2919 	} else if (INTEL_GEN(dev_priv) >= 6) {
2920 		u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
2921 
2922 		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2923 		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2924 		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2925 		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2926 	} else if (INTEL_GEN(dev_priv) >= 5) {
2927 		u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
2928 
2929 		/* ILK primary LP0 latency is 700 ns */
2930 		wm[0] = 7;
2931 		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2932 		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2933 	} else {
2934 		MISSING_CASE(INTEL_DEVID(dev_priv));
2935 	}
2936 }
2937 
intel_fixup_spr_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2938 static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
2939 				       u16 wm[5])
2940 {
2941 	/* ILK sprite LP0 latency is 1300 ns */
2942 	if (IS_GEN(dev_priv, 5))
2943 		wm[0] = 13;
2944 }
2945 
intel_fixup_cur_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5])2946 static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
2947 				       u16 wm[5])
2948 {
2949 	/* ILK cursor LP0 latency is 1300 ns */
2950 	if (IS_GEN(dev_priv, 5))
2951 		wm[0] = 13;
2952 }
2953 
ilk_wm_max_level(const struct drm_i915_private * dev_priv)2954 int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
2955 {
2956 	/* how many WM levels are we expecting */
2957 	if (INTEL_GEN(dev_priv) >= 9)
2958 		return 7;
2959 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
2960 		return 4;
2961 	else if (INTEL_GEN(dev_priv) >= 6)
2962 		return 3;
2963 	else
2964 		return 2;
2965 }
2966 
intel_print_wm_latency(struct drm_i915_private * dev_priv,const char * name,const u16 wm[8])2967 static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
2968 				   const char *name,
2969 				   const u16 wm[8])
2970 {
2971 	int level, max_level = ilk_wm_max_level(dev_priv);
2972 
2973 	for (level = 0; level <= max_level; level++) {
2974 		unsigned int latency = wm[level];
2975 
2976 		if (latency == 0) {
2977 			DRM_DEBUG_KMS("%s WM%d latency not provided\n",
2978 				      name, level);
2979 			continue;
2980 		}
2981 
2982 		/*
2983 		 * - latencies are in us on gen9.
2984 		 * - before then, WM1+ latency values are in 0.5us units
2985 		 */
2986 		if (INTEL_GEN(dev_priv) >= 9)
2987 			latency *= 10;
2988 		else if (level > 0)
2989 			latency *= 5;
2990 
2991 		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2992 			      name, level, wm[level],
2993 			      latency / 10, latency % 10);
2994 	}
2995 }
2996 
ilk_increase_wm_latency(struct drm_i915_private * dev_priv,u16 wm[5],u16 min)2997 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2998 				    u16 wm[5], u16 min)
2999 {
3000 	int level, max_level = ilk_wm_max_level(dev_priv);
3001 
3002 	if (wm[0] >= min)
3003 		return false;
3004 
3005 	wm[0] = max(wm[0], min);
3006 	for (level = 1; level <= max_level; level++)
3007 		wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
3008 
3009 	return true;
3010 }
3011 
snb_wm_latency_quirk(struct drm_i915_private * dev_priv)3012 static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
3013 {
3014 	bool changed;
3015 
3016 	/*
3017 	 * The BIOS provided WM memory latency values are often
3018 	 * inadequate for high resolution displays. Adjust them.
3019 	 */
3020 	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
3021 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
3022 		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
3023 
3024 	if (!changed)
3025 		return;
3026 
3027 	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
3028 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3029 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3030 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3031 }
3032 
snb_wm_lp3_irq_quirk(struct drm_i915_private * dev_priv)3033 static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
3034 {
3035 	/*
3036 	 * On some SNB machines (Thinkpad X220 Tablet at least)
3037 	 * LP3 usage can cause vblank interrupts to be lost.
3038 	 * The DEIIR bit will go high but it looks like the CPU
3039 	 * never gets interrupted.
3040 	 *
3041 	 * It's not clear whether other interrupt source could
3042 	 * be affected or if this is somehow limited to vblank
3043 	 * interrupts only. To play it safe we disable LP3
3044 	 * watermarks entirely.
3045 	 */
3046 	if (dev_priv->wm.pri_latency[3] == 0 &&
3047 	    dev_priv->wm.spr_latency[3] == 0 &&
3048 	    dev_priv->wm.cur_latency[3] == 0)
3049 		return;
3050 
3051 	dev_priv->wm.pri_latency[3] = 0;
3052 	dev_priv->wm.spr_latency[3] = 0;
3053 	dev_priv->wm.cur_latency[3] = 0;
3054 
3055 	DRM_DEBUG_KMS("LP3 watermarks disabled due to potential for lost interrupts\n");
3056 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3057 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3058 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3059 }
3060 
ilk_setup_wm_latency(struct drm_i915_private * dev_priv)3061 static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
3062 {
3063 	intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
3064 
3065 	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
3066 	       sizeof(dev_priv->wm.pri_latency));
3067 	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
3068 	       sizeof(dev_priv->wm.pri_latency));
3069 
3070 	intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
3071 	intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
3072 
3073 	intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
3074 	intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
3075 	intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
3076 
3077 	if (IS_GEN(dev_priv, 6)) {
3078 		snb_wm_latency_quirk(dev_priv);
3079 		snb_wm_lp3_irq_quirk(dev_priv);
3080 	}
3081 }
3082 
skl_setup_wm_latency(struct drm_i915_private * dev_priv)3083 static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
3084 {
3085 	intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
3086 	intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
3087 }
3088 
ilk_validate_pipe_wm(const struct drm_i915_private * dev_priv,struct intel_pipe_wm * pipe_wm)3089 static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
3090 				 struct intel_pipe_wm *pipe_wm)
3091 {
3092 	/* LP0 watermark maximums depend on this pipe alone */
3093 	const struct intel_wm_config config = {
3094 		.num_pipes_active = 1,
3095 		.sprites_enabled = pipe_wm->sprites_enabled,
3096 		.sprites_scaled = pipe_wm->sprites_scaled,
3097 	};
3098 	struct ilk_wm_maximums max;
3099 
3100 	/* LP0 watermarks always use 1/2 DDB partitioning */
3101 	ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
3102 
3103 	/* At least LP0 must be valid */
3104 	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
3105 		DRM_DEBUG_KMS("LP0 watermark invalid\n");
3106 		return false;
3107 	}
3108 
3109 	return true;
3110 }
3111 
3112 /* Compute new watermarks for the pipe */
ilk_compute_pipe_wm(struct intel_crtc_state * crtc_state)3113 static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
3114 {
3115 	struct drm_atomic_state *state = crtc_state->base.state;
3116 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3117 	struct intel_pipe_wm *pipe_wm;
3118 	struct drm_device *dev = state->dev;
3119 	const struct drm_i915_private *dev_priv = to_i915(dev);
3120 	struct drm_plane *plane;
3121 	const struct drm_plane_state *plane_state;
3122 	const struct intel_plane_state *pristate = NULL;
3123 	const struct intel_plane_state *sprstate = NULL;
3124 	const struct intel_plane_state *curstate = NULL;
3125 	int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
3126 	struct ilk_wm_maximums max;
3127 
3128 	pipe_wm = &crtc_state->wm.ilk.optimal;
3129 
3130 	drm_atomic_crtc_state_for_each_plane_state(plane, plane_state, &crtc_state->base) {
3131 		const struct intel_plane_state *ps = to_intel_plane_state(plane_state);
3132 
3133 		if (plane->type == DRM_PLANE_TYPE_PRIMARY)
3134 			pristate = ps;
3135 		else if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3136 			sprstate = ps;
3137 		else if (plane->type == DRM_PLANE_TYPE_CURSOR)
3138 			curstate = ps;
3139 	}
3140 
3141 	pipe_wm->pipe_enabled = crtc_state->base.active;
3142 	if (sprstate) {
3143 		pipe_wm->sprites_enabled = sprstate->base.visible;
3144 		pipe_wm->sprites_scaled = sprstate->base.visible &&
3145 			(drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
3146 			 drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
3147 	}
3148 
3149 	usable_level = max_level;
3150 
3151 	/* ILK/SNB: LP2+ watermarks only w/o sprites */
3152 	if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
3153 		usable_level = 1;
3154 
3155 	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
3156 	if (pipe_wm->sprites_scaled)
3157 		usable_level = 0;
3158 
3159 	memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
3160 	ilk_compute_wm_level(dev_priv, intel_crtc, 0, crtc_state,
3161 			     pristate, sprstate, curstate, &pipe_wm->wm[0]);
3162 
3163 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3164 		pipe_wm->linetime = hsw_compute_linetime_wm(crtc_state);
3165 
3166 	if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
3167 		return -EINVAL;
3168 
3169 	ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
3170 
3171 	for (level = 1; level <= usable_level; level++) {
3172 		struct intel_wm_level *wm = &pipe_wm->wm[level];
3173 
3174 		ilk_compute_wm_level(dev_priv, intel_crtc, level, crtc_state,
3175 				     pristate, sprstate, curstate, wm);
3176 
3177 		/*
3178 		 * Disable any watermark level that exceeds the
3179 		 * register maximums since such watermarks are
3180 		 * always invalid.
3181 		 */
3182 		if (!ilk_validate_wm_level(level, &max, wm)) {
3183 			memset(wm, 0, sizeof(*wm));
3184 			break;
3185 		}
3186 	}
3187 
3188 	return 0;
3189 }
3190 
3191 /*
3192  * Build a set of 'intermediate' watermark values that satisfy both the old
3193  * state and the new state.  These can be programmed to the hardware
3194  * immediately.
3195  */
ilk_compute_intermediate_wm(struct intel_crtc_state * newstate)3196 static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
3197 {
3198 	struct intel_crtc *intel_crtc = to_intel_crtc(newstate->base.crtc);
3199 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3200 	struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
3201 	struct intel_atomic_state *intel_state =
3202 		to_intel_atomic_state(newstate->base.state);
3203 	const struct intel_crtc_state *oldstate =
3204 		intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
3205 	const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
3206 	int level, max_level = ilk_wm_max_level(dev_priv);
3207 
3208 	/*
3209 	 * Start with the final, target watermarks, then combine with the
3210 	 * currently active watermarks to get values that are safe both before
3211 	 * and after the vblank.
3212 	 */
3213 	*a = newstate->wm.ilk.optimal;
3214 	if (!newstate->base.active || drm_atomic_crtc_needs_modeset(&newstate->base) ||
3215 	    intel_state->skip_intermediate_wm)
3216 		return 0;
3217 
3218 	a->pipe_enabled |= b->pipe_enabled;
3219 	a->sprites_enabled |= b->sprites_enabled;
3220 	a->sprites_scaled |= b->sprites_scaled;
3221 
3222 	for (level = 0; level <= max_level; level++) {
3223 		struct intel_wm_level *a_wm = &a->wm[level];
3224 		const struct intel_wm_level *b_wm = &b->wm[level];
3225 
3226 		a_wm->enable &= b_wm->enable;
3227 		a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
3228 		a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
3229 		a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
3230 		a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
3231 	}
3232 
3233 	/*
3234 	 * We need to make sure that these merged watermark values are
3235 	 * actually a valid configuration themselves.  If they're not,
3236 	 * there's no safe way to transition from the old state to
3237 	 * the new state, so we need to fail the atomic transaction.
3238 	 */
3239 	if (!ilk_validate_pipe_wm(dev_priv, a))
3240 		return -EINVAL;
3241 
3242 	/*
3243 	 * If our intermediate WM are identical to the final WM, then we can
3244 	 * omit the post-vblank programming; only update if it's different.
3245 	 */
3246 	if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
3247 		newstate->wm.need_postvbl_update = true;
3248 
3249 	return 0;
3250 }
3251 
3252 /*
3253  * Merge the watermarks from all active pipes for a specific level.
3254  */
ilk_merge_wm_level(struct drm_i915_private * dev_priv,int level,struct intel_wm_level * ret_wm)3255 static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
3256 			       int level,
3257 			       struct intel_wm_level *ret_wm)
3258 {
3259 	const struct intel_crtc *intel_crtc;
3260 
3261 	ret_wm->enable = true;
3262 
3263 	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3264 		const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
3265 		const struct intel_wm_level *wm = &active->wm[level];
3266 
3267 		if (!active->pipe_enabled)
3268 			continue;
3269 
3270 		/*
3271 		 * The watermark values may have been used in the past,
3272 		 * so we must maintain them in the registers for some
3273 		 * time even if the level is now disabled.
3274 		 */
3275 		if (!wm->enable)
3276 			ret_wm->enable = false;
3277 
3278 		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
3279 		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
3280 		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
3281 		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
3282 	}
3283 }
3284 
3285 /*
3286  * Merge all low power watermarks for all active pipes.
3287  */
ilk_wm_merge(struct drm_i915_private * dev_priv,const struct intel_wm_config * config,const struct ilk_wm_maximums * max,struct intel_pipe_wm * merged)3288 static void ilk_wm_merge(struct drm_i915_private *dev_priv,
3289 			 const struct intel_wm_config *config,
3290 			 const struct ilk_wm_maximums *max,
3291 			 struct intel_pipe_wm *merged)
3292 {
3293 	int level, max_level = ilk_wm_max_level(dev_priv);
3294 	int last_enabled_level = max_level;
3295 
3296 	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
3297 	if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
3298 	    config->num_pipes_active > 1)
3299 		last_enabled_level = 0;
3300 
3301 	/* ILK: FBC WM must be disabled always */
3302 	merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
3303 
3304 	/* merge each WM1+ level */
3305 	for (level = 1; level <= max_level; level++) {
3306 		struct intel_wm_level *wm = &merged->wm[level];
3307 
3308 		ilk_merge_wm_level(dev_priv, level, wm);
3309 
3310 		if (level > last_enabled_level)
3311 			wm->enable = false;
3312 		else if (!ilk_validate_wm_level(level, max, wm))
3313 			/* make sure all following levels get disabled */
3314 			last_enabled_level = level - 1;
3315 
3316 		/*
3317 		 * The spec says it is preferred to disable
3318 		 * FBC WMs instead of disabling a WM level.
3319 		 */
3320 		if (wm->fbc_val > max->fbc) {
3321 			if (wm->enable)
3322 				merged->fbc_wm_enabled = false;
3323 			wm->fbc_val = 0;
3324 		}
3325 	}
3326 
3327 	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
3328 	/*
3329 	 * FIXME this is racy. FBC might get enabled later.
3330 	 * What we should check here is whether FBC can be
3331 	 * enabled sometime later.
3332 	 */
3333 	if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
3334 	    intel_fbc_is_active(dev_priv)) {
3335 		for (level = 2; level <= max_level; level++) {
3336 			struct intel_wm_level *wm = &merged->wm[level];
3337 
3338 			wm->enable = false;
3339 		}
3340 	}
3341 }
3342 
ilk_wm_lp_to_level(int wm_lp,const struct intel_pipe_wm * pipe_wm)3343 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
3344 {
3345 	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
3346 	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
3347 }
3348 
3349 /* The value we need to program into the WM_LPx latency field */
ilk_wm_lp_latency(struct drm_i915_private * dev_priv,int level)3350 static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
3351 				      int level)
3352 {
3353 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
3354 		return 2 * level;
3355 	else
3356 		return dev_priv->wm.pri_latency[level];
3357 }
3358 
ilk_compute_wm_results(struct drm_i915_private * dev_priv,const struct intel_pipe_wm * merged,enum intel_ddb_partitioning partitioning,struct ilk_wm_values * results)3359 static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
3360 				   const struct intel_pipe_wm *merged,
3361 				   enum intel_ddb_partitioning partitioning,
3362 				   struct ilk_wm_values *results)
3363 {
3364 	struct intel_crtc *intel_crtc;
3365 	int level, wm_lp;
3366 
3367 	results->enable_fbc_wm = merged->fbc_wm_enabled;
3368 	results->partitioning = partitioning;
3369 
3370 	/* LP1+ register values */
3371 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3372 		const struct intel_wm_level *r;
3373 
3374 		level = ilk_wm_lp_to_level(wm_lp, merged);
3375 
3376 		r = &merged->wm[level];
3377 
3378 		/*
3379 		 * Maintain the watermark values even if the level is
3380 		 * disabled. Doing otherwise could cause underruns.
3381 		 */
3382 		results->wm_lp[wm_lp - 1] =
3383 			(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
3384 			(r->pri_val << WM1_LP_SR_SHIFT) |
3385 			r->cur_val;
3386 
3387 		if (r->enable)
3388 			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
3389 
3390 		if (INTEL_GEN(dev_priv) >= 8)
3391 			results->wm_lp[wm_lp - 1] |=
3392 				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
3393 		else
3394 			results->wm_lp[wm_lp - 1] |=
3395 				r->fbc_val << WM1_LP_FBC_SHIFT;
3396 
3397 		/*
3398 		 * Always set WM1S_LP_EN when spr_val != 0, even if the
3399 		 * level is disabled. Doing otherwise could cause underruns.
3400 		 */
3401 		if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
3402 			WARN_ON(wm_lp != 1);
3403 			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
3404 		} else
3405 			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
3406 	}
3407 
3408 	/* LP0 register values */
3409 	for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
3410 		enum pipe pipe = intel_crtc->pipe;
3411 		const struct intel_wm_level *r =
3412 			&intel_crtc->wm.active.ilk.wm[0];
3413 
3414 		if (WARN_ON(!r->enable))
3415 			continue;
3416 
3417 		results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
3418 
3419 		results->wm_pipe[pipe] =
3420 			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
3421 			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
3422 			r->cur_val;
3423 	}
3424 }
3425 
3426 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
3427  * case both are at the same level. Prefer r1 in case they're the same. */
3428 static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private * dev_priv,struct intel_pipe_wm * r1,struct intel_pipe_wm * r2)3429 ilk_find_best_result(struct drm_i915_private *dev_priv,
3430 		     struct intel_pipe_wm *r1,
3431 		     struct intel_pipe_wm *r2)
3432 {
3433 	int level, max_level = ilk_wm_max_level(dev_priv);
3434 	int level1 = 0, level2 = 0;
3435 
3436 	for (level = 1; level <= max_level; level++) {
3437 		if (r1->wm[level].enable)
3438 			level1 = level;
3439 		if (r2->wm[level].enable)
3440 			level2 = level;
3441 	}
3442 
3443 	if (level1 == level2) {
3444 		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
3445 			return r2;
3446 		else
3447 			return r1;
3448 	} else if (level1 > level2) {
3449 		return r1;
3450 	} else {
3451 		return r2;
3452 	}
3453 }
3454 
3455 /* dirty bits used to track which watermarks need changes */
3456 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
3457 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
3458 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
3459 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
3460 #define WM_DIRTY_FBC (1 << 24)
3461 #define WM_DIRTY_DDB (1 << 25)
3462 
ilk_compute_wm_dirty(struct drm_i915_private * dev_priv,const struct ilk_wm_values * old,const struct ilk_wm_values * new)3463 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
3464 					 const struct ilk_wm_values *old,
3465 					 const struct ilk_wm_values *new)
3466 {
3467 	unsigned int dirty = 0;
3468 	enum pipe pipe;
3469 	int wm_lp;
3470 
3471 	for_each_pipe(dev_priv, pipe) {
3472 		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
3473 			dirty |= WM_DIRTY_LINETIME(pipe);
3474 			/* Must disable LP1+ watermarks too */
3475 			dirty |= WM_DIRTY_LP_ALL;
3476 		}
3477 
3478 		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
3479 			dirty |= WM_DIRTY_PIPE(pipe);
3480 			/* Must disable LP1+ watermarks too */
3481 			dirty |= WM_DIRTY_LP_ALL;
3482 		}
3483 	}
3484 
3485 	if (old->enable_fbc_wm != new->enable_fbc_wm) {
3486 		dirty |= WM_DIRTY_FBC;
3487 		/* Must disable LP1+ watermarks too */
3488 		dirty |= WM_DIRTY_LP_ALL;
3489 	}
3490 
3491 	if (old->partitioning != new->partitioning) {
3492 		dirty |= WM_DIRTY_DDB;
3493 		/* Must disable LP1+ watermarks too */
3494 		dirty |= WM_DIRTY_LP_ALL;
3495 	}
3496 
3497 	/* LP1+ watermarks already deemed dirty, no need to continue */
3498 	if (dirty & WM_DIRTY_LP_ALL)
3499 		return dirty;
3500 
3501 	/* Find the lowest numbered LP1+ watermark in need of an update... */
3502 	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
3503 		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
3504 		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
3505 			break;
3506 	}
3507 
3508 	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
3509 	for (; wm_lp <= 3; wm_lp++)
3510 		dirty |= WM_DIRTY_LP(wm_lp);
3511 
3512 	return dirty;
3513 }
3514 
_ilk_disable_lp_wm(struct drm_i915_private * dev_priv,unsigned int dirty)3515 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
3516 			       unsigned int dirty)
3517 {
3518 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3519 	bool changed = false;
3520 
3521 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
3522 		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
3523 		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
3524 		changed = true;
3525 	}
3526 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
3527 		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
3528 		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
3529 		changed = true;
3530 	}
3531 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
3532 		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
3533 		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
3534 		changed = true;
3535 	}
3536 
3537 	/*
3538 	 * Don't touch WM1S_LP_EN here.
3539 	 * Doing so could cause underruns.
3540 	 */
3541 
3542 	return changed;
3543 }
3544 
3545 /*
3546  * The spec says we shouldn't write when we don't need, because every write
3547  * causes WMs to be re-evaluated, expending some power.
3548  */
ilk_write_wm_values(struct drm_i915_private * dev_priv,struct ilk_wm_values * results)3549 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
3550 				struct ilk_wm_values *results)
3551 {
3552 	struct ilk_wm_values *previous = &dev_priv->wm.hw;
3553 	unsigned int dirty;
3554 	u32 val;
3555 
3556 	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
3557 	if (!dirty)
3558 		return;
3559 
3560 	_ilk_disable_lp_wm(dev_priv, dirty);
3561 
3562 	if (dirty & WM_DIRTY_PIPE(PIPE_A))
3563 		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
3564 	if (dirty & WM_DIRTY_PIPE(PIPE_B))
3565 		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
3566 	if (dirty & WM_DIRTY_PIPE(PIPE_C))
3567 		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
3568 
3569 	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
3570 		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
3571 	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
3572 		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
3573 	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
3574 		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
3575 
3576 	if (dirty & WM_DIRTY_DDB) {
3577 		if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3578 			val = I915_READ(WM_MISC);
3579 			if (results->partitioning == INTEL_DDB_PART_1_2)
3580 				val &= ~WM_MISC_DATA_PARTITION_5_6;
3581 			else
3582 				val |= WM_MISC_DATA_PARTITION_5_6;
3583 			I915_WRITE(WM_MISC, val);
3584 		} else {
3585 			val = I915_READ(DISP_ARB_CTL2);
3586 			if (results->partitioning == INTEL_DDB_PART_1_2)
3587 				val &= ~DISP_DATA_PARTITION_5_6;
3588 			else
3589 				val |= DISP_DATA_PARTITION_5_6;
3590 			I915_WRITE(DISP_ARB_CTL2, val);
3591 		}
3592 	}
3593 
3594 	if (dirty & WM_DIRTY_FBC) {
3595 		val = I915_READ(DISP_ARB_CTL);
3596 		if (results->enable_fbc_wm)
3597 			val &= ~DISP_FBC_WM_DIS;
3598 		else
3599 			val |= DISP_FBC_WM_DIS;
3600 		I915_WRITE(DISP_ARB_CTL, val);
3601 	}
3602 
3603 	if (dirty & WM_DIRTY_LP(1) &&
3604 	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
3605 		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
3606 
3607 	if (INTEL_GEN(dev_priv) >= 7) {
3608 		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
3609 			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
3610 		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
3611 			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
3612 	}
3613 
3614 	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
3615 		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
3616 	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
3617 		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
3618 	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
3619 		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
3620 
3621 	dev_priv->wm.hw = *results;
3622 }
3623 
ilk_disable_lp_wm(struct drm_device * dev)3624 bool ilk_disable_lp_wm(struct drm_device *dev)
3625 {
3626 	struct drm_i915_private *dev_priv = to_i915(dev);
3627 
3628 	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
3629 }
3630 
intel_enabled_dbuf_slices_num(struct drm_i915_private * dev_priv)3631 static u8 intel_enabled_dbuf_slices_num(struct drm_i915_private *dev_priv)
3632 {
3633 	u8 enabled_slices;
3634 
3635 	/* Slice 1 will always be enabled */
3636 	enabled_slices = 1;
3637 
3638 	/* Gen prior to GEN11 have only one DBuf slice */
3639 	if (INTEL_GEN(dev_priv) < 11)
3640 		return enabled_slices;
3641 
3642 	/*
3643 	 * FIXME: for now we'll only ever use 1 slice; pretend that we have
3644 	 * only that 1 slice enabled until we have a proper way for on-demand
3645 	 * toggling of the second slice.
3646 	 */
3647 	if (0 && I915_READ(DBUF_CTL_S2) & DBUF_POWER_STATE)
3648 		enabled_slices++;
3649 
3650 	return enabled_slices;
3651 }
3652 
3653 /*
3654  * FIXME: We still don't have the proper code detect if we need to apply the WA,
3655  * so assume we'll always need it in order to avoid underruns.
3656  */
skl_needs_memory_bw_wa(struct drm_i915_private * dev_priv)3657 static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
3658 {
3659 	return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
3660 }
3661 
3662 static bool
intel_has_sagv(struct drm_i915_private * dev_priv)3663 intel_has_sagv(struct drm_i915_private *dev_priv)
3664 {
3665 	return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
3666 		dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
3667 }
3668 
3669 /*
3670  * SAGV dynamically adjusts the system agent voltage and clock frequencies
3671  * depending on power and performance requirements. The display engine access
3672  * to system memory is blocked during the adjustment time. Because of the
3673  * blocking time, having this enabled can cause full system hangs and/or pipe
3674  * underruns if we don't meet all of the following requirements:
3675  *
3676  *  - <= 1 pipe enabled
3677  *  - All planes can enable watermarks for latencies >= SAGV engine block time
3678  *  - We're not using an interlaced display configuration
3679  */
3680 int
intel_enable_sagv(struct drm_i915_private * dev_priv)3681 intel_enable_sagv(struct drm_i915_private *dev_priv)
3682 {
3683 	int ret;
3684 
3685 	if (!intel_has_sagv(dev_priv))
3686 		return 0;
3687 
3688 	if (dev_priv->sagv_status == I915_SAGV_ENABLED)
3689 		return 0;
3690 
3691 	DRM_DEBUG_KMS("Enabling SAGV\n");
3692 	ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3693 				      GEN9_SAGV_ENABLE);
3694 
3695 	/* We don't need to wait for SAGV when enabling */
3696 
3697 	/*
3698 	 * Some skl systems, pre-release machines in particular,
3699 	 * don't actually have SAGV.
3700 	 */
3701 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3702 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3703 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3704 		return 0;
3705 	} else if (ret < 0) {
3706 		DRM_ERROR("Failed to enable SAGV\n");
3707 		return ret;
3708 	}
3709 
3710 	dev_priv->sagv_status = I915_SAGV_ENABLED;
3711 	return 0;
3712 }
3713 
3714 int
intel_disable_sagv(struct drm_i915_private * dev_priv)3715 intel_disable_sagv(struct drm_i915_private *dev_priv)
3716 {
3717 	int ret;
3718 
3719 	if (!intel_has_sagv(dev_priv))
3720 		return 0;
3721 
3722 	if (dev_priv->sagv_status == I915_SAGV_DISABLED)
3723 		return 0;
3724 
3725 	DRM_DEBUG_KMS("Disabling SAGV\n");
3726 	/* bspec says to keep retrying for at least 1 ms */
3727 	ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
3728 				GEN9_SAGV_DISABLE,
3729 				GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
3730 				1);
3731 	/*
3732 	 * Some skl systems, pre-release machines in particular,
3733 	 * don't actually have SAGV.
3734 	 */
3735 	if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
3736 		DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
3737 		dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
3738 		return 0;
3739 	} else if (ret < 0) {
3740 		DRM_ERROR("Failed to disable SAGV (%d)\n", ret);
3741 		return ret;
3742 	}
3743 
3744 	dev_priv->sagv_status = I915_SAGV_DISABLED;
3745 	return 0;
3746 }
3747 
intel_can_enable_sagv(struct intel_atomic_state * state)3748 bool intel_can_enable_sagv(struct intel_atomic_state *state)
3749 {
3750 	struct drm_device *dev = state->base.dev;
3751 	struct drm_i915_private *dev_priv = to_i915(dev);
3752 	struct intel_crtc *crtc;
3753 	struct intel_plane *plane;
3754 	struct intel_crtc_state *crtc_state;
3755 	enum pipe pipe;
3756 	int level, latency;
3757 	int sagv_block_time_us;
3758 
3759 	if (!intel_has_sagv(dev_priv))
3760 		return false;
3761 
3762 	if (IS_GEN(dev_priv, 9))
3763 		sagv_block_time_us = 30;
3764 	else if (IS_GEN(dev_priv, 10))
3765 		sagv_block_time_us = 20;
3766 	else
3767 		sagv_block_time_us = 10;
3768 
3769 	/*
3770 	 * If there are no active CRTCs, no additional checks need be performed
3771 	 */
3772 	if (hweight32(state->active_crtcs) == 0)
3773 		return true;
3774 
3775 	/*
3776 	 * SKL+ workaround: bspec recommends we disable SAGV when we have
3777 	 * more then one pipe enabled
3778 	 */
3779 	if (hweight32(state->active_crtcs) > 1)
3780 		return false;
3781 
3782 	/* Since we're now guaranteed to only have one active CRTC... */
3783 	pipe = ffs(state->active_crtcs) - 1;
3784 	crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
3785 	crtc_state = to_intel_crtc_state(crtc->base.state);
3786 
3787 	if (crtc->base.state->adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
3788 		return false;
3789 
3790 	for_each_intel_plane_on_crtc(dev, crtc, plane) {
3791 		struct skl_plane_wm *wm =
3792 			&crtc_state->wm.skl.optimal.planes[plane->id];
3793 
3794 		/* Skip this plane if it's not enabled */
3795 		if (!wm->wm[0].plane_en)
3796 			continue;
3797 
3798 		/* Find the highest enabled wm level for this plane */
3799 		for (level = ilk_wm_max_level(dev_priv);
3800 		     !wm->wm[level].plane_en; --level)
3801 		     { }
3802 
3803 		latency = dev_priv->wm.skl_latency[level];
3804 
3805 		if (skl_needs_memory_bw_wa(dev_priv) &&
3806 		    plane->base.state->fb->modifier ==
3807 		    I915_FORMAT_MOD_X_TILED)
3808 			latency += 15;
3809 
3810 		/*
3811 		 * If any of the planes on this pipe don't enable wm levels that
3812 		 * incur memory latencies higher than sagv_block_time_us we
3813 		 * can't enable SAGV.
3814 		 */
3815 		if (latency < sagv_block_time_us)
3816 			return false;
3817 	}
3818 
3819 	return true;
3820 }
3821 
intel_get_ddb_size(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,const u64 total_data_rate,const int num_active,struct skl_ddb_allocation * ddb)3822 static u16 intel_get_ddb_size(struct drm_i915_private *dev_priv,
3823 			      const struct intel_crtc_state *crtc_state,
3824 			      const u64 total_data_rate,
3825 			      const int num_active,
3826 			      struct skl_ddb_allocation *ddb)
3827 {
3828 	const struct drm_display_mode *adjusted_mode;
3829 	u64 total_data_bw;
3830 	u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3831 
3832 	WARN_ON(ddb_size == 0);
3833 
3834 	if (INTEL_GEN(dev_priv) < 11)
3835 		return ddb_size - 4; /* 4 blocks for bypass path allocation */
3836 
3837 	adjusted_mode = &crtc_state->base.adjusted_mode;
3838 	total_data_bw = total_data_rate * drm_mode_vrefresh(adjusted_mode);
3839 
3840 	/*
3841 	 * 12GB/s is maximum BW supported by single DBuf slice.
