1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  *	Definitions for the 'struct sk_buff' memory handlers.
4  *
5  *	Authors:
6  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
7  *		Florian La Roche, <rzsfl@rz.uni-sb.de>
8  */
9 
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
12 
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
22 
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <net/flow.h>
40 #include <net/page_pool.h>
41 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
42 #include <linux/netfilter/nf_conntrack_common.h>
43 #endif
44 
45 /* The interface for checksum offload between the stack and networking drivers
46  * is as follows...
47  *
48  * A. IP checksum related features
49  *
50  * Drivers advertise checksum offload capabilities in the features of a device.
51  * From the stack's point of view these are capabilities offered by the driver.
52  * A driver typically only advertises features that it is capable of offloading
53  * to its device.
54  *
55  * The checksum related features are:
56  *
57  *	NETIF_F_HW_CSUM	- The driver (or its device) is able to compute one
58  *			  IP (one's complement) checksum for any combination
59  *			  of protocols or protocol layering. The checksum is
60  *			  computed and set in a packet per the CHECKSUM_PARTIAL
61  *			  interface (see below).
62  *
63  *	NETIF_F_IP_CSUM - Driver (device) is only able to checksum plain
64  *			  TCP or UDP packets over IPv4. These are specifically
65  *			  unencapsulated packets of the form IPv4|TCP or
66  *			  IPv4|UDP where the Protocol field in the IPv4 header
67  *			  is TCP or UDP. The IPv4 header may contain IP options.
68  *			  This feature cannot be set in features for a device
69  *			  with NETIF_F_HW_CSUM also set. This feature is being
70  *			  DEPRECATED (see below).
71  *
72  *	NETIF_F_IPV6_CSUM - Driver (device) is only able to checksum plain
73  *			  TCP or UDP packets over IPv6. These are specifically
74  *			  unencapsulated packets of the form IPv6|TCP or
75  *			  IPv6|UDP where the Next Header field in the IPv6
76  *			  header is either TCP or UDP. IPv6 extension headers
77  *			  are not supported with this feature. This feature
78  *			  cannot be set in features for a device with
79  *			  NETIF_F_HW_CSUM also set. This feature is being
80  *			  DEPRECATED (see below).
81  *
82  *	NETIF_F_RXCSUM - Driver (device) performs receive checksum offload.
83  *			 This flag is only used to disable the RX checksum
84  *			 feature for a device. The stack will accept receive
85  *			 checksum indication in packets received on a device
86  *			 regardless of whether NETIF_F_RXCSUM is set.
87  *
88  * B. Checksumming of received packets by device. Indication of checksum
89  *    verification is set in skb->ip_summed. Possible values are:
90  *
91  * CHECKSUM_NONE:
92  *
93  *   Device did not checksum this packet e.g. due to lack of capabilities.
94  *   The packet contains full (though not verified) checksum in packet but
95  *   not in skb->csum. Thus, skb->csum is undefined in this case.
96  *
97  * CHECKSUM_UNNECESSARY:
98  *
99  *   The hardware you're dealing with doesn't calculate the full checksum
100  *   (as in CHECKSUM_COMPLETE), but it does parse headers and verify checksums
101  *   for specific protocols. For such packets it will set CHECKSUM_UNNECESSARY
102  *   if their checksums are okay. skb->csum is still undefined in this case
103  *   though. A driver or device must never modify the checksum field in the
104  *   packet even if checksum is verified.
105  *
106  *   CHECKSUM_UNNECESSARY is applicable to following protocols:
107  *     TCP: IPv6 and IPv4.
108  *     UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
109  *       zero UDP checksum for either IPv4 or IPv6, the networking stack
110  *       may perform further validation in this case.
111  *     GRE: only if the checksum is present in the header.
112  *     SCTP: indicates the CRC in SCTP header has been validated.
113  *     FCOE: indicates the CRC in FC frame has been validated.
114  *
115  *   skb->csum_level indicates the number of consecutive checksums found in
116  *   the packet minus one that have been verified as CHECKSUM_UNNECESSARY.
117  *   For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
118  *   and a device is able to verify the checksums for UDP (possibly zero),
119  *   GRE (checksum flag is set) and TCP, skb->csum_level would be set to
120  *   two. If the device were only able to verify the UDP checksum and not
121  *   GRE, either because it doesn't support GRE checksum or because GRE
122  *   checksum is bad, skb->csum_level would be set to zero (TCP checksum is
123  *   not considered in this case).
124  *
125  * CHECKSUM_COMPLETE:
126  *
127  *   This is the most generic way. The device supplied checksum of the _whole_
128  *   packet as seen by netif_rx() and fills in skb->csum. This means the
129  *   hardware doesn't need to parse L3/L4 headers to implement this.
130  *
131  *   Notes:
132  *   - Even if device supports only some protocols, but is able to produce
133  *     skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
134  *   - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
135  *
136  * CHECKSUM_PARTIAL:
137  *
138  *   A checksum is set up to be offloaded to a device as described in the
139  *   output description for CHECKSUM_PARTIAL. This may occur on a packet
140  *   received directly from another Linux OS, e.g., a virtualized Linux kernel
141  *   on the same host, or it may be set in the input path in GRO or remote
142  *   checksum offload. For the purposes of checksum verification, the checksum
143  *   referred to by skb->csum_start + skb->csum_offset and any preceding
144  *   checksums in the packet are considered verified. Any checksums in the
145  *   packet that are after the checksum being offloaded are not considered to
146  *   be verified.
147  *
148  * C. Checksumming on transmit for non-GSO. The stack requests checksum offload
149  *    in the skb->ip_summed for a packet. Values are:
150  *
151  * CHECKSUM_PARTIAL:
152  *
153  *   The driver is required to checksum the packet as seen by hard_start_xmit()
154  *   from skb->csum_start up to the end, and to record/write the checksum at
155  *   offset skb->csum_start + skb->csum_offset. A driver may verify that the
156  *   csum_start and csum_offset values are valid values given the length and
157  *   offset of the packet, but it should not attempt to validate that the
158  *   checksum refers to a legitimate transport layer checksum -- it is the
159  *   purview of the stack to validate that csum_start and csum_offset are set
160  *   correctly.
161  *
162  *   When the stack requests checksum offload for a packet, the driver MUST
163  *   ensure that the checksum is set correctly. A driver can either offload the
164  *   checksum calculation to the device, or call skb_checksum_help (in the case
165  *   that the device does not support offload for a particular checksum).
166  *
167  *   NETIF_F_IP_CSUM and NETIF_F_IPV6_CSUM are being deprecated in favor of
168  *   NETIF_F_HW_CSUM. New devices should use NETIF_F_HW_CSUM to indicate
169  *   checksum offload capability.
170  *   skb_csum_hwoffload_help() can be called to resolve CHECKSUM_PARTIAL based
171  *   on network device checksumming capabilities: if a packet does not match
172  *   them, skb_checksum_help or skb_crc32c_help (depending on the value of
173  *   csum_not_inet, see item D.) is called to resolve the checksum.
174  *
175  * CHECKSUM_NONE:
176  *
177  *   The skb was already checksummed by the protocol, or a checksum is not
178  *   required.
179  *
180  * CHECKSUM_UNNECESSARY:
181  *
182  *   This has the same meaning as CHECKSUM_NONE for checksum offload on
183  *   output.
184  *
185  * CHECKSUM_COMPLETE:
186  *   Not used in checksum output. If a driver observes a packet with this value
187  *   set in skbuff, it should treat the packet as if CHECKSUM_NONE were set.
188  *
189  * D. Non-IP checksum (CRC) offloads
190  *
191  *   NETIF_F_SCTP_CRC - This feature indicates that a device is capable of
192  *     offloading the SCTP CRC in a packet. To perform this offload the stack
193  *     will set csum_start and csum_offset accordingly, set ip_summed to
194  *     CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication in
195  *     the skbuff that the CHECKSUM_PARTIAL refers to CRC32c.
196  *     A driver that supports both IP checksum offload and SCTP CRC32c offload
197  *     must verify which offload is configured for a packet by testing the
198  *     value of skb->csum_not_inet; skb_crc32c_csum_help is provided to resolve
199  *     CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
200  *
201  *   NETIF_F_FCOE_CRC - This feature indicates that a device is capable of
202  *     offloading the FCOE CRC in a packet. To perform this offload the stack
203  *     will set ip_summed to CHECKSUM_PARTIAL and set csum_start and csum_offset
204  *     accordingly. Note that there is no indication in the skbuff that the
205  *     CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
206  *     both IP checksum offload and FCOE CRC offload must verify which offload
207  *     is configured for a packet, presumably by inspecting packet headers.
208  *
209  * E. Checksumming on output with GSO.
210  *
211  * In the case of a GSO packet (skb_is_gso(skb) is true), checksum offload
212  * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
213  * gso_type is SKB_GSO_TCPV4 or SKB_GSO_TCPV6, TCP checksum offload as
214  * part of the GSO operation is implied. If a checksum is being offloaded
215  * with GSO then ip_summed is CHECKSUM_PARTIAL, and both csum_start and
216  * csum_offset are set to refer to the outermost checksum being offloaded
217  * (two offloaded checksums are possible with UDP encapsulation).
218  */
219 
220 /* Don't change this without changing skb_csum_unnecessary! */
221 #define CHECKSUM_NONE		0
222 #define CHECKSUM_UNNECESSARY	1
223 #define CHECKSUM_COMPLETE	2
224 #define CHECKSUM_PARTIAL	3
225 
226 /* Maximum value in skb->csum_level */
227 #define SKB_MAX_CSUM_LEVEL	3
228 
229 #define SKB_DATA_ALIGN(X)	ALIGN(X, SMP_CACHE_BYTES)
230 #define SKB_WITH_OVERHEAD(X)	\
231 	((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
232 #define SKB_MAX_ORDER(X, ORDER) \
233 	SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
234 #define SKB_MAX_HEAD(X)		(SKB_MAX_ORDER((X), 0))
235 #define SKB_MAX_ALLOC		(SKB_MAX_ORDER(0, 2))
236 
237 /* return minimum truesize of one skb containing X bytes of data */
238 #define SKB_TRUESIZE(X) ((X) +						\
239 			 SKB_DATA_ALIGN(sizeof(struct sk_buff)) +	\
240 			 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
241 
242 struct ahash_request;
243 struct net_device;
244 struct scatterlist;
245 struct pipe_inode_info;
246 struct iov_iter;
247 struct napi_struct;
248 struct bpf_prog;
249 union bpf_attr;
250 struct skb_ext;
251 
252 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
253 struct nf_bridge_info {
254 	enum {
255 		BRNF_PROTO_UNCHANGED,
256 		BRNF_PROTO_8021Q,
257 		BRNF_PROTO_PPPOE
258 	} orig_proto:8;
259 	u8			pkt_otherhost:1;
260 	u8			in_prerouting:1;
261 	u8			bridged_dnat:1;
262 	__u16			frag_max_size;
263 	struct net_device	*physindev;
264 
265 	/* always valid & non-NULL from FORWARD on, for physdev match */
266 	struct net_device	*physoutdev;
267 	union {
268 		/* prerouting: detect dnat in orig/reply direction */
269 		__be32          ipv4_daddr;
270 		struct in6_addr ipv6_daddr;
271 
272 		/* after prerouting + nat detected: store original source
273 		 * mac since neigh resolution overwrites it, only used while
274 		 * skb is out in neigh layer.
275 		 */
276 		char neigh_header[8];
277 	};
278 };
279 #endif
280 
281 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
282 /* Chain in tc_skb_ext will be used to share the tc chain with
283  * ovs recirc_id. It will be set to the current chain by tc
284  * and read by ovs to recirc_id.
285  */
286 struct tc_skb_ext {
287 	__u32 chain;
288 	__u16 mru;
289 	bool post_ct;
290 };
291 #endif
292 
293 struct sk_buff_head {
294 	/* These two members must be first. */
295 	struct sk_buff	*next;
296 	struct sk_buff	*prev;
297 
298 	__u32		qlen;
299 	spinlock_t	lock;
300 };
301 
302 struct sk_buff;
303 
304 /* To allow 64K frame to be packed as single skb without frag_list we
305  * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
306  * buffers which do not start on a page boundary.
307  *
308  * Since GRO uses frags we allocate at least 16 regardless of page
309  * size.
310  */
311 #if (65536/PAGE_SIZE + 1) < 16
312 #define MAX_SKB_FRAGS 16UL
313 #else
314 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
315 #endif
316 extern int sysctl_max_skb_frags;
317 
318 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
319  * segment using its current segmentation instead.
320  */
321 #define GSO_BY_FRAGS	0xFFFF
322 
323 typedef struct bio_vec skb_frag_t;
324 
325 /**
326  * skb_frag_size() - Returns the size of a skb fragment
327  * @frag: skb fragment
328  */
skb_frag_size(const skb_frag_t * frag)329 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
330 {
331 	return frag->bv_len;
332 }
333 
334 /**
335  * skb_frag_size_set() - Sets the size of a skb fragment
336  * @frag: skb fragment
337  * @size: size of fragment
338  */
skb_frag_size_set(skb_frag_t * frag,unsigned int size)339 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
340 {
341 	frag->bv_len = size;
342 }
343 
344 /**
345  * skb_frag_size_add() - Increments the size of a skb fragment by @delta
346  * @frag: skb fragment
347  * @delta: value to add
348  */
skb_frag_size_add(skb_frag_t * frag,int delta)349 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
350 {
351 	frag->bv_len += delta;
352 }
353 
354 /**
355  * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
356  * @frag: skb fragment
357  * @delta: value to subtract
358  */
skb_frag_size_sub(skb_frag_t * frag,int delta)359 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
360 {
361 	frag->bv_len -= delta;
362 }
363 
364 /**
365  * skb_frag_must_loop - Test if %p is a high memory page
366  * @p: fragment's page
367  */
skb_frag_must_loop(struct page * p)368 static inline bool skb_frag_must_loop(struct page *p)
369 {
370 #if defined(CONFIG_HIGHMEM)
371 	if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
372 		return true;
373 #endif
374 	return false;
375 }
376 
377 /**
378  *	skb_frag_foreach_page - loop over pages in a fragment
379  *
380  *	@f:		skb frag to operate on
381  *	@f_off:		offset from start of f->bv_page
382  *	@f_len:		length from f_off to loop over
383  *	@p:		(temp var) current page
384  *	@p_off:		(temp var) offset from start of current page,
385  *	                           non-zero only on first page.
386  *	@p_len:		(temp var) length in current page,
387  *				   < PAGE_SIZE only on first and last page.
388  *	@copied:	(temp var) length so far, excluding current p_len.
389  *
390  *	A fragment can hold a compound page, in which case per-page
391  *	operations, notably kmap_atomic, must be called for each
392  *	regular page.
393  */
394 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied)	\
395 	for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT),		\
396 	     p_off = (f_off) & (PAGE_SIZE - 1),				\
397 	     p_len = skb_frag_must_loop(p) ?				\
398 	     min_t(u32, f_len, PAGE_SIZE - p_off) : f_len,		\
399 	     copied = 0;						\
400 	     copied < f_len;						\
401 	     copied += p_len, p++, p_off = 0,				\
402 	     p_len = min_t(u32, f_len - copied, PAGE_SIZE))		\
403 
404 #define HAVE_HW_TIME_STAMP
405 
406 /**
407  * struct skb_shared_hwtstamps - hardware time stamps
408  * @hwtstamp:	hardware time stamp transformed into duration
409  *		since arbitrary point in time
410  *
411  * Software time stamps generated by ktime_get_real() are stored in
412  * skb->tstamp.
413  *
414  * hwtstamps can only be compared against other hwtstamps from
415  * the same device.
416  *
417  * This structure is attached to packets as part of the
418  * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
419  */
420 struct skb_shared_hwtstamps {
421 	ktime_t	hwtstamp;
422 };
423 
424 /* Definitions for tx_flags in struct skb_shared_info */
425 enum {
426 	/* generate hardware time stamp */
427 	SKBTX_HW_TSTAMP = 1 << 0,
428 
429 	/* generate software time stamp when queueing packet to NIC */
430 	SKBTX_SW_TSTAMP = 1 << 1,
431 
432 	/* device driver is going to provide hardware time stamp */
433 	SKBTX_IN_PROGRESS = 1 << 2,
434 
435 	/* generate wifi status information (where possible) */
436 	SKBTX_WIFI_STATUS = 1 << 4,
437 
438 	/* generate software time stamp when entering packet scheduling */
439 	SKBTX_SCHED_TSTAMP = 1 << 6,
440 };
441 
442 #define SKBTX_ANY_SW_TSTAMP	(SKBTX_SW_TSTAMP    | \
443 				 SKBTX_SCHED_TSTAMP)
444 #define SKBTX_ANY_TSTAMP	(SKBTX_HW_TSTAMP | SKBTX_ANY_SW_TSTAMP)
445 
446 /* Definitions for flags in struct skb_shared_info */
447 enum {
448 	/* use zcopy routines */
449 	SKBFL_ZEROCOPY_ENABLE = BIT(0),
450 
451 	/* This indicates at least one fragment might be overwritten
452 	 * (as in vmsplice(), sendfile() ...)
453 	 * If we need to compute a TX checksum, we'll need to copy
454 	 * all frags to avoid possible bad checksum
455 	 */
456 	SKBFL_SHARED_FRAG = BIT(1),
457 };
458 
459 #define SKBFL_ZEROCOPY_FRAG	(SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
460 
461 /*
462  * The callback notifies userspace to release buffers when skb DMA is done in
463  * lower device, the skb last reference should be 0 when calling this.
464  * The zerocopy_success argument is true if zero copy transmit occurred,
465  * false on data copy or out of memory error caused by data copy attempt.
466  * The ctx field is used to track device context.
467  * The desc field is used to track userspace buffer index.
468  */
469 struct ubuf_info {
470 	void (*callback)(struct sk_buff *, struct ubuf_info *,
471 			 bool zerocopy_success);
472 	union {
473 		struct {
474 			unsigned long desc;
475 			void *ctx;
476 		};
477 		struct {
478 			u32 id;
479 			u16 len;
480 			u16 zerocopy:1;
481 			u32 bytelen;
482 		};
483 	};
484 	refcount_t refcnt;
485 	u8 flags;
486 
487 	struct mmpin {
488 		struct user_struct *user;
489 		unsigned int num_pg;
490 	} mmp;
491 };
492 
493 #define skb_uarg(SKB)	((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
494 
495 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
496 void mm_unaccount_pinned_pages(struct mmpin *mmp);
497 
498 struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size);
499 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
500 				       struct ubuf_info *uarg);
501 
502 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
503 
504 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
505 			   bool success);
506 
507 int skb_zerocopy_iter_dgram(struct sk_buff *skb, struct msghdr *msg, int len);
508 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
509 			     struct msghdr *msg, int len,
510 			     struct ubuf_info *uarg);
511 
512 /* This data is invariant across clones and lives at
513  * the end of the header data, ie. at skb->end.
514  */
515 struct skb_shared_info {
516 	__u8		flags;
517 	__u8		meta_len;
518 	__u8		nr_frags;
519 	__u8		tx_flags;
520 	unsigned short	gso_size;
521 	/* Warning: this field is not always filled in (UFO)! */
522 	unsigned short	gso_segs;
523 	struct sk_buff	*frag_list;
524 	struct skb_shared_hwtstamps hwtstamps;
525 	unsigned int	gso_type;
526 	u32		tskey;
527 
528 	/*
529 	 * Warning : all fields before dataref are cleared in __alloc_skb()
530 	 */
531 	atomic_t	dataref;
532 
533 	/* Intermediate layers must ensure that destructor_arg
534 	 * remains valid until skb destructor */
535 	void *		destructor_arg;
536 
537 	/* must be last field, see pskb_expand_head() */
538 	skb_frag_t	frags[MAX_SKB_FRAGS];
539 };
540 
541 /* We divide dataref into two halves.  The higher 16 bits hold references
542  * to the payload part of skb->data.  The lower 16 bits hold references to
543  * the entire skb->data.  A clone of a headerless skb holds the length of
544  * the header in skb->hdr_len.
545  *
546  * All users must obey the rule that the skb->data reference count must be
547  * greater than or equal to the payload reference count.
548  *
549  * Holding a reference to the payload part means that the user does not
550  * care about modifications to the header part of skb->data.
