1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 #include <linux/indirect_call_wrapper.h>
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72 
73 /*
74  * This structure really needs to be cleaned up.
75  * Most of it is for TCP, and not used by any of
76  * the other protocols.
77  */
78 
79 /* Define this to get the SOCK_DBG debugging facility. */
80 #define SOCK_DEBUGGING
81 #ifdef SOCK_DEBUGGING
82 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
83 					printk(KERN_DEBUG msg); } while (0)
84 #else
85 /* Validate arguments and do nothing */
86 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)87 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
88 {
89 }
90 #endif
91 
92 /* This is the per-socket lock.  The spinlock provides a synchronization
93  * between user contexts and software interrupt processing, whereas the
94  * mini-semaphore synchronizes multiple users amongst themselves.
95  */
96 typedef struct {
97 	spinlock_t		slock;
98 	int			owned;
99 	wait_queue_head_t	wq;
100 	/*
101 	 * We express the mutex-alike socket_lock semantics
102 	 * to the lock validator by explicitly managing
103 	 * the slock as a lock variant (in addition to
104 	 * the slock itself):
105 	 */
106 #ifdef CONFIG_DEBUG_LOCK_ALLOC
107 	struct lockdep_map dep_map;
108 #endif
109 } socket_lock_t;
110 
111 struct sock;
112 struct proto;
113 struct net;
114 
115 typedef __u32 __bitwise __portpair;
116 typedef __u64 __bitwise __addrpair;
117 
118 /**
119  *	struct sock_common - minimal network layer representation of sockets
120  *	@skc_daddr: Foreign IPv4 addr
121  *	@skc_rcv_saddr: Bound local IPv4 addr
122  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
123  *	@skc_hash: hash value used with various protocol lookup tables
124  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
125  *	@skc_dport: placeholder for inet_dport/tw_dport
126  *	@skc_num: placeholder for inet_num/tw_num
127  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
128  *	@skc_family: network address family
129  *	@skc_state: Connection state
130  *	@skc_reuse: %SO_REUSEADDR setting
131  *	@skc_reuseport: %SO_REUSEPORT setting
132  *	@skc_ipv6only: socket is IPV6 only
133  *	@skc_net_refcnt: socket is using net ref counting
134  *	@skc_bound_dev_if: bound device index if != 0
135  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
136  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
137  *	@skc_prot: protocol handlers inside a network family
138  *	@skc_net: reference to the network namespace of this socket
139  *	@skc_v6_daddr: IPV6 destination address
140  *	@skc_v6_rcv_saddr: IPV6 source address
141  *	@skc_cookie: socket's cookie value
142  *	@skc_node: main hash linkage for various protocol lookup tables
143  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
144  *	@skc_tx_queue_mapping: tx queue number for this connection
145  *	@skc_rx_queue_mapping: rx queue number for this connection
146  *	@skc_flags: place holder for sk_flags
147  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
148  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
149  *	@skc_listener: connection request listener socket (aka rsk_listener)
150  *		[union with @skc_flags]
151  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
152  *		[union with @skc_flags]
153  *	@skc_incoming_cpu: record/match cpu processing incoming packets
154  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
155  *		[union with @skc_incoming_cpu]
156  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
157  *		[union with @skc_incoming_cpu]
158  *	@skc_refcnt: reference count
159  *
160  *	This is the minimal network layer representation of sockets, the header
161  *	for struct sock and struct inet_timewait_sock.
162  */
163 struct sock_common {
164 	/* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
165 	 * address on 64bit arches : cf INET_MATCH()
166 	 */
167 	union {
168 		__addrpair	skc_addrpair;
169 		struct {
170 			__be32	skc_daddr;
171 			__be32	skc_rcv_saddr;
172 		};
173 	};
174 	union  {
175 		unsigned int	skc_hash;
176 		__u16		skc_u16hashes[2];
177 	};
178 	/* skc_dport && skc_num must be grouped as well */
179 	union {
180 		__portpair	skc_portpair;
181 		struct {
182 			__be16	skc_dport;
183 			__u16	skc_num;
184 		};
185 	};
186 
187 	unsigned short		skc_family;
188 	volatile unsigned char	skc_state;
189 	unsigned char		skc_reuse:4;
190 	unsigned char		skc_reuseport:1;
191 	unsigned char		skc_ipv6only:1;
192 	unsigned char		skc_net_refcnt:1;
193 	int			skc_bound_dev_if;
194 	union {
195 		struct hlist_node	skc_bind_node;
196 		struct hlist_node	skc_portaddr_node;
197 	};
198 	struct proto		*skc_prot;
199 	possible_net_t		skc_net;
200 
201 #if IS_ENABLED(CONFIG_IPV6)
202 	struct in6_addr		skc_v6_daddr;
203 	struct in6_addr		skc_v6_rcv_saddr;
204 #endif
205 
206 	atomic64_t		skc_cookie;
207 
208 	/* following fields are padding to force
209 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
210 	 * assuming IPV6 is enabled. We use this padding differently
211 	 * for different kind of 'sockets'
212 	 */
213 	union {
214 		unsigned long	skc_flags;
215 		struct sock	*skc_listener; /* request_sock */
216 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
217 	};
218 	/*
219 	 * fields between dontcopy_begin/dontcopy_end
220 	 * are not copied in sock_copy()
221 	 */
222 	/* private: */
223 	int			skc_dontcopy_begin[0];
224 	/* public: */
225 	union {
226 		struct hlist_node	skc_node;
227 		struct hlist_nulls_node skc_nulls_node;
228 	};
229 	unsigned short		skc_tx_queue_mapping;
230 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
231 	unsigned short		skc_rx_queue_mapping;
232 #endif
233 	union {
234 		int		skc_incoming_cpu;
235 		u32		skc_rcv_wnd;
236 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
237 	};
238 
239 	refcount_t		skc_refcnt;
240 	/* private: */
241 	int                     skc_dontcopy_end[0];
242 	union {
243 		u32		skc_rxhash;
244 		u32		skc_window_clamp;
245 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
246 	};
247 	/* public: */
248 };
249 
250 struct bpf_local_storage;
251 
252 /**
253   *	struct sock - network layer representation of sockets
254   *	@__sk_common: shared layout with inet_timewait_sock
255   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
256   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
257   *	@sk_lock:	synchronizer
258   *	@sk_kern_sock: True if sock is using kernel lock classes
259   *	@sk_rcvbuf: size of receive buffer in bytes
260   *	@sk_wq: sock wait queue and async head
261   *	@sk_rx_dst: receive input route used by early demux
262   *	@sk_dst_cache: destination cache
263   *	@sk_dst_pending_confirm: need to confirm neighbour
264   *	@sk_policy: flow policy
265   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
266   *	@sk_receive_queue: incoming packets
267   *	@sk_wmem_alloc: transmit queue bytes committed
268   *	@sk_tsq_flags: TCP Small Queues flags
269   *	@sk_write_queue: Packet sending queue
270   *	@sk_omem_alloc: "o" is "option" or "other"
271   *	@sk_wmem_queued: persistent queue size
272   *	@sk_forward_alloc: space allocated forward
273   *	@sk_napi_id: id of the last napi context to receive data for sk
274   *	@sk_ll_usec: usecs to busypoll when there is no data
275   *	@sk_allocation: allocation mode
276   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
277   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
278   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
279   *	@sk_sndbuf: size of send buffer in bytes
280   *	@__sk_flags_offset: empty field used to determine location of bitfield
281   *	@sk_padding: unused element for alignment
282   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
283   *	@sk_no_check_rx: allow zero checksum in RX packets
284   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
285   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
286   *	@sk_route_forced_caps: static, forced route capabilities
287   *		(set in tcp_init_sock())
288   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
289   *	@sk_gso_max_size: Maximum GSO segment size to build
290   *	@sk_gso_max_segs: Maximum number of GSO segments
291   *	@sk_pacing_shift: scaling factor for TCP Small Queues
292   *	@sk_lingertime: %SO_LINGER l_linger setting
293   *	@sk_backlog: always used with the per-socket spinlock held
294   *	@sk_callback_lock: used with the callbacks in the end of this struct
295   *	@sk_error_queue: rarely used
296   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
297   *			  IPV6_ADDRFORM for instance)
298   *	@sk_err: last error
299   *	@sk_err_soft: errors that don't cause failure but are the cause of a
300   *		      persistent failure not just 'timed out'
301   *	@sk_drops: raw/udp drops counter
302   *	@sk_ack_backlog: current listen backlog
303   *	@sk_max_ack_backlog: listen backlog set in listen()
304   *	@sk_uid: user id of owner
