1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31 /*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37 #include <linux/module.h>
38 #include <linux/types.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/interrupt.h>
42 #include <linux/in.h>
43 #include <linux/inet.h>
44 #include <linux/slab.h>
45 #include <linux/tcp.h>
46 #include <linux/udp.h>
47 #include <linux/sctp.h>
48 #include <linux/netdevice.h>
49 #ifdef CONFIG_NET_CLS_ACT
50 #include <net/pkt_sched.h>
51 #endif
52 #include <linux/string.h>
53 #include <linux/skbuff.h>
54 #include <linux/splice.h>
55 #include <linux/cache.h>
56 #include <linux/rtnetlink.h>
57 #include <linux/init.h>
58 #include <linux/scatterlist.h>
59 #include <linux/errqueue.h>
60 #include <linux/prefetch.h>
61 #include <linux/if_vlan.h>
62 #include <linux/mpls.h>
63
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/ip6_checksum.h>
69 #include <net/xfrm.h>
70 #include <net/mpls.h>
71 #include <net/mptcp.h>
72
73 #include <linux/uaccess.h>
74 #include <trace/events/skb.h>
75 #include <linux/highmem.h>
76 #include <linux/capability.h>
77 #include <linux/user_namespace.h>
78 #include <linux/indirect_call_wrapper.h>
79
80 #include "datagram.h"
81
82 struct kmem_cache *skbuff_head_cache __ro_after_init;
83 static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
84 #ifdef CONFIG_SKB_EXTENSIONS
85 static struct kmem_cache *skbuff_ext_cache __ro_after_init;
86 #endif
87 int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
88 EXPORT_SYMBOL(sysctl_max_skb_frags);
89
90 /**
91 * skb_panic - private function for out-of-line support
92 * @skb: buffer
93 * @sz: size
94 * @addr: address
95 * @msg: skb_over_panic or skb_under_panic
96 *
97 * Out-of-line support for skb_put() and skb_push().
98 * Called via the wrapper skb_over_panic() or skb_under_panic().
99 * Keep out of line to prevent kernel bloat.
100 * __builtin_return_address is not used because it is not always reliable.
101 */
skb_panic(struct sk_buff * skb,unsigned int sz,void * addr,const char msg[])102 static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
103 const char msg[])
104 {
105 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
106 msg, addr, skb->len, sz, skb->head, skb->data,
107 (unsigned long)skb->tail, (unsigned long)skb->end,
108 skb->dev ? skb->dev->name : "<NULL>");
109 BUG();
110 }
111
skb_over_panic(struct sk_buff * skb,unsigned int sz,void * addr)112 static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
113 {
114 skb_panic(skb, sz, addr, __func__);
115 }
116
skb_under_panic(struct sk_buff * skb,unsigned int sz,void * addr)117 static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
118 {
119 skb_panic(skb, sz, addr, __func__);
120 }
121
122 /*
123 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
124 * the caller if emergency pfmemalloc reserves are being used. If it is and
125 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
126 * may be used. Otherwise, the packet data may be discarded until enough
127 * memory is free
128 */
129 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
130 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
131
__kmalloc_reserve(size_t size,gfp_t flags,int node,unsigned long ip,bool * pfmemalloc)132 static void *__kmalloc_reserve(size_t size, gfp_t flags, int node,
133 unsigned long ip, bool *pfmemalloc)
134 {
135 void *obj;
136 bool ret_pfmemalloc = false;
137
138 /*
139 * Try a regular allocation, when that fails and we're not entitled
140 * to the reserves, fail.
141 */
142 obj = kmalloc_node_track_caller(size,
143 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
144 node);
145 if (obj || !(gfp_pfmemalloc_allowed(flags)))
146 goto out;
147
148 /* Try again but now we are using pfmemalloc reserves */
149 ret_pfmemalloc = true;
150 obj = kmalloc_node_track_caller(size, flags, node);
151
152 out:
153 if (pfmemalloc)
154 *pfmemalloc = ret_pfmemalloc;
155
156 return obj;
157 }
158
159 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
160 * 'private' fields and also do memory statistics to find all the
161 * [BEEP] leaks.
162 *
163 */
164
165 /**
166 * __alloc_skb - allocate a network buffer
167 * @size: size to allocate
168 * @gfp_mask: allocation mask
169 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
170 * instead of head cache and allocate a cloned (child) skb.
171 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
172 * allocations in case the data is required for writeback
173 * @node: numa node to allocate memory on
174 *
175 * Allocate a new &sk_buff. The returned buffer has no headroom and a
176 * tail room of at least size bytes. The object has a reference count
177 * of one. The return is the buffer. On a failure the return is %NULL.
178 *
179 * Buffers may only be allocated from interrupts using a @gfp_mask of
180 * %GFP_ATOMIC.
181 */
__alloc_skb(unsigned int size,gfp_t gfp_mask,int flags,int node)182 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
183 int flags, int node)
184 {
185 struct kmem_cache *cache;
186 struct skb_shared_info *shinfo;
187 struct sk_buff *skb;
188 u8 *data;
189 bool pfmemalloc;
190
191 cache = (flags & SKB_ALLOC_FCLONE)
192 ? skbuff_fclone_cache : skbuff_head_cache;
193
194 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
195 gfp_mask |= __GFP_MEMALLOC;
196
197 /* Get the HEAD */
198 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
199 if (!skb)
200 goto out;
201 prefetchw(skb);
202
203 /* We do our best to align skb_shared_info on a separate cache
204 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
205 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
206 * Both skb->head and skb_shared_info are cache line aligned.
207 */
208 size = SKB_DATA_ALIGN(size);
209 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
210 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
211 if (!data)
212 goto nodata;
213 /* kmalloc(size) might give us more room than requested.
214 * Put skb_shared_info exactly at the end of allocated zone,
215 * to allow max possible filling before reallocation.
216 */
217 size = SKB_WITH_OVERHEAD(ksize(data));
218 prefetchw(data + size);
219
220 /*
221 * Only clear those fields we need to clear, not those that we will
222 * actually initialise below. Hence, don't put any more fields after
223 * the tail pointer in struct sk_buff!
224 */
225 memset(skb, 0, offsetof(struct sk_buff, tail));
226 /* Account for allocated memory : skb + skb->head */
227 skb->truesize = SKB_TRUESIZE(size);
228 skb->pfmemalloc = pfmemalloc;
229 refcount_set(&skb->users, 1);
230 skb->head = data;
231 skb->data = data;
232 skb_reset_tail_pointer(skb);
233 skb->end = skb->tail + size;
234 skb->mac_header = (typeof(skb->mac_header))~0U;
235 skb->transport_header = (typeof(skb->transport_header))~0U;
236
237 /* make sure we initialize shinfo sequentially */
238 shinfo = skb_shinfo(skb);
239 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
240 atomic_set(&shinfo->dataref, 1);
241
242 if (flags & SKB_ALLOC_FCLONE) {
243 struct sk_buff_fclones *fclones;
244
245 fclones = container_of(skb, struct sk_buff_fclones, skb1);
246
247 skb->fclone = SKB_FCLONE_ORIG;
248 refcount_set(&fclones->fclone_ref, 1);
249
250 fclones->skb2.fclone = SKB_FCLONE_CLONE;
251 }
252 out:
253 return skb;
254 nodata:
255 kmem_cache_free(cache, skb);
256 skb = NULL;
257 goto out;
258 }
259 EXPORT_SYMBOL(__alloc_skb);
260
261 /* Caller must provide SKB that is memset cleared */
__build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)262 static struct sk_buff *__build_skb_around(struct sk_buff *skb,
263 void *data, unsigned int frag_size)
264 {
265 struct skb_shared_info *shinfo;
266 unsigned int size = frag_size ? : ksize(data);
267
268 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
269
270 /* Assumes caller memset cleared SKB */
271 skb->truesize = SKB_TRUESIZE(size);
272 refcount_set(&skb->users, 1);
273 skb->head = data;
274 skb->data = data;
275 skb_reset_tail_pointer(skb);
276 skb->end = skb->tail + size;
277 skb->mac_header = (typeof(skb->mac_header))~0U;
278 skb->transport_header = (typeof(skb->transport_header))~0U;
279
280 /* make sure we initialize shinfo sequentially */
281 shinfo = skb_shinfo(skb);
282 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
283 atomic_set(&shinfo->dataref, 1);
284
285 return skb;
286 }
287
288 /**
289 * __build_skb - build a network buffer
290 * @data: data buffer provided by caller
291 * @frag_size: size of data, or 0 if head was kmalloced
292 *
293 * Allocate a new &sk_buff. Caller provides space holding head and
294 * skb_shared_info. @data must have been allocated by kmalloc() only if
295 * @frag_size is 0, otherwise data should come from the page allocator
296 * or vmalloc()
297 * The return is the new skb buffer.
298 * On a failure the return is %NULL, and @data is not freed.
299 * Notes :
300 * Before IO, driver allocates only data buffer where NIC put incoming frame
301 * Driver should add room at head (NET_SKB_PAD) and
302 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
303 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
304 * before giving packet to stack.
305 * RX rings only contains data buffers, not full skbs.
306 */
__build_skb(void * data,unsigned int frag_size)307 struct sk_buff *__build_skb(void *data, unsigned int frag_size)
308 {
309 struct sk_buff *skb;
310
311 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
312 if (unlikely(!skb))
313 return NULL;
314
315 memset(skb, 0, offsetof(struct sk_buff, tail));
316
317 return __build_skb_around(skb, data, frag_size);
318 }
319
320 /* build_skb() is wrapper over __build_skb(), that specifically
321 * takes care of skb->head and skb->pfmemalloc
322 * This means that if @frag_size is not zero, then @data must be backed
323 * by a page fragment, not kmalloc() or vmalloc()
324 */
build_skb(void * data,unsigned int frag_size)325 struct sk_buff *build_skb(void *data, unsigned int frag_size)
326 {
327 struct sk_buff *skb = __build_skb(data, frag_size);
328
329 if (skb && frag_size) {
330 skb->head_frag = 1;
331 if (page_is_pfmemalloc(virt_to_head_page(data)))
332 skb->pfmemalloc = 1;
333 }
334 return skb;
335 }
336 EXPORT_SYMBOL(build_skb);
337
338 /**
339 * build_skb_around - build a network buffer around provided skb
340 * @skb: sk_buff provide by caller, must be memset cleared
341 * @data: data buffer provided by caller
342 * @frag_size: size of data, or 0 if head was kmalloced
343 */
build_skb_around(struct sk_buff * skb,void * data,unsigned int frag_size)344 struct sk_buff *build_skb_around(struct sk_buff *skb,
345 void *data, unsigned int frag_size)
346 {
347 if (unlikely(!skb))
348 return NULL;
349
350 skb = __build_skb_around(skb, data, frag_size);
351
352 if (skb && frag_size) {
353 skb->head_frag = 1;
354 if (page_is_pfmemalloc(virt_to_head_page(data)))
355 skb->pfmemalloc = 1;
356 }
357 return skb;
358 }
359 EXPORT_SYMBOL(build_skb_around);
360
361 #define NAPI_SKB_CACHE_SIZE 64
362
363 struct napi_alloc_cache {
364 struct page_frag_cache page;
365 unsigned int skb_count;
366 void *skb_cache[NAPI_SKB_CACHE_SIZE];
367 };
368
369 static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
370 static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
371
__napi_alloc_frag(unsigned int fragsz,gfp_t gfp_mask)372 static void *__napi_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
373 {
374 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
375
376 return page_frag_alloc(&nc->page, fragsz, gfp_mask);
377 }
378
napi_alloc_frag(unsigned int fragsz)379 void *napi_alloc_frag(unsigned int fragsz)
380 {
381 fragsz = SKB_DATA_ALIGN(fragsz);
382
383 return __napi_alloc_frag(fragsz, GFP_ATOMIC);
384 }
385 EXPORT_SYMBOL(napi_alloc_frag);
386
387 /**
388 * netdev_alloc_frag - allocate a page fragment
389 * @fragsz: fragment size
390 *
391 * Allocates a frag from a page for receive buffer.
392 * Uses GFP_ATOMIC allocations.
393 */
netdev_alloc_frag(unsigned int fragsz)394 void *netdev_alloc_frag(unsigned int fragsz)
395 {
396 struct page_frag_cache *nc;
397 void *data;
398
399 fragsz = SKB_DATA_ALIGN(fragsz);
400 if (in_irq() || irqs_disabled()) {
401 nc = this_cpu_ptr(&netdev_alloc_cache);
402 data = page_frag_alloc(nc, fragsz, GFP_ATOMIC);
403 } else {
404 local_bh_disable();
405 data = __napi_alloc_frag(fragsz, GFP_ATOMIC);
406 local_bh_enable();
407 }
408 return data;
409 }
410 EXPORT_SYMBOL(netdev_alloc_frag);
411
412 /**
413 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
414 * @dev: network device to receive on
415 * @len: length to allocate
416 * @gfp_mask: get_free_pages mask, passed to alloc_skb
417 *
418 * Allocate a new &sk_buff and assign it a usage count of one. The
419 * buffer has NET_SKB_PAD headroom built in. Users should allocate
420 * the headroom they think they need without accounting for the
421 * built in space. The built in space is used for optimisations.
422 *
423 * %NULL is returned if there is no free memory.
424 */
__netdev_alloc_skb(struct net_device * dev,unsigned int len,gfp_t gfp_mask)425 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
426 gfp_t gfp_mask)
427 {
428 struct page_frag_cache *nc;
429 struct sk_buff *skb;
430 bool pfmemalloc;
431 void *data;
432
433 len += NET_SKB_PAD;
434
435 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
436 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
437 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
438 if (!skb)
439 goto skb_fail;
440 goto skb_success;
441 }
442
443 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
444 len = SKB_DATA_ALIGN(len);
445
446 if (sk_memalloc_socks())
447 gfp_mask |= __GFP_MEMALLOC;
448
449 if (in_irq() || irqs_disabled()) {
450 nc = this_cpu_ptr(&netdev_alloc_cache);
451 data = page_frag_alloc(nc, len, gfp_mask);
452 pfmemalloc = nc->pfmemalloc;
453 } else {
454 local_bh_disable();
455 nc = this_cpu_ptr(&napi_alloc_cache.page);
456 data = page_frag_alloc(nc, len, gfp_mask);
457 pfmemalloc = nc->pfmemalloc;
458 local_bh_enable();
459 }
460
461 if (unlikely(!data))
462 return NULL;
463
464 skb = __build_skb(data, len);
465 if (unlikely(!skb)) {
466 skb_free_frag(data);
467 return NULL;
468 }
469
470 if (pfmemalloc)
471 skb->pfmemalloc = 1;
472 skb->head_frag = 1;
473
474 skb_success:
475 skb_reserve(skb, NET_SKB_PAD);
476 skb->dev = dev;
477
478 skb_fail:
479 return skb;
480 }
481 EXPORT_SYMBOL(__netdev_alloc_skb);
482
483 /**
484 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
485 * @napi: napi instance this buffer was allocated for
486 * @len: length to allocate
487 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
488 *
489 * Allocate a new sk_buff for use in NAPI receive. This buffer will
490 * attempt to allocate the head from a special reserved region used
491 * only for NAPI Rx allocation. By doing this we can save several
492 * CPU cycles by avoiding having to disable and re-enable IRQs.
493 *
494 * %NULL is returned if there is no free memory.
495 */
__napi_alloc_skb(struct napi_struct * napi,unsigned int len,gfp_t gfp_mask)496 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
497 gfp_t gfp_mask)
498 {
499 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
500 struct sk_buff *skb;
501 void *data;
502
503 len += NET_SKB_PAD + NET_IP_ALIGN;
504
505 if ((len > SKB_WITH_OVERHEAD(PAGE_SIZE)) ||
506 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
507 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
508 if (!skb)
509 goto skb_fail;
510 goto skb_success;
511 }
512
513 len += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
514 len = SKB_DATA_ALIGN(len);
515
516 if (sk_memalloc_socks())
517 gfp_mask |= __GFP_MEMALLOC;
518
519 data = page_frag_alloc(&nc->page, len, gfp_mask);
520 if (unlikely(!data))
521 return NULL;
522
523 skb = __build_skb(data, len);
524 if (unlikely(!skb)) {
525 skb_free_frag(data);
526 return NULL;
527 }
528
529 if (nc->page.pfmemalloc)
530 skb->pfmemalloc = 1;
531 skb->head_frag = 1;
532
533 skb_success:
534 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
535 skb->dev = napi->dev;
536
537 skb_fail:
538 return skb;
539 }
540 EXPORT_SYMBOL(__napi_alloc_skb);
541
skb_add_rx_frag(struct sk_buff * skb,int i,struct page * page,int off,int size,unsigned int truesize)542 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
543 int size, unsigned int truesize)
544 {
545 skb_fill_page_desc(skb, i, page, off, size);
546 skb->len += size;
547 skb->data_len += size;
548 skb->truesize += truesize;
549 }
550 EXPORT_SYMBOL(skb_add_rx_frag);
551
skb_coalesce_rx_frag(struct sk_buff * skb,int i,int size,unsigned int truesize)552 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
553 unsigned int truesize)
554 {
555 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
556
557 skb_frag_size_add(frag, size);
558 skb->len += size;
559 skb->data_len += size;
560 skb->truesize += truesize;
561 }
562 EXPORT_SYMBOL(skb_coalesce_rx_frag);
563
skb_drop_list(struct sk_buff ** listp)564 static void skb_drop_list(struct sk_buff **listp)
565 {
566 kfree_skb_list(*listp);
567 *listp = NULL;
568 }
569
skb_drop_fraglist(struct sk_buff * skb)570 static inline void skb_drop_fraglist(struct sk_buff *skb)
571 {
572 skb_drop_list(&skb_shinfo(skb)->frag_list);
573 }
574
skb_clone_fraglist(struct sk_buff * skb)575 static void skb_clone_fraglist(struct sk_buff *skb)
576 {
577 struct sk_buff *list;
578
579 skb_walk_frags(skb, list)
580 skb_get(list);
581 }
582
skb_free_head(struct sk_buff * skb)583 static void skb_free_head(struct sk_buff *skb)
584 {
585 unsigned char *head = skb->head;
586
587 if (skb->head_frag)
588 skb_free_frag(head);
589 else
590 kfree(head);
591 }
592
skb_release_data(struct sk_buff * skb)593 static void skb_release_data(struct sk_buff *skb)
594 {
595 struct skb_shared_info *shinfo = skb_shinfo(skb);
596 int i;
597
598 if (skb->cloned &&
599 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
600 &shinfo->dataref))
601 return;
602
603 for (i = 0; i < shinfo->nr_frags; i++)
604 __skb_frag_unref(&shinfo->frags[i]);
605
606 if (shinfo->frag_list)
607 kfree_skb_list(shinfo->frag_list);
608
609 skb_zcopy_clear(skb, true);
610 skb_free_head(skb);
611 }
612
613 /*
614 * Free an skbuff by memory without cleaning the state.
615 */
kfree_skbmem(struct sk_buff * skb)616 static void kfree_skbmem(struct sk_buff *skb)
617 {
618 struct sk_buff_fclones *fclones;
619
620 switch (skb->fclone) {
621 case SKB_FCLONE_UNAVAILABLE:
622 kmem_cache_free(skbuff_head_cache, skb);
623 return;
624
625 case SKB_FCLONE_ORIG:
626 fclones = container_of(skb, struct sk_buff_fclones, skb1);
627
628 /* We usually free the clone (TX completion) before original skb
629 * This test would have no chance to be true for the clone,
630 * while here, branch prediction will be good.
631 */
632 if (refcount_read(&fclones->fclone_ref) == 1)
633 goto fastpath;
634 break;
635
636 default: /* SKB_FCLONE_CLONE */
637 fclones = container_of(skb, struct sk_buff_fclones, skb2);
638 break;
639 }
640 if (!refcount_dec_and_test(&fclones->fclone_ref))
641 return;
642 fastpath:
643 kmem_cache_free(skbuff_fclone_cache, fclones);
644 }
645
skb_release_head_state(struct sk_buff * skb)646 void skb_release_head_state(struct sk_buff *skb)
647 {
648 skb_dst_drop(skb);
649 if (skb->destructor) {
650 WARN_ON(in_irq());
651 skb->destructor(skb);
652 }
653 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
654 nf_conntrack_put(skb_nfct(skb));
655 #endif
656 skb_ext_put(skb);
657 }
658
659 /* Free everything but the sk_buff shell. */
skb_release_all(struct sk_buff * skb)660 static void skb_release_all(struct sk_buff *skb)
661 {
662 skb_release_head_state(skb);
663 if (likely(skb->head))
664 skb_release_data(skb);
665 }
666
667 /**
668 * __kfree_skb - private function
669 * @skb: buffer
670 *
671 * Free an sk_buff. Release anything attached to the buffer.
672 * Clean the state. This is an internal helper function. Users should
673 * always call kfree_skb
674 */
675
__kfree_skb(struct sk_buff * skb)676 void __kfree_skb(struct sk_buff *skb)
677 {
678 skb_release_all(skb);
679 kfree_skbmem(skb);
680 }
681 EXPORT_SYMBOL(__kfree_skb);
682
683 /**
684 * kfree_skb - free an sk_buff
685 * @skb: buffer to free
686 *
687 * Drop a reference to the buffer and free it if the usage count has
688 * hit zero.
689 */
kfree_skb(struct sk_buff * skb)690 void kfree_skb(struct sk_buff *skb)
691 {
692 if (!skb_unref(skb))
693 return;
694
695 trace_kfree_skb(skb, __builtin_return_address(0));
696 __kfree_skb(skb);
697 }
698 EXPORT_SYMBOL(kfree_skb);
699
kfree_skb_list(struct sk_buff * segs)700 void kfree_skb_list(struct sk_buff *segs)
701 {
702 while (segs) {
703 struct sk_buff *next = segs->next;
704
705 kfree_skb(segs);
706 segs = next;
707 }
708 }
709 EXPORT_SYMBOL(kfree_skb_list);
710
711 /* Dump skb information and contents.
712 *
713 * Must only be called from net_ratelimit()-ed paths.
714 *
715 * Dumps whole packets if full_pkt, only headers otherwise.
716 */
skb_dump(const char * level,const struct sk_buff * skb,bool full_pkt)717 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
718 {
719 struct skb_shared_info *sh = skb_shinfo(skb);
720 struct net_device *dev = skb->dev;
721 struct sock *sk = skb->sk;
722 struct sk_buff *list_skb;
723 bool has_mac, has_trans;
724 int headroom, tailroom;
725 int i, len, seg_len;
726
727 if (full_pkt)
728 len = skb->len;
729 else
730 len = min_t(int, skb->len, MAX_HEADER + 128);
731
732 headroom = skb_headroom(skb);
733 tailroom = skb_tailroom(skb);
734
735 has_mac = skb_mac_header_was_set(skb);
736 has_trans = skb_transport_header_was_set(skb);
737
738 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
739 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
740 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
741 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
742 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
743 level, skb->len, headroom, skb_headlen(skb), tailroom,
744 has_mac ? skb->mac_header : -1,
745 has_mac ? skb_mac_header_len(skb) : -1,
746 skb->network_header,
747 has_trans ? skb_network_header_len(skb) : -1,
748 has_trans ? skb->transport_header : -1,
749 sh->tx_flags, sh->nr_frags,
750 sh->gso_size, sh->gso_type, sh->gso_segs,
751 skb->csum, skb->ip_summed, skb->csum_complete_sw,
752 skb->csum_valid, skb->csum_level,
753 skb->hash, skb->sw_hash, skb->l4_hash,
754 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
755
756 if (dev)
757 printk("%sdev name=%s feat=0x%pNF\n",
758 level, dev->name, &dev->features);
759 if (sk)
760 printk("%ssk family=%hu type=%u proto=%u\n",
761 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
762
763 if (full_pkt && headroom)
764 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
765 16, 1, skb->head, headroom, false);
766
767 seg_len = min_t(int, skb_headlen(skb), len);
768 if (seg_len)
769 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
770 16, 1, skb->data, seg_len, false);
771 len -= seg_len;
772
773 if (full_pkt && tailroom)
774 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
775 16, 1, skb_tail_pointer(skb), tailroom, false);
776
777 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
778 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
779 u32 p_off, p_len, copied;
780 struct page *p;
781 u8 *vaddr;
782
783 skb_frag_foreach_page(frag, skb_frag_off(frag),
784 skb_frag_size(frag), p, p_off, p_len,
785 copied) {
786 seg_len = min_t(int, p_len, len);
787 vaddr = kmap_atomic(p);
788 print_hex_dump(level, "skb frag: ",
789 DUMP_PREFIX_OFFSET,
790 16, 1, vaddr + p_off, seg_len, false);
791 kunmap_atomic(vaddr);
792 len -= seg_len;
793 if (!len)
794 break;
795 }
796 }
797
798 if (full_pkt && skb_has_frag_list(skb)) {
799 printk("skb fraglist:\n");
800 skb_walk_frags(skb, list_skb)
801 skb_dump(level, list_skb, true);
802 }
803 }
804 EXPORT_SYMBOL(skb_dump);
805
806 /**
807 * skb_tx_error - report an sk_buff xmit error
808 * @skb: buffer that triggered an error
809 *
810 * Report xmit error if a device callback is tracking this skb.
811 * skb must be freed afterwards.