3842 	 *
3843 	 * FIXME dbuf slice code is broken:
3844 	 * - must wait for planes to stop using the slice before powering it off
3845 	 * - plane straddling both slices is illegal in multi-pipe scenarios
3846 	 * - should validate we stay within the hw bandwidth limits
3847 	 */
3848 	if (0 && (num_active > 1 || total_data_bw >= GBps(12))) {
3849 		ddb->enabled_slices = 2;
3850 	} else {
3851 		ddb->enabled_slices = 1;
3852 		ddb_size /= 2;
3853 	}
3854 
3855 	return ddb_size;
3856 }
3857 
3858 static void
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private * dev_priv,const struct intel_crtc_state * crtc_state,const u64 total_data_rate,struct skl_ddb_allocation * ddb,struct skl_ddb_entry * alloc,int * num_active)3859 skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
3860 				   const struct intel_crtc_state *crtc_state,
3861 				   const u64 total_data_rate,
3862 				   struct skl_ddb_allocation *ddb,
3863 				   struct skl_ddb_entry *alloc, /* out */
3864 				   int *num_active /* out */)
3865 {
3866 	struct drm_atomic_state *state = crtc_state->base.state;
3867 	struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3868 	struct drm_crtc *for_crtc = crtc_state->base.crtc;
3869 	const struct intel_crtc *crtc;
3870 	u32 pipe_width = 0, total_width = 0, width_before_pipe = 0;
3871 	enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
3872 	u16 ddb_size;
3873 	u32 i;
3874 
3875 	if (WARN_ON(!state) || !crtc_state->base.active) {
3876 		alloc->start = 0;
3877 		alloc->end = 0;
3878 		*num_active = hweight32(dev_priv->active_crtcs);
3879 		return;
3880 	}
3881 
3882 	if (intel_state->active_pipe_changes)
3883 		*num_active = hweight32(intel_state->active_crtcs);
3884 	else
3885 		*num_active = hweight32(dev_priv->active_crtcs);
3886 
3887 	ddb_size = intel_get_ddb_size(dev_priv, crtc_state, total_data_rate,
3888 				      *num_active, ddb);
3889 
3890 	/*
3891 	 * If the state doesn't change the active CRTC's or there is no
3892 	 * modeset request, then there's no need to recalculate;
3893 	 * the existing pipe allocation limits should remain unchanged.
3894 	 * Note that we're safe from racing commits since any racing commit
3895 	 * that changes the active CRTC list or do modeset would need to
3896 	 * grab _all_ crtc locks, including the one we currently hold.
3897 	 */
3898 	if (!intel_state->active_pipe_changes && !intel_state->modeset) {
3899 		/*
3900 		 * alloc may be cleared by clear_intel_crtc_state,
3901 		 * copy from old state to be sure
3902 		 */
3903 		*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
3904 		return;
3905 	}
3906 
3907 	/*
3908 	 * Watermark/ddb requirement highly depends upon width of the
3909 	 * framebuffer, So instead of allocating DDB equally among pipes
3910 	 * distribute DDB based on resolution/width of the display.
3911 	 */
3912 	for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
3913 		const struct drm_display_mode *adjusted_mode =
3914 			&crtc_state->base.adjusted_mode;
3915 		enum pipe pipe = crtc->pipe;
3916 		int hdisplay, vdisplay;
3917 
3918 		if (!crtc_state->base.enable)
3919 			continue;
3920 
3921 		drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
3922 		total_width += hdisplay;
3923 
3924 		if (pipe < for_pipe)
3925 			width_before_pipe += hdisplay;
3926 		else if (pipe == for_pipe)
3927 			pipe_width = hdisplay;
3928 	}
3929 
3930 	alloc->start = ddb_size * width_before_pipe / total_width;
3931 	alloc->end = ddb_size * (width_before_pipe + pipe_width) / total_width;
3932 }
3933 
3934 static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
3935 				 int width, const struct drm_format_info *format,
3936 				 u64 modifier, unsigned int rotation,
3937 				 u32 plane_pixel_rate, struct skl_wm_params *wp,
3938 				 int color_plane);
3939 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
3940 				 int level,
3941 				 const struct skl_wm_params *wp,
3942 				 const struct skl_wm_level *result_prev,
3943 				 struct skl_wm_level *result /* out */);
3944 
3945 static unsigned int
skl_cursor_allocation(const struct intel_crtc_state * crtc_state,int num_active)3946 skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
3947 		      int num_active)
3948 {
3949 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3950 	int level, max_level = ilk_wm_max_level(dev_priv);
3951 	struct skl_wm_level wm = {};
3952 	int ret, min_ddb_alloc = 0;
3953 	struct skl_wm_params wp;
3954 
3955 	ret = skl_compute_wm_params(crtc_state, 256,
3956 				    drm_format_info(DRM_FORMAT_ARGB8888),
3957 				    DRM_FORMAT_MOD_LINEAR,
3958 				    DRM_MODE_ROTATE_0,
3959 				    crtc_state->pixel_rate, &wp, 0);
3960 	WARN_ON(ret);
3961 
3962 	for (level = 0; level <= max_level; level++) {
3963 		skl_compute_plane_wm(crtc_state, level, &wp, &wm, &wm);
3964 		if (wm.min_ddb_alloc == U16_MAX)
3965 			break;
3966 
3967 		min_ddb_alloc = wm.min_ddb_alloc;
3968 	}
3969 
3970 	return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
3971 }
3972 
skl_ddb_entry_init_from_hw(struct drm_i915_private * dev_priv,struct skl_ddb_entry * entry,u32 reg)3973 static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
3974 				       struct skl_ddb_entry *entry, u32 reg)
3975 {
3976 
3977 	entry->start = reg & DDB_ENTRY_MASK;
3978 	entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
3979 
3980 	if (entry->end)
3981 		entry->end += 1;
3982 }
3983 
3984 static void
skl_ddb_get_hw_plane_state(struct drm_i915_private * dev_priv,const enum pipe pipe,const enum plane_id plane_id,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)3985 skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
3986 			   const enum pipe pipe,
3987 			   const enum plane_id plane_id,
3988 			   struct skl_ddb_entry *ddb_y,
3989 			   struct skl_ddb_entry *ddb_uv)
3990 {
3991 	u32 val, val2;
3992 	u32 fourcc = 0;
3993 
3994 	/* Cursor doesn't support NV12/planar, so no extra calculation needed */
3995 	if (plane_id == PLANE_CURSOR) {
3996 		val = I915_READ(CUR_BUF_CFG(pipe));
3997 		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
3998 		return;
3999 	}
4000 
4001 	val = I915_READ(PLANE_CTL(pipe, plane_id));
4002 
4003 	/* No DDB allocated for disabled planes */
4004 	if (val & PLANE_CTL_ENABLE)
4005 		fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
4006 					      val & PLANE_CTL_ORDER_RGBX,
4007 					      val & PLANE_CTL_ALPHA_MASK);
4008 
4009 	if (INTEL_GEN(dev_priv) >= 11) {
4010 		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4011 		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4012 	} else {
4013 		val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
4014 		val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
4015 
4016 		if (is_planar_yuv_format(fourcc))
4017 			swap(val, val2);
4018 
4019 		skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
4020 		skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
4021 	}
4022 }
4023 
skl_pipe_ddb_get_hw_state(struct intel_crtc * crtc,struct skl_ddb_entry * ddb_y,struct skl_ddb_entry * ddb_uv)4024 void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
4025 			       struct skl_ddb_entry *ddb_y,
4026 			       struct skl_ddb_entry *ddb_uv)
4027 {
4028 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4029 	enum intel_display_power_domain power_domain;
4030 	enum pipe pipe = crtc->pipe;
4031 	intel_wakeref_t wakeref;
4032 	enum plane_id plane_id;
4033 
4034 	power_domain = POWER_DOMAIN_PIPE(pipe);
4035 	wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
4036 	if (!wakeref)
4037 		return;
4038 
4039 	for_each_plane_id_on_crtc(crtc, plane_id)
4040 		skl_ddb_get_hw_plane_state(dev_priv, pipe,
4041 					   plane_id,
4042 					   &ddb_y[plane_id],
4043 					   &ddb_uv[plane_id]);
4044 
4045 	intel_display_power_put(dev_priv, power_domain, wakeref);
4046 }
4047 
skl_ddb_get_hw_state(struct drm_i915_private * dev_priv,struct skl_ddb_allocation * ddb)4048 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
4049 			  struct skl_ddb_allocation *ddb /* out */)
4050 {
4051 	ddb->enabled_slices = intel_enabled_dbuf_slices_num(dev_priv);
4052 }
4053 
4054 /*
4055  * Determines the downscale amount of a plane for the purposes of watermark calculations.
4056  * The bspec defines downscale amount as:
4057  *
4058  * """
4059  * Horizontal down scale amount = maximum[1, Horizontal source size /
4060  *                                           Horizontal destination size]
4061  * Vertical down scale amount = maximum[1, Vertical source size /
4062  *                                         Vertical destination size]
4063  * Total down scale amount = Horizontal down scale amount *
4064  *                           Vertical down scale amount
4065  * """
4066  *
4067  * Return value is provided in 16.16 fixed point form to retain fractional part.
4068  * Caller should take care of dividing & rounding off the value.
4069  */
4070 static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4071 skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
4072 			   const struct intel_plane_state *plane_state)
4073 {
4074 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4075 	u32 src_w, src_h, dst_w, dst_h;
4076 	uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4077 	uint_fixed_16_16_t downscale_h, downscale_w;
4078 
4079 	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4080 		return u32_to_fixed16(0);
4081 
4082 	/* n.b., src is 16.16 fixed point, dst is whole integer */
4083 	if (plane->id == PLANE_CURSOR) {
4084 		/*
4085 		 * Cursors only support 0/180 degree rotation,
4086 		 * hence no need to account for rotation here.
4087 		 */
4088 		src_w = plane_state->base.src_w >> 16;
4089 		src_h = plane_state->base.src_h >> 16;
4090 		dst_w = plane_state->base.crtc_w;
4091 		dst_h = plane_state->base.crtc_h;
4092 	} else {
4093 		/*
4094 		 * Src coordinates are already rotated by 270 degrees for
4095 		 * the 90/270 degree plane rotation cases (to match the
4096 		 * GTT mapping), hence no need to account for rotation here.
4097 		 */
4098 		src_w = drm_rect_width(&plane_state->base.src) >> 16;
4099 		src_h = drm_rect_height(&plane_state->base.src) >> 16;
4100 		dst_w = drm_rect_width(&plane_state->base.dst);
4101 		dst_h = drm_rect_height(&plane_state->base.dst);
4102 	}
4103 
4104 	fp_w_ratio = div_fixed16(src_w, dst_w);
4105 	fp_h_ratio = div_fixed16(src_h, dst_h);
4106 	downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4107 	downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4108 
4109 	return mul_fixed16(downscale_w, downscale_h);
4110 }
4111 
4112 static uint_fixed_16_16_t
skl_pipe_downscale_amount(const struct intel_crtc_state * crtc_state)4113 skl_pipe_downscale_amount(const struct intel_crtc_state *crtc_state)
4114 {
4115 	uint_fixed_16_16_t pipe_downscale = u32_to_fixed16(1);
4116 
4117 	if (!crtc_state->base.enable)
4118 		return pipe_downscale;
4119 
4120 	if (crtc_state->pch_pfit.enabled) {
4121 		u32 src_w, src_h, dst_w, dst_h;
4122 		u32 pfit_size = crtc_state->pch_pfit.size;
4123 		uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
4124 		uint_fixed_16_16_t downscale_h, downscale_w;
4125 
4126 		src_w = crtc_state->pipe_src_w;
4127 		src_h = crtc_state->pipe_src_h;
4128 		dst_w = pfit_size >> 16;
4129 		dst_h = pfit_size & 0xffff;
4130 
4131 		if (!dst_w || !dst_h)
4132 			return pipe_downscale;
4133 
4134 		fp_w_ratio = div_fixed16(src_w, dst_w);
4135 		fp_h_ratio = div_fixed16(src_h, dst_h);
4136 		downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
4137 		downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
4138 
4139 		pipe_downscale = mul_fixed16(downscale_w, downscale_h);
4140 	}
4141 
4142 	return pipe_downscale;
4143 }
4144 
skl_check_pipe_max_pixel_rate(struct intel_crtc * intel_crtc,struct intel_crtc_state * crtc_state)4145 int skl_check_pipe_max_pixel_rate(struct intel_crtc *intel_crtc,
4146 				  struct intel_crtc_state *crtc_state)
4147 {
4148 	struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4149 	struct drm_atomic_state *state = crtc_state->base.state;
4150 	struct drm_plane *plane;
4151 	const struct drm_plane_state *drm_plane_state;
4152 	int crtc_clock, dotclk;
4153 	u32 pipe_max_pixel_rate;
4154 	uint_fixed_16_16_t pipe_downscale;
4155 	uint_fixed_16_16_t max_downscale = u32_to_fixed16(1);
4156 
4157 	if (!crtc_state->base.enable)
4158 		return 0;
4159 
4160 	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4161 		uint_fixed_16_16_t plane_downscale;
4162 		uint_fixed_16_16_t fp_9_div_8 = div_fixed16(9, 8);
4163 		int bpp;
4164 		const struct intel_plane_state *plane_state =
4165 			to_intel_plane_state(drm_plane_state);
4166 
4167 		if (!intel_wm_plane_visible(crtc_state, plane_state))
4168 			continue;
4169 
4170 		if (WARN_ON(!plane_state->base.fb))
4171 			return -EINVAL;
4172 
4173 		plane_downscale = skl_plane_downscale_amount(crtc_state, plane_state);
4174 		bpp = plane_state->base.fb->format->cpp[0] * 8;
4175 		if (bpp == 64)
4176 			plane_downscale = mul_fixed16(plane_downscale,
4177 						      fp_9_div_8);
4178 
4179 		max_downscale = max_fixed16(plane_downscale, max_downscale);
4180 	}
4181 	pipe_downscale = skl_pipe_downscale_amount(crtc_state);
4182 
4183 	pipe_downscale = mul_fixed16(pipe_downscale, max_downscale);
4184 
4185 	crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
4186 	dotclk = to_intel_atomic_state(state)->cdclk.logical.cdclk;
4187 
4188 	if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 10)
4189 		dotclk *= 2;
4190 
4191 	pipe_max_pixel_rate = div_round_up_u32_fixed16(dotclk, pipe_downscale);
4192 
4193 	if (pipe_max_pixel_rate < crtc_clock) {
4194 		DRM_DEBUG_KMS("Max supported pixel clock with scaling exceeded\n");
4195 		return -EINVAL;
4196 	}
4197 
4198 	return 0;
4199 }
4200 
4201 static u64
skl_plane_relative_data_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,const int plane)4202 skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
4203 			     const struct intel_plane_state *plane_state,
4204 			     const int plane)
4205 {
4206 	struct intel_plane *intel_plane = to_intel_plane(plane_state->base.plane);
4207 	u32 data_rate;
4208 	u32 width = 0, height = 0;
4209 	struct drm_framebuffer *fb;
4210 	u32 format;
4211 	uint_fixed_16_16_t down_scale_amount;
4212 	u64 rate;
4213 
4214 	if (!plane_state->base.visible)
4215 		return 0;
4216 
4217 	fb = plane_state->base.fb;
4218 	format = fb->format->format;
4219 
4220 	if (intel_plane->id == PLANE_CURSOR)
4221 		return 0;
4222 	if (plane == 1 && !is_planar_yuv_format(format))
4223 		return 0;
4224 
4225 	/*
4226 	 * Src coordinates are already rotated by 270 degrees for
4227 	 * the 90/270 degree plane rotation cases (to match the
4228 	 * GTT mapping), hence no need to account for rotation here.
4229 	 */
4230 	width = drm_rect_width(&plane_state->base.src) >> 16;
4231 	height = drm_rect_height(&plane_state->base.src) >> 16;
4232 
4233 	/* UV plane does 1/2 pixel sub-sampling */
4234 	if (plane == 1 && is_planar_yuv_format(format)) {
4235 		width /= 2;
4236 		height /= 2;
4237 	}
4238 
4239 	data_rate = width * height;
4240 
4241 	down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4242 
4243 	rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
4244 
4245 	rate *= fb->format->cpp[plane];
4246 	return rate;
4247 }
4248 
4249 static u64
skl_get_total_relative_data_rate(struct intel_crtc_state * crtc_state,u64 * plane_data_rate,u64 * uv_plane_data_rate)4250 skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4251 				 u64 *plane_data_rate,
4252 				 u64 *uv_plane_data_rate)
4253 {
4254 	struct drm_atomic_state *state = crtc_state->base.state;
4255 	struct drm_plane *plane;
4256 	const struct drm_plane_state *drm_plane_state;
4257 	u64 total_data_rate = 0;
4258 
4259 	if (WARN_ON(!state))
4260 		return 0;
4261 
4262 	/* Calculate and cache data rate for each plane */
4263 	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4264 		enum plane_id plane_id = to_intel_plane(plane)->id;
4265 		const struct intel_plane_state *plane_state =
4266 			to_intel_plane_state(drm_plane_state);
4267 		u64 rate;
4268 
4269 		/* packed/y */
4270 		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4271 		plane_data_rate[plane_id] = rate;
4272 		total_data_rate += rate;
4273 
4274 		/* uv-plane */
4275 		rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4276 		uv_plane_data_rate[plane_id] = rate;
4277 		total_data_rate += rate;
4278 	}
4279 
4280 	return total_data_rate;
4281 }
4282 
4283 static u64
icl_get_total_relative_data_rate(struct intel_crtc_state * crtc_state,u64 * plane_data_rate)4284 icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
4285 				 u64 *plane_data_rate)
4286 {
4287 	struct drm_plane *plane;
4288 	const struct drm_plane_state *drm_plane_state;
4289 	u64 total_data_rate = 0;
4290 
4291 	if (WARN_ON(!crtc_state->base.state))
4292 		return 0;
4293 
4294 	/* Calculate and cache data rate for each plane */
4295 	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state, &crtc_state->base) {
4296 		const struct intel_plane_state *plane_state =
4297 			to_intel_plane_state(drm_plane_state);
4298 		enum plane_id plane_id = to_intel_plane(plane)->id;
4299 		u64 rate;
4300 
4301 		if (!plane_state->linked_plane) {
4302 			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4303 			plane_data_rate[plane_id] = rate;
4304 			total_data_rate += rate;
4305 		} else {
4306 			enum plane_id y_plane_id;
4307 
4308 			/*
4309 			 * The slave plane might not iterate in
4310 			 * drm_atomic_crtc_state_for_each_plane_state(),
4311 			 * and needs the master plane state which may be
4312 			 * NULL if we try get_new_plane_state(), so we
4313 			 * always calculate from the master.
4314 			 */
4315 			if (plane_state->slave)
4316 				continue;
4317 
4318 			/* Y plane rate is calculated on the slave */
4319 			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
4320 			y_plane_id = plane_state->linked_plane->id;
4321 			plane_data_rate[y_plane_id] = rate;
4322 			total_data_rate += rate;
4323 
4324 			rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
4325 			plane_data_rate[plane_id] = rate;
4326 			total_data_rate += rate;
4327 		}
4328 	}
4329 
4330 	return total_data_rate;
4331 }
4332 
4333 static int
skl_allocate_pipe_ddb(struct intel_crtc_state * crtc_state,struct skl_ddb_allocation * ddb)4334 skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state,
4335 		      struct skl_ddb_allocation *ddb /* out */)
4336 {
4337 	struct drm_atomic_state *state = crtc_state->base.state;
4338 	struct drm_crtc *crtc = crtc_state->base.crtc;
4339 	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4340 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4341 	struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
4342 	u16 alloc_size, start = 0;
4343 	u16 total[I915_MAX_PLANES] = {};
4344 	u16 uv_total[I915_MAX_PLANES] = {};
4345 	u64 total_data_rate;
4346 	enum plane_id plane_id;
4347 	int num_active;
4348 	u64 plane_data_rate[I915_MAX_PLANES] = {};
4349 	u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
4350 	u32 blocks;
4351 	int level;
4352 
4353 	/* Clear the partitioning for disabled planes. */
4354 	memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
4355 	memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
4356 
4357 	if (WARN_ON(!state))
4358 		return 0;
4359 
4360 	if (!crtc_state->base.active) {
4361 		alloc->start = alloc->end = 0;
4362 		return 0;
4363 	}
4364 
4365 	if (INTEL_GEN(dev_priv) >= 11)
4366 		total_data_rate =
4367 			icl_get_total_relative_data_rate(crtc_state,
4368 							 plane_data_rate);
4369 	else
4370 		total_data_rate =
4371 			skl_get_total_relative_data_rate(crtc_state,
4372 							 plane_data_rate,
4373 							 uv_plane_data_rate);
4374 
4375 
4376 	skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state, total_data_rate,
4377 					   ddb, alloc, &num_active);
4378 	alloc_size = skl_ddb_entry_size(alloc);
4379 	if (alloc_size == 0)
4380 		return 0;
4381 
4382 	/* Allocate fixed number of blocks for cursor. */
4383 	total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
4384 	alloc_size -= total[PLANE_CURSOR];
4385 	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
4386 		alloc->end - total[PLANE_CURSOR];
4387 	crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
4388 
4389 	if (total_data_rate == 0)
4390 		return 0;
4391 
4392 	/*
4393 	 * Find the highest watermark level for which we can satisfy the block
4394 	 * requirement of active planes.
4395 	 */
4396 	for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
4397 		blocks = 0;
4398 		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4399 			const struct skl_plane_wm *wm =
4400 				&crtc_state->wm.skl.optimal.planes[plane_id];
4401 
4402 			if (plane_id == PLANE_CURSOR) {
4403 				if (WARN_ON(wm->wm[level].min_ddb_alloc >
4404 					    total[PLANE_CURSOR])) {
4405 					blocks = U32_MAX;
4406 					break;
4407 				}
4408 				continue;
4409 			}
4410 
4411 			blocks += wm->wm[level].min_ddb_alloc;
4412 			blocks += wm->uv_wm[level].min_ddb_alloc;
4413 		}
4414 
4415 		if (blocks <= alloc_size) {
4416 			alloc_size -= blocks;
4417 			break;
4418 		}
4419 	}
4420 
4421 	if (level < 0) {
4422 		DRM_DEBUG_KMS("Requested display configuration exceeds system DDB limitations");
4423 		DRM_DEBUG_KMS("minimum required %d/%d\n", blocks,
4424 			      alloc_size);
4425 		return -EINVAL;
4426 	}
4427 
4428 	/*
4429 	 * Grant each plane the blocks it requires at the highest achievable
4430 	 * watermark level, plus an extra share of the leftover blocks
4431 	 * proportional to its relative data rate.
4432 	 */
4433 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4434 		const struct skl_plane_wm *wm =
4435 			&crtc_state->wm.skl.optimal.planes[plane_id];
4436 		u64 rate;
4437 		u16 extra;
4438 
4439 		if (plane_id == PLANE_CURSOR)
4440 			continue;
4441 
4442 		/*
4443 		 * We've accounted for all active planes; remaining planes are
4444 		 * all disabled.
4445 		 */
4446 		if (total_data_rate == 0)
4447 			break;
4448 
4449 		rate = plane_data_rate[plane_id];
4450 		extra = min_t(u16, alloc_size,
4451 			      DIV64_U64_ROUND_UP(alloc_size * rate,
4452 						 total_data_rate));
4453 		total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
4454 		alloc_size -= extra;
4455 		total_data_rate -= rate;
4456 
4457 		if (total_data_rate == 0)
4458 			break;
4459 
4460 		rate = uv_plane_data_rate[plane_id];
4461 		extra = min_t(u16, alloc_size,
4462 			      DIV64_U64_ROUND_UP(alloc_size * rate,
4463 						 total_data_rate));
4464 		uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
4465 		alloc_size -= extra;
4466 		total_data_rate -= rate;
4467 	}
4468 	WARN_ON(alloc_size != 0 || total_data_rate != 0);
4469 
4470 	/* Set the actual DDB start/end points for each plane */
4471 	start = alloc->start;
4472 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4473 		struct skl_ddb_entry *plane_alloc =
4474 			&crtc_state->wm.skl.plane_ddb_y[plane_id];
4475 		struct skl_ddb_entry *uv_plane_alloc =
4476 			&crtc_state->wm.skl.plane_ddb_uv[plane_id];
4477 
4478 		if (plane_id == PLANE_CURSOR)
4479 			continue;
4480 
4481 		/* Gen11+ uses a separate plane for UV watermarks */
4482 		WARN_ON(INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
4483 
4484 		/* Leave disabled planes at (0,0) */
4485 		if (total[plane_id]) {
4486 			plane_alloc->start = start;
4487 			start += total[plane_id];
4488 			plane_alloc->end = start;
4489 		}
4490 
4491 		if (uv_total[plane_id]) {
4492 			uv_plane_alloc->start = start;
4493 			start += uv_total[plane_id];
4494 			uv_plane_alloc->end = start;
4495 		}
4496 	}
4497 
4498 	/*
4499 	 * When we calculated watermark values we didn't know how high
4500 	 * of a level we'd actually be able to hit, so we just marked
4501 	 * all levels as "enabled."  Go back now and disable the ones
4502 	 * that aren't actually possible.
4503 	 */
4504 	for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
4505 		for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4506 			struct skl_plane_wm *wm =
4507 				&crtc_state->wm.skl.optimal.planes[plane_id];
4508 
4509 			/*
4510 			 * We only disable the watermarks for each plane if
4511 			 * they exceed the ddb allocation of said plane. This
4512 			 * is done so that we don't end up touching cursor
4513 			 * watermarks needlessly when some other plane reduces
4514 			 * our max possible watermark level.
4515 			 *
4516 			 * Bspec has this to say about the PLANE_WM enable bit:
4517 			 * "All the watermarks at this level for all enabled
4518 			 *  planes must be enabled before the level will be used."
4519 			 * So this is actually safe to do.
4520 			 */
4521 			if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
4522 			    wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
4523 				memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
4524 
4525 			/*
4526 			 * Wa_1408961008:icl, ehl
4527 			 * Underruns with WM1+ disabled
4528 			 */
4529 			if (IS_GEN(dev_priv, 11) &&
4530 			    level == 1 && wm->wm[0].plane_en) {
4531 				wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
4532 				wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
4533 				wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
4534 			}
4535 		}
4536 	}
4537 
4538 	/*
4539 	 * Go back and disable the transition watermark if it turns out we
4540 	 * don't have enough DDB blocks for it.
4541 	 */
4542 	for_each_plane_id_on_crtc(intel_crtc, plane_id) {
4543 		struct skl_plane_wm *wm =
4544 			&crtc_state->wm.skl.optimal.planes[plane_id];
4545 
4546 		if (wm->trans_wm.plane_res_b >= total[plane_id])
4547 			memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
4548 	}
4549 
4550 	return 0;
4551 }
4552 
4553 /*
4554  * The max latency should be 257 (max the punit can code is 255 and we add 2us
4555  * for the read latency) and cpp should always be <= 8, so that
4556  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
4557  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
4558 */
4559 static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private * dev_priv,u32 pixel_rate,u8 cpp,u32 latency,u32 dbuf_block_size)4560 skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
4561 	       u8 cpp, u32 latency, u32 dbuf_block_size)
4562 {
4563 	u32 wm_intermediate_val;
4564 	uint_fixed_16_16_t ret;
4565 
4566 	if (latency == 0)
4567 		return FP_16_16_MAX;
4568 
4569 	wm_intermediate_val = latency * pixel_rate * cpp;
4570 	ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
4571 
4572 	if (INTEL_GEN(dev_priv) >= 10)
4573 		ret = add_fixed16_u32(ret, 1);
4574 
4575 	return ret;
4576 }
4577 
4578 static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate,u32 pipe_htotal,u32 latency,uint_fixed_16_16_t plane_blocks_per_line)4579 skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
4580 	       uint_fixed_16_16_t plane_blocks_per_line)
4581 {
4582 	u32 wm_intermediate_val;
4583 	uint_fixed_16_16_t ret;
4584 
4585 	if (latency == 0)
4586 		return FP_16_16_MAX;
4587 
4588 	wm_intermediate_val = latency * pixel_rate;
4589 	wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
4590 					   pipe_htotal * 1000);
4591 	ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
4592 	return ret;
4593 }
4594 
4595 static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state * crtc_state)4596 intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
4597 {
4598 	u32 pixel_rate;
4599 	u32 crtc_htotal;
4600 	uint_fixed_16_16_t linetime_us;
4601 
4602 	if (!crtc_state->base.active)
4603 		return u32_to_fixed16(0);
4604 
4605 	pixel_rate = crtc_state->pixel_rate;
4606 
4607 	if (WARN_ON(pixel_rate == 0))
4608 		return u32_to_fixed16(0);
4609 
4610 	crtc_htotal = crtc_state->base.adjusted_mode.crtc_htotal;
4611 	linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
4612 
4613 	return linetime_us;
4614 }
4615 
4616 static u32
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)4617 skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
4618 			      const struct intel_plane_state *plane_state)
4619 {
4620 	u64 adjusted_pixel_rate;
4621 	uint_fixed_16_16_t downscale_amount;
4622 
4623 	/* Shouldn't reach here on disabled planes... */
4624 	if (WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state)))
4625 		return 0;
4626 
4627 	/*
4628 	 * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
4629 	 * with additional adjustments for plane-specific scaling.
4630 	 */
4631 	adjusted_pixel_rate = crtc_state->pixel_rate;
4632 	downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
4633 
4634 	return mul_round_up_u32_fixed16(adjusted_pixel_rate,
4635 					    downscale_amount);
4636 }
4637 
4638 static int
skl_compute_wm_params(const struct intel_crtc_state * crtc_state,int width,const struct drm_format_info * format,u64 modifier,unsigned int rotation,u32 plane_pixel_rate,struct skl_wm_params * wp,int color_plane)4639 skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
4640 		      int width, const struct drm_format_info *format,
4641 		      u64 modifier, unsigned int rotation,
4642 		      u32 plane_pixel_rate, struct skl_wm_params *wp,
4643 		      int color_plane)
4644 {
4645 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4646 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4647 	u32 interm_pbpl;
4648 
4649 	/* only planar format has two planes */
4650 	if (color_plane == 1 && !is_planar_yuv_format(format->format)) {
4651 		DRM_DEBUG_KMS("Non planar format have single plane\n");
4652 		return -EINVAL;
4653 	}
4654 
4655 	wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
4656 		      modifier == I915_FORMAT_MOD_Yf_TILED ||
4657 		      modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4658 		      modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4659 	wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
4660 	wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
4661 			 modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
4662 	wp->is_planar = is_planar_yuv_format(format->format);
4663 
4664 	wp->width = width;
4665 	if (color_plane == 1 && wp->is_planar)
4666 		wp->width /= 2;
4667 
4668 	wp->cpp = format->cpp[color_plane];
4669 	wp->plane_pixel_rate = plane_pixel_rate;
4670 
4671 	if (INTEL_GEN(dev_priv) >= 11 &&
4672 	    modifier == I915_FORMAT_MOD_Yf_TILED  && wp->cpp == 1)
4673 		wp->dbuf_block_size = 256;
4674 	else
4675 		wp->dbuf_block_size = 512;
4676 
4677 	if (drm_rotation_90_or_270(rotation)) {
4678 		switch (wp->cpp) {
4679 		case 1:
4680 			wp->y_min_scanlines = 16;
4681 			break;
4682 		case 2:
4683 			wp->y_min_scanlines = 8;
4684 			break;
4685 		case 4:
4686 			wp->y_min_scanlines = 4;
4687 			break;
4688 		default:
4689 			MISSING_CASE(wp->cpp);
4690 			return -EINVAL;
4691 		}
4692 	} else {
4693 		wp->y_min_scanlines = 4;
4694 	}
4695 
4696 	if (skl_needs_memory_bw_wa(dev_priv))
4697 		wp->y_min_scanlines *= 2;
4698 
4699 	wp->plane_bytes_per_line = wp->width * wp->cpp;
4700 	if (wp->y_tiled) {
4701 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
4702 					   wp->y_min_scanlines,
4703 					   wp->dbuf_block_size);
4704 
4705 		if (INTEL_GEN(dev_priv) >= 10)
4706 			interm_pbpl++;
4707 
4708 		wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
4709 							wp->y_min_scanlines);
4710 	} else if (wp->x_tiled && IS_GEN(dev_priv, 9)) {
4711 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4712 					   wp->dbuf_block_size);
4713 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4714 	} else {
4715 		interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
4716 					   wp->dbuf_block_size) + 1;
4717 		wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
4718 	}
4719 
4720 	wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
4721 					     wp->plane_blocks_per_line);
4722 
4723 	wp->linetime_us = fixed16_to_u32_round_up(
4724 					intel_get_linetime_us(crtc_state));
4725 
4726 	return 0;
4727 }
4728 
4729 static int
skl_compute_plane_wm_params(const struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,struct skl_wm_params * wp,int color_plane)4730 skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
4731 			    const struct intel_plane_state *plane_state,
4732 			    struct skl_wm_params *wp, int color_plane)
4733 {
4734 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4735 	const struct drm_framebuffer *fb = plane_state->base.fb;
4736 	int width;
4737 
4738 	if (plane->id == PLANE_CURSOR) {
4739 		width = plane_state->base.crtc_w;
4740 	} else {
4741 		/*
4742 		 * Src coordinates are already rotated by 270 degrees for
4743 		 * the 90/270 degree plane rotation cases (to match the
4744 		 * GTT mapping), hence no need to account for rotation here.