305   *	@sk_prefer_busy_poll: prefer busypolling over softirq processing
306   *	@sk_busy_poll_budget: napi processing budget when busypolling
307   *	@sk_priority: %SO_PRIORITY setting
308   *	@sk_type: socket type (%SOCK_STREAM, etc)
309   *	@sk_protocol: which protocol this socket belongs in this network family
310   *	@sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
311   *	@sk_peer_pid: &struct pid for this socket's peer
312   *	@sk_peer_cred: %SO_PEERCRED setting
313   *	@sk_rcvlowat: %SO_RCVLOWAT setting
314   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
315   *	@sk_sndtimeo: %SO_SNDTIMEO setting
316   *	@sk_txhash: computed flow hash for use on transmit
317   *	@sk_filter: socket filtering instructions
318   *	@sk_timer: sock cleanup timer
319   *	@sk_stamp: time stamp of last packet received
320   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
321   *	@sk_tsflags: SO_TIMESTAMPING flags
322   *	@sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
323   *	              for timestamping
324   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
325   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
326   *	@sk_socket: Identd and reporting IO signals
327   *	@sk_user_data: RPC layer private data
328   *	@sk_frag: cached page frag
329   *	@sk_peek_off: current peek_offset value
330   *	@sk_send_head: front of stuff to transmit
331   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
332   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
333   *	@sk_security: used by security modules
334   *	@sk_mark: generic packet mark
335   *	@sk_cgrp_data: cgroup data for this cgroup
336   *	@sk_memcg: this socket's memory cgroup association
337   *	@sk_write_pending: a write to stream socket waits to start
338   *	@sk_state_change: callback to indicate change in the state of the sock
339   *	@sk_data_ready: callback to indicate there is data to be processed
340   *	@sk_write_space: callback to indicate there is bf sending space available
341   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
342   *	@sk_backlog_rcv: callback to process the backlog
343   *	@sk_validate_xmit_skb: ptr to an optional validate function
344   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
345   *	@sk_reuseport_cb: reuseport group container
346   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
347   *	@sk_rcu: used during RCU grace period
348   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
349   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
350   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
351   *	@sk_txtime_unused: unused txtime flags
352   */
353 struct sock {
354 	/*
355 	 * Now struct inet_timewait_sock also uses sock_common, so please just
356 	 * don't add nothing before this first member (__sk_common) --acme
357 	 */
358 	struct sock_common	__sk_common;
359 #define sk_node			__sk_common.skc_node
360 #define sk_nulls_node		__sk_common.skc_nulls_node
361 #define sk_refcnt		__sk_common.skc_refcnt
362 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
364 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
365 #endif
366 
367 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
369 #define sk_hash			__sk_common.skc_hash
370 #define sk_portpair		__sk_common.skc_portpair
371 #define sk_num			__sk_common.skc_num
372 #define sk_dport		__sk_common.skc_dport
373 #define sk_addrpair		__sk_common.skc_addrpair
374 #define sk_daddr		__sk_common.skc_daddr
375 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
376 #define sk_family		__sk_common.skc_family
377 #define sk_state		__sk_common.skc_state
378 #define sk_reuse		__sk_common.skc_reuse
379 #define sk_reuseport		__sk_common.skc_reuseport
380 #define sk_ipv6only		__sk_common.skc_ipv6only
381 #define sk_net_refcnt		__sk_common.skc_net_refcnt
382 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
383 #define sk_bind_node		__sk_common.skc_bind_node
384 #define sk_prot			__sk_common.skc_prot
385 #define sk_net			__sk_common.skc_net
386 #define sk_v6_daddr		__sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
388 #define sk_cookie		__sk_common.skc_cookie
389 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
390 #define sk_flags		__sk_common.skc_flags
391 #define sk_rxhash		__sk_common.skc_rxhash
392 
393 	socket_lock_t		sk_lock;
394 	atomic_t		sk_drops;
395 	int			sk_rcvlowat;
396 	struct sk_buff_head	sk_error_queue;
397 	struct sk_buff		*sk_rx_skb_cache;
398 	struct sk_buff_head	sk_receive_queue;
399 	/*
400 	 * The backlog queue is special, it is always used with
401 	 * the per-socket spinlock held and requires low latency
402 	 * access. Therefore we special case it's implementation.
403 	 * Note : rmem_alloc is in this structure to fill a hole
404 	 * on 64bit arches, not because its logically part of
405 	 * backlog.
406 	 */
407 	struct {
408 		atomic_t	rmem_alloc;
409 		int		len;
410 		struct sk_buff	*head;
411 		struct sk_buff	*tail;
412 	} sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414 
415 	int			sk_forward_alloc;
416 #ifdef CONFIG_NET_RX_BUSY_POLL
417 	unsigned int		sk_ll_usec;
418 	/* ===== mostly read cache line ===== */
419 	unsigned int		sk_napi_id;
420 #endif
421 	int			sk_rcvbuf;
422 
423 	struct sk_filter __rcu	*sk_filter;
424 	union {
425 		struct socket_wq __rcu	*sk_wq;
426 		/* private: */
427 		struct socket_wq	*sk_wq_raw;
428 		/* public: */
429 	};
430 #ifdef CONFIG_XFRM
431 	struct xfrm_policy __rcu *sk_policy[2];
432 #endif
433 	struct dst_entry	*sk_rx_dst;
434 	struct dst_entry __rcu	*sk_dst_cache;
435 	atomic_t		sk_omem_alloc;
436 	int			sk_sndbuf;
437 
438 	/* ===== cache line for TX ===== */
439 	int			sk_wmem_queued;
440 	refcount_t		sk_wmem_alloc;
441 	unsigned long		sk_tsq_flags;
442 	union {
443 		struct sk_buff	*sk_send_head;
444 		struct rb_root	tcp_rtx_queue;
445 	};
446 	struct sk_buff		*sk_tx_skb_cache;
447 	struct sk_buff_head	sk_write_queue;
448 	__s32			sk_peek_off;
449 	int			sk_write_pending;
450 	__u32			sk_dst_pending_confirm;
451 	u32			sk_pacing_status; /* see enum sk_pacing */
452 	long			sk_sndtimeo;
453 	struct timer_list	sk_timer;
454 	__u32			sk_priority;
455 	__u32			sk_mark;
456 	unsigned long		sk_pacing_rate; /* bytes per second */
457 	unsigned long		sk_max_pacing_rate;
458 	struct page_frag	sk_frag;
459 	netdev_features_t	sk_route_caps;
460 	netdev_features_t	sk_route_nocaps;
461 	netdev_features_t	sk_route_forced_caps;
462 	int			sk_gso_type;
463 	unsigned int		sk_gso_max_size;
464 	gfp_t			sk_allocation;
465 	__u32			sk_txhash;
466 
467 	/*
468 	 * Because of non atomicity rules, all
469 	 * changes are protected by socket lock.
470 	 */
471 	u8			sk_padding : 1,
472 				sk_kern_sock : 1,
473 				sk_no_check_tx : 1,
474 				sk_no_check_rx : 1,
475 				sk_userlocks : 4;
476 	u8			sk_pacing_shift;
477 	u16			sk_type;
478 	u16			sk_protocol;
479 	u16			sk_gso_max_segs;
480 	unsigned long	        sk_lingertime;
481 	struct proto		*sk_prot_creator;
482 	rwlock_t		sk_callback_lock;
483 	int			sk_err,
484 				sk_err_soft;
485 	u32			sk_ack_backlog;
486 	u32			sk_max_ack_backlog;
487 	kuid_t			sk_uid;
488 #ifdef CONFIG_NET_RX_BUSY_POLL
489 	u8			sk_prefer_busy_poll;
490 	u16			sk_busy_poll_budget;
491 #endif
492 	spinlock_t		sk_peer_lock;
493 	struct pid		*sk_peer_pid;
494 	const struct cred	*sk_peer_cred;
495 
496 	long			sk_rcvtimeo;
497 	ktime_t			sk_stamp;
498 #if BITS_PER_LONG==32
499 	seqlock_t		sk_stamp_seq;
500 #endif
501 	u16			sk_tsflags;
502 	int			sk_bind_phc;
503 	u8			sk_shutdown;
504 	u32			sk_tskey;
505 	atomic_t		sk_zckey;
506 
507 	u8			sk_clockid;
508 	u8			sk_txtime_deadline_mode : 1,
509 				sk_txtime_report_errors : 1,
510 				sk_txtime_unused : 6;
511 
512 	struct socket		*sk_socket;
513 	void			*sk_user_data;
514 #ifdef CONFIG_SECURITY
515 	void			*sk_security;
516 #endif
517 	struct sock_cgroup_data	sk_cgrp_data;
518 	struct mem_cgroup	*sk_memcg;
519 	void			(*sk_state_change)(struct sock *sk);
520 	void			(*sk_data_ready)(struct sock *sk);
521 	void			(*sk_write_space)(struct sock *sk);
522 	void			(*sk_error_report)(struct sock *sk);
523 	int			(*sk_backlog_rcv)(struct sock *sk,
524 						  struct sk_buff *skb);
525 #ifdef CONFIG_SOCK_VALIDATE_XMIT
526 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
527 							struct net_device *dev,
528 							struct sk_buff *skb);
529 #endif
530 	void                    (*sk_destruct)(struct sock *sk);
531 	struct sock_reuseport __rcu	*sk_reuseport_cb;
532 #ifdef CONFIG_BPF_SYSCALL
533 	struct bpf_local_storage __rcu	*sk_bpf_storage;
534 #endif
535 	struct rcu_head		sk_rcu;
536 };
537 
538 enum sk_pacing {
539 	SK_PACING_NONE		= 0,
540 	SK_PACING_NEEDED	= 1,
541 	SK_PACING_FQ		= 2,
542 };
543 
544 /* Pointer stored in sk_user_data might not be suitable for copying
545  * when cloning the socket. For instance, it can point to a reference
546  * counted object. sk_user_data bottom bit is set if pointer must not
547  * be copied.