812 */
skb_tx_error(struct sk_buff * skb)813 void skb_tx_error(struct sk_buff *skb)
814 {
815 skb_zcopy_clear(skb, true);
816 }
817 EXPORT_SYMBOL(skb_tx_error);
818
819 #ifdef CONFIG_TRACEPOINTS
820 /**
821 * consume_skb - free an skbuff
822 * @skb: buffer to free
823 *
824 * Drop a ref to the buffer and free it if the usage count has hit zero
825 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
826 * is being dropped after a failure and notes that
827 */
consume_skb(struct sk_buff * skb)828 void consume_skb(struct sk_buff *skb)
829 {
830 if (!skb_unref(skb))
831 return;
832
833 trace_consume_skb(skb);
834 __kfree_skb(skb);
835 }
836 EXPORT_SYMBOL(consume_skb);
837 #endif
838
839 /**
840 * consume_stateless_skb - free an skbuff, assuming it is stateless
841 * @skb: buffer to free
842 *
843 * Alike consume_skb(), but this variant assumes that this is the last
844 * skb reference and all the head states have been already dropped
845 */
__consume_stateless_skb(struct sk_buff * skb)846 void __consume_stateless_skb(struct sk_buff *skb)
847 {
848 trace_consume_skb(skb);
849 skb_release_data(skb);
850 kfree_skbmem(skb);
851 }
852
__kfree_skb_flush(void)853 void __kfree_skb_flush(void)
854 {
855 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
856
857 /* flush skb_cache if containing objects */
858 if (nc->skb_count) {
859 kmem_cache_free_bulk(skbuff_head_cache, nc->skb_count,
860 nc->skb_cache);
861 nc->skb_count = 0;
862 }
863 }
864
_kfree_skb_defer(struct sk_buff * skb)865 static inline void _kfree_skb_defer(struct sk_buff *skb)
866 {
867 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
868
869 /* drop skb->head and call any destructors for packet */
870 skb_release_all(skb);
871
872 /* record skb to CPU local list */
873 nc->skb_cache[nc->skb_count++] = skb;
874
875 #ifdef CONFIG_SLUB
876 /* SLUB writes into objects when freeing */
877 prefetchw(skb);
878 #endif
879
880 /* flush skb_cache if it is filled */
881 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
882 kmem_cache_free_bulk(skbuff_head_cache, NAPI_SKB_CACHE_SIZE,
883 nc->skb_cache);
884 nc->skb_count = 0;
885 }
886 }
__kfree_skb_defer(struct sk_buff * skb)887 void __kfree_skb_defer(struct sk_buff *skb)
888 {
889 _kfree_skb_defer(skb);
890 }
891
napi_consume_skb(struct sk_buff * skb,int budget)892 void napi_consume_skb(struct sk_buff *skb, int budget)
893 {
894 /* Zero budget indicate non-NAPI context called us, like netpoll */
895 if (unlikely(!budget)) {
896 dev_consume_skb_any(skb);
897 return;
898 }
899
900 if (!skb_unref(skb))
901 return;
902
903 /* if reaching here SKB is ready to free */
904 trace_consume_skb(skb);
905
906 /* if SKB is a clone, don't handle this case */
907 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
908 __kfree_skb(skb);
909 return;
910 }
911
912 _kfree_skb_defer(skb);
913 }
914 EXPORT_SYMBOL(napi_consume_skb);
915
916 /* Make sure a field is enclosed inside headers_start/headers_end section */
917 #define CHECK_SKB_FIELD(field) \
918 BUILD_BUG_ON(offsetof(struct sk_buff, field) < \
919 offsetof(struct sk_buff, headers_start)); \
920 BUILD_BUG_ON(offsetof(struct sk_buff, field) > \
921 offsetof(struct sk_buff, headers_end)); \
922
__copy_skb_header(struct sk_buff * new,const struct sk_buff * old)923 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
924 {
925 new->tstamp = old->tstamp;
926 /* We do not copy old->sk */
927 new->dev = old->dev;
928 memcpy(new->cb, old->cb, sizeof(old->cb));
929 skb_dst_copy(new, old);
930 __skb_ext_copy(new, old);
931 __nf_copy(new, old, false);
932
933 /* Note : this field could be in headers_start/headers_end section
934 * It is not yet because we do not want to have a 16 bit hole
935 */
936 new->queue_mapping = old->queue_mapping;
937
938 memcpy(&new->headers_start, &old->headers_start,
939 offsetof(struct sk_buff, headers_end) -
940 offsetof(struct sk_buff, headers_start));
941 CHECK_SKB_FIELD(protocol);
942 CHECK_SKB_FIELD(csum);
943 CHECK_SKB_FIELD(hash);
944 CHECK_SKB_FIELD(priority);
945 CHECK_SKB_FIELD(skb_iif);
946 CHECK_SKB_FIELD(vlan_proto);
947 CHECK_SKB_FIELD(vlan_tci);
948 CHECK_SKB_FIELD(transport_header);
949 CHECK_SKB_FIELD(network_header);
950 CHECK_SKB_FIELD(mac_header);
951 CHECK_SKB_FIELD(inner_protocol);
952 CHECK_SKB_FIELD(inner_transport_header);
953 CHECK_SKB_FIELD(inner_network_header);
954 CHECK_SKB_FIELD(inner_mac_header);
955 CHECK_SKB_FIELD(mark);
956 #ifdef CONFIG_NETWORK_SECMARK
957 CHECK_SKB_FIELD(secmark);
958 #endif
959 #ifdef CONFIG_NET_RX_BUSY_POLL
960 CHECK_SKB_FIELD(napi_id);
961 #endif
962 #ifdef CONFIG_XPS
963 CHECK_SKB_FIELD(sender_cpu);
964 #endif
965 #ifdef CONFIG_NET_SCHED
966 CHECK_SKB_FIELD(tc_index);
967 #endif
968
969 }
970
971 /*
972 * You should not add any new code to this function. Add it to
973 * __copy_skb_header above instead.
974 */
__skb_clone(struct sk_buff * n,struct sk_buff * skb)975 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
976 {
977 #define C(x) n->x = skb->x
978
979 n->next = n->prev = NULL;
980 n->sk = NULL;
981 __copy_skb_header(n, skb);
982
983 C(len);
984 C(data_len);
985 C(mac_len);
986 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
987 n->cloned = 1;
988 n->nohdr = 0;
989 n->peeked = 0;
990 C(pfmemalloc);
991 n->destructor = NULL;
992 C(tail);
993 C(end);
994 C(head);
995 C(head_frag);
996 C(data);
997 C(truesize);
998 refcount_set(&n->users, 1);
999
1000 atomic_inc(&(skb_shinfo(skb)->dataref));
1001 skb->cloned = 1;
1002
1003 return n;
1004 #undef C
1005 }
1006
1007 /**
1008 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1009 * @first: first sk_buff of the msg
1010 */
alloc_skb_for_msg(struct sk_buff * first)1011 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1012 {
1013 struct sk_buff *n;
1014
1015 n = alloc_skb(0, GFP_ATOMIC);
1016 if (!n)
1017 return NULL;
1018
1019 n->len = first->len;
1020 n->data_len = first->len;
1021 n->truesize = first->truesize;
1022
1023 skb_shinfo(n)->frag_list = first;
1024
1025 __copy_skb_header(n, first);
1026 n->destructor = NULL;
1027
1028 return n;
1029 }
1030 EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1031
1032 /**
1033 * skb_morph - morph one skb into another
1034 * @dst: the skb to receive the contents
1035 * @src: the skb to supply the contents
1036 *
1037 * This is identical to skb_clone except that the target skb is
1038 * supplied by the user.
1039 *
1040 * The target skb is returned upon exit.
1041 */
skb_morph(struct sk_buff * dst,struct sk_buff * src)1042 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1043 {
1044 skb_release_all(dst);
1045 return __skb_clone(dst, src);
1046 }
1047 EXPORT_SYMBOL_GPL(skb_morph);
1048
mm_account_pinned_pages(struct mmpin * mmp,size_t size)1049 int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1050 {
1051 unsigned long max_pg, num_pg, new_pg, old_pg;
1052 struct user_struct *user;
1053
1054 if (capable(CAP_IPC_LOCK) || !size)
1055 return 0;
1056
1057 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1058 max_pg = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
1059 user = mmp->user ? : current_user();
1060
1061 do {
1062 old_pg = atomic_long_read(&user->locked_vm);
1063 new_pg = old_pg + num_pg;
1064 if (new_pg > max_pg)
1065 return -ENOBUFS;
1066 } while (atomic_long_cmpxchg(&user->locked_vm, old_pg, new_pg) !=
1067 old_pg);
1068
1069 if (!mmp->user) {
1070 mmp->user = get_uid(user);
1071 mmp->num_pg = num_pg;
1072 } else {
1073 mmp->num_pg += num_pg;
1074 }
1075
1076 return 0;
1077 }
1078 EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1079
mm_unaccount_pinned_pages(struct mmpin * mmp)1080 void mm_unaccount_pinned_pages(struct mmpin *mmp)
1081 {
1082 if (mmp->user) {
1083 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1084 free_uid(mmp->user);
1085 }
1086 }
1087 EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1088
sock_zerocopy_alloc(struct sock * sk,size_t size)1089 struct ubuf_info *sock_zerocopy_alloc(struct sock *sk, size_t size)
1090 {
1091 struct ubuf_info *uarg;
1092 struct sk_buff *skb;
1093
1094 WARN_ON_ONCE(!in_task());
1095
1096 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1097 if (!skb)
1098 return NULL;
1099
1100 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1101 uarg = (void *)skb->cb;
1102 uarg->mmp.user = NULL;
1103
1104 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1105 kfree_skb(skb);
1106 return NULL;
1107 }
1108
1109 uarg->callback = sock_zerocopy_callback;
1110 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1111 uarg->len = 1;
1112 uarg->bytelen = size;
1113 uarg->zerocopy = 1;
1114 refcount_set(&uarg->refcnt, 1);
1115 sock_hold(sk);
1116
1117 return uarg;
1118 }
1119 EXPORT_SYMBOL_GPL(sock_zerocopy_alloc);
1120
skb_from_uarg(struct ubuf_info * uarg)1121 static inline struct sk_buff *skb_from_uarg(struct ubuf_info *uarg)
1122 {
1123 return container_of((void *)uarg, struct sk_buff, cb);
1124 }
1125
sock_zerocopy_realloc(struct sock * sk,size_t size,struct ubuf_info * uarg)1126 struct ubuf_info *sock_zerocopy_realloc(struct sock *sk, size_t size,
1127 struct ubuf_info *uarg)
1128 {
1129 if (uarg) {
1130 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1131 u32 bytelen, next;
1132
1133 /* realloc only when socket is locked (TCP, UDP cork),
1134 * so uarg->len and sk_zckey access is serialized
1135 */
1136 if (!sock_owned_by_user(sk)) {
1137 WARN_ON_ONCE(1);
1138 return NULL;
1139 }
1140
1141 bytelen = uarg->bytelen + size;
1142 if (uarg->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1143 /* TCP can create new skb to attach new uarg */
1144 if (sk->sk_type == SOCK_STREAM)
1145 goto new_alloc;
1146 return NULL;
1147 }
1148
1149 next = (u32)atomic_read(&sk->sk_zckey);
1150 if ((u32)(uarg->id + uarg->len) == next) {
1151 if (mm_account_pinned_pages(&uarg->mmp, size))
1152 return NULL;
1153 uarg->len++;
1154 uarg->bytelen = bytelen;
1155 atomic_set(&sk->sk_zckey, ++next);
1156
1157 /* no extra ref when appending to datagram (MSG_MORE) */
1158 if (sk->sk_type == SOCK_STREAM)
1159 sock_zerocopy_get(uarg);
1160
1161 return uarg;
1162 }
1163 }
1164
1165 new_alloc:
1166 return sock_zerocopy_alloc(sk, size);
1167 }
1168 EXPORT_SYMBOL_GPL(sock_zerocopy_realloc);
1169
skb_zerocopy_notify_extend(struct sk_buff * skb,u32 lo,u16 len)1170 static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1171 {
1172 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1173 u32 old_lo, old_hi;
1174 u64 sum_len;
1175
1176 old_lo = serr->ee.ee_info;
1177 old_hi = serr->ee.ee_data;
1178 sum_len = old_hi - old_lo + 1ULL + len;
1179
1180 if (sum_len >= (1ULL << 32))
1181 return false;
1182
1183 if (lo != old_hi + 1)
1184 return false;
1185
1186 serr->ee.ee_data += len;
1187 return true;
1188 }
1189
sock_zerocopy_callback(struct ubuf_info * uarg,bool success)1190 void sock_zerocopy_callback(struct ubuf_info *uarg, bool success)
1191 {
1192 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1193 struct sock_exterr_skb *serr;
1194 struct sock *sk = skb->sk;
1195 struct sk_buff_head *q;
1196 unsigned long flags;
1197 u32 lo, hi;
1198 u16 len;
1199
1200 mm_unaccount_pinned_pages(&uarg->mmp);
1201
1202 /* if !len, there was only 1 call, and it was aborted
1203 * so do not queue a completion notification
1204 */
1205 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1206 goto release;
1207
1208 len = uarg->len;
1209 lo = uarg->id;
1210 hi = uarg->id + len - 1;
1211
1212 serr = SKB_EXT_ERR(skb);
1213 memset(serr, 0, sizeof(*serr));
1214 serr->ee.ee_errno = 0;
1215 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1216 serr->ee.ee_data = hi;
1217 serr->ee.ee_info = lo;
1218 if (!success)
1219 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1220
1221 q = &sk->sk_error_queue;
1222 spin_lock_irqsave(&q->lock, flags);
1223 tail = skb_peek_tail(q);
1224 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1225 !skb_zerocopy_notify_extend(tail, lo, len)) {
1226 __skb_queue_tail(q, skb);
1227 skb = NULL;
1228 }
1229 spin_unlock_irqrestore(&q->lock, flags);
1230
1231 sk->sk_error_report(sk);
1232
1233 release:
1234 consume_skb(skb);
1235 sock_put(sk);
1236 }
1237 EXPORT_SYMBOL_GPL(sock_zerocopy_callback);
1238
sock_zerocopy_put(struct ubuf_info * uarg)1239 void sock_zerocopy_put(struct ubuf_info *uarg)
1240 {
1241 if (uarg && refcount_dec_and_test(&uarg->refcnt)) {
1242 if (uarg->callback)
1243 uarg->callback(uarg, uarg->zerocopy);
1244 else
1245 consume_skb(skb_from_uarg(uarg));
1246 }
1247 }
1248 EXPORT_SYMBOL_GPL(sock_zerocopy_put);
1249
sock_zerocopy_put_abort(struct ubuf_info * uarg,bool have_uref)1250 void sock_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1251 {
1252 if (uarg) {
1253 struct sock *sk = skb_from_uarg(uarg)->sk;
1254
1255 atomic_dec(&sk->sk_zckey);
1256 uarg->len--;
1257
1258 if (have_uref)
1259 sock_zerocopy_put(uarg);
1260 }
1261 }
1262 EXPORT_SYMBOL_GPL(sock_zerocopy_put_abort);
1263
skb_zerocopy_iter_dgram(struct sk_buff * skb,struct msghdr * msg,int len)1264 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len)
1265 {
1266 return __zerocopy_sg_from_iter(skb->sk, skb, &msg->msg_iter, len);
1267 }
1268 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_dgram);
1269
skb_zerocopy_iter_stream(struct sock * sk,struct sk_buff * skb,struct msghdr * msg,int len,struct ubuf_info * uarg)1270 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1271 struct msghdr *msg, int len,
1272 struct ubuf_info *uarg)
1273 {
1274 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1275 struct iov_iter orig_iter = msg->msg_iter;
1276 int err, orig_len = skb->len;
1277
1278 /* An skb can only point to one uarg. This edge case happens when
1279 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1280 */
1281 if (orig_uarg && uarg != orig_uarg)
1282 return -EEXIST;
1283
1284 err = __zerocopy_sg_from_iter(sk, skb, &msg->msg_iter, len);
1285 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1286 struct sock *save_sk = skb->sk;
1287
1288 /* Streams do not free skb on error. Reset to prev state. */
1289 msg->msg_iter = orig_iter;
1290 skb->sk = sk;
1291 ___pskb_trim(skb, orig_len);
1292 skb->sk = save_sk;
1293 return err;
1294 }
1295
1296 skb_zcopy_set(skb, uarg, NULL);
1297 return skb->len - orig_len;
1298 }
1299 EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1300
skb_zerocopy_clone(struct sk_buff * nskb,struct sk_buff * orig,gfp_t gfp_mask)1301 static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1302 gfp_t gfp_mask)
1303 {
1304 if (skb_zcopy(orig)) {
1305 if (skb_zcopy(nskb)) {
1306 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1307 if (!gfp_mask) {
1308 WARN_ON_ONCE(1);
1309 return -ENOMEM;
1310 }
1311 if (skb_uarg(nskb) == skb_uarg(orig))
1312 return 0;
1313 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1314 return -EIO;
1315 }
1316 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1317 }
1318 return 0;
1319 }
1320
1321 /**
1322 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1323 * @skb: the skb to modify
1324 * @gfp_mask: allocation priority
1325 *
1326 * This must be called on SKBTX_DEV_ZEROCOPY skb.
1327 * It will copy all frags into kernel and drop the reference
1328 * to userspace pages.
1329 *
1330 * If this function is called from an interrupt gfp_mask() must be
1331 * %GFP_ATOMIC.
1332 *
1333 * Returns 0 on success or a negative error code on failure
1334 * to allocate kernel memory to copy to.
1335 */
skb_copy_ubufs(struct sk_buff * skb,gfp_t gfp_mask)1336 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1337 {
1338 int num_frags = skb_shinfo(skb)->nr_frags;
1339 struct page *page, *head = NULL;
1340 int i, new_frags;
1341 u32 d_off;
1342
1343 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1344 return -EINVAL;
1345
1346 if (!num_frags)
1347 goto release;
1348
1349 new_frags = (__skb_pagelen(skb) + PAGE_SIZE - 1) >> PAGE_SHIFT;
1350 for (i = 0; i < new_frags; i++) {
1351 page = alloc_page(gfp_mask);
1352 if (!page) {
1353 while (head) {
1354 struct page *next = (struct page *)page_private(head);
1355 put_page(head);
1356 head = next;
1357 }
1358 return -ENOMEM;
1359 }
1360 set_page_private(page, (unsigned long)head);
1361 head = page;
1362 }
1363
1364 page = head;
1365 d_off = 0;
1366 for (i = 0; i < num_frags; i++) {
1367 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1368 u32 p_off, p_len, copied;
1369 struct page *p;
1370 u8 *vaddr;
1371
1372 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1373 p, p_off, p_len, copied) {
1374 u32 copy, done = 0;
1375 vaddr = kmap_atomic(p);
1376
1377 while (done < p_len) {
1378 if (d_off == PAGE_SIZE) {
1379 d_off = 0;
1380 page = (struct page *)page_private(page);
1381 }
1382 copy = min_t(u32, PAGE_SIZE - d_off, p_len - done);
1383 memcpy(page_address(page) + d_off,
1384 vaddr + p_off + done, copy);
1385 done += copy;
1386 d_off += copy;
1387 }
1388 kunmap_atomic(vaddr);
1389 }
1390 }
1391
1392 /* skb frags release userspace buffers */
1393 for (i = 0; i < num_frags; i++)
1394 skb_frag_unref(skb, i);
1395
1396 /* skb frags point to kernel buffers */
1397 for (i = 0; i < new_frags - 1; i++) {
1398 __skb_fill_page_desc(skb, i, head, 0, PAGE_SIZE);
1399 head = (struct page *)page_private(head);
1400 }
1401 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1402 skb_shinfo(skb)->nr_frags = new_frags;
1403
1404 release:
1405 skb_zcopy_clear(skb, false);
1406 return 0;
1407 }
1408 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1409
1410 /**
1411 * skb_clone - duplicate an sk_buff
1412 * @skb: buffer to clone
1413 * @gfp_mask: allocation priority
1414 *
1415 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1416 * copies share the same packet data but not structure. The new
1417 * buffer has a reference count of 1. If the allocation fails the
1418 * function returns %NULL otherwise the new buffer is returned.
1419 *
1420 * If this function is called from an interrupt gfp_mask() must be
1421 * %GFP_ATOMIC.
1422 */
1423
skb_clone(struct sk_buff * skb,gfp_t gfp_mask)1424 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1425 {
1426 struct sk_buff_fclones *fclones = container_of(skb,
1427 struct sk_buff_fclones,
1428 skb1);
1429 struct sk_buff *n;
1430
1431 if (skb_orphan_frags(skb, gfp_mask))
1432 return NULL;
1433
1434 if (skb->fclone == SKB_FCLONE_ORIG &&
1435 refcount_read(&fclones->fclone_ref) == 1) {
1436 n = &fclones->skb2;
1437 refcount_set(&fclones->fclone_ref, 2);
1438 } else {
1439 if (skb_pfmemalloc(skb))
1440 gfp_mask |= __GFP_MEMALLOC;
1441
1442 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
1443 if (!n)
1444 return NULL;
1445
1446 n->fclone = SKB_FCLONE_UNAVAILABLE;
1447 }
1448
1449 return __skb_clone(n, skb);
1450 }
1451 EXPORT_SYMBOL(skb_clone);
1452
skb_headers_offset_update(struct sk_buff * skb,int off)1453 void skb_headers_offset_update(struct sk_buff *skb, int off)
1454 {
1455 /* Only adjust this if it actually is csum_start rather than csum */
1456 if (skb->ip_summed == CHECKSUM_PARTIAL)
1457 skb->csum_start += off;
1458 /* {transport,network,mac}_header and tail are relative to skb->head */
1459 skb->transport_header += off;
1460 skb->network_header += off;
1461 if (skb_mac_header_was_set(skb))
1462 skb->mac_header += off;
1463 skb->inner_transport_header += off;
1464 skb->inner_network_header += off;
1465 skb->inner_mac_header += off;
1466 }
1467 EXPORT_SYMBOL(skb_headers_offset_update);
1468
skb_copy_header(struct sk_buff * new,const struct sk_buff * old)1469 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1470 {
1471 __copy_skb_header(new, old);
1472
1473 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1474 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1475 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1476 }
1477 EXPORT_SYMBOL(skb_copy_header);
1478
skb_alloc_rx_flag(const struct sk_buff * skb)1479 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1480 {
1481 if (skb_pfmemalloc(skb))
1482 return SKB_ALLOC_RX;
1483 return 0;
1484 }
1485
1486 /**
1487 * skb_copy - create private copy of an sk_buff
1488 * @skb: buffer to copy
1489 * @gfp_mask: allocation priority
1490 *
1491 * Make a copy of both an &sk_buff and its data. This is used when the
1492 * caller wishes to modify the data and needs a private copy of the
1493 * data to alter. Returns %NULL on failure or the pointer to the buffer
1494 * on success. The returned buffer has a reference count of 1.
1495 *
1496 * As by-product this function converts non-linear &sk_buff to linear
1497 * one, so that &sk_buff becomes completely private and caller is allowed
1498 * to modify all the data of returned buffer. This means that this
1499 * function is not recommended for use in circumstances when only
1500 * header is going to be modified. Use pskb_copy() instead.
1501 */
1502
skb_copy(const struct sk_buff * skb,gfp_t gfp_mask)1503 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1504 {
1505 int headerlen = skb_headroom(skb);
1506 unsigned int size = skb_end_offset(skb) + skb->data_len;
1507 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1508 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1509
1510 if (!n)
1511 return NULL;
1512
1513 /* Set the data pointer */
1514 skb_reserve(n, headerlen);
1515 /* Set the tail pointer and length */
1516 skb_put(n, skb->len);
1517
1518 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1519
1520 skb_copy_header(n, skb);
1521 return n;
1522 }
1523 EXPORT_SYMBOL(skb_copy);
1524
1525 /**
1526 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1527 * @skb: buffer to copy
1528 * @headroom: headroom of new skb
1529 * @gfp_mask: allocation priority
1530 * @fclone: if true allocate the copy of the skb from the fclone
1531 * cache instead of the head cache; it is recommended to set this
1532 * to true for the cases where the copy will likely be cloned
1533 *
1534 * Make a copy of both an &sk_buff and part of its data, located
1535 * in header. Fragmented data remain shared. This is used when
1536 * the caller wishes to modify only header of &sk_buff and needs
1537 * private copy of the header to alter. Returns %NULL on failure
1538 * or the pointer to the buffer on success.
1539 * The returned buffer has a reference count of 1.
1540 */
1541
__pskb_copy_fclone(struct sk_buff * skb,int headroom,gfp_t gfp_mask,bool fclone)1542 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1543 gfp_t gfp_mask, bool fclone)
1544 {
1545 unsigned int size = skb_headlen(skb) + headroom;
1546 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1547 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1548
1549 if (!n)
1550 goto out;
1551
1552 /* Set the data pointer */
1553 skb_reserve(n, headroom);
1554 /* Set the tail pointer and length */
1555 skb_put(n, skb_headlen(skb));
1556 /* Copy the bytes */
1557 skb_copy_from_linear_data(skb, n->data, n->len);
1558
1559 n->truesize += skb->data_len;
1560 n->data_len = skb->data_len;
1561 n->len = skb->len;
1562
1563 if (skb_shinfo(skb)->nr_frags) {
1564 int i;
1565
1566 if (skb_orphan_frags(skb, gfp_mask) ||
1567 skb_zerocopy_clone(n, skb, gfp_mask)) {
1568 kfree_skb(n);
1569 n = NULL;
1570 goto out;
1571 }
1572 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1573 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1574 skb_frag_ref(skb, i);
1575 }
1576 skb_shinfo(n)->nr_frags = i;
1577 }
1578
1579 if (skb_has_frag_list(skb)) {
1580 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1581 skb_clone_fraglist(n);
1582 }
1583
1584 skb_copy_header(n, skb);
1585 out:
1586 return n;
1587 }
1588 EXPORT_SYMBOL(__pskb_copy_fclone);
1589
1590 /**
1591 * pskb_expand_head - reallocate header of &sk_buff
1592 * @skb: buffer to reallocate
1593 * @nhead: room to add at head
1594 * @ntail: room to add at tail
1595 * @gfp_mask: allocation priority
1596 *
1597 * Expands (or creates identical copy, if @nhead and @ntail are zero)
1598 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
1599 * reference count of 1. Returns zero in the case of success or error,
1600 * if expansion failed. In the last case, &sk_buff is not changed.