4745 		 */
4746 		width = drm_rect_width(&plane_state->base.src) >> 16;
4747 	}
4748 
4749 	return skl_compute_wm_params(crtc_state, width,
4750 				     fb->format, fb->modifier,
4751 				     plane_state->base.rotation,
4752 				     skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
4753 				     wp, color_plane);
4754 }
4755 
skl_wm_has_lines(struct drm_i915_private * dev_priv,int level)4756 static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
4757 {
4758 	if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4759 		return true;
4760 
4761 	/* The number of lines are ignored for the level 0 watermark. */
4762 	return level > 0;
4763 }
4764 
skl_compute_plane_wm(const struct intel_crtc_state * crtc_state,int level,const struct skl_wm_params * wp,const struct skl_wm_level * result_prev,struct skl_wm_level * result)4765 static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
4766 				 int level,
4767 				 const struct skl_wm_params *wp,
4768 				 const struct skl_wm_level *result_prev,
4769 				 struct skl_wm_level *result /* out */)
4770 {
4771 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4772 	u32 latency = dev_priv->wm.skl_latency[level];
4773 	uint_fixed_16_16_t method1, method2;
4774 	uint_fixed_16_16_t selected_result;
4775 	u32 res_blocks, res_lines, min_ddb_alloc = 0;
4776 
4777 	if (latency == 0) {
4778 		/* reject it */
4779 		result->min_ddb_alloc = U16_MAX;
4780 		return;
4781 	}
4782 
4783 	/*
4784 	 * WaIncreaseLatencyIPCEnabled: kbl,cfl
4785 	 * Display WA #1141: kbl,cfl
4786 	 */
4787 	if ((IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv)) ||
4788 	    dev_priv->ipc_enabled)
4789 		latency += 4;
4790 
4791 	if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
4792 		latency += 15;
4793 
4794 	method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
4795 				 wp->cpp, latency, wp->dbuf_block_size);
4796 	method2 = skl_wm_method2(wp->plane_pixel_rate,
4797 				 crtc_state->base.adjusted_mode.crtc_htotal,
4798 				 latency,
4799 				 wp->plane_blocks_per_line);
4800 
4801 	if (wp->y_tiled) {
4802 		selected_result = max_fixed16(method2, wp->y_tile_minimum);
4803 	} else {
4804 		if ((wp->cpp * crtc_state->base.adjusted_mode.crtc_htotal /
4805 		     wp->dbuf_block_size < 1) &&
4806 		     (wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
4807 			selected_result = method2;
4808 		} else if (latency >= wp->linetime_us) {
4809 			if (IS_GEN(dev_priv, 9) &&
4810 			    !IS_GEMINILAKE(dev_priv))
4811 				selected_result = min_fixed16(method1, method2);
4812 			else
4813 				selected_result = method2;
4814 		} else {
4815 			selected_result = method1;
4816 		}
4817 	}
4818 
4819 	res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
4820 	res_lines = div_round_up_fixed16(selected_result,
4821 					 wp->plane_blocks_per_line);
4822 
4823 	if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
4824 		/* Display WA #1125: skl,bxt,kbl */
4825 		if (level == 0 && wp->rc_surface)
4826 			res_blocks +=
4827 				fixed16_to_u32_round_up(wp->y_tile_minimum);
4828 
4829 		/* Display WA #1126: skl,bxt,kbl */
4830 		if (level >= 1 && level <= 7) {
4831 			if (wp->y_tiled) {
4832 				res_blocks +=
4833 				    fixed16_to_u32_round_up(wp->y_tile_minimum);
4834 				res_lines += wp->y_min_scanlines;
4835 			} else {
4836 				res_blocks++;
4837 			}
4838 
4839 			/*
4840 			 * Make sure result blocks for higher latency levels are
4841 			 * atleast as high as level below the current level.
4842 			 * Assumption in DDB algorithm optimization for special
4843 			 * cases. Also covers Display WA #1125 for RC.
4844 			 */
4845 			if (result_prev->plane_res_b > res_blocks)
4846 				res_blocks = result_prev->plane_res_b;
4847 		}
4848 	}
4849 
4850 	if (INTEL_GEN(dev_priv) >= 11) {
4851 		if (wp->y_tiled) {
4852 			int extra_lines;
4853 
4854 			if (res_lines % wp->y_min_scanlines == 0)
4855 				extra_lines = wp->y_min_scanlines;
4856 			else
4857 				extra_lines = wp->y_min_scanlines * 2 -
4858 					res_lines % wp->y_min_scanlines;
4859 
4860 			min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
4861 								 wp->plane_blocks_per_line);
4862 		} else {
4863 			min_ddb_alloc = res_blocks +
4864 				DIV_ROUND_UP(res_blocks, 10);
4865 		}
4866 	}
4867 
4868 	if (!skl_wm_has_lines(dev_priv, level))
4869 		res_lines = 0;
4870 
4871 	if (res_lines > 31) {
4872 		/* reject it */
4873 		result->min_ddb_alloc = U16_MAX;
4874 		return;
4875 	}
4876 
4877 	/*
4878 	 * If res_lines is valid, assume we can use this watermark level
4879 	 * for now.  We'll come back and disable it after we calculate the
4880 	 * DDB allocation if it turns out we don't actually have enough
4881 	 * blocks to satisfy it.
4882 	 */
4883 	result->plane_res_b = res_blocks;
4884 	result->plane_res_l = res_lines;
4885 	/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
4886 	result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
4887 	result->plane_en = true;
4888 }
4889 
4890 static void
skl_compute_wm_levels(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wm_params,struct skl_wm_level * levels)4891 skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
4892 		      const struct skl_wm_params *wm_params,
4893 		      struct skl_wm_level *levels)
4894 {
4895 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4896 	int level, max_level = ilk_wm_max_level(dev_priv);
4897 	struct skl_wm_level *result_prev = &levels[0];
4898 
4899 	for (level = 0; level <= max_level; level++) {
4900 		struct skl_wm_level *result = &levels[level];
4901 
4902 		skl_compute_plane_wm(crtc_state, level, wm_params,
4903 				     result_prev, result);
4904 
4905 		result_prev = result;
4906 	}
4907 }
4908 
4909 static u32
skl_compute_linetime_wm(const struct intel_crtc_state * crtc_state)4910 skl_compute_linetime_wm(const struct intel_crtc_state *crtc_state)
4911 {
4912 	struct drm_atomic_state *state = crtc_state->base.state;
4913 	struct drm_i915_private *dev_priv = to_i915(state->dev);
4914 	uint_fixed_16_16_t linetime_us;
4915 	u32 linetime_wm;
4916 
4917 	linetime_us = intel_get_linetime_us(crtc_state);
4918 	linetime_wm = fixed16_to_u32_round_up(mul_u32_fixed16(8, linetime_us));
4919 
4920 	/* Display WA #1135: BXT:ALL GLK:ALL */
4921 	if (IS_GEN9_LP(dev_priv) && dev_priv->ipc_enabled)
4922 		linetime_wm /= 2;
4923 
4924 	return linetime_wm;
4925 }
4926 
skl_compute_transition_wm(const struct intel_crtc_state * crtc_state,const struct skl_wm_params * wp,struct skl_plane_wm * wm)4927 static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
4928 				      const struct skl_wm_params *wp,
4929 				      struct skl_plane_wm *wm)
4930 {
4931 	struct drm_device *dev = crtc_state->base.crtc->dev;
4932 	const struct drm_i915_private *dev_priv = to_i915(dev);
4933 	u16 trans_min, trans_y_tile_min;
4934 	const u16 trans_amount = 10; /* This is configurable amount */
4935 	u16 wm0_sel_res_b, trans_offset_b, res_blocks;
4936 
4937 	/* Transition WM are not recommended by HW team for GEN9 */
4938 	if (INTEL_GEN(dev_priv) <= 9)
4939 		return;
4940 
4941 	/* Transition WM don't make any sense if ipc is disabled */
4942 	if (!dev_priv->ipc_enabled)
4943 		return;
4944 
4945 	trans_min = 14;
4946 	if (INTEL_GEN(dev_priv) >= 11)
4947 		trans_min = 4;
4948 
4949 	trans_offset_b = trans_min + trans_amount;
4950 
4951 	/*
4952 	 * The spec asks for Selected Result Blocks for wm0 (the real value),
4953 	 * not Result Blocks (the integer value). Pay attention to the capital
4954 	 * letters. The value wm_l0->plane_res_b is actually Result Blocks, but
4955 	 * since Result Blocks is the ceiling of Selected Result Blocks plus 1,
4956 	 * and since we later will have to get the ceiling of the sum in the
4957 	 * transition watermarks calculation, we can just pretend Selected
4958 	 * Result Blocks is Result Blocks minus 1 and it should work for the
4959 	 * current platforms.
4960 	 */
4961 	wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
4962 
4963 	if (wp->y_tiled) {
4964 		trans_y_tile_min =
4965 			(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
4966 		res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
4967 				trans_offset_b;
4968 	} else {
4969 		res_blocks = wm0_sel_res_b + trans_offset_b;
4970 
4971 		/* WA BUG:1938466 add one block for non y-tile planes */
4972 		if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_A0))
4973 			res_blocks += 1;
4974 
4975 	}
4976 
4977 	/*
4978 	 * Just assume we can enable the transition watermark.  After
4979 	 * computing the DDB we'll come back and disable it if that
4980 	 * assumption turns out to be false.
4981 	 */
4982 	wm->trans_wm.plane_res_b = res_blocks + 1;
4983 	wm->trans_wm.plane_en = true;
4984 }
4985 
skl_build_plane_wm_single(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id,int color_plane)4986 static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
4987 				     const struct intel_plane_state *plane_state,
4988 				     enum plane_id plane_id, int color_plane)
4989 {
4990 	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
4991 	struct skl_wm_params wm_params;
4992 	int ret;
4993 
4994 	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
4995 					  &wm_params, color_plane);
4996 	if (ret)
4997 		return ret;
4998 
4999 	skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
5000 	skl_compute_transition_wm(crtc_state, &wm_params, wm);
5001 
5002 	return 0;
5003 }
5004 
skl_build_plane_wm_uv(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state,enum plane_id plane_id)5005 static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
5006 				 const struct intel_plane_state *plane_state,
5007 				 enum plane_id plane_id)
5008 {
5009 	struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
5010 	struct skl_wm_params wm_params;
5011 	int ret;
5012 
5013 	wm->is_planar = true;
5014 
5015 	/* uv plane watermarks must also be validated for NV12/Planar */
5016 	ret = skl_compute_plane_wm_params(crtc_state, plane_state,
5017 					  &wm_params, 1);
5018 	if (ret)
5019 		return ret;
5020 
5021 	skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
5022 
5023 	return 0;
5024 }
5025 
skl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5026 static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
5027 			      const struct intel_plane_state *plane_state)
5028 {
5029 	struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
5030 	const struct drm_framebuffer *fb = plane_state->base.fb;
5031 	enum plane_id plane_id = plane->id;
5032 	int ret;
5033 
5034 	if (!intel_wm_plane_visible(crtc_state, plane_state))
5035 		return 0;
5036 
5037 	ret = skl_build_plane_wm_single(crtc_state, plane_state,
5038 					plane_id, 0);
5039 	if (ret)
5040 		return ret;
5041 
5042 	if (fb->format->is_yuv && fb->format->num_planes > 1) {
5043 		ret = skl_build_plane_wm_uv(crtc_state, plane_state,
5044 					    plane_id);
5045 		if (ret)
5046 			return ret;
5047 	}
5048 
5049 	return 0;
5050 }
5051 
icl_build_plane_wm(struct intel_crtc_state * crtc_state,const struct intel_plane_state * plane_state)5052 static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
5053 			      const struct intel_plane_state *plane_state)
5054 {
5055 	enum plane_id plane_id = to_intel_plane(plane_state->base.plane)->id;
5056 	int ret;
5057 
5058 	/* Watermarks calculated in master */
5059 	if (plane_state->slave)
5060 		return 0;
5061 
5062 	if (plane_state->linked_plane) {
5063 		const struct drm_framebuffer *fb = plane_state->base.fb;
5064 		enum plane_id y_plane_id = plane_state->linked_plane->id;
5065 
5066 		WARN_ON(!intel_wm_plane_visible(crtc_state, plane_state));
5067 		WARN_ON(!fb->format->is_yuv ||
5068 			fb->format->num_planes == 1);
5069 
5070 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5071 						y_plane_id, 0);
5072 		if (ret)
5073 			return ret;
5074 
5075 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5076 						plane_id, 1);
5077 		if (ret)
5078 			return ret;
5079 	} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
5080 		ret = skl_build_plane_wm_single(crtc_state, plane_state,
5081 						plane_id, 0);
5082 		if (ret)
5083 			return ret;
5084 	}
5085 
5086 	return 0;
5087 }
5088 
skl_build_pipe_wm(struct intel_crtc_state * crtc_state)5089 static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
5090 {
5091 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5092 	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5093 	struct drm_plane *plane;
5094 	const struct drm_plane_state *drm_plane_state;
5095 	int ret;
5096 
5097 	/*
5098 	 * We'll only calculate watermarks for planes that are actually
5099 	 * enabled, so make sure all other planes are set as disabled.
5100 	 */
5101 	memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
5102 
5103 	drm_atomic_crtc_state_for_each_plane_state(plane, drm_plane_state,
5104 						   &crtc_state->base) {
5105 		const struct intel_plane_state *plane_state =
5106 			to_intel_plane_state(drm_plane_state);
5107 
5108 		if (INTEL_GEN(dev_priv) >= 11)
5109 			ret = icl_build_plane_wm(crtc_state, plane_state);
5110 		else
5111 			ret = skl_build_plane_wm(crtc_state, plane_state);
5112 		if (ret)
5113 			return ret;
5114 	}
5115 
5116 	pipe_wm->linetime = skl_compute_linetime_wm(crtc_state);
5117 
5118 	return 0;
5119 }
5120 
skl_ddb_entry_write(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_ddb_entry * entry)5121 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
5122 				i915_reg_t reg,
5123 				const struct skl_ddb_entry *entry)
5124 {
5125 	if (entry->end)
5126 		I915_WRITE_FW(reg, (entry->end - 1) << 16 | entry->start);
5127 	else
5128 		I915_WRITE_FW(reg, 0);
5129 }
5130 
skl_write_wm_level(struct drm_i915_private * dev_priv,i915_reg_t reg,const struct skl_wm_level * level)5131 static void skl_write_wm_level(struct drm_i915_private *dev_priv,
5132 			       i915_reg_t reg,
5133 			       const struct skl_wm_level *level)
5134 {
5135 	u32 val = 0;
5136 
5137 	if (level->plane_en)
5138 		val |= PLANE_WM_EN;
5139 	if (level->ignore_lines)
5140 		val |= PLANE_WM_IGNORE_LINES;
5141 	val |= level->plane_res_b;
5142 	val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
5143 
5144 	I915_WRITE_FW(reg, val);
5145 }
5146 
skl_write_plane_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5147 void skl_write_plane_wm(struct intel_plane *plane,
5148 			const struct intel_crtc_state *crtc_state)
5149 {
5150 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5151 	int level, max_level = ilk_wm_max_level(dev_priv);
5152 	enum plane_id plane_id = plane->id;
5153 	enum pipe pipe = plane->pipe;
5154 	const struct skl_plane_wm *wm =
5155 		&crtc_state->wm.skl.optimal.planes[plane_id];
5156 	const struct skl_ddb_entry *ddb_y =
5157 		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5158 	const struct skl_ddb_entry *ddb_uv =
5159 		&crtc_state->wm.skl.plane_ddb_uv[plane_id];
5160 
5161 	for (level = 0; level <= max_level; level++) {
5162 		skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
5163 				   &wm->wm[level]);
5164 	}
5165 	skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
5166 			   &wm->trans_wm);
5167 
5168 	if (INTEL_GEN(dev_priv) >= 11) {
5169 		skl_ddb_entry_write(dev_priv,
5170 				    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5171 		return;
5172 	}
5173 
5174 	if (wm->is_planar)
5175 		swap(ddb_y, ddb_uv);
5176 
5177 	skl_ddb_entry_write(dev_priv,
5178 			    PLANE_BUF_CFG(pipe, plane_id), ddb_y);
5179 	skl_ddb_entry_write(dev_priv,
5180 			    PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
5181 }
5182 
skl_write_cursor_wm(struct intel_plane * plane,const struct intel_crtc_state * crtc_state)5183 void skl_write_cursor_wm(struct intel_plane *plane,
5184 			 const struct intel_crtc_state *crtc_state)
5185 {
5186 	struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
5187 	int level, max_level = ilk_wm_max_level(dev_priv);
5188 	enum plane_id plane_id = plane->id;
5189 	enum pipe pipe = plane->pipe;
5190 	const struct skl_plane_wm *wm =
5191 		&crtc_state->wm.skl.optimal.planes[plane_id];
5192 	const struct skl_ddb_entry *ddb =
5193 		&crtc_state->wm.skl.plane_ddb_y[plane_id];
5194 
5195 	for (level = 0; level <= max_level; level++) {
5196 		skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
5197 				   &wm->wm[level]);
5198 	}
5199 	skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
5200 
5201 	skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
5202 }
5203 
skl_wm_level_equals(const struct skl_wm_level * l1,const struct skl_wm_level * l2)5204 bool skl_wm_level_equals(const struct skl_wm_level *l1,
5205 			 const struct skl_wm_level *l2)
5206 {
5207 	return l1->plane_en == l2->plane_en &&
5208 		l1->ignore_lines == l2->ignore_lines &&
5209 		l1->plane_res_l == l2->plane_res_l &&
5210 		l1->plane_res_b == l2->plane_res_b;
5211 }
5212 
skl_plane_wm_equals(struct drm_i915_private * dev_priv,const struct skl_plane_wm * wm1,const struct skl_plane_wm * wm2)5213 static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
5214 				const struct skl_plane_wm *wm1,
5215 				const struct skl_plane_wm *wm2)
5216 {
5217 	int level, max_level = ilk_wm_max_level(dev_priv);
5218 
5219 	for (level = 0; level <= max_level; level++) {
5220 		if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]) ||
5221 		    !skl_wm_level_equals(&wm1->uv_wm[level], &wm2->uv_wm[level]))
5222 			return false;
5223 	}
5224 
5225 	return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
5226 }
5227 
skl_pipe_wm_equals(struct intel_crtc * crtc,const struct skl_pipe_wm * wm1,const struct skl_pipe_wm * wm2)5228 static bool skl_pipe_wm_equals(struct intel_crtc *crtc,
5229 			       const struct skl_pipe_wm *wm1,
5230 			       const struct skl_pipe_wm *wm2)
5231 {
5232 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5233 	enum plane_id plane_id;
5234 
5235 	for_each_plane_id_on_crtc(crtc, plane_id) {
5236 		if (!skl_plane_wm_equals(dev_priv,
5237 					 &wm1->planes[plane_id],
5238 					 &wm2->planes[plane_id]))
5239 			return false;
5240 	}
5241 
5242 	return wm1->linetime == wm2->linetime;
5243 }
5244 
skl_ddb_entries_overlap(const struct skl_ddb_entry * a,const struct skl_ddb_entry * b)5245 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
5246 					   const struct skl_ddb_entry *b)
5247 {
5248 	return a->start < b->end && b->start < a->end;
5249 }
5250 
skl_ddb_allocation_overlaps(const struct skl_ddb_entry * ddb,const struct skl_ddb_entry * entries,int num_entries,int ignore_idx)5251 bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
5252 				 const struct skl_ddb_entry *entries,
5253 				 int num_entries, int ignore_idx)
5254 {
5255 	int i;
5256 
5257 	for (i = 0; i < num_entries; i++) {
5258 		if (i != ignore_idx &&
5259 		    skl_ddb_entries_overlap(ddb, &entries[i]))
5260 			return true;
5261 	}
5262 
5263 	return false;
5264 }
5265 
5266 static u32
pipes_modified(struct intel_atomic_state * state)5267 pipes_modified(struct intel_atomic_state *state)
5268 {
5269 	struct intel_crtc *crtc;
5270 	struct intel_crtc_state *crtc_state;
5271 	u32 i, ret = 0;
5272 
5273 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5274 		ret |= drm_crtc_mask(&crtc->base);
5275 
5276 	return ret;
5277 }
5278 
5279 static int
skl_ddb_add_affected_planes(const struct intel_crtc_state * old_crtc_state,struct intel_crtc_state * new_crtc_state)5280 skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
5281 			    struct intel_crtc_state *new_crtc_state)
5282 {
5283 	struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->base.state);
5284 	struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5285 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5286 	struct intel_plane *plane;
5287 
5288 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5289 		struct intel_plane_state *plane_state;
5290 		enum plane_id plane_id = plane->id;
5291 
5292 		if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
5293 					&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
5294 		    skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
5295 					&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
5296 			continue;
5297 
5298 		plane_state = intel_atomic_get_plane_state(state, plane);
5299 		if (IS_ERR(plane_state))
5300 			return PTR_ERR(plane_state);
5301 
5302 		new_crtc_state->update_planes |= BIT(plane_id);
5303 	}
5304 
5305 	return 0;
5306 }
5307 
5308 static int
skl_compute_ddb(struct intel_atomic_state * state)5309 skl_compute_ddb(struct intel_atomic_state *state)
5310 {
5311 	const struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5312 	struct skl_ddb_allocation *ddb = &state->wm_results.ddb;
5313 	struct intel_crtc_state *old_crtc_state;
5314 	struct intel_crtc_state *new_crtc_state;
5315 	struct intel_crtc *crtc;
5316 	int ret, i;
5317 
5318 	memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
5319 
5320 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5321 					    new_crtc_state, i) {
5322 		ret = skl_allocate_pipe_ddb(new_crtc_state, ddb);
5323 		if (ret)
5324 			return ret;
5325 
5326 		ret = skl_ddb_add_affected_planes(old_crtc_state,
5327 						  new_crtc_state);
5328 		if (ret)
5329 			return ret;
5330 	}
5331 
5332 	return 0;
5333 }
5334 
enast(bool enable)5335 static char enast(bool enable)
5336 {
5337 	return enable ? '*' : ' ';
5338 }
5339 
5340 static void
skl_print_wm_changes(struct intel_atomic_state * state)5341 skl_print_wm_changes(struct intel_atomic_state *state)
5342 {
5343 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5344 	const struct intel_crtc_state *old_crtc_state;
5345 	const struct intel_crtc_state *new_crtc_state;
5346 	struct intel_plane *plane;
5347 	struct intel_crtc *crtc;
5348 	int i;
5349 
5350 	if ((drm_debug & DRM_UT_KMS) == 0)
5351 		return;
5352 
5353 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5354 					    new_crtc_state, i) {
5355 		const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
5356 
5357 		old_pipe_wm = &old_crtc_state->wm.skl.optimal;
5358 		new_pipe_wm = &new_crtc_state->wm.skl.optimal;
5359 
5360 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5361 			enum plane_id plane_id = plane->id;
5362 			const struct skl_ddb_entry *old, *new;
5363 
5364 			old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
5365 			new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
5366 
5367 			if (skl_ddb_entry_equal(old, new))
5368 				continue;
5369 
5370 			DRM_DEBUG_KMS("[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
5371 				      plane->base.base.id, plane->base.name,
5372 				      old->start, old->end, new->start, new->end,
5373 				      skl_ddb_entry_size(old), skl_ddb_entry_size(new));
5374 		}
5375 
5376 		for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5377 			enum plane_id plane_id = plane->id;
5378 			const struct skl_plane_wm *old_wm, *new_wm;
5379 
5380 			old_wm = &old_pipe_wm->planes[plane_id];
5381 			new_wm = &new_pipe_wm->planes[plane_id];
5382 
5383 			if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
5384 				continue;
5385 
5386 			DRM_DEBUG_KMS("[PLANE:%d:%s]   level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm"
5387 				      " -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm\n",
5388 				      plane->base.base.id, plane->base.name,
5389 				      enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
5390 				      enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
5391 				      enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
5392 				      enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
5393 				      enast(old_wm->trans_wm.plane_en),
5394 				      enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
5395 				      enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
5396 				      enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
5397 				      enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
5398 				      enast(new_wm->trans_wm.plane_en));
5399 
5400 			DRM_DEBUG_KMS("[PLANE:%d:%s]   lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
5401 				      " -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
5402 				      plane->base.base.id, plane->base.name,
5403 				      enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
5404 				      enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
5405 				      enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
5406 				      enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
5407 				      enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
5408 				      enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
5409 				      enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
5410 				      enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
5411 				      enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
5412 
5413 				      enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
5414 				      enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
5415 				      enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
5416 				      enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
5417 				      enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
5418 				      enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
5419 				      enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
5420 				      enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
5421 				      enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l);
5422 
5423 			DRM_DEBUG_KMS("[PLANE:%d:%s]  blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5424 				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5425 				      plane->base.base.id, plane->base.name,
5426 				      old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
5427 				      old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
5428 				      old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
5429 				      old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
5430 				      old_wm->trans_wm.plane_res_b,
5431 				      new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
5432 				      new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
5433 				      new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
5434 				      new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
5435 				      new_wm->trans_wm.plane_res_b);
5436 
5437 			DRM_DEBUG_KMS("[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
5438 				      " -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
5439 				      plane->base.base.id, plane->base.name,
5440 				      old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
5441 				      old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
5442 				      old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
5443 				      old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
5444 				      old_wm->trans_wm.min_ddb_alloc,
5445 				      new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
5446 				      new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
5447 				      new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
5448 				      new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
5449 				      new_wm->trans_wm.min_ddb_alloc);
5450 		}
5451 	}
5452 }
5453 
5454 static int
skl_ddb_add_affected_pipes(struct intel_atomic_state * state,bool * changed)5455 skl_ddb_add_affected_pipes(struct intel_atomic_state *state, bool *changed)
5456 {
5457 	struct drm_device *dev = state->base.dev;
5458 	const struct drm_i915_private *dev_priv = to_i915(dev);
5459 	struct intel_crtc *crtc;
5460 	struct intel_crtc_state *crtc_state;
5461 	u32 realloc_pipes = pipes_modified(state);
5462 	int ret, i;
5463 
5464 	/*
5465 	 * When we distrust bios wm we always need to recompute to set the
5466 	 * expected DDB allocations for each CRTC.
5467 	 */
5468 	if (dev_priv->wm.distrust_bios_wm)
5469 		(*changed) = true;
5470 
5471 	/*
5472 	 * If this transaction isn't actually touching any CRTC's, don't
5473 	 * bother with watermark calculation.  Note that if we pass this
5474 	 * test, we're guaranteed to hold at least one CRTC state mutex,
5475 	 * which means we can safely use values like dev_priv->active_crtcs
5476 	 * since any racing commits that want to update them would need to
5477 	 * hold _all_ CRTC state mutexes.
5478 	 */
5479 	for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i)
5480 		(*changed) = true;
5481 
5482 	if (!*changed)
5483 		return 0;
5484 
5485 	/*
5486 	 * If this is our first atomic update following hardware readout,
5487 	 * we can't trust the DDB that the BIOS programmed for us.  Let's
5488 	 * pretend that all pipes switched active status so that we'll
5489 	 * ensure a full DDB recompute.
5490 	 */
5491 	if (dev_priv->wm.distrust_bios_wm) {
5492 		ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
5493 				       state->base.acquire_ctx);
5494 		if (ret)
5495 			return ret;
5496 
5497 		state->active_pipe_changes = ~0;
5498 
5499 		/*
5500 		 * We usually only initialize state->active_crtcs if we
5501 		 * we're doing a modeset; make sure this field is always
5502 		 * initialized during the sanitization process that happens
5503 		 * on the first commit too.
5504 		 */
5505 		if (!state->modeset)
5506 			state->active_crtcs = dev_priv->active_crtcs;
5507 	}
5508 
5509 	/*
5510 	 * If the modeset changes which CRTC's are active, we need to
5511 	 * recompute the DDB allocation for *all* active pipes, even
5512 	 * those that weren't otherwise being modified in any way by this
5513 	 * atomic commit.  Due to the shrinking of the per-pipe allocations
5514 	 * when new active CRTC's are added, it's possible for a pipe that
5515 	 * we were already using and aren't changing at all here to suddenly
5516 	 * become invalid if its DDB needs exceeds its new allocation.
5517 	 *
5518 	 * Note that if we wind up doing a full DDB recompute, we can't let
5519 	 * any other display updates race with this transaction, so we need
5520 	 * to grab the lock on *all* CRTC's.
5521 	 */
5522 	if (state->active_pipe_changes || state->modeset) {
5523 		realloc_pipes = ~0;
5524 		state->wm_results.dirty_pipes = ~0;
5525 	}
5526 
5527 	/*
5528 	 * We're not recomputing for the pipes not included in the commit, so
5529 	 * make sure we start with the current state.
5530 	 */
5531 	for_each_intel_crtc_mask(dev, crtc, realloc_pipes) {
5532 		crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
5533 		if (IS_ERR(crtc_state))
5534 			return PTR_ERR(crtc_state);
5535 	}
5536 
5537 	return 0;
5538 }
5539 
5540 /*
5541  * To make sure the cursor watermark registers are always consistent
5542  * with our computed state the following scenario needs special
5543  * treatment:
5544  *
5545  * 1. enable cursor
5546  * 2. move cursor entirely offscreen
5547  * 3. disable cursor
5548  *
5549  * Step 2. does call .disable_plane() but does not zero the watermarks
5550  * (since we consider an offscreen cursor still active for the purposes
5551  * of watermarks). Step 3. would not normally call .disable_plane()
5552  * because the actual plane visibility isn't changing, and we don't
5553  * deallocate the cursor ddb until the pipe gets disabled. So we must
5554  * force step 3. to call .disable_plane() to update the watermark
5555  * registers properly.
5556  *
5557  * Other planes do not suffer from this issues as their watermarks are
5558  * calculated based on the actual plane visibility. The only time this
5559  * can trigger for the other planes is during the initial readout as the
5560  * default value of the watermarks registers is not zero.
5561  */
skl_wm_add_affected_planes(struct intel_atomic_state * state,struct intel_crtc * crtc)5562 static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
5563 				      struct intel_crtc *crtc)
5564 {
5565 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5566 	const struct intel_crtc_state *old_crtc_state =
5567 		intel_atomic_get_old_crtc_state(state, crtc);
5568 	struct intel_crtc_state *new_crtc_state =
5569 		intel_atomic_get_new_crtc_state(state, crtc);
5570 	struct intel_plane *plane;
5571 
5572 	for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
5573 		struct intel_plane_state *plane_state;
5574 		enum plane_id plane_id = plane->id;
5575 
5576 		/*
5577 		 * Force a full wm update for every plane on modeset.
5578 		 * Required because the reset value of the wm registers
5579 		 * is non-zero, whereas we want all disabled planes to
5580 		 * have zero watermarks. So if we turn off the relevant
5581 		 * power well the hardware state will go out of sync
5582 		 * with the software state.
5583 		 */
5584 		if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->base) &&
5585 		    skl_plane_wm_equals(dev_priv,
5586 					&old_crtc_state->wm.skl.optimal.planes[plane_id],
5587 					&new_crtc_state->wm.skl.optimal.planes[plane_id]))
5588 			continue;
5589 
5590 		plane_state = intel_atomic_get_plane_state(state, plane);
5591 		if (IS_ERR(plane_state))
5592 			return PTR_ERR(plane_state);
5593 
5594 		new_crtc_state->update_planes |= BIT(plane_id);
5595 	}
5596 
5597 	return 0;
5598 }
5599 
5600 static int
skl_compute_wm(struct intel_atomic_state * state)5601 skl_compute_wm(struct intel_atomic_state *state)
5602 {
5603 	struct intel_crtc *crtc;
5604 	struct intel_crtc_state *new_crtc_state;
5605 	struct intel_crtc_state *old_crtc_state;
5606 	struct skl_ddb_values *results = &state->wm_results;
5607 	bool changed = false;
5608 	int ret, i;
5609 
5610 	/* Clear all dirty flags */
5611 	results->dirty_pipes = 0;
5612 
5613 	ret = skl_ddb_add_affected_pipes(state, &changed);
5614 	if (ret || !changed)
5615 		return ret;
5616 
5617 	/*
5618 	 * Calculate WM's for all pipes that are part of this transaction.
5619 	 * Note that skl_ddb_add_affected_pipes may have added more CRTC's that
5620 	 * weren't otherwise being modified (and set bits in dirty_pipes) if
5621 	 * pipe allocations had to change.