551  */
552 #define SKB_DATAREF_SHIFT 16
553 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
554 
555 
556 enum {
557 	SKB_FCLONE_UNAVAILABLE,	/* skb has no fclone (from head_cache) */
558 	SKB_FCLONE_ORIG,	/* orig skb (from fclone_cache) */
559 	SKB_FCLONE_CLONE,	/* companion fclone skb (from fclone_cache) */
560 };
561 
562 enum {
563 	SKB_GSO_TCPV4 = 1 << 0,
564 
565 	/* This indicates the skb is from an untrusted source. */
566 	SKB_GSO_DODGY = 1 << 1,
567 
568 	/* This indicates the tcp segment has CWR set. */
569 	SKB_GSO_TCP_ECN = 1 << 2,
570 
571 	SKB_GSO_TCP_FIXEDID = 1 << 3,
572 
573 	SKB_GSO_TCPV6 = 1 << 4,
574 
575 	SKB_GSO_FCOE = 1 << 5,
576 
577 	SKB_GSO_GRE = 1 << 6,
578 
579 	SKB_GSO_GRE_CSUM = 1 << 7,
580 
581 	SKB_GSO_IPXIP4 = 1 << 8,
582 
583 	SKB_GSO_IPXIP6 = 1 << 9,
584 
585 	SKB_GSO_UDP_TUNNEL = 1 << 10,
586 
587 	SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
588 
589 	SKB_GSO_PARTIAL = 1 << 12,
590 
591 	SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
592 
593 	SKB_GSO_SCTP = 1 << 14,
594 
595 	SKB_GSO_ESP = 1 << 15,
596 
597 	SKB_GSO_UDP = 1 << 16,
598 
599 	SKB_GSO_UDP_L4 = 1 << 17,
600 
601 	SKB_GSO_FRAGLIST = 1 << 18,
602 };
603 
604 #if BITS_PER_LONG > 32
605 #define NET_SKBUFF_DATA_USES_OFFSET 1
606 #endif
607 
608 #ifdef NET_SKBUFF_DATA_USES_OFFSET
609 typedef unsigned int sk_buff_data_t;
610 #else
611 typedef unsigned char *sk_buff_data_t;
612 #endif
613 
614 /**
615  *	struct sk_buff - socket buffer
616  *	@next: Next buffer in list
617  *	@prev: Previous buffer in list
618  *	@tstamp: Time we arrived/left
619  *	@skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
620  *		for retransmit timer
621  *	@rbnode: RB tree node, alternative to next/prev for netem/tcp
622  *	@list: queue head
623  *	@sk: Socket we are owned by
624  *	@ip_defrag_offset: (aka @sk) alternate use of @sk, used in
625  *		fragmentation management
626  *	@dev: Device we arrived on/are leaving by
627  *	@dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
628  *	@cb: Control buffer. Free for use by every layer. Put private vars here
629  *	@_skb_refdst: destination entry (with norefcount bit)
630  *	@sp: the security path, used for xfrm
631  *	@len: Length of actual data
632  *	@data_len: Data length
633  *	@mac_len: Length of link layer header
634  *	@hdr_len: writable header length of cloned skb
635  *	@csum: Checksum (must include start/offset pair)
636  *	@csum_start: Offset from skb->head where checksumming should start
637  *	@csum_offset: Offset from csum_start where checksum should be stored
638  *	@priority: Packet queueing priority
639  *	@ignore_df: allow local fragmentation
640  *	@cloned: Head may be cloned (check refcnt to be sure)
641  *	@ip_summed: Driver fed us an IP checksum
642  *	@nohdr: Payload reference only, must not modify header
643  *	@pkt_type: Packet class
644  *	@fclone: skbuff clone status
645  *	@ipvs_property: skbuff is owned by ipvs
646  *	@inner_protocol_type: whether the inner protocol is
647  *		ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
648  *	@remcsum_offload: remote checksum offload is enabled
649  *	@offload_fwd_mark: Packet was L2-forwarded in hardware
650  *	@offload_l3_fwd_mark: Packet was L3-forwarded in hardware
651  *	@tc_skip_classify: do not classify packet. set by IFB device
652  *	@tc_at_ingress: used within tc_classify to distinguish in/egress
653  *	@redirected: packet was redirected by packet classifier
654  *	@from_ingress: packet was redirected from the ingress path
655  *	@peeked: this packet has been seen already, so stats have been
656  *		done for it, don't do them again
657  *	@nf_trace: netfilter packet trace flag
658  *	@protocol: Packet protocol from driver
659  *	@destructor: Destruct function
660  *	@tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
661  *	@_sk_redir: socket redirection information for skmsg
662  *	@_nfct: Associated connection, if any (with nfctinfo bits)
663  *	@nf_bridge: Saved data about a bridged frame - see br_netfilter.c
664  *	@skb_iif: ifindex of device we arrived on
665  *	@tc_index: Traffic control index
666  *	@hash: the packet hash
667  *	@queue_mapping: Queue mapping for multiqueue devices
668  *	@head_frag: skb was allocated from page fragments,
669  *		not allocated by kmalloc() or vmalloc().
670  *	@pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
671  *	@pp_recycle: mark the packet for recycling instead of freeing (implies
672  *		page_pool support on driver)
673  *	@active_extensions: active extensions (skb_ext_id types)
674  *	@ndisc_nodetype: router type (from link layer)
675  *	@ooo_okay: allow the mapping of a socket to a queue to be changed
676  *	@l4_hash: indicate hash is a canonical 4-tuple hash over transport
677  *		ports.
678  *	@sw_hash: indicates hash was computed in software stack
679  *	@wifi_acked_valid: wifi_acked was set
680  *	@wifi_acked: whether frame was acked on wifi or not
681  *	@no_fcs:  Request NIC to treat last 4 bytes as Ethernet FCS
682  *	@encapsulation: indicates the inner headers in the skbuff are valid
683  *	@encap_hdr_csum: software checksum is needed
684  *	@csum_valid: checksum is already valid
685  *	@csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
686  *	@csum_complete_sw: checksum was completed by software
687  *	@csum_level: indicates the number of consecutive checksums found in
688  *		the packet minus one that have been verified as
689  *		CHECKSUM_UNNECESSARY (max 3)
690  *	@dst_pending_confirm: need to confirm neighbour
691  *	@decrypted: Decrypted SKB
692  *	@slow_gro: state present at GRO time, slower prepare step required
693  *	@napi_id: id of the NAPI struct this skb came from
694  *	@sender_cpu: (aka @napi_id) source CPU in XPS
695  *	@secmark: security marking
696  *	@mark: Generic packet mark
697  *	@reserved_tailroom: (aka @mark) number of bytes of free space available
698  *		at the tail of an sk_buff
699  *	@vlan_present: VLAN tag is present
700  *	@vlan_proto: vlan encapsulation protocol
701  *	@vlan_tci: vlan tag control information
702  *	@inner_protocol: Protocol (encapsulation)
703  *	@inner_ipproto: (aka @inner_protocol) stores ipproto when
704  *		skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
705  *	@inner_transport_header: Inner transport layer header (encapsulation)
706  *	@inner_network_header: Network layer header (encapsulation)
707  *	@inner_mac_header: Link layer header (encapsulation)
708  *	@transport_header: Transport layer header
709  *	@network_header: Network layer header
710  *	@mac_header: Link layer header
711  *	@kcov_handle: KCOV remote handle for remote coverage collection
712  *	@tail: Tail pointer
713  *	@end: End pointer
714  *	@head: Head of buffer
715  *	@data: Data head pointer
716  *	@truesize: Buffer size
717  *	@users: User count - see {datagram,tcp}.c
718  *	@extensions: allocated extensions, valid if active_extensions is nonzero
719  */
720 
721 struct sk_buff {
722 	union {
723 		struct {
724 			/* These two members must be first. */
725 			struct sk_buff		*next;
726 			struct sk_buff		*prev;
727 
728 			union {
729 				struct net_device	*dev;
730 				/* Some protocols might use this space to store information,
731 				 * while device pointer would be NULL.
732 				 * UDP receive path is one user.
733 				 */
734 				unsigned long		dev_scratch;
735 			};
736 		};
737 		struct rb_node		rbnode; /* used in netem, ip4 defrag, and tcp stack */
738 		struct list_head	list;
739 	};
740 
741 	union {
742 		struct sock		*sk;
743 		int			ip_defrag_offset;
744 	};
745 
746 	union {
747 		ktime_t		tstamp;
748 		u64		skb_mstamp_ns; /* earliest departure time */
749 	};
750 	/*
751 	 * This is the control buffer. It is free to use for every
752 	 * layer. Please put your private variables there. If you
753 	 * want to keep them across layers you have to do a skb_clone()
754 	 * first. This is owned by whoever has the skb queued ATM.
755 	 */
756 	char			cb[48] __aligned(8);
757 
758 	union {
759 		struct {
760 			unsigned long	_skb_refdst;
761 			void		(*destructor)(struct sk_buff *skb);
762 		};
763 		struct list_head	tcp_tsorted_anchor;
764 #ifdef CONFIG_NET_SOCK_MSG
765 		unsigned long		_sk_redir;
766 #endif
767 	};
768 
769 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
770 	unsigned long		 _nfct;
771 #endif
772 	unsigned int		len,
773 				data_len;
774 	__u16			mac_len,
775 				hdr_len;
776 
777 	/* Following fields are _not_ copied in __copy_skb_header()
778 	 * Note that queue_mapping is here mostly to fill a hole.
779 	 */
780 	__u16			queue_mapping;
781 
782 /* if you move cloned around you also must adapt those constants */
783 #ifdef __BIG_ENDIAN_BITFIELD
784 #define CLONED_MASK	(1 << 7)
785 #else
786 #define CLONED_MASK	1
787 #endif
788 #define CLONED_OFFSET()		offsetof(struct sk_buff, __cloned_offset)
789 
790 	/* private: */
791 	__u8			__cloned_offset[0];
792 	/* public: */
793 	__u8			cloned:1,
794 				nohdr:1,
795 				fclone:2,
796 				peeked:1,
797 				head_frag:1,
798 				pfmemalloc:1,
799 				pp_recycle:1; /* page_pool recycle indicator */
800 #ifdef CONFIG_SKB_EXTENSIONS
801 	__u8			active_extensions;
802 #endif
803 
804 	/* fields enclosed in headers_start/headers_end are copied
805 	 * using a single memcpy() in __copy_skb_header()
806 	 */
807 	/* private: */
808 	__u32			headers_start[0];
809 	/* public: */
810 
811 /* if you move pkt_type around you also must adapt those constants */
812 #ifdef __BIG_ENDIAN_BITFIELD
813 #define PKT_TYPE_MAX	(7 << 5)
814 #else
815 #define PKT_TYPE_MAX	7
816 #endif
817 #define PKT_TYPE_OFFSET()	offsetof(struct sk_buff, __pkt_type_offset)
818 
819 	/* private: */
820 	__u8			__pkt_type_offset[0];
821 	/* public: */
822 	__u8			pkt_type:3;
823 	__u8			ignore_df:1;
824 	__u8			nf_trace:1;
825 	__u8			ip_summed:2;
826 	__u8			ooo_okay:1;
827 
828 	__u8			l4_hash:1;
829 	__u8			sw_hash:1;
830 	__u8			wifi_acked_valid:1;
831 	__u8			wifi_acked:1;
832 	__u8			no_fcs:1;
833 	/* Indicates the inner headers are valid in the skbuff. */
834 	__u8			encapsulation:1;
835 	__u8			encap_hdr_csum:1;
836 	__u8			csum_valid:1;
837 
838 #ifdef __BIG_ENDIAN_BITFIELD
839 #define PKT_VLAN_PRESENT_BIT	7
840 #else
841 #define PKT_VLAN_PRESENT_BIT	0
842 #endif
843 #define PKT_VLAN_PRESENT_OFFSET()	offsetof(struct sk_buff, __pkt_vlan_present_offset)
844 	/* private: */
845 	__u8			__pkt_vlan_present_offset[0];
846 	/* public: */
847 	__u8			vlan_present:1;
848 	__u8			csum_complete_sw:1;
849 	__u8			csum_level:2;
850 	__u8			csum_not_inet:1;
851 	__u8			dst_pending_confirm:1;
852 #ifdef CONFIG_IPV6_NDISC_NODETYPE
853 	__u8			ndisc_nodetype:2;
854 #endif
855 
856 	__u8			ipvs_property:1;
857 	__u8			inner_protocol_type:1;
858 	__u8			remcsum_offload:1;
859 #ifdef CONFIG_NET_SWITCHDEV
860 	__u8			offload_fwd_mark:1;
861 	__u8			offload_l3_fwd_mark:1;
862 #endif
863 #ifdef CONFIG_NET_CLS_ACT
864 	__u8			tc_skip_classify:1;
865 	__u8			tc_at_ingress:1;
866 #endif
867 	__u8			redirected:1;
868 #ifdef CONFIG_NET_REDIRECT
869 	__u8			from_ingress:1;
870 #endif
871 #ifdef CONFIG_TLS_DEVICE
872 	__u8			decrypted:1;
873 #endif
874 	__u8			slow_gro:1;
875 
876 #ifdef CONFIG_NET_SCHED
877 	__u16			tc_index;	/* traffic control index */
878 #endif
879 
880 	union {
881 		__wsum		csum;
882 		struct {
883 			__u16	csum_start;
884 			__u16	csum_offset;
885 		};
886 	};
887 	__u32			priority;
888 	int			skb_iif;
889 	__u32			hash;
890 	__be16			vlan_proto;
891 	__u16			vlan_tci;
892 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
893 	union {
894 		unsigned int	napi_id;
895 		unsigned int	sender_cpu;
896 	};
897 #endif
898 #ifdef CONFIG_NETWORK_SECMARK
899 	__u32		secmark;
900 #endif
901 
902 	union {
903 		__u32		mark;
904 		__u32		reserved_tailroom;
905 	};
906 
907 	union {
908 		__be16		inner_protocol;
909 		__u8		inner_ipproto;
910 	};
911 
912 	__u16			inner_transport_header;
913 	__u16			inner_network_header;
914 	__u16			inner_mac_header;
915 
916 	__be16			protocol;
917 	__u16			transport_header;
918 	__u16			network_header;
919 	__u16			mac_header;
920 
921 #ifdef CONFIG_KCOV
922 	u64			kcov_handle;
923 #endif
924 
925 	/* private: */
926 	__u32			headers_end[0];
927 	/* public: */
928 
929 	/* These elements must be at the end, see alloc_skb() for details.  */
930 	sk_buff_data_t		tail;
931 	sk_buff_data_t		end;
932 	unsigned char		*head,
933 				*data;
934 	unsigned int		truesize;
935 	refcount_t		users;
936 
937 #ifdef CONFIG_SKB_EXTENSIONS
938 	/* only useable after checking ->active_extensions != 0 */
939 	struct skb_ext		*extensions;
940 #endif
941 };
942 
943 #ifdef __KERNEL__
944 /*
945  *	Handling routines are only of interest to the kernel
946  */
947 
948 #define SKB_ALLOC_FCLONE	0x01
949 #define SKB_ALLOC_RX		0x02
950 #define SKB_ALLOC_NAPI		0x04
951 
952 /**
953  * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
954  * @skb: buffer
955  */
skb_pfmemalloc(const struct sk_buff * skb)956 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
957 {
958 	return unlikely(skb->pfmemalloc);
959 }
960 
961 /*
962  * skb might have a dst pointer attached, refcounted or not.
963  * _skb_refdst low order bit is set if refcount was _not_ taken
964  */
965 #define SKB_DST_NOREF	1UL
966 #define SKB_DST_PTRMASK	~(SKB_DST_NOREF)
967 
968 /**
969  * skb_dst - returns skb dst_entry
970  * @skb: buffer
971  *
972  * Returns skb dst_entry, regardless of reference taken or not.
973  */
skb_dst(const struct sk_buff * skb)974 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
975 {
976 	/* If refdst was not refcounted, check we still are in a
977 	 * rcu_read_lock section
978 	 */
979 	WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
980 		!rcu_read_lock_held() &&
981 		!rcu_read_lock_bh_held());
982 	return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
983 }
984 
985 /**
986  * skb_dst_set - sets skb dst
987  * @skb: buffer
988  * @dst: dst entry
989  *
990  * Sets skb dst, assuming a reference was taken on dst and should
991  * be released by skb_dst_drop()
992  */
skb_dst_set(struct sk_buff * skb,struct dst_entry * dst)993 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
994 {
995 	skb->slow_gro |= !!dst;
996 	skb->_skb_refdst = (unsigned long)dst;
997 }
998 
999 /**
1000  * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1001  * @skb: buffer
1002  * @dst: dst entry
1003  *
1004  * Sets skb dst, assuming a reference was not taken on dst.
1005  * If dst entry is cached, we do not take reference and dst_release
1006  * will be avoided by refdst_drop. If dst entry is not cached, we take
1007  * reference, so that last dst_release can destroy the dst immediately.
1008  */
skb_dst_set_noref(struct sk_buff * skb,struct dst_entry * dst)1009 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1010 {
1011 	WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1012 	skb->slow_gro |= !!dst;
1013 	skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1014 }
1015 
1016 /**
1017  * skb_dst_is_noref - Test if skb dst isn't refcounted
1018  * @skb: buffer
1019  */
skb_dst_is_noref(const struct sk_buff * skb)1020 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1021 {
1022 	return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1023 }
1024 
1025 /**
1026  * skb_rtable - Returns the skb &rtable
1027  * @skb: buffer
1028  */
skb_rtable(const struct sk_buff * skb)1029 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1030 {
1031 	return (struct rtable *)skb_dst(skb);
1032 }
1033 
1034 /* For mangling skb->pkt_type from user space side from applications
1035  * such as nft, tc, etc, we only allow a conservative subset of
1036  * possible pkt_types to be set.
1037 */
skb_pkt_type_ok(u32 ptype)1038 static inline bool skb_pkt_type_ok(u32 ptype)
1039 {
1040 	return ptype <= PACKET_OTHERHOST;
1041 }
1042 
1043 /**
1044  * skb_napi_id - Returns the skb's NAPI id
1045  * @skb: buffer
1046  */
skb_napi_id(const struct sk_buff * skb)1047 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1048 {
1049 #ifdef CONFIG_NET_RX_BUSY_POLL
1050 	return skb->napi_id;
1051 #else
1052 	return 0;
1053 #endif
1054 }
1055 
1056 /**
1057  * skb_unref - decrement the skb's reference count
1058  * @skb: buffer
1059  *
1060  * Returns true if we can free the skb.
1061  */
skb_unref(struct sk_buff * skb)1062 static inline bool skb_unref(struct sk_buff *skb)
1063 {
1064 	if (unlikely(!skb))
1065 		return false;
1066 	if (likely(refcount_read(&skb->users) == 1))
1067 		smp_rmb();
1068 	else if (likely(!refcount_dec_and_test(&skb->users)))
1069 		return false;
1070 
1071 	return true;
1072 }
1073 
1074 void skb_release_head_state(struct sk_buff *skb);
1075 void kfree_skb(struct sk_buff *skb);
1076 void kfree_skb_list(struct sk_buff *segs);
1077 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1078 void skb_tx_error(struct sk_buff *skb);
1079 
1080 #ifdef CONFIG_TRACEPOINTS
1081 void consume_skb(struct sk_buff *skb);
1082 #else
consume_skb(struct sk_buff * skb)1083 static inline void consume_skb(struct sk_buff *skb)
1084 {
1085 	return kfree_skb(skb);
1086 }
1087 #endif
1088 
1089 void __consume_stateless_skb(struct sk_buff *skb);
1090 void  __kfree_skb(struct sk_buff *skb);
1091 extern struct kmem_cache *skbuff_head_cache;
1092 
1093 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1094 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1095 		      bool *fragstolen, int *delta_truesize);
1096 
1097 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1098 			    int node);
1099 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1100 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1101 struct sk_buff *build_skb_around(struct sk_buff *skb,
1102 				 void *data, unsigned int frag_size);
1103 
1104 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1105 
1106 /**
1107  * alloc_skb - allocate a network buffer
1108  * @size: size to allocate
1109  * @priority: allocation mask
1110  *
1111  * This function is a convenient wrapper around __alloc_skb().
1112  */
alloc_skb(unsigned int size,gfp_t priority)1113 static inline struct sk_buff *alloc_skb(unsigned int size,
1114 					gfp_t priority)
1115 {
1116 	return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1117 }
1118 
1119 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1120 				     unsigned long data_len,
1121 				     int max_page_order,
1122 				     int *errcode,
1123 				     gfp_t gfp_mask);
1124 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1125 
1126 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1127 struct sk_buff_fclones {
1128 	struct sk_buff	skb1;
1129 
1130 	struct sk_buff	skb2;
1131 
1132 	refcount_t	fclone_ref;
1133 };
1134 
1135 /**
1136  *	skb_fclone_busy - check if fclone is busy
1137  *	@sk: socket
1138  *	@skb: buffer
1139  *
1140  * Returns true if skb is a fast clone, and its clone is not freed.
1141  * Some drivers call skb_orphan() in their ndo_start_xmit(),
1142  * so we also check that this didnt happen.