548  */
549 #define SK_USER_DATA_NOCOPY	1UL
550 #define SK_USER_DATA_BPF	2UL	/* Managed by BPF */
551 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
552 
553 /**
554  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
555  * @sk: socket
556  */
sk_user_data_is_nocopy(const struct sock * sk)557 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
558 {
559 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
560 }
561 
562 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
563 
564 #define rcu_dereference_sk_user_data(sk)				\
565 ({									\
566 	void *__tmp = rcu_dereference(__sk_user_data((sk)));		\
567 	(void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK);		\
568 })
569 #define rcu_assign_sk_user_data(sk, ptr)				\
570 ({									\
571 	uintptr_t __tmp = (uintptr_t)(ptr);				\
572 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
573 	rcu_assign_pointer(__sk_user_data((sk)), __tmp);		\
574 })
575 #define rcu_assign_sk_user_data_nocopy(sk, ptr)				\
576 ({									\
577 	uintptr_t __tmp = (uintptr_t)(ptr);				\
578 	WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK);			\
579 	rcu_assign_pointer(__sk_user_data((sk)),			\
580 			   __tmp | SK_USER_DATA_NOCOPY);		\
581 })
582 
583 /*
584  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
585  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
586  * on a socket means that the socket will reuse everybody else's port
587  * without looking at the other's sk_reuse value.
588  */
589 
590 #define SK_NO_REUSE	0
591 #define SK_CAN_REUSE	1
592 #define SK_FORCE_REUSE	2
593 
594 int sk_set_peek_off(struct sock *sk, int val);
595 
sk_peek_offset(struct sock * sk,int flags)596 static inline int sk_peek_offset(struct sock *sk, int flags)
597 {
598 	if (unlikely(flags & MSG_PEEK)) {
599 		return READ_ONCE(sk->sk_peek_off);
600 	}
601 
602 	return 0;
603 }
604 
sk_peek_offset_bwd(struct sock * sk,int val)605 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
606 {
607 	s32 off = READ_ONCE(sk->sk_peek_off);
608 
609 	if (unlikely(off >= 0)) {
610 		off = max_t(s32, off - val, 0);
611 		WRITE_ONCE(sk->sk_peek_off, off);
612 	}
613 }
614 
sk_peek_offset_fwd(struct sock * sk,int val)615 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
616 {
617 	sk_peek_offset_bwd(sk, -val);
618 }
619 
620 /*
621  * Hashed lists helper routines
622  */
sk_entry(const struct hlist_node * node)623 static inline struct sock *sk_entry(const struct hlist_node *node)
624 {
625 	return hlist_entry(node, struct sock, sk_node);
626 }
627 
__sk_head(const struct hlist_head * head)628 static inline struct sock *__sk_head(const struct hlist_head *head)
629 {
630 	return hlist_entry(head->first, struct sock, sk_node);
631 }
632 
sk_head(const struct hlist_head * head)633 static inline struct sock *sk_head(const struct hlist_head *head)
634 {
635 	return hlist_empty(head) ? NULL : __sk_head(head);
636 }
637 
__sk_nulls_head(const struct hlist_nulls_head * head)638 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
639 {
640 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
641 }
642 
sk_nulls_head(const struct hlist_nulls_head * head)643 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
644 {
645 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
646 }
647 
sk_next(const struct sock * sk)648 static inline struct sock *sk_next(const struct sock *sk)
649 {
650 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
651 }
652 
sk_nulls_next(const struct sock * sk)653 static inline struct sock *sk_nulls_next(const struct sock *sk)
654 {
655 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
656 		hlist_nulls_entry(sk->sk_nulls_node.next,
657 				  struct sock, sk_nulls_node) :
658 		NULL;
659 }
660 
sk_unhashed(const struct sock * sk)661 static inline bool sk_unhashed(const struct sock *sk)
662 {
663 	return hlist_unhashed(&sk->sk_node);
664 }
665 
sk_hashed(const struct sock * sk)666 static inline bool sk_hashed(const struct sock *sk)
667 {
668 	return !sk_unhashed(sk);
669 }
670 
sk_node_init(struct hlist_node * node)671 static inline void sk_node_init(struct hlist_node *node)
672 {
673 	node->pprev = NULL;
674 }
675 
sk_nulls_node_init(struct hlist_nulls_node * node)676 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
677 {
678 	node->pprev = NULL;
679 }
680 
__sk_del_node(struct sock * sk)681 static inline void __sk_del_node(struct sock *sk)
682 {
683 	__hlist_del(&sk->sk_node);
684 }
685 
686 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)687 static inline bool __sk_del_node_init(struct sock *sk)
688 {
689 	if (sk_hashed(sk)) {
690 		__sk_del_node(sk);
691 		sk_node_init(&sk->sk_node);
692 		return true;
693 	}
694 	return false;
695 }
696 
697 /* Grab socket reference count. This operation is valid only
698    when sk is ALREADY grabbed f.e. it is found in hash table
699    or a list and the lookup is made under lock preventing hash table
700    modifications.
701  */
702 
sock_hold(struct sock * sk)703 static __always_inline void sock_hold(struct sock *sk)
704 {
705 	refcount_inc(&sk->sk_refcnt);
706 }
707 
708 /* Ungrab socket in the context, which assumes that socket refcnt
709    cannot hit zero, f.e. it is true in context of any socketcall.
710  */
__sock_put(struct sock * sk)711 static __always_inline void __sock_put(struct sock *sk)
712 {
713 	refcount_dec(&sk->sk_refcnt);
714 }
715 
sk_del_node_init(struct sock * sk)716 static inline bool sk_del_node_init(struct sock *sk)
717 {
718 	bool rc = __sk_del_node_init(sk);
719 
720 	if (rc) {
721 		/* paranoid for a while -acme */
722 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
723 		__sock_put(sk);
724 	}
725 	return rc;
726 }
727 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
728 
__sk_nulls_del_node_init_rcu(struct sock * sk)729 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
730 {
731 	if (sk_hashed(sk)) {
732 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
733 		return true;
734 	}
735 	return false;
736 }
737 
sk_nulls_del_node_init_rcu(struct sock * sk)738 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
739 {
740 	bool rc = __sk_nulls_del_node_init_rcu(sk);
741 
742 	if (rc) {
743 		/* paranoid for a while -acme */
744 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
745 		__sock_put(sk);
746 	}
747 	return rc;
748 }
749 
__sk_add_node(struct sock * sk,struct hlist_head * list)750 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
751 {
752 	hlist_add_head(&sk->sk_node, list);
753 }
754 
sk_add_node(struct sock * sk,struct hlist_head * list)755 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
756 {
757 	sock_hold(sk);
758 	__sk_add_node(sk, list);
759 }
760 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)761 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
762 {
763 	sock_hold(sk);
764 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
765 	    sk->sk_family == AF_INET6)
766 		hlist_add_tail_rcu(&sk->sk_node, list);
767 	else
768 		hlist_add_head_rcu(&sk->sk_node, list);
769 }
770 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)771 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
772 {
773 	sock_hold(sk);
774 	hlist_add_tail_rcu(&sk->sk_node, list);
775 }
776 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)777 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
778 {
779 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
780 }
781 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)782 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
783 {
784 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
785 }
786 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)787 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
788 {
789 	sock_hold(sk);
790 	__sk_nulls_add_node_rcu(sk, list);
791 }
792 
__sk_del_bind_node(struct sock * sk)793 static inline void __sk_del_bind_node(struct sock *sk)
794 {
795 	__hlist_del(&sk->sk_bind_node);
796 }
797 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)798 static inline void sk_add_bind_node(struct sock *sk,
799 					struct hlist_head *list)
800 {
801 	hlist_add_head(&sk->sk_bind_node, list);
802 }
803 
804 #define sk_for_each(__sk, list) \
805 	hlist_for_each_entry(__sk, list, sk_node)
806 #define sk_for_each_rcu(__sk, list) \
807 	hlist_for_each_entry_rcu(__sk, list, sk_node)
808 #define sk_nulls_for_each(__sk, node, list) \
809 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
810 #define sk_nulls_for_each_rcu(__sk, node, list) \
811 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
812 #define sk_for_each_from(__sk) \
813 	hlist_for_each_entry_from(__sk, sk_node)
814 #define sk_nulls_for_each_from(__sk, node) \
815 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
816 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
817 #define sk_for_each_safe(__sk, tmp, list) \
818 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
819 #define sk_for_each_bound(__sk, list) \
820 	hlist_for_each_entry(__sk, list, sk_bind_node)
821 
822 /**
823  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
824  * @tpos:	the type * to use as a loop cursor.