1601 *
1602 * All the pointers pointing into skb header may change and must be
1603 * reloaded after call to this function.
1604 */
1605
pskb_expand_head(struct sk_buff * skb,int nhead,int ntail,gfp_t gfp_mask)1606 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1607 gfp_t gfp_mask)
1608 {
1609 int i, osize = skb_end_offset(skb);
1610 int size = osize + nhead + ntail;
1611 long off;
1612 u8 *data;
1613
1614 BUG_ON(nhead < 0);
1615
1616 BUG_ON(skb_shared(skb));
1617
1618 size = SKB_DATA_ALIGN(size);
1619
1620 if (skb_pfmemalloc(skb))
1621 gfp_mask |= __GFP_MEMALLOC;
1622 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1623 gfp_mask, NUMA_NO_NODE, NULL);
1624 if (!data)
1625 goto nodata;
1626 size = SKB_WITH_OVERHEAD(ksize(data));
1627
1628 /* Copy only real data... and, alas, header. This should be
1629 * optimized for the cases when header is void.
1630 */
1631 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1632
1633 memcpy((struct skb_shared_info *)(data + size),
1634 skb_shinfo(skb),
1635 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1636
1637 /*
1638 * if shinfo is shared we must drop the old head gracefully, but if it
1639 * is not we can just drop the old head and let the existing refcount
1640 * be since all we did is relocate the values
1641 */
1642 if (skb_cloned(skb)) {
1643 if (skb_orphan_frags(skb, gfp_mask))
1644 goto nofrags;
1645 if (skb_zcopy(skb))
1646 refcount_inc(&skb_uarg(skb)->refcnt);
1647 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1648 skb_frag_ref(skb, i);
1649
1650 if (skb_has_frag_list(skb))
1651 skb_clone_fraglist(skb);
1652
1653 skb_release_data(skb);
1654 } else {
1655 skb_free_head(skb);
1656 }
1657 off = (data + nhead) - skb->head;
1658
1659 skb->head = data;
1660 skb->head_frag = 0;
1661 skb->data += off;
1662 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1663 skb->end = size;
1664 off = nhead;
1665 #else
1666 skb->end = skb->head + size;
1667 #endif
1668 skb->tail += off;
1669 skb_headers_offset_update(skb, nhead);
1670 skb->cloned = 0;
1671 skb->hdr_len = 0;
1672 skb->nohdr = 0;
1673 atomic_set(&skb_shinfo(skb)->dataref, 1);
1674
1675 skb_metadata_clear(skb);
1676
1677 /* It is not generally safe to change skb->truesize.
1678 * For the moment, we really care of rx path, or
1679 * when skb is orphaned (not attached to a socket).
1680 */
1681 if (!skb->sk || skb->destructor == sock_edemux)
1682 skb->truesize += size - osize;
1683
1684 return 0;
1685
1686 nofrags:
1687 kfree(data);
1688 nodata:
1689 return -ENOMEM;
1690 }
1691 EXPORT_SYMBOL(pskb_expand_head);
1692
1693 /* Make private copy of skb with writable head and some headroom */
1694
skb_realloc_headroom(struct sk_buff * skb,unsigned int headroom)1695 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1696 {
1697 struct sk_buff *skb2;
1698 int delta = headroom - skb_headroom(skb);
1699
1700 if (delta <= 0)
1701 skb2 = pskb_copy(skb, GFP_ATOMIC);
1702 else {
1703 skb2 = skb_clone(skb, GFP_ATOMIC);
1704 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1705 GFP_ATOMIC)) {
1706 kfree_skb(skb2);
1707 skb2 = NULL;
1708 }
1709 }
1710 return skb2;
1711 }
1712 EXPORT_SYMBOL(skb_realloc_headroom);
1713
1714 /**
1715 * skb_copy_expand - copy and expand sk_buff
1716 * @skb: buffer to copy
1717 * @newheadroom: new free bytes at head
1718 * @newtailroom: new free bytes at tail
1719 * @gfp_mask: allocation priority
1720 *
1721 * Make a copy of both an &sk_buff and its data and while doing so
1722 * allocate additional space.
1723 *
1724 * This is used when the caller wishes to modify the data and needs a
1725 * private copy of the data to alter as well as more space for new fields.
1726 * Returns %NULL on failure or the pointer to the buffer
1727 * on success. The returned buffer has a reference count of 1.
1728 *
1729 * You must pass %GFP_ATOMIC as the allocation priority if this function
1730 * is called from an interrupt.
1731 */
skb_copy_expand(const struct sk_buff * skb,int newheadroom,int newtailroom,gfp_t gfp_mask)1732 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1733 int newheadroom, int newtailroom,
1734 gfp_t gfp_mask)
1735 {
1736 /*
1737 * Allocate the copy buffer
1738 */
1739 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1740 gfp_mask, skb_alloc_rx_flag(skb),
1741 NUMA_NO_NODE);
1742 int oldheadroom = skb_headroom(skb);
1743 int head_copy_len, head_copy_off;
1744
1745 if (!n)
1746 return NULL;
1747
1748 skb_reserve(n, newheadroom);
1749
1750 /* Set the tail pointer and length */
1751 skb_put(n, skb->len);
1752
1753 head_copy_len = oldheadroom;
1754 head_copy_off = 0;
1755 if (newheadroom <= head_copy_len)
1756 head_copy_len = newheadroom;
1757 else
1758 head_copy_off = newheadroom - head_copy_len;
1759
1760 /* Copy the linear header and data. */
1761 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1762 skb->len + head_copy_len));
1763
1764 skb_copy_header(n, skb);
1765
1766 skb_headers_offset_update(n, newheadroom - oldheadroom);
1767
1768 return n;
1769 }
1770 EXPORT_SYMBOL(skb_copy_expand);
1771
1772 /**
1773 * __skb_pad - zero pad the tail of an skb
1774 * @skb: buffer to pad
1775 * @pad: space to pad
1776 * @free_on_error: free buffer on error
1777 *
1778 * Ensure that a buffer is followed by a padding area that is zero
1779 * filled. Used by network drivers which may DMA or transfer data
1780 * beyond the buffer end onto the wire.
1781 *
1782 * May return error in out of memory cases. The skb is freed on error
1783 * if @free_on_error is true.
1784 */
1785
__skb_pad(struct sk_buff * skb,int pad,bool free_on_error)1786 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
1787 {
1788 int err;
1789 int ntail;
1790
1791 /* If the skbuff is non linear tailroom is always zero.. */
1792 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1793 memset(skb->data+skb->len, 0, pad);
1794 return 0;
1795 }
1796
1797 ntail = skb->data_len + pad - (skb->end - skb->tail);
1798 if (likely(skb_cloned(skb) || ntail > 0)) {
1799 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1800 if (unlikely(err))
1801 goto free_skb;
1802 }
1803
1804 /* FIXME: The use of this function with non-linear skb's really needs
1805 * to be audited.
1806 */
1807 err = skb_linearize(skb);
1808 if (unlikely(err))
1809 goto free_skb;
1810
1811 memset(skb->data + skb->len, 0, pad);
1812 return 0;
1813
1814 free_skb:
1815 if (free_on_error)
1816 kfree_skb(skb);
1817 return err;
1818 }
1819 EXPORT_SYMBOL(__skb_pad);
1820
1821 /**
1822 * pskb_put - add data to the tail of a potentially fragmented buffer
1823 * @skb: start of the buffer to use
1824 * @tail: tail fragment of the buffer to use
1825 * @len: amount of data to add
1826 *
1827 * This function extends the used data area of the potentially
1828 * fragmented buffer. @tail must be the last fragment of @skb -- or
1829 * @skb itself. If this would exceed the total buffer size the kernel
1830 * will panic. A pointer to the first byte of the extra data is
1831 * returned.
1832 */
1833
pskb_put(struct sk_buff * skb,struct sk_buff * tail,int len)1834 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
1835 {
1836 if (tail != skb) {
1837 skb->data_len += len;
1838 skb->len += len;
1839 }
1840 return skb_put(tail, len);
1841 }
1842 EXPORT_SYMBOL_GPL(pskb_put);
1843
1844 /**
1845 * skb_put - add data to a buffer
1846 * @skb: buffer to use
1847 * @len: amount of data to add
1848 *
1849 * This function extends the used data area of the buffer. If this would
1850 * exceed the total buffer size the kernel will panic. A pointer to the
1851 * first byte of the extra data is returned.
1852 */
skb_put(struct sk_buff * skb,unsigned int len)1853 void *skb_put(struct sk_buff *skb, unsigned int len)
1854 {
1855 void *tmp = skb_tail_pointer(skb);
1856 SKB_LINEAR_ASSERT(skb);
1857 skb->tail += len;
1858 skb->len += len;
1859 if (unlikely(skb->tail > skb->end))
1860 skb_over_panic(skb, len, __builtin_return_address(0));
1861 return tmp;
1862 }
1863 EXPORT_SYMBOL(skb_put);
1864
1865 /**
1866 * skb_push - add data to the start of a buffer
1867 * @skb: buffer to use
1868 * @len: amount of data to add
1869 *
1870 * This function extends the used data area of the buffer at the buffer
1871 * start. If this would exceed the total buffer headroom the kernel will
1872 * panic. A pointer to the first byte of the extra data is returned.
1873 */
skb_push(struct sk_buff * skb,unsigned int len)1874 void *skb_push(struct sk_buff *skb, unsigned int len)
1875 {
1876 skb->data -= len;
1877 skb->len += len;
1878 if (unlikely(skb->data < skb->head))
1879 skb_under_panic(skb, len, __builtin_return_address(0));
1880 return skb->data;
1881 }
1882 EXPORT_SYMBOL(skb_push);
1883
1884 /**
1885 * skb_pull - remove data from the start of a buffer
1886 * @skb: buffer to use
1887 * @len: amount of data to remove
1888 *
1889 * This function removes data from the start of a buffer, returning
1890 * the memory to the headroom. A pointer to the next data in the buffer
1891 * is returned. Once the data has been pulled future pushes will overwrite
1892 * the old data.
1893 */
skb_pull(struct sk_buff * skb,unsigned int len)1894 void *skb_pull(struct sk_buff *skb, unsigned int len)
1895 {
1896 return skb_pull_inline(skb, len);
1897 }
1898 EXPORT_SYMBOL(skb_pull);
1899
1900 /**
1901 * skb_trim - remove end from a buffer
1902 * @skb: buffer to alter
1903 * @len: new length
1904 *
1905 * Cut the length of a buffer down by removing data from the tail. If
1906 * the buffer is already under the length specified it is not modified.
1907 * The skb must be linear.
1908 */
skb_trim(struct sk_buff * skb,unsigned int len)1909 void skb_trim(struct sk_buff *skb, unsigned int len)
1910 {
1911 if (skb->len > len)
1912 __skb_trim(skb, len);
1913 }
1914 EXPORT_SYMBOL(skb_trim);
1915
1916 /* Trims skb to length len. It can change skb pointers.
1917 */
1918
___pskb_trim(struct sk_buff * skb,unsigned int len)1919 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1920 {
1921 struct sk_buff **fragp;
1922 struct sk_buff *frag;
1923 int offset = skb_headlen(skb);
1924 int nfrags = skb_shinfo(skb)->nr_frags;
1925 int i;
1926 int err;
1927
1928 if (skb_cloned(skb) &&
1929 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1930 return err;
1931
1932 i = 0;
1933 if (offset >= len)
1934 goto drop_pages;
1935
1936 for (; i < nfrags; i++) {
1937 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1938
1939 if (end < len) {
1940 offset = end;
1941 continue;
1942 }
1943
1944 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1945
1946 drop_pages:
1947 skb_shinfo(skb)->nr_frags = i;
1948
1949 for (; i < nfrags; i++)
1950 skb_frag_unref(skb, i);
1951
1952 if (skb_has_frag_list(skb))
1953 skb_drop_fraglist(skb);
1954 goto done;
1955 }
1956
1957 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1958 fragp = &frag->next) {
1959 int end = offset + frag->len;
1960
1961 if (skb_shared(frag)) {
1962 struct sk_buff *nfrag;
1963
1964 nfrag = skb_clone(frag, GFP_ATOMIC);
1965 if (unlikely(!nfrag))
1966 return -ENOMEM;
1967
1968 nfrag->next = frag->next;
1969 consume_skb(frag);
1970 frag = nfrag;
1971 *fragp = frag;
1972 }
1973
1974 if (end < len) {
1975 offset = end;
1976 continue;
1977 }
1978
1979 if (end > len &&
1980 unlikely((err = pskb_trim(frag, len - offset))))
1981 return err;
1982
1983 if (frag->next)
1984 skb_drop_list(&frag->next);
1985 break;
1986 }
1987
1988 done:
1989 if (len > skb_headlen(skb)) {
1990 skb->data_len -= skb->len - len;
1991 skb->len = len;
1992 } else {
1993 skb->len = len;
1994 skb->data_len = 0;
1995 skb_set_tail_pointer(skb, len);
1996 }
1997
1998 if (!skb->sk || skb->destructor == sock_edemux)
1999 skb_condense(skb);
2000 return 0;
2001 }
2002 EXPORT_SYMBOL(___pskb_trim);
2003
2004 /* Note : use pskb_trim_rcsum() instead of calling this directly
2005 */
pskb_trim_rcsum_slow(struct sk_buff * skb,unsigned int len)2006 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2007 {
2008 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2009 int delta = skb->len - len;
2010
2011 skb->csum = csum_block_sub(skb->csum,
2012 skb_checksum(skb, len, delta, 0),
2013 len);
2014 }
2015 return __pskb_trim(skb, len);
2016 }
2017 EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2018
2019 /**
2020 * __pskb_pull_tail - advance tail of skb header
2021 * @skb: buffer to reallocate
2022 * @delta: number of bytes to advance tail
2023 *
2024 * The function makes a sense only on a fragmented &sk_buff,
2025 * it expands header moving its tail forward and copying necessary
2026 * data from fragmented part.
2027 *
2028 * &sk_buff MUST have reference count of 1.
2029 *
2030 * Returns %NULL (and &sk_buff does not change) if pull failed
2031 * or value of new tail of skb in the case of success.
2032 *
2033 * All the pointers pointing into skb header may change and must be
2034 * reloaded after call to this function.
2035 */
2036
2037 /* Moves tail of skb head forward, copying data from fragmented part,
2038 * when it is necessary.
2039 * 1. It may fail due to malloc failure.
2040 * 2. It may change skb pointers.
2041 *
2042 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2043 */
__pskb_pull_tail(struct sk_buff * skb,int delta)2044 void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2045 {
2046 /* If skb has not enough free space at tail, get new one
2047 * plus 128 bytes for future expansions. If we have enough
2048 * room at tail, reallocate without expansion only if skb is cloned.
2049 */
2050 int i, k, eat = (skb->tail + delta) - skb->end;
2051
2052 if (eat > 0 || skb_cloned(skb)) {
2053 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2054 GFP_ATOMIC))
2055 return NULL;
2056 }
2057
2058 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2059 skb_tail_pointer(skb), delta));
2060
2061 /* Optimization: no fragments, no reasons to preestimate
2062 * size of pulled pages. Superb.
2063 */
2064 if (!skb_has_frag_list(skb))
2065 goto pull_pages;
2066
2067 /* Estimate size of pulled pages. */
2068 eat = delta;
2069 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2070 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2071
2072 if (size >= eat)
2073 goto pull_pages;
2074 eat -= size;
2075 }
2076
2077 /* If we need update frag list, we are in troubles.
2078 * Certainly, it is possible to add an offset to skb data,
2079 * but taking into account that pulling is expected to
2080 * be very rare operation, it is worth to fight against
2081 * further bloating skb head and crucify ourselves here instead.
2082 * Pure masohism, indeed. 8)8)
2083 */
2084 if (eat) {
2085 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2086 struct sk_buff *clone = NULL;
2087 struct sk_buff *insp = NULL;
2088
2089 do {
2090 if (list->len <= eat) {
2091 /* Eaten as whole. */
2092 eat -= list->len;
2093 list = list->next;
2094 insp = list;
2095 } else {
2096 /* Eaten partially. */
2097
2098 if (skb_shared(list)) {
2099 /* Sucks! We need to fork list. :-( */
2100 clone = skb_clone(list, GFP_ATOMIC);
2101 if (!clone)
2102 return NULL;
2103 insp = list->next;
2104 list = clone;
2105 } else {
2106 /* This may be pulled without
2107 * problems. */
2108 insp = list;
2109 }
2110 if (!pskb_pull(list, eat)) {
2111 kfree_skb(clone);
2112 return NULL;
2113 }
2114 break;
2115 }
2116 } while (eat);
2117
2118 /* Free pulled out fragments. */
2119 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2120 skb_shinfo(skb)->frag_list = list->next;
2121 kfree_skb(list);
2122 }
2123 /* And insert new clone at head. */
2124 if (clone) {
2125 clone->next = list;
2126 skb_shinfo(skb)->frag_list = clone;
2127 }
2128 }
2129 /* Success! Now we may commit changes to skb data. */
2130
2131 pull_pages:
2132 eat = delta;
2133 k = 0;
2134 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2135 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2136
2137 if (size <= eat) {
2138 skb_frag_unref(skb, i);
2139 eat -= size;
2140 } else {
2141 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2142
2143 *frag = skb_shinfo(skb)->frags[i];
2144 if (eat) {
2145 skb_frag_off_add(frag, eat);
2146 skb_frag_size_sub(frag, eat);
2147 if (!i)
2148 goto end;
2149 eat = 0;
2150 }
2151 k++;
2152 }
2153 }
2154 skb_shinfo(skb)->nr_frags = k;
2155
2156 end:
2157 skb->tail += delta;
2158 skb->data_len -= delta;
2159
2160 if (!skb->data_len)
2161 skb_zcopy_clear(skb, false);
2162
2163 return skb_tail_pointer(skb);
2164 }
2165 EXPORT_SYMBOL(__pskb_pull_tail);
2166
2167 /**
2168 * skb_copy_bits - copy bits from skb to kernel buffer
2169 * @skb: source skb
2170 * @offset: offset in source
2171 * @to: destination buffer
2172 * @len: number of bytes to copy
2173 *
2174 * Copy the specified number of bytes from the source skb to the
2175 * destination buffer.
2176 *
2177 * CAUTION ! :
2178 * If its prototype is ever changed,
2179 * check arch/{*}/net/{*}.S files,
2180 * since it is called from BPF assembly code.
2181 */
skb_copy_bits(const struct sk_buff * skb,int offset,void * to,int len)2182 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2183 {
2184 int start = skb_headlen(skb);
2185 struct sk_buff *frag_iter;
2186 int i, copy;
2187
2188 if (offset > (int)skb->len - len)
2189 goto fault;
2190
2191 /* Copy header. */
2192 if ((copy = start - offset) > 0) {
2193 if (copy > len)
2194 copy = len;
2195 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2196 if ((len -= copy) == 0)
2197 return 0;
2198 offset += copy;
2199 to += copy;
2200 }
2201
2202 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2203 int end;
2204 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2205
2206 WARN_ON(start > offset + len);
2207
2208 end = start + skb_frag_size(f);
2209 if ((copy = end - offset) > 0) {
2210 u32 p_off, p_len, copied;
2211 struct page *p;
2212 u8 *vaddr;
2213
2214 if (copy > len)
2215 copy = len;
2216
2217 skb_frag_foreach_page(f,
2218 skb_frag_off(f) + offset - start,
2219 copy, p, p_off, p_len, copied) {
2220 vaddr = kmap_atomic(p);
2221 memcpy(to + copied, vaddr + p_off, p_len);
2222 kunmap_atomic(vaddr);
2223 }
2224
2225 if ((len -= copy) == 0)
2226 return 0;
2227 offset += copy;
2228 to += copy;
2229 }
2230 start = end;
2231 }
2232
2233 skb_walk_frags(skb, frag_iter) {
2234 int end;
2235
2236 WARN_ON(start > offset + len);
2237
2238 end = start + frag_iter->len;
2239 if ((copy = end - offset) > 0) {
2240 if (copy > len)
2241 copy = len;
2242 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2243 goto fault;
2244 if ((len -= copy) == 0)
2245 return 0;
2246 offset += copy;
2247 to += copy;
2248 }
2249 start = end;
2250 }
2251
2252 if (!len)
2253 return 0;
2254
2255 fault:
2256 return -EFAULT;
2257 }
2258 EXPORT_SYMBOL(skb_copy_bits);
2259
2260 /*
2261 * Callback from splice_to_pipe(), if we need to release some pages
2262 * at the end of the spd in case we error'ed out in filling the pipe.
2263 */
sock_spd_release(struct splice_pipe_desc * spd,unsigned int i)2264 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2265 {
2266 put_page(spd->pages[i]);
2267 }
2268
linear_to_page(struct page * page,unsigned int * len,unsigned int * offset,struct sock * sk)2269 static struct page *linear_to_page(struct page *page, unsigned int *len,
2270 unsigned int *offset,
2271 struct sock *sk)
2272 {
2273 struct page_frag *pfrag = sk_page_frag(sk);
2274
2275 if (!sk_page_frag_refill(sk, pfrag))
2276 return NULL;
2277
2278 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2279
2280 memcpy(page_address(pfrag->page) + pfrag->offset,
2281 page_address(page) + *offset, *len);
2282 *offset = pfrag->offset;
2283 pfrag->offset += *len;
2284
2285 return pfrag->page;
2286 }
2287
spd_can_coalesce(const struct splice_pipe_desc * spd,struct page * page,unsigned int offset)2288 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2289 struct page *page,
2290 unsigned int offset)
2291 {
2292 return spd->nr_pages &&
2293 spd->pages[spd->nr_pages - 1] == page &&
2294 (spd->partial[spd->nr_pages - 1].offset +
2295 spd->partial[spd->nr_pages - 1].len == offset);
2296 }
2297
2298 /*
2299 * Fill page/offset/length into spd, if it can hold more pages.
2300 */
spd_fill_page(struct splice_pipe_desc * spd,struct pipe_inode_info * pipe,struct page * page,unsigned int * len,unsigned int offset,bool linear,struct sock * sk)2301 static bool spd_fill_page(struct splice_pipe_desc *spd,
2302 struct pipe_inode_info *pipe, struct page *page,
2303 unsigned int *len, unsigned int offset,
2304 bool linear,
2305 struct sock *sk)
2306 {
2307 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2308 return true;
2309
2310 if (linear) {
2311 page = linear_to_page(page, len, &offset, sk);
2312 if (!page)
2313 return true;
2314 }
2315 if (spd_can_coalesce(spd, page, offset)) {
2316 spd->partial[spd->nr_pages - 1].len += *len;
2317 return false;
2318 }
2319 get_page(page);
2320 spd->pages[spd->nr_pages] = page;
2321 spd->partial[spd->nr_pages].len = *len;
2322 spd->partial[spd->nr_pages].offset = offset;
2323 spd->nr_pages++;
2324
2325 return false;
2326 }
2327
__splice_segment(struct page * page,unsigned int poff,unsigned int plen,unsigned int * off,unsigned int * len,struct splice_pipe_desc * spd,bool linear,struct sock * sk,struct pipe_inode_info * pipe)2328 static bool __splice_segment(struct page *page, unsigned int poff,
2329 unsigned int plen, unsigned int *off,
2330 unsigned int *len,
2331 struct splice_pipe_desc *spd, bool linear,
2332 struct sock *sk,
2333 struct pipe_inode_info *pipe)
2334 {
2335 if (!*len)
2336 return true;
2337
2338 /* skip this segment if already processed */
2339 if (*off >= plen) {
2340 *off -= plen;
2341 return false;
2342 }
2343
2344 /* ignore any bits we already processed */
2345 poff += *off;
2346 plen -= *off;
2347 *off = 0;
2348
2349 do {
2350 unsigned int flen = min(*len, plen);
2351
2352 if (spd_fill_page(spd, pipe, page, &flen, poff,
2353 linear, sk))
2354 return true;
2355 poff += flen;
2356 plen -= flen;
2357 *len -= flen;
2358 } while (*len && plen);
2359
2360 return false;
2361 }
2362
2363 /*
2364 * Map linear and fragment data from the skb to spd. It reports true if the
2365 * pipe is full or if we already spliced the requested length.
2366 */
__skb_splice_bits(struct sk_buff * skb,struct pipe_inode_info * pipe,unsigned int * offset,unsigned int * len,struct splice_pipe_desc * spd,struct sock * sk)2367 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2368 unsigned int *offset, unsigned int *len,
2369 struct splice_pipe_desc *spd, struct sock *sk)
2370 {
2371 int seg;
2372 struct sk_buff *iter;
2373
2374 /* map the linear part :
2375 * If skb->head_frag is set, this 'linear' part is backed by a
2376 * fragment, and if the head is not shared with any clones then
2377 * we can avoid a copy since we own the head portion of this page.