1143  */
skb_fclone_busy(const struct sock * sk,const struct sk_buff * skb)1144 static inline bool skb_fclone_busy(const struct sock *sk,
1145 				   const struct sk_buff *skb)
1146 {
1147 	const struct sk_buff_fclones *fclones;
1148 
1149 	fclones = container_of(skb, struct sk_buff_fclones, skb1);
1150 
1151 	return skb->fclone == SKB_FCLONE_ORIG &&
1152 	       refcount_read(&fclones->fclone_ref) > 1 &&
1153 	       READ_ONCE(fclones->skb2.sk) == sk;
1154 }
1155 
1156 /**
1157  * alloc_skb_fclone - allocate a network buffer from fclone cache
1158  * @size: size to allocate
1159  * @priority: allocation mask
1160  *
1161  * This function is a convenient wrapper around __alloc_skb().
1162  */
alloc_skb_fclone(unsigned int size,gfp_t priority)1163 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1164 					       gfp_t priority)
1165 {
1166 	return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1167 }
1168 
1169 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1170 void skb_headers_offset_update(struct sk_buff *skb, int off);
1171 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1172 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1173 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1174 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1175 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1176 				   gfp_t gfp_mask, bool fclone);
__pskb_copy(struct sk_buff * skb,int headroom,gfp_t gfp_mask)1177 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1178 					  gfp_t gfp_mask)
1179 {
1180 	return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1181 }
1182 
1183 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1184 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1185 				     unsigned int headroom);
1186 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1187 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1188 				int newtailroom, gfp_t priority);
1189 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1190 				     int offset, int len);
1191 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1192 			      int offset, int len);
1193 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1194 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1195 
1196 /**
1197  *	skb_pad			-	zero pad the tail of an skb
1198  *	@skb: buffer to pad
1199  *	@pad: space to pad
1200  *
1201  *	Ensure that a buffer is followed by a padding area that is zero
1202  *	filled. Used by network drivers which may DMA or transfer data
1203  *	beyond the buffer end onto the wire.
1204  *
1205  *	May return error in out of memory cases. The skb is freed on error.
1206  */
skb_pad(struct sk_buff * skb,int pad)1207 static inline int skb_pad(struct sk_buff *skb, int pad)
1208 {
1209 	return __skb_pad(skb, pad, true);
1210 }
1211 #define dev_kfree_skb(a)	consume_skb(a)
1212 
1213 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1214 			 int offset, size_t size);
1215 
1216 struct skb_seq_state {
1217 	__u32		lower_offset;
1218 	__u32		upper_offset;
1219 	__u32		frag_idx;
1220 	__u32		stepped_offset;
1221 	struct sk_buff	*root_skb;
1222 	struct sk_buff	*cur_skb;
1223 	__u8		*frag_data;
1224 	__u32		frag_off;
1225 };
1226 
1227 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1228 			  unsigned int to, struct skb_seq_state *st);
1229 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1230 			  struct skb_seq_state *st);
1231 void skb_abort_seq_read(struct skb_seq_state *st);
1232 
1233 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1234 			   unsigned int to, struct ts_config *config);
1235 
1236 /*
1237  * Packet hash types specify the type of hash in skb_set_hash.
1238  *
1239  * Hash types refer to the protocol layer addresses which are used to
1240  * construct a packet's hash. The hashes are used to differentiate or identify
1241  * flows of the protocol layer for the hash type. Hash types are either
1242  * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1243  *
1244  * Properties of hashes:
1245  *
1246  * 1) Two packets in different flows have different hash values
1247  * 2) Two packets in the same flow should have the same hash value
1248  *
1249  * A hash at a higher layer is considered to be more specific. A driver should
1250  * set the most specific hash possible.
1251  *
1252  * A driver cannot indicate a more specific hash than the layer at which a hash
1253  * was computed. For instance an L3 hash cannot be set as an L4 hash.
1254  *
1255  * A driver may indicate a hash level which is less specific than the
1256  * actual layer the hash was computed on. For instance, a hash computed
1257  * at L4 may be considered an L3 hash. This should only be done if the
1258  * driver can't unambiguously determine that the HW computed the hash at
1259  * the higher layer. Note that the "should" in the second property above
1260  * permits this.
1261  */
1262 enum pkt_hash_types {
1263 	PKT_HASH_TYPE_NONE,	/* Undefined type */
1264 	PKT_HASH_TYPE_L2,	/* Input: src_MAC, dest_MAC */
1265 	PKT_HASH_TYPE_L3,	/* Input: src_IP, dst_IP */
1266 	PKT_HASH_TYPE_L4,	/* Input: src_IP, dst_IP, src_port, dst_port */
1267 };
1268 
skb_clear_hash(struct sk_buff * skb)1269 static inline void skb_clear_hash(struct sk_buff *skb)
1270 {
1271 	skb->hash = 0;
1272 	skb->sw_hash = 0;
1273 	skb->l4_hash = 0;
1274 }
1275 
skb_clear_hash_if_not_l4(struct sk_buff * skb)1276 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1277 {
1278 	if (!skb->l4_hash)
1279 		skb_clear_hash(skb);
1280 }
1281 
1282 static inline void
__skb_set_hash(struct sk_buff * skb,__u32 hash,bool is_sw,bool is_l4)1283 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1284 {
1285 	skb->l4_hash = is_l4;
1286 	skb->sw_hash = is_sw;
1287 	skb->hash = hash;
1288 }
1289 
1290 static inline void
skb_set_hash(struct sk_buff * skb,__u32 hash,enum pkt_hash_types type)1291 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1292 {
1293 	/* Used by drivers to set hash from HW */
1294 	__skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1295 }
1296 
1297 static inline void
__skb_set_sw_hash(struct sk_buff * skb,__u32 hash,bool is_l4)1298 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1299 {
1300 	__skb_set_hash(skb, hash, true, is_l4);
1301 }
1302 
1303 void __skb_get_hash(struct sk_buff *skb);
1304 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1305 u32 skb_get_poff(const struct sk_buff *skb);
1306 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1307 		   const struct flow_keys_basic *keys, int hlen);
1308 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1309 			    const void *data, int hlen_proto);
1310 
skb_flow_get_ports(const struct sk_buff * skb,int thoff,u8 ip_proto)1311 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1312 					int thoff, u8 ip_proto)
1313 {
1314 	return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1315 }
1316 
1317 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1318 			     const struct flow_dissector_key *key,
1319 			     unsigned int key_count);
1320 
1321 struct bpf_flow_dissector;
1322 bool bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1323 		      __be16 proto, int nhoff, int hlen, unsigned int flags);
1324 
1325 bool __skb_flow_dissect(const struct net *net,
1326 			const struct sk_buff *skb,
1327 			struct flow_dissector *flow_dissector,
1328 			void *target_container, const void *data,
1329 			__be16 proto, int nhoff, int hlen, unsigned int flags);
1330 
skb_flow_dissect(const struct sk_buff * skb,struct flow_dissector * flow_dissector,void * target_container,unsigned int flags)1331 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1332 				    struct flow_dissector *flow_dissector,
1333 				    void *target_container, unsigned int flags)
1334 {
1335 	return __skb_flow_dissect(NULL, skb, flow_dissector,
1336 				  target_container, NULL, 0, 0, 0, flags);
1337 }
1338 
skb_flow_dissect_flow_keys(const struct sk_buff * skb,struct flow_keys * flow,unsigned int flags)1339 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1340 					      struct flow_keys *flow,
1341 					      unsigned int flags)
1342 {
1343 	memset(flow, 0, sizeof(*flow));
1344 	return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1345 				  flow, NULL, 0, 0, 0, flags);
1346 }
1347 
1348 static inline bool
skb_flow_dissect_flow_keys_basic(const struct net * net,const struct sk_buff * skb,struct flow_keys_basic * flow,const void * data,__be16 proto,int nhoff,int hlen,unsigned int flags)1349 skb_flow_dissect_flow_keys_basic(const struct net *net,
1350 				 const struct sk_buff *skb,
1351 				 struct flow_keys_basic *flow,
1352 				 const void *data, __be16 proto,
1353 				 int nhoff, int hlen, unsigned int flags)
1354 {
1355 	memset(flow, 0, sizeof(*flow));
1356 	return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1357 				  data, proto, nhoff, hlen, flags);
1358 }
1359 
1360 void skb_flow_dissect_meta(const struct sk_buff *skb,
1361 			   struct flow_dissector *flow_dissector,
1362 			   void *target_container);
1363 
1364 /* Gets a skb connection tracking info, ctinfo map should be a
1365  * map of mapsize to translate enum ip_conntrack_info states
1366  * to user states.
1367  */
1368 void
1369 skb_flow_dissect_ct(const struct sk_buff *skb,
1370 		    struct flow_dissector *flow_dissector,
1371 		    void *target_container,
1372 		    u16 *ctinfo_map, size_t mapsize,
1373 		    bool post_ct);
1374 void
1375 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1376 			     struct flow_dissector *flow_dissector,
1377 			     void *target_container);
1378 
1379 void skb_flow_dissect_hash(const struct sk_buff *skb,
1380 			   struct flow_dissector *flow_dissector,
1381 			   void *target_container);
1382 
skb_get_hash(struct sk_buff * skb)1383 static inline __u32 skb_get_hash(struct sk_buff *skb)
1384 {
1385 	if (!skb->l4_hash && !skb->sw_hash)
1386 		__skb_get_hash(skb);
1387 
1388 	return skb->hash;
1389 }
1390 
skb_get_hash_flowi6(struct sk_buff * skb,const struct flowi6 * fl6)1391 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1392 {
1393 	if (!skb->l4_hash && !skb->sw_hash) {
1394 		struct flow_keys keys;
1395 		__u32 hash = __get_hash_from_flowi6(fl6, &keys);
1396 
1397 		__skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1398 	}
1399 
1400 	return skb->hash;
1401 }
1402 
1403 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1404 			   const siphash_key_t *perturb);
1405 
skb_get_hash_raw(const struct sk_buff * skb)1406 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1407 {
1408 	return skb->hash;
1409 }
1410 
skb_copy_hash(struct sk_buff * to,const struct sk_buff * from)1411 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1412 {
1413 	to->hash = from->hash;
1414 	to->sw_hash = from->sw_hash;
1415 	to->l4_hash = from->l4_hash;
1416 };
1417 
skb_copy_decrypted(struct sk_buff * to,const struct sk_buff * from)1418 static inline void skb_copy_decrypted(struct sk_buff *to,
1419 				      const struct sk_buff *from)
1420 {
1421 #ifdef CONFIG_TLS_DEVICE
1422 	to->decrypted = from->decrypted;
1423 #endif
1424 }
1425 
1426 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_end_pointer(const struct sk_buff * skb)1427 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1428 {
1429 	return skb->head + skb->end;
1430 }
1431 
skb_end_offset(const struct sk_buff * skb)1432 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1433 {
1434 	return skb->end;
1435 }
1436 #else
skb_end_pointer(const struct sk_buff * skb)1437 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1438 {
1439 	return skb->end;
1440 }
1441 
skb_end_offset(const struct sk_buff * skb)1442 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1443 {
1444 	return skb->end - skb->head;
1445 }
1446 #endif
1447 
1448 /* Internal */
1449 #define skb_shinfo(SKB)	((struct skb_shared_info *)(skb_end_pointer(SKB)))
1450 
skb_hwtstamps(struct sk_buff * skb)1451 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1452 {
1453 	return &skb_shinfo(skb)->hwtstamps;
1454 }
1455 
skb_zcopy(struct sk_buff * skb)1456 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1457 {
1458 	bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1459 
1460 	return is_zcopy ? skb_uarg(skb) : NULL;
1461 }
1462 
net_zcopy_get(struct ubuf_info * uarg)1463 static inline void net_zcopy_get(struct ubuf_info *uarg)
1464 {
1465 	refcount_inc(&uarg->refcnt);
1466 }
1467 
skb_zcopy_init(struct sk_buff * skb,struct ubuf_info * uarg)1468 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1469 {
1470 	skb_shinfo(skb)->destructor_arg = uarg;
1471 	skb_shinfo(skb)->flags |= uarg->flags;
1472 }
1473 
skb_zcopy_set(struct sk_buff * skb,struct ubuf_info * uarg,bool * have_ref)1474 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1475 				 bool *have_ref)
1476 {
1477 	if (skb && uarg && !skb_zcopy(skb)) {
1478 		if (unlikely(have_ref && *have_ref))
1479 			*have_ref = false;
1480 		else
1481 			net_zcopy_get(uarg);
1482 		skb_zcopy_init(skb, uarg);
1483 	}
1484 }
1485 
skb_zcopy_set_nouarg(struct sk_buff * skb,void * val)1486 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1487 {
1488 	skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1489 	skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1490 }
1491 
skb_zcopy_is_nouarg(struct sk_buff * skb)1492 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1493 {
1494 	return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1495 }
1496 
skb_zcopy_get_nouarg(struct sk_buff * skb)1497 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1498 {
1499 	return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1500 }
1501 
net_zcopy_put(struct ubuf_info * uarg)1502 static inline void net_zcopy_put(struct ubuf_info *uarg)
1503 {
1504 	if (uarg)
1505 		uarg->callback(NULL, uarg, true);
1506 }
1507 
net_zcopy_put_abort(struct ubuf_info * uarg,bool have_uref)1508 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1509 {
1510 	if (uarg) {
1511 		if (uarg->callback == msg_zerocopy_callback)
1512 			msg_zerocopy_put_abort(uarg, have_uref);
1513 		else if (have_uref)
1514 			net_zcopy_put(uarg);
1515 	}
1516 }
1517 
1518 /* Release a reference on a zerocopy structure */
skb_zcopy_clear(struct sk_buff * skb,bool zerocopy_success)1519 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1520 {
1521 	struct ubuf_info *uarg = skb_zcopy(skb);
1522 
1523 	if (uarg) {
1524 		if (!skb_zcopy_is_nouarg(skb))
1525 			uarg->callback(skb, uarg, zerocopy_success);
1526 
1527 		skb_shinfo(skb)->flags &= ~SKBFL_ZEROCOPY_FRAG;
1528 	}
1529 }
1530 
skb_mark_not_on_list(struct sk_buff * skb)1531 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1532 {
1533 	skb->next = NULL;
1534 }
1535 
1536 /* Iterate through singly-linked GSO fragments of an skb. */
1537 #define skb_list_walk_safe(first, skb, next_skb)                               \
1538 	for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb);  \
1539 	     (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1540 
skb_list_del_init(struct sk_buff * skb)1541 static inline void skb_list_del_init(struct sk_buff *skb)
1542 {
1543 	__list_del_entry(&skb->list);
1544 	skb_mark_not_on_list(skb);
1545 }
1546 
1547 /**
1548  *	skb_queue_empty - check if a queue is empty
1549  *	@list: queue head
1550  *
1551  *	Returns true if the queue is empty, false otherwise.
1552  */
skb_queue_empty(const struct sk_buff_head * list)1553 static inline int skb_queue_empty(const struct sk_buff_head *list)
1554 {
1555 	return list->next == (const struct sk_buff *) list;
1556 }
1557 
1558 /**
1559  *	skb_queue_empty_lockless - check if a queue is empty
1560  *	@list: queue head
1561  *
1562  *	Returns true if the queue is empty, false otherwise.
1563  *	This variant can be used in lockless contexts.
1564  */
skb_queue_empty_lockless(const struct sk_buff_head * list)1565 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1566 {
1567 	return READ_ONCE(list->next) == (const struct sk_buff *) list;
1568 }
1569 
1570 
1571 /**
1572  *	skb_queue_is_last - check if skb is the last entry in the queue
1573  *	@list: queue head
1574  *	@skb: buffer
1575  *
1576  *	Returns true if @skb is the last buffer on the list.
1577  */
skb_queue_is_last(const struct sk_buff_head * list,const struct sk_buff * skb)1578 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1579 				     const struct sk_buff *skb)
1580 {
1581 	return skb->next == (const struct sk_buff *) list;
1582 }
1583 
1584 /**
1585  *	skb_queue_is_first - check if skb is the first entry in the queue
1586  *	@list: queue head
1587  *	@skb: buffer
1588  *
1589  *	Returns true if @skb is the first buffer on the list.
1590  */
skb_queue_is_first(const struct sk_buff_head * list,const struct sk_buff * skb)1591 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1592 				      const struct sk_buff *skb)
1593 {
1594 	return skb->prev == (const struct sk_buff *) list;
1595 }
1596 
1597 /**
1598  *	skb_queue_next - return the next packet in the queue
1599  *	@list: queue head
1600  *	@skb: current buffer
1601  *
1602  *	Return the next packet in @list after @skb.  It is only valid to
1603  *	call this if skb_queue_is_last() evaluates to false.
1604  */
skb_queue_next(const struct sk_buff_head * list,const struct sk_buff * skb)1605 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1606 					     const struct sk_buff *skb)
1607 {
1608 	/* This BUG_ON may seem severe, but if we just return then we
1609 	 * are going to dereference garbage.
1610 	 */
1611 	BUG_ON(skb_queue_is_last(list, skb));
1612 	return skb->next;
1613 }
1614 
1615 /**
1616  *	skb_queue_prev - return the prev packet in the queue
1617  *	@list: queue head
1618  *	@skb: current buffer
1619  *
1620  *	Return the prev packet in @list before @skb.  It is only valid to
1621  *	call this if skb_queue_is_first() evaluates to false.
1622  */
skb_queue_prev(const struct sk_buff_head * list,const struct sk_buff * skb)1623 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1624 					     const struct sk_buff *skb)
1625 {
1626 	/* This BUG_ON may seem severe, but if we just return then we
1627 	 * are going to dereference garbage.
1628 	 */
1629 	BUG_ON(skb_queue_is_first(list, skb));
1630 	return skb->prev;
1631 }
1632 
1633 /**
1634  *	skb_get - reference buffer
1635  *	@skb: buffer to reference
1636  *
1637  *	Makes another reference to a socket buffer and returns a pointer
1638  *	to the buffer.
1639  */
skb_get(struct sk_buff * skb)1640 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1641 {
1642 	refcount_inc(&skb->users);
1643 	return skb;
1644 }
1645 
1646 /*
1647  * If users == 1, we are the only owner and can avoid redundant atomic changes.
1648  */
1649 
1650 /**
1651  *	skb_cloned - is the buffer a clone
1652  *	@skb: buffer to check
1653  *
1654  *	Returns true if the buffer was generated with skb_clone() and is
1655  *	one of multiple shared copies of the buffer. Cloned buffers are
1656  *	shared data so must not be written to under normal circumstances.
1657  */
skb_cloned(const struct sk_buff * skb)1658 static inline int skb_cloned(const struct sk_buff *skb)
1659 {
1660 	return skb->cloned &&
1661 	       (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1662 }
1663 
skb_unclone(struct sk_buff * skb,gfp_t pri)1664 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1665 {
1666 	might_sleep_if(gfpflags_allow_blocking(pri));
1667 
1668 	if (skb_cloned(skb))
1669 		return pskb_expand_head(skb, 0, 0, pri);
1670 
1671 	return 0;
1672 }
1673 
1674 /**
1675  *	skb_header_cloned - is the header a clone
1676  *	@skb: buffer to check
1677  *
1678  *	Returns true if modifying the header part of the buffer requires
1679  *	the data to be copied.
1680  */
skb_header_cloned(const struct sk_buff * skb)1681 static inline int skb_header_cloned(const struct sk_buff *skb)
1682 {
1683 	int dataref;
1684 
1685 	if (!skb->cloned)
1686 		return 0;
1687 
1688 	dataref = atomic_read(&skb_shinfo(skb)->dataref);
1689 	dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1690 	return dataref != 1;
1691 }
1692 
skb_header_unclone(struct sk_buff * skb,gfp_t pri)1693 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1694 {
1695 	might_sleep_if(gfpflags_allow_blocking(pri));
1696 
1697 	if (skb_header_cloned(skb))
1698 		return pskb_expand_head(skb, 0, 0, pri);
1699 
1700 	return 0;
1701 }
1702 
1703 /**
1704  *	__skb_header_release - release reference to header
1705  *	@skb: buffer to operate on
1706  */
__skb_header_release(struct sk_buff * skb)1707 static inline void __skb_header_release(struct sk_buff *skb)
1708 {
1709 	skb->nohdr = 1;
1710 	atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1711 }
1712 
1713 
1714 /**
1715  *	skb_shared - is the buffer shared
1716  *	@skb: buffer to check
1717  *
1718  *	Returns true if more than one person has a reference to this
1719  *	buffer.
1720  */
skb_shared(const struct sk_buff * skb)1721 static inline int skb_shared(const struct sk_buff *skb)
1722 {
1723 	return refcount_read(&skb->users) != 1;
1724 }
1725 
1726 /**
1727  *	skb_share_check - check if buffer is shared and if so clone it
1728  *	@skb: buffer to check
1729  *	@pri: priority for memory allocation
1730  *
1731  *	If the buffer is shared the buffer is cloned and the old copy
1732  *	drops a reference. A new clone with a single reference is returned.
1733  *	If the buffer is not shared the original buffer is returned. When
1734  *	being called from interrupt status or with spinlocks held pri must
1735  *	be GFP_ATOMIC.
1736  *
1737  *	NULL is returned on a memory allocation failure.