825  * @pos:	the &struct hlist_node to use as a loop cursor.
826  * @head:	the head for your list.
827  * @offset:	offset of hlist_node within the struct.
828  *
829  */
830 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
831 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
832 	     pos != NULL &&						       \
833 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
834 	     pos = rcu_dereference(hlist_next_rcu(pos)))
835 
sk_user_ns(struct sock * sk)836 static inline struct user_namespace *sk_user_ns(struct sock *sk)
837 {
838 	/* Careful only use this in a context where these parameters
839 	 * can not change and must all be valid, such as recvmsg from
840 	 * userspace.
841 	 */
842 	return sk->sk_socket->file->f_cred->user_ns;
843 }
844 
845 /* Sock flags */
846 enum sock_flags {
847 	SOCK_DEAD,
848 	SOCK_DONE,
849 	SOCK_URGINLINE,
850 	SOCK_KEEPOPEN,
851 	SOCK_LINGER,
852 	SOCK_DESTROY,
853 	SOCK_BROADCAST,
854 	SOCK_TIMESTAMP,
855 	SOCK_ZAPPED,
856 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
857 	SOCK_DBG, /* %SO_DEBUG setting */
858 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
859 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
860 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
861 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
862 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
863 	SOCK_FASYNC, /* fasync() active */
864 	SOCK_RXQ_OVFL,
865 	SOCK_ZEROCOPY, /* buffers from userspace */
866 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
867 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
868 		     * Will use last 4 bytes of packet sent from
869 		     * user-space instead.
870 		     */
871 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
872 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
873 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
874 	SOCK_TXTIME,
875 	SOCK_XDP, /* XDP is attached */
876 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
877 };
878 
879 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
880 
sock_copy_flags(struct sock * nsk,struct sock * osk)881 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
882 {
883 	nsk->sk_flags = osk->sk_flags;
884 }
885 
sock_set_flag(struct sock * sk,enum sock_flags flag)886 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
887 {
888 	__set_bit(flag, &sk->sk_flags);
889 }
890 
sock_reset_flag(struct sock * sk,enum sock_flags flag)891 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
892 {
893 	__clear_bit(flag, &sk->sk_flags);
894 }
895 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)896 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
897 				     int valbool)
898 {
899 	if (valbool)
900 		sock_set_flag(sk, bit);
901 	else
902 		sock_reset_flag(sk, bit);
903 }
904 
sock_flag(const struct sock * sk,enum sock_flags flag)905 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
906 {
907 	return test_bit(flag, &sk->sk_flags);
908 }
909 
910 #ifdef CONFIG_NET
911 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)912 static inline int sk_memalloc_socks(void)
913 {
914 	return static_branch_unlikely(&memalloc_socks_key);
915 }
916 
917 void __receive_sock(struct file *file);
918 #else
919 
sk_memalloc_socks(void)920 static inline int sk_memalloc_socks(void)
921 {
922 	return 0;
923 }
924 
__receive_sock(struct file * file)925 static inline void __receive_sock(struct file *file)
926 { }
927 #endif
928 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)929 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
930 {
931 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
932 }
933 
sk_acceptq_removed(struct sock * sk)934 static inline void sk_acceptq_removed(struct sock *sk)
935 {
936 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
937 }
938 
sk_acceptq_added(struct sock * sk)939 static inline void sk_acceptq_added(struct sock *sk)
940 {
941 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
942 }
943 
944 /* Note: If you think the test should be:
945  *	return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
946  * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
947  */
sk_acceptq_is_full(const struct sock * sk)948 static inline bool sk_acceptq_is_full(const struct sock *sk)
949 {
950 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
951 }
952 
953 /*
954  * Compute minimal free write space needed to queue new packets.
955  */
sk_stream_min_wspace(const struct sock * sk)956 static inline int sk_stream_min_wspace(const struct sock *sk)
957 {
958 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
959 }
960 
sk_stream_wspace(const struct sock * sk)961 static inline int sk_stream_wspace(const struct sock *sk)
962 {
963 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
964 }
965 
sk_wmem_queued_add(struct sock * sk,int val)966 static inline void sk_wmem_queued_add(struct sock *sk, int val)
967 {
968 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
969 }
970 
971 void sk_stream_write_space(struct sock *sk);
972 
973 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)974 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
975 {
976 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
977 	skb_dst_force(skb);
978 
979 	if (!sk->sk_backlog.tail)
980 		WRITE_ONCE(sk->sk_backlog.head, skb);
981 	else
982 		sk->sk_backlog.tail->next = skb;
983 
984 	WRITE_ONCE(sk->sk_backlog.tail, skb);
985 	skb->next = NULL;
986 }
987 
988 /*
989  * Take into account size of receive queue and backlog queue
990  * Do not take into account this skb truesize,
991  * to allow even a single big packet to come.
992  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)993 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
994 {
995 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
996 
997 	return qsize > limit;
998 }
999 
1000 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1001 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1002 					      unsigned int limit)
1003 {
1004 	if (sk_rcvqueues_full(sk, limit))
1005 		return -ENOBUFS;
1006 
1007 	/*
1008 	 * If the skb was allocated from pfmemalloc reserves, only
1009 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1010 	 * helping free memory
1011 	 */
1012 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1013 		return -ENOMEM;
1014 
1015 	__sk_add_backlog(sk, skb);
1016 	sk->sk_backlog.len += skb->truesize;
1017 	return 0;
1018 }
1019 
1020 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1021 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1022 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1023 {
1024 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1025 		return __sk_backlog_rcv(sk, skb);
1026 
1027 	return sk->sk_backlog_rcv(sk, skb);
1028 }
1029 
sk_incoming_cpu_update(struct sock * sk)1030 static inline void sk_incoming_cpu_update(struct sock *sk)
1031 {
1032 	int cpu = raw_smp_processor_id();
1033 
1034 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1035 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1036 }
1037 
sock_rps_record_flow_hash(__u32 hash)1038 static inline void sock_rps_record_flow_hash(__u32 hash)
1039 {
1040 #ifdef CONFIG_RPS
1041 	struct rps_sock_flow_table *sock_flow_table;
1042 
1043 	rcu_read_lock();
1044 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1045 	rps_record_sock_flow(sock_flow_table, hash);
1046 	rcu_read_unlock();
1047 #endif
1048 }
1049 
sock_rps_record_flow(const struct sock * sk)1050 static inline void sock_rps_record_flow(const struct sock *sk)
1051 {
1052 #ifdef CONFIG_RPS
1053 	if (static_branch_unlikely(&rfs_needed)) {
1054 		/* Reading sk->sk_rxhash might incur an expensive cache line
1055 		 * miss.
1056 		 *
1057 		 * TCP_ESTABLISHED does cover almost all states where RFS
1058 		 * might be useful, and is cheaper [1] than testing :
1059 		 *	IPv4: inet_sk(sk)->inet_daddr
1060 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1061 		 * OR	an additional socket flag
1062 		 * [1] : sk_state and sk_prot are in the same cache line.