2378 */
2379 if (__splice_segment(virt_to_page(skb->data),
2380 (unsigned long) skb->data & (PAGE_SIZE - 1),
2381 skb_headlen(skb),
2382 offset, len, spd,
2383 skb_head_is_locked(skb),
2384 sk, pipe))
2385 return true;
2386
2387 /*
2388 * then map the fragments
2389 */
2390 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2391 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2392
2393 if (__splice_segment(skb_frag_page(f),
2394 skb_frag_off(f), skb_frag_size(f),
2395 offset, len, spd, false, sk, pipe))
2396 return true;
2397 }
2398
2399 skb_walk_frags(skb, iter) {
2400 if (*offset >= iter->len) {
2401 *offset -= iter->len;
2402 continue;
2403 }
2404 /* __skb_splice_bits() only fails if the output has no room
2405 * left, so no point in going over the frag_list for the error
2406 * case.
2407 */
2408 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2409 return true;
2410 }
2411
2412 return false;
2413 }
2414
2415 /*
2416 * Map data from the skb to a pipe. Should handle both the linear part,
2417 * the fragments, and the frag list.
2418 */
skb_splice_bits(struct sk_buff * skb,struct sock * sk,unsigned int offset,struct pipe_inode_info * pipe,unsigned int tlen,unsigned int flags)2419 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2420 struct pipe_inode_info *pipe, unsigned int tlen,
2421 unsigned int flags)
2422 {
2423 struct partial_page partial[MAX_SKB_FRAGS];
2424 struct page *pages[MAX_SKB_FRAGS];
2425 struct splice_pipe_desc spd = {
2426 .pages = pages,
2427 .partial = partial,
2428 .nr_pages_max = MAX_SKB_FRAGS,
2429 .ops = &nosteal_pipe_buf_ops,
2430 .spd_release = sock_spd_release,
2431 };
2432 int ret = 0;
2433
2434 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2435
2436 if (spd.nr_pages)
2437 ret = splice_to_pipe(pipe, &spd);
2438
2439 return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(skb_splice_bits);
2442
2443 /* Send skb data on a socket. Socket must be locked. */
skb_send_sock_locked(struct sock * sk,struct sk_buff * skb,int offset,int len)2444 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
2445 int len)
2446 {
2447 unsigned int orig_len = len;
2448 struct sk_buff *head = skb;
2449 unsigned short fragidx;
2450 int slen, ret;
2451
2452 do_frag_list:
2453
2454 /* Deal with head data */
2455 while (offset < skb_headlen(skb) && len) {
2456 struct kvec kv;
2457 struct msghdr msg;
2458
2459 slen = min_t(int, len, skb_headlen(skb) - offset);
2460 kv.iov_base = skb->data + offset;
2461 kv.iov_len = slen;
2462 memset(&msg, 0, sizeof(msg));
2463 msg.msg_flags = MSG_DONTWAIT;
2464
2465 ret = kernel_sendmsg_locked(sk, &msg, &kv, 1, slen);
2466 if (ret <= 0)
2467 goto error;
2468
2469 offset += ret;
2470 len -= ret;
2471 }
2472
2473 /* All the data was skb head? */
2474 if (!len)
2475 goto out;
2476
2477 /* Make offset relative to start of frags */
2478 offset -= skb_headlen(skb);
2479
2480 /* Find where we are in frag list */
2481 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2482 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2483
2484 if (offset < skb_frag_size(frag))
2485 break;
2486
2487 offset -= skb_frag_size(frag);
2488 }
2489
2490 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
2491 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
2492
2493 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
2494
2495 while (slen) {
2496 ret = kernel_sendpage_locked(sk, skb_frag_page(frag),
2497 skb_frag_off(frag) + offset,
2498 slen, MSG_DONTWAIT);
2499 if (ret <= 0)
2500 goto error;
2501
2502 len -= ret;
2503 offset += ret;
2504 slen -= ret;
2505 }
2506
2507 offset = 0;
2508 }
2509
2510 if (len) {
2511 /* Process any frag lists */
2512
2513 if (skb == head) {
2514 if (skb_has_frag_list(skb)) {
2515 skb = skb_shinfo(skb)->frag_list;
2516 goto do_frag_list;
2517 }
2518 } else if (skb->next) {
2519 skb = skb->next;
2520 goto do_frag_list;
2521 }
2522 }
2523
2524 out:
2525 return orig_len - len;
2526
2527 error:
2528 return orig_len == len ? ret : orig_len - len;
2529 }
2530 EXPORT_SYMBOL_GPL(skb_send_sock_locked);
2531
2532 /**
2533 * skb_store_bits - store bits from kernel buffer to skb
2534 * @skb: destination buffer
2535 * @offset: offset in destination
2536 * @from: source buffer
2537 * @len: number of bytes to copy
2538 *
2539 * Copy the specified number of bytes from the source buffer to the
2540 * destination skb. This function handles all the messy bits of
2541 * traversing fragment lists and such.
2542 */
2543
skb_store_bits(struct sk_buff * skb,int offset,const void * from,int len)2544 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
2545 {
2546 int start = skb_headlen(skb);
2547 struct sk_buff *frag_iter;
2548 int i, copy;
2549
2550 if (offset > (int)skb->len - len)
2551 goto fault;
2552
2553 if ((copy = start - offset) > 0) {
2554 if (copy > len)
2555 copy = len;
2556 skb_copy_to_linear_data_offset(skb, offset, from, copy);
2557 if ((len -= copy) == 0)
2558 return 0;
2559 offset += copy;
2560 from += copy;
2561 }
2562
2563 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2564 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2565 int end;
2566
2567 WARN_ON(start > offset + len);
2568
2569 end = start + skb_frag_size(frag);
2570 if ((copy = end - offset) > 0) {
2571 u32 p_off, p_len, copied;
2572 struct page *p;
2573 u8 *vaddr;
2574
2575 if (copy > len)
2576 copy = len;
2577
2578 skb_frag_foreach_page(frag,
2579 skb_frag_off(frag) + offset - start,
2580 copy, p, p_off, p_len, copied) {
2581 vaddr = kmap_atomic(p);
2582 memcpy(vaddr + p_off, from + copied, p_len);
2583 kunmap_atomic(vaddr);
2584 }
2585
2586 if ((len -= copy) == 0)
2587 return 0;
2588 offset += copy;
2589 from += copy;
2590 }
2591 start = end;
2592 }
2593
2594 skb_walk_frags(skb, frag_iter) {
2595 int end;
2596
2597 WARN_ON(start > offset + len);
2598
2599 end = start + frag_iter->len;
2600 if ((copy = end - offset) > 0) {
2601 if (copy > len)
2602 copy = len;
2603 if (skb_store_bits(frag_iter, offset - start,
2604 from, copy))
2605 goto fault;
2606 if ((len -= copy) == 0)
2607 return 0;
2608 offset += copy;
2609 from += copy;
2610 }
2611 start = end;
2612 }
2613 if (!len)
2614 return 0;
2615
2616 fault:
2617 return -EFAULT;
2618 }
2619 EXPORT_SYMBOL(skb_store_bits);
2620
2621 /* Checksum skb data. */
__skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum,const struct skb_checksum_ops * ops)2622 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
2623 __wsum csum, const struct skb_checksum_ops *ops)
2624 {
2625 int start = skb_headlen(skb);
2626 int i, copy = start - offset;
2627 struct sk_buff *frag_iter;
2628 int pos = 0;
2629
2630 /* Checksum header. */
2631 if (copy > 0) {
2632 if (copy > len)
2633 copy = len;
2634 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
2635 skb->data + offset, copy, csum);
2636 if ((len -= copy) == 0)
2637 return csum;
2638 offset += copy;
2639 pos = copy;
2640 }
2641
2642 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2643 int end;
2644 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2645
2646 WARN_ON(start > offset + len);
2647
2648 end = start + skb_frag_size(frag);
2649 if ((copy = end - offset) > 0) {
2650 u32 p_off, p_len, copied;
2651 struct page *p;
2652 __wsum csum2;
2653 u8 *vaddr;
2654
2655 if (copy > len)
2656 copy = len;
2657
2658 skb_frag_foreach_page(frag,
2659 skb_frag_off(frag) + offset - start,
2660 copy, p, p_off, p_len, copied) {
2661 vaddr = kmap_atomic(p);
2662 csum2 = INDIRECT_CALL_1(ops->update,
2663 csum_partial_ext,
2664 vaddr + p_off, p_len, 0);
2665 kunmap_atomic(vaddr);
2666 csum = INDIRECT_CALL_1(ops->combine,
2667 csum_block_add_ext, csum,
2668 csum2, pos, p_len);
2669 pos += p_len;
2670 }
2671
2672 if (!(len -= copy))
2673 return csum;
2674 offset += copy;
2675 }
2676 start = end;
2677 }
2678
2679 skb_walk_frags(skb, frag_iter) {
2680 int end;
2681
2682 WARN_ON(start > offset + len);
2683
2684 end = start + frag_iter->len;
2685 if ((copy = end - offset) > 0) {
2686 __wsum csum2;
2687 if (copy > len)
2688 copy = len;
2689 csum2 = __skb_checksum(frag_iter, offset - start,
2690 copy, 0, ops);
2691 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
2692 csum, csum2, pos, copy);
2693 if ((len -= copy) == 0)
2694 return csum;
2695 offset += copy;
2696 pos += copy;
2697 }
2698 start = end;
2699 }
2700 BUG_ON(len);
2701
2702 return csum;
2703 }
2704 EXPORT_SYMBOL(__skb_checksum);
2705
skb_checksum(const struct sk_buff * skb,int offset,int len,__wsum csum)2706 __wsum skb_checksum(const struct sk_buff *skb, int offset,
2707 int len, __wsum csum)
2708 {
2709 const struct skb_checksum_ops ops = {
2710 .update = csum_partial_ext,
2711 .combine = csum_block_add_ext,
2712 };
2713
2714 return __skb_checksum(skb, offset, len, csum, &ops);
2715 }
2716 EXPORT_SYMBOL(skb_checksum);
2717
2718 /* Both of above in one bottle. */
2719
skb_copy_and_csum_bits(const struct sk_buff * skb,int offset,u8 * to,int len)2720 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2721 u8 *to, int len)
2722 {
2723 int start = skb_headlen(skb);
2724 int i, copy = start - offset;
2725 struct sk_buff *frag_iter;
2726 int pos = 0;
2727 __wsum csum = 0;
2728
2729 /* Copy header. */
2730 if (copy > 0) {
2731 if (copy > len)
2732 copy = len;
2733 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2734 copy);
2735 if ((len -= copy) == 0)
2736 return csum;
2737 offset += copy;
2738 to += copy;
2739 pos = copy;
2740 }
2741
2742 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2743 int end;
2744
2745 WARN_ON(start > offset + len);
2746
2747 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2748 if ((copy = end - offset) > 0) {
2749 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750 u32 p_off, p_len, copied;
2751 struct page *p;
2752 __wsum csum2;
2753 u8 *vaddr;
2754
2755 if (copy > len)
2756 copy = len;
2757
2758 skb_frag_foreach_page(frag,
2759 skb_frag_off(frag) + offset - start,
2760 copy, p, p_off, p_len, copied) {
2761 vaddr = kmap_atomic(p);
2762 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
2763 to + copied,
2764 p_len);
2765 kunmap_atomic(vaddr);
2766 csum = csum_block_add(csum, csum2, pos);
2767 pos += p_len;
2768 }
2769
2770 if (!(len -= copy))
2771 return csum;
2772 offset += copy;
2773 to += copy;
2774 }
2775 start = end;
2776 }
2777
2778 skb_walk_frags(skb, frag_iter) {
2779 __wsum csum2;
2780 int end;
2781
2782 WARN_ON(start > offset + len);
2783
2784 end = start + frag_iter->len;
2785 if ((copy = end - offset) > 0) {
2786 if (copy > len)
2787 copy = len;
2788 csum2 = skb_copy_and_csum_bits(frag_iter,
2789 offset - start,
2790 to, copy);
2791 csum = csum_block_add(csum, csum2, pos);
2792 if ((len -= copy) == 0)
2793 return csum;
2794 offset += copy;
2795 to += copy;
2796 pos += copy;
2797 }
2798 start = end;
2799 }
2800 BUG_ON(len);
2801 return csum;
2802 }
2803 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2804
__skb_checksum_complete_head(struct sk_buff * skb,int len)2805 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
2806 {
2807 __sum16 sum;
2808
2809 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
2810 /* See comments in __skb_checksum_complete(). */
2811 if (likely(!sum)) {
2812 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2813 !skb->csum_complete_sw)
2814 netdev_rx_csum_fault(skb->dev, skb);
2815 }
2816 if (!skb_shared(skb))
2817 skb->csum_valid = !sum;
2818 return sum;
2819 }
2820 EXPORT_SYMBOL(__skb_checksum_complete_head);
2821
2822 /* This function assumes skb->csum already holds pseudo header's checksum,
2823 * which has been changed from the hardware checksum, for example, by
2824 * __skb_checksum_validate_complete(). And, the original skb->csum must
2825 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
2826 *
2827 * It returns non-zero if the recomputed checksum is still invalid, otherwise
2828 * zero. The new checksum is stored back into skb->csum unless the skb is
2829 * shared.
2830 */
__skb_checksum_complete(struct sk_buff * skb)2831 __sum16 __skb_checksum_complete(struct sk_buff *skb)
2832 {
2833 __wsum csum;
2834 __sum16 sum;
2835
2836 csum = skb_checksum(skb, 0, skb->len, 0);
2837
2838 sum = csum_fold(csum_add(skb->csum, csum));
2839 /* This check is inverted, because we already knew the hardware
2840 * checksum is invalid before calling this function. So, if the
2841 * re-computed checksum is valid instead, then we have a mismatch
2842 * between the original skb->csum and skb_checksum(). This means either
2843 * the original hardware checksum is incorrect or we screw up skb->csum
2844 * when moving skb->data around.
2845 */
2846 if (likely(!sum)) {
2847 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
2848 !skb->csum_complete_sw)
2849 netdev_rx_csum_fault(skb->dev, skb);
2850 }
2851
2852 if (!skb_shared(skb)) {
2853 /* Save full packet checksum */
2854 skb->csum = csum;
2855 skb->ip_summed = CHECKSUM_COMPLETE;
2856 skb->csum_complete_sw = 1;
2857 skb->csum_valid = !sum;
2858 }
2859
2860 return sum;
2861 }
2862 EXPORT_SYMBOL(__skb_checksum_complete);
2863
warn_crc32c_csum_update(const void * buff,int len,__wsum sum)2864 static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
2865 {
2866 net_warn_ratelimited(
2867 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2868 __func__);
2869 return 0;
2870 }
2871
warn_crc32c_csum_combine(__wsum csum,__wsum csum2,int offset,int len)2872 static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
2873 int offset, int len)
2874 {
2875 net_warn_ratelimited(
2876 "%s: attempt to compute crc32c without libcrc32c.ko\n",
2877 __func__);
2878 return 0;
2879 }
2880
2881 static const struct skb_checksum_ops default_crc32c_ops = {
2882 .update = warn_crc32c_csum_update,
2883 .combine = warn_crc32c_csum_combine,
2884 };
2885
2886 const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
2887 &default_crc32c_ops;
2888 EXPORT_SYMBOL(crc32c_csum_stub);
2889
2890 /**
2891 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
2892 * @from: source buffer
2893 *
2894 * Calculates the amount of linear headroom needed in the 'to' skb passed
2895 * into skb_zerocopy().
2896 */
2897 unsigned int
skb_zerocopy_headlen(const struct sk_buff * from)2898 skb_zerocopy_headlen(const struct sk_buff *from)
2899 {
2900 unsigned int hlen = 0;
2901
2902 if (!from->head_frag ||
2903 skb_headlen(from) < L1_CACHE_BYTES ||
2904 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
2905 hlen = skb_headlen(from);
2906
2907 if (skb_has_frag_list(from))
2908 hlen = from->len;
2909
2910 return hlen;
2911 }
2912 EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
2913
2914 /**
2915 * skb_zerocopy - Zero copy skb to skb
2916 * @to: destination buffer
2917 * @from: source buffer
2918 * @len: number of bytes to copy from source buffer
2919 * @hlen: size of linear headroom in destination buffer
2920 *
2921 * Copies up to `len` bytes from `from` to `to` by creating references
2922 * to the frags in the source buffer.
2923 *
2924 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
2925 * headroom in the `to` buffer.
2926 *
2927 * Return value:
2928 * 0: everything is OK
2929 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
2930 * -EFAULT: skb_copy_bits() found some problem with skb geometry
2931 */
2932 int
skb_zerocopy(struct sk_buff * to,struct sk_buff * from,int len,int hlen)2933 skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
2934 {
2935 int i, j = 0;
2936 int plen = 0; /* length of skb->head fragment */
2937 int ret;
2938 struct page *page;
2939 unsigned int offset;
2940
2941 BUG_ON(!from->head_frag && !hlen);
2942
2943 /* dont bother with small payloads */
2944 if (len <= skb_tailroom(to))
2945 return skb_copy_bits(from, 0, skb_put(to, len), len);
2946
2947 if (hlen) {
2948 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
2949 if (unlikely(ret))
2950 return ret;
2951 len -= hlen;
2952 } else {
2953 plen = min_t(int, skb_headlen(from), len);
2954 if (plen) {
2955 page = virt_to_head_page(from->head);
2956 offset = from->data - (unsigned char *)page_address(page);
2957 __skb_fill_page_desc(to, 0, page, offset, plen);
2958 get_page(page);
2959 j = 1;
2960 len -= plen;
2961 }
2962 }
2963
2964 to->truesize += len + plen;
2965 to->len += len + plen;
2966 to->data_len += len + plen;
2967
2968 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
2969 skb_tx_error(from);
2970 return -ENOMEM;
2971 }
2972 skb_zerocopy_clone(to, from, GFP_ATOMIC);
2973
2974 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
2975 int size;
2976
2977 if (!len)
2978 break;
2979 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
2980 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
2981 len);
2982 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
2983 len -= size;
2984 skb_frag_ref(to, j);
2985 j++;
2986 }
2987 skb_shinfo(to)->nr_frags = j;
2988
2989 return 0;
2990 }
2991 EXPORT_SYMBOL_GPL(skb_zerocopy);
2992
skb_copy_and_csum_dev(const struct sk_buff * skb,u8 * to)2993 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2994 {
2995 __wsum csum;
2996 long csstart;
2997
2998 if (skb->ip_summed == CHECKSUM_PARTIAL)
2999 csstart = skb_checksum_start_offset(skb);
3000 else
3001 csstart = skb_headlen(skb);
3002
3003 BUG_ON(csstart > skb_headlen(skb));
3004
3005 skb_copy_from_linear_data(skb, to, csstart);
3006
3007 csum = 0;
3008 if (csstart != skb->len)
3009 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3010 skb->len - csstart);
3011
3012 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3013 long csstuff = csstart + skb->csum_offset;
3014
3015 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3016 }
3017 }
3018 EXPORT_SYMBOL(skb_copy_and_csum_dev);
3019
3020 /**
3021 * skb_dequeue - remove from the head of the queue
3022 * @list: list to dequeue from
3023 *
3024 * Remove the head of the list. The list lock is taken so the function
3025 * may be used safely with other locking list functions. The head item is
3026 * returned or %NULL if the list is empty.
3027 */
3028
skb_dequeue(struct sk_buff_head * list)3029 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3030 {
3031 unsigned long flags;
3032 struct sk_buff *result;
3033
3034 spin_lock_irqsave(&list->lock, flags);
3035 result = __skb_dequeue(list);
3036 spin_unlock_irqrestore(&list->lock, flags);
3037 return result;
3038 }
3039 EXPORT_SYMBOL(skb_dequeue);
3040
3041 /**
3042 * skb_dequeue_tail - remove from the tail of the queue
3043 * @list: list to dequeue from
3044 *
3045 * Remove the tail of the list. The list lock is taken so the function
3046 * may be used safely with other locking list functions. The tail item is
3047 * returned or %NULL if the list is empty.
3048 */
skb_dequeue_tail(struct sk_buff_head * list)3049 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3050 {
3051 unsigned long flags;
3052 struct sk_buff *result;
3053
3054 spin_lock_irqsave(&list->lock, flags);
3055 result = __skb_dequeue_tail(list);
3056 spin_unlock_irqrestore(&list->lock, flags);
3057 return result;
3058 }
3059 EXPORT_SYMBOL(skb_dequeue_tail);
3060
3061 /**
3062 * skb_queue_purge - empty a list
3063 * @list: list to empty
3064 *
3065 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3066 * the list and one reference dropped. This function takes the list
3067 * lock and is atomic with respect to other list locking functions.
3068 */
skb_queue_purge(struct sk_buff_head * list)3069 void skb_queue_purge(struct sk_buff_head *list)
3070 {
3071 struct sk_buff *skb;
3072 while ((skb = skb_dequeue(list)) != NULL)
3073 kfree_skb(skb);
3074 }
3075 EXPORT_SYMBOL(skb_queue_purge);
3076
3077 /**
3078 * skb_rbtree_purge - empty a skb rbtree
3079 * @root: root of the rbtree to empty
3080 * Return value: the sum of truesizes of all purged skbs.
3081 *
3082 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3083 * the list and one reference dropped. This function does not take
3084 * any lock. Synchronization should be handled by the caller (e.g., TCP
3085 * out-of-order queue is protected by the socket lock).
3086 */
skb_rbtree_purge(struct rb_root * root)3087 unsigned int skb_rbtree_purge(struct rb_root *root)
3088 {
3089 struct rb_node *p = rb_first(root);
3090 unsigned int sum = 0;
3091
3092 while (p) {
3093 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3094
3095 p = rb_next(p);
3096 rb_erase(&skb->rbnode, root);
3097 sum += skb->truesize;
3098 kfree_skb(skb);
3099 }
3100 return sum;
3101 }
3102
3103 /**
3104 * skb_queue_head - queue a buffer at the list head
3105 * @list: list to use
3106 * @newsk: buffer to queue
3107 *
3108 * Queue a buffer at the start of the list. This function takes the
3109 * list lock and can be used safely with other locking &sk_buff functions
3110 * safely.
3111 *
3112 * A buffer cannot be placed on two lists at the same time.
3113 */
skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)3114 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3115 {
3116 unsigned long flags;
3117
3118 spin_lock_irqsave(&list->lock, flags);
3119 __skb_queue_head(list, newsk);
3120 spin_unlock_irqrestore(&list->lock, flags);
3121 }
3122 EXPORT_SYMBOL(skb_queue_head);
3123
3124 /**
3125 * skb_queue_tail - queue a buffer at the list tail
3126 * @list: list to use
3127 * @newsk: buffer to queue
3128 *
3129 * Queue a buffer at the tail of the list. This function takes the
3130 * list lock and can be used safely with other locking &sk_buff functions
3131 * safely.
3132 *
3133 * A buffer cannot be placed on two lists at the same time.
3134 */
skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)3135 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3136 {
3137 unsigned long flags;
3138
3139 spin_lock_irqsave(&list->lock, flags);
3140 __skb_queue_tail(list, newsk);
3141 spin_unlock_irqrestore(&list->lock, flags);
3142 }
3143 EXPORT_SYMBOL(skb_queue_tail);
3144
3145 /**
3146 * skb_unlink - remove a buffer from a list
3147 * @skb: buffer to remove
3148 * @list: list to use
3149 *
3150 * Remove a packet from a list. The list locks are taken and this
3151 * function is atomic with respect to other list locked calls
3152 *
3153 * You must know what list the SKB is on.
3154 */
skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)3155 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3156 {
3157 unsigned long flags;
3158
3159 spin_lock_irqsave(&list->lock, flags);
3160 __skb_unlink(skb, list);
3161 spin_unlock_irqrestore(&list->lock, flags);
3162 }
3163 EXPORT_SYMBOL(skb_unlink);
3164
3165 /**
3166 * skb_append - append a buffer
3167 * @old: buffer to insert after
3168 * @newsk: buffer to insert
3169 * @list: list to use
3170 *
3171 * Place a packet after a given packet in a list. The list locks are taken
3172 * and this function is atomic with respect to other list locked calls.
3173 * A buffer cannot be placed on two lists at the same time.
3174 */
skb_append(struct sk_buff * old,struct sk_buff * newsk,struct sk_buff_head * list)3175 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3176 {
3177 unsigned long flags;
3178
3179 spin_lock_irqsave(&list->lock, flags);
3180 __skb_queue_after(list, old, newsk);
3181 spin_unlock_irqrestore(&list->lock, flags);
3182 }
3183 EXPORT_SYMBOL(skb_append);
3184
skb_split_inside_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,const int pos)3185 static inline void skb_split_inside_header(struct sk_buff *skb,
3186 struct sk_buff* skb1,
3187 const u32 len, const int pos)
3188 {
3189 int i;
3190
3191 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3192 pos - len);
3193 /* And move data appendix as is. */
3194 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3195 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3196
3197 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3198 skb_shinfo(skb)->nr_frags = 0;
3199 skb1->data_len = skb->data_len;
3200 skb1->len += skb1->data_len;
3201 skb->data_len = 0;
3202 skb->len = len;
3203 skb_set_tail_pointer(skb, len);
3204 }
3205
skb_split_no_header(struct sk_buff * skb,struct sk_buff * skb1,const u32 len,int pos)3206 static inline void skb_split_no_header(struct sk_buff *skb,
3207 struct sk_buff* skb1,
3208 const u32 len, int pos)
3209 {
3210 int i, k = 0;
3211 const int nfrags = skb_shinfo(skb)->nr_frags;
3212
3213 skb_shinfo(skb)->nr_frags = 0;
3214 skb1->len = skb1->data_len = skb->len - len;
3215 skb->len = len;
3216 skb->data_len = len - pos;
3217
3218 for (i = 0; i < nfrags; i++) {
3219 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3220
3221 if (pos + size > len) {
3222 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3223
3224 if (pos < len) {
3225 /* Split frag.