1738  */
skb_share_check(struct sk_buff * skb,gfp_t pri)1739 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1740 {
1741 	might_sleep_if(gfpflags_allow_blocking(pri));
1742 	if (skb_shared(skb)) {
1743 		struct sk_buff *nskb = skb_clone(skb, pri);
1744 
1745 		if (likely(nskb))
1746 			consume_skb(skb);
1747 		else
1748 			kfree_skb(skb);
1749 		skb = nskb;
1750 	}
1751 	return skb;
1752 }
1753 
1754 /*
1755  *	Copy shared buffers into a new sk_buff. We effectively do COW on
1756  *	packets to handle cases where we have a local reader and forward
1757  *	and a couple of other messy ones. The normal one is tcpdumping
1758  *	a packet thats being forwarded.
1759  */
1760 
1761 /**
1762  *	skb_unshare - make a copy of a shared buffer
1763  *	@skb: buffer to check
1764  *	@pri: priority for memory allocation
1765  *
1766  *	If the socket buffer is a clone then this function creates a new
1767  *	copy of the data, drops a reference count on the old copy and returns
1768  *	the new copy with the reference count at 1. If the buffer is not a clone
1769  *	the original buffer is returned. When called with a spinlock held or
1770  *	from interrupt state @pri must be %GFP_ATOMIC
1771  *
1772  *	%NULL is returned on a memory allocation failure.
1773  */
skb_unshare(struct sk_buff * skb,gfp_t pri)1774 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
1775 					  gfp_t pri)
1776 {
1777 	might_sleep_if(gfpflags_allow_blocking(pri));
1778 	if (skb_cloned(skb)) {
1779 		struct sk_buff *nskb = skb_copy(skb, pri);
1780 
1781 		/* Free our shared copy */
1782 		if (likely(nskb))
1783 			consume_skb(skb);
1784 		else
1785 			kfree_skb(skb);
1786 		skb = nskb;
1787 	}
1788 	return skb;
1789 }
1790 
1791 /**
1792  *	skb_peek - peek at the head of an &sk_buff_head
1793  *	@list_: list to peek at
1794  *
1795  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1796  *	be careful with this one. A peek leaves the buffer on the
1797  *	list and someone else may run off with it. You must hold
1798  *	the appropriate locks or have a private queue to do this.
1799  *
1800  *	Returns %NULL for an empty list or a pointer to the head element.
1801  *	The reference count is not incremented and the reference is therefore
1802  *	volatile. Use with caution.
1803  */
skb_peek(const struct sk_buff_head * list_)1804 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
1805 {
1806 	struct sk_buff *skb = list_->next;
1807 
1808 	if (skb == (struct sk_buff *)list_)
1809 		skb = NULL;
1810 	return skb;
1811 }
1812 
1813 /**
1814  *	__skb_peek - peek at the head of a non-empty &sk_buff_head
1815  *	@list_: list to peek at
1816  *
1817  *	Like skb_peek(), but the caller knows that the list is not empty.
1818  */
__skb_peek(const struct sk_buff_head * list_)1819 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
1820 {
1821 	return list_->next;
1822 }
1823 
1824 /**
1825  *	skb_peek_next - peek skb following the given one from a queue
1826  *	@skb: skb to start from
1827  *	@list_: list to peek at
1828  *
1829  *	Returns %NULL when the end of the list is met or a pointer to the
1830  *	next element. The reference count is not incremented and the
1831  *	reference is therefore volatile. Use with caution.
1832  */
skb_peek_next(struct sk_buff * skb,const struct sk_buff_head * list_)1833 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
1834 		const struct sk_buff_head *list_)
1835 {
1836 	struct sk_buff *next = skb->next;
1837 
1838 	if (next == (struct sk_buff *)list_)
1839 		next = NULL;
1840 	return next;
1841 }
1842 
1843 /**
1844  *	skb_peek_tail - peek at the tail of an &sk_buff_head
1845  *	@list_: list to peek at
1846  *
1847  *	Peek an &sk_buff. Unlike most other operations you _MUST_
1848  *	be careful with this one. A peek leaves the buffer on the
1849  *	list and someone else may run off with it. You must hold
1850  *	the appropriate locks or have a private queue to do this.
1851  *
1852  *	Returns %NULL for an empty list or a pointer to the tail element.
1853  *	The reference count is not incremented and the reference is therefore
1854  *	volatile. Use with caution.
1855  */
skb_peek_tail(const struct sk_buff_head * list_)1856 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
1857 {
1858 	struct sk_buff *skb = READ_ONCE(list_->prev);
1859 
1860 	if (skb == (struct sk_buff *)list_)
1861 		skb = NULL;
1862 	return skb;
1863 
1864 }
1865 
1866 /**
1867  *	skb_queue_len	- get queue length
1868  *	@list_: list to measure
1869  *
1870  *	Return the length of an &sk_buff queue.
1871  */
skb_queue_len(const struct sk_buff_head * list_)1872 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
1873 {
1874 	return list_->qlen;
1875 }
1876 
1877 /**
1878  *	skb_queue_len_lockless	- get queue length
1879  *	@list_: list to measure
1880  *
1881  *	Return the length of an &sk_buff queue.
1882  *	This variant can be used in lockless contexts.
1883  */
skb_queue_len_lockless(const struct sk_buff_head * list_)1884 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
1885 {
1886 	return READ_ONCE(list_->qlen);
1887 }
1888 
1889 /**
1890  *	__skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
1891  *	@list: queue to initialize
1892  *
1893  *	This initializes only the list and queue length aspects of
1894  *	an sk_buff_head object.  This allows to initialize the list
1895  *	aspects of an sk_buff_head without reinitializing things like
1896  *	the spinlock.  It can also be used for on-stack sk_buff_head
1897  *	objects where the spinlock is known to not be used.
1898  */
__skb_queue_head_init(struct sk_buff_head * list)1899 static inline void __skb_queue_head_init(struct sk_buff_head *list)
1900 {
1901 	list->prev = list->next = (struct sk_buff *)list;
1902 	list->qlen = 0;
1903 }
1904 
1905 /*
1906  * This function creates a split out lock class for each invocation;
1907  * this is needed for now since a whole lot of users of the skb-queue
1908  * infrastructure in drivers have different locking usage (in hardirq)
1909  * than the networking core (in softirq only). In the long run either the
1910  * network layer or drivers should need annotation to consolidate the
1911  * main types of usage into 3 classes.
1912  */
skb_queue_head_init(struct sk_buff_head * list)1913 static inline void skb_queue_head_init(struct sk_buff_head *list)
1914 {
1915 	spin_lock_init(&list->lock);
1916 	__skb_queue_head_init(list);
1917 }
1918 
skb_queue_head_init_class(struct sk_buff_head * list,struct lock_class_key * class)1919 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
1920 		struct lock_class_key *class)
1921 {
1922 	skb_queue_head_init(list);
1923 	lockdep_set_class(&list->lock, class);
1924 }
1925 
1926 /*
1927  *	Insert an sk_buff on a list.
1928  *
1929  *	The "__skb_xxxx()" functions are the non-atomic ones that
1930  *	can only be called with interrupts disabled.
1931  */
__skb_insert(struct sk_buff * newsk,struct sk_buff * prev,struct sk_buff * next,struct sk_buff_head * list)1932 static inline void __skb_insert(struct sk_buff *newsk,
1933 				struct sk_buff *prev, struct sk_buff *next,
1934 				struct sk_buff_head *list)
1935 {
1936 	/* See skb_queue_empty_lockless() and skb_peek_tail()
1937 	 * for the opposite READ_ONCE()
1938 	 */
1939 	WRITE_ONCE(newsk->next, next);
1940 	WRITE_ONCE(newsk->prev, prev);
1941 	WRITE_ONCE(next->prev, newsk);
1942 	WRITE_ONCE(prev->next, newsk);
1943 	WRITE_ONCE(list->qlen, list->qlen + 1);
1944 }
1945 
__skb_queue_splice(const struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * next)1946 static inline void __skb_queue_splice(const struct sk_buff_head *list,
1947 				      struct sk_buff *prev,
1948 				      struct sk_buff *next)
1949 {
1950 	struct sk_buff *first = list->next;
1951 	struct sk_buff *last = list->prev;
1952 
1953 	WRITE_ONCE(first->prev, prev);
1954 	WRITE_ONCE(prev->next, first);
1955 
1956 	WRITE_ONCE(last->next, next);
1957 	WRITE_ONCE(next->prev, last);
1958 }
1959 
1960 /**
1961  *	skb_queue_splice - join two skb lists, this is designed for stacks
1962  *	@list: the new list to add
1963  *	@head: the place to add it in the first list
1964  */
skb_queue_splice(const struct sk_buff_head * list,struct sk_buff_head * head)1965 static inline void skb_queue_splice(const struct sk_buff_head *list,
1966 				    struct sk_buff_head *head)
1967 {
1968 	if (!skb_queue_empty(list)) {
1969 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1970 		head->qlen += list->qlen;
1971 	}
1972 }
1973 
1974 /**
1975  *	skb_queue_splice_init - join two skb lists and reinitialise the emptied list
1976  *	@list: the new list to add
1977  *	@head: the place to add it in the first list
1978  *
1979  *	The list at @list is reinitialised
1980  */
skb_queue_splice_init(struct sk_buff_head * list,struct sk_buff_head * head)1981 static inline void skb_queue_splice_init(struct sk_buff_head *list,
1982 					 struct sk_buff_head *head)
1983 {
1984 	if (!skb_queue_empty(list)) {
1985 		__skb_queue_splice(list, (struct sk_buff *) head, head->next);
1986 		head->qlen += list->qlen;
1987 		__skb_queue_head_init(list);
1988 	}
1989 }
1990 
1991 /**
1992  *	skb_queue_splice_tail - join two skb lists, each list being a queue
1993  *	@list: the new list to add
1994  *	@head: the place to add it in the first list
1995  */
skb_queue_splice_tail(const struct sk_buff_head * list,struct sk_buff_head * head)1996 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
1997 					 struct sk_buff_head *head)
1998 {
1999 	if (!skb_queue_empty(list)) {
2000 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2001 		head->qlen += list->qlen;
2002 	}
2003 }
2004 
2005 /**
2006  *	skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2007  *	@list: the new list to add
2008  *	@head: the place to add it in the first list
2009  *
2010  *	Each of the lists is a queue.
2011  *	The list at @list is reinitialised
2012  */
skb_queue_splice_tail_init(struct sk_buff_head * list,struct sk_buff_head * head)2013 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2014 					      struct sk_buff_head *head)
2015 {
2016 	if (!skb_queue_empty(list)) {
2017 		__skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2018 		head->qlen += list->qlen;
2019 		__skb_queue_head_init(list);
2020 	}
2021 }
2022 
2023 /**
2024  *	__skb_queue_after - queue a buffer at the list head
2025  *	@list: list to use
2026  *	@prev: place after this buffer
2027  *	@newsk: buffer to queue
2028  *
2029  *	Queue a buffer int the middle of a list. This function takes no locks
2030  *	and you must therefore hold required locks before calling it.
2031  *
2032  *	A buffer cannot be placed on two lists at the same time.
2033  */
__skb_queue_after(struct sk_buff_head * list,struct sk_buff * prev,struct sk_buff * newsk)2034 static inline void __skb_queue_after(struct sk_buff_head *list,
2035 				     struct sk_buff *prev,
2036 				     struct sk_buff *newsk)
2037 {
2038 	__skb_insert(newsk, prev, prev->next, list);
2039 }
2040 
2041 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2042 		struct sk_buff_head *list);
2043 
__skb_queue_before(struct sk_buff_head * list,struct sk_buff * next,struct sk_buff * newsk)2044 static inline void __skb_queue_before(struct sk_buff_head *list,
2045 				      struct sk_buff *next,
2046 				      struct sk_buff *newsk)
2047 {
2048 	__skb_insert(newsk, next->prev, next, list);
2049 }
2050 
2051 /**
2052  *	__skb_queue_head - queue a buffer at the list head
2053  *	@list: list to use
2054  *	@newsk: buffer to queue
2055  *
2056  *	Queue a buffer at the start of a list. This function takes no locks
2057  *	and you must therefore hold required locks before calling it.
2058  *
2059  *	A buffer cannot be placed on two lists at the same time.
2060  */
__skb_queue_head(struct sk_buff_head * list,struct sk_buff * newsk)2061 static inline void __skb_queue_head(struct sk_buff_head *list,
2062 				    struct sk_buff *newsk)
2063 {
2064 	__skb_queue_after(list, (struct sk_buff *)list, newsk);
2065 }
2066 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2067 
2068 /**
2069  *	__skb_queue_tail - queue a buffer at the list tail
2070  *	@list: list to use
2071  *	@newsk: buffer to queue
2072  *
2073  *	Queue a buffer at the end of a list. This function takes no locks
2074  *	and you must therefore hold required locks before calling it.
2075  *
2076  *	A buffer cannot be placed on two lists at the same time.
2077  */
__skb_queue_tail(struct sk_buff_head * list,struct sk_buff * newsk)2078 static inline void __skb_queue_tail(struct sk_buff_head *list,
2079 				   struct sk_buff *newsk)
2080 {
2081 	__skb_queue_before(list, (struct sk_buff *)list, newsk);
2082 }
2083 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2084 
2085 /*
2086  * remove sk_buff from list. _Must_ be called atomically, and with
2087  * the list known..
2088  */
2089 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
__skb_unlink(struct sk_buff * skb,struct sk_buff_head * list)2090 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2091 {
2092 	struct sk_buff *next, *prev;
2093 
2094 	WRITE_ONCE(list->qlen, list->qlen - 1);
2095 	next	   = skb->next;
2096 	prev	   = skb->prev;
2097 	skb->next  = skb->prev = NULL;
2098 	WRITE_ONCE(next->prev, prev);
2099 	WRITE_ONCE(prev->next, next);
2100 }
2101 
2102 /**
2103  *	__skb_dequeue - remove from the head of the queue
2104  *	@list: list to dequeue from
2105  *
2106  *	Remove the head of the list. This function does not take any locks
2107  *	so must be used with appropriate locks held only. The head item is
2108  *	returned or %NULL if the list is empty.
2109  */
__skb_dequeue(struct sk_buff_head * list)2110 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2111 {
2112 	struct sk_buff *skb = skb_peek(list);
2113 	if (skb)
2114 		__skb_unlink(skb, list);
2115 	return skb;
2116 }
2117 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2118 
2119 /**
2120  *	__skb_dequeue_tail - remove from the tail of the queue
2121  *	@list: list to dequeue from
2122  *
2123  *	Remove the tail of the list. This function does not take any locks
2124  *	so must be used with appropriate locks held only. The tail item is
2125  *	returned or %NULL if the list is empty.
2126  */
__skb_dequeue_tail(struct sk_buff_head * list)2127 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2128 {
2129 	struct sk_buff *skb = skb_peek_tail(list);
2130 	if (skb)
2131 		__skb_unlink(skb, list);
2132 	return skb;
2133 }
2134 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2135 
2136 
skb_is_nonlinear(const struct sk_buff * skb)2137 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2138 {
2139 	return skb->data_len;
2140 }
2141 
skb_headlen(const struct sk_buff * skb)2142 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2143 {
2144 	return skb->len - skb->data_len;
2145 }
2146 
__skb_pagelen(const struct sk_buff * skb)2147 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2148 {
2149 	unsigned int i, len = 0;
2150 
2151 	for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2152 		len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2153 	return len;
2154 }
2155 
skb_pagelen(const struct sk_buff * skb)2156 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2157 {
2158 	return skb_headlen(skb) + __skb_pagelen(skb);
2159 }
2160 
2161 /**
2162  * __skb_fill_page_desc - initialise a paged fragment in an skb
2163  * @skb: buffer containing fragment to be initialised
2164  * @i: paged fragment index to initialise
2165  * @page: the page to use for this fragment
2166  * @off: the offset to the data with @page
2167  * @size: the length of the data
2168  *
2169  * Initialises the @i'th fragment of @skb to point to &size bytes at
2170  * offset @off within @page.
2171  *
2172  * Does not take any additional reference on the fragment.
2173  */
__skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2174 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2175 					struct page *page, int off, int size)
2176 {
2177 	skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2178 
2179 	/*
2180 	 * Propagate page pfmemalloc to the skb if we can. The problem is
2181 	 * that not all callers have unique ownership of the page but rely
2182 	 * on page_is_pfmemalloc doing the right thing(tm).
2183 	 */
2184 	frag->bv_page		  = page;
2185 	frag->bv_offset		  = off;
2186 	skb_frag_size_set(frag, size);
2187 
2188 	page = compound_head(page);
2189 	if (page_is_pfmemalloc(page))
2190 		skb->pfmemalloc	= true;
2191 }
2192 
2193 /**
2194  * skb_fill_page_desc - initialise a paged fragment in an skb
2195  * @skb: buffer containing fragment to be initialised
2196  * @i: paged fragment index to initialise
2197  * @page: the page to use for this fragment
2198  * @off: the offset to the data with @page
2199  * @size: the length of the data
2200  *
2201  * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2202  * @skb to point to @size bytes at offset @off within @page. In
2203  * addition updates @skb such that @i is the last fragment.
2204  *
2205  * Does not take any additional reference on the fragment.
2206  */
skb_fill_page_desc(struct sk_buff * skb,int i,struct page * page,int off,int size)2207 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2208 				      struct page *page, int off, int size)
2209 {
2210 	__skb_fill_page_desc(skb, i, page, off, size);
2211 	skb_shinfo(skb)->nr_frags = i + 1;
2212 }
2213 
2214 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2215 		     int size, unsigned int truesize);
2216 
2217 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2218 			  unsigned int truesize);
2219 
2220 #define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
2221 
2222 #ifdef NET_SKBUFF_DATA_USES_OFFSET
skb_tail_pointer(const struct sk_buff * skb)2223 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2224 {
2225 	return skb->head + skb->tail;
2226 }
2227 
skb_reset_tail_pointer(struct sk_buff * skb)2228 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2229 {
2230 	skb->tail = skb->data - skb->head;
2231 }
2232 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2233 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2234 {
2235 	skb_reset_tail_pointer(skb);
2236 	skb->tail += offset;
2237 }
2238 
2239 #else /* NET_SKBUFF_DATA_USES_OFFSET */
skb_tail_pointer(const struct sk_buff * skb)2240 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2241 {
2242 	return skb->tail;
2243 }
2244 
skb_reset_tail_pointer(struct sk_buff * skb)2245 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2246 {
2247 	skb->tail = skb->data;
2248 }
2249 
skb_set_tail_pointer(struct sk_buff * skb,const int offset)2250 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2251 {
2252 	skb->tail = skb->data + offset;
2253 }
2254 
2255 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2256 
2257 /*
2258  *	Add data to an sk_buff
2259  */
2260 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2261 void *skb_put(struct sk_buff *skb, unsigned int len);
__skb_put(struct sk_buff * skb,unsigned int len)2262 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2263 {
2264 	void *tmp = skb_tail_pointer(skb);
2265 	SKB_LINEAR_ASSERT(skb);
2266 	skb->tail += len;
2267 	skb->len  += len;
2268 	return tmp;
2269 }
2270 
__skb_put_zero(struct sk_buff * skb,unsigned int len)2271 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2272 {
2273 	void *tmp = __skb_put(skb, len);
2274 
2275 	memset(tmp, 0, len);
2276 	return tmp;
2277 }
2278 
__skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2279 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2280 				   unsigned int len)
2281 {
2282 	void *tmp = __skb_put(skb, len);
2283 
2284 	memcpy(tmp, data, len);
2285 	return tmp;
2286 }
2287 
__skb_put_u8(struct sk_buff * skb,u8 val)2288 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2289 {
2290 	*(u8 *)__skb_put(skb, 1) = val;
2291 }
2292 
skb_put_zero(struct sk_buff * skb,unsigned int len)2293 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2294 {
2295 	void *tmp = skb_put(skb, len);
2296 
2297 	memset(tmp, 0, len);
2298 
2299 	return tmp;
2300 }
2301 
skb_put_data(struct sk_buff * skb,const void * data,unsigned int len)2302 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2303 				 unsigned int len)
2304 {
2305 	void *tmp = skb_put(skb, len);
2306 
2307 	memcpy(tmp, data, len);
2308 
2309 	return tmp;
2310 }
2311 
skb_put_u8(struct sk_buff * skb,u8 val)2312 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2313 {
2314 	*(u8 *)skb_put(skb, 1) = val;
2315 }
2316 
2317 void *skb_push(struct sk_buff *skb, unsigned int len);
__skb_push(struct sk_buff * skb,unsigned int len)2318 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2319 {
2320 	skb->data -= len;
2321 	skb->len  += len;
2322 	return skb->data;
2323 }
2324 
2325 void *skb_pull(struct sk_buff *skb, unsigned int len);
__skb_pull(struct sk_buff * skb,unsigned int len)2326 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2327 {
2328 	skb->len -= len;
2329 	BUG_ON(skb->len < skb->data_len);
2330 	return skb->data += len;
2331 }
2332 
skb_pull_inline(struct sk_buff * skb,unsigned int len)2333 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2334 {
2335 	return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2336 }
2337 
2338 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2339 
__pskb_pull(struct sk_buff * skb,unsigned int len)2340 static inline void *__pskb_pull(struct sk_buff *skb, unsigned int len)
2341 {
2342 	if (len > skb_headlen(skb) &&
2343 	    !__pskb_pull_tail(skb, len - skb_headlen(skb)))
2344 		return NULL;
2345 	skb->len -= len;
2346 	return skb->data += len;
2347 }
2348 
pskb_pull(struct sk_buff * skb,unsigned int len)2349 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2350 {
2351 	return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
2352 }
2353 
pskb_may_pull(struct sk_buff * skb,unsigned int len)2354 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2355 {
2356 	if (likely(len <= skb_headlen(skb)))
2357 		return true;
2358 	if (unlikely(len > skb->len))
2359 		return false;
2360 	return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2361 }
2362 
2363 void skb_condense(struct sk_buff *skb);
2364 
2365 /**
2366  *	skb_headroom - bytes at buffer head
2367  *	@skb: buffer to check
2368  *
2369  *	Return the number of bytes of free space at the head of an &sk_buff.