5622 	 */
5623 	for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
5624 					    new_crtc_state, i) {
5625 		ret = skl_build_pipe_wm(new_crtc_state);
5626 		if (ret)
5627 			return ret;
5628 
5629 		ret = skl_wm_add_affected_planes(state, crtc);
5630 		if (ret)
5631 			return ret;
5632 
5633 		if (!skl_pipe_wm_equals(crtc,
5634 					&old_crtc_state->wm.skl.optimal,
5635 					&new_crtc_state->wm.skl.optimal))
5636 			results->dirty_pipes |= drm_crtc_mask(&crtc->base);
5637 	}
5638 
5639 	ret = skl_compute_ddb(state);
5640 	if (ret)
5641 		return ret;
5642 
5643 	skl_print_wm_changes(state);
5644 
5645 	return 0;
5646 }
5647 
skl_atomic_update_crtc_wm(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5648 static void skl_atomic_update_crtc_wm(struct intel_atomic_state *state,
5649 				      struct intel_crtc_state *crtc_state)
5650 {
5651 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5652 	struct drm_i915_private *dev_priv = to_i915(state->base.dev);
5653 	struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
5654 	enum pipe pipe = crtc->pipe;
5655 
5656 	if (!(state->wm_results.dirty_pipes & drm_crtc_mask(&crtc->base)))
5657 		return;
5658 
5659 	I915_WRITE(PIPE_WM_LINETIME(pipe), pipe_wm->linetime);
5660 }
5661 
skl_initial_wm(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5662 static void skl_initial_wm(struct intel_atomic_state *state,
5663 			   struct intel_crtc_state *crtc_state)
5664 {
5665 	struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
5666 	struct drm_device *dev = intel_crtc->base.dev;
5667 	struct drm_i915_private *dev_priv = to_i915(dev);
5668 	struct skl_ddb_values *results = &state->wm_results;
5669 
5670 	if ((results->dirty_pipes & drm_crtc_mask(&intel_crtc->base)) == 0)
5671 		return;
5672 
5673 	mutex_lock(&dev_priv->wm.wm_mutex);
5674 
5675 	if (crtc_state->base.active_changed)
5676 		skl_atomic_update_crtc_wm(state, crtc_state);
5677 
5678 	mutex_unlock(&dev_priv->wm.wm_mutex);
5679 }
5680 
ilk_compute_wm_config(struct drm_i915_private * dev_priv,struct intel_wm_config * config)5681 static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
5682 				  struct intel_wm_config *config)
5683 {
5684 	struct intel_crtc *crtc;
5685 
5686 	/* Compute the currently _active_ config */
5687 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5688 		const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
5689 
5690 		if (!wm->pipe_enabled)
5691 			continue;
5692 
5693 		config->sprites_enabled |= wm->sprites_enabled;
5694 		config->sprites_scaled |= wm->sprites_scaled;
5695 		config->num_pipes_active++;
5696 	}
5697 }
5698 
ilk_program_watermarks(struct drm_i915_private * dev_priv)5699 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
5700 {
5701 	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
5702 	struct ilk_wm_maximums max;
5703 	struct intel_wm_config config = {};
5704 	struct ilk_wm_values results = {};
5705 	enum intel_ddb_partitioning partitioning;
5706 
5707 	ilk_compute_wm_config(dev_priv, &config);
5708 
5709 	ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
5710 	ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
5711 
5712 	/* 5/6 split only in single pipe config on IVB+ */
5713 	if (INTEL_GEN(dev_priv) >= 7 &&
5714 	    config.num_pipes_active == 1 && config.sprites_enabled) {
5715 		ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
5716 		ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
5717 
5718 		best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
5719 	} else {
5720 		best_lp_wm = &lp_wm_1_2;
5721 	}
5722 
5723 	partitioning = (best_lp_wm == &lp_wm_1_2) ?
5724 		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
5725 
5726 	ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
5727 
5728 	ilk_write_wm_values(dev_priv, &results);
5729 }
5730 
ilk_initial_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5731 static void ilk_initial_watermarks(struct intel_atomic_state *state,
5732 				   struct intel_crtc_state *crtc_state)
5733 {
5734 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5735 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5736 
5737 	mutex_lock(&dev_priv->wm.wm_mutex);
5738 	crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
5739 	ilk_program_watermarks(dev_priv);
5740 	mutex_unlock(&dev_priv->wm.wm_mutex);
5741 }
5742 
ilk_optimize_watermarks(struct intel_atomic_state * state,struct intel_crtc_state * crtc_state)5743 static void ilk_optimize_watermarks(struct intel_atomic_state *state,
5744 				    struct intel_crtc_state *crtc_state)
5745 {
5746 	struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
5747 	struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5748 
5749 	if (!crtc_state->wm.need_postvbl_update)
5750 		return;
5751 
5752 	mutex_lock(&dev_priv->wm.wm_mutex);
5753 	crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
5754 	ilk_program_watermarks(dev_priv);
5755 	mutex_unlock(&dev_priv->wm.wm_mutex);
5756 }
5757 
skl_wm_level_from_reg_val(u32 val,struct skl_wm_level * level)5758 static inline void skl_wm_level_from_reg_val(u32 val,
5759 					     struct skl_wm_level *level)
5760 {
5761 	level->plane_en = val & PLANE_WM_EN;
5762 	level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
5763 	level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
5764 	level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
5765 		PLANE_WM_LINES_MASK;
5766 }
5767 
skl_pipe_wm_get_hw_state(struct intel_crtc * crtc,struct skl_pipe_wm * out)5768 void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
5769 			      struct skl_pipe_wm *out)
5770 {
5771 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5772 	enum pipe pipe = crtc->pipe;
5773 	int level, max_level;
5774 	enum plane_id plane_id;
5775 	u32 val;
5776 
5777 	max_level = ilk_wm_max_level(dev_priv);
5778 
5779 	for_each_plane_id_on_crtc(crtc, plane_id) {
5780 		struct skl_plane_wm *wm = &out->planes[plane_id];
5781 
5782 		for (level = 0; level <= max_level; level++) {
5783 			if (plane_id != PLANE_CURSOR)
5784 				val = I915_READ(PLANE_WM(pipe, plane_id, level));
5785 			else
5786 				val = I915_READ(CUR_WM(pipe, level));
5787 
5788 			skl_wm_level_from_reg_val(val, &wm->wm[level]);
5789 		}
5790 
5791 		if (plane_id != PLANE_CURSOR)
5792 			val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
5793 		else
5794 			val = I915_READ(CUR_WM_TRANS(pipe));
5795 
5796 		skl_wm_level_from_reg_val(val, &wm->trans_wm);
5797 	}
5798 
5799 	if (!crtc->active)
5800 		return;
5801 
5802 	out->linetime = I915_READ(PIPE_WM_LINETIME(pipe));
5803 }
5804 
skl_wm_get_hw_state(struct drm_i915_private * dev_priv)5805 void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
5806 {
5807 	struct skl_ddb_values *hw = &dev_priv->wm.skl_hw;
5808 	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
5809 	struct intel_crtc *crtc;
5810 	struct intel_crtc_state *crtc_state;
5811 
5812 	skl_ddb_get_hw_state(dev_priv, ddb);
5813 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5814 		crtc_state = to_intel_crtc_state(crtc->base.state);
5815 
5816 		skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
5817 
5818 		if (crtc->active)
5819 			hw->dirty_pipes |= drm_crtc_mask(&crtc->base);
5820 	}
5821 
5822 	if (dev_priv->active_crtcs) {
5823 		/* Fully recompute DDB on first atomic commit */
5824 		dev_priv->wm.distrust_bios_wm = true;
5825 	}
5826 }
5827 
ilk_pipe_wm_get_hw_state(struct intel_crtc * crtc)5828 static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
5829 {
5830 	struct drm_device *dev = crtc->base.dev;
5831 	struct drm_i915_private *dev_priv = to_i915(dev);
5832 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
5833 	struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
5834 	struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
5835 	enum pipe pipe = crtc->pipe;
5836 	static const i915_reg_t wm0_pipe_reg[] = {
5837 		[PIPE_A] = WM0_PIPEA_ILK,
5838 		[PIPE_B] = WM0_PIPEB_ILK,
5839 		[PIPE_C] = WM0_PIPEC_IVB,
5840 	};
5841 
5842 	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
5843 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5844 		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
5845 
5846 	memset(active, 0, sizeof(*active));
5847 
5848 	active->pipe_enabled = crtc->active;
5849 
5850 	if (active->pipe_enabled) {
5851 		u32 tmp = hw->wm_pipe[pipe];
5852 
5853 		/*
5854 		 * For active pipes LP0 watermark is marked as
5855 		 * enabled, and LP1+ watermaks as disabled since
5856 		 * we can't really reverse compute them in case
5857 		 * multiple pipes are active.
5858 		 */
5859 		active->wm[0].enable = true;
5860 		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
5861 		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
5862 		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
5863 		active->linetime = hw->wm_linetime[pipe];
5864 	} else {
5865 		int level, max_level = ilk_wm_max_level(dev_priv);
5866 
5867 		/*
5868 		 * For inactive pipes, all watermark levels
5869 		 * should be marked as enabled but zeroed,
5870 		 * which is what we'd compute them to.
5871 		 */
5872 		for (level = 0; level <= max_level; level++)
5873 			active->wm[level].enable = true;
5874 	}
5875 
5876 	crtc->wm.active.ilk = *active;
5877 }
5878 
5879 #define _FW_WM(value, plane) \
5880 	(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
5881 #define _FW_WM_VLV(value, plane) \
5882 	(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
5883 
g4x_read_wm_values(struct drm_i915_private * dev_priv,struct g4x_wm_values * wm)5884 static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
5885 			       struct g4x_wm_values *wm)
5886 {
5887 	u32 tmp;
5888 
5889 	tmp = I915_READ(DSPFW1);
5890 	wm->sr.plane = _FW_WM(tmp, SR);
5891 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5892 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
5893 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
5894 
5895 	tmp = I915_READ(DSPFW2);
5896 	wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
5897 	wm->sr.fbc = _FW_WM(tmp, FBC_SR);
5898 	wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
5899 	wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
5900 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5901 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
5902 
5903 	tmp = I915_READ(DSPFW3);
5904 	wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
5905 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5906 	wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
5907 	wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
5908 }
5909 
vlv_read_wm_values(struct drm_i915_private * dev_priv,struct vlv_wm_values * wm)5910 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
5911 			       struct vlv_wm_values *wm)
5912 {
5913 	enum pipe pipe;
5914 	u32 tmp;
5915 
5916 	for_each_pipe(dev_priv, pipe) {
5917 		tmp = I915_READ(VLV_DDL(pipe));
5918 
5919 		wm->ddl[pipe].plane[PLANE_PRIMARY] =
5920 			(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5921 		wm->ddl[pipe].plane[PLANE_CURSOR] =
5922 			(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5923 		wm->ddl[pipe].plane[PLANE_SPRITE0] =
5924 			(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5925 		wm->ddl[pipe].plane[PLANE_SPRITE1] =
5926 			(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
5927 	}
5928 
5929 	tmp = I915_READ(DSPFW1);
5930 	wm->sr.plane = _FW_WM(tmp, SR);
5931 	wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
5932 	wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
5933 	wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
5934 
5935 	tmp = I915_READ(DSPFW2);
5936 	wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
5937 	wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
5938 	wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
5939 
5940 	tmp = I915_READ(DSPFW3);
5941 	wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
5942 
5943 	if (IS_CHERRYVIEW(dev_priv)) {
5944 		tmp = I915_READ(DSPFW7_CHV);
5945 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5946 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5947 
5948 		tmp = I915_READ(DSPFW8_CHV);
5949 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
5950 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
5951 
5952 		tmp = I915_READ(DSPFW9_CHV);
5953 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
5954 		wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
5955 
5956 		tmp = I915_READ(DSPHOWM);
5957 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5958 		wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
5959 		wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
5960 		wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
5961 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5962 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5963 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5964 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5965 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5966 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5967 	} else {
5968 		tmp = I915_READ(DSPFW7);
5969 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
5970 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
5971 
5972 		tmp = I915_READ(DSPHOWM);
5973 		wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
5974 		wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
5975 		wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
5976 		wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
5977 		wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
5978 		wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
5979 		wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
5980 	}
5981 }
5982 
5983 #undef _FW_WM
5984 #undef _FW_WM_VLV
5985 
g4x_wm_get_hw_state(struct drm_i915_private * dev_priv)5986 void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
5987 {
5988 	struct g4x_wm_values *wm = &dev_priv->wm.g4x;
5989 	struct intel_crtc *crtc;
5990 
5991 	g4x_read_wm_values(dev_priv, wm);
5992 
5993 	wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
5994 
5995 	for_each_intel_crtc(&dev_priv->drm, crtc) {
5996 		struct intel_crtc_state *crtc_state =
5997 			to_intel_crtc_state(crtc->base.state);
5998 		struct g4x_wm_state *active = &crtc->wm.active.g4x;
5999 		struct g4x_pipe_wm *raw;
6000 		enum pipe pipe = crtc->pipe;
6001 		enum plane_id plane_id;
6002 		int level, max_level;
6003 
6004 		active->cxsr = wm->cxsr;
6005 		active->hpll_en = wm->hpll_en;
6006 		active->fbc_en = wm->fbc_en;
6007 
6008 		active->sr = wm->sr;
6009 		active->hpll = wm->hpll;
6010 
6011 		for_each_plane_id_on_crtc(crtc, plane_id) {
6012 			active->wm.plane[plane_id] =
6013 				wm->pipe[pipe].plane[plane_id];
6014 		}
6015 
6016 		if (wm->cxsr && wm->hpll_en)
6017 			max_level = G4X_WM_LEVEL_HPLL;
6018 		else if (wm->cxsr)
6019 			max_level = G4X_WM_LEVEL_SR;
6020 		else
6021 			max_level = G4X_WM_LEVEL_NORMAL;
6022 
6023 		level = G4X_WM_LEVEL_NORMAL;
6024 		raw = &crtc_state->wm.g4x.raw[level];
6025 		for_each_plane_id_on_crtc(crtc, plane_id)
6026 			raw->plane[plane_id] = active->wm.plane[plane_id];
6027 
6028 		if (++level > max_level)
6029 			goto out;
6030 
6031 		raw = &crtc_state->wm.g4x.raw[level];
6032 		raw->plane[PLANE_PRIMARY] = active->sr.plane;
6033 		raw->plane[PLANE_CURSOR] = active->sr.cursor;
6034 		raw->plane[PLANE_SPRITE0] = 0;
6035 		raw->fbc = active->sr.fbc;
6036 
6037 		if (++level > max_level)
6038 			goto out;
6039 
6040 		raw = &crtc_state->wm.g4x.raw[level];
6041 		raw->plane[PLANE_PRIMARY] = active->hpll.plane;
6042 		raw->plane[PLANE_CURSOR] = active->hpll.cursor;
6043 		raw->plane[PLANE_SPRITE0] = 0;
6044 		raw->fbc = active->hpll.fbc;
6045 
6046 	out:
6047 		for_each_plane_id_on_crtc(crtc, plane_id)
6048 			g4x_raw_plane_wm_set(crtc_state, level,
6049 					     plane_id, USHRT_MAX);
6050 		g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
6051 
6052 		crtc_state->wm.g4x.optimal = *active;
6053 		crtc_state->wm.g4x.intermediate = *active;
6054 
6055 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
6056 			      pipe_name(pipe),
6057 			      wm->pipe[pipe].plane[PLANE_PRIMARY],
6058 			      wm->pipe[pipe].plane[PLANE_CURSOR],
6059 			      wm->pipe[pipe].plane[PLANE_SPRITE0]);
6060 	}
6061 
6062 	DRM_DEBUG_KMS("Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
6063 		      wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
6064 	DRM_DEBUG_KMS("Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
6065 		      wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
6066 	DRM_DEBUG_KMS("Initial SR=%s HPLL=%s FBC=%s\n",
6067 		      yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
6068 }
6069 
g4x_wm_sanitize(struct drm_i915_private * dev_priv)6070 void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
6071 {
6072 	struct intel_plane *plane;
6073 	struct intel_crtc *crtc;
6074 
6075 	mutex_lock(&dev_priv->wm.wm_mutex);
6076 
6077 	for_each_intel_plane(&dev_priv->drm, plane) {
6078 		struct intel_crtc *crtc =
6079 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6080 		struct intel_crtc_state *crtc_state =
6081 			to_intel_crtc_state(crtc->base.state);
6082 		struct intel_plane_state *plane_state =
6083 			to_intel_plane_state(plane->base.state);
6084 		struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
6085 		enum plane_id plane_id = plane->id;
6086 		int level;
6087 
6088 		if (plane_state->base.visible)
6089 			continue;
6090 
6091 		for (level = 0; level < 3; level++) {
6092 			struct g4x_pipe_wm *raw =
6093 				&crtc_state->wm.g4x.raw[level];
6094 
6095 			raw->plane[plane_id] = 0;
6096 			wm_state->wm.plane[plane_id] = 0;
6097 		}
6098 
6099 		if (plane_id == PLANE_PRIMARY) {
6100 			for (level = 0; level < 3; level++) {
6101 				struct g4x_pipe_wm *raw =
6102 					&crtc_state->wm.g4x.raw[level];
6103 				raw->fbc = 0;
6104 			}
6105 
6106 			wm_state->sr.fbc = 0;
6107 			wm_state->hpll.fbc = 0;
6108 			wm_state->fbc_en = false;
6109 		}
6110 	}
6111 
6112 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6113 		struct intel_crtc_state *crtc_state =
6114 			to_intel_crtc_state(crtc->base.state);
6115 
6116 		crtc_state->wm.g4x.intermediate =
6117 			crtc_state->wm.g4x.optimal;
6118 		crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
6119 	}
6120 
6121 	g4x_program_watermarks(dev_priv);
6122 
6123 	mutex_unlock(&dev_priv->wm.wm_mutex);
6124 }
6125 
vlv_wm_get_hw_state(struct drm_i915_private * dev_priv)6126 void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
6127 {
6128 	struct vlv_wm_values *wm = &dev_priv->wm.vlv;
6129 	struct intel_crtc *crtc;
6130 	u32 val;
6131 
6132 	vlv_read_wm_values(dev_priv, wm);
6133 
6134 	wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
6135 	wm->level = VLV_WM_LEVEL_PM2;
6136 
6137 	if (IS_CHERRYVIEW(dev_priv)) {
6138 		vlv_punit_get(dev_priv);
6139 
6140 		val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
6141 		if (val & DSP_MAXFIFO_PM5_ENABLE)
6142 			wm->level = VLV_WM_LEVEL_PM5;
6143 
6144 		/*
6145 		 * If DDR DVFS is disabled in the BIOS, Punit
6146 		 * will never ack the request. So if that happens
6147 		 * assume we don't have to enable/disable DDR DVFS
6148 		 * dynamically. To test that just set the REQ_ACK
6149 		 * bit to poke the Punit, but don't change the
6150 		 * HIGH/LOW bits so that we don't actually change
6151 		 * the current state.
6152 		 */
6153 		val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6154 		val |= FORCE_DDR_FREQ_REQ_ACK;
6155 		vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
6156 
6157 		if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
6158 			      FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
6159 			DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
6160 				      "assuming DDR DVFS is disabled\n");
6161 			dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
6162 		} else {
6163 			val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
6164 			if ((val & FORCE_DDR_HIGH_FREQ) == 0)
6165 				wm->level = VLV_WM_LEVEL_DDR_DVFS;
6166 		}
6167 
6168 		vlv_punit_put(dev_priv);
6169 	}
6170 
6171 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6172 		struct intel_crtc_state *crtc_state =
6173 			to_intel_crtc_state(crtc->base.state);
6174 		struct vlv_wm_state *active = &crtc->wm.active.vlv;
6175 		const struct vlv_fifo_state *fifo_state =
6176 			&crtc_state->wm.vlv.fifo_state;
6177 		enum pipe pipe = crtc->pipe;
6178 		enum plane_id plane_id;
6179 		int level;
6180 
6181 		vlv_get_fifo_size(crtc_state);
6182 
6183 		active->num_levels = wm->level + 1;
6184 		active->cxsr = wm->cxsr;
6185 
6186 		for (level = 0; level < active->num_levels; level++) {
6187 			struct g4x_pipe_wm *raw =
6188 				&crtc_state->wm.vlv.raw[level];
6189 
6190 			active->sr[level].plane = wm->sr.plane;
6191 			active->sr[level].cursor = wm->sr.cursor;
6192 
6193 			for_each_plane_id_on_crtc(crtc, plane_id) {
6194 				active->wm[level].plane[plane_id] =
6195 					wm->pipe[pipe].plane[plane_id];
6196 
6197 				raw->plane[plane_id] =
6198 					vlv_invert_wm_value(active->wm[level].plane[plane_id],
6199 							    fifo_state->plane[plane_id]);
6200 			}
6201 		}
6202 
6203 		for_each_plane_id_on_crtc(crtc, plane_id)
6204 			vlv_raw_plane_wm_set(crtc_state, level,
6205 					     plane_id, USHRT_MAX);
6206 		vlv_invalidate_wms(crtc, active, level);
6207 
6208 		crtc_state->wm.vlv.optimal = *active;
6209 		crtc_state->wm.vlv.intermediate = *active;
6210 
6211 		DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
6212 			      pipe_name(pipe),
6213 			      wm->pipe[pipe].plane[PLANE_PRIMARY],
6214 			      wm->pipe[pipe].plane[PLANE_CURSOR],
6215 			      wm->pipe[pipe].plane[PLANE_SPRITE0],
6216 			      wm->pipe[pipe].plane[PLANE_SPRITE1]);
6217 	}
6218 
6219 	DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
6220 		      wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
6221 }
6222 
vlv_wm_sanitize(struct drm_i915_private * dev_priv)6223 void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
6224 {
6225 	struct intel_plane *plane;
6226 	struct intel_crtc *crtc;
6227 
6228 	mutex_lock(&dev_priv->wm.wm_mutex);
6229 
6230 	for_each_intel_plane(&dev_priv->drm, plane) {
6231 		struct intel_crtc *crtc =
6232 			intel_get_crtc_for_pipe(dev_priv, plane->pipe);
6233 		struct intel_crtc_state *crtc_state =
6234 			to_intel_crtc_state(crtc->base.state);
6235 		struct intel_plane_state *plane_state =
6236 			to_intel_plane_state(plane->base.state);
6237 		struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
6238 		const struct vlv_fifo_state *fifo_state =
6239 			&crtc_state->wm.vlv.fifo_state;
6240 		enum plane_id plane_id = plane->id;
6241 		int level;
6242 
6243 		if (plane_state->base.visible)
6244 			continue;
6245 
6246 		for (level = 0; level < wm_state->num_levels; level++) {
6247 			struct g4x_pipe_wm *raw =
6248 				&crtc_state->wm.vlv.raw[level];
6249 
6250 			raw->plane[plane_id] = 0;
6251 
6252 			wm_state->wm[level].plane[plane_id] =
6253 				vlv_invert_wm_value(raw->plane[plane_id],
6254 						    fifo_state->plane[plane_id]);
6255 		}
6256 	}
6257 
6258 	for_each_intel_crtc(&dev_priv->drm, crtc) {
6259 		struct intel_crtc_state *crtc_state =
6260 			to_intel_crtc_state(crtc->base.state);
6261 
6262 		crtc_state->wm.vlv.intermediate =
6263 			crtc_state->wm.vlv.optimal;
6264 		crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
6265 	}
6266 
6267 	vlv_program_watermarks(dev_priv);
6268 
6269 	mutex_unlock(&dev_priv->wm.wm_mutex);
6270 }
6271 
6272 /*
6273  * FIXME should probably kill this and improve
6274  * the real watermark readout/sanitation instead
6275  */
ilk_init_lp_watermarks(struct drm_i915_private * dev_priv)6276 static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
6277 {
6278 	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6279 	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6280 	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6281 
6282 	/*
6283 	 * Don't touch WM1S_LP_EN here.
6284 	 * Doing so could cause underruns.
6285 	 */
6286 }
6287 
ilk_wm_get_hw_state(struct drm_i915_private * dev_priv)6288 void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
6289 {
6290 	struct ilk_wm_values *hw = &dev_priv->wm.hw;
6291 	struct intel_crtc *crtc;
6292 
6293 	ilk_init_lp_watermarks(dev_priv);
6294 
6295 	for_each_intel_crtc(&dev_priv->drm, crtc)
6296 		ilk_pipe_wm_get_hw_state(crtc);
6297 
6298 	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
6299 	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
6300 	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
6301 
6302 	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
6303 	if (INTEL_GEN(dev_priv) >= 7) {
6304 		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
6305 		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
6306 	}
6307 
6308 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6309 		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
6310 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6311 	else if (IS_IVYBRIDGE(dev_priv))
6312 		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
6313 			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
6314 
6315 	hw->enable_fbc_wm =
6316 		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
6317 }
6318 
6319 /**
6320  * intel_update_watermarks - update FIFO watermark values based on current modes
6321  * @crtc: the #intel_crtc on which to compute the WM
6322  *
6323  * Calculate watermark values for the various WM regs based on current mode
6324  * and plane configuration.
6325  *
6326  * There are several cases to deal with here:
6327  *   - normal (i.e. non-self-refresh)
6328  *   - self-refresh (SR) mode
6329  *   - lines are large relative to FIFO size (buffer can hold up to 2)
6330  *   - lines are small relative to FIFO size (buffer can hold more than 2
6331  *     lines), so need to account for TLB latency
6332  *
6333  *   The normal calculation is:
6334  *     watermark = dotclock * bytes per pixel * latency
6335  *   where latency is platform & configuration dependent (we assume pessimal
6336  *   values here).
6337  *
6338  *   The SR calculation is:
6339  *     watermark = (trunc(latency/line time)+1) * surface width *
6340  *       bytes per pixel
6341  *   where
6342  *     line time = htotal / dotclock
6343  *     surface width = hdisplay for normal plane and 64 for cursor
6344  *   and latency is assumed to be high, as above.
6345  *
6346  * The final value programmed to the register should always be rounded up,
6347  * and include an extra 2 entries to account for clock crossings.
6348  *
6349  * We don't use the sprite, so we can ignore that.  And on Crestline we have
6350  * to set the non-SR watermarks to 8.
6351  */
intel_update_watermarks(struct intel_crtc * crtc)6352 void intel_update_watermarks(struct intel_crtc *crtc)
6353 {
6354 	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6355 
6356 	if (dev_priv->display.update_wm)
6357 		dev_priv->display.update_wm(crtc);
6358 }
6359 
intel_enable_ipc(struct drm_i915_private * dev_priv)6360 void intel_enable_ipc(struct drm_i915_private *dev_priv)
6361 {
6362 	u32 val;
6363 
6364 	if (!HAS_IPC(dev_priv))
6365 		return;
6366 
6367 	val = I915_READ(DISP_ARB_CTL2);
6368 
6369 	if (dev_priv->ipc_enabled)
6370 		val |= DISP_IPC_ENABLE;
6371 	else
6372 		val &= ~DISP_IPC_ENABLE;
6373 
6374 	I915_WRITE(DISP_ARB_CTL2, val);
6375 }
6376 
intel_can_enable_ipc(struct drm_i915_private * dev_priv)6377 static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
6378 {
6379 	/* Display WA #0477 WaDisableIPC: skl */
6380 	if (IS_SKYLAKE(dev_priv))
6381 		return false;
6382 
6383 	/* Display WA #1141: SKL:all KBL:all CFL */
6384 	if (IS_KABYLAKE(dev_priv) || IS_COFFEELAKE(dev_priv))
6385 		return dev_priv->dram_info.symmetric_memory;
6386 
6387 	return true;
6388 }
6389 
intel_init_ipc(struct drm_i915_private * dev_priv)6390 void intel_init_ipc(struct drm_i915_private *dev_priv)
6391 {
6392 	if (!HAS_IPC(dev_priv))
6393 		return;
6394 
6395 	dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
6396 
6397 	intel_enable_ipc(dev_priv);
6398 }
6399 
6400 /*
6401  * Lock protecting IPS related data structures
6402  */
6403 DEFINE_SPINLOCK(mchdev_lock);
6404 
ironlake_set_drps(struct drm_i915_private * i915,u8 val)6405 bool ironlake_set_drps(struct drm_i915_private *i915, u8 val)
6406 {
6407 	struct intel_uncore *uncore = &i915->uncore;
6408 	u16 rgvswctl;
6409 
6410 	lockdep_assert_held(&mchdev_lock);
6411 
6412 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6413 	if (rgvswctl & MEMCTL_CMD_STS) {
6414 		DRM_DEBUG("gpu busy, RCS change rejected\n");
6415 		return false; /* still busy with another command */
6416 	}
6417 
6418 	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
6419 		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
6420 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6421 	intel_uncore_posting_read16(uncore, MEMSWCTL);
6422 
6423 	rgvswctl |= MEMCTL_CMD_STS;
6424 	intel_uncore_write16(uncore, MEMSWCTL, rgvswctl);
6425 
6426 	return true;
6427 }
6428 
ironlake_enable_drps(struct drm_i915_private * dev_priv)6429 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
6430 {
6431 	struct intel_uncore *uncore = &dev_priv->uncore;
6432 	u32 rgvmodectl;
6433 	u8 fmax, fmin, fstart, vstart;
6434 
6435 	spin_lock_irq(&mchdev_lock);
6436 
6437 	rgvmodectl = intel_uncore_read(uncore, MEMMODECTL);
6438 
6439 	/* Enable temp reporting */
6440 	intel_uncore_write16(uncore, PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
6441 	intel_uncore_write16(uncore, TSC1, I915_READ(TSC1) | TSE);
6442 
6443 	/* 100ms RC evaluation intervals */
6444 	intel_uncore_write(uncore, RCUPEI, 100000);
6445 	intel_uncore_write(uncore, RCDNEI, 100000);
6446 
6447 	/* Set max/min thresholds to 90ms and 80ms respectively */
6448 	intel_uncore_write(uncore, RCBMAXAVG, 90000);
6449 	intel_uncore_write(uncore, RCBMINAVG, 80000);
6450 
6451 	intel_uncore_write(uncore, MEMIHYST, 1);
6452 
6453 	/* Set up min, max, and cur for interrupt handling */
6454 	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
6455 	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
6456 	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
6457 		MEMMODE_FSTART_SHIFT;
6458 
6459 	vstart = (intel_uncore_read(uncore, PXVFREQ(fstart)) &
6460 		  PXVFREQ_PX_MASK) >> PXVFREQ_PX_SHIFT;
6461 
6462 	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
6463 	dev_priv->ips.fstart = fstart;
6464 
6465 	dev_priv->ips.max_delay = fstart;
6466 	dev_priv->ips.min_delay = fmin;
6467 	dev_priv->ips.cur_delay = fstart;
6468 
6469 	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
6470 			 fmax, fmin, fstart);
6471 
6472 	intel_uncore_write(uncore,
6473 			   MEMINTREN,
6474 			   MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
6475 
6476 	/*
6477 	 * Interrupts will be enabled in ironlake_irq_postinstall
6478 	 */
6479 
6480 	intel_uncore_write(uncore, VIDSTART, vstart);
6481 	intel_uncore_posting_read(uncore, VIDSTART);
6482 
6483 	rgvmodectl |= MEMMODE_SWMODE_EN;
6484 	intel_uncore_write(uncore, MEMMODECTL, rgvmodectl);
6485 
6486 	if (wait_for_atomic((intel_uncore_read(uncore, MEMSWCTL) &
6487 			     MEMCTL_CMD_STS) == 0, 10))
6488 		DRM_ERROR("stuck trying to change perf mode\n");
6489 	mdelay(1);
6490 
6491 	ironlake_set_drps(dev_priv, fstart);
6492 
6493 	dev_priv->ips.last_count1 =
6494 		intel_uncore_read(uncore, DMIEC) +
6495 		intel_uncore_read(uncore, DDREC) +
6496 		intel_uncore_read(uncore, CSIEC);
6497 	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
6498 	dev_priv->ips.last_count2 = intel_uncore_read(uncore, GFXEC);
6499 	dev_priv->ips.last_time2 = ktime_get_raw_ns();
6500 
6501 	spin_unlock_irq(&mchdev_lock);
6502 }
6503 
ironlake_disable_drps(struct drm_i915_private * i915)6504 static void ironlake_disable_drps(struct drm_i915_private *i915)
6505 {
6506 	struct intel_uncore *uncore = &i915->uncore;
6507 	u16 rgvswctl;
6508 
6509 	spin_lock_irq(&mchdev_lock);
6510 
6511 	rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
6512 
6513 	/* Ack interrupts, disable EFC interrupt */
6514 	intel_uncore_write(uncore,
6515 			   MEMINTREN,
6516 			   intel_uncore_read(uncore, MEMINTREN) &
6517 			   ~MEMINT_EVAL_CHG_EN);
6518 	intel_uncore_write(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
6519 	intel_uncore_write(uncore,
6520 			   DEIER,
6521 			   intel_uncore_read(uncore, DEIER) & ~DE_PCU_EVENT);
6522 	intel_uncore_write(uncore, DEIIR, DE_PCU_EVENT);
6523 	intel_uncore_write(uncore,
6524 			   DEIMR,
6525 			   intel_uncore_read(uncore, DEIMR) | DE_PCU_EVENT);
6526 
6527 	/* Go back to the starting frequency */
6528 	ironlake_set_drps(i915, i915->ips.fstart);
6529 	mdelay(1);
6530 	rgvswctl |= MEMCTL_CMD_STS;
6531 	intel_uncore_write(uncore, MEMSWCTL, rgvswctl);
6532 	mdelay(1);
6533 
6534 	spin_unlock_irq(&mchdev_lock);
6535 }
6536 
6537 /* There's a funny hw issue where the hw returns all 0 when reading from
6538  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
6539  * ourselves, instead of doing a rmw cycle (which might result in us clearing
6540  * all limits and the gpu stuck at whatever frequency it is at atm).