1063 		 */
1064 		if (sk->sk_state == TCP_ESTABLISHED)
1065 			sock_rps_record_flow_hash(sk->sk_rxhash);
1066 	}
1067 #endif
1068 }
1069 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1070 static inline void sock_rps_save_rxhash(struct sock *sk,
1071 					const struct sk_buff *skb)
1072 {
1073 #ifdef CONFIG_RPS
1074 	if (unlikely(sk->sk_rxhash != skb->hash))
1075 		sk->sk_rxhash = skb->hash;
1076 #endif
1077 }
1078 
sock_rps_reset_rxhash(struct sock * sk)1079 static inline void sock_rps_reset_rxhash(struct sock *sk)
1080 {
1081 #ifdef CONFIG_RPS
1082 	sk->sk_rxhash = 0;
1083 #endif
1084 }
1085 
1086 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1087 	({	int __rc;						\
1088 		release_sock(__sk);					\
1089 		__rc = __condition;					\
1090 		if (!__rc) {						\
1091 			*(__timeo) = wait_woken(__wait,			\
1092 						TASK_INTERRUPTIBLE,	\
1093 						*(__timeo));		\
1094 		}							\
1095 		sched_annotate_sleep();					\
1096 		lock_sock(__sk);					\
1097 		__rc = __condition;					\
1098 		__rc;							\
1099 	})
1100 
1101 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1102 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1103 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1104 int sk_stream_error(struct sock *sk, int flags, int err);
1105 void sk_stream_kill_queues(struct sock *sk);
1106 void sk_set_memalloc(struct sock *sk);
1107 void sk_clear_memalloc(struct sock *sk);
1108 
1109 void __sk_flush_backlog(struct sock *sk);
1110 
sk_flush_backlog(struct sock * sk)1111 static inline bool sk_flush_backlog(struct sock *sk)
1112 {
1113 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1114 		__sk_flush_backlog(sk);
1115 		return true;
1116 	}
1117 	return false;
1118 }
1119 
1120 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1121 
1122 struct request_sock_ops;
1123 struct timewait_sock_ops;
1124 struct inet_hashinfo;
1125 struct raw_hashinfo;
1126 struct smc_hashinfo;
1127 struct module;
1128 struct sk_psock;
1129 
1130 /*
1131  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1132  * un-modified. Special care is taken when initializing object to zero.
1133  */
sk_prot_clear_nulls(struct sock * sk,int size)1134 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1135 {
1136 	if (offsetof(struct sock, sk_node.next) != 0)
1137 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1138 	memset(&sk->sk_node.pprev, 0,
1139 	       size - offsetof(struct sock, sk_node.pprev));
1140 }
1141 
1142 /* Networking protocol blocks we attach to sockets.
1143  * socket layer -> transport layer interface
1144  */
1145 struct proto {
1146 	void			(*close)(struct sock *sk,
1147 					long timeout);
1148 	int			(*pre_connect)(struct sock *sk,
1149 					struct sockaddr *uaddr,
1150 					int addr_len);
1151 	int			(*connect)(struct sock *sk,
1152 					struct sockaddr *uaddr,
1153 					int addr_len);
1154 	int			(*disconnect)(struct sock *sk, int flags);
1155 
1156 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1157 					  bool kern);
1158 
1159 	int			(*ioctl)(struct sock *sk, int cmd,
1160 					 unsigned long arg);
1161 	int			(*init)(struct sock *sk);
1162 	void			(*destroy)(struct sock *sk);
1163 	void			(*shutdown)(struct sock *sk, int how);
1164 	int			(*setsockopt)(struct sock *sk, int level,
1165 					int optname, sockptr_t optval,
1166 					unsigned int optlen);
1167 	int			(*getsockopt)(struct sock *sk, int level,
1168 					int optname, char __user *optval,
1169 					int __user *option);
1170 	void			(*keepalive)(struct sock *sk, int valbool);
1171 #ifdef CONFIG_COMPAT
1172 	int			(*compat_ioctl)(struct sock *sk,
1173 					unsigned int cmd, unsigned long arg);
1174 #endif
1175 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1176 					   size_t len);
1177 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1178 					   size_t len, int noblock, int flags,
1179 					   int *addr_len);
1180 	int			(*sendpage)(struct sock *sk, struct page *page,
1181 					int offset, size_t size, int flags);
1182 	int			(*bind)(struct sock *sk,
1183 					struct sockaddr *addr, int addr_len);
1184 	int			(*bind_add)(struct sock *sk,
1185 					struct sockaddr *addr, int addr_len);
1186 
1187 	int			(*backlog_rcv) (struct sock *sk,
1188 						struct sk_buff *skb);
1189 	bool			(*bpf_bypass_getsockopt)(int level,
1190 							 int optname);
1191 
1192 	void		(*release_cb)(struct sock *sk);
1193 
1194 	/* Keeping track of sk's, looking them up, and port selection methods. */
1195 	int			(*hash)(struct sock *sk);
1196 	void			(*unhash)(struct sock *sk);
1197 	void			(*rehash)(struct sock *sk);
1198 	int			(*get_port)(struct sock *sk, unsigned short snum);
1199 #ifdef CONFIG_BPF_SYSCALL
1200 	int			(*psock_update_sk_prot)(struct sock *sk,
1201 							struct sk_psock *psock,
1202 							bool restore);
1203 #endif
1204 
1205 	/* Keeping track of sockets in use */
1206 #ifdef CONFIG_PROC_FS
1207 	unsigned int		inuse_idx;
1208 #endif
1209 
1210 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1211 	bool			(*sock_is_readable)(struct sock *sk);
1212 	/* Memory pressure */
1213 	void			(*enter_memory_pressure)(struct sock *sk);
1214 	void			(*leave_memory_pressure)(struct sock *sk);
1215 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1216 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1217 	/*
1218 	 * Pressure flag: try to collapse.
1219 	 * Technical note: it is used by multiple contexts non atomically.
1220 	 * All the __sk_mem_schedule() is of this nature: accounting
1221 	 * is strict, actions are advisory and have some latency.
1222 	 */
1223 	unsigned long		*memory_pressure;
1224 	long			*sysctl_mem;
1225 
1226 	int			*sysctl_wmem;
1227 	int			*sysctl_rmem;
1228 	u32			sysctl_wmem_offset;
1229 	u32			sysctl_rmem_offset;
1230 
1231 	int			max_header;
1232 	bool			no_autobind;
1233 
1234 	struct kmem_cache	*slab;
1235 	unsigned int		obj_size;
1236 	slab_flags_t		slab_flags;
1237 	unsigned int		useroffset;	/* Usercopy region offset */
1238 	unsigned int		usersize;	/* Usercopy region size */
1239 
1240 	struct percpu_counter	*orphan_count;
1241 
1242 	struct request_sock_ops	*rsk_prot;
1243 	struct timewait_sock_ops *twsk_prot;
1244 
1245 	union {
1246 		struct inet_hashinfo	*hashinfo;
1247 		struct udp_table	*udp_table;
1248 		struct raw_hashinfo	*raw_hash;
1249 		struct smc_hashinfo	*smc_hash;
1250 	} h;
1251 
1252 	struct module		*owner;
1253 
1254 	char			name[32];
1255 
1256 	struct list_head	node;
1257 #ifdef SOCK_REFCNT_DEBUG
1258 	atomic_t		socks;
1259 #endif
1260 	int			(*diag_destroy)(struct sock *sk, int err);
1261 } __randomize_layout;
1262 
1263 int proto_register(struct proto *prot, int alloc_slab);
1264 void proto_unregister(struct proto *prot);
1265 int sock_load_diag_module(int family, int protocol);
1266 
1267 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1268 static inline void sk_refcnt_debug_inc(struct sock *sk)
1269 {
1270 	atomic_inc(&sk->sk_prot->socks);
1271 }
1272 
sk_refcnt_debug_dec(struct sock * sk)1273 static inline void sk_refcnt_debug_dec(struct sock *sk)
1274 {
1275 	atomic_dec(&sk->sk_prot->socks);
1276 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1277 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1278 }
1279 
sk_refcnt_debug_release(const struct sock * sk)1280 static inline void sk_refcnt_debug_release(const struct sock *sk)
1281 {
1282 	if (refcount_read(&sk->sk_refcnt) != 1)
1283 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1284 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1285 }
1286 #else /* SOCK_REFCNT_DEBUG */
1287 #define sk_refcnt_debug_inc(sk) do { } while (0)
1288 #define sk_refcnt_debug_dec(sk) do { } while (0)
1289 #define sk_refcnt_debug_release(sk) do { } while (0)
1290 #endif /* SOCK_REFCNT_DEBUG */
1291 
1292 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1293 
__sk_stream_memory_free(const struct sock * sk,int wake)1294 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1295 {
1296 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1297 		return false;
1298 
1299 #ifdef CONFIG_INET
1300 	return sk->sk_prot->stream_memory_free ?