3226 * We have two variants in this case:
3227 * 1. Move all the frag to the second
3228 * part, if it is possible. F.e.
3229 * this approach is mandatory for TUX,
3230 * where splitting is expensive.
3231 * 2. Split is accurately. We make this.
3232 */
3233 skb_frag_ref(skb, i);
3234 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3235 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3236 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3237 skb_shinfo(skb)->nr_frags++;
3238 }
3239 k++;
3240 } else
3241 skb_shinfo(skb)->nr_frags++;
3242 pos += size;
3243 }
3244 skb_shinfo(skb1)->nr_frags = k;
3245 }
3246
3247 /**
3248 * skb_split - Split fragmented skb to two parts at length len.
3249 * @skb: the buffer to split
3250 * @skb1: the buffer to receive the second part
3251 * @len: new length for skb
3252 */
skb_split(struct sk_buff * skb,struct sk_buff * skb1,const u32 len)3253 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3254 {
3255 int pos = skb_headlen(skb);
3256
3257 skb_shinfo(skb1)->tx_flags |= skb_shinfo(skb)->tx_flags &
3258 SKBTX_SHARED_FRAG;
3259 skb_zerocopy_clone(skb1, skb, 0);
3260 if (len < pos) /* Split line is inside header. */
3261 skb_split_inside_header(skb, skb1, len, pos);
3262 else /* Second chunk has no header, nothing to copy. */
3263 skb_split_no_header(skb, skb1, len, pos);
3264 }
3265 EXPORT_SYMBOL(skb_split);
3266
3267 /* Shifting from/to a cloned skb is a no-go.
3268 *
3269 * Caller cannot keep skb_shinfo related pointers past calling here!
3270 */
skb_prepare_for_shift(struct sk_buff * skb)3271 static int skb_prepare_for_shift(struct sk_buff *skb)
3272 {
3273 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3274 }
3275
3276 /**
3277 * skb_shift - Shifts paged data partially from skb to another
3278 * @tgt: buffer into which tail data gets added
3279 * @skb: buffer from which the paged data comes from
3280 * @shiftlen: shift up to this many bytes
3281 *
3282 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3283 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3284 * It's up to caller to free skb if everything was shifted.
3285 *
3286 * If @tgt runs out of frags, the whole operation is aborted.
3287 *
3288 * Skb cannot include anything else but paged data while tgt is allowed
3289 * to have non-paged data as well.
3290 *
3291 * TODO: full sized shift could be optimized but that would need
3292 * specialized skb free'er to handle frags without up-to-date nr_frags.
3293 */
skb_shift(struct sk_buff * tgt,struct sk_buff * skb,int shiftlen)3294 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3295 {
3296 int from, to, merge, todo;
3297 skb_frag_t *fragfrom, *fragto;
3298
3299 BUG_ON(shiftlen > skb->len);
3300
3301 if (skb_headlen(skb))
3302 return 0;
3303 if (skb_zcopy(tgt) || skb_zcopy(skb))
3304 return 0;
3305
3306 todo = shiftlen;
3307 from = 0;
3308 to = skb_shinfo(tgt)->nr_frags;
3309 fragfrom = &skb_shinfo(skb)->frags[from];
3310
3311 /* Actual merge is delayed until the point when we know we can
3312 * commit all, so that we don't have to undo partial changes
3313 */
3314 if (!to ||
3315 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3316 skb_frag_off(fragfrom))) {
3317 merge = -1;
3318 } else {
3319 merge = to - 1;
3320
3321 todo -= skb_frag_size(fragfrom);
3322 if (todo < 0) {
3323 if (skb_prepare_for_shift(skb) ||
3324 skb_prepare_for_shift(tgt))
3325 return 0;
3326
3327 /* All previous frag pointers might be stale! */
3328 fragfrom = &skb_shinfo(skb)->frags[from];
3329 fragto = &skb_shinfo(tgt)->frags[merge];
3330
3331 skb_frag_size_add(fragto, shiftlen);
3332 skb_frag_size_sub(fragfrom, shiftlen);
3333 skb_frag_off_add(fragfrom, shiftlen);
3334
3335 goto onlymerged;
3336 }
3337
3338 from++;
3339 }
3340
3341 /* Skip full, not-fitting skb to avoid expensive operations */
3342 if ((shiftlen == skb->len) &&
3343 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3344 return 0;
3345
3346 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3347 return 0;
3348
3349 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3350 if (to == MAX_SKB_FRAGS)
3351 return 0;
3352
3353 fragfrom = &skb_shinfo(skb)->frags[from];
3354 fragto = &skb_shinfo(tgt)->frags[to];
3355
3356 if (todo >= skb_frag_size(fragfrom)) {
3357 *fragto = *fragfrom;
3358 todo -= skb_frag_size(fragfrom);
3359 from++;
3360 to++;
3361
3362 } else {
3363 __skb_frag_ref(fragfrom);
3364 skb_frag_page_copy(fragto, fragfrom);
3365 skb_frag_off_copy(fragto, fragfrom);
3366 skb_frag_size_set(fragto, todo);
3367
3368 skb_frag_off_add(fragfrom, todo);
3369 skb_frag_size_sub(fragfrom, todo);
3370 todo = 0;
3371
3372 to++;
3373 break;
3374 }
3375 }
3376
3377 /* Ready to "commit" this state change to tgt */
3378 skb_shinfo(tgt)->nr_frags = to;
3379
3380 if (merge >= 0) {
3381 fragfrom = &skb_shinfo(skb)->frags[0];
3382 fragto = &skb_shinfo(tgt)->frags[merge];
3383
3384 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3385 __skb_frag_unref(fragfrom);
3386 }
3387
3388 /* Reposition in the original skb */
3389 to = 0;
3390 while (from < skb_shinfo(skb)->nr_frags)
3391 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3392 skb_shinfo(skb)->nr_frags = to;
3393
3394 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3395
3396 onlymerged:
3397 /* Most likely the tgt won't ever need its checksum anymore, skb on
3398 * the other hand might need it if it needs to be resent
3399 */
3400 tgt->ip_summed = CHECKSUM_PARTIAL;
3401 skb->ip_summed = CHECKSUM_PARTIAL;
3402
3403 /* Yak, is it really working this way? Some helper please? */
3404 skb->len -= shiftlen;
3405 skb->data_len -= shiftlen;
3406 skb->truesize -= shiftlen;
3407 tgt->len += shiftlen;
3408 tgt->data_len += shiftlen;
3409 tgt->truesize += shiftlen;
3410
3411 return shiftlen;
3412 }
3413
3414 /**
3415 * skb_prepare_seq_read - Prepare a sequential read of skb data
3416 * @skb: the buffer to read
3417 * @from: lower offset of data to be read
3418 * @to: upper offset of data to be read
3419 * @st: state variable
3420 *
3421 * Initializes the specified state variable. Must be called before
3422 * invoking skb_seq_read() for the first time.
3423 */
skb_prepare_seq_read(struct sk_buff * skb,unsigned int from,unsigned int to,struct skb_seq_state * st)3424 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
3425 unsigned int to, struct skb_seq_state *st)
3426 {
3427 st->lower_offset = from;
3428 st->upper_offset = to;
3429 st->root_skb = st->cur_skb = skb;
3430 st->frag_idx = st->stepped_offset = 0;
3431 st->frag_data = NULL;
3432 }
3433 EXPORT_SYMBOL(skb_prepare_seq_read);
3434
3435 /**
3436 * skb_seq_read - Sequentially read skb data
3437 * @consumed: number of bytes consumed by the caller so far
3438 * @data: destination pointer for data to be returned
3439 * @st: state variable
3440 *
3441 * Reads a block of skb data at @consumed relative to the
3442 * lower offset specified to skb_prepare_seq_read(). Assigns
3443 * the head of the data block to @data and returns the length
3444 * of the block or 0 if the end of the skb data or the upper
3445 * offset has been reached.
3446 *
3447 * The caller is not required to consume all of the data
3448 * returned, i.e. @consumed is typically set to the number
3449 * of bytes already consumed and the next call to
3450 * skb_seq_read() will return the remaining part of the block.
3451 *
3452 * Note 1: The size of each block of data returned can be arbitrary,
3453 * this limitation is the cost for zerocopy sequential
3454 * reads of potentially non linear data.
3455 *
3456 * Note 2: Fragment lists within fragments are not implemented
3457 * at the moment, state->root_skb could be replaced with
3458 * a stack for this purpose.
3459 */
skb_seq_read(unsigned int consumed,const u8 ** data,struct skb_seq_state * st)3460 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
3461 struct skb_seq_state *st)
3462 {
3463 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
3464 skb_frag_t *frag;
3465
3466 if (unlikely(abs_offset >= st->upper_offset)) {
3467 if (st->frag_data) {
3468 kunmap_atomic(st->frag_data);
3469 st->frag_data = NULL;
3470 }
3471 return 0;
3472 }
3473
3474 next_skb:
3475 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
3476
3477 if (abs_offset < block_limit && !st->frag_data) {
3478 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
3479 return block_limit - abs_offset;
3480 }
3481
3482 if (st->frag_idx == 0 && !st->frag_data)
3483 st->stepped_offset += skb_headlen(st->cur_skb);
3484
3485 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
3486 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
3487 block_limit = skb_frag_size(frag) + st->stepped_offset;
3488
3489 if (abs_offset < block_limit) {
3490 if (!st->frag_data)
3491 st->frag_data = kmap_atomic(skb_frag_page(frag));
3492
3493 *data = (u8 *) st->frag_data + skb_frag_off(frag) +
3494 (abs_offset - st->stepped_offset);
3495
3496 return block_limit - abs_offset;
3497 }
3498
3499 if (st->frag_data) {
3500 kunmap_atomic(st->frag_data);
3501 st->frag_data = NULL;
3502 }
3503
3504 st->frag_idx++;
3505 st->stepped_offset += skb_frag_size(frag);
3506 }
3507
3508 if (st->frag_data) {
3509 kunmap_atomic(st->frag_data);
3510 st->frag_data = NULL;
3511 }
3512
3513 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
3514 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
3515 st->frag_idx = 0;
3516 goto next_skb;
3517 } else if (st->cur_skb->next) {
3518 st->cur_skb = st->cur_skb->next;
3519 st->frag_idx = 0;
3520 goto next_skb;
3521 }
3522
3523 return 0;
3524 }
3525 EXPORT_SYMBOL(skb_seq_read);
3526
3527 /**
3528 * skb_abort_seq_read - Abort a sequential read of skb data
3529 * @st: state variable
3530 *
3531 * Must be called if skb_seq_read() was not called until it
3532 * returned 0.
3533 */
skb_abort_seq_read(struct skb_seq_state * st)3534 void skb_abort_seq_read(struct skb_seq_state *st)
3535 {
3536 if (st->frag_data)
3537 kunmap_atomic(st->frag_data);
3538 }
3539 EXPORT_SYMBOL(skb_abort_seq_read);
3540
3541 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
3542
skb_ts_get_next_block(unsigned int offset,const u8 ** text,struct ts_config * conf,struct ts_state * state)3543 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
3544 struct ts_config *conf,
3545 struct ts_state *state)
3546 {
3547 return skb_seq_read(offset, text, TS_SKB_CB(state));
3548 }
3549
skb_ts_finish(struct ts_config * conf,struct ts_state * state)3550 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
3551 {
3552 skb_abort_seq_read(TS_SKB_CB(state));
3553 }
3554
3555 /**
3556 * skb_find_text - Find a text pattern in skb data
3557 * @skb: the buffer to look in
3558 * @from: search offset
3559 * @to: search limit
3560 * @config: textsearch configuration
3561 *
3562 * Finds a pattern in the skb data according to the specified
3563 * textsearch configuration. Use textsearch_next() to retrieve
3564 * subsequent occurrences of the pattern. Returns the offset
3565 * to the first occurrence or UINT_MAX if no match was found.
3566 */
skb_find_text(struct sk_buff * skb,unsigned int from,unsigned int to,struct ts_config * config)3567 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
3568 unsigned int to, struct ts_config *config)
3569 {
3570 struct ts_state state;
3571 unsigned int ret;
3572
3573 config->get_next_block = skb_ts_get_next_block;
3574 config->finish = skb_ts_finish;
3575
3576 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
3577
3578 ret = textsearch_find(config, &state);
3579 return (ret <= to - from ? ret : UINT_MAX);
3580 }
3581 EXPORT_SYMBOL(skb_find_text);
3582
skb_append_pagefrags(struct sk_buff * skb,struct page * page,int offset,size_t size)3583 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
3584 int offset, size_t size)
3585 {
3586 int i = skb_shinfo(skb)->nr_frags;
3587
3588 if (skb_can_coalesce(skb, i, page, offset)) {
3589 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
3590 } else if (i < MAX_SKB_FRAGS) {
3591 get_page(page);
3592 skb_fill_page_desc(skb, i, page, offset, size);
3593 } else {
3594 return -EMSGSIZE;
3595 }
3596
3597 return 0;
3598 }
3599 EXPORT_SYMBOL_GPL(skb_append_pagefrags);
3600
3601 /**
3602 * skb_pull_rcsum - pull skb and update receive checksum
3603 * @skb: buffer to update
3604 * @len: length of data pulled
3605 *
3606 * This function performs an skb_pull on the packet and updates
3607 * the CHECKSUM_COMPLETE checksum. It should be used on
3608 * receive path processing instead of skb_pull unless you know
3609 * that the checksum difference is zero (e.g., a valid IP header)
3610 * or you are setting ip_summed to CHECKSUM_NONE.
3611 */
skb_pull_rcsum(struct sk_buff * skb,unsigned int len)3612 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
3613 {
3614 unsigned char *data = skb->data;
3615
3616 BUG_ON(len > skb->len);
3617 __skb_pull(skb, len);
3618 skb_postpull_rcsum(skb, data, len);
3619 return skb->data;
3620 }
3621 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
3622
skb_head_frag_to_page_desc(struct sk_buff * frag_skb)3623 static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
3624 {
3625 skb_frag_t head_frag;
3626 struct page *page;
3627
3628 page = virt_to_head_page(frag_skb->head);
3629 __skb_frag_set_page(&head_frag, page);
3630 skb_frag_off_set(&head_frag, frag_skb->data -
3631 (unsigned char *)page_address(page));
3632 skb_frag_size_set(&head_frag, skb_headlen(frag_skb));
3633 return head_frag;
3634 }
3635
skb_segment_list(struct sk_buff * skb,netdev_features_t features,unsigned int offset)3636 struct sk_buff *skb_segment_list(struct sk_buff *skb,
3637 netdev_features_t features,
3638 unsigned int offset)
3639 {
3640 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
3641 unsigned int tnl_hlen = skb_tnl_header_len(skb);
3642 unsigned int delta_truesize = 0;
3643 unsigned int delta_len = 0;
3644 struct sk_buff *tail = NULL;
3645 struct sk_buff *nskb;
3646
3647 skb_push(skb, -skb_network_offset(skb) + offset);
3648
3649 skb_shinfo(skb)->frag_list = NULL;
3650
3651 do {
3652 nskb = list_skb;
3653 list_skb = list_skb->next;
3654
3655 if (!tail)
3656 skb->next = nskb;
3657 else
3658 tail->next = nskb;
3659
3660 tail = nskb;
3661
3662 delta_len += nskb->len;
3663 delta_truesize += nskb->truesize;
3664
3665 skb_push(nskb, -skb_network_offset(nskb) + offset);
3666
3667 skb_release_head_state(nskb);
3668 __copy_skb_header(nskb, skb);
3669
3670 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
3671 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
3672 nskb->data - tnl_hlen,
3673 offset + tnl_hlen);
3674
3675 if (skb_needs_linearize(nskb, features) &&
3676 __skb_linearize(nskb))
3677 goto err_linearize;
3678
3679 } while (list_skb);
3680
3681 skb->truesize = skb->truesize - delta_truesize;
3682 skb->data_len = skb->data_len - delta_len;
3683 skb->len = skb->len - delta_len;
3684
3685 skb_gso_reset(skb);
3686
3687 skb->prev = tail;
3688
3689 if (skb_needs_linearize(skb, features) &&
3690 __skb_linearize(skb))
3691 goto err_linearize;
3692
3693 skb_get(skb);
3694
3695 return skb;
3696
3697 err_linearize:
3698 kfree_skb_list(skb->next);
3699 skb->next = NULL;
3700 return ERR_PTR(-ENOMEM);
3701 }
3702 EXPORT_SYMBOL_GPL(skb_segment_list);
3703
skb_gro_receive_list(struct sk_buff * p,struct sk_buff * skb)3704 int skb_gro_receive_list(struct sk_buff *p, struct sk_buff *skb)
3705 {
3706 if (unlikely(p->len + skb->len >= 65536))
3707 return -E2BIG;
3708
3709 if (NAPI_GRO_CB(p)->last == p)
3710 skb_shinfo(p)->frag_list = skb;
3711 else
3712 NAPI_GRO_CB(p)->last->next = skb;
3713
3714 skb_pull(skb, skb_gro_offset(skb));
3715
3716 NAPI_GRO_CB(p)->last = skb;
3717 NAPI_GRO_CB(p)->count++;
3718 p->data_len += skb->len;
3719 p->truesize += skb->truesize;
3720 p->len += skb->len;
3721
3722 NAPI_GRO_CB(skb)->same_flow = 1;
3723
3724 return 0;
3725 }
3726
3727 /**
3728 * skb_segment - Perform protocol segmentation on skb.
3729 * @head_skb: buffer to segment
3730 * @features: features for the output path (see dev->features)
3731 *
3732 * This function performs segmentation on the given skb. It returns
3733 * a pointer to the first in a list of new skbs for the segments.
3734 * In case of error it returns ERR_PTR(err).
3735 */
skb_segment(struct sk_buff * head_skb,netdev_features_t features)3736 struct sk_buff *skb_segment(struct sk_buff *head_skb,
3737 netdev_features_t features)
3738 {
3739 struct sk_buff *segs = NULL;
3740 struct sk_buff *tail = NULL;
3741 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
3742 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
3743 unsigned int mss = skb_shinfo(head_skb)->gso_size;
3744 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
3745 struct sk_buff *frag_skb = head_skb;
3746 unsigned int offset = doffset;
3747 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
3748 unsigned int partial_segs = 0;
3749 unsigned int headroom;
3750 unsigned int len = head_skb->len;
3751 __be16 proto;
3752 bool csum, sg;
3753 int nfrags = skb_shinfo(head_skb)->nr_frags;
3754 int err = -ENOMEM;
3755 int i = 0;
3756 int pos;
3757
3758 if (list_skb && !list_skb->head_frag && skb_headlen(list_skb) &&
3759 (skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY)) {
3760 /* gso_size is untrusted, and we have a frag_list with a linear
3761 * non head_frag head.
3762 *
3763 * (we assume checking the first list_skb member suffices;
3764 * i.e if either of the list_skb members have non head_frag
3765 * head, then the first one has too).
3766 *
3767 * If head_skb's headlen does not fit requested gso_size, it
3768 * means that the frag_list members do NOT terminate on exact
3769 * gso_size boundaries. Hence we cannot perform skb_frag_t page
3770 * sharing. Therefore we must fallback to copying the frag_list
3771 * skbs; we do so by disabling SG.
3772 */
3773 if (mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb))
3774 features &= ~NETIF_F_SG;
3775 }
3776
3777 __skb_push(head_skb, doffset);
3778 proto = skb_network_protocol(head_skb, NULL);
3779 if (unlikely(!proto))
3780 return ERR_PTR(-EINVAL);
3781
3782 sg = !!(features & NETIF_F_SG);
3783 csum = !!can_checksum_protocol(features, proto);
3784
3785 if (sg && csum && (mss != GSO_BY_FRAGS)) {
3786 if (!(features & NETIF_F_GSO_PARTIAL)) {
3787 struct sk_buff *iter;
3788 unsigned int frag_len;
3789
3790 if (!list_skb ||
3791 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
3792 goto normal;
3793
3794 /* If we get here then all the required
3795 * GSO features except frag_list are supported.
3796 * Try to split the SKB to multiple GSO SKBs
3797 * with no frag_list.
3798 * Currently we can do that only when the buffers don't
3799 * have a linear part and all the buffers except
3800 * the last are of the same length.
3801 */
3802 frag_len = list_skb->len;
3803 skb_walk_frags(head_skb, iter) {
3804 if (frag_len != iter->len && iter->next)
3805 goto normal;
3806 if (skb_headlen(iter) && !iter->head_frag)
3807 goto normal;
3808
3809 len -= iter->len;
3810 }
3811
3812 if (len != frag_len)
3813 goto normal;
3814 }
3815
3816 /* GSO partial only requires that we trim off any excess that
3817 * doesn't fit into an MSS sized block, so take care of that
3818 * now.
3819 */
3820 partial_segs = len / mss;
3821 if (partial_segs > 1)
3822 mss *= partial_segs;
3823 else
3824 partial_segs = 0;
3825 }
3826
3827 normal:
3828 headroom = skb_headroom(head_skb);
3829 pos = skb_headlen(head_skb);
3830
3831 do {
3832 struct sk_buff *nskb;
3833 skb_frag_t *nskb_frag;
3834 int hsize;
3835 int size;
3836
3837 if (unlikely(mss == GSO_BY_FRAGS)) {
3838 len = list_skb->len;
3839 } else {
3840 len = head_skb->len - offset;
3841 if (len > mss)
3842 len = mss;
3843 }
3844
3845 hsize = skb_headlen(head_skb) - offset;
3846 if (hsize < 0)
3847 hsize = 0;
3848 if (hsize > len || !sg)
3849 hsize = len;
3850
3851 if (!hsize && i >= nfrags && skb_headlen(list_skb) &&
3852 (skb_headlen(list_skb) == len || sg)) {
3853 BUG_ON(skb_headlen(list_skb) > len);
3854
3855 i = 0;
3856 nfrags = skb_shinfo(list_skb)->nr_frags;
3857 frag = skb_shinfo(list_skb)->frags;
3858 frag_skb = list_skb;
3859 pos += skb_headlen(list_skb);
3860
3861 while (pos < offset + len) {
3862 BUG_ON(i >= nfrags);
3863
3864 size = skb_frag_size(frag);
3865 if (pos + size > offset + len)
3866 break;
3867
3868 i++;
3869 pos += size;
3870 frag++;
3871 }
3872
3873 nskb = skb_clone(list_skb, GFP_ATOMIC);
3874 list_skb = list_skb->next;
3875
3876 if (unlikely(!nskb))
3877 goto err;
3878
3879 if (unlikely(pskb_trim(nskb, len))) {
3880 kfree_skb(nskb);
3881 goto err;
3882 }
3883
3884 hsize = skb_end_offset(nskb);
3885 if (skb_cow_head(nskb, doffset + headroom)) {
3886 kfree_skb(nskb);
3887 goto err;
3888 }
3889
3890 nskb->truesize += skb_end_offset(nskb) - hsize;
3891 skb_release_head_state(nskb);
3892 __skb_push(nskb, doffset);
3893 } else {
3894 nskb = __alloc_skb(hsize + doffset + headroom,
3895 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
3896 NUMA_NO_NODE);
3897
3898 if (unlikely(!nskb))
3899 goto err;
3900
3901 skb_reserve(nskb, headroom);
3902 __skb_put(nskb, doffset);
3903 }
3904
3905 if (segs)
3906 tail->next = nskb;
3907 else
3908 segs = nskb;
3909 tail = nskb;
3910
3911 __copy_skb_header(nskb, head_skb);
3912
3913 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
3914 skb_reset_mac_len(nskb);
3915
3916 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
3917 nskb->data - tnl_hlen,
3918 doffset + tnl_hlen);
3919
3920 if (nskb->len == len + doffset)
3921 goto perform_csum_check;
3922
3923 if (!sg) {
3924 if (!csum) {
3925 if (!nskb->remcsum_offload)
3926 nskb->ip_summed = CHECKSUM_NONE;
3927 SKB_GSO_CB(nskb)->csum =
3928 skb_copy_and_csum_bits(head_skb, offset,
3929 skb_put(nskb,
3930 len),
3931 len);
3932 SKB_GSO_CB(nskb)->csum_start =
3933 skb_headroom(nskb) + doffset;
3934 } else {
3935 skb_copy_bits(head_skb, offset,
3936 skb_put(nskb, len),
3937 len);
3938 }
3939 continue;
3940 }
3941
3942 nskb_frag = skb_shinfo(nskb)->frags;
3943
3944 skb_copy_from_linear_data_offset(head_skb, offset,
3945 skb_put(nskb, hsize), hsize);
3946
3947 skb_shinfo(nskb)->tx_flags |= skb_shinfo(head_skb)->tx_flags &
3948 SKBTX_SHARED_FRAG;
3949
3950 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3951 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
3952 goto err;
3953
3954 while (pos < offset + len) {
3955 if (i >= nfrags) {
3956 i = 0;
3957 nfrags = skb_shinfo(list_skb)->nr_frags;
3958 frag = skb_shinfo(list_skb)->frags;
3959 frag_skb = list_skb;
3960 if (!skb_headlen(list_skb)) {
3961 BUG_ON(!nfrags);
3962 } else {
3963 BUG_ON(!list_skb->head_frag);
3964
3965 /* to make room for head_frag. */
3966 i--;
3967 frag--;
3968 }
3969 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
3970 skb_zerocopy_clone(nskb, frag_skb,
3971 GFP_ATOMIC))
3972 goto err;
3973
3974 list_skb = list_skb->next;
3975 }
3976
3977 if (unlikely(skb_shinfo(nskb)->nr_frags >=
3978 MAX_SKB_FRAGS)) {
3979 net_warn_ratelimited(
3980 "skb_segment: too many frags: %u %u\n",
3981 pos, mss);
3982 err = -EINVAL;
3983 goto err;
3984 }
3985
3986 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
3987 __skb_frag_ref(nskb_frag);
3988 size = skb_frag_size(nskb_frag);
3989
3990 if (pos < offset) {
3991 skb_frag_off_add(nskb_frag, offset - pos);
3992 skb_frag_size_sub(nskb_frag, offset - pos);
3993 }
3994
3995 skb_shinfo(nskb)->nr_frags++;
3996
3997 if (pos + size <= offset + len) {
3998 i++;
3999 frag++;
4000 pos += size;
4001 } else {
4002 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4003 goto skip_fraglist;
4004 }
4005
4006 nskb_frag++;
4007 }
4008
4009 skip_fraglist:
4010 nskb->data_len = len - hsize;
4011 nskb->len += nskb->data_len;
4012 nskb->truesize += nskb->data_len;
4013
4014 perform_csum_check:
4015 if (!csum) {
4016 if (skb_has_shared_frag(nskb) &&
4017 __skb_linearize(nskb))
4018 goto err;
4019
4020 if (!nskb->remcsum_offload)
4021 nskb->ip_summed = CHECKSUM_NONE;
4022 SKB_GSO_CB(nskb)->csum =
4023 skb_checksum(nskb, doffset,
4024 nskb->len - doffset, 0);
4025 SKB_GSO_CB(nskb)->csum_start =
4026 skb_headroom(nskb) + doffset;
4027 }
4028 } while ((offset += len) < head_skb->len);
4029
4030 /* Some callers want to get the end of the list.