6541  */
intel_rps_limits(struct drm_i915_private * dev_priv,u8 val)6542 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
6543 {
6544 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6545 	u32 limits;
6546 
6547 	/* Only set the down limit when we've reached the lowest level to avoid
6548 	 * getting more interrupts, otherwise leave this clear. This prevents a
6549 	 * race in the hw when coming out of rc6: There's a tiny window where
6550 	 * the hw runs at the minimal clock before selecting the desired
6551 	 * frequency, if the down threshold expires in that window we will not
6552 	 * receive a down interrupt. */
6553 	if (INTEL_GEN(dev_priv) >= 9) {
6554 		limits = (rps->max_freq_softlimit) << 23;
6555 		if (val <= rps->min_freq_softlimit)
6556 			limits |= (rps->min_freq_softlimit) << 14;
6557 	} else {
6558 		limits = rps->max_freq_softlimit << 24;
6559 		if (val <= rps->min_freq_softlimit)
6560 			limits |= rps->min_freq_softlimit << 16;
6561 	}
6562 
6563 	return limits;
6564 }
6565 
rps_set_power(struct drm_i915_private * dev_priv,int new_power)6566 static void rps_set_power(struct drm_i915_private *dev_priv, int new_power)
6567 {
6568 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6569 	u32 threshold_up = 0, threshold_down = 0; /* in % */
6570 	u32 ei_up = 0, ei_down = 0;
6571 
6572 	lockdep_assert_held(&rps->power.mutex);
6573 
6574 	if (new_power == rps->power.mode)
6575 		return;
6576 
6577 	/* Note the units here are not exactly 1us, but 1280ns. */
6578 	switch (new_power) {
6579 	case LOW_POWER:
6580 		/* Upclock if more than 95% busy over 16ms */
6581 		ei_up = 16000;
6582 		threshold_up = 95;
6583 
6584 		/* Downclock if less than 85% busy over 32ms */
6585 		ei_down = 32000;
6586 		threshold_down = 85;
6587 		break;
6588 
6589 	case BETWEEN:
6590 		/* Upclock if more than 90% busy over 13ms */
6591 		ei_up = 13000;
6592 		threshold_up = 90;
6593 
6594 		/* Downclock if less than 75% busy over 32ms */
6595 		ei_down = 32000;
6596 		threshold_down = 75;
6597 		break;
6598 
6599 	case HIGH_POWER:
6600 		/* Upclock if more than 85% busy over 10ms */
6601 		ei_up = 10000;
6602 		threshold_up = 85;
6603 
6604 		/* Downclock if less than 60% busy over 32ms */
6605 		ei_down = 32000;
6606 		threshold_down = 60;
6607 		break;
6608 	}
6609 
6610 	/* When byt can survive without system hang with dynamic
6611 	 * sw freq adjustments, this restriction can be lifted.
6612 	 */
6613 	if (IS_VALLEYVIEW(dev_priv))
6614 		goto skip_hw_write;
6615 
6616 	I915_WRITE(GEN6_RP_UP_EI,
6617 		   GT_INTERVAL_FROM_US(dev_priv, ei_up));
6618 	I915_WRITE(GEN6_RP_UP_THRESHOLD,
6619 		   GT_INTERVAL_FROM_US(dev_priv,
6620 				       ei_up * threshold_up / 100));
6621 
6622 	I915_WRITE(GEN6_RP_DOWN_EI,
6623 		   GT_INTERVAL_FROM_US(dev_priv, ei_down));
6624 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
6625 		   GT_INTERVAL_FROM_US(dev_priv,
6626 				       ei_down * threshold_down / 100));
6627 
6628 	I915_WRITE(GEN6_RP_CONTROL,
6629 		   (INTEL_GEN(dev_priv) > 9 ? 0 : GEN6_RP_MEDIA_TURBO) |
6630 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
6631 		   GEN6_RP_MEDIA_IS_GFX |
6632 		   GEN6_RP_ENABLE |
6633 		   GEN6_RP_UP_BUSY_AVG |
6634 		   GEN6_RP_DOWN_IDLE_AVG);
6635 
6636 skip_hw_write:
6637 	rps->power.mode = new_power;
6638 	rps->power.up_threshold = threshold_up;
6639 	rps->power.down_threshold = threshold_down;
6640 }
6641 
gen6_set_rps_thresholds(struct drm_i915_private * dev_priv,u8 val)6642 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
6643 {
6644 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6645 	int new_power;
6646 
6647 	new_power = rps->power.mode;
6648 	switch (rps->power.mode) {
6649 	case LOW_POWER:
6650 		if (val > rps->efficient_freq + 1 &&
6651 		    val > rps->cur_freq)
6652 			new_power = BETWEEN;
6653 		break;
6654 
6655 	case BETWEEN:
6656 		if (val <= rps->efficient_freq &&
6657 		    val < rps->cur_freq)
6658 			new_power = LOW_POWER;
6659 		else if (val >= rps->rp0_freq &&
6660 			 val > rps->cur_freq)
6661 			new_power = HIGH_POWER;
6662 		break;
6663 
6664 	case HIGH_POWER:
6665 		if (val < (rps->rp1_freq + rps->rp0_freq) >> 1 &&
6666 		    val < rps->cur_freq)
6667 			new_power = BETWEEN;
6668 		break;
6669 	}
6670 	/* Max/min bins are special */
6671 	if (val <= rps->min_freq_softlimit)
6672 		new_power = LOW_POWER;
6673 	if (val >= rps->max_freq_softlimit)
6674 		new_power = HIGH_POWER;
6675 
6676 	mutex_lock(&rps->power.mutex);
6677 	if (rps->power.interactive)
6678 		new_power = HIGH_POWER;
6679 	rps_set_power(dev_priv, new_power);
6680 	mutex_unlock(&rps->power.mutex);
6681 }
6682 
intel_rps_mark_interactive(struct drm_i915_private * i915,bool interactive)6683 void intel_rps_mark_interactive(struct drm_i915_private *i915, bool interactive)
6684 {
6685 	struct intel_rps *rps = &i915->gt_pm.rps;
6686 
6687 	if (INTEL_GEN(i915) < 6)
6688 		return;
6689 
6690 	mutex_lock(&rps->power.mutex);
6691 	if (interactive) {
6692 		if (!rps->power.interactive++ && READ_ONCE(i915->gt.awake))
6693 			rps_set_power(i915, HIGH_POWER);
6694 	} else {
6695 		GEM_BUG_ON(!rps->power.interactive);
6696 		rps->power.interactive--;
6697 	}
6698 	mutex_unlock(&rps->power.mutex);
6699 }
6700 
gen6_rps_pm_mask(struct drm_i915_private * dev_priv,u8 val)6701 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
6702 {
6703 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6704 	u32 mask = 0;
6705 
6706 	/* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
6707 	if (val > rps->min_freq_softlimit)
6708 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
6709 	if (val < rps->max_freq_softlimit)
6710 		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
6711 
6712 	mask &= dev_priv->pm_rps_events;
6713 
6714 	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
6715 }
6716 
6717 /* gen6_set_rps is called to update the frequency request, but should also be
6718  * called when the range (min_delay and max_delay) is modified so that we can
6719  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
gen6_set_rps(struct drm_i915_private * dev_priv,u8 val)6720 static int gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
6721 {
6722 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6723 
6724 	/* min/max delay may still have been modified so be sure to
6725 	 * write the limits value.
6726 	 */
6727 	if (val != rps->cur_freq) {
6728 		gen6_set_rps_thresholds(dev_priv, val);
6729 
6730 		if (INTEL_GEN(dev_priv) >= 9)
6731 			I915_WRITE(GEN6_RPNSWREQ,
6732 				   GEN9_FREQUENCY(val));
6733 		else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6734 			I915_WRITE(GEN6_RPNSWREQ,
6735 				   HSW_FREQUENCY(val));
6736 		else
6737 			I915_WRITE(GEN6_RPNSWREQ,
6738 				   GEN6_FREQUENCY(val) |
6739 				   GEN6_OFFSET(0) |
6740 				   GEN6_AGGRESSIVE_TURBO);
6741 	}
6742 
6743 	/* Make sure we continue to get interrupts
6744 	 * until we hit the minimum or maximum frequencies.
6745 	 */
6746 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
6747 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6748 
6749 	rps->cur_freq = val;
6750 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6751 
6752 	return 0;
6753 }
6754 
valleyview_set_rps(struct drm_i915_private * dev_priv,u8 val)6755 static int valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
6756 {
6757 	int err;
6758 
6759 	if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
6760 		      "Odd GPU freq value\n"))
6761 		val &= ~1;
6762 
6763 	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
6764 
6765 	if (val != dev_priv->gt_pm.rps.cur_freq) {
6766 		vlv_punit_get(dev_priv);
6767 		err = vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
6768 		vlv_punit_put(dev_priv);
6769 		if (err)
6770 			return err;
6771 
6772 		gen6_set_rps_thresholds(dev_priv, val);
6773 	}
6774 
6775 	dev_priv->gt_pm.rps.cur_freq = val;
6776 	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
6777 
6778 	return 0;
6779 }
6780 
6781 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
6782  *
6783  * * If Gfx is Idle, then
6784  * 1. Forcewake Media well.
6785  * 2. Request idle freq.
6786  * 3. Release Forcewake of Media well.
6787 */
vlv_set_rps_idle(struct drm_i915_private * dev_priv)6788 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
6789 {
6790 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6791 	u32 val = rps->idle_freq;
6792 	int err;
6793 
6794 	if (rps->cur_freq <= val)
6795 		return;
6796 
6797 	/* The punit delays the write of the frequency and voltage until it
6798 	 * determines the GPU is awake. During normal usage we don't want to
6799 	 * waste power changing the frequency if the GPU is sleeping (rc6).
6800 	 * However, the GPU and driver is now idle and we do not want to delay
6801 	 * switching to minimum voltage (reducing power whilst idle) as we do
6802 	 * not expect to be woken in the near future and so must flush the
6803 	 * change by waking the device.
6804 	 *
6805 	 * We choose to take the media powerwell (either would do to trick the
6806 	 * punit into committing the voltage change) as that takes a lot less
6807 	 * power than the render powerwell.
6808 	 */
6809 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_MEDIA);
6810 	err = valleyview_set_rps(dev_priv, val);
6811 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_MEDIA);
6812 
6813 	if (err)
6814 		DRM_ERROR("Failed to set RPS for idle\n");
6815 }
6816 
gen6_rps_busy(struct drm_i915_private * dev_priv)6817 void gen6_rps_busy(struct drm_i915_private *dev_priv)
6818 {
6819 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6820 
6821 	mutex_lock(&rps->lock);
6822 	if (rps->enabled) {
6823 		u8 freq;
6824 
6825 		if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
6826 			gen6_rps_reset_ei(dev_priv);
6827 		I915_WRITE(GEN6_PMINTRMSK,
6828 			   gen6_rps_pm_mask(dev_priv, rps->cur_freq));
6829 
6830 		gen6_enable_rps_interrupts(dev_priv);
6831 
6832 		/* Use the user's desired frequency as a guide, but for better
6833 		 * performance, jump directly to RPe as our starting frequency.
6834 		 */
6835 		freq = max(rps->cur_freq,
6836 			   rps->efficient_freq);
6837 
6838 		if (intel_set_rps(dev_priv,
6839 				  clamp(freq,
6840 					rps->min_freq_softlimit,
6841 					rps->max_freq_softlimit)))
6842 			DRM_DEBUG_DRIVER("Failed to set idle frequency\n");
6843 	}
6844 	mutex_unlock(&rps->lock);
6845 }
6846 
gen6_rps_idle(struct drm_i915_private * dev_priv)6847 void gen6_rps_idle(struct drm_i915_private *dev_priv)
6848 {
6849 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6850 
6851 	/* Flush our bottom-half so that it does not race with us
6852 	 * setting the idle frequency and so that it is bounded by
6853 	 * our rpm wakeref. And then disable the interrupts to stop any
6854 	 * futher RPS reclocking whilst we are asleep.
6855 	 */
6856 	gen6_disable_rps_interrupts(dev_priv);
6857 
6858 	mutex_lock(&rps->lock);
6859 	if (rps->enabled) {
6860 		if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6861 			vlv_set_rps_idle(dev_priv);
6862 		else
6863 			gen6_set_rps(dev_priv, rps->idle_freq);
6864 		rps->last_adj = 0;
6865 		I915_WRITE(GEN6_PMINTRMSK,
6866 			   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
6867 	}
6868 	mutex_unlock(&rps->lock);
6869 }
6870 
gen6_rps_boost(struct i915_request * rq)6871 void gen6_rps_boost(struct i915_request *rq)
6872 {
6873 	struct intel_rps *rps = &rq->i915->gt_pm.rps;
6874 	unsigned long flags;
6875 	bool boost;
6876 
6877 	/* This is intentionally racy! We peek at the state here, then
6878 	 * validate inside the RPS worker.
6879 	 */
6880 	if (!rps->enabled)
6881 		return;
6882 
6883 	if (i915_request_signaled(rq))
6884 		return;
6885 
6886 	/* Serializes with i915_request_retire() */
6887 	boost = false;
6888 	spin_lock_irqsave(&rq->lock, flags);
6889 	if (!i915_request_has_waitboost(rq) &&
6890 	    !dma_fence_is_signaled_locked(&rq->fence)) {
6891 		boost = !atomic_fetch_inc(&rps->num_waiters);
6892 		rq->flags |= I915_REQUEST_WAITBOOST;
6893 	}
6894 	spin_unlock_irqrestore(&rq->lock, flags);
6895 	if (!boost)
6896 		return;
6897 
6898 	if (READ_ONCE(rps->cur_freq) < rps->boost_freq)
6899 		schedule_work(&rps->work);
6900 
6901 	atomic_inc(&rps->boosts);
6902 }
6903 
intel_set_rps(struct drm_i915_private * dev_priv,u8 val)6904 int intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
6905 {
6906 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
6907 	int err;
6908 
6909 	lockdep_assert_held(&rps->lock);
6910 	GEM_BUG_ON(val > rps->max_freq);
6911 	GEM_BUG_ON(val < rps->min_freq);
6912 
6913 	if (!rps->enabled) {
6914 		rps->cur_freq = val;
6915 		return 0;
6916 	}
6917 
6918 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6919 		err = valleyview_set_rps(dev_priv, val);
6920 	else
6921 		err = gen6_set_rps(dev_priv, val);
6922 
6923 	return err;
6924 }
6925 
gen9_disable_rc6(struct drm_i915_private * dev_priv)6926 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
6927 {
6928 	I915_WRITE(GEN6_RC_CONTROL, 0);
6929 	I915_WRITE(GEN9_PG_ENABLE, 0);
6930 }
6931 
gen9_disable_rps(struct drm_i915_private * dev_priv)6932 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
6933 {
6934 	I915_WRITE(GEN6_RP_CONTROL, 0);
6935 }
6936 
gen6_disable_rc6(struct drm_i915_private * dev_priv)6937 static void gen6_disable_rc6(struct drm_i915_private *dev_priv)
6938 {
6939 	I915_WRITE(GEN6_RC_CONTROL, 0);
6940 }
6941 
gen6_disable_rps(struct drm_i915_private * dev_priv)6942 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
6943 {
6944 	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
6945 	I915_WRITE(GEN6_RP_CONTROL, 0);
6946 }
6947 
cherryview_disable_rc6(struct drm_i915_private * dev_priv)6948 static void cherryview_disable_rc6(struct drm_i915_private *dev_priv)
6949 {
6950 	I915_WRITE(GEN6_RC_CONTROL, 0);
6951 }
6952 
cherryview_disable_rps(struct drm_i915_private * dev_priv)6953 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
6954 {
6955 	I915_WRITE(GEN6_RP_CONTROL, 0);
6956 }
6957 
valleyview_disable_rc6(struct drm_i915_private * dev_priv)6958 static void valleyview_disable_rc6(struct drm_i915_private *dev_priv)
6959 {
6960 	/* We're doing forcewake before Disabling RC6,
6961 	 * This what the BIOS expects when going into suspend */
6962 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
6963 
6964 	I915_WRITE(GEN6_RC_CONTROL, 0);
6965 
6966 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
6967 }
6968 
valleyview_disable_rps(struct drm_i915_private * dev_priv)6969 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
6970 {
6971 	I915_WRITE(GEN6_RP_CONTROL, 0);
6972 }
6973 
bxt_check_bios_rc6_setup(struct drm_i915_private * dev_priv)6974 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
6975 {
6976 	bool enable_rc6 = true;
6977 	unsigned long rc6_ctx_base;
6978 	u32 rc_ctl;
6979 	int rc_sw_target;
6980 
6981 	rc_ctl = I915_READ(GEN6_RC_CONTROL);
6982 	rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
6983 		       RC_SW_TARGET_STATE_SHIFT;
6984 	DRM_DEBUG_DRIVER("BIOS enabled RC states: "
6985 			 "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
6986 			 onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
6987 			 onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
6988 			 rc_sw_target);
6989 
6990 	if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
6991 		DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
6992 		enable_rc6 = false;
6993 	}
6994 
6995 	/*
6996 	 * The exact context size is not known for BXT, so assume a page size
6997 	 * for this check.
6998 	 */
6999 	rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
7000 	if (!((rc6_ctx_base >= dev_priv->dsm_reserved.start) &&
7001 	      (rc6_ctx_base + PAGE_SIZE < dev_priv->dsm_reserved.end))) {
7002 		DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
7003 		enable_rc6 = false;
7004 	}
7005 
7006 	if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
7007 	      ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
7008 	      ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
7009 	      ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
7010 		DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
7011 		enable_rc6 = false;
7012 	}
7013 
7014 	if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
7015 	    !I915_READ(GEN8_PUSHBUS_ENABLE) ||
7016 	    !I915_READ(GEN8_PUSHBUS_SHIFT)) {
7017 		DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
7018 		enable_rc6 = false;
7019 	}
7020 
7021 	if (!I915_READ(GEN6_GFXPAUSE)) {
7022 		DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
7023 		enable_rc6 = false;
7024 	}
7025 
7026 	if (!I915_READ(GEN8_MISC_CTRL0)) {
7027 		DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
7028 		enable_rc6 = false;
7029 	}
7030 
7031 	return enable_rc6;
7032 }
7033 
sanitize_rc6(struct drm_i915_private * i915)7034 static bool sanitize_rc6(struct drm_i915_private *i915)
7035 {
7036 	struct intel_device_info *info = mkwrite_device_info(i915);
7037 
7038 	/* Powersaving is controlled by the host when inside a VM */
7039 	if (intel_vgpu_active(i915)) {
7040 		info->has_rc6 = 0;
7041 		info->has_rps = false;
7042 	}
7043 
7044 	if (info->has_rc6 &&
7045 	    IS_GEN9_LP(i915) && !bxt_check_bios_rc6_setup(i915)) {
7046 		DRM_INFO("RC6 disabled by BIOS\n");
7047 		info->has_rc6 = 0;
7048 	}
7049 
7050 	/*
7051 	 * We assume that we do not have any deep rc6 levels if we don't have
7052 	 * have the previous rc6 level supported, i.e. we use HAS_RC6()
7053 	 * as the initial coarse check for rc6 in general, moving on to
7054 	 * progressively finer/deeper levels.
7055 	 */
7056 	if (!info->has_rc6 && info->has_rc6p)
7057 		info->has_rc6p = 0;
7058 
7059 	return info->has_rc6;
7060 }
7061 
gen6_init_rps_frequencies(struct drm_i915_private * dev_priv)7062 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
7063 {
7064 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7065 
7066 	/* All of these values are in units of 50MHz */
7067 
7068 	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
7069 	if (IS_GEN9_LP(dev_priv)) {
7070 		u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
7071 		rps->rp0_freq = (rp_state_cap >> 16) & 0xff;
7072 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7073 		rps->min_freq = (rp_state_cap >>  0) & 0xff;
7074 	} else {
7075 		u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
7076 		rps->rp0_freq = (rp_state_cap >>  0) & 0xff;
7077 		rps->rp1_freq = (rp_state_cap >>  8) & 0xff;
7078 		rps->min_freq = (rp_state_cap >> 16) & 0xff;
7079 	}
7080 	/* hw_max = RP0 until we check for overclocking */
7081 	rps->max_freq = rps->rp0_freq;
7082 
7083 	rps->efficient_freq = rps->rp1_freq;
7084 	if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
7085 	    IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7086 		u32 ddcc_status = 0;
7087 
7088 		if (sandybridge_pcode_read(dev_priv,
7089 					   HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
7090 					   &ddcc_status, NULL) == 0)
7091 			rps->efficient_freq =
7092 				clamp_t(u8,
7093 					((ddcc_status >> 8) & 0xff),
7094 					rps->min_freq,
7095 					rps->max_freq);
7096 	}
7097 
7098 	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7099 		/* Store the frequency values in 16.66 MHZ units, which is
7100 		 * the natural hardware unit for SKL
7101 		 */
7102 		rps->rp0_freq *= GEN9_FREQ_SCALER;
7103 		rps->rp1_freq *= GEN9_FREQ_SCALER;
7104 		rps->min_freq *= GEN9_FREQ_SCALER;
7105 		rps->max_freq *= GEN9_FREQ_SCALER;
7106 		rps->efficient_freq *= GEN9_FREQ_SCALER;
7107 	}
7108 }
7109 
reset_rps(struct drm_i915_private * dev_priv,int (* set)(struct drm_i915_private *,u8))7110 static void reset_rps(struct drm_i915_private *dev_priv,
7111 		      int (*set)(struct drm_i915_private *, u8))
7112 {
7113 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7114 	u8 freq = rps->cur_freq;
7115 
7116 	/* force a reset */
7117 	rps->power.mode = -1;
7118 	rps->cur_freq = -1;
7119 
7120 	if (set(dev_priv, freq))
7121 		DRM_ERROR("Failed to reset RPS to initial values\n");
7122 }
7123 
7124 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
gen9_enable_rps(struct drm_i915_private * dev_priv)7125 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
7126 {
7127 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7128 
7129 	/* Program defaults and thresholds for RPS */
7130 	if (IS_GEN(dev_priv, 9))
7131 		I915_WRITE(GEN6_RC_VIDEO_FREQ,
7132 			GEN9_FREQUENCY(dev_priv->gt_pm.rps.rp1_freq));
7133 
7134 	/* 1 second timeout*/
7135 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
7136 		GT_INTERVAL_FROM_US(dev_priv, 1000000));
7137 
7138 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
7139 
7140 	/* Leaning on the below call to gen6_set_rps to program/setup the
7141 	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
7142 	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
7143 	reset_rps(dev_priv, gen6_set_rps);
7144 
7145 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7146 }
7147 
gen11_enable_rc6(struct drm_i915_private * dev_priv)7148 static void gen11_enable_rc6(struct drm_i915_private *dev_priv)
7149 {
7150 	struct intel_engine_cs *engine;
7151 	enum intel_engine_id id;
7152 
7153 	/* 1a: Software RC state - RC0 */
7154 	I915_WRITE(GEN6_RC_STATE, 0);
7155 
7156 	/*
7157 	 * 1b: Get forcewake during program sequence. Although the driver
7158 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.
7159 	 */
7160 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7161 
7162 	/* 2a: Disable RC states. */
7163 	I915_WRITE(GEN6_RC_CONTROL, 0);
7164 
7165 	/* 2b: Program RC6 thresholds.*/
7166 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7167 	I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7168 
7169 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7170 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7171 	for_each_engine(engine, dev_priv, id)
7172 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7173 
7174 	if (HAS_GT_UC(dev_priv))
7175 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7176 
7177 	I915_WRITE(GEN6_RC_SLEEP, 0);
7178 
7179 	I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
7180 
7181 	/*
7182 	 * 2c: Program Coarse Power Gating Policies.
7183 	 *
7184 	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7185 	 * use instead is a more conservative estimate for the maximum time
7186 	 * it takes us to service a CS interrupt and submit a new ELSP - that
7187 	 * is the time which the GPU is idle waiting for the CPU to select the
7188 	 * next request to execute. If the idle hysteresis is less than that
7189 	 * interrupt service latency, the hardware will automatically gate
7190 	 * the power well and we will then incur the wake up cost on top of
7191 	 * the service latency. A similar guide from plane_state is that we
7192 	 * do not want the enable hysteresis to less than the wakeup latency.
7193 	 *
7194 	 * igt/gem_exec_nop/sequential provides a rough estimate for the
7195 	 * service latency, and puts it around 10us for Broadwell (and other
7196 	 * big core) and around 40us for Broxton (and other low power cores).
7197 	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
7198 	 * However, the wakeup latency on Broxton is closer to 100us. To be
7199 	 * conservative, we have to factor in a context switch on top (due
7200 	 * to ksoftirqd).
7201 	 */
7202 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7203 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7204 
7205 	/* 3a: Enable RC6 */
7206 	I915_WRITE(GEN6_RC_CONTROL,
7207 		   GEN6_RC_CTL_HW_ENABLE |
7208 		   GEN6_RC_CTL_RC6_ENABLE |
7209 		   GEN6_RC_CTL_EI_MODE(1));
7210 
7211 	/* 3b: Enable Coarse Power Gating only when RC6 is enabled. */
7212 	I915_WRITE(GEN9_PG_ENABLE,
7213 		   GEN9_RENDER_PG_ENABLE |
7214 		   GEN9_MEDIA_PG_ENABLE |
7215 		   GEN11_MEDIA_SAMPLER_PG_ENABLE);
7216 
7217 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7218 }
7219 
gen9_enable_rc6(struct drm_i915_private * dev_priv)7220 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
7221 {
7222 	struct intel_engine_cs *engine;
7223 	enum intel_engine_id id;
7224 	u32 rc6_mode;
7225 
7226 	/* 1a: Software RC state - RC0 */
7227 	I915_WRITE(GEN6_RC_STATE, 0);
7228 
7229 	/* 1b: Get forcewake during program sequence. Although the driver
7230 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7231 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7232 
7233 	/* 2a: Disable RC states. */
7234 	I915_WRITE(GEN6_RC_CONTROL, 0);
7235 
7236 	/* 2b: Program RC6 thresholds.*/
7237 	if (INTEL_GEN(dev_priv) >= 10) {
7238 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16 | 85);
7239 		I915_WRITE(GEN10_MEDIA_WAKE_RATE_LIMIT, 150);
7240 	} else if (IS_SKYLAKE(dev_priv)) {
7241 		/*
7242 		 * WaRsDoubleRc6WrlWithCoarsePowerGating:skl Doubling WRL only
7243 		 * when CPG is enabled
7244 		 */
7245 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
7246 	} else {
7247 		I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
7248 	}
7249 
7250 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7251 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7252 	for_each_engine(engine, dev_priv, id)
7253 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7254 
7255 	if (HAS_GT_UC(dev_priv))
7256 		I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
7257 
7258 	I915_WRITE(GEN6_RC_SLEEP, 0);
7259 
7260 	/*
7261 	 * 2c: Program Coarse Power Gating Policies.
7262 	 *
7263 	 * Bspec's guidance is to use 25us (really 25 * 1280ns) here. What we
7264 	 * use instead is a more conservative estimate for the maximum time
7265 	 * it takes us to service a CS interrupt and submit a new ELSP - that
7266 	 * is the time which the GPU is idle waiting for the CPU to select the
7267 	 * next request to execute. If the idle hysteresis is less than that
7268 	 * interrupt service latency, the hardware will automatically gate
7269 	 * the power well and we will then incur the wake up cost on top of
7270 	 * the service latency. A similar guide from plane_state is that we
7271 	 * do not want the enable hysteresis to less than the wakeup latency.
7272 	 *
7273 	 * igt/gem_exec_nop/sequential provides a rough estimate for the
7274 	 * service latency, and puts it around 10us for Broadwell (and other
7275 	 * big core) and around 40us for Broxton (and other low power cores).
7276 	 * [Note that for legacy ringbuffer submission, this is less than 1us!]
7277 	 * However, the wakeup latency on Broxton is closer to 100us. To be
7278 	 * conservative, we have to factor in a context switch on top (due
7279 	 * to ksoftirqd).
7280 	 */
7281 	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 250);
7282 	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 250);
7283 
7284 	/* 3a: Enable RC6 */
7285 	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
7286 
7287 	/* WaRsUseTimeoutMode:cnl (pre-prod) */
7288 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_C0))
7289 		rc6_mode = GEN7_RC_CTL_TO_MODE;
7290 	else
7291 		rc6_mode = GEN6_RC_CTL_EI_MODE(1);
7292 
7293 	I915_WRITE(GEN6_RC_CONTROL,
7294 		   GEN6_RC_CTL_HW_ENABLE |
7295 		   GEN6_RC_CTL_RC6_ENABLE |
7296 		   rc6_mode);
7297 
7298 	/*
7299 	 * 3b: Enable Coarse Power Gating only when RC6 is enabled.
7300 	 * WaRsDisableCoarsePowerGating:skl,cnl - Render/Media PG need to be disabled with RC6.
7301 	 */
7302 	if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
7303 		I915_WRITE(GEN9_PG_ENABLE, 0);
7304 	else
7305 		I915_WRITE(GEN9_PG_ENABLE,
7306 			   GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE);
7307 
7308 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7309 }
7310 
gen8_enable_rc6(struct drm_i915_private * dev_priv)7311 static void gen8_enable_rc6(struct drm_i915_private *dev_priv)
7312 {
7313 	struct intel_engine_cs *engine;
7314 	enum intel_engine_id id;
7315 
7316 	/* 1a: Software RC state - RC0 */
7317 	I915_WRITE(GEN6_RC_STATE, 0);
7318 
7319 	/* 1b: Get forcewake during program sequence. Although the driver
7320 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7321 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7322 
7323 	/* 2a: Disable RC states. */
7324 	I915_WRITE(GEN6_RC_CONTROL, 0);
7325 
7326 	/* 2b: Program RC6 thresholds.*/
7327 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7328 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7329 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7330 	for_each_engine(engine, dev_priv, id)
7331 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7332 	I915_WRITE(GEN6_RC_SLEEP, 0);
7333 	I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
7334 
7335 	/* 3: Enable RC6 */
7336 
7337 	I915_WRITE(GEN6_RC_CONTROL,
7338 		   GEN6_RC_CTL_HW_ENABLE |
7339 		   GEN7_RC_CTL_TO_MODE |
7340 		   GEN6_RC_CTL_RC6_ENABLE);
7341 
7342 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7343 }
7344 
gen8_enable_rps(struct drm_i915_private * dev_priv)7345 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
7346 {
7347 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7348 
7349 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7350 
7351 	/* 1 Program defaults and thresholds for RPS*/
7352 	I915_WRITE(GEN6_RPNSWREQ,
7353 		   HSW_FREQUENCY(rps->rp1_freq));
7354 	I915_WRITE(GEN6_RC_VIDEO_FREQ,
7355 		   HSW_FREQUENCY(rps->rp1_freq));
7356 	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
7357 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
7358 
7359 	/* Docs recommend 900MHz, and 300 MHz respectively */
7360 	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
7361 		   rps->max_freq_softlimit << 24 |
7362 		   rps->min_freq_softlimit << 16);
7363 
7364 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
7365 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
7366 	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
7367 	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
7368 
7369 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7370 
7371 	/* 2: Enable RPS */
7372 	I915_WRITE(GEN6_RP_CONTROL,
7373 		   GEN6_RP_MEDIA_TURBO |
7374 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7375 		   GEN6_RP_MEDIA_IS_GFX |
7376 		   GEN6_RP_ENABLE |
7377 		   GEN6_RP_UP_BUSY_AVG |
7378 		   GEN6_RP_DOWN_IDLE_AVG);
7379 
7380 	reset_rps(dev_priv, gen6_set_rps);
7381 
7382 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7383 }
7384 
gen6_enable_rc6(struct drm_i915_private * dev_priv)7385 static void gen6_enable_rc6(struct drm_i915_private *dev_priv)
7386 {
7387 	struct intel_engine_cs *engine;
7388 	enum intel_engine_id id;
7389 	u32 rc6vids, rc6_mask;
7390 	u32 gtfifodbg;
7391 	int ret;
7392 
7393 	I915_WRITE(GEN6_RC_STATE, 0);
7394 
7395 	/* Clear the DBG now so we don't confuse earlier errors */
7396 	gtfifodbg = I915_READ(GTFIFODBG);
7397 	if (gtfifodbg) {
7398 		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
7399 		I915_WRITE(GTFIFODBG, gtfifodbg);
7400 	}
7401 
7402 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7403 
7404 	/* disable the counters and set deterministic thresholds */
7405 	I915_WRITE(GEN6_RC_CONTROL, 0);
7406 
7407 	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
7408 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
7409 	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
7410 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
7411 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
7412 
7413 	for_each_engine(engine, dev_priv, id)
7414 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7415 
7416 	I915_WRITE(GEN6_RC_SLEEP, 0);
7417 	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
7418 	if (IS_IVYBRIDGE(dev_priv))
7419 		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
7420 	else
7421 		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
7422 	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
7423 	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
7424 
7425 	/* We don't use those on Haswell */
7426 	rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
7427 	if (HAS_RC6p(dev_priv))
7428 		rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
7429 	if (HAS_RC6pp(dev_priv))
7430 		rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
7431 	I915_WRITE(GEN6_RC_CONTROL,
7432 		   rc6_mask |
7433 		   GEN6_RC_CTL_EI_MODE(1) |
7434 		   GEN6_RC_CTL_HW_ENABLE);
7435 
7436 	rc6vids = 0;
7437 	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS,
7438 				     &rc6vids, NULL);
7439 	if (IS_GEN(dev_priv, 6) && ret) {
7440 		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
7441 	} else if (IS_GEN(dev_priv, 6) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
7442 		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
7443 			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
7444 		rc6vids &= 0xffff00;
7445 		rc6vids |= GEN6_ENCODE_RC6_VID(450);
7446 		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
7447 		if (ret)
7448 			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
7449 	}
7450 
7451 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7452 }
7453 
gen6_enable_rps(struct drm_i915_private * dev_priv)7454 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
7455 {
7456 	/* Here begins a magic sequence of register writes to enable
7457 	 * auto-downclocking.