1301 		INDIRECT_CALL_1(sk->sk_prot->stream_memory_free,
1302 			        tcp_stream_memory_free,
1303 				sk, wake) : true;
1304 #else
1305 	return sk->sk_prot->stream_memory_free ?
1306 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1307 #endif
1308 }
1309 
sk_stream_memory_free(const struct sock * sk)1310 static inline bool sk_stream_memory_free(const struct sock *sk)
1311 {
1312 	return __sk_stream_memory_free(sk, 0);
1313 }
1314 
__sk_stream_is_writeable(const struct sock * sk,int wake)1315 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1316 {
1317 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1318 	       __sk_stream_memory_free(sk, wake);
1319 }
1320 
sk_stream_is_writeable(const struct sock * sk)1321 static inline bool sk_stream_is_writeable(const struct sock *sk)
1322 {
1323 	return __sk_stream_is_writeable(sk, 0);
1324 }
1325 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1326 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1327 					    struct cgroup *ancestor)
1328 {
1329 #ifdef CONFIG_SOCK_CGROUP_DATA
1330 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1331 				    ancestor);
1332 #else
1333 	return -ENOTSUPP;
1334 #endif
1335 }
1336 
sk_has_memory_pressure(const struct sock * sk)1337 static inline bool sk_has_memory_pressure(const struct sock *sk)
1338 {
1339 	return sk->sk_prot->memory_pressure != NULL;
1340 }
1341 
sk_under_memory_pressure(const struct sock * sk)1342 static inline bool sk_under_memory_pressure(const struct sock *sk)
1343 {
1344 	if (!sk->sk_prot->memory_pressure)
1345 		return false;
1346 
1347 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1348 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1349 		return true;
1350 
1351 	return !!*sk->sk_prot->memory_pressure;
1352 }
1353 
1354 static inline long
sk_memory_allocated(const struct sock * sk)1355 sk_memory_allocated(const struct sock *sk)
1356 {
1357 	return atomic_long_read(sk->sk_prot->memory_allocated);
1358 }
1359 
1360 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1361 sk_memory_allocated_add(struct sock *sk, int amt)
1362 {
1363 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1364 }
1365 
1366 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1367 sk_memory_allocated_sub(struct sock *sk, int amt)
1368 {
1369 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1370 }
1371 
1372 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1373 
sk_sockets_allocated_dec(struct sock * sk)1374 static inline void sk_sockets_allocated_dec(struct sock *sk)
1375 {
1376 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1377 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1378 }
1379 
sk_sockets_allocated_inc(struct sock * sk)1380 static inline void sk_sockets_allocated_inc(struct sock *sk)
1381 {
1382 	percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1383 				 SK_ALLOC_PERCPU_COUNTER_BATCH);
1384 }
1385 
1386 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1387 sk_sockets_allocated_read_positive(struct sock *sk)
1388 {
1389 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1390 }
1391 
1392 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1393 proto_sockets_allocated_sum_positive(struct proto *prot)
1394 {
1395 	return percpu_counter_sum_positive(prot->sockets_allocated);
1396 }
1397 
1398 static inline long
proto_memory_allocated(struct proto * prot)1399 proto_memory_allocated(struct proto *prot)
1400 {
1401 	return atomic_long_read(prot->memory_allocated);
1402 }
1403 
1404 static inline bool
proto_memory_pressure(struct proto * prot)1405 proto_memory_pressure(struct proto *prot)
1406 {
1407 	if (!prot->memory_pressure)
1408 		return false;
1409 	return !!*prot->memory_pressure;
1410 }
1411 
1412 
1413 #ifdef CONFIG_PROC_FS
1414 /* Called with local bh disabled */
1415 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1416 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1417 int sock_inuse_get(struct net *net);
1418 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1419 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1420 		int inc)
1421 {
1422 }
1423 #endif
1424 
1425 
1426 /* With per-bucket locks this operation is not-atomic, so that
1427  * this version is not worse.
1428  */
__sk_prot_rehash(struct sock * sk)1429 static inline int __sk_prot_rehash(struct sock *sk)
1430 {
1431 	sk->sk_prot->unhash(sk);
1432 	return sk->sk_prot->hash(sk);
1433 }
1434 
1435 /* About 10 seconds */
1436 #define SOCK_DESTROY_TIME (10*HZ)
1437 
1438 /* Sockets 0-1023 can't be bound to unless you are superuser */
1439 #define PROT_SOCK	1024
1440 
1441 #define SHUTDOWN_MASK	3
1442 #define RCV_SHUTDOWN	1
1443 #define SEND_SHUTDOWN	2
1444 
1445 #define SOCK_BINDADDR_LOCK	4
1446 #define SOCK_BINDPORT_LOCK	8
1447 
1448 struct socket_alloc {
1449 	struct socket socket;
1450 	struct inode vfs_inode;
1451 };
1452 
SOCKET_I(struct inode * inode)1453 static inline struct socket *SOCKET_I(struct inode *inode)
1454 {
1455 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1456 }
1457 
SOCK_INODE(struct socket * socket)1458 static inline struct inode *SOCK_INODE(struct socket *socket)
1459 {
1460 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1461 }
1462 
1463 /*
1464  * Functions for memory accounting
1465  */
1466 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1467 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1468 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1469 void __sk_mem_reclaim(struct sock *sk, int amount);
1470 
1471 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1472  * do not necessarily have 16x time more memory than 4KB ones.
1473  */
1474 #define SK_MEM_QUANTUM 4096
1475 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1476 #define SK_MEM_SEND	0
1477 #define SK_MEM_RECV	1
1478 
1479 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1480 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1481 {
1482 	long val = sk->sk_prot->sysctl_mem[index];
1483 
1484 #if PAGE_SIZE > SK_MEM_QUANTUM
1485 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1486 #elif PAGE_SIZE < SK_MEM_QUANTUM
1487 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1488 #endif
1489 	return val;
1490 }
1491 
sk_mem_pages(int amt)1492 static inline int sk_mem_pages(int amt)
1493 {
1494 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1495 }
1496 
sk_has_account(struct sock * sk)1497 static inline bool sk_has_account(struct sock *sk)
1498 {
1499 	/* return true if protocol supports memory accounting */
1500 	return !!sk->sk_prot->memory_allocated;
1501 }
1502 
sk_wmem_schedule(struct sock * sk,int size)1503 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1504 {
1505 	if (!sk_has_account(sk))
1506 		return true;
1507 	return size <= sk->sk_forward_alloc ||
1508 		__sk_mem_schedule(sk, size, SK_MEM_SEND);
1509 }
1510 
1511 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1512 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1513 {
1514 	if (!sk_has_account(sk))
1515 		return true;
1516 	return size <= sk->sk_forward_alloc ||
1517 		__sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1518 		skb_pfmemalloc(skb);
1519 }
1520 
sk_mem_reclaim(struct sock * sk)1521 static inline void sk_mem_reclaim(struct sock *sk)
1522 {
1523 	if (!sk_has_account(sk))
1524 		return;
1525 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1526 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1527 }
1528 
sk_mem_reclaim_partial(struct sock * sk)1529 static inline void sk_mem_reclaim_partial(struct sock *sk)
1530 {
1531 	if (!sk_has_account(sk))
1532 		return;
1533 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1534 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1535 }
1536 
sk_mem_charge(struct sock * sk,int size)1537 static inline void sk_mem_charge(struct sock *sk, int size)
1538 {
1539 	if (!sk_has_account(sk))
1540 		return;
1541 	sk->sk_forward_alloc -= size;
1542 }
1543 
sk_mem_uncharge(struct sock * sk,int size)1544 static inline void sk_mem_uncharge(struct sock *sk, int size)
1545 {
1546 	if (!sk_has_account(sk))
1547 		return;
1548 	sk->sk_forward_alloc += size;
1549 
1550 	/* Avoid a possible overflow.
1551 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1552 	 * is not called and more than 2 GBytes are released at once.
1553 	 *
1554 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1555 	 * no need to hold that much forward allocation anyway.