2370  */
skb_headroom(const struct sk_buff * skb)2371 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2372 {
2373 	return skb->data - skb->head;
2374 }
2375 
2376 /**
2377  *	skb_tailroom - bytes at buffer end
2378  *	@skb: buffer to check
2379  *
2380  *	Return the number of bytes of free space at the tail of an sk_buff
2381  */
skb_tailroom(const struct sk_buff * skb)2382 static inline int skb_tailroom(const struct sk_buff *skb)
2383 {
2384 	return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2385 }
2386 
2387 /**
2388  *	skb_availroom - bytes at buffer end
2389  *	@skb: buffer to check
2390  *
2391  *	Return the number of bytes of free space at the tail of an sk_buff
2392  *	allocated by sk_stream_alloc()
2393  */
skb_availroom(const struct sk_buff * skb)2394 static inline int skb_availroom(const struct sk_buff *skb)
2395 {
2396 	if (skb_is_nonlinear(skb))
2397 		return 0;
2398 
2399 	return skb->end - skb->tail - skb->reserved_tailroom;
2400 }
2401 
2402 /**
2403  *	skb_reserve - adjust headroom
2404  *	@skb: buffer to alter
2405  *	@len: bytes to move
2406  *
2407  *	Increase the headroom of an empty &sk_buff by reducing the tail
2408  *	room. This is only allowed for an empty buffer.
2409  */
skb_reserve(struct sk_buff * skb,int len)2410 static inline void skb_reserve(struct sk_buff *skb, int len)
2411 {
2412 	skb->data += len;
2413 	skb->tail += len;
2414 }
2415 
2416 /**
2417  *	skb_tailroom_reserve - adjust reserved_tailroom
2418  *	@skb: buffer to alter
2419  *	@mtu: maximum amount of headlen permitted
2420  *	@needed_tailroom: minimum amount of reserved_tailroom
2421  *
2422  *	Set reserved_tailroom so that headlen can be as large as possible but
2423  *	not larger than mtu and tailroom cannot be smaller than
2424  *	needed_tailroom.
2425  *	The required headroom should already have been reserved before using
2426  *	this function.
2427  */
skb_tailroom_reserve(struct sk_buff * skb,unsigned int mtu,unsigned int needed_tailroom)2428 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2429 					unsigned int needed_tailroom)
2430 {
2431 	SKB_LINEAR_ASSERT(skb);
2432 	if (mtu < skb_tailroom(skb) - needed_tailroom)
2433 		/* use at most mtu */
2434 		skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2435 	else
2436 		/* use up to all available space */
2437 		skb->reserved_tailroom = needed_tailroom;
2438 }
2439 
2440 #define ENCAP_TYPE_ETHER	0
2441 #define ENCAP_TYPE_IPPROTO	1
2442 
skb_set_inner_protocol(struct sk_buff * skb,__be16 protocol)2443 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2444 					  __be16 protocol)
2445 {
2446 	skb->inner_protocol = protocol;
2447 	skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2448 }
2449 
skb_set_inner_ipproto(struct sk_buff * skb,__u8 ipproto)2450 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2451 					 __u8 ipproto)
2452 {
2453 	skb->inner_ipproto = ipproto;
2454 	skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2455 }
2456 
skb_reset_inner_headers(struct sk_buff * skb)2457 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2458 {
2459 	skb->inner_mac_header = skb->mac_header;
2460 	skb->inner_network_header = skb->network_header;
2461 	skb->inner_transport_header = skb->transport_header;
2462 }
2463 
skb_reset_mac_len(struct sk_buff * skb)2464 static inline void skb_reset_mac_len(struct sk_buff *skb)
2465 {
2466 	skb->mac_len = skb->network_header - skb->mac_header;
2467 }
2468 
skb_inner_transport_header(const struct sk_buff * skb)2469 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2470 							*skb)
2471 {
2472 	return skb->head + skb->inner_transport_header;
2473 }
2474 
skb_inner_transport_offset(const struct sk_buff * skb)2475 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2476 {
2477 	return skb_inner_transport_header(skb) - skb->data;
2478 }
2479 
skb_reset_inner_transport_header(struct sk_buff * skb)2480 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2481 {
2482 	skb->inner_transport_header = skb->data - skb->head;
2483 }
2484 
skb_set_inner_transport_header(struct sk_buff * skb,const int offset)2485 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2486 						   const int offset)
2487 {
2488 	skb_reset_inner_transport_header(skb);
2489 	skb->inner_transport_header += offset;
2490 }
2491 
skb_inner_network_header(const struct sk_buff * skb)2492 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2493 {
2494 	return skb->head + skb->inner_network_header;
2495 }
2496 
skb_reset_inner_network_header(struct sk_buff * skb)2497 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2498 {
2499 	skb->inner_network_header = skb->data - skb->head;
2500 }
2501 
skb_set_inner_network_header(struct sk_buff * skb,const int offset)2502 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2503 						const int offset)
2504 {
2505 	skb_reset_inner_network_header(skb);
2506 	skb->inner_network_header += offset;
2507 }
2508 
skb_inner_mac_header(const struct sk_buff * skb)2509 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2510 {
2511 	return skb->head + skb->inner_mac_header;
2512 }
2513 
skb_reset_inner_mac_header(struct sk_buff * skb)2514 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2515 {
2516 	skb->inner_mac_header = skb->data - skb->head;
2517 }
2518 
skb_set_inner_mac_header(struct sk_buff * skb,const int offset)2519 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2520 					    const int offset)
2521 {
2522 	skb_reset_inner_mac_header(skb);
2523 	skb->inner_mac_header += offset;
2524 }
skb_transport_header_was_set(const struct sk_buff * skb)2525 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2526 {
2527 	return skb->transport_header != (typeof(skb->transport_header))~0U;
2528 }
2529 
skb_transport_header(const struct sk_buff * skb)2530 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2531 {
2532 	return skb->head + skb->transport_header;
2533 }
2534 
skb_reset_transport_header(struct sk_buff * skb)2535 static inline void skb_reset_transport_header(struct sk_buff *skb)
2536 {
2537 	skb->transport_header = skb->data - skb->head;
2538 }
2539 
skb_set_transport_header(struct sk_buff * skb,const int offset)2540 static inline void skb_set_transport_header(struct sk_buff *skb,
2541 					    const int offset)
2542 {
2543 	skb_reset_transport_header(skb);
2544 	skb->transport_header += offset;
2545 }
2546 
skb_network_header(const struct sk_buff * skb)2547 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2548 {
2549 	return skb->head + skb->network_header;
2550 }
2551 
skb_reset_network_header(struct sk_buff * skb)2552 static inline void skb_reset_network_header(struct sk_buff *skb)
2553 {
2554 	skb->network_header = skb->data - skb->head;
2555 }
2556 
skb_set_network_header(struct sk_buff * skb,const int offset)2557 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2558 {
2559 	skb_reset_network_header(skb);
2560 	skb->network_header += offset;
2561 }
2562 
skb_mac_header(const struct sk_buff * skb)2563 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2564 {
2565 	return skb->head + skb->mac_header;
2566 }
2567 
skb_mac_offset(const struct sk_buff * skb)2568 static inline int skb_mac_offset(const struct sk_buff *skb)
2569 {
2570 	return skb_mac_header(skb) - skb->data;
2571 }
2572 
skb_mac_header_len(const struct sk_buff * skb)2573 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2574 {
2575 	return skb->network_header - skb->mac_header;
2576 }
2577 
skb_mac_header_was_set(const struct sk_buff * skb)2578 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2579 {
2580 	return skb->mac_header != (typeof(skb->mac_header))~0U;
2581 }
2582 
skb_unset_mac_header(struct sk_buff * skb)2583 static inline void skb_unset_mac_header(struct sk_buff *skb)
2584 {
2585 	skb->mac_header = (typeof(skb->mac_header))~0U;
2586 }
2587 
skb_reset_mac_header(struct sk_buff * skb)2588 static inline void skb_reset_mac_header(struct sk_buff *skb)
2589 {
2590 	skb->mac_header = skb->data - skb->head;
2591 }
2592 
skb_set_mac_header(struct sk_buff * skb,const int offset)2593 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2594 {
2595 	skb_reset_mac_header(skb);
2596 	skb->mac_header += offset;
2597 }
2598 
skb_pop_mac_header(struct sk_buff * skb)2599 static inline void skb_pop_mac_header(struct sk_buff *skb)
2600 {
2601 	skb->mac_header = skb->network_header;
2602 }
2603 
skb_probe_transport_header(struct sk_buff * skb)2604 static inline void skb_probe_transport_header(struct sk_buff *skb)
2605 {
2606 	struct flow_keys_basic keys;
2607 
2608 	if (skb_transport_header_was_set(skb))
2609 		return;
2610 
2611 	if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2612 					     NULL, 0, 0, 0, 0))
2613 		skb_set_transport_header(skb, keys.control.thoff);
2614 }
2615 
skb_mac_header_rebuild(struct sk_buff * skb)2616 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2617 {
2618 	if (skb_mac_header_was_set(skb)) {
2619 		const unsigned char *old_mac = skb_mac_header(skb);
2620 
2621 		skb_set_mac_header(skb, -skb->mac_len);
2622 		memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2623 	}
2624 }
2625 
skb_checksum_start_offset(const struct sk_buff * skb)2626 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2627 {
2628 	return skb->csum_start - skb_headroom(skb);
2629 }
2630 
skb_checksum_start(const struct sk_buff * skb)2631 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2632 {
2633 	return skb->head + skb->csum_start;
2634 }
2635 
skb_transport_offset(const struct sk_buff * skb)2636 static inline int skb_transport_offset(const struct sk_buff *skb)
2637 {
2638 	return skb_transport_header(skb) - skb->data;
2639 }
2640 
skb_network_header_len(const struct sk_buff * skb)2641 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2642 {
2643 	return skb->transport_header - skb->network_header;
2644 }
2645 
skb_inner_network_header_len(const struct sk_buff * skb)2646 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2647 {
2648 	return skb->inner_transport_header - skb->inner_network_header;
2649 }
2650 
skb_network_offset(const struct sk_buff * skb)2651 static inline int skb_network_offset(const struct sk_buff *skb)
2652 {
2653 	return skb_network_header(skb) - skb->data;
2654 }
2655 
skb_inner_network_offset(const struct sk_buff * skb)2656 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2657 {
2658 	return skb_inner_network_header(skb) - skb->data;
2659 }
2660 
pskb_network_may_pull(struct sk_buff * skb,unsigned int len)2661 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2662 {
2663 	return pskb_may_pull(skb, skb_network_offset(skb) + len);
2664 }
2665 
2666 /*
2667  * CPUs often take a performance hit when accessing unaligned memory
2668  * locations. The actual performance hit varies, it can be small if the
2669  * hardware handles it or large if we have to take an exception and fix it
2670  * in software.
2671  *
2672  * Since an ethernet header is 14 bytes network drivers often end up with
2673  * the IP header at an unaligned offset. The IP header can be aligned by
2674  * shifting the start of the packet by 2 bytes. Drivers should do this
2675  * with:
2676  *
2677  * skb_reserve(skb, NET_IP_ALIGN);
2678  *
2679  * The downside to this alignment of the IP header is that the DMA is now
2680  * unaligned. On some architectures the cost of an unaligned DMA is high
2681  * and this cost outweighs the gains made by aligning the IP header.
2682  *
2683  * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2684  * to be overridden.
2685  */
2686 #ifndef NET_IP_ALIGN
2687 #define NET_IP_ALIGN	2
2688 #endif
2689 
2690 /*
2691  * The networking layer reserves some headroom in skb data (via
2692  * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2693  * the header has to grow. In the default case, if the header has to grow
2694  * 32 bytes or less we avoid the reallocation.
2695  *
2696  * Unfortunately this headroom changes the DMA alignment of the resulting
2697  * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2698  * on some architectures. An architecture can override this value,
2699  * perhaps setting it to a cacheline in size (since that will maintain
2700  * cacheline alignment of the DMA). It must be a power of 2.
2701  *
2702  * Various parts of the networking layer expect at least 32 bytes of
2703  * headroom, you should not reduce this.
2704  *
2705  * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2706  * to reduce average number of cache lines per packet.
2707  * get_rps_cpu() for example only access one 64 bytes aligned block :
2708  * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2709  */
2710 #ifndef NET_SKB_PAD
2711 #define NET_SKB_PAD	max(32, L1_CACHE_BYTES)
2712 #endif
2713 
2714 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2715 
__skb_set_length(struct sk_buff * skb,unsigned int len)2716 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
2717 {
2718 	if (WARN_ON(skb_is_nonlinear(skb)))
2719 		return;
2720 	skb->len = len;
2721 	skb_set_tail_pointer(skb, len);
2722 }
2723 
__skb_trim(struct sk_buff * skb,unsigned int len)2724 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
2725 {
2726 	__skb_set_length(skb, len);
2727 }
2728 
2729 void skb_trim(struct sk_buff *skb, unsigned int len);
2730 
__pskb_trim(struct sk_buff * skb,unsigned int len)2731 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
2732 {
2733 	if (skb->data_len)
2734 		return ___pskb_trim(skb, len);
2735 	__skb_trim(skb, len);
2736 	return 0;
2737 }
2738 
pskb_trim(struct sk_buff * skb,unsigned int len)2739 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
2740 {
2741 	return (len < skb->len) ? __pskb_trim(skb, len) : 0;
2742 }
2743 
2744 /**
2745  *	pskb_trim_unique - remove end from a paged unique (not cloned) buffer
2746  *	@skb: buffer to alter
2747  *	@len: new length
2748  *
2749  *	This is identical to pskb_trim except that the caller knows that
2750  *	the skb is not cloned so we should never get an error due to out-
2751  *	of-memory.
2752  */
pskb_trim_unique(struct sk_buff * skb,unsigned int len)2753 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
2754 {
2755 	int err = pskb_trim(skb, len);
2756 	BUG_ON(err);
2757 }
2758 
__skb_grow(struct sk_buff * skb,unsigned int len)2759 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
2760 {
2761 	unsigned int diff = len - skb->len;
2762 
2763 	if (skb_tailroom(skb) < diff) {
2764 		int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
2765 					   GFP_ATOMIC);
2766 		if (ret)
2767 			return ret;
2768 	}
2769 	__skb_set_length(skb, len);
2770 	return 0;
2771 }
2772 
2773 /**
2774  *	skb_orphan - orphan a buffer
2775  *	@skb: buffer to orphan
2776  *
2777  *	If a buffer currently has an owner then we call the owner's
2778  *	destructor function and make the @skb unowned. The buffer continues
2779  *	to exist but is no longer charged to its former owner.
2780  */
skb_orphan(struct sk_buff * skb)2781 static inline void skb_orphan(struct sk_buff *skb)
2782 {
2783 	if (skb->destructor) {
2784 		skb->destructor(skb);
2785 		skb->destructor = NULL;
2786 		skb->sk		= NULL;
2787 	} else {
2788 		BUG_ON(skb->sk);
2789 	}
2790 }
2791 
2792 /**
2793  *	skb_orphan_frags - orphan the frags contained in a buffer
2794  *	@skb: buffer to orphan frags from
2795  *	@gfp_mask: allocation mask for replacement pages
2796  *
2797  *	For each frag in the SKB which needs a destructor (i.e. has an
2798  *	owner) create a copy of that frag and release the original
2799  *	page by calling the destructor.
2800  */
skb_orphan_frags(struct sk_buff * skb,gfp_t gfp_mask)2801 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
2802 {
2803 	if (likely(!skb_zcopy(skb)))
2804 		return 0;
2805 	if (!skb_zcopy_is_nouarg(skb) &&
2806 	    skb_uarg(skb)->callback == msg_zerocopy_callback)
2807 		return 0;
2808 	return skb_copy_ubufs(skb, gfp_mask);
2809 }
2810 
2811 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
skb_orphan_frags_rx(struct sk_buff * skb,gfp_t gfp_mask)2812 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
2813 {
2814 	if (likely(!skb_zcopy(skb)))
2815 		return 0;
2816 	return skb_copy_ubufs(skb, gfp_mask);
2817 }
2818 
2819 /**
2820  *	__skb_queue_purge - empty a list
2821  *	@list: list to empty
2822  *
2823  *	Delete all buffers on an &sk_buff list. Each buffer is removed from
2824  *	the list and one reference dropped. This function does not take the
2825  *	list lock and the caller must hold the relevant locks to use it.
2826  */
__skb_queue_purge(struct sk_buff_head * list)2827 static inline void __skb_queue_purge(struct sk_buff_head *list)
2828 {
2829 	struct sk_buff *skb;
2830 	while ((skb = __skb_dequeue(list)) != NULL)
2831 		kfree_skb(skb);
2832 }
2833 void skb_queue_purge(struct sk_buff_head *list);
2834 
2835 unsigned int skb_rbtree_purge(struct rb_root *root);
2836 
2837 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2838 
2839 /**
2840  * netdev_alloc_frag - allocate a page fragment
2841  * @fragsz: fragment size
2842  *
2843  * Allocates a frag from a page for receive buffer.
2844  * Uses GFP_ATOMIC allocations.
2845  */
netdev_alloc_frag(unsigned int fragsz)2846 static inline void *netdev_alloc_frag(unsigned int fragsz)
2847 {
2848 	return __netdev_alloc_frag_align(fragsz, ~0u);
2849 }
2850 
netdev_alloc_frag_align(unsigned int fragsz,unsigned int align)2851 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
2852 					    unsigned int align)
2853 {
2854 	WARN_ON_ONCE(!is_power_of_2(align));
2855 	return __netdev_alloc_frag_align(fragsz, -align);
2856 }
2857 
2858 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
2859 				   gfp_t gfp_mask);
2860 
2861 /**
2862  *	netdev_alloc_skb - allocate an skbuff for rx on a specific device
2863  *	@dev: network device to receive on
2864  *	@length: length to allocate
2865  *
2866  *	Allocate a new &sk_buff and assign it a usage count of one. The
2867  *	buffer has unspecified headroom built in. Users should allocate
2868  *	the headroom they think they need without accounting for the
2869  *	built in space. The built in space is used for optimisations.
2870  *
2871  *	%NULL is returned if there is no free memory. Although this function
2872  *	allocates memory it can be called from an interrupt.
2873  */
netdev_alloc_skb(struct net_device * dev,unsigned int length)2874 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
2875 					       unsigned int length)
2876 {
2877 	return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
2878 }
2879 
2880 /* legacy helper around __netdev_alloc_skb() */
__dev_alloc_skb(unsigned int length,gfp_t gfp_mask)2881 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
2882 					      gfp_t gfp_mask)
2883 {
2884 	return __netdev_alloc_skb(NULL, length, gfp_mask);
2885 }
2886 
2887 /* legacy helper around netdev_alloc_skb() */
dev_alloc_skb(unsigned int length)2888 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
2889 {
2890 	return netdev_alloc_skb(NULL, length);
2891 }
2892 
2893 
__netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length,gfp_t gfp)2894 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
2895 		unsigned int length, gfp_t gfp)
2896 {
2897 	struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
2898 
2899 	if (NET_IP_ALIGN && skb)
2900 		skb_reserve(skb, NET_IP_ALIGN);
2901 	return skb;
2902 }
2903 
netdev_alloc_skb_ip_align(struct net_device * dev,unsigned int length)2904 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
2905 		unsigned int length)
2906 {
2907 	return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
2908 }
2909 
skb_free_frag(void * addr)2910 static inline void skb_free_frag(void *addr)
2911 {
2912 	page_frag_free(addr);
2913 }
2914 
2915 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
2916 
napi_alloc_frag(unsigned int fragsz)2917 static inline void *napi_alloc_frag(unsigned int fragsz)
2918 {
2919 	return __napi_alloc_frag_align(fragsz, ~0u);
2920 }
2921 
napi_alloc_frag_align(unsigned int fragsz,unsigned int align)2922 static inline void *napi_alloc_frag_align(unsigned int fragsz,
2923 					  unsigned int align)
2924 {
2925 	WARN_ON_ONCE(!is_power_of_2(align));
2926 	return __napi_alloc_frag_align(fragsz, -align);
2927 }
2928 
2929 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
2930 				 unsigned int length, gfp_t gfp_mask);
napi_alloc_skb(struct napi_struct * napi,unsigned int length)2931 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
2932 					     unsigned int length)
2933 {
2934 	return __napi_alloc_skb(napi, length, GFP_ATOMIC);
2935 }
2936 void napi_consume_skb(struct sk_buff *skb, int budget);
2937 
2938 void napi_skb_free_stolen_head(struct sk_buff *skb);
2939 void __kfree_skb_defer(struct sk_buff *skb);
2940 
2941 /**
2942  * __dev_alloc_pages - allocate page for network Rx
2943  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2944  * @order: size of the allocation
2945  *
2946  * Allocate a new page.