4031 * Put it in segs->prev to avoid walking the list.
4032 * (see validate_xmit_skb_list() for example)
4033 */
4034 segs->prev = tail;
4035
4036 if (partial_segs) {
4037 struct sk_buff *iter;
4038 int type = skb_shinfo(head_skb)->gso_type;
4039 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4040
4041 /* Update type to add partial and then remove dodgy if set */
4042 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4043 type &= ~SKB_GSO_DODGY;
4044
4045 /* Update GSO info and prepare to start updating headers on
4046 * our way back down the stack of protocols.
4047 */
4048 for (iter = segs; iter; iter = iter->next) {
4049 skb_shinfo(iter)->gso_size = gso_size;
4050 skb_shinfo(iter)->gso_segs = partial_segs;
4051 skb_shinfo(iter)->gso_type = type;
4052 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4053 }
4054
4055 if (tail->len - doffset <= gso_size)
4056 skb_shinfo(tail)->gso_size = 0;
4057 else if (tail != segs)
4058 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4059 }
4060
4061 /* Following permits correct backpressure, for protocols
4062 * using skb_set_owner_w().
4063 * Idea is to tranfert ownership from head_skb to last segment.
4064 */
4065 if (head_skb->destructor == sock_wfree) {
4066 swap(tail->truesize, head_skb->truesize);
4067 swap(tail->destructor, head_skb->destructor);
4068 swap(tail->sk, head_skb->sk);
4069 }
4070 return segs;
4071
4072 err:
4073 kfree_skb_list(segs);
4074 return ERR_PTR(err);
4075 }
4076 EXPORT_SYMBOL_GPL(skb_segment);
4077
skb_gro_receive(struct sk_buff * p,struct sk_buff * skb)4078 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb)
4079 {
4080 struct skb_shared_info *pinfo, *skbinfo = skb_shinfo(skb);
4081 unsigned int offset = skb_gro_offset(skb);
4082 unsigned int headlen = skb_headlen(skb);
4083 unsigned int len = skb_gro_len(skb);
4084 unsigned int delta_truesize;
4085 struct sk_buff *lp;
4086
4087 if (unlikely(p->len + len >= 65536 || NAPI_GRO_CB(skb)->flush))
4088 return -E2BIG;
4089
4090 lp = NAPI_GRO_CB(p)->last;
4091 pinfo = skb_shinfo(lp);
4092
4093 if (headlen <= offset) {
4094 skb_frag_t *frag;
4095 skb_frag_t *frag2;
4096 int i = skbinfo->nr_frags;
4097 int nr_frags = pinfo->nr_frags + i;
4098
4099 if (nr_frags > MAX_SKB_FRAGS)
4100 goto merge;
4101
4102 offset -= headlen;
4103 pinfo->nr_frags = nr_frags;
4104 skbinfo->nr_frags = 0;
4105
4106 frag = pinfo->frags + nr_frags;
4107 frag2 = skbinfo->frags + i;
4108 do {
4109 *--frag = *--frag2;
4110 } while (--i);
4111
4112 skb_frag_off_add(frag, offset);
4113 skb_frag_size_sub(frag, offset);
4114
4115 /* all fragments truesize : remove (head size + sk_buff) */
4116 delta_truesize = skb->truesize -
4117 SKB_TRUESIZE(skb_end_offset(skb));
4118
4119 skb->truesize -= skb->data_len;
4120 skb->len -= skb->data_len;
4121 skb->data_len = 0;
4122
4123 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
4124 goto done;
4125 } else if (skb->head_frag) {
4126 int nr_frags = pinfo->nr_frags;
4127 skb_frag_t *frag = pinfo->frags + nr_frags;
4128 struct page *page = virt_to_head_page(skb->head);
4129 unsigned int first_size = headlen - offset;
4130 unsigned int first_offset;
4131
4132 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
4133 goto merge;
4134
4135 first_offset = skb->data -
4136 (unsigned char *)page_address(page) +
4137 offset;
4138
4139 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
4140
4141 __skb_frag_set_page(frag, page);
4142 skb_frag_off_set(frag, first_offset);
4143 skb_frag_size_set(frag, first_size);
4144
4145 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
4146 /* We dont need to clear skbinfo->nr_frags here */
4147
4148 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
4149 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
4150 goto done;
4151 }
4152
4153 merge:
4154 delta_truesize = skb->truesize;
4155 if (offset > headlen) {
4156 unsigned int eat = offset - headlen;
4157
4158 skb_frag_off_add(&skbinfo->frags[0], eat);
4159 skb_frag_size_sub(&skbinfo->frags[0], eat);
4160 skb->data_len -= eat;
4161 skb->len -= eat;
4162 offset = headlen;
4163 }
4164
4165 __skb_pull(skb, offset);
4166
4167 if (NAPI_GRO_CB(p)->last == p)
4168 skb_shinfo(p)->frag_list = skb;
4169 else
4170 NAPI_GRO_CB(p)->last->next = skb;
4171 NAPI_GRO_CB(p)->last = skb;
4172 __skb_header_release(skb);
4173 lp = p;
4174
4175 done:
4176 NAPI_GRO_CB(p)->count++;
4177 p->data_len += len;
4178 p->truesize += delta_truesize;
4179 p->len += len;
4180 if (lp != p) {
4181 lp->data_len += len;
4182 lp->truesize += delta_truesize;
4183 lp->len += len;
4184 }
4185 NAPI_GRO_CB(skb)->same_flow = 1;
4186 return 0;
4187 }
4188
4189 #ifdef CONFIG_SKB_EXTENSIONS
4190 #define SKB_EXT_ALIGN_VALUE 8
4191 #define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4192
4193 static const u8 skb_ext_type_len[] = {
4194 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4195 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4196 #endif
4197 #ifdef CONFIG_XFRM
4198 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4199 #endif
4200 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4201 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4202 #endif
4203 #if IS_ENABLED(CONFIG_MPTCP)
4204 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4205 #endif
4206 };
4207
skb_ext_total_length(void)4208 static __always_inline unsigned int skb_ext_total_length(void)
4209 {
4210 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4211 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4212 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4213 #endif
4214 #ifdef CONFIG_XFRM
4215 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4216 #endif
4217 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4218 skb_ext_type_len[TC_SKB_EXT] +
4219 #endif
4220 #if IS_ENABLED(CONFIG_MPTCP)
4221 skb_ext_type_len[SKB_EXT_MPTCP] +
4222 #endif
4223 0;
4224 }
4225
skb_extensions_init(void)4226 static void skb_extensions_init(void)
4227 {
4228 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4229 BUILD_BUG_ON(skb_ext_total_length() > 255);
4230
4231 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4232 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4233 0,
4234 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4235 NULL);
4236 }
4237 #else
skb_extensions_init(void)4238 static void skb_extensions_init(void) {}
4239 #endif
4240
skb_init(void)4241 void __init skb_init(void)
4242 {
4243 skbuff_head_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4244 sizeof(struct sk_buff),
4245 0,
4246 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4247 offsetof(struct sk_buff, cb),
4248 sizeof_field(struct sk_buff, cb),
4249 NULL);
4250 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4251 sizeof(struct sk_buff_fclones),
4252 0,
4253 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4254 NULL);
4255 skb_extensions_init();
4256 }
4257
4258 static int
__skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len,unsigned int recursion_level)4259 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4260 unsigned int recursion_level)
4261 {
4262 int start = skb_headlen(skb);
4263 int i, copy = start - offset;
4264 struct sk_buff *frag_iter;
4265 int elt = 0;
4266
4267 if (unlikely(recursion_level >= 24))
4268 return -EMSGSIZE;
4269
4270 if (copy > 0) {
4271 if (copy > len)
4272 copy = len;
4273 sg_set_buf(sg, skb->data + offset, copy);
4274 elt++;
4275 if ((len -= copy) == 0)
4276 return elt;
4277 offset += copy;
4278 }
4279
4280 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4281 int end;
4282
4283 WARN_ON(start > offset + len);
4284
4285 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4286 if ((copy = end - offset) > 0) {
4287 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4288 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4289 return -EMSGSIZE;
4290
4291 if (copy > len)
4292 copy = len;
4293 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4294 skb_frag_off(frag) + offset - start);
4295 elt++;
4296 if (!(len -= copy))
4297 return elt;
4298 offset += copy;
4299 }
4300 start = end;
4301 }
4302
4303 skb_walk_frags(skb, frag_iter) {
4304 int end, ret;
4305
4306 WARN_ON(start > offset + len);
4307
4308 end = start + frag_iter->len;
4309 if ((copy = end - offset) > 0) {
4310 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4311 return -EMSGSIZE;
4312
4313 if (copy > len)
4314 copy = len;
4315 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4316 copy, recursion_level + 1);
4317 if (unlikely(ret < 0))
4318 return ret;
4319 elt += ret;
4320 if ((len -= copy) == 0)
4321 return elt;
4322 offset += copy;
4323 }
4324 start = end;
4325 }
4326 BUG_ON(len);
4327 return elt;
4328 }
4329
4330 /**
4331 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4332 * @skb: Socket buffer containing the buffers to be mapped
4333 * @sg: The scatter-gather list to map into
4334 * @offset: The offset into the buffer's contents to start mapping
4335 * @len: Length of buffer space to be mapped
4336 *
4337 * Fill the specified scatter-gather list with mappings/pointers into a
4338 * region of the buffer space attached to a socket buffer. Returns either
4339 * the number of scatterlist items used, or -EMSGSIZE if the contents
4340 * could not fit.
4341 */
skb_to_sgvec(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4342 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4343 {
4344 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4345
4346 if (nsg <= 0)
4347 return nsg;
4348
4349 sg_mark_end(&sg[nsg - 1]);
4350
4351 return nsg;
4352 }
4353 EXPORT_SYMBOL_GPL(skb_to_sgvec);
4354
4355 /* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4356 * sglist without mark the sg which contain last skb data as the end.
4357 * So the caller can mannipulate sg list as will when padding new data after
4358 * the first call without calling sg_unmark_end to expend sg list.
4359 *
4360 * Scenario to use skb_to_sgvec_nomark:
4361 * 1. sg_init_table
4362 * 2. skb_to_sgvec_nomark(payload1)
4363 * 3. skb_to_sgvec_nomark(payload2)
4364 *
4365 * This is equivalent to:
4366 * 1. sg_init_table
4367 * 2. skb_to_sgvec(payload1)
4368 * 3. sg_unmark_end
4369 * 4. skb_to_sgvec(payload2)
4370 *
4371 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4372 * is more preferable.
4373 */
skb_to_sgvec_nomark(struct sk_buff * skb,struct scatterlist * sg,int offset,int len)4374 int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4375 int offset, int len)
4376 {
4377 return __skb_to_sgvec(skb, sg, offset, len, 0);
4378 }
4379 EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4380
4381
4382
4383 /**
4384 * skb_cow_data - Check that a socket buffer's data buffers are writable
4385 * @skb: The socket buffer to check.
4386 * @tailbits: Amount of trailing space to be added
4387 * @trailer: Returned pointer to the skb where the @tailbits space begins
4388 *
4389 * Make sure that the data buffers attached to a socket buffer are
4390 * writable. If they are not, private copies are made of the data buffers
4391 * and the socket buffer is set to use these instead.
4392 *
4393 * If @tailbits is given, make sure that there is space to write @tailbits
4394 * bytes of data beyond current end of socket buffer. @trailer will be
4395 * set to point to the skb in which this space begins.
4396 *
4397 * The number of scatterlist elements required to completely map the
4398 * COW'd and extended socket buffer will be returned.
4399 */
skb_cow_data(struct sk_buff * skb,int tailbits,struct sk_buff ** trailer)4400 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4401 {
4402 int copyflag;
4403 int elt;
4404 struct sk_buff *skb1, **skb_p;
4405
4406 /* If skb is cloned or its head is paged, reallocate
4407 * head pulling out all the pages (pages are considered not writable
4408 * at the moment even if they are anonymous).
4409 */
4410 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4411 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4412 return -ENOMEM;
4413
4414 /* Easy case. Most of packets will go this way. */
4415 if (!skb_has_frag_list(skb)) {
4416 /* A little of trouble, not enough of space for trailer.
4417 * This should not happen, when stack is tuned to generate
4418 * good frames. OK, on miss we reallocate and reserve even more
4419 * space, 128 bytes is fair. */
4420
4421 if (skb_tailroom(skb) < tailbits &&
4422 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4423 return -ENOMEM;
4424
4425 /* Voila! */
4426 *trailer = skb;
4427 return 1;
4428 }
4429
4430 /* Misery. We are in troubles, going to mincer fragments... */
4431
4432 elt = 1;
4433 skb_p = &skb_shinfo(skb)->frag_list;
4434 copyflag = 0;
4435
4436 while ((skb1 = *skb_p) != NULL) {
4437 int ntail = 0;
4438
4439 /* The fragment is partially pulled by someone,
4440 * this can happen on input. Copy it and everything
4441 * after it. */
4442
4443 if (skb_shared(skb1))
4444 copyflag = 1;
4445
4446 /* If the skb is the last, worry about trailer. */
4447
4448 if (skb1->next == NULL && tailbits) {
4449 if (skb_shinfo(skb1)->nr_frags ||
4450 skb_has_frag_list(skb1) ||
4451 skb_tailroom(skb1) < tailbits)
4452 ntail = tailbits + 128;
4453 }
4454
4455 if (copyflag ||
4456 skb_cloned(skb1) ||
4457 ntail ||
4458 skb_shinfo(skb1)->nr_frags ||
4459 skb_has_frag_list(skb1)) {
4460 struct sk_buff *skb2;
4461
4462 /* Fuck, we are miserable poor guys... */
4463 if (ntail == 0)
4464 skb2 = skb_copy(skb1, GFP_ATOMIC);
4465 else
4466 skb2 = skb_copy_expand(skb1,
4467 skb_headroom(skb1),
4468 ntail,
4469 GFP_ATOMIC);
4470 if (unlikely(skb2 == NULL))
4471 return -ENOMEM;
4472
4473 if (skb1->sk)
4474 skb_set_owner_w(skb2, skb1->sk);
4475
4476 /* Looking around. Are we still alive?
4477 * OK, link new skb, drop old one */
4478
4479 skb2->next = skb1->next;
4480 *skb_p = skb2;
4481 kfree_skb(skb1);
4482 skb1 = skb2;
4483 }
4484 elt++;
4485 *trailer = skb1;
4486 skb_p = &skb1->next;
4487 }
4488
4489 return elt;
4490 }
4491 EXPORT_SYMBOL_GPL(skb_cow_data);
4492
sock_rmem_free(struct sk_buff * skb)4493 static void sock_rmem_free(struct sk_buff *skb)
4494 {
4495 struct sock *sk = skb->sk;
4496
4497 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
4498 }
4499
skb_set_err_queue(struct sk_buff * skb)4500 static void skb_set_err_queue(struct sk_buff *skb)
4501 {
4502 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
4503 * So, it is safe to (mis)use it to mark skbs on the error queue.
4504 */
4505 skb->pkt_type = PACKET_OUTGOING;
4506 BUILD_BUG_ON(PACKET_OUTGOING == 0);
4507 }
4508
4509 /*
4510 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
4511 */
sock_queue_err_skb(struct sock * sk,struct sk_buff * skb)4512 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
4513 {
4514 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
4515 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
4516 return -ENOMEM;
4517
4518 skb_orphan(skb);
4519 skb->sk = sk;
4520 skb->destructor = sock_rmem_free;
4521 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
4522 skb_set_err_queue(skb);
4523
4524 /* before exiting rcu section, make sure dst is refcounted */
4525 skb_dst_force(skb);
4526
4527 skb_queue_tail(&sk->sk_error_queue, skb);
4528 if (!sock_flag(sk, SOCK_DEAD))
4529 sk->sk_error_report(sk);
4530 return 0;
4531 }
4532 EXPORT_SYMBOL(sock_queue_err_skb);
4533
is_icmp_err_skb(const struct sk_buff * skb)4534 static bool is_icmp_err_skb(const struct sk_buff *skb)
4535 {
4536 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
4537 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
4538 }
4539
sock_dequeue_err_skb(struct sock * sk)4540 struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
4541 {
4542 struct sk_buff_head *q = &sk->sk_error_queue;
4543 struct sk_buff *skb, *skb_next = NULL;
4544 bool icmp_next = false;
4545 unsigned long flags;
4546
4547 spin_lock_irqsave(&q->lock, flags);
4548 skb = __skb_dequeue(q);
4549 if (skb && (skb_next = skb_peek(q))) {
4550 icmp_next = is_icmp_err_skb(skb_next);
4551 if (icmp_next)
4552 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
4553 }
4554 spin_unlock_irqrestore(&q->lock, flags);
4555
4556 if (is_icmp_err_skb(skb) && !icmp_next)
4557 sk->sk_err = 0;
4558
4559 if (skb_next)
4560 sk->sk_error_report(sk);
4561
4562 return skb;
4563 }
4564 EXPORT_SYMBOL(sock_dequeue_err_skb);
4565
4566 /**
4567 * skb_clone_sk - create clone of skb, and take reference to socket
4568 * @skb: the skb to clone
4569 *
4570 * This function creates a clone of a buffer that holds a reference on
4571 * sk_refcnt. Buffers created via this function are meant to be
4572 * returned using sock_queue_err_skb, or free via kfree_skb.
4573 *
4574 * When passing buffers allocated with this function to sock_queue_err_skb
4575 * it is necessary to wrap the call with sock_hold/sock_put in order to
4576 * prevent the socket from being released prior to being enqueued on
4577 * the sk_error_queue.
4578 */
skb_clone_sk(struct sk_buff * skb)4579 struct sk_buff *skb_clone_sk(struct sk_buff *skb)
4580 {
4581 struct sock *sk = skb->sk;
4582 struct sk_buff *clone;
4583
4584 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
4585 return NULL;
4586
4587 clone = skb_clone(skb, GFP_ATOMIC);
4588 if (!clone) {
4589 sock_put(sk);
4590 return NULL;
4591 }
4592
4593 clone->sk = sk;
4594 clone->destructor = sock_efree;
4595
4596 return clone;
4597 }
4598 EXPORT_SYMBOL(skb_clone_sk);
4599
__skb_complete_tx_timestamp(struct sk_buff * skb,struct sock * sk,int tstype,bool opt_stats)4600 static void __skb_complete_tx_timestamp(struct sk_buff *skb,
4601 struct sock *sk,
4602 int tstype,
4603 bool opt_stats)
4604 {
4605 struct sock_exterr_skb *serr;
4606 int err;
4607
4608 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
4609
4610 serr = SKB_EXT_ERR(skb);
4611 memset(serr, 0, sizeof(*serr));
4612 serr->ee.ee_errno = ENOMSG;
4613 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
4614 serr->ee.ee_info = tstype;
4615 serr->opt_stats = opt_stats;
4616 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
4617 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
4618 serr->ee.ee_data = skb_shinfo(skb)->tskey;
4619 if (sk->sk_protocol == IPPROTO_TCP &&
4620 sk->sk_type == SOCK_STREAM)
4621 serr->ee.ee_data -= sk->sk_tskey;
4622 }
4623
4624 err = sock_queue_err_skb(sk, skb);
4625
4626 if (err)
4627 kfree_skb(skb);
4628 }
4629
skb_may_tx_timestamp(struct sock * sk,bool tsonly)4630 static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
4631 {
4632 bool ret;
4633
4634 if (likely(sysctl_tstamp_allow_data || tsonly))
4635 return true;
4636
4637 read_lock_bh(&sk->sk_callback_lock);
4638 ret = sk->sk_socket && sk->sk_socket->file &&
4639 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
4640 read_unlock_bh(&sk->sk_callback_lock);
4641 return ret;
4642 }
4643
skb_complete_tx_timestamp(struct sk_buff * skb,struct skb_shared_hwtstamps * hwtstamps)4644 void skb_complete_tx_timestamp(struct sk_buff *skb,
4645 struct skb_shared_hwtstamps *hwtstamps)
4646 {
4647 struct sock *sk = skb->sk;
4648
4649 if (!skb_may_tx_timestamp(sk, false))
4650 goto err;
4651
4652 /* Take a reference to prevent skb_orphan() from freeing the socket,
4653 * but only if the socket refcount is not zero.
4654 */
4655 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4656 *skb_hwtstamps(skb) = *hwtstamps;
4657 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
4658 sock_put(sk);
4659 return;
4660 }
4661
4662 err:
4663 kfree_skb(skb);
4664 }
4665 EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
4666
__skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps,struct sock * sk,int tstype)4667 void __skb_tstamp_tx(struct sk_buff *orig_skb,
4668 struct skb_shared_hwtstamps *hwtstamps,
4669 struct sock *sk, int tstype)
4670 {
4671 struct sk_buff *skb;
4672 bool tsonly, opt_stats = false;
4673
4674 if (!sk)
4675 return;
4676
4677 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
4678 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
4679 return;
4680
4681 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
4682 if (!skb_may_tx_timestamp(sk, tsonly))
4683 return;
4684
4685 if (tsonly) {
4686 #ifdef CONFIG_INET
4687 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
4688 sk->sk_protocol == IPPROTO_TCP &&
4689 sk->sk_type == SOCK_STREAM) {
4690 skb = tcp_get_timestamping_opt_stats(sk, orig_skb);
4691 opt_stats = true;
4692 } else
4693 #endif
4694 skb = alloc_skb(0, GFP_ATOMIC);
4695 } else {
4696 skb = skb_clone(orig_skb, GFP_ATOMIC);
4697 }
4698 if (!skb)
4699 return;
4700
4701 if (tsonly) {
4702 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
4703 SKBTX_ANY_TSTAMP;
4704 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
4705 }
4706
4707 if (hwtstamps)
4708 *skb_hwtstamps(skb) = *hwtstamps;
4709 else
4710 skb->tstamp = ktime_get_real();
4711
4712 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
4713 }
4714 EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
4715
skb_tstamp_tx(struct sk_buff * orig_skb,struct skb_shared_hwtstamps * hwtstamps)4716 void skb_tstamp_tx(struct sk_buff *orig_skb,
4717 struct skb_shared_hwtstamps *hwtstamps)
4718 {
4719 return __skb_tstamp_tx(orig_skb, hwtstamps, orig_skb->sk,
4720 SCM_TSTAMP_SND);
4721 }
4722 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
4723
skb_complete_wifi_ack(struct sk_buff * skb,bool acked)4724 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
4725 {
4726 struct sock *sk = skb->sk;
4727 struct sock_exterr_skb *serr;
4728 int err = 1;
4729
4730 skb->wifi_acked_valid = 1;
4731 skb->wifi_acked = acked;
4732
4733 serr = SKB_EXT_ERR(skb);
4734 memset(serr, 0, sizeof(*serr));
4735 serr->ee.ee_errno = ENOMSG;
4736 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
4737
4738 /* Take a reference to prevent skb_orphan() from freeing the socket,
4739 * but only if the socket refcount is not zero.