1556 	 */
1557 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1558 		__sk_mem_reclaim(sk, 1 << 20);
1559 }
1560 
1561 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1562 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1563 {
1564 	sk_wmem_queued_add(sk, -skb->truesize);
1565 	sk_mem_uncharge(sk, skb->truesize);
1566 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1567 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1568 		skb_ext_reset(skb);
1569 		skb_zcopy_clear(skb, true);
1570 		sk->sk_tx_skb_cache = skb;
1571 		return;
1572 	}
1573 	__kfree_skb(skb);
1574 }
1575 
sock_release_ownership(struct sock * sk)1576 static inline void sock_release_ownership(struct sock *sk)
1577 {
1578 	if (sk->sk_lock.owned) {
1579 		sk->sk_lock.owned = 0;
1580 
1581 		/* The sk_lock has mutex_unlock() semantics: */
1582 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1583 	}
1584 }
1585 
1586 /*
1587  * Macro so as to not evaluate some arguments when
1588  * lockdep is not enabled.
1589  *
1590  * Mark both the sk_lock and the sk_lock.slock as a
1591  * per-address-family lock class.
1592  */
1593 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1594 do {									\
1595 	sk->sk_lock.owned = 0;						\
1596 	init_waitqueue_head(&sk->sk_lock.wq);				\
1597 	spin_lock_init(&(sk)->sk_lock.slock);				\
1598 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1599 			sizeof((sk)->sk_lock));				\
1600 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1601 				(skey), (sname));				\
1602 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1603 } while (0)
1604 
lockdep_sock_is_held(const struct sock * sk)1605 static inline bool lockdep_sock_is_held(const struct sock *sk)
1606 {
1607 	return lockdep_is_held(&sk->sk_lock) ||
1608 	       lockdep_is_held(&sk->sk_lock.slock);
1609 }
1610 
1611 void lock_sock_nested(struct sock *sk, int subclass);
1612 
lock_sock(struct sock * sk)1613 static inline void lock_sock(struct sock *sk)
1614 {
1615 	lock_sock_nested(sk, 0);
1616 }
1617 
1618 void __lock_sock(struct sock *sk);
1619 void __release_sock(struct sock *sk);
1620 void release_sock(struct sock *sk);
1621 
1622 /* BH context may only use the following locking interface. */
1623 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1624 #define bh_lock_sock_nested(__sk) \
1625 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1626 				SINGLE_DEPTH_NESTING)
1627 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1628 
1629 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1630 
1631 /**
1632  * lock_sock_fast - fast version of lock_sock
1633  * @sk: socket
1634  *
1635  * This version should be used for very small section, where process wont block
1636  * return false if fast path is taken:
1637  *
1638  *   sk_lock.slock locked, owned = 0, BH disabled
1639  *
1640  * return true if slow path is taken:
1641  *
1642  *   sk_lock.slock unlocked, owned = 1, BH enabled
1643  */
lock_sock_fast(struct sock * sk)1644 static inline bool lock_sock_fast(struct sock *sk)
1645 {
1646 	/* The sk_lock has mutex_lock() semantics here. */
1647 	mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1648 
1649 	return __lock_sock_fast(sk);
1650 }
1651 
1652 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1653 static inline bool lock_sock_fast_nested(struct sock *sk)
1654 {
1655 	mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1656 
1657 	return __lock_sock_fast(sk);
1658 }
1659 
1660 /**
1661  * unlock_sock_fast - complement of lock_sock_fast
1662  * @sk: socket
1663  * @slow: slow mode
1664  *
1665  * fast unlock socket for user context.
1666  * If slow mode is on, we call regular release_sock()
1667  */
unlock_sock_fast(struct sock * sk,bool slow)1668 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1669 	__releases(&sk->sk_lock.slock)
1670 {
1671 	if (slow) {
1672 		release_sock(sk);
1673 		__release(&sk->sk_lock.slock);
1674 	} else {
1675 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1676 		spin_unlock_bh(&sk->sk_lock.slock);
1677 	}
1678 }
1679 
1680 /* Used by processes to "lock" a socket state, so that
1681  * interrupts and bottom half handlers won't change it
1682  * from under us. It essentially blocks any incoming
1683  * packets, so that we won't get any new data or any
1684  * packets that change the state of the socket.
1685  *
1686  * While locked, BH processing will add new packets to
1687  * the backlog queue.  This queue is processed by the
1688  * owner of the socket lock right before it is released.
1689  *
1690  * Since ~2.3.5 it is also exclusive sleep lock serializing
1691  * accesses from user process context.
1692  */
1693 
sock_owned_by_me(const struct sock * sk)1694 static inline void sock_owned_by_me(const struct sock *sk)
1695 {
1696 #ifdef CONFIG_LOCKDEP
1697 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1698 #endif
1699 }
1700 
sock_owned_by_user(const struct sock * sk)1701 static inline bool sock_owned_by_user(const struct sock *sk)
1702 {
1703 	sock_owned_by_me(sk);
1704 	return sk->sk_lock.owned;
1705 }
1706 
sock_owned_by_user_nocheck(const struct sock * sk)1707 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1708 {
1709 	return sk->sk_lock.owned;
1710 }
1711 
1712 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1713 static inline bool sock_allow_reclassification(const struct sock *csk)
1714 {
1715 	struct sock *sk = (struct sock *)csk;
1716 
1717 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1718 }
1719 
1720 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1721 		      struct proto *prot, int kern);
1722 void sk_free(struct sock *sk);
1723 void sk_destruct(struct sock *sk);
1724 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1725 void sk_free_unlock_clone(struct sock *sk);
1726 
1727 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1728 			     gfp_t priority);
1729 void __sock_wfree(struct sk_buff *skb);
1730 void sock_wfree(struct sk_buff *skb);
1731 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1732 			     gfp_t priority);
1733 void skb_orphan_partial(struct sk_buff *skb);
1734 void sock_rfree(struct sk_buff *skb);
1735 void sock_efree(struct sk_buff *skb);
1736 #ifdef CONFIG_INET
1737 void sock_edemux(struct sk_buff *skb);
1738 void sock_pfree(struct sk_buff *skb);
1739 #else
1740 #define sock_edemux sock_efree
1741 #endif
1742 
1743 int sock_setsockopt(struct socket *sock, int level, int op,
1744 		    sockptr_t optval, unsigned int optlen);
1745 
1746 int sock_getsockopt(struct socket *sock, int level, int op,
1747 		    char __user *optval, int __user *optlen);
1748 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1749 		   bool timeval, bool time32);
1750 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1751 				    int noblock, int *errcode);
1752 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1753 				     unsigned long data_len, int noblock,
1754 				     int *errcode, int max_page_order);
1755 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1756 void sock_kfree_s(struct sock *sk, void *mem, int size);
1757 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1758 void sk_send_sigurg(struct sock *sk);
1759 
1760 struct sockcm_cookie {
1761 	u64 transmit_time;
1762 	u32 mark;
1763 	u16 tsflags;
1764 };
1765 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1766 static inline void sockcm_init(struct sockcm_cookie *sockc,
1767 			       const struct sock *sk)
1768 {
1769 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1770 }
1771 
1772 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1773 		     struct sockcm_cookie *sockc);
1774 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1775 		   struct sockcm_cookie *sockc);
1776 
1777 /*
1778  * Functions to fill in entries in struct proto_ops when a protocol
1779  * does not implement a particular function.
1780  */
1781 int sock_no_bind(struct socket *, struct sockaddr *, int);
1782 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1783 int sock_no_socketpair(struct socket *, struct socket *);
1784 int sock_no_accept(struct socket *, struct socket *, int, bool);
1785 int sock_no_getname(struct socket *, struct sockaddr *, int);
1786 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1787 int sock_no_listen(struct socket *, int);
1788 int sock_no_shutdown(struct socket *, int);
1789 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1790 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1791 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1792 int sock_no_mmap(struct file *file, struct socket *sock,
1793 		 struct vm_area_struct *vma);
1794 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1795 			 size_t size, int flags);
1796 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1797 				int offset, size_t size, int flags);
1798 
1799 /*
1800  * Functions to fill in entries in struct proto_ops when a protocol
1801  * uses the inet style.
1802  */
1803 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1804 				  char __user *optval, int __user *optlen);
1805 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1806 			int flags);
1807 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1808 			   sockptr_t optval, unsigned int optlen);
1809 
1810 void sk_common_release(struct sock *sk);
1811 
1812 /*
1813  *	Default socket callbacks and setup code
1814  */
1815 
1816 /* Initialise core socket variables */
1817 void sock_init_data(struct socket *sock, struct sock *sk);
1818 
1819 /*
1820  * Socket reference counting postulates.