2947  *
2948  * %NULL is returned if there is no free memory.
2949 */
__dev_alloc_pages(gfp_t gfp_mask,unsigned int order)2950 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
2951 					     unsigned int order)
2952 {
2953 	/* This piece of code contains several assumptions.
2954 	 * 1.  This is for device Rx, therefor a cold page is preferred.
2955 	 * 2.  The expectation is the user wants a compound page.
2956 	 * 3.  If requesting a order 0 page it will not be compound
2957 	 *     due to the check to see if order has a value in prep_new_page
2958 	 * 4.  __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
2959 	 *     code in gfp_to_alloc_flags that should be enforcing this.
2960 	 */
2961 	gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
2962 
2963 	return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
2964 }
2965 
dev_alloc_pages(unsigned int order)2966 static inline struct page *dev_alloc_pages(unsigned int order)
2967 {
2968 	return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
2969 }
2970 
2971 /**
2972  * __dev_alloc_page - allocate a page for network Rx
2973  * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
2974  *
2975  * Allocate a new page.
2976  *
2977  * %NULL is returned if there is no free memory.
2978  */
__dev_alloc_page(gfp_t gfp_mask)2979 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
2980 {
2981 	return __dev_alloc_pages(gfp_mask, 0);
2982 }
2983 
dev_alloc_page(void)2984 static inline struct page *dev_alloc_page(void)
2985 {
2986 	return dev_alloc_pages(0);
2987 }
2988 
2989 /**
2990  * dev_page_is_reusable - check whether a page can be reused for network Rx
2991  * @page: the page to test
2992  *
2993  * A page shouldn't be considered for reusing/recycling if it was allocated
2994  * under memory pressure or at a distant memory node.
2995  *
2996  * Returns false if this page should be returned to page allocator, true
2997  * otherwise.
2998  */
dev_page_is_reusable(const struct page * page)2999 static inline bool dev_page_is_reusable(const struct page *page)
3000 {
3001 	return likely(page_to_nid(page) == numa_mem_id() &&
3002 		      !page_is_pfmemalloc(page));
3003 }
3004 
3005 /**
3006  *	skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3007  *	@page: The page that was allocated from skb_alloc_page
3008  *	@skb: The skb that may need pfmemalloc set
3009  */
skb_propagate_pfmemalloc(const struct page * page,struct sk_buff * skb)3010 static inline void skb_propagate_pfmemalloc(const struct page *page,
3011 					    struct sk_buff *skb)
3012 {
3013 	if (page_is_pfmemalloc(page))
3014 		skb->pfmemalloc = true;
3015 }
3016 
3017 /**
3018  * skb_frag_off() - Returns the offset of a skb fragment
3019  * @frag: the paged fragment
3020  */
skb_frag_off(const skb_frag_t * frag)3021 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3022 {
3023 	return frag->bv_offset;
3024 }
3025 
3026 /**
3027  * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3028  * @frag: skb fragment
3029  * @delta: value to add
3030  */
skb_frag_off_add(skb_frag_t * frag,int delta)3031 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3032 {
3033 	frag->bv_offset += delta;
3034 }
3035 
3036 /**
3037  * skb_frag_off_set() - Sets the offset of a skb fragment
3038  * @frag: skb fragment
3039  * @offset: offset of fragment
3040  */
skb_frag_off_set(skb_frag_t * frag,unsigned int offset)3041 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3042 {
3043 	frag->bv_offset = offset;
3044 }
3045 
3046 /**
3047  * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3048  * @fragto: skb fragment where offset is set
3049  * @fragfrom: skb fragment offset is copied from
3050  */
skb_frag_off_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3051 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3052 				     const skb_frag_t *fragfrom)
3053 {
3054 	fragto->bv_offset = fragfrom->bv_offset;
3055 }
3056 
3057 /**
3058  * skb_frag_page - retrieve the page referred to by a paged fragment
3059  * @frag: the paged fragment
3060  *
3061  * Returns the &struct page associated with @frag.
3062  */
skb_frag_page(const skb_frag_t * frag)3063 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3064 {
3065 	return frag->bv_page;
3066 }
3067 
3068 /**
3069  * __skb_frag_ref - take an addition reference on a paged fragment.
3070  * @frag: the paged fragment
3071  *
3072  * Takes an additional reference on the paged fragment @frag.
3073  */
__skb_frag_ref(skb_frag_t * frag)3074 static inline void __skb_frag_ref(skb_frag_t *frag)
3075 {
3076 	get_page(skb_frag_page(frag));
3077 }
3078 
3079 /**
3080  * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3081  * @skb: the buffer
3082  * @f: the fragment offset.
3083  *
3084  * Takes an additional reference on the @f'th paged fragment of @skb.
3085  */
skb_frag_ref(struct sk_buff * skb,int f)3086 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3087 {
3088 	__skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3089 }
3090 
3091 /**
3092  * __skb_frag_unref - release a reference on a paged fragment.
3093  * @frag: the paged fragment
3094  * @recycle: recycle the page if allocated via page_pool
3095  *
3096  * Releases a reference on the paged fragment @frag
3097  * or recycles the page via the page_pool API.
3098  */
__skb_frag_unref(skb_frag_t * frag,bool recycle)3099 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3100 {
3101 	struct page *page = skb_frag_page(frag);
3102 
3103 #ifdef CONFIG_PAGE_POOL
3104 	if (recycle && page_pool_return_skb_page(page))
3105 		return;
3106 #endif
3107 	put_page(page);
3108 }
3109 
3110 /**
3111  * skb_frag_unref - release a reference on a paged fragment of an skb.
3112  * @skb: the buffer
3113  * @f: the fragment offset
3114  *
3115  * Releases a reference on the @f'th paged fragment of @skb.
3116  */
skb_frag_unref(struct sk_buff * skb,int f)3117 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3118 {
3119 	__skb_frag_unref(&skb_shinfo(skb)->frags[f], skb->pp_recycle);
3120 }
3121 
3122 /**
3123  * skb_frag_address - gets the address of the data contained in a paged fragment
3124  * @frag: the paged fragment buffer
3125  *
3126  * Returns the address of the data within @frag. The page must already
3127  * be mapped.
3128  */
skb_frag_address(const skb_frag_t * frag)3129 static inline void *skb_frag_address(const skb_frag_t *frag)
3130 {
3131 	return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3132 }
3133 
3134 /**
3135  * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3136  * @frag: the paged fragment buffer
3137  *
3138  * Returns the address of the data within @frag. Checks that the page
3139  * is mapped and returns %NULL otherwise.
3140  */
skb_frag_address_safe(const skb_frag_t * frag)3141 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3142 {
3143 	void *ptr = page_address(skb_frag_page(frag));
3144 	if (unlikely(!ptr))
3145 		return NULL;
3146 
3147 	return ptr + skb_frag_off(frag);
3148 }
3149 
3150 /**
3151  * skb_frag_page_copy() - sets the page in a fragment from another fragment
3152  * @fragto: skb fragment where page is set
3153  * @fragfrom: skb fragment page is copied from
3154  */
skb_frag_page_copy(skb_frag_t * fragto,const skb_frag_t * fragfrom)3155 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3156 				      const skb_frag_t *fragfrom)
3157 {
3158 	fragto->bv_page = fragfrom->bv_page;
3159 }
3160 
3161 /**
3162  * __skb_frag_set_page - sets the page contained in a paged fragment
3163  * @frag: the paged fragment
3164  * @page: the page to set
3165  *
3166  * Sets the fragment @frag to contain @page.
3167  */
__skb_frag_set_page(skb_frag_t * frag,struct page * page)3168 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3169 {
3170 	frag->bv_page = page;
3171 }
3172 
3173 /**
3174  * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3175  * @skb: the buffer
3176  * @f: the fragment offset
3177  * @page: the page to set
3178  *
3179  * Sets the @f'th fragment of @skb to contain @page.
3180  */
skb_frag_set_page(struct sk_buff * skb,int f,struct page * page)3181 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3182 				     struct page *page)
3183 {
3184 	__skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3185 }
3186 
3187 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3188 
3189 /**
3190  * skb_frag_dma_map - maps a paged fragment via the DMA API
3191  * @dev: the device to map the fragment to
3192  * @frag: the paged fragment to map
3193  * @offset: the offset within the fragment (starting at the
3194  *          fragment's own offset)
3195  * @size: the number of bytes to map
3196  * @dir: the direction of the mapping (``PCI_DMA_*``)
3197  *
3198  * Maps the page associated with @frag to @device.
3199  */
skb_frag_dma_map(struct device * dev,const skb_frag_t * frag,size_t offset,size_t size,enum dma_data_direction dir)3200 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3201 					  const skb_frag_t *frag,
3202 					  size_t offset, size_t size,
3203 					  enum dma_data_direction dir)
3204 {
3205 	return dma_map_page(dev, skb_frag_page(frag),
3206 			    skb_frag_off(frag) + offset, size, dir);
3207 }
3208 
pskb_copy(struct sk_buff * skb,gfp_t gfp_mask)3209 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3210 					gfp_t gfp_mask)
3211 {
3212 	return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3213 }
3214 
3215 
pskb_copy_for_clone(struct sk_buff * skb,gfp_t gfp_mask)3216 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3217 						  gfp_t gfp_mask)
3218 {
3219 	return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3220 }
3221 
3222 
3223 /**
3224  *	skb_clone_writable - is the header of a clone writable
3225  *	@skb: buffer to check
3226  *	@len: length up to which to write
3227  *
3228  *	Returns true if modifying the header part of the cloned buffer
3229  *	does not requires the data to be copied.
3230  */
skb_clone_writable(const struct sk_buff * skb,unsigned int len)3231 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3232 {
3233 	return !skb_header_cloned(skb) &&
3234 	       skb_headroom(skb) + len <= skb->hdr_len;
3235 }
3236 
skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)3237 static inline int skb_try_make_writable(struct sk_buff *skb,
3238 					unsigned int write_len)
3239 {
3240 	return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3241 	       pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3242 }
3243 
__skb_cow(struct sk_buff * skb,unsigned int headroom,int cloned)3244 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3245 			    int cloned)
3246 {
3247 	int delta = 0;
3248 
3249 	if (headroom > skb_headroom(skb))
3250 		delta = headroom - skb_headroom(skb);
3251 
3252 	if (delta || cloned)
3253 		return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3254 					GFP_ATOMIC);
3255 	return 0;
3256 }
3257 
3258 /**
3259  *	skb_cow - copy header of skb when it is required
3260  *	@skb: buffer to cow
3261  *	@headroom: needed headroom
3262  *
3263  *	If the skb passed lacks sufficient headroom or its data part
3264  *	is shared, data is reallocated. If reallocation fails, an error
3265  *	is returned and original skb is not changed.
3266  *
3267  *	The result is skb with writable area skb->head...skb->tail
3268  *	and at least @headroom of space at head.
3269  */
skb_cow(struct sk_buff * skb,unsigned int headroom)3270 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3271 {
3272 	return __skb_cow(skb, headroom, skb_cloned(skb));
3273 }
3274 
3275 /**
3276  *	skb_cow_head - skb_cow but only making the head writable
3277  *	@skb: buffer to cow
3278  *	@headroom: needed headroom
3279  *
3280  *	This function is identical to skb_cow except that we replace the
3281  *	skb_cloned check by skb_header_cloned.  It should be used when
3282  *	you only need to push on some header and do not need to modify
3283  *	the data.
3284  */
skb_cow_head(struct sk_buff * skb,unsigned int headroom)3285 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3286 {
3287 	return __skb_cow(skb, headroom, skb_header_cloned(skb));
3288 }
3289 
3290 /**
3291  *	skb_padto	- pad an skbuff up to a minimal size
3292  *	@skb: buffer to pad
3293  *	@len: minimal length
3294  *
3295  *	Pads up a buffer to ensure the trailing bytes exist and are
3296  *	blanked. If the buffer already contains sufficient data it
3297  *	is untouched. Otherwise it is extended. Returns zero on
3298  *	success. The skb is freed on error.
3299  */
skb_padto(struct sk_buff * skb,unsigned int len)3300 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3301 {
3302 	unsigned int size = skb->len;
3303 	if (likely(size >= len))
3304 		return 0;
3305 	return skb_pad(skb, len - size);
3306 }
3307 
3308 /**
3309  *	__skb_put_padto - increase size and pad an skbuff up to a minimal size
3310  *	@skb: buffer to pad
3311  *	@len: minimal length
3312  *	@free_on_error: free buffer on error
3313  *
3314  *	Pads up a buffer to ensure the trailing bytes exist and are
3315  *	blanked. If the buffer already contains sufficient data it
3316  *	is untouched. Otherwise it is extended. Returns zero on
3317  *	success. The skb is freed on error if @free_on_error is true.
3318  */
__skb_put_padto(struct sk_buff * skb,unsigned int len,bool free_on_error)3319 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3320 					       unsigned int len,
3321 					       bool free_on_error)
3322 {
3323 	unsigned int size = skb->len;
3324 
3325 	if (unlikely(size < len)) {
3326 		len -= size;
3327 		if (__skb_pad(skb, len, free_on_error))
3328 			return -ENOMEM;
3329 		__skb_put(skb, len);
3330 	}
3331 	return 0;
3332 }
3333 
3334 /**
3335  *	skb_put_padto - increase size and pad an skbuff up to a minimal size
3336  *	@skb: buffer to pad
3337  *	@len: minimal length
3338  *
3339  *	Pads up a buffer to ensure the trailing bytes exist and are
3340  *	blanked. If the buffer already contains sufficient data it
3341  *	is untouched. Otherwise it is extended. Returns zero on
3342  *	success. The skb is freed on error.
3343  */
skb_put_padto(struct sk_buff * skb,unsigned int len)3344 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3345 {
3346 	return __skb_put_padto(skb, len, true);
3347 }
3348 
skb_add_data(struct sk_buff * skb,struct iov_iter * from,int copy)3349 static inline int skb_add_data(struct sk_buff *skb,
3350 			       struct iov_iter *from, int copy)
3351 {
3352 	const int off = skb->len;
3353 
3354 	if (skb->ip_summed == CHECKSUM_NONE) {
3355 		__wsum csum = 0;
3356 		if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3357 					         &csum, from)) {
3358 			skb->csum = csum_block_add(skb->csum, csum, off);
3359 			return 0;
3360 		}
3361 	} else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3362 		return 0;
3363 
3364 	__skb_trim(skb, off);
3365 	return -EFAULT;
3366 }
3367 
skb_can_coalesce(struct sk_buff * skb,int i,const struct page * page,int off)3368 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3369 				    const struct page *page, int off)
3370 {
3371 	if (skb_zcopy(skb))
3372 		return false;
3373 	if (i) {
3374 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3375 
3376 		return page == skb_frag_page(frag) &&
3377 		       off == skb_frag_off(frag) + skb_frag_size(frag);
3378 	}
3379 	return false;
3380 }
3381 
__skb_linearize(struct sk_buff * skb)3382 static inline int __skb_linearize(struct sk_buff *skb)
3383 {
3384 	return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3385 }
3386 
3387 /**
3388  *	skb_linearize - convert paged skb to linear one
3389  *	@skb: buffer to linarize
3390  *
3391  *	If there is no free memory -ENOMEM is returned, otherwise zero
3392  *	is returned and the old skb data released.
3393  */
skb_linearize(struct sk_buff * skb)3394 static inline int skb_linearize(struct sk_buff *skb)
3395 {
3396 	return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3397 }
3398 
3399 /**
3400  * skb_has_shared_frag - can any frag be overwritten
3401  * @skb: buffer to test
3402  *
3403  * Return true if the skb has at least one frag that might be modified
3404  * by an external entity (as in vmsplice()/sendfile())
3405  */
skb_has_shared_frag(const struct sk_buff * skb)3406 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3407 {
3408 	return skb_is_nonlinear(skb) &&
3409 	       skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3410 }
3411 
3412 /**
3413  *	skb_linearize_cow - make sure skb is linear and writable
3414  *	@skb: buffer to process
3415  *
3416  *	If there is no free memory -ENOMEM is returned, otherwise zero
3417  *	is returned and the old skb data released.
3418  */
skb_linearize_cow(struct sk_buff * skb)3419 static inline int skb_linearize_cow(struct sk_buff *skb)
3420 {
3421 	return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3422 	       __skb_linearize(skb) : 0;
3423 }
3424 
3425 static __always_inline void
__skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3426 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3427 		     unsigned int off)
3428 {
3429 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3430 		skb->csum = csum_block_sub(skb->csum,
3431 					   csum_partial(start, len, 0), off);
3432 	else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3433 		 skb_checksum_start_offset(skb) < 0)
3434 		skb->ip_summed = CHECKSUM_NONE;
3435 }
3436 
3437 /**
3438  *	skb_postpull_rcsum - update checksum for received skb after pull
3439  *	@skb: buffer to update
3440  *	@start: start of data before pull
3441  *	@len: length of data pulled
3442  *
3443  *	After doing a pull on a received packet, you need to call this to
3444  *	update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3445  *	CHECKSUM_NONE so that it can be recomputed from scratch.
3446  */
skb_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3447 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3448 				      const void *start, unsigned int len)
3449 {
3450 	__skb_postpull_rcsum(skb, start, len, 0);
3451 }
3452 
3453 static __always_inline void
__skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len,unsigned int off)3454 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3455 		     unsigned int off)
3456 {
3457 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3458 		skb->csum = csum_block_add(skb->csum,
3459 					   csum_partial(start, len, 0), off);
3460 }
3461 
3462 /**
3463  *	skb_postpush_rcsum - update checksum for received skb after push
3464  *	@skb: buffer to update
3465  *	@start: start of data after push
3466  *	@len: length of data pushed
3467  *
3468  *	After doing a push on a received packet, you need to call this to
3469  *	update the CHECKSUM_COMPLETE checksum.
3470  */
skb_postpush_rcsum(struct sk_buff * skb,const void * start,unsigned int len)3471 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3472 				      const void *start, unsigned int len)
3473 {
3474 	__skb_postpush_rcsum(skb, start, len, 0);
3475 }
3476 
3477 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3478 
3479 /**
3480  *	skb_push_rcsum - push skb and update receive checksum
3481  *	@skb: buffer to update
3482  *	@len: length of data pulled
3483  *
3484  *	This function performs an skb_push on the packet and updates
3485  *	the CHECKSUM_COMPLETE checksum.  It should be used on
3486  *	receive path processing instead of skb_push unless you know
3487  *	that the checksum difference is zero (e.g., a valid IP header)
3488  *	or you are setting ip_summed to CHECKSUM_NONE.
3489  */
skb_push_rcsum(struct sk_buff * skb,unsigned int len)3490 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3491 {
3492 	skb_push(skb, len);
3493 	skb_postpush_rcsum(skb, skb->data, len);
3494 	return skb->data;
3495 }
3496 
3497 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3498 /**
3499  *	pskb_trim_rcsum - trim received skb and update checksum
3500  *	@skb: buffer to trim
3501  *	@len: new length
3502  *
3503  *	This is exactly the same as pskb_trim except that it ensures the
3504  *	checksum of received packets are still valid after the operation.
3505  *	It can change skb pointers.