4740 */
4741 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
4742 err = sock_queue_err_skb(sk, skb);
4743 sock_put(sk);
4744 }
4745 if (err)
4746 kfree_skb(skb);
4747 }
4748 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
4749
4750 /**
4751 * skb_partial_csum_set - set up and verify partial csum values for packet
4752 * @skb: the skb to set
4753 * @start: the number of bytes after skb->data to start checksumming.
4754 * @off: the offset from start to place the checksum.
4755 *
4756 * For untrusted partially-checksummed packets, we need to make sure the values
4757 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
4758 *
4759 * This function checks and sets those values and skb->ip_summed: if this
4760 * returns false you should drop the packet.
4761 */
skb_partial_csum_set(struct sk_buff * skb,u16 start,u16 off)4762 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
4763 {
4764 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
4765 u32 csum_start = skb_headroom(skb) + (u32)start;
4766
4767 if (unlikely(csum_start > U16_MAX || csum_end > skb_headlen(skb))) {
4768 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
4769 start, off, skb_headroom(skb), skb_headlen(skb));
4770 return false;
4771 }
4772 skb->ip_summed = CHECKSUM_PARTIAL;
4773 skb->csum_start = csum_start;
4774 skb->csum_offset = off;
4775 skb_set_transport_header(skb, start);
4776 return true;
4777 }
4778 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
4779
skb_maybe_pull_tail(struct sk_buff * skb,unsigned int len,unsigned int max)4780 static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
4781 unsigned int max)
4782 {
4783 if (skb_headlen(skb) >= len)
4784 return 0;
4785
4786 /* If we need to pullup then pullup to the max, so we
4787 * won't need to do it again.
4788 */
4789 if (max > skb->len)
4790 max = skb->len;
4791
4792 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
4793 return -ENOMEM;
4794
4795 if (skb_headlen(skb) < len)
4796 return -EPROTO;
4797
4798 return 0;
4799 }
4800
4801 #define MAX_TCP_HDR_LEN (15 * 4)
4802
skb_checksum_setup_ip(struct sk_buff * skb,typeof (IPPROTO_IP)proto,unsigned int off)4803 static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
4804 typeof(IPPROTO_IP) proto,
4805 unsigned int off)
4806 {
4807 int err;
4808
4809 switch (proto) {
4810 case IPPROTO_TCP:
4811 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
4812 off + MAX_TCP_HDR_LEN);
4813 if (!err && !skb_partial_csum_set(skb, off,
4814 offsetof(struct tcphdr,
4815 check)))
4816 err = -EPROTO;
4817 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
4818
4819 case IPPROTO_UDP:
4820 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
4821 off + sizeof(struct udphdr));
4822 if (!err && !skb_partial_csum_set(skb, off,
4823 offsetof(struct udphdr,
4824 check)))
4825 err = -EPROTO;
4826 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
4827 }
4828
4829 return ERR_PTR(-EPROTO);
4830 }
4831
4832 /* This value should be large enough to cover a tagged ethernet header plus
4833 * maximally sized IP and TCP or UDP headers.
4834 */
4835 #define MAX_IP_HDR_LEN 128
4836
skb_checksum_setup_ipv4(struct sk_buff * skb,bool recalculate)4837 static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
4838 {
4839 unsigned int off;
4840 bool fragment;
4841 __sum16 *csum;
4842 int err;
4843
4844 fragment = false;
4845
4846 err = skb_maybe_pull_tail(skb,
4847 sizeof(struct iphdr),
4848 MAX_IP_HDR_LEN);
4849 if (err < 0)
4850 goto out;
4851
4852 if (ip_is_fragment(ip_hdr(skb)))
4853 fragment = true;
4854
4855 off = ip_hdrlen(skb);
4856
4857 err = -EPROTO;
4858
4859 if (fragment)
4860 goto out;
4861
4862 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
4863 if (IS_ERR(csum))
4864 return PTR_ERR(csum);
4865
4866 if (recalculate)
4867 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
4868 ip_hdr(skb)->daddr,
4869 skb->len - off,
4870 ip_hdr(skb)->protocol, 0);
4871 err = 0;
4872
4873 out:
4874 return err;
4875 }
4876
4877 /* This value should be large enough to cover a tagged ethernet header plus
4878 * an IPv6 header, all options, and a maximal TCP or UDP header.
4879 */
4880 #define MAX_IPV6_HDR_LEN 256
4881
4882 #define OPT_HDR(type, skb, off) \
4883 (type *)(skb_network_header(skb) + (off))
4884
skb_checksum_setup_ipv6(struct sk_buff * skb,bool recalculate)4885 static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
4886 {
4887 int err;
4888 u8 nexthdr;
4889 unsigned int off;
4890 unsigned int len;
4891 bool fragment;
4892 bool done;
4893 __sum16 *csum;
4894
4895 fragment = false;
4896 done = false;
4897
4898 off = sizeof(struct ipv6hdr);
4899
4900 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
4901 if (err < 0)
4902 goto out;
4903
4904 nexthdr = ipv6_hdr(skb)->nexthdr;
4905
4906 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
4907 while (off <= len && !done) {
4908 switch (nexthdr) {
4909 case IPPROTO_DSTOPTS:
4910 case IPPROTO_HOPOPTS:
4911 case IPPROTO_ROUTING: {
4912 struct ipv6_opt_hdr *hp;
4913
4914 err = skb_maybe_pull_tail(skb,
4915 off +
4916 sizeof(struct ipv6_opt_hdr),
4917 MAX_IPV6_HDR_LEN);
4918 if (err < 0)
4919 goto out;
4920
4921 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
4922 nexthdr = hp->nexthdr;
4923 off += ipv6_optlen(hp);
4924 break;
4925 }
4926 case IPPROTO_AH: {
4927 struct ip_auth_hdr *hp;
4928
4929 err = skb_maybe_pull_tail(skb,
4930 off +
4931 sizeof(struct ip_auth_hdr),
4932 MAX_IPV6_HDR_LEN);
4933 if (err < 0)
4934 goto out;
4935
4936 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
4937 nexthdr = hp->nexthdr;
4938 off += ipv6_authlen(hp);
4939 break;
4940 }
4941 case IPPROTO_FRAGMENT: {
4942 struct frag_hdr *hp;
4943
4944 err = skb_maybe_pull_tail(skb,
4945 off +
4946 sizeof(struct frag_hdr),
4947 MAX_IPV6_HDR_LEN);
4948 if (err < 0)
4949 goto out;
4950
4951 hp = OPT_HDR(struct frag_hdr, skb, off);
4952
4953 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
4954 fragment = true;
4955
4956 nexthdr = hp->nexthdr;
4957 off += sizeof(struct frag_hdr);
4958 break;
4959 }
4960 default:
4961 done = true;
4962 break;
4963 }
4964 }
4965
4966 err = -EPROTO;
4967
4968 if (!done || fragment)
4969 goto out;
4970
4971 csum = skb_checksum_setup_ip(skb, nexthdr, off);
4972 if (IS_ERR(csum))
4973 return PTR_ERR(csum);
4974
4975 if (recalculate)
4976 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4977 &ipv6_hdr(skb)->daddr,
4978 skb->len - off, nexthdr, 0);
4979 err = 0;
4980
4981 out:
4982 return err;
4983 }
4984
4985 /**
4986 * skb_checksum_setup - set up partial checksum offset
4987 * @skb: the skb to set up
4988 * @recalculate: if true the pseudo-header checksum will be recalculated
4989 */
skb_checksum_setup(struct sk_buff * skb,bool recalculate)4990 int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
4991 {
4992 int err;
4993
4994 switch (skb->protocol) {
4995 case htons(ETH_P_IP):
4996 err = skb_checksum_setup_ipv4(skb, recalculate);
4997 break;
4998
4999 case htons(ETH_P_IPV6):
5000 err = skb_checksum_setup_ipv6(skb, recalculate);
5001 break;
5002
5003 default:
5004 err = -EPROTO;
5005 break;
5006 }
5007
5008 return err;
5009 }
5010 EXPORT_SYMBOL(skb_checksum_setup);
5011
5012 /**
5013 * skb_checksum_maybe_trim - maybe trims the given skb
5014 * @skb: the skb to check
5015 * @transport_len: the data length beyond the network header
5016 *
5017 * Checks whether the given skb has data beyond the given transport length.
5018 * If so, returns a cloned skb trimmed to this transport length.
5019 * Otherwise returns the provided skb. Returns NULL in error cases
5020 * (e.g. transport_len exceeds skb length or out-of-memory).
5021 *
5022 * Caller needs to set the skb transport header and free any returned skb if it
5023 * differs from the provided skb.
5024 */
skb_checksum_maybe_trim(struct sk_buff * skb,unsigned int transport_len)5025 static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5026 unsigned int transport_len)
5027 {
5028 struct sk_buff *skb_chk;
5029 unsigned int len = skb_transport_offset(skb) + transport_len;
5030 int ret;
5031
5032 if (skb->len < len)
5033 return NULL;
5034 else if (skb->len == len)
5035 return skb;
5036
5037 skb_chk = skb_clone(skb, GFP_ATOMIC);
5038 if (!skb_chk)
5039 return NULL;
5040
5041 ret = pskb_trim_rcsum(skb_chk, len);
5042 if (ret) {
5043 kfree_skb(skb_chk);
5044 return NULL;
5045 }
5046
5047 return skb_chk;
5048 }
5049
5050 /**
5051 * skb_checksum_trimmed - validate checksum of an skb
5052 * @skb: the skb to check
5053 * @transport_len: the data length beyond the network header
5054 * @skb_chkf: checksum function to use
5055 *
5056 * Applies the given checksum function skb_chkf to the provided skb.
5057 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5058 *
5059 * If the skb has data beyond the given transport length, then a
5060 * trimmed & cloned skb is checked and returned.
5061 *
5062 * Caller needs to set the skb transport header and free any returned skb if it
5063 * differs from the provided skb.
5064 */
skb_checksum_trimmed(struct sk_buff * skb,unsigned int transport_len,__sum16 (* skb_chkf)(struct sk_buff * skb))5065 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5066 unsigned int transport_len,
5067 __sum16(*skb_chkf)(struct sk_buff *skb))
5068 {
5069 struct sk_buff *skb_chk;
5070 unsigned int offset = skb_transport_offset(skb);
5071 __sum16 ret;
5072
5073 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5074 if (!skb_chk)
5075 goto err;
5076
5077 if (!pskb_may_pull(skb_chk, offset))
5078 goto err;
5079
5080 skb_pull_rcsum(skb_chk, offset);
5081 ret = skb_chkf(skb_chk);
5082 skb_push_rcsum(skb_chk, offset);
5083
5084 if (ret)
5085 goto err;
5086
5087 return skb_chk;
5088
5089 err:
5090 if (skb_chk && skb_chk != skb)
5091 kfree_skb(skb_chk);
5092
5093 return NULL;
5094
5095 }
5096 EXPORT_SYMBOL(skb_checksum_trimmed);
5097
__skb_warn_lro_forwarding(const struct sk_buff * skb)5098 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5099 {
5100 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5101 skb->dev->name);
5102 }
5103 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5104
kfree_skb_partial(struct sk_buff * skb,bool head_stolen)5105 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5106 {
5107 if (head_stolen) {
5108 skb_release_head_state(skb);
5109 kmem_cache_free(skbuff_head_cache, skb);
5110 } else {
5111 __kfree_skb(skb);
5112 }
5113 }
5114 EXPORT_SYMBOL(kfree_skb_partial);
5115
5116 /**
5117 * skb_try_coalesce - try to merge skb to prior one
5118 * @to: prior buffer
5119 * @from: buffer to add
5120 * @fragstolen: pointer to boolean
5121 * @delta_truesize: how much more was allocated than was requested
5122 */
skb_try_coalesce(struct sk_buff * to,struct sk_buff * from,bool * fragstolen,int * delta_truesize)5123 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5124 bool *fragstolen, int *delta_truesize)
5125 {
5126 struct skb_shared_info *to_shinfo, *from_shinfo;
5127 int i, delta, len = from->len;
5128
5129 *fragstolen = false;
5130
5131 if (skb_cloned(to))
5132 return false;
5133
5134 if (len <= skb_tailroom(to)) {
5135 if (len)
5136 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5137 *delta_truesize = 0;
5138 return true;
5139 }
5140
5141 to_shinfo = skb_shinfo(to);
5142 from_shinfo = skb_shinfo(from);
5143 if (to_shinfo->frag_list || from_shinfo->frag_list)
5144 return false;
5145 if (skb_zcopy(to) || skb_zcopy(from))
5146 return false;
5147
5148 if (skb_headlen(from) != 0) {
5149 struct page *page;
5150 unsigned int offset;
5151
5152 if (to_shinfo->nr_frags +
5153 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5154 return false;
5155
5156 if (skb_head_is_locked(from))
5157 return false;
5158
5159 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5160
5161 page = virt_to_head_page(from->head);
5162 offset = from->data - (unsigned char *)page_address(page);
5163
5164 skb_fill_page_desc(to, to_shinfo->nr_frags,
5165 page, offset, skb_headlen(from));
5166 *fragstolen = true;
5167 } else {
5168 if (to_shinfo->nr_frags +
5169 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5170 return false;
5171
5172 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5173 }
5174
5175 WARN_ON_ONCE(delta < len);
5176
5177 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5178 from_shinfo->frags,
5179 from_shinfo->nr_frags * sizeof(skb_frag_t));
5180 to_shinfo->nr_frags += from_shinfo->nr_frags;
5181
5182 if (!skb_cloned(from))
5183 from_shinfo->nr_frags = 0;
5184
5185 /* if the skb is not cloned this does nothing
5186 * since we set nr_frags to 0.
5187 */
5188 for (i = 0; i < from_shinfo->nr_frags; i++)
5189 __skb_frag_ref(&from_shinfo->frags[i]);
5190
5191 to->truesize += delta;
5192 to->len += len;
5193 to->data_len += len;
5194
5195 *delta_truesize = delta;
5196 return true;
5197 }
5198 EXPORT_SYMBOL(skb_try_coalesce);
5199
5200 /**
5201 * skb_scrub_packet - scrub an skb
5202 *
5203 * @skb: buffer to clean
5204 * @xnet: packet is crossing netns
5205 *
5206 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5207 * into/from a tunnel. Some information have to be cleared during these
5208 * operations.
5209 * skb_scrub_packet can also be used to clean a skb before injecting it in
5210 * another namespace (@xnet == true). We have to clear all information in the
5211 * skb that could impact namespace isolation.
5212 */
skb_scrub_packet(struct sk_buff * skb,bool xnet)5213 void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5214 {
5215 skb->pkt_type = PACKET_HOST;
5216 skb->skb_iif = 0;
5217 skb->ignore_df = 0;
5218 skb_dst_drop(skb);
5219 skb_ext_reset(skb);
5220 nf_reset_ct(skb);
5221 nf_reset_trace(skb);
5222
5223 #ifdef CONFIG_NET_SWITCHDEV
5224 skb->offload_fwd_mark = 0;
5225 skb->offload_l3_fwd_mark = 0;
5226 #endif
5227
5228 if (!xnet)
5229 return;
5230
5231 ipvs_reset(skb);
5232 skb->mark = 0;
5233 skb->tstamp = 0;
5234 }
5235 EXPORT_SYMBOL_GPL(skb_scrub_packet);
5236
5237 /**
5238 * skb_gso_transport_seglen - Return length of individual segments of a gso packet
5239 *
5240 * @skb: GSO skb
5241 *
5242 * skb_gso_transport_seglen is used to determine the real size of the
5243 * individual segments, including Layer4 headers (TCP/UDP).
5244 *
5245 * The MAC/L2 or network (IP, IPv6) headers are not accounted for.
5246 */
skb_gso_transport_seglen(const struct sk_buff * skb)5247 static unsigned int skb_gso_transport_seglen(const struct sk_buff *skb)
5248 {
5249 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5250 unsigned int thlen = 0;
5251
5252 if (skb->encapsulation) {
5253 thlen = skb_inner_transport_header(skb) -
5254 skb_transport_header(skb);
5255
5256 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
5257 thlen += inner_tcp_hdrlen(skb);
5258 } else if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
5259 thlen = tcp_hdrlen(skb);
5260 } else if (unlikely(skb_is_gso_sctp(skb))) {
5261 thlen = sizeof(struct sctphdr);
5262 } else if (shinfo->gso_type & SKB_GSO_UDP_L4) {
5263 thlen = sizeof(struct udphdr);
5264 }
5265 /* UFO sets gso_size to the size of the fragmentation
5266 * payload, i.e. the size of the L4 (UDP) header is already
5267 * accounted for.
5268 */
5269 return thlen + shinfo->gso_size;
5270 }
5271
5272 /**
5273 * skb_gso_network_seglen - Return length of individual segments of a gso packet
5274 *
5275 * @skb: GSO skb
5276 *
5277 * skb_gso_network_seglen is used to determine the real size of the
5278 * individual segments, including Layer3 (IP, IPv6) and L4 headers (TCP/UDP).
5279 *
5280 * The MAC/L2 header is not accounted for.
5281 */
skb_gso_network_seglen(const struct sk_buff * skb)5282 static unsigned int skb_gso_network_seglen(const struct sk_buff *skb)
5283 {
5284 unsigned int hdr_len = skb_transport_header(skb) -
5285 skb_network_header(skb);
5286
5287 return hdr_len + skb_gso_transport_seglen(skb);
5288 }
5289
5290 /**
5291 * skb_gso_mac_seglen - Return length of individual segments of a gso packet
5292 *
5293 * @skb: GSO skb
5294 *
5295 * skb_gso_mac_seglen is used to determine the real size of the
5296 * individual segments, including MAC/L2, Layer3 (IP, IPv6) and L4
5297 * headers (TCP/UDP).
5298 */
skb_gso_mac_seglen(const struct sk_buff * skb)5299 static unsigned int skb_gso_mac_seglen(const struct sk_buff *skb)
5300 {
5301 unsigned int hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
5302
5303 return hdr_len + skb_gso_transport_seglen(skb);
5304 }
5305
5306 /**
5307 * skb_gso_size_check - check the skb size, considering GSO_BY_FRAGS
5308 *
5309 * There are a couple of instances where we have a GSO skb, and we
5310 * want to determine what size it would be after it is segmented.
5311 *
5312 * We might want to check:
5313 * - L3+L4+payload size (e.g. IP forwarding)
5314 * - L2+L3+L4+payload size (e.g. sanity check before passing to driver)
5315 *
5316 * This is a helper to do that correctly considering GSO_BY_FRAGS.
5317 *
5318 * @skb: GSO skb
5319 *
5320 * @seg_len: The segmented length (from skb_gso_*_seglen). In the
5321 * GSO_BY_FRAGS case this will be [header sizes + GSO_BY_FRAGS].
5322 *
5323 * @max_len: The maximum permissible length.
5324 *
5325 * Returns true if the segmented length <= max length.
5326 */
skb_gso_size_check(const struct sk_buff * skb,unsigned int seg_len,unsigned int max_len)5327 static inline bool skb_gso_size_check(const struct sk_buff *skb,
5328 unsigned int seg_len,
5329 unsigned int max_len) {
5330 const struct skb_shared_info *shinfo = skb_shinfo(skb);
5331 const struct sk_buff *iter;
5332
5333 if (shinfo->gso_size != GSO_BY_FRAGS)
5334 return seg_len <= max_len;
5335
5336 /* Undo this so we can re-use header sizes */
5337 seg_len -= GSO_BY_FRAGS;
5338
5339 skb_walk_frags(skb, iter) {
5340 if (seg_len + skb_headlen(iter) > max_len)
5341 return false;
5342 }
5343
5344 return true;
5345 }
5346
5347 /**
5348 * skb_gso_validate_network_len - Will a split GSO skb fit into a given MTU?
5349 *
5350 * @skb: GSO skb
5351 * @mtu: MTU to validate against
5352 *
5353 * skb_gso_validate_network_len validates if a given skb will fit a
5354 * wanted MTU once split. It considers L3 headers, L4 headers, and the
5355 * payload.
5356 */
skb_gso_validate_network_len(const struct sk_buff * skb,unsigned int mtu)5357 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu)
5358 {
5359 return skb_gso_size_check(skb, skb_gso_network_seglen(skb), mtu);
5360 }
5361 EXPORT_SYMBOL_GPL(skb_gso_validate_network_len);
5362
5363 /**
5364 * skb_gso_validate_mac_len - Will a split GSO skb fit in a given length?
5365 *
5366 * @skb: GSO skb
5367 * @len: length to validate against
5368 *
5369 * skb_gso_validate_mac_len validates if a given skb will fit a wanted
5370 * length once split, including L2, L3 and L4 headers and the payload.
5371 */
skb_gso_validate_mac_len(const struct sk_buff * skb,unsigned int len)5372 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len)
5373 {
5374 return skb_gso_size_check(skb, skb_gso_mac_seglen(skb), len);
5375 }
5376 EXPORT_SYMBOL_GPL(skb_gso_validate_mac_len);
5377
skb_reorder_vlan_header(struct sk_buff * skb)5378 static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5379 {
5380 int mac_len, meta_len;
5381 void *meta;
5382
5383 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5384 kfree_skb(skb);
5385 return NULL;
5386 }
5387
5388 mac_len = skb->data - skb_mac_header(skb);
5389 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5390 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5391 mac_len - VLAN_HLEN - ETH_TLEN);
5392 }
5393
5394 meta_len = skb_metadata_len(skb);
5395 if (meta_len) {
5396 meta = skb_metadata_end(skb) - meta_len;
5397 memmove(meta + VLAN_HLEN, meta, meta_len);
5398 }
5399
5400 skb->mac_header += VLAN_HLEN;
5401 return skb;
5402 }
5403
skb_vlan_untag(struct sk_buff * skb)5404 struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5405 {
5406 struct vlan_hdr *vhdr;
5407 u16 vlan_tci;
5408
5409 if (unlikely(skb_vlan_tag_present(skb))) {
5410 /* vlan_tci is already set-up so leave this for another time */
5411 return skb;
5412 }
5413
5414 skb = skb_share_check(skb, GFP_ATOMIC);
5415 if (unlikely(!skb))
5416 goto err_free;
5417 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5418 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5419 goto err_free;
5420
5421 vhdr = (struct vlan_hdr *)skb->data;
5422 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5423 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5424
5425 skb_pull_rcsum(skb, VLAN_HLEN);
5426 vlan_set_encap_proto(skb, vhdr);
5427
5428 skb = skb_reorder_vlan_header(skb);
5429 if (unlikely(!skb))
5430 goto err_free;
5431
5432 skb_reset_network_header(skb);
5433 skb_reset_transport_header(skb);
5434 skb_reset_mac_len(skb);
5435
5436 return skb;
5437
5438 err_free:
5439 kfree_skb(skb);
5440 return NULL;
5441 }
5442 EXPORT_SYMBOL(skb_vlan_untag);
5443
skb_ensure_writable(struct sk_buff * skb,int write_len)5444 int skb_ensure_writable(struct sk_buff *skb, int write_len)
5445 {
5446 if (!pskb_may_pull(skb, write_len))
5447 return -ENOMEM;
5448
5449 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5450 return 0;
5451
5452 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5453 }
5454 EXPORT_SYMBOL(skb_ensure_writable);
5455
5456 /* remove VLAN header from packet and update csum accordingly.
5457 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5458 */
__skb_vlan_pop(struct sk_buff * skb,u16 * vlan_tci)5459 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5460 {
5461 struct vlan_hdr *vhdr;
5462 int offset = skb->data - skb_mac_header(skb);
5463 int err;
5464
5465 if (WARN_ONCE(offset,
5466 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5467 offset)) {
5468 return -EINVAL;
5469 }
5470
5471 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5472 if (unlikely(err))
5473 return err;
5474
5475 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5476
5477 vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN);
5478 *vlan_tci = ntohs(vhdr->h_vlan_TCI);
5479
5480 memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN);
5481 __skb_pull(skb, VLAN_HLEN);
5482
5483 vlan_set_encap_proto(skb, vhdr);
5484 skb->mac_header += VLAN_HLEN;
5485
5486 if (skb_network_offset(skb) < ETH_HLEN)
5487 skb_set_network_header(skb, ETH_HLEN);
5488
5489 skb_reset_mac_len(skb);
5490
5491 return err;
5492 }
5493 EXPORT_SYMBOL(__skb_vlan_pop);
5494
5495 /* Pop a vlan tag either from hwaccel or from payload.
5496 * Expects skb->data at mac header.
5497 */
skb_vlan_pop(struct sk_buff * skb)5498 int skb_vlan_pop(struct sk_buff *skb)
5499 {
5500 u16 vlan_tci;
5501 __be16 vlan_proto;
5502 int err;
5503
5504 if (likely(skb_vlan_tag_present(skb))) {
5505 __vlan_hwaccel_clear_tag(skb);
5506 } else {
5507 if (unlikely(!eth_type_vlan(skb->protocol)))
5508 return 0;
5509
5510 err = __skb_vlan_pop(skb, &vlan_tci);
5511 if (err)
5512 return err;
5513 }
5514 /* move next vlan tag to hw accel tag */
5515 if (likely(!eth_type_vlan(skb->protocol)))
5516 return 0;
5517
5518 vlan_proto = skb->protocol;
5519 err = __skb_vlan_pop(skb, &vlan_tci);
5520 if (unlikely(err))
5521 return err;
5522
5523 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5524 return 0;
5525 }
5526 EXPORT_SYMBOL(skb_vlan_pop);
5527
5528 /* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5529 * Expects skb->data at mac header.