7458 	 *
7459 	 * Perhaps there might be some value in exposing these to
7460 	 * userspace...
7461 	 */
7462 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7463 
7464 	/* Power down if completely idle for over 50ms */
7465 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
7466 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7467 
7468 	reset_rps(dev_priv, gen6_set_rps);
7469 
7470 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7471 }
7472 
gen6_update_ring_freq(struct drm_i915_private * dev_priv)7473 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
7474 {
7475 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7476 	const int min_freq = 15;
7477 	const int scaling_factor = 180;
7478 	unsigned int gpu_freq;
7479 	unsigned int max_ia_freq, min_ring_freq;
7480 	unsigned int max_gpu_freq, min_gpu_freq;
7481 	struct cpufreq_policy *policy;
7482 
7483 	lockdep_assert_held(&rps->lock);
7484 
7485 	if (rps->max_freq <= rps->min_freq)
7486 		return;
7487 
7488 	policy = cpufreq_cpu_get(0);
7489 	if (policy) {
7490 		max_ia_freq = policy->cpuinfo.max_freq;
7491 		cpufreq_cpu_put(policy);
7492 	} else {
7493 		/*
7494 		 * Default to measured freq if none found, PCU will ensure we
7495 		 * don't go over
7496 		 */
7497 		max_ia_freq = tsc_khz;
7498 	}
7499 
7500 	/* Convert from kHz to MHz */
7501 	max_ia_freq /= 1000;
7502 
7503 	min_ring_freq = I915_READ(DCLK) & 0xf;
7504 	/* convert DDR frequency from units of 266.6MHz to bandwidth */
7505 	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
7506 
7507 	min_gpu_freq = rps->min_freq;
7508 	max_gpu_freq = rps->max_freq;
7509 	if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7510 		/* Convert GT frequency to 50 HZ units */
7511 		min_gpu_freq /= GEN9_FREQ_SCALER;
7512 		max_gpu_freq /= GEN9_FREQ_SCALER;
7513 	}
7514 
7515 	/*
7516 	 * For each potential GPU frequency, load a ring frequency we'd like
7517 	 * to use for memory access.  We do this by specifying the IA frequency
7518 	 * the PCU should use as a reference to determine the ring frequency.
7519 	 */
7520 	for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
7521 		const int diff = max_gpu_freq - gpu_freq;
7522 		unsigned int ia_freq = 0, ring_freq = 0;
7523 
7524 		if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
7525 			/*
7526 			 * ring_freq = 2 * GT. ring_freq is in 100MHz units
7527 			 * No floor required for ring frequency on SKL.
7528 			 */
7529 			ring_freq = gpu_freq;
7530 		} else if (INTEL_GEN(dev_priv) >= 8) {
7531 			/* max(2 * GT, DDR). NB: GT is 50MHz units */
7532 			ring_freq = max(min_ring_freq, gpu_freq);
7533 		} else if (IS_HASWELL(dev_priv)) {
7534 			ring_freq = mult_frac(gpu_freq, 5, 4);
7535 			ring_freq = max(min_ring_freq, ring_freq);
7536 			/* leave ia_freq as the default, chosen by cpufreq */
7537 		} else {
7538 			/* On older processors, there is no separate ring
7539 			 * clock domain, so in order to boost the bandwidth
7540 			 * of the ring, we need to upclock the CPU (ia_freq).
7541 			 *
7542 			 * For GPU frequencies less than 750MHz,
7543 			 * just use the lowest ring freq.
7544 			 */
7545 			if (gpu_freq < min_freq)
7546 				ia_freq = 800;
7547 			else
7548 				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
7549 			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
7550 		}
7551 
7552 		sandybridge_pcode_write(dev_priv,
7553 					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
7554 					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
7555 					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
7556 					gpu_freq);
7557 	}
7558 }
7559 
cherryview_rps_max_freq(struct drm_i915_private * dev_priv)7560 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
7561 {
7562 	u32 val, rp0;
7563 
7564 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7565 
7566 	switch (RUNTIME_INFO(dev_priv)->sseu.eu_total) {
7567 	case 8:
7568 		/* (2 * 4) config */
7569 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
7570 		break;
7571 	case 12:
7572 		/* (2 * 6) config */
7573 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
7574 		break;
7575 	case 16:
7576 		/* (2 * 8) config */
7577 	default:
7578 		/* Setting (2 * 8) Min RP0 for any other combination */
7579 		rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
7580 		break;
7581 	}
7582 
7583 	rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
7584 
7585 	return rp0;
7586 }
7587 
cherryview_rps_rpe_freq(struct drm_i915_private * dev_priv)7588 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7589 {
7590 	u32 val, rpe;
7591 
7592 	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
7593 	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
7594 
7595 	return rpe;
7596 }
7597 
cherryview_rps_guar_freq(struct drm_i915_private * dev_priv)7598 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
7599 {
7600 	u32 val, rp1;
7601 
7602 	val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
7603 	rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
7604 
7605 	return rp1;
7606 }
7607 
cherryview_rps_min_freq(struct drm_i915_private * dev_priv)7608 static u32 cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
7609 {
7610 	u32 val, rpn;
7611 
7612 	val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
7613 	rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
7614 		       FB_GFX_FREQ_FUSE_MASK);
7615 
7616 	return rpn;
7617 }
7618 
valleyview_rps_guar_freq(struct drm_i915_private * dev_priv)7619 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
7620 {
7621 	u32 val, rp1;
7622 
7623 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7624 
7625 	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
7626 
7627 	return rp1;
7628 }
7629 
valleyview_rps_max_freq(struct drm_i915_private * dev_priv)7630 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
7631 {
7632 	u32 val, rp0;
7633 
7634 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
7635 
7636 	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
7637 	/* Clamp to max */
7638 	rp0 = min_t(u32, rp0, 0xea);
7639 
7640 	return rp0;
7641 }
7642 
valleyview_rps_rpe_freq(struct drm_i915_private * dev_priv)7643 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
7644 {
7645 	u32 val, rpe;
7646 
7647 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
7648 	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
7649 	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
7650 	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
7651 
7652 	return rpe;
7653 }
7654 
valleyview_rps_min_freq(struct drm_i915_private * dev_priv)7655 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
7656 {
7657 	u32 val;
7658 
7659 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
7660 	/*
7661 	 * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
7662 	 * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
7663 	 * a BYT-M B0 the above register contains 0xbf. Moreover when setting
7664 	 * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
7665 	 * to make sure it matches what Punit accepts.
7666 	 */
7667 	return max_t(u32, val, 0xc0);
7668 }
7669 
7670 /* Check that the pctx buffer wasn't move under us. */
valleyview_check_pctx(struct drm_i915_private * dev_priv)7671 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
7672 {
7673 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7674 
7675 	WARN_ON(pctx_addr != dev_priv->dsm.start +
7676 			     dev_priv->vlv_pctx->stolen->start);
7677 }
7678 
7679 
7680 /* Check that the pcbr address is not empty. */
cherryview_check_pctx(struct drm_i915_private * dev_priv)7681 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
7682 {
7683 	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
7684 
7685 	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
7686 }
7687 
cherryview_setup_pctx(struct drm_i915_private * dev_priv)7688 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
7689 {
7690 	resource_size_t pctx_paddr, paddr;
7691 	resource_size_t pctx_size = 32*1024;
7692 	u32 pcbr;
7693 
7694 	pcbr = I915_READ(VLV_PCBR);
7695 	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
7696 		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7697 		paddr = dev_priv->dsm.end + 1 - pctx_size;
7698 		GEM_BUG_ON(paddr > U32_MAX);
7699 
7700 		pctx_paddr = (paddr & (~4095));
7701 		I915_WRITE(VLV_PCBR, pctx_paddr);
7702 	}
7703 
7704 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7705 }
7706 
valleyview_setup_pctx(struct drm_i915_private * dev_priv)7707 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
7708 {
7709 	struct drm_i915_gem_object *pctx;
7710 	resource_size_t pctx_paddr;
7711 	resource_size_t pctx_size = 24*1024;
7712 	u32 pcbr;
7713 
7714 	pcbr = I915_READ(VLV_PCBR);
7715 	if (pcbr) {
7716 		/* BIOS set it up already, grab the pre-alloc'd space */
7717 		resource_size_t pcbr_offset;
7718 
7719 		pcbr_offset = (pcbr & (~4095)) - dev_priv->dsm.start;
7720 		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv,
7721 								      pcbr_offset,
7722 								      I915_GTT_OFFSET_NONE,
7723 								      pctx_size);
7724 		goto out;
7725 	}
7726 
7727 	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
7728 
7729 	/*
7730 	 * From the Gunit register HAS:
7731 	 * The Gfx driver is expected to program this register and ensure
7732 	 * proper allocation within Gfx stolen memory.  For example, this
7733 	 * register should be programmed such than the PCBR range does not
7734 	 * overlap with other ranges, such as the frame buffer, protected
7735 	 * memory, or any other relevant ranges.
7736 	 */
7737 	pctx = i915_gem_object_create_stolen(dev_priv, pctx_size);
7738 	if (!pctx) {
7739 		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
7740 		goto out;
7741 	}
7742 
7743 	GEM_BUG_ON(range_overflows_t(u64,
7744 				     dev_priv->dsm.start,
7745 				     pctx->stolen->start,
7746 				     U32_MAX));
7747 	pctx_paddr = dev_priv->dsm.start + pctx->stolen->start;
7748 	I915_WRITE(VLV_PCBR, pctx_paddr);
7749 
7750 out:
7751 	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
7752 	dev_priv->vlv_pctx = pctx;
7753 }
7754 
valleyview_cleanup_pctx(struct drm_i915_private * dev_priv)7755 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
7756 {
7757 	struct drm_i915_gem_object *pctx;
7758 
7759 	pctx = fetch_and_zero(&dev_priv->vlv_pctx);
7760 	if (pctx)
7761 		i915_gem_object_put(pctx);
7762 }
7763 
vlv_init_gpll_ref_freq(struct drm_i915_private * dev_priv)7764 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
7765 {
7766 	dev_priv->gt_pm.rps.gpll_ref_freq =
7767 		vlv_get_cck_clock(dev_priv, "GPLL ref",
7768 				  CCK_GPLL_CLOCK_CONTROL,
7769 				  dev_priv->czclk_freq);
7770 
7771 	DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
7772 			 dev_priv->gt_pm.rps.gpll_ref_freq);
7773 }
7774 
valleyview_init_gt_powersave(struct drm_i915_private * dev_priv)7775 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
7776 {
7777 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7778 	u32 val;
7779 
7780 	valleyview_setup_pctx(dev_priv);
7781 
7782 	vlv_iosf_sb_get(dev_priv,
7783 			BIT(VLV_IOSF_SB_PUNIT) |
7784 			BIT(VLV_IOSF_SB_NC) |
7785 			BIT(VLV_IOSF_SB_CCK));
7786 
7787 	vlv_init_gpll_ref_freq(dev_priv);
7788 
7789 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7790 	switch ((val >> 6) & 3) {
7791 	case 0:
7792 	case 1:
7793 		dev_priv->mem_freq = 800;
7794 		break;
7795 	case 2:
7796 		dev_priv->mem_freq = 1066;
7797 		break;
7798 	case 3:
7799 		dev_priv->mem_freq = 1333;
7800 		break;
7801 	}
7802 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7803 
7804 	rps->max_freq = valleyview_rps_max_freq(dev_priv);
7805 	rps->rp0_freq = rps->max_freq;
7806 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7807 			 intel_gpu_freq(dev_priv, rps->max_freq),
7808 			 rps->max_freq);
7809 
7810 	rps->efficient_freq = valleyview_rps_rpe_freq(dev_priv);
7811 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7812 			 intel_gpu_freq(dev_priv, rps->efficient_freq),
7813 			 rps->efficient_freq);
7814 
7815 	rps->rp1_freq = valleyview_rps_guar_freq(dev_priv);
7816 	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
7817 			 intel_gpu_freq(dev_priv, rps->rp1_freq),
7818 			 rps->rp1_freq);
7819 
7820 	rps->min_freq = valleyview_rps_min_freq(dev_priv);
7821 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7822 			 intel_gpu_freq(dev_priv, rps->min_freq),
7823 			 rps->min_freq);
7824 
7825 	vlv_iosf_sb_put(dev_priv,
7826 			BIT(VLV_IOSF_SB_PUNIT) |
7827 			BIT(VLV_IOSF_SB_NC) |
7828 			BIT(VLV_IOSF_SB_CCK));
7829 }
7830 
cherryview_init_gt_powersave(struct drm_i915_private * dev_priv)7831 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
7832 {
7833 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
7834 	u32 val;
7835 
7836 	cherryview_setup_pctx(dev_priv);
7837 
7838 	vlv_iosf_sb_get(dev_priv,
7839 			BIT(VLV_IOSF_SB_PUNIT) |
7840 			BIT(VLV_IOSF_SB_NC) |
7841 			BIT(VLV_IOSF_SB_CCK));
7842 
7843 	vlv_init_gpll_ref_freq(dev_priv);
7844 
7845 	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
7846 
7847 	switch ((val >> 2) & 0x7) {
7848 	case 3:
7849 		dev_priv->mem_freq = 2000;
7850 		break;
7851 	default:
7852 		dev_priv->mem_freq = 1600;
7853 		break;
7854 	}
7855 	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
7856 
7857 	rps->max_freq = cherryview_rps_max_freq(dev_priv);
7858 	rps->rp0_freq = rps->max_freq;
7859 	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
7860 			 intel_gpu_freq(dev_priv, rps->max_freq),
7861 			 rps->max_freq);
7862 
7863 	rps->efficient_freq = cherryview_rps_rpe_freq(dev_priv);
7864 	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
7865 			 intel_gpu_freq(dev_priv, rps->efficient_freq),
7866 			 rps->efficient_freq);
7867 
7868 	rps->rp1_freq = cherryview_rps_guar_freq(dev_priv);
7869 	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
7870 			 intel_gpu_freq(dev_priv, rps->rp1_freq),
7871 			 rps->rp1_freq);
7872 
7873 	rps->min_freq = cherryview_rps_min_freq(dev_priv);
7874 	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
7875 			 intel_gpu_freq(dev_priv, rps->min_freq),
7876 			 rps->min_freq);
7877 
7878 	vlv_iosf_sb_put(dev_priv,
7879 			BIT(VLV_IOSF_SB_PUNIT) |
7880 			BIT(VLV_IOSF_SB_NC) |
7881 			BIT(VLV_IOSF_SB_CCK));
7882 
7883 	WARN_ONCE((rps->max_freq | rps->efficient_freq | rps->rp1_freq |
7884 		   rps->min_freq) & 1,
7885 		  "Odd GPU freq values\n");
7886 }
7887 
valleyview_cleanup_gt_powersave(struct drm_i915_private * dev_priv)7888 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
7889 {
7890 	valleyview_cleanup_pctx(dev_priv);
7891 }
7892 
cherryview_enable_rc6(struct drm_i915_private * dev_priv)7893 static void cherryview_enable_rc6(struct drm_i915_private *dev_priv)
7894 {
7895 	struct intel_engine_cs *engine;
7896 	enum intel_engine_id id;
7897 	u32 gtfifodbg, rc6_mode, pcbr;
7898 
7899 	gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
7900 					     GT_FIFO_FREE_ENTRIES_CHV);
7901 	if (gtfifodbg) {
7902 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
7903 				 gtfifodbg);
7904 		I915_WRITE(GTFIFODBG, gtfifodbg);
7905 	}
7906 
7907 	cherryview_check_pctx(dev_priv);
7908 
7909 	/* 1a & 1b: Get forcewake during program sequence. Although the driver
7910 	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
7911 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7912 
7913 	/*  Disable RC states. */
7914 	I915_WRITE(GEN6_RC_CONTROL, 0);
7915 
7916 	/* 2a: Program RC6 thresholds.*/
7917 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
7918 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
7919 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
7920 
7921 	for_each_engine(engine, dev_priv, id)
7922 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
7923 	I915_WRITE(GEN6_RC_SLEEP, 0);
7924 
7925 	/* TO threshold set to 500 us ( 0x186 * 1.28 us) */
7926 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
7927 
7928 	/* Allows RC6 residency counter to work */
7929 	I915_WRITE(VLV_COUNTER_CONTROL,
7930 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
7931 				      VLV_MEDIA_RC6_COUNT_EN |
7932 				      VLV_RENDER_RC6_COUNT_EN));
7933 
7934 	/* For now we assume BIOS is allocating and populating the PCBR  */
7935 	pcbr = I915_READ(VLV_PCBR);
7936 
7937 	/* 3: Enable RC6 */
7938 	rc6_mode = 0;
7939 	if (pcbr >> VLV_PCBR_ADDR_SHIFT)
7940 		rc6_mode = GEN7_RC_CTL_TO_MODE;
7941 	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
7942 
7943 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7944 }
7945 
cherryview_enable_rps(struct drm_i915_private * dev_priv)7946 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
7947 {
7948 	u32 val;
7949 
7950 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
7951 
7952 	/* 1: Program defaults and thresholds for RPS*/
7953 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
7954 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
7955 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
7956 	I915_WRITE(GEN6_RP_UP_EI, 66000);
7957 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
7958 
7959 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
7960 
7961 	/* 2: Enable RPS */
7962 	I915_WRITE(GEN6_RP_CONTROL,
7963 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
7964 		   GEN6_RP_MEDIA_IS_GFX |
7965 		   GEN6_RP_ENABLE |
7966 		   GEN6_RP_UP_BUSY_AVG |
7967 		   GEN6_RP_DOWN_IDLE_AVG);
7968 
7969 	/* Setting Fixed Bias */
7970 	vlv_punit_get(dev_priv);
7971 
7972 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | CHV_BIAS_CPU_50_SOC_50;
7973 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
7974 
7975 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
7976 
7977 	vlv_punit_put(dev_priv);
7978 
7979 	/* RPS code assumes GPLL is used */
7980 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
7981 
7982 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
7983 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
7984 
7985 	reset_rps(dev_priv, valleyview_set_rps);
7986 
7987 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
7988 }
7989 
valleyview_enable_rc6(struct drm_i915_private * dev_priv)7990 static void valleyview_enable_rc6(struct drm_i915_private *dev_priv)
7991 {
7992 	struct intel_engine_cs *engine;
7993 	enum intel_engine_id id;
7994 	u32 gtfifodbg;
7995 
7996 	valleyview_check_pctx(dev_priv);
7997 
7998 	gtfifodbg = I915_READ(GTFIFODBG);
7999 	if (gtfifodbg) {
8000 		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
8001 				 gtfifodbg);
8002 		I915_WRITE(GTFIFODBG, gtfifodbg);
8003 	}
8004 
8005 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8006 
8007 	/*  Disable RC states. */
8008 	I915_WRITE(GEN6_RC_CONTROL, 0);
8009 
8010 	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
8011 	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
8012 	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
8013 
8014 	for_each_engine(engine, dev_priv, id)
8015 		I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
8016 
8017 	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
8018 
8019 	/* Allows RC6 residency counter to work */
8020 	I915_WRITE(VLV_COUNTER_CONTROL,
8021 		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
8022 				      VLV_MEDIA_RC0_COUNT_EN |
8023 				      VLV_RENDER_RC0_COUNT_EN |
8024 				      VLV_MEDIA_RC6_COUNT_EN |
8025 				      VLV_RENDER_RC6_COUNT_EN));
8026 
8027 	I915_WRITE(GEN6_RC_CONTROL,
8028 		   GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL);
8029 
8030 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8031 }
8032 
valleyview_enable_rps(struct drm_i915_private * dev_priv)8033 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
8034 {
8035 	u32 val;
8036 
8037 	intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
8038 
8039 	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
8040 	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
8041 	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
8042 	I915_WRITE(GEN6_RP_UP_EI, 66000);
8043 	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
8044 
8045 	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
8046 
8047 	I915_WRITE(GEN6_RP_CONTROL,
8048 		   GEN6_RP_MEDIA_TURBO |
8049 		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
8050 		   GEN6_RP_MEDIA_IS_GFX |
8051 		   GEN6_RP_ENABLE |
8052 		   GEN6_RP_UP_BUSY_AVG |
8053 		   GEN6_RP_DOWN_IDLE_CONT);
8054 
8055 	vlv_punit_get(dev_priv);
8056 
8057 	/* Setting Fixed Bias */
8058 	val = VLV_OVERRIDE_EN | VLV_SOC_TDP_EN | VLV_BIAS_CPU_125_SOC_875;
8059 	vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
8060 
8061 	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
8062 
8063 	vlv_punit_put(dev_priv);
8064 
8065 	/* RPS code assumes GPLL is used */
8066 	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
8067 
8068 	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
8069 	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
8070 
8071 	reset_rps(dev_priv, valleyview_set_rps);
8072 
8073 	intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
8074 }
8075 
intel_pxfreq(u32 vidfreq)8076 static unsigned long intel_pxfreq(u32 vidfreq)
8077 {
8078 	unsigned long freq;
8079 	int div = (vidfreq & 0x3f0000) >> 16;
8080 	int post = (vidfreq & 0x3000) >> 12;
8081 	int pre = (vidfreq & 0x7);
8082 
8083 	if (!pre)
8084 		return 0;
8085 
8086 	freq = ((div * 133333) / ((1<<post) * pre));
8087 
8088 	return freq;
8089 }
8090 
8091 static const struct cparams {
8092 	u16 i;
8093 	u16 t;
8094 	u16 m;
8095 	u16 c;
8096 } cparams[] = {
8097 	{ 1, 1333, 301, 28664 },
8098 	{ 1, 1066, 294, 24460 },
8099 	{ 1, 800, 294, 25192 },
8100 	{ 0, 1333, 276, 27605 },
8101 	{ 0, 1066, 276, 27605 },
8102 	{ 0, 800, 231, 23784 },
8103 };
8104 
__i915_chipset_val(struct drm_i915_private * dev_priv)8105 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
8106 {
8107 	u64 total_count, diff, ret;
8108 	u32 count1, count2, count3, m = 0, c = 0;
8109 	unsigned long now = jiffies_to_msecs(jiffies), diff1;
8110 	int i;
8111 
8112 	lockdep_assert_held(&mchdev_lock);
8113 
8114 	diff1 = now - dev_priv->ips.last_time1;
8115 
8116 	/* Prevent division-by-zero if we are asking too fast.
8117 	 * Also, we don't get interesting results if we are polling
8118 	 * faster than once in 10ms, so just return the saved value
8119 	 * in such cases.
8120 	 */
8121 	if (diff1 <= 10)
8122 		return dev_priv->ips.chipset_power;
8123 
8124 	count1 = I915_READ(DMIEC);
8125 	count2 = I915_READ(DDREC);
8126 	count3 = I915_READ(CSIEC);
8127 
8128 	total_count = count1 + count2 + count3;
8129 
8130 	/* FIXME: handle per-counter overflow */
8131 	if (total_count < dev_priv->ips.last_count1) {
8132 		diff = ~0UL - dev_priv->ips.last_count1;
8133 		diff += total_count;
8134 	} else {
8135 		diff = total_count - dev_priv->ips.last_count1;
8136 	}
8137 
8138 	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
8139 		if (cparams[i].i == dev_priv->ips.c_m &&
8140 		    cparams[i].t == dev_priv->ips.r_t) {
8141 			m = cparams[i].m;
8142 			c = cparams[i].c;
8143 			break;
8144 		}
8145 	}
8146 
8147 	diff = div_u64(diff, diff1);
8148 	ret = ((m * diff) + c);
8149 	ret = div_u64(ret, 10);
8150 
8151 	dev_priv->ips.last_count1 = total_count;
8152 	dev_priv->ips.last_time1 = now;
8153 
8154 	dev_priv->ips.chipset_power = ret;
8155 
8156 	return ret;
8157 }
8158 
i915_chipset_val(struct drm_i915_private * dev_priv)8159 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
8160 {
8161 	intel_wakeref_t wakeref;
8162 	unsigned long val = 0;
8163 
8164 	if (!IS_GEN(dev_priv, 5))
8165 		return 0;
8166 
8167 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8168 		spin_lock_irq(&mchdev_lock);
8169 		val = __i915_chipset_val(dev_priv);
8170 		spin_unlock_irq(&mchdev_lock);
8171 	}
8172 
8173 	return val;
8174 }
8175 
i915_mch_val(struct drm_i915_private * i915)8176 unsigned long i915_mch_val(struct drm_i915_private *i915)
8177 {
8178 	unsigned long m, x, b;
8179 	u32 tsfs;
8180 
8181 	tsfs = intel_uncore_read(&i915->uncore, TSFS);
8182 
8183 	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
8184 	x = intel_uncore_read8(&i915->uncore, TR1);
8185 
8186 	b = tsfs & TSFS_INTR_MASK;
8187 
8188 	return ((m * x) / 127) - b;
8189 }
8190 
_pxvid_to_vd(u8 pxvid)8191 static int _pxvid_to_vd(u8 pxvid)
8192 {
8193 	if (pxvid == 0)
8194 		return 0;
8195 
8196 	if (pxvid >= 8 && pxvid < 31)
8197 		pxvid = 31;
8198 
8199 	return (pxvid + 2) * 125;
8200 }
8201 
pvid_to_extvid(struct drm_i915_private * dev_priv,u8 pxvid)8202 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
8203 {
8204 	const int vd = _pxvid_to_vd(pxvid);
8205 	const int vm = vd - 1125;
8206 
8207 	if (INTEL_INFO(dev_priv)->is_mobile)
8208 		return vm > 0 ? vm : 0;
8209 
8210 	return vd;
8211 }
8212 
__i915_update_gfx_val(struct drm_i915_private * dev_priv)8213 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
8214 {
8215 	u64 now, diff, diffms;
8216 	u32 count;
8217 
8218 	lockdep_assert_held(&mchdev_lock);
8219 
8220 	now = ktime_get_raw_ns();
8221 	diffms = now - dev_priv->ips.last_time2;
8222 	do_div(diffms, NSEC_PER_MSEC);
8223 
8224 	/* Don't divide by 0 */
8225 	if (!diffms)
8226 		return;
8227 
8228 	count = I915_READ(GFXEC);
8229 
8230 	if (count < dev_priv->ips.last_count2) {
8231 		diff = ~0UL - dev_priv->ips.last_count2;
8232 		diff += count;
8233 	} else {
8234 		diff = count - dev_priv->ips.last_count2;
8235 	}
8236 
8237 	dev_priv->ips.last_count2 = count;
8238 	dev_priv->ips.last_time2 = now;
8239 
8240 	/* More magic constants... */
8241 	diff = diff * 1181;
8242 	diff = div_u64(diff, diffms * 10);
8243 	dev_priv->ips.gfx_power = diff;
8244 }
8245 
i915_update_gfx_val(struct drm_i915_private * dev_priv)8246 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
8247 {
8248 	intel_wakeref_t wakeref;
8249 
8250 	if (!IS_GEN(dev_priv, 5))
8251 		return;
8252 
8253 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8254 		spin_lock_irq(&mchdev_lock);
8255 		__i915_update_gfx_val(dev_priv);
8256 		spin_unlock_irq(&mchdev_lock);
8257 	}
8258 }
8259 
__i915_gfx_val(struct drm_i915_private * dev_priv)8260 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
8261 {
8262 	unsigned long t, corr, state1, corr2, state2;
8263 	u32 pxvid, ext_v;
8264 
8265 	lockdep_assert_held(&mchdev_lock);
8266 
8267 	pxvid = I915_READ(PXVFREQ(dev_priv->gt_pm.rps.cur_freq));
8268 	pxvid = (pxvid >> 24) & 0x7f;
8269 	ext_v = pvid_to_extvid(dev_priv, pxvid);
8270 
8271 	state1 = ext_v;
8272 
8273 	t = i915_mch_val(dev_priv);
8274 
8275 	/* Revel in the empirically derived constants */
8276 
8277 	/* Correction factor in 1/100000 units */
8278 	if (t > 80)
8279 		corr = ((t * 2349) + 135940);
8280 	else if (t >= 50)
8281 		corr = ((t * 964) + 29317);
8282 	else /* < 50 */
8283 		corr = ((t * 301) + 1004);
8284 
8285 	corr = corr * ((150142 * state1) / 10000 - 78642);
8286 	corr /= 100000;
8287 	corr2 = (corr * dev_priv->ips.corr);
8288 
8289 	state2 = (corr2 * state1) / 10000;
8290 	state2 /= 100; /* convert to mW */
8291 
8292 	__i915_update_gfx_val(dev_priv);
8293 
8294 	return dev_priv->ips.gfx_power + state2;
8295 }
8296 
i915_gfx_val(struct drm_i915_private * dev_priv)8297 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
8298 {
8299 	intel_wakeref_t wakeref;
8300 	unsigned long val = 0;
8301 
8302 	if (!IS_GEN(dev_priv, 5))
8303 		return 0;
8304 
8305 	with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
8306 		spin_lock_irq(&mchdev_lock);
8307 		val = __i915_gfx_val(dev_priv);
8308 		spin_unlock_irq(&mchdev_lock);
8309 	}
8310 
8311 	return val;
8312 }
8313 
8314 static struct drm_i915_private __rcu *i915_mch_dev;
8315 
mchdev_get(void)8316 static struct drm_i915_private *mchdev_get(void)
8317 {
8318 	struct drm_i915_private *i915;
8319 
8320 	rcu_read_lock();
8321 	i915 = rcu_dereference(i915_mch_dev);
8322 	if (!kref_get_unless_zero(&i915->drm.ref))
8323 		i915 = NULL;
8324 	rcu_read_unlock();
8325 
8326 	return i915;
8327 }
8328 
8329 /**
8330  * i915_read_mch_val - return value for IPS use
8331  *
8332  * Calculate and return a value for the IPS driver to use when deciding whether
8333  * we have thermal and power headroom to increase CPU or GPU power budget.
8334  */
i915_read_mch_val(void)8335 unsigned long i915_read_mch_val(void)
8336 {
8337 	struct drm_i915_private *i915;
8338 	unsigned long chipset_val = 0;
8339 	unsigned long graphics_val = 0;
8340 	intel_wakeref_t wakeref;
8341 
8342 	i915 = mchdev_get();
8343 	if (!i915)
8344 		return 0;
8345 
8346 	with_intel_runtime_pm(&i915->runtime_pm, wakeref) {
8347 		spin_lock_irq(&mchdev_lock);
8348 		chipset_val = __i915_chipset_val(i915);
8349 		graphics_val = __i915_gfx_val(i915);
8350 		spin_unlock_irq(&mchdev_lock);
8351 	}
8352 
8353 	drm_dev_put(&i915->drm);
8354 	return chipset_val + graphics_val;
8355 }
8356 EXPORT_SYMBOL_GPL(i915_read_mch_val);
8357 
8358 /**
8359  * i915_gpu_raise - raise GPU frequency limit
8360  *
8361  * Raise the limit; IPS indicates we have thermal headroom.