3506  */
3507 
pskb_trim_rcsum(struct sk_buff * skb,unsigned int len)3508 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3509 {
3510 	if (likely(len >= skb->len))
3511 		return 0;
3512 	return pskb_trim_rcsum_slow(skb, len);
3513 }
3514 
__skb_trim_rcsum(struct sk_buff * skb,unsigned int len)3515 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3516 {
3517 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3518 		skb->ip_summed = CHECKSUM_NONE;
3519 	__skb_trim(skb, len);
3520 	return 0;
3521 }
3522 
__skb_grow_rcsum(struct sk_buff * skb,unsigned int len)3523 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3524 {
3525 	if (skb->ip_summed == CHECKSUM_COMPLETE)
3526 		skb->ip_summed = CHECKSUM_NONE;
3527 	return __skb_grow(skb, len);
3528 }
3529 
3530 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3531 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3532 #define skb_rb_last(root)  rb_to_skb(rb_last(root))
3533 #define skb_rb_next(skb)   rb_to_skb(rb_next(&(skb)->rbnode))
3534 #define skb_rb_prev(skb)   rb_to_skb(rb_prev(&(skb)->rbnode))
3535 
3536 #define skb_queue_walk(queue, skb) \
3537 		for (skb = (queue)->next;					\
3538 		     skb != (struct sk_buff *)(queue);				\
3539 		     skb = skb->next)
3540 
3541 #define skb_queue_walk_safe(queue, skb, tmp)					\
3542 		for (skb = (queue)->next, tmp = skb->next;			\
3543 		     skb != (struct sk_buff *)(queue);				\
3544 		     skb = tmp, tmp = skb->next)
3545 
3546 #define skb_queue_walk_from(queue, skb)						\
3547 		for (; skb != (struct sk_buff *)(queue);			\
3548 		     skb = skb->next)
3549 
3550 #define skb_rbtree_walk(skb, root)						\
3551 		for (skb = skb_rb_first(root); skb != NULL;			\
3552 		     skb = skb_rb_next(skb))
3553 
3554 #define skb_rbtree_walk_from(skb)						\
3555 		for (; skb != NULL;						\
3556 		     skb = skb_rb_next(skb))
3557 
3558 #define skb_rbtree_walk_from_safe(skb, tmp)					\
3559 		for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL);	\
3560 		     skb = tmp)
3561 
3562 #define skb_queue_walk_from_safe(queue, skb, tmp)				\
3563 		for (tmp = skb->next;						\
3564 		     skb != (struct sk_buff *)(queue);				\
3565 		     skb = tmp, tmp = skb->next)
3566 
3567 #define skb_queue_reverse_walk(queue, skb) \
3568 		for (skb = (queue)->prev;					\
3569 		     skb != (struct sk_buff *)(queue);				\
3570 		     skb = skb->prev)
3571 
3572 #define skb_queue_reverse_walk_safe(queue, skb, tmp)				\
3573 		for (skb = (queue)->prev, tmp = skb->prev;			\
3574 		     skb != (struct sk_buff *)(queue);				\
3575 		     skb = tmp, tmp = skb->prev)
3576 
3577 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp)			\
3578 		for (tmp = skb->prev;						\
3579 		     skb != (struct sk_buff *)(queue);				\
3580 		     skb = tmp, tmp = skb->prev)
3581 
skb_has_frag_list(const struct sk_buff * skb)3582 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3583 {
3584 	return skb_shinfo(skb)->frag_list != NULL;
3585 }
3586 
skb_frag_list_init(struct sk_buff * skb)3587 static inline void skb_frag_list_init(struct sk_buff *skb)
3588 {
3589 	skb_shinfo(skb)->frag_list = NULL;
3590 }
3591 
3592 #define skb_walk_frags(skb, iter)	\
3593 	for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3594 
3595 
3596 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3597 				int *err, long *timeo_p,
3598 				const struct sk_buff *skb);
3599 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3600 					  struct sk_buff_head *queue,
3601 					  unsigned int flags,
3602 					  int *off, int *err,
3603 					  struct sk_buff **last);
3604 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3605 					struct sk_buff_head *queue,
3606 					unsigned int flags, int *off, int *err,
3607 					struct sk_buff **last);
3608 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3609 				    struct sk_buff_head *sk_queue,
3610 				    unsigned int flags, int *off, int *err);
3611 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags, int noblock,
3612 				  int *err);
3613 __poll_t datagram_poll(struct file *file, struct socket *sock,
3614 			   struct poll_table_struct *wait);
3615 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3616 			   struct iov_iter *to, int size);
skb_copy_datagram_msg(const struct sk_buff * from,int offset,struct msghdr * msg,int size)3617 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3618 					struct msghdr *msg, int size)
3619 {
3620 	return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3621 }
3622 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3623 				   struct msghdr *msg);
3624 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3625 			   struct iov_iter *to, int len,
3626 			   struct ahash_request *hash);
3627 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3628 				 struct iov_iter *from, int len);
3629 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3630 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3631 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
skb_free_datagram_locked(struct sock * sk,struct sk_buff * skb)3632 static inline void skb_free_datagram_locked(struct sock *sk,
3633 					    struct sk_buff *skb)
3634 {
3635 	__skb_free_datagram_locked(sk, skb, 0);
3636 }
3637 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3638 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3639 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3640 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3641 			      int len);
3642 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3643 		    struct pipe_inode_info *pipe, unsigned int len,
3644 		    unsigned int flags);
3645 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3646 			 int len);
3647 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3648 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3649 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3650 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3651 		 int len, int hlen);
3652 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3653 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3654 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3655 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3656 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3657 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3658 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3659 				 unsigned int offset);
3660 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3661 int skb_ensure_writable(struct sk_buff *skb, int write_len);
3662 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3663 int skb_vlan_pop(struct sk_buff *skb);
3664 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3665 int skb_eth_pop(struct sk_buff *skb);
3666 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3667 		 const unsigned char *src);
3668 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3669 		  int mac_len, bool ethernet);
3670 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3671 		 bool ethernet);
3672 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3673 int skb_mpls_dec_ttl(struct sk_buff *skb);
3674 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3675 			     gfp_t gfp);
3676 
memcpy_from_msg(void * data,struct msghdr * msg,int len)3677 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3678 {
3679 	return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3680 }
3681 
memcpy_to_msg(struct msghdr * msg,void * data,int len)3682 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3683 {
3684 	return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3685 }
3686 
3687 struct skb_checksum_ops {
3688 	__wsum (*update)(const void *mem, int len, __wsum wsum);
3689 	__wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3690 };
3691 
3692 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3693 
3694 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3695 		      __wsum csum, const struct skb_checksum_ops *ops);
3696 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3697 		    __wsum csum);
3698 
3699 static inline void * __must_check
__skb_header_pointer(const struct sk_buff * skb,int offset,int len,const void * data,int hlen,void * buffer)3700 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3701 		     const void *data, int hlen, void *buffer)
3702 {
3703 	if (likely(hlen - offset >= len))
3704 		return (void *)data + offset;
3705 
3706 	if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
3707 		return NULL;
3708 
3709 	return buffer;
3710 }
3711 
3712 static inline void * __must_check
skb_header_pointer(const struct sk_buff * skb,int offset,int len,void * buffer)3713 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
3714 {
3715 	return __skb_header_pointer(skb, offset, len, skb->data,
3716 				    skb_headlen(skb), buffer);
3717 }
3718 
3719 /**
3720  *	skb_needs_linearize - check if we need to linearize a given skb
3721  *			      depending on the given device features.
3722  *	@skb: socket buffer to check
3723  *	@features: net device features
3724  *
3725  *	Returns true if either:
3726  *	1. skb has frag_list and the device doesn't support FRAGLIST, or
3727  *	2. skb is fragmented and the device does not support SG.
3728  */
skb_needs_linearize(struct sk_buff * skb,netdev_features_t features)3729 static inline bool skb_needs_linearize(struct sk_buff *skb,
3730 				       netdev_features_t features)
3731 {
3732 	return skb_is_nonlinear(skb) &&
3733 	       ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
3734 		(skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
3735 }
3736 
skb_copy_from_linear_data(const struct sk_buff * skb,void * to,const unsigned int len)3737 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
3738 					     void *to,
3739 					     const unsigned int len)
3740 {
3741 	memcpy(to, skb->data, len);
3742 }
3743 
skb_copy_from_linear_data_offset(const struct sk_buff * skb,const int offset,void * to,const unsigned int len)3744 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
3745 						    const int offset, void *to,
3746 						    const unsigned int len)
3747 {
3748 	memcpy(to, skb->data + offset, len);
3749 }
3750 
skb_copy_to_linear_data(struct sk_buff * skb,const void * from,const unsigned int len)3751 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
3752 					   const void *from,
3753 					   const unsigned int len)
3754 {
3755 	memcpy(skb->data, from, len);
3756 }
3757 
skb_copy_to_linear_data_offset(struct sk_buff * skb,const int offset,const void * from,const unsigned int len)3758 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
3759 						  const int offset,
3760 						  const void *from,
3761 						  const unsigned int len)
3762 {
3763 	memcpy(skb->data + offset, from, len);
3764 }
3765 
3766 void skb_init(void);
3767 
skb_get_ktime(const struct sk_buff * skb)3768 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
3769 {
3770 	return skb->tstamp;
3771 }
3772 
3773 /**
3774  *	skb_get_timestamp - get timestamp from a skb
3775  *	@skb: skb to get stamp from
3776  *	@stamp: pointer to struct __kernel_old_timeval to store stamp in
3777  *
3778  *	Timestamps are stored in the skb as offsets to a base timestamp.
3779  *	This function converts the offset back to a struct timeval and stores
3780  *	it in stamp.
3781  */
skb_get_timestamp(const struct sk_buff * skb,struct __kernel_old_timeval * stamp)3782 static inline void skb_get_timestamp(const struct sk_buff *skb,
3783 				     struct __kernel_old_timeval *stamp)
3784 {
3785 	*stamp = ns_to_kernel_old_timeval(skb->tstamp);
3786 }
3787 
skb_get_new_timestamp(const struct sk_buff * skb,struct __kernel_sock_timeval * stamp)3788 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
3789 					 struct __kernel_sock_timeval *stamp)
3790 {
3791 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3792 
3793 	stamp->tv_sec = ts.tv_sec;
3794 	stamp->tv_usec = ts.tv_nsec / 1000;
3795 }
3796 
skb_get_timestampns(const struct sk_buff * skb,struct __kernel_old_timespec * stamp)3797 static inline void skb_get_timestampns(const struct sk_buff *skb,
3798 				       struct __kernel_old_timespec *stamp)
3799 {
3800 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3801 
3802 	stamp->tv_sec = ts.tv_sec;
3803 	stamp->tv_nsec = ts.tv_nsec;
3804 }
3805 
skb_get_new_timestampns(const struct sk_buff * skb,struct __kernel_timespec * stamp)3806 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
3807 					   struct __kernel_timespec *stamp)
3808 {
3809 	struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
3810 
3811 	stamp->tv_sec = ts.tv_sec;
3812 	stamp->tv_nsec = ts.tv_nsec;
3813 }
3814 
__net_timestamp(struct sk_buff * skb)3815 static inline void __net_timestamp(struct sk_buff *skb)
3816 {
3817 	skb->tstamp = ktime_get_real();
3818 }
3819 
net_timedelta(ktime_t t)3820 static inline ktime_t net_timedelta(ktime_t t)
3821 {
3822 	return ktime_sub(ktime_get_real(), t);
3823 }
3824 
net_invalid_timestamp(void)3825 static inline ktime_t net_invalid_timestamp(void)
3826 {
3827 	return 0;
3828 }
3829 
skb_metadata_len(const struct sk_buff * skb)3830 static inline u8 skb_metadata_len(const struct sk_buff *skb)
3831 {
3832 	return skb_shinfo(skb)->meta_len;
3833 }
3834 
skb_metadata_end(const struct sk_buff * skb)3835 static inline void *skb_metadata_end(const struct sk_buff *skb)
3836 {
3837 	return skb_mac_header(skb);
3838 }
3839 
__skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b,u8 meta_len)3840 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
3841 					  const struct sk_buff *skb_b,
3842 					  u8 meta_len)
3843 {
3844 	const void *a = skb_metadata_end(skb_a);
3845 	const void *b = skb_metadata_end(skb_b);
3846 	/* Using more efficient varaiant than plain call to memcmp(). */
3847 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
3848 	u64 diffs = 0;
3849 
3850 	switch (meta_len) {
3851 #define __it(x, op) (x -= sizeof(u##op))
3852 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
3853 	case 32: diffs |= __it_diff(a, b, 64);
3854 		fallthrough;
3855 	case 24: diffs |= __it_diff(a, b, 64);
3856 		fallthrough;
3857 	case 16: diffs |= __it_diff(a, b, 64);
3858 		fallthrough;
3859 	case  8: diffs |= __it_diff(a, b, 64);
3860 		break;
3861 	case 28: diffs |= __it_diff(a, b, 64);
3862 		fallthrough;
3863 	case 20: diffs |= __it_diff(a, b, 64);
3864 		fallthrough;
3865 	case 12: diffs |= __it_diff(a, b, 64);
3866 		fallthrough;
3867 	case  4: diffs |= __it_diff(a, b, 32);
3868 		break;
3869 	}
3870 	return diffs;
3871 #else
3872 	return memcmp(a - meta_len, b - meta_len, meta_len);
3873 #endif
3874 }
3875 
skb_metadata_differs(const struct sk_buff * skb_a,const struct sk_buff * skb_b)3876 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
3877 					const struct sk_buff *skb_b)
3878 {
3879 	u8 len_a = skb_metadata_len(skb_a);
3880 	u8 len_b = skb_metadata_len(skb_b);
3881 
3882 	if (!(len_a | len_b))
3883 		return false;
3884 
3885 	return len_a != len_b ?
3886 	       true : __skb_metadata_differs(skb_a, skb_b, len_a);
3887 }
3888 
skb_metadata_set(struct sk_buff * skb,u8 meta_len)3889 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
3890 {
3891 	skb_shinfo(skb)->meta_len = meta_len;
3892 }
3893 
skb_metadata_clear(struct sk_buff * skb)3894 static inline void skb_metadata_clear(struct sk_buff *skb)
3895 {
3896 	skb_metadata_set(skb, 0);
3897 }
3898 
3899 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
3900 
3901 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
3902 
3903 void skb_clone_tx_timestamp(struct sk_buff *skb);
3904 bool skb_defer_rx_timestamp(struct sk_buff *skb);
3905 
3906 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
3907 
skb_clone_tx_timestamp(struct sk_buff * skb)3908 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
3909 {
3910 }
3911 
skb_defer_rx_timestamp(struct sk_buff * skb)3912 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
3913 {
3914 	return false;
3915 }
3916 
3917 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
3918 
3919 /**
3920  * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
3921  *
3922  * PHY drivers may accept clones of transmitted packets for
3923  * timestamping via their phy_driver.txtstamp method. These drivers
3924  * must call this function to return the skb back to the stack with a
3925  * timestamp.
3926  *
3927  * @skb: clone of the original outgoing packet
3928  * @hwtstamps: hardware time stamps
3929  *
3930  */
3931 void skb_complete_tx_timestamp(struct sk_buff *skb,
3932 			       struct skb_shared_hwtstamps *hwtstamps);
3933 
3934 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
3935 		     struct skb_shared_hwtstamps *hwtstamps,
3936 		     struct sock *sk, int tstype);
3937 
3938 /**
3939  * skb_tstamp_tx - queue clone of skb with send time stamps
3940  * @orig_skb:	the original outgoing packet
3941  * @hwtstamps:	hardware time stamps, may be NULL if not available
3942  *
3943  * If the skb has a socket associated, then this function clones the
3944  * skb (thus sharing the actual data and optional structures), stores
3945  * the optional hardware time stamping information (if non NULL) or
3946  * generates a software time stamp (otherwise), then queues the clone
3947  * to the error queue of the socket.  Errors are silently ignored.
3948  */
3949 void skb_tstamp_tx(struct sk_buff *orig_skb,
3950 		   struct skb_shared_hwtstamps *hwtstamps);
3951 
3952 /**
3953  * skb_tx_timestamp() - Driver hook for transmit timestamping
3954  *
3955  * Ethernet MAC Drivers should call this function in their hard_xmit()
3956  * function immediately before giving the sk_buff to the MAC hardware.
3957  *
3958  * Specifically, one should make absolutely sure that this function is
3959  * called before TX completion of this packet can trigger.  Otherwise
3960  * the packet could potentially already be freed.
3961  *
3962  * @skb: A socket buffer.
3963  */
skb_tx_timestamp(struct sk_buff * skb)3964 static inline void skb_tx_timestamp(struct sk_buff *skb)
3965 {
3966 	skb_clone_tx_timestamp(skb);
3967 	if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
3968 		skb_tstamp_tx(skb, NULL);
3969 }
3970 
3971 /**
3972  * skb_complete_wifi_ack - deliver skb with wifi status
3973  *
3974  * @skb: the original outgoing packet
3975  * @acked: ack status
3976  *
3977  */
3978 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
3979 
3980 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
3981 __sum16 __skb_checksum_complete(struct sk_buff *skb);
3982 
skb_csum_unnecessary(const struct sk_buff * skb)3983 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
3984 {
3985 	return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
3986 		skb->csum_valid ||
3987 		(skb->ip_summed == CHECKSUM_PARTIAL &&
3988 		 skb_checksum_start_offset(skb) >= 0));
3989 }
3990 
3991 /**
3992  *	skb_checksum_complete - Calculate checksum of an entire packet
3993  *	@skb: packet to process
3994  *
3995  *	This function calculates the checksum over the entire packet plus
3996  *	the value of skb->csum.  The latter can be used to supply the
3997  *	checksum of a pseudo header as used by TCP/UDP.  It returns the
3998  *	checksum.
3999  *
4000  *	For protocols that contain complete checksums such as ICMP/TCP/UDP,
4001  *	this function can be used to verify that checksum on received
4002  *	packets.  In that case the function should return zero if the
4003  *	checksum is correct.  In particular, this function will return zero
4004  *	if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4005  *	hardware has already verified the correctness of the checksum.
4006  */
skb_checksum_complete(struct sk_buff * skb)4007 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4008 {
4009 	return skb_csum_unnecessary(skb) ?
4010 	       0 : __skb_checksum_complete(skb);
4011 }
4012 
__skb_decr_checksum_unnecessary(struct sk_buff * skb)4013 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4014 {
4015 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4016 		if (skb->csum_level == 0)
4017 			skb->ip_summed = CHECKSUM_NONE;
4018 		else
4019 			skb->csum_level--;
4020 	}
4021 }
4022 
__skb_incr_checksum_unnecessary(struct sk_buff * skb)4023 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4024 {
4025 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4026 		if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4027 			skb->csum_level++;
4028 	} else if (skb->ip_summed == CHECKSUM_NONE) {
4029 		skb->ip_summed = CHECKSUM_UNNECESSARY;
4030 		skb->csum_level = 0;
4031 	}
4032 }
4033 
__skb_reset_checksum_unnecessary(struct sk_buff * skb)4034 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4035 {
4036 	if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4037 		skb->ip_summed = CHECKSUM_NONE;
4038 		skb->csum_level = 0;
4039 	}
4040 }
4041 
4042 /* Check if we need to perform checksum complete validation.
4043  *
4044  * Returns true if checksum complete is needed, false otherwise
4045  * (either checksum is unnecessary or zero checksum is allowed).
4046  */
__skb_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)4047 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4048 						  bool zero_okay,
4049 						  __sum16 check)
4050 {
4051 	if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4052 		skb->csum_valid = 1;
4053 		__skb_decr_checksum_unnecessary(skb);
4054 		return false;
4055 	}
4056 
4057 	return true;
4058 }
4059 
4060 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4061  * in checksum_init.
4062  */
4063 #define CHECKSUM_BREAK 76
4064 
4065 /* Unset checksum-complete
4066  *
4067  * Unset checksum complete can be done when packet is being modified
4068  * (uncompressed for instance) and checksum-complete value is
4069  * invalidated.
4070  */
skb_checksum_complete_unset(struct sk_buff * skb)4071 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4072 {
4073 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4074 		skb->ip_summed = CHECKSUM_NONE;
4075 }
4076 
4077 /* Validate (init) checksum based on checksum complete.
4078  *
4079  * Return values:
4080  *   0: checksum is validated or try to in skb_checksum_complete. In the latter
4081  *	case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4082  *	checksum is stored in skb->csum for use in __skb_checksum_complete
4083  *   non-zero: value of invalid checksum
4084  *
4085  */
__skb_checksum_validate_complete(struct sk_buff * skb,bool complete,__wsum psum)4086 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4087 						       bool complete,
4088 						       __wsum psum)
4089 {
4090 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
4091 		if (!csum_fold(csum_add(psum, skb->csum))) {
4092 			skb->csum_valid = 1;
4093 			return 0;
4094 		}
4095 	}
4096 
4097 	skb->csum = psum;
4098 
4099 	if (complete || skb->len <= CHECKSUM_BREAK) {
4100 		__sum16 csum;
4101 
4102 		csum = __skb_checksum_complete(skb);
4103 		skb->csum_valid = !csum;
4104 		return csum;
4105 	}
4106 
4107 	return 0;
4108 }
4109 
null_compute_pseudo(struct sk_buff * skb,int proto)4110 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4111 {
4112 	return 0;
4113 }
4114 
4115 /* Perform checksum validate (init). Note that this is a macro since we only
4116  * want to calculate the pseudo header which is an input function if necessary.