5530 */
skb_vlan_push(struct sk_buff * skb,__be16 vlan_proto,u16 vlan_tci)5531 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5532 {
5533 if (skb_vlan_tag_present(skb)) {
5534 int offset = skb->data - skb_mac_header(skb);
5535 int err;
5536
5537 if (WARN_ONCE(offset,
5538 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5539 offset)) {
5540 return -EINVAL;
5541 }
5542
5543 err = __vlan_insert_tag(skb, skb->vlan_proto,
5544 skb_vlan_tag_get(skb));
5545 if (err)
5546 return err;
5547
5548 skb->protocol = skb->vlan_proto;
5549 skb->mac_len += VLAN_HLEN;
5550
5551 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5552 }
5553 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5554 return 0;
5555 }
5556 EXPORT_SYMBOL(skb_vlan_push);
5557
5558 /**
5559 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5560 *
5561 * @skb: Socket buffer to modify
5562 *
5563 * Drop the Ethernet header of @skb.
5564 *
5565 * Expects that skb->data points to the mac header and that no VLAN tags are
5566 * present.
5567 *
5568 * Returns 0 on success, -errno otherwise.
5569 */
skb_eth_pop(struct sk_buff * skb)5570 int skb_eth_pop(struct sk_buff *skb)
5571 {
5572 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5573 skb_network_offset(skb) < ETH_HLEN)
5574 return -EPROTO;
5575
5576 skb_pull_rcsum(skb, ETH_HLEN);
5577 skb_reset_mac_header(skb);
5578 skb_reset_mac_len(skb);
5579
5580 return 0;
5581 }
5582 EXPORT_SYMBOL(skb_eth_pop);
5583
5584 /**
5585 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5586 *
5587 * @skb: Socket buffer to modify
5588 * @dst: Destination MAC address of the new header
5589 * @src: Source MAC address of the new header
5590 *
5591 * Prepend @skb with a new Ethernet header.
5592 *
5593 * Expects that skb->data points to the mac header, which must be empty.
5594 *
5595 * Returns 0 on success, -errno otherwise.
5596 */
skb_eth_push(struct sk_buff * skb,const unsigned char * dst,const unsigned char * src)5597 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5598 const unsigned char *src)
5599 {
5600 struct ethhdr *eth;
5601 int err;
5602
5603 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
5604 return -EPROTO;
5605
5606 err = skb_cow_head(skb, sizeof(*eth));
5607 if (err < 0)
5608 return err;
5609
5610 skb_push(skb, sizeof(*eth));
5611 skb_reset_mac_header(skb);
5612 skb_reset_mac_len(skb);
5613
5614 eth = eth_hdr(skb);
5615 ether_addr_copy(eth->h_dest, dst);
5616 ether_addr_copy(eth->h_source, src);
5617 eth->h_proto = skb->protocol;
5618
5619 skb_postpush_rcsum(skb, eth, sizeof(*eth));
5620
5621 return 0;
5622 }
5623 EXPORT_SYMBOL(skb_eth_push);
5624
5625 /* Update the ethertype of hdr and the skb csum value if required. */
skb_mod_eth_type(struct sk_buff * skb,struct ethhdr * hdr,__be16 ethertype)5626 static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
5627 __be16 ethertype)
5628 {
5629 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5630 __be16 diff[] = { ~hdr->h_proto, ethertype };
5631
5632 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5633 }
5634
5635 hdr->h_proto = ethertype;
5636 }
5637
5638 /**
5639 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
5640 * the packet
5641 *
5642 * @skb: buffer
5643 * @mpls_lse: MPLS label stack entry to push
5644 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
5645 * @mac_len: length of the MAC header
5646 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
5647 * ethernet
5648 *
5649 * Expects skb->data at mac header.
5650 *
5651 * Returns 0 on success, -errno otherwise.
5652 */
skb_mpls_push(struct sk_buff * skb,__be32 mpls_lse,__be16 mpls_proto,int mac_len,bool ethernet)5653 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
5654 int mac_len, bool ethernet)
5655 {
5656 struct mpls_shim_hdr *lse;
5657 int err;
5658
5659 if (unlikely(!eth_p_mpls(mpls_proto)))
5660 return -EINVAL;
5661
5662 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
5663 if (skb->encapsulation)
5664 return -EINVAL;
5665
5666 err = skb_cow_head(skb, MPLS_HLEN);
5667 if (unlikely(err))
5668 return err;
5669
5670 if (!skb->inner_protocol) {
5671 skb_set_inner_network_header(skb, skb_network_offset(skb));
5672 skb_set_inner_protocol(skb, skb->protocol);
5673 }
5674
5675 skb_push(skb, MPLS_HLEN);
5676 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
5677 mac_len);
5678 skb_reset_mac_header(skb);
5679 skb_set_network_header(skb, mac_len);
5680 skb_reset_mac_len(skb);
5681
5682 lse = mpls_hdr(skb);
5683 lse->label_stack_entry = mpls_lse;
5684 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
5685
5686 if (ethernet && mac_len >= ETH_HLEN)
5687 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
5688 skb->protocol = mpls_proto;
5689
5690 return 0;
5691 }
5692 EXPORT_SYMBOL_GPL(skb_mpls_push);
5693
5694 /**
5695 * skb_mpls_pop() - pop the outermost MPLS header
5696 *
5697 * @skb: buffer
5698 * @next_proto: ethertype of header after popped MPLS header
5699 * @mac_len: length of the MAC header
5700 * @ethernet: flag to indicate if the packet is ethernet
5701 *
5702 * Expects skb->data at mac header.
5703 *
5704 * Returns 0 on success, -errno otherwise.
5705 */
skb_mpls_pop(struct sk_buff * skb,__be16 next_proto,int mac_len,bool ethernet)5706 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
5707 bool ethernet)
5708 {
5709 int err;
5710
5711 if (unlikely(!eth_p_mpls(skb->protocol)))
5712 return 0;
5713
5714 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
5715 if (unlikely(err))
5716 return err;
5717
5718 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
5719 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
5720 mac_len);
5721
5722 __skb_pull(skb, MPLS_HLEN);
5723 skb_reset_mac_header(skb);
5724 skb_set_network_header(skb, mac_len);
5725
5726 if (ethernet && mac_len >= ETH_HLEN) {
5727 struct ethhdr *hdr;
5728
5729 /* use mpls_hdr() to get ethertype to account for VLANs. */
5730 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
5731 skb_mod_eth_type(skb, hdr, next_proto);
5732 }
5733 skb->protocol = next_proto;
5734
5735 return 0;
5736 }
5737 EXPORT_SYMBOL_GPL(skb_mpls_pop);
5738
5739 /**
5740 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
5741 *
5742 * @skb: buffer
5743 * @mpls_lse: new MPLS label stack entry to update to
5744 *
5745 * Expects skb->data at mac header.
5746 *
5747 * Returns 0 on success, -errno otherwise.
5748 */
skb_mpls_update_lse(struct sk_buff * skb,__be32 mpls_lse)5749 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
5750 {
5751 int err;
5752
5753 if (unlikely(!eth_p_mpls(skb->protocol)))
5754 return -EINVAL;
5755
5756 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
5757 if (unlikely(err))
5758 return err;
5759
5760 if (skb->ip_summed == CHECKSUM_COMPLETE) {
5761 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
5762
5763 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
5764 }
5765
5766 mpls_hdr(skb)->label_stack_entry = mpls_lse;
5767
5768 return 0;
5769 }
5770 EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
5771
5772 /**
5773 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
5774 *
5775 * @skb: buffer
5776 *
5777 * Expects skb->data at mac header.
5778 *
5779 * Returns 0 on success, -errno otherwise.
5780 */
skb_mpls_dec_ttl(struct sk_buff * skb)5781 int skb_mpls_dec_ttl(struct sk_buff *skb)
5782 {
5783 u32 lse;
5784 u8 ttl;
5785
5786 if (unlikely(!eth_p_mpls(skb->protocol)))
5787 return -EINVAL;
5788
5789 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
5790 return -ENOMEM;
5791
5792 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
5793 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
5794 if (!--ttl)
5795 return -EINVAL;
5796
5797 lse &= ~MPLS_LS_TTL_MASK;
5798 lse |= ttl << MPLS_LS_TTL_SHIFT;
5799
5800 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
5801 }
5802 EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
5803
5804 /**
5805 * alloc_skb_with_frags - allocate skb with page frags
5806 *
5807 * @header_len: size of linear part
5808 * @data_len: needed length in frags
5809 * @max_page_order: max page order desired.
5810 * @errcode: pointer to error code if any
5811 * @gfp_mask: allocation mask
5812 *
5813 * This can be used to allocate a paged skb, given a maximal order for frags.
5814 */
alloc_skb_with_frags(unsigned long header_len,unsigned long data_len,int max_page_order,int * errcode,gfp_t gfp_mask)5815 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
5816 unsigned long data_len,
5817 int max_page_order,
5818 int *errcode,
5819 gfp_t gfp_mask)
5820 {
5821 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
5822 unsigned long chunk;
5823 struct sk_buff *skb;
5824 struct page *page;
5825 int i;
5826
5827 *errcode = -EMSGSIZE;
5828 /* Note this test could be relaxed, if we succeed to allocate
5829 * high order pages...
5830 */
5831 if (npages > MAX_SKB_FRAGS)
5832 return NULL;
5833
5834 *errcode = -ENOBUFS;
5835 skb = alloc_skb(header_len, gfp_mask);
5836 if (!skb)
5837 return NULL;
5838
5839 skb->truesize += npages << PAGE_SHIFT;
5840
5841 for (i = 0; npages > 0; i++) {
5842 int order = max_page_order;
5843
5844 while (order) {
5845 if (npages >= 1 << order) {
5846 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
5847 __GFP_COMP |
5848 __GFP_NOWARN,
5849 order);
5850 if (page)
5851 goto fill_page;
5852 /* Do not retry other high order allocations */
5853 order = 1;
5854 max_page_order = 0;
5855 }
5856 order--;
5857 }
5858 page = alloc_page(gfp_mask);
5859 if (!page)
5860 goto failure;
5861 fill_page:
5862 chunk = min_t(unsigned long, data_len,
5863 PAGE_SIZE << order);
5864 skb_fill_page_desc(skb, i, page, 0, chunk);
5865 data_len -= chunk;
5866 npages -= 1 << order;
5867 }
5868 return skb;
5869
5870 failure:
5871 kfree_skb(skb);
5872 return NULL;
5873 }
5874 EXPORT_SYMBOL(alloc_skb_with_frags);
5875
5876 /* carve out the first off bytes from skb when off < headlen */
pskb_carve_inside_header(struct sk_buff * skb,const u32 off,const int headlen,gfp_t gfp_mask)5877 static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
5878 const int headlen, gfp_t gfp_mask)
5879 {
5880 int i;
5881 int size = skb_end_offset(skb);
5882 int new_hlen = headlen - off;
5883 u8 *data;
5884
5885 size = SKB_DATA_ALIGN(size);
5886
5887 if (skb_pfmemalloc(skb))
5888 gfp_mask |= __GFP_MEMALLOC;
5889 data = kmalloc_reserve(size +
5890 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
5891 gfp_mask, NUMA_NO_NODE, NULL);
5892 if (!data)
5893 return -ENOMEM;
5894
5895 size = SKB_WITH_OVERHEAD(ksize(data));
5896
5897 /* Copy real data, and all frags */
5898 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
5899 skb->len -= off;
5900
5901 memcpy((struct skb_shared_info *)(data + size),
5902 skb_shinfo(skb),
5903 offsetof(struct skb_shared_info,
5904 frags[skb_shinfo(skb)->nr_frags]));
5905 if (skb_cloned(skb)) {
5906 /* drop the old head gracefully */
5907 if (skb_orphan_frags(skb, gfp_mask)) {
5908 kfree(data);
5909 return -ENOMEM;
5910 }
5911 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
5912 skb_frag_ref(skb, i);
5913 if (skb_has_frag_list(skb))
5914 skb_clone_fraglist(skb);
5915 skb_release_data(skb);
5916 } else {
5917 /* we can reuse existing recount- all we did was
5918 * relocate values
5919 */
5920 skb_free_head(skb);
5921 }
5922
5923 skb->head = data;
5924 skb->data = data;
5925 skb->head_frag = 0;
5926 #ifdef NET_SKBUFF_DATA_USES_OFFSET
5927 skb->end = size;
5928 #else
5929 skb->end = skb->head + size;
5930 #endif
5931 skb_set_tail_pointer(skb, skb_headlen(skb));
5932 skb_headers_offset_update(skb, 0);
5933 skb->cloned = 0;
5934 skb->hdr_len = 0;
5935 skb->nohdr = 0;
5936 atomic_set(&skb_shinfo(skb)->dataref, 1);
5937
5938 return 0;
5939 }
5940
5941 static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
5942
5943 /* carve out the first eat bytes from skb's frag_list. May recurse into
5944 * pskb_carve()
5945 */
pskb_carve_frag_list(struct sk_buff * skb,struct skb_shared_info * shinfo,int eat,gfp_t gfp_mask)5946 static int pskb_carve_frag_list(struct sk_buff *skb,
5947 struct skb_shared_info *shinfo, int eat,
5948 gfp_t gfp_mask)
5949 {
5950 struct sk_buff *list = shinfo->frag_list;
5951 struct sk_buff *clone = NULL;
5952 struct sk_buff *insp = NULL;
5953
5954 do {
5955 if (!list) {
5956 pr_err("Not enough bytes to eat. Want %d\n", eat);
5957 return -EFAULT;
5958 }
5959 if (list->len <= eat) {
5960 /* Eaten as whole. */
5961 eat -= list->len;
5962 list = list->next;
5963 insp = list;
5964 } else {
5965 /* Eaten partially. */
5966 if (skb_shared(list)) {
5967 clone = skb_clone(list, gfp_mask);
5968 if (!clone)
5969 return -ENOMEM;
5970 insp = list->next;
5971 list = clone;
5972 } else {
5973 /* This may be pulled without problems. */
5974 insp = list;
5975 }
5976 if (pskb_carve(list, eat, gfp_mask) < 0) {
5977 kfree_skb(clone);
5978 return -ENOMEM;
5979 }
5980 break;
5981 }
5982 } while (eat);
5983
5984 /* Free pulled out fragments. */
5985 while ((list = shinfo->frag_list) != insp) {
5986 shinfo->frag_list = list->next;
5987 kfree_skb(list);
5988 }
5989 /* And insert new clone at head. */
5990 if (clone) {
5991 clone->next = list;
5992 shinfo->frag_list = clone;
5993 }
5994 return 0;
5995 }
5996
5997 /* carve off first len bytes from skb. Split line (off) is in the
5998 * non-linear part of skb
5999 */
pskb_carve_inside_nonlinear(struct sk_buff * skb,const u32 off,int pos,gfp_t gfp_mask)6000 static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6001 int pos, gfp_t gfp_mask)
6002 {
6003 int i, k = 0;
6004 int size = skb_end_offset(skb);
6005 u8 *data;
6006 const int nfrags = skb_shinfo(skb)->nr_frags;
6007 struct skb_shared_info *shinfo;
6008
6009 size = SKB_DATA_ALIGN(size);
6010
6011 if (skb_pfmemalloc(skb))
6012 gfp_mask |= __GFP_MEMALLOC;
6013 data = kmalloc_reserve(size +
6014 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
6015 gfp_mask, NUMA_NO_NODE, NULL);
6016 if (!data)
6017 return -ENOMEM;
6018
6019 size = SKB_WITH_OVERHEAD(ksize(data));
6020
6021 memcpy((struct skb_shared_info *)(data + size),
6022 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6023 if (skb_orphan_frags(skb, gfp_mask)) {
6024 kfree(data);
6025 return -ENOMEM;
6026 }
6027 shinfo = (struct skb_shared_info *)(data + size);
6028 for (i = 0; i < nfrags; i++) {
6029 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6030
6031 if (pos + fsize > off) {
6032 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6033
6034 if (pos < off) {
6035 /* Split frag.
6036 * We have two variants in this case:
6037 * 1. Move all the frag to the second
6038 * part, if it is possible. F.e.
6039 * this approach is mandatory for TUX,
6040 * where splitting is expensive.
6041 * 2. Split is accurately. We make this.
6042 */
6043 skb_frag_off_add(&shinfo->frags[0], off - pos);
6044 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6045 }
6046 skb_frag_ref(skb, i);
6047 k++;
6048 }
6049 pos += fsize;
6050 }
6051 shinfo->nr_frags = k;
6052 if (skb_has_frag_list(skb))
6053 skb_clone_fraglist(skb);
6054
6055 /* split line is in frag list */
6056 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6057 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6058 if (skb_has_frag_list(skb))
6059 kfree_skb_list(skb_shinfo(skb)->frag_list);
6060 kfree(data);
6061 return -ENOMEM;
6062 }
6063 skb_release_data(skb);
6064
6065 skb->head = data;
6066 skb->head_frag = 0;
6067 skb->data = data;
6068 #ifdef NET_SKBUFF_DATA_USES_OFFSET
6069 skb->end = size;
6070 #else
6071 skb->end = skb->head + size;
6072 #endif
6073 skb_reset_tail_pointer(skb);
6074 skb_headers_offset_update(skb, 0);
6075 skb->cloned = 0;
6076 skb->hdr_len = 0;
6077 skb->nohdr = 0;
6078 skb->len -= off;
6079 skb->data_len = skb->len;
6080 atomic_set(&skb_shinfo(skb)->dataref, 1);
6081 return 0;
6082 }
6083
6084 /* remove len bytes from the beginning of the skb */
pskb_carve(struct sk_buff * skb,const u32 len,gfp_t gfp)6085 static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6086 {
6087 int headlen = skb_headlen(skb);
6088
6089 if (len < headlen)
6090 return pskb_carve_inside_header(skb, len, headlen, gfp);
6091 else
6092 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6093 }
6094
6095 /* Extract to_copy bytes starting at off from skb, and return this in
6096 * a new skb
6097 */
pskb_extract(struct sk_buff * skb,int off,int to_copy,gfp_t gfp)6098 struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6099 int to_copy, gfp_t gfp)
6100 {
6101 struct sk_buff *clone = skb_clone(skb, gfp);
6102
6103 if (!clone)
6104 return NULL;
6105
6106 if (pskb_carve(clone, off, gfp) < 0 ||
6107 pskb_trim(clone, to_copy)) {
6108 kfree_skb(clone);
6109 return NULL;
6110 }
6111 return clone;
6112 }
6113 EXPORT_SYMBOL(pskb_extract);
6114
6115 /**
6116 * skb_condense - try to get rid of fragments/frag_list if possible
6117 * @skb: buffer
6118 *
6119 * Can be used to save memory before skb is added to a busy queue.
6120 * If packet has bytes in frags and enough tail room in skb->head,
6121 * pull all of them, so that we can free the frags right now and adjust
6122 * truesize.
6123 * Notes:
6124 * We do not reallocate skb->head thus can not fail.
6125 * Caller must re-evaluate skb->truesize if needed.
6126 */
skb_condense(struct sk_buff * skb)6127 void skb_condense(struct sk_buff *skb)
6128 {
6129 if (skb->data_len) {
6130 if (skb->data_len > skb->end - skb->tail ||
6131 skb_cloned(skb))
6132 return;
6133
6134 /* Nice, we can free page frag(s) right now */
6135 __pskb_pull_tail(skb, skb->data_len);
6136 }
6137 /* At this point, skb->truesize might be over estimated,
6138 * because skb had a fragment, and fragments do not tell
6139 * their truesize.
6140 * When we pulled its content into skb->head, fragment
6141 * was freed, but __pskb_pull_tail() could not possibly
6142 * adjust skb->truesize, not knowing the frag truesize.
6143 */
6144 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6145 }
6146
6147 #ifdef CONFIG_SKB_EXTENSIONS
skb_ext_get_ptr(struct skb_ext * ext,enum skb_ext_id id)6148 static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6149 {
6150 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6151 }
6152
6153 /**
6154 * __skb_ext_alloc - allocate a new skb extensions storage
6155 *
6156 * @flags: See kmalloc().
6157 *
6158 * Returns the newly allocated pointer. The pointer can later attached to a
6159 * skb via __skb_ext_set().
6160 * Note: caller must handle the skb_ext as an opaque data.
6161 */
__skb_ext_alloc(gfp_t flags)6162 struct skb_ext *__skb_ext_alloc(gfp_t flags)
6163 {
6164 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6165
6166 if (new) {
6167 memset(new->offset, 0, sizeof(new->offset));
6168 refcount_set(&new->refcnt, 1);
6169 }
6170
6171 return new;
6172 }
6173
skb_ext_maybe_cow(struct skb_ext * old,unsigned int old_active)6174 static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6175 unsigned int old_active)
6176 {
6177 struct skb_ext *new;
6178
6179 if (refcount_read(&old->refcnt) == 1)
6180 return old;
6181
6182 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6183 if (!new)
6184 return NULL;
6185
6186 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6187 refcount_set(&new->refcnt, 1);
6188
6189 #ifdef CONFIG_XFRM
6190 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6191 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6192 unsigned int i;
6193
6194 for (i = 0; i < sp->len; i++)
6195 xfrm_state_hold(sp->xvec[i]);
6196 }
6197 #endif
6198 __skb_ext_put(old);
6199 return new;
6200 }
6201
6202 /**
6203 * __skb_ext_set - attach the specified extension storage to this skb
6204 * @skb: buffer
6205 * @id: extension id
6206 * @ext: extension storage previously allocated via __skb_ext_alloc()
6207 *
6208 * Existing extensions, if any, are cleared.
6209 *
6210 * Returns the pointer to the extension.
6211 */
__skb_ext_set(struct sk_buff * skb,enum skb_ext_id id,struct skb_ext * ext)6212 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6213 struct skb_ext *ext)
6214 {
6215 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6216
6217 skb_ext_put(skb);
6218 newlen = newoff + skb_ext_type_len[id];
6219 ext->chunks = newlen;
6220 ext->offset[id] = newoff;
6221 skb->extensions = ext;
6222 skb->active_extensions = 1 << id;
6223 return skb_ext_get_ptr(ext, id);
6224 }
6225
6226 /**
6227 * skb_ext_add - allocate space for given extension, COW if needed
6228 * @skb: buffer
6229 * @id: extension to allocate space for
6230 *
6231 * Allocates enough space for the given extension.
6232 * If the extension is already present, a pointer to that extension
6233 * is returned.
6234 *
6235 * If the skb was cloned, COW applies and the returned memory can be
6236 * modified without changing the extension space of clones buffers.
6237 *
6238 * Returns pointer to the extension or NULL on allocation failure.
6239 */
skb_ext_add(struct sk_buff * skb,enum skb_ext_id id)6240 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6241 {
6242 struct skb_ext *new, *old = NULL;
6243 unsigned int newlen, newoff;
6244
6245 if (skb->active_extensions) {
6246 old = skb->extensions;
6247
6248 new = skb_ext_maybe_cow(old, skb->active_extensions);
6249 if (!new)
6250 return NULL;
6251
6252 if (__skb_ext_exist(new, id))
6253 goto set_active;
6254
6255 newoff = new->chunks;
6256 } else {
6257 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6258
6259 new = __skb_ext_alloc(GFP_ATOMIC);
6260 if (!new)
6261 return NULL;
6262 }
6263
6264 newlen = newoff + skb_ext_type_len[id];
6265 new->chunks = newlen;
6266 new->offset[id] = newoff;
6267 set_active:
6268 skb->extensions = new;
6269 skb->active_extensions |= 1 << id;
6270 return skb_ext_get_ptr(new, id);
6271 }
6272 EXPORT_SYMBOL(skb_ext_add);
6273
6274 #ifdef CONFIG_XFRM
skb_ext_put_sp(struct sec_path * sp)6275 static void skb_ext_put_sp(struct sec_path *sp)
6276 {
6277 unsigned int i;
6278
6279 for (i = 0; i < sp->len; i++)
6280 xfrm_state_put(sp->xvec[i]);
6281 }
6282 #endif
6283
__skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)6284 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6285 {
6286 struct skb_ext *ext = skb->extensions;
6287
6288 skb->active_extensions &= ~(1 << id);
6289 if (skb->active_extensions == 0) {
6290 skb->extensions = NULL;
6291 __skb_ext_put(ext);
6292 #ifdef CONFIG_XFRM
6293 } else if (id == SKB_EXT_SEC_PATH &&
6294 refcount_read(&ext->refcnt) == 1) {
6295 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6296
6297 skb_ext_put_sp(sp);
6298 sp->len = 0;
6299 #endif
6300 }
6301 }
6302 EXPORT_SYMBOL(__skb_ext_del);
6303
__skb_ext_put(struct skb_ext * ext)6304 void __skb_ext_put(struct skb_ext *ext)
6305 {
6306 /* If this is last clone, nothing can increment
6307 * it after check passes. Avoids one atomic op.
6308 */
6309 if (refcount_read(&ext->refcnt) == 1)
6310 goto free_now;
6311
6312 if (!refcount_dec_and_test(&ext->refcnt))
6313 return;
6314 free_now:
6315 #ifdef CONFIG_XFRM
6316 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6317 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6318 #endif
6319
6320 kmem_cache_free(skbuff_ext_cache, ext);
6321 }
6322 EXPORT_SYMBOL(__skb_ext_put);
6323 #endif /* CONFIG_SKB_EXTENSIONS */
6324