8362  */
i915_gpu_raise(void)8363 bool i915_gpu_raise(void)
8364 {
8365 	struct drm_i915_private *i915;
8366 
8367 	i915 = mchdev_get();
8368 	if (!i915)
8369 		return false;
8370 
8371 	spin_lock_irq(&mchdev_lock);
8372 	if (i915->ips.max_delay > i915->ips.fmax)
8373 		i915->ips.max_delay--;
8374 	spin_unlock_irq(&mchdev_lock);
8375 
8376 	drm_dev_put(&i915->drm);
8377 	return true;
8378 }
8379 EXPORT_SYMBOL_GPL(i915_gpu_raise);
8380 
8381 /**
8382  * i915_gpu_lower - lower GPU frequency limit
8383  *
8384  * IPS indicates we're close to a thermal limit, so throttle back the GPU
8385  * frequency maximum.
8386  */
i915_gpu_lower(void)8387 bool i915_gpu_lower(void)
8388 {
8389 	struct drm_i915_private *i915;
8390 
8391 	i915 = mchdev_get();
8392 	if (!i915)
8393 		return false;
8394 
8395 	spin_lock_irq(&mchdev_lock);
8396 	if (i915->ips.max_delay < i915->ips.min_delay)
8397 		i915->ips.max_delay++;
8398 	spin_unlock_irq(&mchdev_lock);
8399 
8400 	drm_dev_put(&i915->drm);
8401 	return true;
8402 }
8403 EXPORT_SYMBOL_GPL(i915_gpu_lower);
8404 
8405 /**
8406  * i915_gpu_busy - indicate GPU business to IPS
8407  *
8408  * Tell the IPS driver whether or not the GPU is busy.
8409  */
i915_gpu_busy(void)8410 bool i915_gpu_busy(void)
8411 {
8412 	struct drm_i915_private *i915;
8413 	bool ret;
8414 
8415 	i915 = mchdev_get();
8416 	if (!i915)
8417 		return false;
8418 
8419 	ret = i915->gt.awake;
8420 
8421 	drm_dev_put(&i915->drm);
8422 	return ret;
8423 }
8424 EXPORT_SYMBOL_GPL(i915_gpu_busy);
8425 
8426 /**
8427  * i915_gpu_turbo_disable - disable graphics turbo
8428  *
8429  * Disable graphics turbo by resetting the max frequency and setting the
8430  * current frequency to the default.
8431  */
i915_gpu_turbo_disable(void)8432 bool i915_gpu_turbo_disable(void)
8433 {
8434 	struct drm_i915_private *i915;
8435 	bool ret;
8436 
8437 	i915 = mchdev_get();
8438 	if (!i915)
8439 		return false;
8440 
8441 	spin_lock_irq(&mchdev_lock);
8442 	i915->ips.max_delay = i915->ips.fstart;
8443 	ret = ironlake_set_drps(i915, i915->ips.fstart);
8444 	spin_unlock_irq(&mchdev_lock);
8445 
8446 	drm_dev_put(&i915->drm);
8447 	return ret;
8448 }
8449 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
8450 
8451 /**
8452  * Tells the intel_ips driver that the i915 driver is now loaded, if
8453  * IPS got loaded first.
8454  *
8455  * This awkward dance is so that neither module has to depend on the
8456  * other in order for IPS to do the appropriate communication of
8457  * GPU turbo limits to i915.
8458  */
8459 static void
ips_ping_for_i915_load(void)8460 ips_ping_for_i915_load(void)
8461 {
8462 	void (*link)(void);
8463 
8464 	link = symbol_get(ips_link_to_i915_driver);
8465 	if (link) {
8466 		link();
8467 		symbol_put(ips_link_to_i915_driver);
8468 	}
8469 }
8470 
intel_gpu_ips_init(struct drm_i915_private * dev_priv)8471 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
8472 {
8473 	/* We only register the i915 ips part with intel-ips once everything is
8474 	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
8475 	rcu_assign_pointer(i915_mch_dev, dev_priv);
8476 
8477 	ips_ping_for_i915_load();
8478 }
8479 
intel_gpu_ips_teardown(void)8480 void intel_gpu_ips_teardown(void)
8481 {
8482 	rcu_assign_pointer(i915_mch_dev, NULL);
8483 }
8484 
intel_init_emon(struct drm_i915_private * dev_priv)8485 static void intel_init_emon(struct drm_i915_private *dev_priv)
8486 {
8487 	u32 lcfuse;
8488 	u8 pxw[16];
8489 	int i;
8490 
8491 	/* Disable to program */
8492 	I915_WRITE(ECR, 0);
8493 	POSTING_READ(ECR);
8494 
8495 	/* Program energy weights for various events */
8496 	I915_WRITE(SDEW, 0x15040d00);
8497 	I915_WRITE(CSIEW0, 0x007f0000);
8498 	I915_WRITE(CSIEW1, 0x1e220004);
8499 	I915_WRITE(CSIEW2, 0x04000004);
8500 
8501 	for (i = 0; i < 5; i++)
8502 		I915_WRITE(PEW(i), 0);
8503 	for (i = 0; i < 3; i++)
8504 		I915_WRITE(DEW(i), 0);
8505 
8506 	/* Program P-state weights to account for frequency power adjustment */
8507 	for (i = 0; i < 16; i++) {
8508 		u32 pxvidfreq = I915_READ(PXVFREQ(i));
8509 		unsigned long freq = intel_pxfreq(pxvidfreq);
8510 		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
8511 			PXVFREQ_PX_SHIFT;
8512 		unsigned long val;
8513 
8514 		val = vid * vid;
8515 		val *= (freq / 1000);
8516 		val *= 255;
8517 		val /= (127*127*900);
8518 		if (val > 0xff)
8519 			DRM_ERROR("bad pxval: %ld\n", val);
8520 		pxw[i] = val;
8521 	}
8522 	/* Render standby states get 0 weight */
8523 	pxw[14] = 0;
8524 	pxw[15] = 0;
8525 
8526 	for (i = 0; i < 4; i++) {
8527 		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
8528 			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
8529 		I915_WRITE(PXW(i), val);
8530 	}
8531 
8532 	/* Adjust magic regs to magic values (more experimental results) */
8533 	I915_WRITE(OGW0, 0);
8534 	I915_WRITE(OGW1, 0);
8535 	I915_WRITE(EG0, 0x00007f00);
8536 	I915_WRITE(EG1, 0x0000000e);
8537 	I915_WRITE(EG2, 0x000e0000);
8538 	I915_WRITE(EG3, 0x68000300);
8539 	I915_WRITE(EG4, 0x42000000);
8540 	I915_WRITE(EG5, 0x00140031);
8541 	I915_WRITE(EG6, 0);
8542 	I915_WRITE(EG7, 0);
8543 
8544 	for (i = 0; i < 8; i++)
8545 		I915_WRITE(PXWL(i), 0);
8546 
8547 	/* Enable PMON + select events */
8548 	I915_WRITE(ECR, 0x80000019);
8549 
8550 	lcfuse = I915_READ(LCFUSE02);
8551 
8552 	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
8553 }
8554 
i915_rc6_ctx_corrupted(struct drm_i915_private * dev_priv)8555 static bool i915_rc6_ctx_corrupted(struct drm_i915_private *dev_priv)
8556 {
8557 	return !I915_READ(GEN8_RC6_CTX_INFO);
8558 }
8559 
i915_rc6_ctx_wa_init(struct drm_i915_private * i915)8560 static void i915_rc6_ctx_wa_init(struct drm_i915_private *i915)
8561 {
8562 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8563 		return;
8564 
8565 	if (i915_rc6_ctx_corrupted(i915)) {
8566 		DRM_INFO("RC6 context corrupted, disabling runtime power management\n");
8567 		i915->gt_pm.rc6.ctx_corrupted = true;
8568 		i915->gt_pm.rc6.ctx_corrupted_wakeref =
8569 			intel_runtime_pm_get(&i915->runtime_pm);
8570 	}
8571 }
8572 
i915_rc6_ctx_wa_cleanup(struct drm_i915_private * i915)8573 static void i915_rc6_ctx_wa_cleanup(struct drm_i915_private *i915)
8574 {
8575 	if (i915->gt_pm.rc6.ctx_corrupted) {
8576 		intel_runtime_pm_put(&i915->runtime_pm,
8577 				     i915->gt_pm.rc6.ctx_corrupted_wakeref);
8578 		i915->gt_pm.rc6.ctx_corrupted = false;
8579 	}
8580 }
8581 
8582 /**
8583  * i915_rc6_ctx_wa_suspend - system suspend sequence for the RC6 CTX WA
8584  * @i915: i915 device
8585  *
8586  * Perform any steps needed to clean up the RC6 CTX WA before system suspend.
8587  */
i915_rc6_ctx_wa_suspend(struct drm_i915_private * i915)8588 void i915_rc6_ctx_wa_suspend(struct drm_i915_private *i915)
8589 {
8590 	if (i915->gt_pm.rc6.ctx_corrupted)
8591 		intel_runtime_pm_put(&i915->runtime_pm,
8592 				     i915->gt_pm.rc6.ctx_corrupted_wakeref);
8593 }
8594 
8595 /**
8596  * i915_rc6_ctx_wa_resume - system resume sequence for the RC6 CTX WA
8597  * @i915: i915 device
8598  *
8599  * Perform any steps needed to re-init the RC6 CTX WA after system resume.
8600  */
i915_rc6_ctx_wa_resume(struct drm_i915_private * i915)8601 void i915_rc6_ctx_wa_resume(struct drm_i915_private *i915)
8602 {
8603 	if (!i915->gt_pm.rc6.ctx_corrupted)
8604 		return;
8605 
8606 	if (i915_rc6_ctx_corrupted(i915)) {
8607 		i915->gt_pm.rc6.ctx_corrupted_wakeref =
8608 			intel_runtime_pm_get(&i915->runtime_pm);
8609 		return;
8610 	}
8611 
8612 	DRM_INFO("RC6 context restored, re-enabling runtime power management\n");
8613 	i915->gt_pm.rc6.ctx_corrupted = false;
8614 }
8615 
8616 static void intel_disable_rc6(struct drm_i915_private *dev_priv);
8617 
8618 /**
8619  * i915_rc6_ctx_wa_check - check for a new RC6 CTX corruption
8620  * @i915: i915 device
8621  *
8622  * Check if an RC6 CTX corruption has happened since the last check and if so
8623  * disable RC6 and runtime power management.
8624  *
8625  * Return false if no context corruption has happened since the last call of
8626  * this function, true otherwise.
8627 */
i915_rc6_ctx_wa_check(struct drm_i915_private * i915)8628 bool i915_rc6_ctx_wa_check(struct drm_i915_private *i915)
8629 {
8630 	if (!NEEDS_RC6_CTX_CORRUPTION_WA(i915))
8631 		return false;
8632 
8633 	if (i915->gt_pm.rc6.ctx_corrupted)
8634 		return false;
8635 
8636 	if (!i915_rc6_ctx_corrupted(i915))
8637 		return false;
8638 
8639 	DRM_NOTE("RC6 context corruption, disabling runtime power management\n");
8640 
8641 	intel_disable_rc6(i915);
8642 	i915->gt_pm.rc6.ctx_corrupted = true;
8643 	i915->gt_pm.rc6.ctx_corrupted_wakeref =
8644 		intel_runtime_pm_get_noresume(&i915->runtime_pm);
8645 
8646 	return true;
8647 }
8648 
intel_init_gt_powersave(struct drm_i915_private * dev_priv)8649 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
8650 {
8651 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8652 
8653 	/*
8654 	 * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
8655 	 * requirement.
8656 	 */
8657 	if (!sanitize_rc6(dev_priv)) {
8658 		DRM_INFO("RC6 disabled, disabling runtime PM support\n");
8659 		pm_runtime_get(&dev_priv->drm.pdev->dev);
8660 	}
8661 
8662 	i915_rc6_ctx_wa_init(dev_priv);
8663 
8664 	/* Initialize RPS limits (for userspace) */
8665 	if (IS_CHERRYVIEW(dev_priv))
8666 		cherryview_init_gt_powersave(dev_priv);
8667 	else if (IS_VALLEYVIEW(dev_priv))
8668 		valleyview_init_gt_powersave(dev_priv);
8669 	else if (INTEL_GEN(dev_priv) >= 6)
8670 		gen6_init_rps_frequencies(dev_priv);
8671 
8672 	/* Derive initial user preferences/limits from the hardware limits */
8673 	rps->max_freq_softlimit = rps->max_freq;
8674 	rps->min_freq_softlimit = rps->min_freq;
8675 
8676 	/* After setting max-softlimit, find the overclock max freq */
8677 	if (IS_GEN(dev_priv, 6) ||
8678 	    IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
8679 		u32 params = 0;
8680 
8681 		sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS,
8682 				       &params, NULL);
8683 		if (params & BIT(31)) { /* OC supported */
8684 			DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
8685 					 (rps->max_freq & 0xff) * 50,
8686 					 (params & 0xff) * 50);
8687 			rps->max_freq = params & 0xff;
8688 		}
8689 	}
8690 
8691 	/* Finally allow us to boost to max by default */
8692 	rps->boost_freq = rps->max_freq;
8693 	rps->idle_freq = rps->min_freq;
8694 	rps->cur_freq = rps->idle_freq;
8695 }
8696 
intel_cleanup_gt_powersave(struct drm_i915_private * dev_priv)8697 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
8698 {
8699 	if (IS_VALLEYVIEW(dev_priv))
8700 		valleyview_cleanup_gt_powersave(dev_priv);
8701 
8702 	i915_rc6_ctx_wa_cleanup(dev_priv);
8703 
8704 	if (!HAS_RC6(dev_priv))
8705 		pm_runtime_put(&dev_priv->drm.pdev->dev);
8706 }
8707 
intel_sanitize_gt_powersave(struct drm_i915_private * dev_priv)8708 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
8709 {
8710 	dev_priv->gt_pm.rps.enabled = true; /* force RPS disabling */
8711 	dev_priv->gt_pm.rc6.enabled = true; /* force RC6 disabling */
8712 	intel_disable_gt_powersave(dev_priv);
8713 
8714 	if (INTEL_GEN(dev_priv) >= 11)
8715 		gen11_reset_rps_interrupts(dev_priv);
8716 	else if (INTEL_GEN(dev_priv) >= 6)
8717 		gen6_reset_rps_interrupts(dev_priv);
8718 }
8719 
intel_disable_llc_pstate(struct drm_i915_private * i915)8720 static inline void intel_disable_llc_pstate(struct drm_i915_private *i915)
8721 {
8722 	lockdep_assert_held(&i915->gt_pm.rps.lock);
8723 
8724 	if (!i915->gt_pm.llc_pstate.enabled)
8725 		return;
8726 
8727 	/* Currently there is no HW configuration to be done to disable. */
8728 
8729 	i915->gt_pm.llc_pstate.enabled = false;
8730 }
8731 
__intel_disable_rc6(struct drm_i915_private * dev_priv)8732 static void __intel_disable_rc6(struct drm_i915_private *dev_priv)
8733 {
8734 	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8735 
8736 	if (!dev_priv->gt_pm.rc6.enabled)
8737 		return;
8738 
8739 	if (INTEL_GEN(dev_priv) >= 9)
8740 		gen9_disable_rc6(dev_priv);
8741 	else if (IS_CHERRYVIEW(dev_priv))
8742 		cherryview_disable_rc6(dev_priv);
8743 	else if (IS_VALLEYVIEW(dev_priv))
8744 		valleyview_disable_rc6(dev_priv);
8745 	else if (INTEL_GEN(dev_priv) >= 6)
8746 		gen6_disable_rc6(dev_priv);
8747 
8748 	dev_priv->gt_pm.rc6.enabled = false;
8749 }
8750 
intel_disable_rc6(struct drm_i915_private * dev_priv)8751 static void intel_disable_rc6(struct drm_i915_private *dev_priv)
8752 {
8753 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8754 
8755 	mutex_lock(&rps->lock);
8756 	__intel_disable_rc6(dev_priv);
8757 	mutex_unlock(&rps->lock);
8758 }
8759 
intel_disable_rps(struct drm_i915_private * dev_priv)8760 static void intel_disable_rps(struct drm_i915_private *dev_priv)
8761 {
8762 	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8763 
8764 	if (!dev_priv->gt_pm.rps.enabled)
8765 		return;
8766 
8767 	if (INTEL_GEN(dev_priv) >= 9)
8768 		gen9_disable_rps(dev_priv);
8769 	else if (IS_CHERRYVIEW(dev_priv))
8770 		cherryview_disable_rps(dev_priv);
8771 	else if (IS_VALLEYVIEW(dev_priv))
8772 		valleyview_disable_rps(dev_priv);
8773 	else if (INTEL_GEN(dev_priv) >= 6)
8774 		gen6_disable_rps(dev_priv);
8775 	else if (IS_IRONLAKE_M(dev_priv))
8776 		ironlake_disable_drps(dev_priv);
8777 
8778 	dev_priv->gt_pm.rps.enabled = false;
8779 }
8780 
intel_disable_gt_powersave(struct drm_i915_private * dev_priv)8781 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
8782 {
8783 	mutex_lock(&dev_priv->gt_pm.rps.lock);
8784 
8785 	__intel_disable_rc6(dev_priv);
8786 	intel_disable_rps(dev_priv);
8787 	if (HAS_LLC(dev_priv))
8788 		intel_disable_llc_pstate(dev_priv);
8789 
8790 	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8791 }
8792 
intel_enable_llc_pstate(struct drm_i915_private * i915)8793 static inline void intel_enable_llc_pstate(struct drm_i915_private *i915)
8794 {
8795 	lockdep_assert_held(&i915->gt_pm.rps.lock);
8796 
8797 	if (i915->gt_pm.llc_pstate.enabled)
8798 		return;
8799 
8800 	gen6_update_ring_freq(i915);
8801 
8802 	i915->gt_pm.llc_pstate.enabled = true;
8803 }
8804 
intel_enable_rc6(struct drm_i915_private * dev_priv)8805 static void intel_enable_rc6(struct drm_i915_private *dev_priv)
8806 {
8807 	lockdep_assert_held(&dev_priv->gt_pm.rps.lock);
8808 
8809 	if (dev_priv->gt_pm.rc6.enabled)
8810 		return;
8811 
8812 	if (dev_priv->gt_pm.rc6.ctx_corrupted)
8813 		return;
8814 
8815 	if (IS_CHERRYVIEW(dev_priv))
8816 		cherryview_enable_rc6(dev_priv);
8817 	else if (IS_VALLEYVIEW(dev_priv))
8818 		valleyview_enable_rc6(dev_priv);
8819 	else if (INTEL_GEN(dev_priv) >= 11)
8820 		gen11_enable_rc6(dev_priv);
8821 	else if (INTEL_GEN(dev_priv) >= 9)
8822 		gen9_enable_rc6(dev_priv);
8823 	else if (IS_BROADWELL(dev_priv))
8824 		gen8_enable_rc6(dev_priv);
8825 	else if (INTEL_GEN(dev_priv) >= 6)
8826 		gen6_enable_rc6(dev_priv);
8827 
8828 	dev_priv->gt_pm.rc6.enabled = true;
8829 }
8830 
intel_enable_rps(struct drm_i915_private * dev_priv)8831 static void intel_enable_rps(struct drm_i915_private *dev_priv)
8832 {
8833 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
8834 
8835 	lockdep_assert_held(&rps->lock);
8836 
8837 	if (rps->enabled)
8838 		return;
8839 
8840 	if (IS_CHERRYVIEW(dev_priv)) {
8841 		cherryview_enable_rps(dev_priv);
8842 	} else if (IS_VALLEYVIEW(dev_priv)) {
8843 		valleyview_enable_rps(dev_priv);
8844 	} else if (INTEL_GEN(dev_priv) >= 9) {
8845 		gen9_enable_rps(dev_priv);
8846 	} else if (IS_BROADWELL(dev_priv)) {
8847 		gen8_enable_rps(dev_priv);
8848 	} else if (INTEL_GEN(dev_priv) >= 6) {
8849 		gen6_enable_rps(dev_priv);
8850 	} else if (IS_IRONLAKE_M(dev_priv)) {
8851 		ironlake_enable_drps(dev_priv);
8852 		intel_init_emon(dev_priv);
8853 	}
8854 
8855 	WARN_ON(rps->max_freq < rps->min_freq);
8856 	WARN_ON(rps->idle_freq > rps->max_freq);
8857 
8858 	WARN_ON(rps->efficient_freq < rps->min_freq);
8859 	WARN_ON(rps->efficient_freq > rps->max_freq);
8860 
8861 	rps->enabled = true;
8862 }
8863 
intel_enable_gt_powersave(struct drm_i915_private * dev_priv)8864 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
8865 {
8866 	/* Powersaving is controlled by the host when inside a VM */
8867 	if (intel_vgpu_active(dev_priv))
8868 		return;
8869 
8870 	mutex_lock(&dev_priv->gt_pm.rps.lock);
8871 
8872 	if (HAS_RC6(dev_priv))
8873 		intel_enable_rc6(dev_priv);
8874 	if (HAS_RPS(dev_priv))
8875 		intel_enable_rps(dev_priv);
8876 	if (HAS_LLC(dev_priv))
8877 		intel_enable_llc_pstate(dev_priv);
8878 
8879 	mutex_unlock(&dev_priv->gt_pm.rps.lock);
8880 }
8881 
ibx_init_clock_gating(struct drm_i915_private * dev_priv)8882 static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
8883 {
8884 	/*
8885 	 * On Ibex Peak and Cougar Point, we need to disable clock
8886 	 * gating for the panel power sequencer or it will fail to
8887 	 * start up when no ports are active.
8888 	 */
8889 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
8890 }
8891 
g4x_disable_trickle_feed(struct drm_i915_private * dev_priv)8892 static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
8893 {
8894 	enum pipe pipe;
8895 
8896 	for_each_pipe(dev_priv, pipe) {
8897 		I915_WRITE(DSPCNTR(pipe),
8898 			   I915_READ(DSPCNTR(pipe)) |
8899 			   DISPPLANE_TRICKLE_FEED_DISABLE);
8900 
8901 		I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
8902 		POSTING_READ(DSPSURF(pipe));
8903 	}
8904 }
8905 
ilk_init_clock_gating(struct drm_i915_private * dev_priv)8906 static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
8907 {
8908 	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
8909 
8910 	/*
8911 	 * Required for FBC
8912 	 * WaFbcDisableDpfcClockGating:ilk
8913 	 */
8914 	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
8915 		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
8916 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
8917 
8918 	I915_WRITE(PCH_3DCGDIS0,
8919 		   MARIUNIT_CLOCK_GATE_DISABLE |
8920 		   SVSMUNIT_CLOCK_GATE_DISABLE);
8921 	I915_WRITE(PCH_3DCGDIS1,
8922 		   VFMUNIT_CLOCK_GATE_DISABLE);
8923 
8924 	/*
8925 	 * According to the spec the following bits should be set in
8926 	 * order to enable memory self-refresh
8927 	 * The bit 22/21 of 0x42004
8928 	 * The bit 5 of 0x42020
8929 	 * The bit 15 of 0x45000
8930 	 */
8931 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8932 		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
8933 		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
8934 	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
8935 	I915_WRITE(DISP_ARB_CTL,
8936 		   (I915_READ(DISP_ARB_CTL) |
8937 		    DISP_FBC_WM_DIS));
8938 
8939 	/*
8940 	 * Based on the document from hardware guys the following bits
8941 	 * should be set unconditionally in order to enable FBC.
8942 	 * The bit 22 of 0x42000
8943 	 * The bit 22 of 0x42004
8944 	 * The bit 7,8,9 of 0x42020.
8945 	 */
8946 	if (IS_IRONLAKE_M(dev_priv)) {
8947 		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
8948 		I915_WRITE(ILK_DISPLAY_CHICKEN1,
8949 			   I915_READ(ILK_DISPLAY_CHICKEN1) |
8950 			   ILK_FBCQ_DIS);
8951 		I915_WRITE(ILK_DISPLAY_CHICKEN2,
8952 			   I915_READ(ILK_DISPLAY_CHICKEN2) |
8953 			   ILK_DPARB_GATE);
8954 	}
8955 
8956 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
8957 
8958 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
8959 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
8960 		   ILK_ELPIN_409_SELECT);
8961 	I915_WRITE(_3D_CHICKEN2,
8962 		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
8963 		   _3D_CHICKEN2_WM_READ_PIPELINED);
8964 
8965 	/* WaDisableRenderCachePipelinedFlush:ilk */
8966 	I915_WRITE(CACHE_MODE_0,
8967 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
8968 
8969 	/* WaDisable_RenderCache_OperationalFlush:ilk */
8970 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
8971 
8972 	g4x_disable_trickle_feed(dev_priv);
8973 
8974 	ibx_init_clock_gating(dev_priv);
8975 }
8976 
cpt_init_clock_gating(struct drm_i915_private * dev_priv)8977 static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
8978 {
8979 	int pipe;
8980 	u32 val;
8981 
8982 	/*
8983 	 * On Ibex Peak and Cougar Point, we need to disable clock
8984 	 * gating for the panel power sequencer or it will fail to
8985 	 * start up when no ports are active.
8986 	 */
8987 	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
8988 		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
8989 		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
8990 	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
8991 		   DPLS_EDP_PPS_FIX_DIS);
8992 	/* The below fixes the weird display corruption, a few pixels shifted
8993 	 * downward, on (only) LVDS of some HP laptops with IVY.
8994 	 */
8995 	for_each_pipe(dev_priv, pipe) {
8996 		val = I915_READ(TRANS_CHICKEN2(pipe));
8997 		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
8998 		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
8999 		if (dev_priv->vbt.fdi_rx_polarity_inverted)
9000 			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
9001 		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
9002 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
9003 		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
9004 		I915_WRITE(TRANS_CHICKEN2(pipe), val);
9005 	}
9006 	/* WADP0ClockGatingDisable */
9007 	for_each_pipe(dev_priv, pipe) {
9008 		I915_WRITE(TRANS_CHICKEN1(pipe),
9009 			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9010 	}
9011 }
9012 
gen6_check_mch_setup(struct drm_i915_private * dev_priv)9013 static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
9014 {
9015 	u32 tmp;
9016 
9017 	tmp = I915_READ(MCH_SSKPD);
9018 	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
9019 		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
9020 			      tmp);
9021 }
9022 
gen6_init_clock_gating(struct drm_i915_private * dev_priv)9023 static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
9024 {
9025 	u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
9026 
9027 	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
9028 
9029 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
9030 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
9031 		   ILK_ELPIN_409_SELECT);
9032 
9033 	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
9034 	I915_WRITE(_3D_CHICKEN,
9035 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
9036 
9037 	/* WaDisable_RenderCache_OperationalFlush:snb */
9038 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9039 
9040 	/*
9041 	 * BSpec recoomends 8x4 when MSAA is used,
9042 	 * however in practice 16x4 seems fastest.
9043 	 *
9044 	 * Note that PS/WM thread counts depend on the WIZ hashing
9045 	 * disable bit, which we don't touch here, but it's good
9046 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9047 	 */
9048 	I915_WRITE(GEN6_GT_MODE,
9049 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9050 
9051 	I915_WRITE(CACHE_MODE_0,
9052 		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
9053 
9054 	I915_WRITE(GEN6_UCGCTL1,
9055 		   I915_READ(GEN6_UCGCTL1) |
9056 		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
9057 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9058 
9059 	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
9060 	 * gating disable must be set.  Failure to set it results in
9061 	 * flickering pixels due to Z write ordering failures after
9062 	 * some amount of runtime in the Mesa "fire" demo, and Unigine
9063 	 * Sanctuary and Tropics, and apparently anything else with
9064 	 * alpha test or pixel discard.
9065 	 *
9066 	 * According to the spec, bit 11 (RCCUNIT) must also be set,
9067 	 * but we didn't debug actual testcases to find it out.
9068 	 *
9069 	 * WaDisableRCCUnitClockGating:snb
9070 	 * WaDisableRCPBUnitClockGating:snb
9071 	 */
9072 	I915_WRITE(GEN6_UCGCTL2,
9073 		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
9074 		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
9075 
9076 	/* WaStripsFansDisableFastClipPerformanceFix:snb */
9077 	I915_WRITE(_3D_CHICKEN3,
9078 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
9079 
9080 	/*
9081 	 * Bspec says:
9082 	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
9083 	 * 3DSTATE_SF number of SF output attributes is more than 16."
9084 	 */
9085 	I915_WRITE(_3D_CHICKEN3,
9086 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
9087 
9088 	/*
9089 	 * According to the spec the following bits should be
9090 	 * set in order to enable memory self-refresh and fbc:
9091 	 * The bit21 and bit22 of 0x42000
9092 	 * The bit21 and bit22 of 0x42004
9093 	 * The bit5 and bit7 of 0x42020
9094 	 * The bit14 of 0x70180
9095 	 * The bit14 of 0x71180
9096 	 *
9097 	 * WaFbcAsynchFlipDisableFbcQueue:snb
9098 	 */
9099 	I915_WRITE(ILK_DISPLAY_CHICKEN1,
9100 		   I915_READ(ILK_DISPLAY_CHICKEN1) |
9101 		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
9102 	I915_WRITE(ILK_DISPLAY_CHICKEN2,
9103 		   I915_READ(ILK_DISPLAY_CHICKEN2) |
9104 		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
9105 	I915_WRITE(ILK_DSPCLK_GATE_D,
9106 		   I915_READ(ILK_DSPCLK_GATE_D) |
9107 		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
9108 		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
9109 
9110 	g4x_disable_trickle_feed(dev_priv);
9111 
9112 	cpt_init_clock_gating(dev_priv);
9113 
9114 	gen6_check_mch_setup(dev_priv);
9115 }
9116 
gen7_setup_fixed_func_scheduler(struct drm_i915_private * dev_priv)9117 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
9118 {
9119 	u32 reg = I915_READ(GEN7_FF_THREAD_MODE);
9120 
9121 	/*
9122 	 * WaVSThreadDispatchOverride:ivb,vlv
9123 	 *
9124 	 * This actually overrides the dispatch
9125 	 * mode for all thread types.
9126 	 */
9127 	reg &= ~GEN7_FF_SCHED_MASK;
9128 	reg |= GEN7_FF_TS_SCHED_HW;
9129 	reg |= GEN7_FF_VS_SCHED_HW;
9130 	reg |= GEN7_FF_DS_SCHED_HW;
9131 
9132 	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
9133 }
9134 
lpt_init_clock_gating(struct drm_i915_private * dev_priv)9135 static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
9136 {
9137 	/*
9138 	 * TODO: this bit should only be enabled when really needed, then
9139 	 * disabled when not needed anymore in order to save power.
9140 	 */
9141 	if (HAS_PCH_LPT_LP(dev_priv))
9142 		I915_WRITE(SOUTH_DSPCLK_GATE_D,
9143 			   I915_READ(SOUTH_DSPCLK_GATE_D) |
9144 			   PCH_LP_PARTITION_LEVEL_DISABLE);
9145 
9146 	/* WADPOClockGatingDisable:hsw */
9147 	I915_WRITE(TRANS_CHICKEN1(PIPE_A),
9148 		   I915_READ(TRANS_CHICKEN1(PIPE_A)) |
9149 		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
9150 }
9151 
lpt_suspend_hw(struct drm_i915_private * dev_priv)9152 static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
9153 {
9154 	if (HAS_PCH_LPT_LP(dev_priv)) {
9155 		u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9156 
9157 		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9158 		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9159 	}
9160 }
9161 
gen8_set_l3sqc_credits(struct drm_i915_private * dev_priv,int general_prio_credits,int high_prio_credits)9162 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
9163 				   int general_prio_credits,
9164 				   int high_prio_credits)
9165 {
9166 	u32 misccpctl;
9167 	u32 val;
9168 
9169 	/* WaTempDisableDOPClkGating:bdw */
9170 	misccpctl = I915_READ(GEN7_MISCCPCTL);
9171 	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
9172 
9173 	val = I915_READ(GEN8_L3SQCREG1);
9174 	val &= ~L3_PRIO_CREDITS_MASK;
9175 	val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
9176 	val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
9177 	I915_WRITE(GEN8_L3SQCREG1, val);
9178 
9179 	/*
9180 	 * Wait at least 100 clocks before re-enabling clock gating.
9181 	 * See the definition of L3SQCREG1 in BSpec.