4117  * First we try to validate without any computation (checksum unnecessary) and
4118  * then calculate based on checksum complete calling the function to compute
4119  * pseudo header.
4120  *
4121  * Return values:
4122  *   0: checksum is validated or try to in skb_checksum_complete
4123  *   non-zero: value of invalid checksum
4124  */
4125 #define __skb_checksum_validate(skb, proto, complete,			\
4126 				zero_okay, check, compute_pseudo)	\
4127 ({									\
4128 	__sum16 __ret = 0;						\
4129 	skb->csum_valid = 0;						\
4130 	if (__skb_checksum_validate_needed(skb, zero_okay, check))	\
4131 		__ret = __skb_checksum_validate_complete(skb,		\
4132 				complete, compute_pseudo(skb, proto));	\
4133 	__ret;								\
4134 })
4135 
4136 #define skb_checksum_init(skb, proto, compute_pseudo)			\
4137 	__skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4138 
4139 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo)	\
4140 	__skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4141 
4142 #define skb_checksum_validate(skb, proto, compute_pseudo)		\
4143 	__skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4144 
4145 #define skb_checksum_validate_zero_check(skb, proto, check,		\
4146 					 compute_pseudo)		\
4147 	__skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4148 
4149 #define skb_checksum_simple_validate(skb)				\
4150 	__skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4151 
__skb_checksum_convert_check(struct sk_buff * skb)4152 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4153 {
4154 	return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4155 }
4156 
__skb_checksum_convert(struct sk_buff * skb,__wsum pseudo)4157 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4158 {
4159 	skb->csum = ~pseudo;
4160 	skb->ip_summed = CHECKSUM_COMPLETE;
4161 }
4162 
4163 #define skb_checksum_try_convert(skb, proto, compute_pseudo)	\
4164 do {									\
4165 	if (__skb_checksum_convert_check(skb))				\
4166 		__skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4167 } while (0)
4168 
skb_remcsum_adjust_partial(struct sk_buff * skb,void * ptr,u16 start,u16 offset)4169 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4170 					      u16 start, u16 offset)
4171 {
4172 	skb->ip_summed = CHECKSUM_PARTIAL;
4173 	skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4174 	skb->csum_offset = offset - start;
4175 }
4176 
4177 /* Update skbuf and packet to reflect the remote checksum offload operation.
4178  * When called, ptr indicates the starting point for skb->csum when
4179  * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4180  * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4181  */
skb_remcsum_process(struct sk_buff * skb,void * ptr,int start,int offset,bool nopartial)4182 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4183 				       int start, int offset, bool nopartial)
4184 {
4185 	__wsum delta;
4186 
4187 	if (!nopartial) {
4188 		skb_remcsum_adjust_partial(skb, ptr, start, offset);
4189 		return;
4190 	}
4191 
4192 	 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4193 		__skb_checksum_complete(skb);
4194 		skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4195 	}
4196 
4197 	delta = remcsum_adjust(ptr, skb->csum, start, offset);
4198 
4199 	/* Adjust skb->csum since we changed the packet */
4200 	skb->csum = csum_add(skb->csum, delta);
4201 }
4202 
skb_nfct(const struct sk_buff * skb)4203 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4204 {
4205 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4206 	return (void *)(skb->_nfct & NFCT_PTRMASK);
4207 #else
4208 	return NULL;
4209 #endif
4210 }
4211 
skb_get_nfct(const struct sk_buff * skb)4212 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4213 {
4214 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4215 	return skb->_nfct;
4216 #else
4217 	return 0UL;
4218 #endif
4219 }
4220 
skb_set_nfct(struct sk_buff * skb,unsigned long nfct)4221 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4222 {
4223 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4224 	skb->slow_gro |= !!nfct;
4225 	skb->_nfct = nfct;
4226 #endif
4227 }
4228 
4229 #ifdef CONFIG_SKB_EXTENSIONS
4230 enum skb_ext_id {
4231 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4232 	SKB_EXT_BRIDGE_NF,
4233 #endif
4234 #ifdef CONFIG_XFRM
4235 	SKB_EXT_SEC_PATH,
4236 #endif
4237 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4238 	TC_SKB_EXT,
4239 #endif
4240 #if IS_ENABLED(CONFIG_MPTCP)
4241 	SKB_EXT_MPTCP,
4242 #endif
4243 	SKB_EXT_NUM, /* must be last */
4244 };
4245 
4246 /**
4247  *	struct skb_ext - sk_buff extensions
4248  *	@refcnt: 1 on allocation, deallocated on 0
4249  *	@offset: offset to add to @data to obtain extension address
4250  *	@chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4251  *	@data: start of extension data, variable sized
4252  *
4253  *	Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4254  *	to use 'u8' types while allowing up to 2kb worth of extension data.
4255  */
4256 struct skb_ext {
4257 	refcount_t refcnt;
4258 	u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4259 	u8 chunks;		/* same */
4260 	char data[] __aligned(8);
4261 };
4262 
4263 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4264 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4265 		    struct skb_ext *ext);
4266 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4267 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4268 void __skb_ext_put(struct skb_ext *ext);
4269 
skb_ext_put(struct sk_buff * skb)4270 static inline void skb_ext_put(struct sk_buff *skb)
4271 {
4272 	if (skb->active_extensions)
4273 		__skb_ext_put(skb->extensions);
4274 }
4275 
__skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4276 static inline void __skb_ext_copy(struct sk_buff *dst,
4277 				  const struct sk_buff *src)
4278 {
4279 	dst->active_extensions = src->active_extensions;
4280 
4281 	if (src->active_extensions) {
4282 		struct skb_ext *ext = src->extensions;
4283 
4284 		refcount_inc(&ext->refcnt);
4285 		dst->extensions = ext;
4286 	}
4287 }
4288 
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * src)4289 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4290 {
4291 	skb_ext_put(dst);
4292 	__skb_ext_copy(dst, src);
4293 }
4294 
__skb_ext_exist(const struct skb_ext * ext,enum skb_ext_id i)4295 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4296 {
4297 	return !!ext->offset[i];
4298 }
4299 
skb_ext_exist(const struct sk_buff * skb,enum skb_ext_id id)4300 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4301 {
4302 	return skb->active_extensions & (1 << id);
4303 }
4304 
skb_ext_del(struct sk_buff * skb,enum skb_ext_id id)4305 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4306 {
4307 	if (skb_ext_exist(skb, id))
4308 		__skb_ext_del(skb, id);
4309 }
4310 
skb_ext_find(const struct sk_buff * skb,enum skb_ext_id id)4311 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4312 {
4313 	if (skb_ext_exist(skb, id)) {
4314 		struct skb_ext *ext = skb->extensions;
4315 
4316 		return (void *)ext + (ext->offset[id] << 3);
4317 	}
4318 
4319 	return NULL;
4320 }
4321 
skb_ext_reset(struct sk_buff * skb)4322 static inline void skb_ext_reset(struct sk_buff *skb)
4323 {
4324 	if (unlikely(skb->active_extensions)) {
4325 		__skb_ext_put(skb->extensions);
4326 		skb->active_extensions = 0;
4327 	}
4328 }
4329 
skb_has_extensions(struct sk_buff * skb)4330 static inline bool skb_has_extensions(struct sk_buff *skb)
4331 {
4332 	return unlikely(skb->active_extensions);
4333 }
4334 #else
skb_ext_put(struct sk_buff * skb)4335 static inline void skb_ext_put(struct sk_buff *skb) {}
skb_ext_reset(struct sk_buff * skb)4336 static inline void skb_ext_reset(struct sk_buff *skb) {}
skb_ext_del(struct sk_buff * skb,int unused)4337 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
__skb_ext_copy(struct sk_buff * d,const struct sk_buff * s)4338 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
skb_ext_copy(struct sk_buff * dst,const struct sk_buff * s)4339 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
skb_has_extensions(struct sk_buff * skb)4340 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4341 #endif /* CONFIG_SKB_EXTENSIONS */
4342 
nf_reset_ct(struct sk_buff * skb)4343 static inline void nf_reset_ct(struct sk_buff *skb)
4344 {
4345 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4346 	nf_conntrack_put(skb_nfct(skb));
4347 	skb->_nfct = 0;
4348 #endif
4349 }
4350 
nf_reset_trace(struct sk_buff * skb)4351 static inline void nf_reset_trace(struct sk_buff *skb)
4352 {
4353 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4354 	skb->nf_trace = 0;
4355 #endif
4356 }
4357 
ipvs_reset(struct sk_buff * skb)4358 static inline void ipvs_reset(struct sk_buff *skb)
4359 {
4360 #if IS_ENABLED(CONFIG_IP_VS)
4361 	skb->ipvs_property = 0;
4362 #endif
4363 }
4364 
4365 /* Note: This doesn't put any conntrack info in dst. */
__nf_copy(struct sk_buff * dst,const struct sk_buff * src,bool copy)4366 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4367 			     bool copy)
4368 {
4369 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4370 	dst->_nfct = src->_nfct;
4371 	nf_conntrack_get(skb_nfct(src));
4372 #endif
4373 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4374 	if (copy)
4375 		dst->nf_trace = src->nf_trace;
4376 #endif
4377 }
4378 
nf_copy(struct sk_buff * dst,const struct sk_buff * src)4379 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4380 {
4381 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4382 	nf_conntrack_put(skb_nfct(dst));
4383 #endif
4384 	dst->slow_gro = src->slow_gro;
4385 	__nf_copy(dst, src, true);
4386 }
4387 
4388 #ifdef CONFIG_NETWORK_SECMARK
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4389 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4390 {
4391 	to->secmark = from->secmark;
4392 }
4393 
skb_init_secmark(struct sk_buff * skb)4394 static inline void skb_init_secmark(struct sk_buff *skb)
4395 {
4396 	skb->secmark = 0;
4397 }
4398 #else
skb_copy_secmark(struct sk_buff * to,const struct sk_buff * from)4399 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4400 { }
4401 
skb_init_secmark(struct sk_buff * skb)4402 static inline void skb_init_secmark(struct sk_buff *skb)
4403 { }
4404 #endif
4405 
secpath_exists(const struct sk_buff * skb)4406 static inline int secpath_exists(const struct sk_buff *skb)
4407 {
4408 #ifdef CONFIG_XFRM
4409 	return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4410 #else
4411 	return 0;
4412 #endif
4413 }
4414 
skb_irq_freeable(const struct sk_buff * skb)4415 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4416 {
4417 	return !skb->destructor &&
4418 		!secpath_exists(skb) &&
4419 		!skb_nfct(skb) &&
4420 		!skb->_skb_refdst &&
4421 		!skb_has_frag_list(skb);
4422 }
4423 
skb_set_queue_mapping(struct sk_buff * skb,u16 queue_mapping)4424 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4425 {
4426 	skb->queue_mapping = queue_mapping;
4427 }
4428 
skb_get_queue_mapping(const struct sk_buff * skb)4429 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4430 {
4431 	return skb->queue_mapping;
4432 }
4433 
skb_copy_queue_mapping(struct sk_buff * to,const struct sk_buff * from)4434 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4435 {
4436 	to->queue_mapping = from->queue_mapping;
4437 }
4438 
skb_record_rx_queue(struct sk_buff * skb,u16 rx_queue)4439 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4440 {
4441 	skb->queue_mapping = rx_queue + 1;
4442 }
4443 
skb_get_rx_queue(const struct sk_buff * skb)4444 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4445 {
4446 	return skb->queue_mapping - 1;
4447 }
4448 
skb_rx_queue_recorded(const struct sk_buff * skb)4449 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4450 {
4451 	return skb->queue_mapping != 0;
4452 }
4453 
skb_set_dst_pending_confirm(struct sk_buff * skb,u32 val)4454 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4455 {
4456 	skb->dst_pending_confirm = val;
4457 }
4458 
skb_get_dst_pending_confirm(const struct sk_buff * skb)4459 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4460 {
4461 	return skb->dst_pending_confirm != 0;
4462 }
4463 
skb_sec_path(const struct sk_buff * skb)4464 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4465 {
4466 #ifdef CONFIG_XFRM
4467 	return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4468 #else
4469 	return NULL;
4470 #endif
4471 }
4472 
4473 /* Keeps track of mac header offset relative to skb->head.
4474  * It is useful for TSO of Tunneling protocol. e.g. GRE.
4475  * For non-tunnel skb it points to skb_mac_header() and for
4476  * tunnel skb it points to outer mac header.
4477  * Keeps track of level of encapsulation of network headers.
4478  */
4479 struct skb_gso_cb {
4480 	union {
4481 		int	mac_offset;
4482 		int	data_offset;
4483 	};
4484 	int	encap_level;
4485 	__wsum	csum;
4486 	__u16	csum_start;
4487 };
4488 #define SKB_GSO_CB_OFFSET	32
4489 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4490 
skb_tnl_header_len(const struct sk_buff * inner_skb)4491 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4492 {
4493 	return (skb_mac_header(inner_skb) - inner_skb->head) -
4494 		SKB_GSO_CB(inner_skb)->mac_offset;
4495 }
4496 
gso_pskb_expand_head(struct sk_buff * skb,int extra)4497 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4498 {
4499 	int new_headroom, headroom;
4500 	int ret;
4501 
4502 	headroom = skb_headroom(skb);
4503 	ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4504 	if (ret)
4505 		return ret;
4506 
4507 	new_headroom = skb_headroom(skb);
4508 	SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4509 	return 0;
4510 }
4511 
gso_reset_checksum(struct sk_buff * skb,__wsum res)4512 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4513 {
4514 	/* Do not update partial checksums if remote checksum is enabled. */
4515 	if (skb->remcsum_offload)
4516 		return;
4517 
4518 	SKB_GSO_CB(skb)->csum = res;
4519 	SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4520 }
4521 
4522 /* Compute the checksum for a gso segment. First compute the checksum value
4523  * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4524  * then add in skb->csum (checksum from csum_start to end of packet).
4525  * skb->csum and csum_start are then updated to reflect the checksum of the
4526  * resultant packet starting from the transport header-- the resultant checksum
4527  * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4528  * header.
4529  */
gso_make_checksum(struct sk_buff * skb,__wsum res)4530 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4531 {
4532 	unsigned char *csum_start = skb_transport_header(skb);
4533 	int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4534 	__wsum partial = SKB_GSO_CB(skb)->csum;
4535 
4536 	SKB_GSO_CB(skb)->csum = res;
4537 	SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4538 
4539 	return csum_fold(csum_partial(csum_start, plen, partial));
4540 }
4541 
skb_is_gso(const struct sk_buff * skb)4542 static inline bool skb_is_gso(const struct sk_buff *skb)
4543 {
4544 	return skb_shinfo(skb)->gso_size;
4545 }
4546 
4547 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_v6(const struct sk_buff * skb)4548 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4549 {
4550 	return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4551 }
4552 
4553 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_sctp(const struct sk_buff * skb)4554 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4555 {
4556 	return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4557 }
4558 
4559 /* Note: Should be called only if skb_is_gso(skb) is true */
skb_is_gso_tcp(const struct sk_buff * skb)4560 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4561 {
4562 	return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4563 }
4564 
skb_gso_reset(struct sk_buff * skb)4565 static inline void skb_gso_reset(struct sk_buff *skb)
4566 {
4567 	skb_shinfo(skb)->gso_size = 0;
4568 	skb_shinfo(skb)->gso_segs = 0;
4569 	skb_shinfo(skb)->gso_type = 0;
4570 }
4571 
skb_increase_gso_size(struct skb_shared_info * shinfo,u16 increment)4572 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4573 					 u16 increment)
4574 {
4575 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4576 		return;
4577 	shinfo->gso_size += increment;
4578 }
4579 
skb_decrease_gso_size(struct skb_shared_info * shinfo,u16 decrement)4580 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4581 					 u16 decrement)
4582 {
4583 	if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4584 		return;
4585 	shinfo->gso_size -= decrement;
4586 }
4587 
4588 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4589 
skb_warn_if_lro(const struct sk_buff * skb)4590 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4591 {
4592 	/* LRO sets gso_size but not gso_type, whereas if GSO is really
4593 	 * wanted then gso_type will be set. */
4594 	const struct skb_shared_info *shinfo = skb_shinfo(skb);
4595 
4596 	if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4597 	    unlikely(shinfo->gso_type == 0)) {
4598 		__skb_warn_lro_forwarding(skb);
4599 		return true;
4600 	}
4601 	return false;
4602 }
4603 
skb_forward_csum(struct sk_buff * skb)4604 static inline void skb_forward_csum(struct sk_buff *skb)
4605 {
4606 	/* Unfortunately we don't support this one.  Any brave souls? */
4607 	if (skb->ip_summed == CHECKSUM_COMPLETE)
4608 		skb->ip_summed = CHECKSUM_NONE;
4609 }
4610 
4611 /**
4612  * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4613  * @skb: skb to check
4614  *
4615  * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4616  * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4617  * use this helper, to document places where we make this assertion.
4618  */
skb_checksum_none_assert(const struct sk_buff * skb)4619 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4620 {
4621 #ifdef DEBUG
4622 	BUG_ON(skb->ip_summed != CHECKSUM_NONE);
4623 #endif
4624 }
4625 
4626 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4627 
4628 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4629 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4630 				     unsigned int transport_len,
4631 				     __sum16(*skb_chkf)(struct sk_buff *skb));
4632 
4633 /**
4634  * skb_head_is_locked - Determine if the skb->head is locked down
4635  * @skb: skb to check
4636  *
4637  * The head on skbs build around a head frag can be removed if they are
4638  * not cloned.  This function returns true if the skb head is locked down
4639  * due to either being allocated via kmalloc, or by being a clone with
4640  * multiple references to the head.
4641  */
skb_head_is_locked(const struct sk_buff * skb)4642 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4643 {
4644 	return !skb->head_frag || skb_cloned(skb);
4645 }
4646 
4647 /* Local Checksum Offload.
4648  * Compute outer checksum based on the assumption that the
4649  * inner checksum will be offloaded later.
4650  * See Documentation/networking/checksum-offloads.rst for
4651  * explanation of how this works.
4652  * Fill in outer checksum adjustment (e.g. with sum of outer
4653  * pseudo-header) before calling.
4654  * Also ensure that inner checksum is in linear data area.
4655  */
lco_csum(struct sk_buff * skb)4656 static inline __wsum lco_csum(struct sk_buff *skb)
4657 {
4658 	unsigned char *csum_start = skb_checksum_start(skb);
4659 	unsigned char *l4_hdr = skb_transport_header(skb);
4660 	__wsum partial;
4661 
4662 	/* Start with complement of inner checksum adjustment */
4663 	partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
4664 						    skb->csum_offset));
4665 
4666 	/* Add in checksum of our headers (incl. outer checksum
4667 	 * adjustment filled in by caller) and return result.
4668 	 */
4669 	return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
4670 }
4671 
skb_is_redirected(const struct sk_buff * skb)4672 static inline bool skb_is_redirected(const struct sk_buff *skb)
4673 {
4674 	return skb->redirected;
4675 }
4676 
skb_set_redirected(struct sk_buff * skb,bool from_ingress)4677 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
4678 {
4679 	skb->redirected = 1;
4680 #ifdef CONFIG_NET_REDIRECT
4681 	skb->from_ingress = from_ingress;
4682 	if (skb->from_ingress)
4683 		skb->tstamp = 0;
4684 #endif
4685 }
4686 
skb_reset_redirect(struct sk_buff * skb)4687 static inline void skb_reset_redirect(struct sk_buff *skb)
4688 {
4689 	skb->redirected = 0;
4690 }
4691 
skb_csum_is_sctp(struct sk_buff * skb)4692 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
4693 {
4694 	return skb->csum_not_inet;
4695 }
4696 
skb_set_kcov_handle(struct sk_buff * skb,const u64 kcov_handle)4697 static inline void skb_set_kcov_handle(struct sk_buff *skb,
4698 				       const u64 kcov_handle)
4699 {
4700 #ifdef CONFIG_KCOV
4701 	skb->kcov_handle = kcov_handle;
4702 #endif
4703 }
4704 
skb_get_kcov_handle(struct sk_buff * skb)4705 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
4706 {
4707 #ifdef CONFIG_KCOV
4708 	return skb->kcov_handle;
4709 #else
4710 	return 0;
4711 #endif
4712 }
4713 
4714 #ifdef CONFIG_PAGE_POOL
skb_mark_for_recycle(struct sk_buff * skb)4715 static inline void skb_mark_for_recycle(struct sk_buff *skb)
4716 {
4717 	skb->pp_recycle = 1;
4718 }
4719 #endif
4720 
skb_pp_recycle(struct sk_buff * skb,void * data)4721 static inline bool skb_pp_recycle(struct sk_buff *skb, void *data)
4722 {
4723 	if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
4724 		return false;
4725 	return page_pool_return_skb_page(virt_to_page(data));
4726 }
4727 
4728 #endif	/* __KERNEL__ */
4729 #endif	/* _LINUX_SKBUFF_H */
4730