9182 	 */
9183 	POSTING_READ(GEN8_L3SQCREG1);
9184 	udelay(1);
9185 	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
9186 }
9187 
icl_init_clock_gating(struct drm_i915_private * dev_priv)9188 static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
9189 {
9190 	/* This is not an Wa. Enable to reduce Sampler power */
9191 	I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
9192 		   I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
9193 
9194 	/* WaEnable32PlaneMode:icl */
9195 	I915_WRITE(GEN9_CSFE_CHICKEN1_RCS,
9196 		   _MASKED_BIT_ENABLE(GEN11_ENABLE_32_PLANE_MODE));
9197 }
9198 
cnp_init_clock_gating(struct drm_i915_private * dev_priv)9199 static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
9200 {
9201 	if (!HAS_PCH_CNP(dev_priv))
9202 		return;
9203 
9204 	/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
9205 	I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
9206 		   CNP_PWM_CGE_GATING_DISABLE);
9207 }
9208 
cnl_init_clock_gating(struct drm_i915_private * dev_priv)9209 static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
9210 {
9211 	u32 val;
9212 	cnp_init_clock_gating(dev_priv);
9213 
9214 	/* This is not an Wa. Enable for better image quality */
9215 	I915_WRITE(_3D_CHICKEN3,
9216 		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
9217 
9218 	/* WaEnableChickenDCPR:cnl */
9219 	I915_WRITE(GEN8_CHICKEN_DCPR_1,
9220 		   I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
9221 
9222 	/* WaFbcWakeMemOn:cnl */
9223 	I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
9224 		   DISP_FBC_MEMORY_WAKE);
9225 
9226 	val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
9227 	/* ReadHitWriteOnlyDisable:cnl */
9228 	val |= RCCUNIT_CLKGATE_DIS;
9229 	/* WaSarbUnitClockGatingDisable:cnl (pre-prod) */
9230 	if (IS_CNL_REVID(dev_priv, CNL_REVID_A0, CNL_REVID_B0))
9231 		val |= SARBUNIT_CLKGATE_DIS;
9232 	I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
9233 
9234 	/* Wa_2201832410:cnl */
9235 	val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
9236 	val |= GWUNIT_CLKGATE_DIS;
9237 	I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
9238 
9239 	/* WaDisableVFclkgate:cnl */
9240 	/* WaVFUnitClockGatingDisable:cnl */
9241 	val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
9242 	val |= VFUNIT_CLKGATE_DIS;
9243 	I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
9244 }
9245 
cfl_init_clock_gating(struct drm_i915_private * dev_priv)9246 static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
9247 {
9248 	cnp_init_clock_gating(dev_priv);
9249 	gen9_init_clock_gating(dev_priv);
9250 
9251 	/* WaFbcNukeOnHostModify:cfl */
9252 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9253 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9254 }
9255 
kbl_init_clock_gating(struct drm_i915_private * dev_priv)9256 static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
9257 {
9258 	gen9_init_clock_gating(dev_priv);
9259 
9260 	/* WaDisableSDEUnitClockGating:kbl */
9261 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9262 		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9263 			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9264 
9265 	/* WaDisableGamClockGating:kbl */
9266 	if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
9267 		I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9268 			   GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
9269 
9270 	/* WaFbcNukeOnHostModify:kbl */
9271 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9272 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9273 }
9274 
skl_init_clock_gating(struct drm_i915_private * dev_priv)9275 static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
9276 {
9277 	gen9_init_clock_gating(dev_priv);
9278 
9279 	/* WAC6entrylatency:skl */
9280 	I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
9281 		   FBC_LLC_FULLY_OPEN);
9282 
9283 	/* WaFbcNukeOnHostModify:skl */
9284 	I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
9285 		   ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
9286 }
9287 
bdw_init_clock_gating(struct drm_i915_private * dev_priv)9288 static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
9289 {
9290 	enum pipe pipe;
9291 
9292 	/* WaSwitchSolVfFArbitrationPriority:bdw */
9293 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9294 
9295 	/* WaPsrDPAMaskVBlankInSRD:bdw */
9296 	I915_WRITE(CHICKEN_PAR1_1,
9297 		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
9298 
9299 	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
9300 	for_each_pipe(dev_priv, pipe) {
9301 		I915_WRITE(CHICKEN_PIPESL_1(pipe),
9302 			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
9303 			   BDW_DPRS_MASK_VBLANK_SRD);
9304 	}
9305 
9306 	/* WaVSRefCountFullforceMissDisable:bdw */
9307 	/* WaDSRefCountFullforceMissDisable:bdw */
9308 	I915_WRITE(GEN7_FF_THREAD_MODE,
9309 		   I915_READ(GEN7_FF_THREAD_MODE) &
9310 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9311 
9312 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9313 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9314 
9315 	/* WaDisableSDEUnitClockGating:bdw */
9316 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9317 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9318 
9319 	/* WaProgramL3SqcReg1Default:bdw */
9320 	gen8_set_l3sqc_credits(dev_priv, 30, 2);
9321 
9322 	/* WaKVMNotificationOnConfigChange:bdw */
9323 	I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
9324 		   | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
9325 
9326 	lpt_init_clock_gating(dev_priv);
9327 
9328 	/* WaDisableDopClockGating:bdw
9329 	 *
9330 	 * Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
9331 	 * clock gating.
9332 	 */
9333 	I915_WRITE(GEN6_UCGCTL1,
9334 		   I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
9335 }
9336 
hsw_init_clock_gating(struct drm_i915_private * dev_priv)9337 static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
9338 {
9339 	/* L3 caching of data atomics doesn't work -- disable it. */
9340 	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
9341 	I915_WRITE(HSW_ROW_CHICKEN3,
9342 		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
9343 
9344 	/* This is required by WaCatErrorRejectionIssue:hsw */
9345 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9346 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9347 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9348 
9349 	/* WaVSRefCountFullforceMissDisable:hsw */
9350 	I915_WRITE(GEN7_FF_THREAD_MODE,
9351 		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
9352 
9353 	/* WaDisable_RenderCache_OperationalFlush:hsw */
9354 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9355 
9356 	/* enable HiZ Raw Stall Optimization */
9357 	I915_WRITE(CACHE_MODE_0_GEN7,
9358 		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9359 
9360 	/* WaDisable4x2SubspanOptimization:hsw */
9361 	I915_WRITE(CACHE_MODE_1,
9362 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9363 
9364 	/*
9365 	 * BSpec recommends 8x4 when MSAA is used,
9366 	 * however in practice 16x4 seems fastest.
9367 	 *
9368 	 * Note that PS/WM thread counts depend on the WIZ hashing
9369 	 * disable bit, which we don't touch here, but it's good
9370 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9371 	 */
9372 	I915_WRITE(GEN7_GT_MODE,
9373 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9374 
9375 	/* WaSampleCChickenBitEnable:hsw */
9376 	I915_WRITE(HALF_SLICE_CHICKEN3,
9377 		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
9378 
9379 	/* WaSwitchSolVfFArbitrationPriority:hsw */
9380 	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
9381 
9382 	lpt_init_clock_gating(dev_priv);
9383 }
9384 
ivb_init_clock_gating(struct drm_i915_private * dev_priv)9385 static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
9386 {
9387 	u32 snpcr;
9388 
9389 	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
9390 
9391 	/* WaDisableEarlyCull:ivb */
9392 	I915_WRITE(_3D_CHICKEN3,
9393 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9394 
9395 	/* WaDisableBackToBackFlipFix:ivb */
9396 	I915_WRITE(IVB_CHICKEN3,
9397 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9398 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
9399 
9400 	/* WaDisablePSDDualDispatchEnable:ivb */
9401 	if (IS_IVB_GT1(dev_priv))
9402 		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9403 			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9404 
9405 	/* WaDisable_RenderCache_OperationalFlush:ivb */
9406 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9407 
9408 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
9409 	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
9410 		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
9411 
9412 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
9413 	I915_WRITE(GEN7_L3CNTLREG1,
9414 			GEN7_WA_FOR_GEN7_L3_CONTROL);
9415 	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
9416 		   GEN7_WA_L3_CHICKEN_MODE);
9417 	if (IS_IVB_GT1(dev_priv))
9418 		I915_WRITE(GEN7_ROW_CHICKEN2,
9419 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9420 	else {
9421 		/* must write both registers */
9422 		I915_WRITE(GEN7_ROW_CHICKEN2,
9423 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9424 		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
9425 			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9426 	}
9427 
9428 	/* WaForceL3Serialization:ivb */
9429 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9430 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9431 
9432 	/*
9433 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9434 	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
9435 	 */
9436 	I915_WRITE(GEN6_UCGCTL2,
9437 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9438 
9439 	/* This is required by WaCatErrorRejectionIssue:ivb */
9440 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9441 			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9442 			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9443 
9444 	g4x_disable_trickle_feed(dev_priv);
9445 
9446 	gen7_setup_fixed_func_scheduler(dev_priv);
9447 
9448 	if (0) { /* causes HiZ corruption on ivb:gt1 */
9449 		/* enable HiZ Raw Stall Optimization */
9450 		I915_WRITE(CACHE_MODE_0_GEN7,
9451 			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
9452 	}
9453 
9454 	/* WaDisable4x2SubspanOptimization:ivb */
9455 	I915_WRITE(CACHE_MODE_1,
9456 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9457 
9458 	/*
9459 	 * BSpec recommends 8x4 when MSAA is used,
9460 	 * however in practice 16x4 seems fastest.
9461 	 *
9462 	 * Note that PS/WM thread counts depend on the WIZ hashing
9463 	 * disable bit, which we don't touch here, but it's good
9464 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9465 	 */
9466 	I915_WRITE(GEN7_GT_MODE,
9467 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9468 
9469 	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
9470 	snpcr &= ~GEN6_MBC_SNPCR_MASK;
9471 	snpcr |= GEN6_MBC_SNPCR_MED;
9472 	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
9473 
9474 	if (!HAS_PCH_NOP(dev_priv))
9475 		cpt_init_clock_gating(dev_priv);
9476 
9477 	gen6_check_mch_setup(dev_priv);
9478 }
9479 
vlv_init_clock_gating(struct drm_i915_private * dev_priv)9480 static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
9481 {
9482 	/* WaDisableEarlyCull:vlv */
9483 	I915_WRITE(_3D_CHICKEN3,
9484 		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
9485 
9486 	/* WaDisableBackToBackFlipFix:vlv */
9487 	I915_WRITE(IVB_CHICKEN3,
9488 		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
9489 		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
9490 
9491 	/* WaPsdDispatchEnable:vlv */
9492 	/* WaDisablePSDDualDispatchEnable:vlv */
9493 	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
9494 		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
9495 				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
9496 
9497 	/* WaDisable_RenderCache_OperationalFlush:vlv */
9498 	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9499 
9500 	/* WaForceL3Serialization:vlv */
9501 	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
9502 		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
9503 
9504 	/* WaDisableDopClockGating:vlv */
9505 	I915_WRITE(GEN7_ROW_CHICKEN2,
9506 		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
9507 
9508 	/* This is required by WaCatErrorRejectionIssue:vlv */
9509 	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
9510 		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
9511 		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
9512 
9513 	gen7_setup_fixed_func_scheduler(dev_priv);
9514 
9515 	/*
9516 	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
9517 	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
9518 	 */
9519 	I915_WRITE(GEN6_UCGCTL2,
9520 		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
9521 
9522 	/* WaDisableL3Bank2xClockGate:vlv
9523 	 * Disabling L3 clock gating- MMIO 940c[25] = 1
9524 	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
9525 	I915_WRITE(GEN7_UCGCTL4,
9526 		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
9527 
9528 	/*
9529 	 * BSpec says this must be set, even though
9530 	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
9531 	 */
9532 	I915_WRITE(CACHE_MODE_1,
9533 		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
9534 
9535 	/*
9536 	 * BSpec recommends 8x4 when MSAA is used,
9537 	 * however in practice 16x4 seems fastest.
9538 	 *
9539 	 * Note that PS/WM thread counts depend on the WIZ hashing
9540 	 * disable bit, which we don't touch here, but it's good
9541 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
9542 	 */
9543 	I915_WRITE(GEN7_GT_MODE,
9544 		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
9545 
9546 	/*
9547 	 * WaIncreaseL3CreditsForVLVB0:vlv
9548 	 * This is the hardware default actually.
9549 	 */
9550 	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
9551 
9552 	/*
9553 	 * WaDisableVLVClockGating_VBIIssue:vlv
9554 	 * Disable clock gating on th GCFG unit to prevent a delay
9555 	 * in the reporting of vblank events.
9556 	 */
9557 	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
9558 }
9559 
chv_init_clock_gating(struct drm_i915_private * dev_priv)9560 static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
9561 {
9562 	/* WaVSRefCountFullforceMissDisable:chv */
9563 	/* WaDSRefCountFullforceMissDisable:chv */
9564 	I915_WRITE(GEN7_FF_THREAD_MODE,
9565 		   I915_READ(GEN7_FF_THREAD_MODE) &
9566 		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
9567 
9568 	/* WaDisableSemaphoreAndSyncFlipWait:chv */
9569 	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
9570 		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
9571 
9572 	/* WaDisableCSUnitClockGating:chv */
9573 	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
9574 		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
9575 
9576 	/* WaDisableSDEUnitClockGating:chv */
9577 	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
9578 		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
9579 
9580 	/*
9581 	 * WaProgramL3SqcReg1Default:chv
9582 	 * See gfxspecs/Related Documents/Performance Guide/
9583 	 * LSQC Setting Recommendations.
9584 	 */
9585 	gen8_set_l3sqc_credits(dev_priv, 38, 2);
9586 }
9587 
g4x_init_clock_gating(struct drm_i915_private * dev_priv)9588 static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
9589 {
9590 	u32 dspclk_gate;
9591 
9592 	I915_WRITE(RENCLK_GATE_D1, 0);
9593 	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
9594 		   GS_UNIT_CLOCK_GATE_DISABLE |
9595 		   CL_UNIT_CLOCK_GATE_DISABLE);
9596 	I915_WRITE(RAMCLK_GATE_D, 0);
9597 	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
9598 		OVRUNIT_CLOCK_GATE_DISABLE |
9599 		OVCUNIT_CLOCK_GATE_DISABLE;
9600 	if (IS_GM45(dev_priv))
9601 		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
9602 	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
9603 
9604 	/* WaDisableRenderCachePipelinedFlush */
9605 	I915_WRITE(CACHE_MODE_0,
9606 		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
9607 
9608 	/* WaDisable_RenderCache_OperationalFlush:g4x */
9609 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9610 
9611 	g4x_disable_trickle_feed(dev_priv);
9612 }
9613 
i965gm_init_clock_gating(struct drm_i915_private * dev_priv)9614 static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
9615 {
9616 	struct intel_uncore *uncore = &dev_priv->uncore;
9617 
9618 	intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
9619 	intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
9620 	intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
9621 	intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
9622 	intel_uncore_write16(uncore, DEUC, 0);
9623 	intel_uncore_write(uncore,
9624 			   MI_ARB_STATE,
9625 			   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9626 
9627 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
9628 	intel_uncore_write(uncore,
9629 			   CACHE_MODE_0,
9630 			   _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9631 }
9632 
i965g_init_clock_gating(struct drm_i915_private * dev_priv)9633 static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
9634 {
9635 	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
9636 		   I965_RCC_CLOCK_GATE_DISABLE |
9637 		   I965_RCPB_CLOCK_GATE_DISABLE |
9638 		   I965_ISC_CLOCK_GATE_DISABLE |
9639 		   I965_FBC_CLOCK_GATE_DISABLE);
9640 	I915_WRITE(RENCLK_GATE_D2, 0);
9641 	I915_WRITE(MI_ARB_STATE,
9642 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9643 
9644 	/* WaDisable_RenderCache_OperationalFlush:gen4 */
9645 	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
9646 }
9647 
gen3_init_clock_gating(struct drm_i915_private * dev_priv)9648 static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
9649 {
9650 	u32 dstate = I915_READ(D_STATE);
9651 
9652 	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
9653 		DSTATE_DOT_CLOCK_GATING;
9654 	I915_WRITE(D_STATE, dstate);
9655 
9656 	if (IS_PINEVIEW(dev_priv))
9657 		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
9658 
9659 	/* IIR "flip pending" means done if this bit is set */
9660 	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
9661 
9662 	/* interrupts should cause a wake up from C3 */
9663 	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
9664 
9665 	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
9666 	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
9667 
9668 	I915_WRITE(MI_ARB_STATE,
9669 		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
9670 }
9671 
i85x_init_clock_gating(struct drm_i915_private * dev_priv)9672 static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
9673 {
9674 	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
9675 
9676 	/* interrupts should cause a wake up from C3 */
9677 	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
9678 		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
9679 
9680 	I915_WRITE(MEM_MODE,
9681 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
9682 }
9683 
i830_init_clock_gating(struct drm_i915_private * dev_priv)9684 static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
9685 {
9686 	I915_WRITE(MEM_MODE,
9687 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
9688 		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
9689 }
9690 
intel_init_clock_gating(struct drm_i915_private * dev_priv)9691 void intel_init_clock_gating(struct drm_i915_private *dev_priv)
9692 {
9693 	dev_priv->display.init_clock_gating(dev_priv);
9694 }
9695 
intel_suspend_hw(struct drm_i915_private * dev_priv)9696 void intel_suspend_hw(struct drm_i915_private *dev_priv)
9697 {
9698 	if (HAS_PCH_LPT(dev_priv))
9699 		lpt_suspend_hw(dev_priv);
9700 }
9701 
nop_init_clock_gating(struct drm_i915_private * dev_priv)9702 static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
9703 {
9704 	DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
9705 }
9706 
9707 /**
9708  * intel_init_clock_gating_hooks - setup the clock gating hooks
9709  * @dev_priv: device private
9710  *
9711  * Setup the hooks that configure which clocks of a given platform can be
9712  * gated and also apply various GT and display specific workarounds for these
9713  * platforms. Note that some GT specific workarounds are applied separately
9714  * when GPU contexts or batchbuffers start their execution.
9715  */
intel_init_clock_gating_hooks(struct drm_i915_private * dev_priv)9716 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
9717 {
9718 	if (IS_GEN(dev_priv, 12))
9719 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
9720 	else if (IS_GEN(dev_priv, 11))
9721 		dev_priv->display.init_clock_gating = icl_init_clock_gating;
9722 	else if (IS_CANNONLAKE(dev_priv))
9723 		dev_priv->display.init_clock_gating = cnl_init_clock_gating;
9724 	else if (IS_COFFEELAKE(dev_priv))
9725 		dev_priv->display.init_clock_gating = cfl_init_clock_gating;
9726 	else if (IS_SKYLAKE(dev_priv))
9727 		dev_priv->display.init_clock_gating = skl_init_clock_gating;
9728 	else if (IS_KABYLAKE(dev_priv))
9729 		dev_priv->display.init_clock_gating = kbl_init_clock_gating;
9730 	else if (IS_BROXTON(dev_priv))
9731 		dev_priv->display.init_clock_gating = bxt_init_clock_gating;
9732 	else if (IS_GEMINILAKE(dev_priv))
9733 		dev_priv->display.init_clock_gating = glk_init_clock_gating;
9734 	else if (IS_BROADWELL(dev_priv))
9735 		dev_priv->display.init_clock_gating = bdw_init_clock_gating;
9736 	else if (IS_CHERRYVIEW(dev_priv))
9737 		dev_priv->display.init_clock_gating = chv_init_clock_gating;
9738 	else if (IS_HASWELL(dev_priv))
9739 		dev_priv->display.init_clock_gating = hsw_init_clock_gating;
9740 	else if (IS_IVYBRIDGE(dev_priv))
9741 		dev_priv->display.init_clock_gating = ivb_init_clock_gating;
9742 	else if (IS_VALLEYVIEW(dev_priv))
9743 		dev_priv->display.init_clock_gating = vlv_init_clock_gating;
9744 	else if (IS_GEN(dev_priv, 6))
9745 		dev_priv->display.init_clock_gating = gen6_init_clock_gating;
9746 	else if (IS_GEN(dev_priv, 5))
9747 		dev_priv->display.init_clock_gating = ilk_init_clock_gating;
9748 	else if (IS_G4X(dev_priv))
9749 		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
9750 	else if (IS_I965GM(dev_priv))
9751 		dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
9752 	else if (IS_I965G(dev_priv))
9753 		dev_priv->display.init_clock_gating = i965g_init_clock_gating;
9754 	else if (IS_GEN(dev_priv, 3))
9755 		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
9756 	else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
9757 		dev_priv->display.init_clock_gating = i85x_init_clock_gating;
9758 	else if (IS_GEN(dev_priv, 2))
9759 		dev_priv->display.init_clock_gating = i830_init_clock_gating;
9760 	else {
9761 		MISSING_CASE(INTEL_DEVID(dev_priv));
9762 		dev_priv->display.init_clock_gating = nop_init_clock_gating;
9763 	}
9764 }
9765 
9766 /* Set up chip specific power management-related functions */
intel_init_pm(struct drm_i915_private * dev_priv)9767 void intel_init_pm(struct drm_i915_private *dev_priv)
9768 {
9769 	/* For cxsr */
9770 	if (IS_PINEVIEW(dev_priv))
9771 		i915_pineview_get_mem_freq(dev_priv);
9772 	else if (IS_GEN(dev_priv, 5))
9773 		i915_ironlake_get_mem_freq(dev_priv);
9774 
9775 	/* For FIFO watermark updates */
9776 	if (INTEL_GEN(dev_priv) >= 9) {
9777 		skl_setup_wm_latency(dev_priv);
9778 		dev_priv->display.initial_watermarks = skl_initial_wm;
9779 		dev_priv->display.atomic_update_watermarks = skl_atomic_update_crtc_wm;
9780 		dev_priv->display.compute_global_watermarks = skl_compute_wm;
9781 	} else if (HAS_PCH_SPLIT(dev_priv)) {
9782 		ilk_setup_wm_latency(dev_priv);
9783 
9784 		if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
9785 		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
9786 		    (!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
9787 		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
9788 			dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
9789 			dev_priv->display.compute_intermediate_wm =
9790 				ilk_compute_intermediate_wm;
9791 			dev_priv->display.initial_watermarks =
9792 				ilk_initial_watermarks;
9793 			dev_priv->display.optimize_watermarks =
9794 				ilk_optimize_watermarks;
9795 		} else {
9796 			DRM_DEBUG_KMS("Failed to read display plane latency. "
9797 				      "Disable CxSR\n");
9798 		}
9799 	} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9800 		vlv_setup_wm_latency(dev_priv);
9801 		dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
9802 		dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
9803 		dev_priv->display.initial_watermarks = vlv_initial_watermarks;
9804 		dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
9805 		dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
9806 	} else if (IS_G4X(dev_priv)) {
9807 		g4x_setup_wm_latency(dev_priv);
9808 		dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
9809 		dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
9810 		dev_priv->display.initial_watermarks = g4x_initial_watermarks;
9811 		dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
9812 	} else if (IS_PINEVIEW(dev_priv)) {
9813 		if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
9814 					    dev_priv->is_ddr3,
9815 					    dev_priv->fsb_freq,
9816 					    dev_priv->mem_freq)) {
9817 			DRM_INFO("failed to find known CxSR latency "
9818 				 "(found ddr%s fsb freq %d, mem freq %d), "
9819 				 "disabling CxSR\n",
9820 				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
9821 				 dev_priv->fsb_freq, dev_priv->mem_freq);
9822 			/* Disable CxSR and never update its watermark again */
9823 			intel_set_memory_cxsr(dev_priv, false);
9824 			dev_priv->display.update_wm = NULL;
9825 		} else
9826 			dev_priv->display.update_wm = pineview_update_wm;
9827 	} else if (IS_GEN(dev_priv, 4)) {
9828 		dev_priv->display.update_wm = i965_update_wm;
9829 	} else if (IS_GEN(dev_priv, 3)) {
9830 		dev_priv->display.update_wm = i9xx_update_wm;
9831 		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
9832 	} else if (IS_GEN(dev_priv, 2)) {
9833 		if (INTEL_INFO(dev_priv)->num_pipes == 1) {
9834 			dev_priv->display.update_wm = i845_update_wm;
9835 			dev_priv->display.get_fifo_size = i845_get_fifo_size;
9836 		} else {
9837 			dev_priv->display.update_wm = i9xx_update_wm;
9838 			dev_priv->display.get_fifo_size = i830_get_fifo_size;
9839 		}
9840 	} else {
9841 		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
9842 	}
9843 }
9844 
byt_gpu_freq(struct drm_i915_private * dev_priv,int val)9845 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
9846 {
9847 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9848 
9849 	/*
9850 	 * N = val - 0xb7
9851 	 * Slow = Fast = GPLL ref * N
9852 	 */
9853 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * (val - 0xb7), 1000);
9854 }
9855 
byt_freq_opcode(struct drm_i915_private * dev_priv,int val)9856 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
9857 {
9858 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9859 
9860 	return DIV_ROUND_CLOSEST(1000 * val, rps->gpll_ref_freq) + 0xb7;
9861 }
9862 
chv_gpu_freq(struct drm_i915_private * dev_priv,int val)9863 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
9864 {
9865 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9866 
9867 	/*
9868 	 * N = val / 2
9869 	 * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
9870 	 */
9871 	return DIV_ROUND_CLOSEST(rps->gpll_ref_freq * val, 2 * 2 * 1000);
9872 }
9873 
chv_freq_opcode(struct drm_i915_private * dev_priv,int val)9874 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
9875 {
9876 	struct intel_rps *rps = &dev_priv->gt_pm.rps;
9877 
9878 	/* CHV needs even values */
9879 	return DIV_ROUND_CLOSEST(2 * 1000 * val, rps->gpll_ref_freq) * 2;
9880 }
9881 
intel_gpu_freq(struct drm_i915_private * dev_priv,int val)9882 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
9883 {
9884 	if (INTEL_GEN(dev_priv) >= 9)
9885 		return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
9886 					 GEN9_FREQ_SCALER);
9887 	else if (IS_CHERRYVIEW(dev_priv))
9888 		return chv_gpu_freq(dev_priv, val);
9889 	else if (IS_VALLEYVIEW(dev_priv))
9890 		return byt_gpu_freq(dev_priv, val);
9891 	else
9892 		return val * GT_FREQUENCY_MULTIPLIER;
9893 }
9894 
intel_freq_opcode(struct drm_i915_private * dev_priv,int val)9895 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
9896 {
9897 	if (INTEL_GEN(dev_priv) >= 9)
9898 		return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
9899 					 GT_FREQUENCY_MULTIPLIER);
9900 	else if (IS_CHERRYVIEW(dev_priv))
9901 		return chv_freq_opcode(dev_priv, val);
9902 	else if (IS_VALLEYVIEW(dev_priv))
9903 		return byt_freq_opcode(dev_priv, val);
9904 	else
9905 		return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
9906 }
9907 
intel_pm_setup(struct drm_i915_private * dev_priv)9908 void intel_pm_setup(struct drm_i915_private *dev_priv)
9909 {
9910 	mutex_init(&dev_priv->gt_pm.rps.lock);
9911 	mutex_init(&dev_priv->gt_pm.rps.power.mutex);
9912 
9913 	atomic_set(&dev_priv->gt_pm.rps.num_waiters, 0);
9914 
9915 	dev_priv->runtime_pm.suspended = false;
9916 	atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
9917 }
9918 
vlv_residency_raw(struct drm_i915_private * dev_priv,const i915_reg_t reg)9919 static u64 vlv_residency_raw(struct drm_i915_private *dev_priv,
9920 			     const i915_reg_t reg)
9921 {
9922 	u32 lower, upper, tmp;
9923 	int loop = 2;
9924 
9925 	/*
9926 	 * The register accessed do not need forcewake. We borrow
9927 	 * uncore lock to prevent concurrent access to range reg.
9928 	 */
9929 	lockdep_assert_held(&dev_priv->uncore.lock);
9930 
9931 	/*
9932 	 * vlv and chv residency counters are 40 bits in width.
9933 	 * With a control bit, we can choose between upper or lower
9934 	 * 32bit window into this counter.
9935 	 *
9936 	 * Although we always use the counter in high-range mode elsewhere,
9937 	 * userspace may attempt to read the value before rc6 is initialised,
9938 	 * before we have set the default VLV_COUNTER_CONTROL value. So always
9939 	 * set the high bit to be safe.
9940 	 */
9941 	I915_WRITE_FW(VLV_COUNTER_CONTROL,
9942 		      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9943 	upper = I915_READ_FW(reg);
9944 	do {
9945 		tmp = upper;
9946 
9947 		I915_WRITE_FW(VLV_COUNTER_CONTROL,
9948 			      _MASKED_BIT_DISABLE(VLV_COUNT_RANGE_HIGH));
9949 		lower = I915_READ_FW(reg);
9950 
9951 		I915_WRITE_FW(VLV_COUNTER_CONTROL,
9952 			      _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH));
9953 		upper = I915_READ_FW(reg);
9954 	} while (upper != tmp && --loop);
9955 
9956 	/*
9957 	 * Everywhere else we always use VLV_COUNTER_CONTROL with the
9958 	 * VLV_COUNT_RANGE_HIGH bit set - so it is safe to leave it set
9959 	 * now.
9960 	 */
9961 
9962 	return lower | (u64)upper << 8;
9963 }
9964 
intel_rc6_residency_ns(struct drm_i915_private * dev_priv,const i915_reg_t reg)9965 u64 intel_rc6_residency_ns(struct drm_i915_private *dev_priv,
9966 			   const i915_reg_t reg)
9967 {
9968 	struct intel_uncore *uncore = &dev_priv->uncore;
9969 	u64 time_hw, prev_hw, overflow_hw;
9970 	unsigned int fw_domains;
9971 	unsigned long flags;
9972 	unsigned int i;
9973 	u32 mul, div;
9974 
9975 	if (!HAS_RC6(dev_priv))
9976 		return 0;
9977 
9978 	/*
9979 	 * Store previous hw counter values for counter wrap-around handling.
9980 	 *
9981 	 * There are only four interesting registers and they live next to each
9982 	 * other so we can use the relative address, compared to the smallest
9983 	 * one as the index into driver storage.
9984 	 */
9985 	i = (i915_mmio_reg_offset(reg) -
9986 	     i915_mmio_reg_offset(GEN6_GT_GFX_RC6_LOCKED)) / sizeof(u32);
9987 	if (WARN_ON_ONCE(i >= ARRAY_SIZE(dev_priv->gt_pm.rc6.cur_residency)))
9988 		return 0;
9989 
9990 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, FW_REG_READ);
9991 
9992 	spin_lock_irqsave(&uncore->lock, flags);
9993 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
9994 
9995 	/* On VLV and CHV, residency time is in CZ units rather than 1.28us */
9996 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
9997 		mul = 1000000;
9998 		div = dev_priv->czclk_freq;
9999 		overflow_hw = BIT_ULL(40);
10000 		time_hw = vlv_residency_raw(dev_priv, reg);
10001 	} else {
10002 		/* 833.33ns units on Gen9LP, 1.28us elsewhere. */
10003 		if (IS_GEN9_LP(dev_priv)) {
10004 			mul = 10000;
10005 			div = 12;
10006 		} else {
10007 			mul = 1280;
10008 			div = 1;
10009 		}
10010 
10011 		overflow_hw = BIT_ULL(32);
10012 		time_hw = intel_uncore_read_fw(uncore, reg);
10013 	}
10014 
10015 	/*
10016 	 * Counter wrap handling.
10017 	 *
10018 	 * But relying on a sufficient frequency of queries otherwise counters
10019 	 * can still wrap.
10020 	 */
10021 	prev_hw = dev_priv->gt_pm.rc6.prev_hw_residency[i];
10022 	dev_priv->gt_pm.rc6.prev_hw_residency[i] = time_hw;
10023 
10024 	/* RC6 delta from last sample. */
10025 	if (time_hw >= prev_hw)
10026 		time_hw -= prev_hw;
10027 	else
10028 		time_hw += overflow_hw - prev_hw;
10029 
10030 	/* Add delta to RC6 extended raw driver copy. */
10031 	time_hw += dev_priv->gt_pm.rc6.cur_residency[i];
10032 	dev_priv->gt_pm.rc6.cur_residency[i] = time_hw;
10033 
10034 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
10035 	spin_unlock_irqrestore(&uncore->lock, flags);
10036 
10037 	return mul_u64_u32_div(time_hw, mul, div);
10038 }
10039 
intel_rc6_residency_us(struct drm_i915_private * dev_priv,i915_reg_t reg)10040 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
10041 			   i915_reg_t reg)
10042 {
10043 	return DIV_ROUND_UP_ULL(intel_rc6_residency_ns(dev_priv, reg), 1000);
10044 }
10045 
intel_get_cagf(struct drm_i915_private * dev_priv,u32 rpstat)10046 u32 intel_get_cagf(struct drm_i915_private *dev_priv, u32 rpstat)
10047 {
10048 	u32 cagf;
10049 
10050 	if (INTEL_GEN(dev_priv) >= 9)
10051 		cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
10052 	else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
10053 		cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
10054 	else
10055 		cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
10056 
10057 	return  cagf;
10058 }
10059