1821  *
1822  * * Each user of socket SHOULD hold a reference count.
1823  * * Each access point to socket (an hash table bucket, reference from a list,
1824  *   running timer, skb in flight MUST hold a reference count.
1825  * * When reference count hits 0, it means it will never increase back.
1826  * * When reference count hits 0, it means that no references from
1827  *   outside exist to this socket and current process on current CPU
1828  *   is last user and may/should destroy this socket.
1829  * * sk_free is called from any context: process, BH, IRQ. When
1830  *   it is called, socket has no references from outside -> sk_free
1831  *   may release descendant resources allocated by the socket, but
1832  *   to the time when it is called, socket is NOT referenced by any
1833  *   hash tables, lists etc.
1834  * * Packets, delivered from outside (from network or from another process)
1835  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1836  *   when they sit in queue. Otherwise, packets will leak to hole, when
1837  *   socket is looked up by one cpu and unhasing is made by another CPU.
1838  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1839  *   (leak to backlog). Packet socket does all the processing inside
1840  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1841  *   use separate SMP lock, so that they are prone too.
1842  */
1843 
1844 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1845 static inline void sock_put(struct sock *sk)
1846 {
1847 	if (refcount_dec_and_test(&sk->sk_refcnt))
1848 		sk_free(sk);
1849 }
1850 /* Generic version of sock_put(), dealing with all sockets
1851  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1852  */
1853 void sock_gen_put(struct sock *sk);
1854 
1855 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1856 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1857 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1858 				 const int nested)
1859 {
1860 	return __sk_receive_skb(sk, skb, nested, 1, true);
1861 }
1862 
sk_tx_queue_set(struct sock * sk,int tx_queue)1863 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1864 {
1865 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1866 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1867 		return;
1868 	sk->sk_tx_queue_mapping = tx_queue;
1869 }
1870 
1871 #define NO_QUEUE_MAPPING	USHRT_MAX
1872 
sk_tx_queue_clear(struct sock * sk)1873 static inline void sk_tx_queue_clear(struct sock *sk)
1874 {
1875 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1876 }
1877 
sk_tx_queue_get(const struct sock * sk)1878 static inline int sk_tx_queue_get(const struct sock *sk)
1879 {
1880 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1881 		return sk->sk_tx_queue_mapping;
1882 
1883 	return -1;
1884 }
1885 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1886 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1887 {
1888 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1889 	if (skb_rx_queue_recorded(skb)) {
1890 		u16 rx_queue = skb_get_rx_queue(skb);
1891 
1892 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1893 			return;
1894 
1895 		sk->sk_rx_queue_mapping = rx_queue;
1896 	}
1897 #endif
1898 }
1899 
sk_rx_queue_clear(struct sock * sk)1900 static inline void sk_rx_queue_clear(struct sock *sk)
1901 {
1902 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1903 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1904 #endif
1905 }
1906 
sk_rx_queue_get(const struct sock * sk)1907 static inline int sk_rx_queue_get(const struct sock *sk)
1908 {
1909 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
1910 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1911 		return sk->sk_rx_queue_mapping;
1912 #endif
1913 
1914 	return -1;
1915 }
1916 
sk_set_socket(struct sock * sk,struct socket * sock)1917 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1918 {
1919 	sk->sk_socket = sock;
1920 }
1921 
sk_sleep(struct sock * sk)1922 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1923 {
1924 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1925 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1926 }
1927 /* Detach socket from process context.
1928  * Announce socket dead, detach it from wait queue and inode.
1929  * Note that parent inode held reference count on this struct sock,
1930  * we do not release it in this function, because protocol
1931  * probably wants some additional cleanups or even continuing
1932  * to work with this socket (TCP).
1933  */
sock_orphan(struct sock * sk)1934 static inline void sock_orphan(struct sock *sk)
1935 {
1936 	write_lock_bh(&sk->sk_callback_lock);
1937 	sock_set_flag(sk, SOCK_DEAD);
1938 	sk_set_socket(sk, NULL);
1939 	sk->sk_wq  = NULL;
1940 	write_unlock_bh(&sk->sk_callback_lock);
1941 }
1942 
sock_graft(struct sock * sk,struct socket * parent)1943 static inline void sock_graft(struct sock *sk, struct socket *parent)
1944 {
1945 	WARN_ON(parent->sk);
1946 	write_lock_bh(&sk->sk_callback_lock);
1947 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1948 	parent->sk = sk;
1949 	sk_set_socket(sk, parent);
1950 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1951 	security_sock_graft(sk, parent);
1952 	write_unlock_bh(&sk->sk_callback_lock);
1953 }
1954 
1955 kuid_t sock_i_uid(struct sock *sk);
1956 unsigned long sock_i_ino(struct sock *sk);
1957 
sock_net_uid(const struct net * net,const struct sock * sk)1958 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1959 {
1960 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1961 }
1962 
net_tx_rndhash(void)1963 static inline u32 net_tx_rndhash(void)
1964 {
1965 	u32 v = prandom_u32();
1966 
1967 	return v ?: 1;
1968 }
1969 
sk_set_txhash(struct sock * sk)1970 static inline void sk_set_txhash(struct sock *sk)
1971 {
1972 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1973 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1974 }
1975 
sk_rethink_txhash(struct sock * sk)1976 static inline bool sk_rethink_txhash(struct sock *sk)
1977 {
1978 	if (sk->sk_txhash) {
1979 		sk_set_txhash(sk);
1980 		return true;
1981 	}
1982 	return false;
1983 }
1984 
1985 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1986 __sk_dst_get(struct sock *sk)
1987 {
1988 	return rcu_dereference_check(sk->sk_dst_cache,
1989 				     lockdep_sock_is_held(sk));
1990 }
1991 
1992 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1993 sk_dst_get(struct sock *sk)
1994 {
1995 	struct dst_entry *dst;
1996 
1997 	rcu_read_lock();
1998 	dst = rcu_dereference(sk->sk_dst_cache);
1999 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2000 		dst = NULL;
2001 	rcu_read_unlock();
2002 	return dst;
2003 }
2004 
__dst_negative_advice(struct sock * sk)2005 static inline void __dst_negative_advice(struct sock *sk)
2006 {
2007 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2008 
2009 	if (dst && dst->ops->negative_advice) {
2010 		ndst = dst->ops->negative_advice(dst);
2011 
2012 		if (ndst != dst) {
2013 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2014 			sk_tx_queue_clear(sk);
2015 			sk->sk_dst_pending_confirm = 0;
2016 		}
2017 	}
2018 }
2019 
dst_negative_advice(struct sock * sk)2020 static inline void dst_negative_advice(struct sock *sk)
2021 {
2022 	sk_rethink_txhash(sk);
2023 	__dst_negative_advice(sk);
2024 }
2025 
2026 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2027 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2028 {
2029 	struct dst_entry *old_dst;
2030 
2031 	sk_tx_queue_clear(sk);
2032 	sk->sk_dst_pending_confirm = 0;
2033 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2034 					    lockdep_sock_is_held(sk));
2035 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2036 	dst_release(old_dst);
2037 }
2038 
2039 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2040 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2041 {
2042 	struct dst_entry *old_dst;
2043 
2044 	sk_tx_queue_clear(sk);
2045 	sk->sk_dst_pending_confirm = 0;
2046 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2047 	dst_release(old_dst);
2048 }
2049 
2050 static inline void
__sk_dst_reset(struct sock * sk)2051 __sk_dst_reset(struct sock *sk)
2052 {
2053 	__sk_dst_set(sk, NULL);
2054 }
2055 
2056 static inline void
sk_dst_reset(struct sock * sk)2057 sk_dst_reset(struct sock *sk)
2058 {
2059 	sk_dst_set(sk, NULL);
2060 }
2061 
2062 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2063 
2064 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2065 
sk_dst_confirm(struct sock * sk)2066 static inline void sk_dst_confirm(struct sock *sk)
2067 {
2068 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2069 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2070 }
2071 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2072 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2073 {
2074 	if (skb_get_dst_pending_confirm(skb)) {
2075 		struct sock *sk = skb->sk;
2076 		unsigned long now = jiffies;
2077 
2078 		/* avoid dirtying neighbour */
2079 		if (READ_ONCE(n->confirmed) != now)
2080 			WRITE_ONCE(n->confirmed, now);
2081 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2082 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2083 	}
2084 }
2085 
2086 bool sk_mc_loop(struct sock *sk);
2087 
sk_can_gso(const struct sock * sk)2088 static inline bool sk_can_gso(const struct sock *sk)
2089 {
2090 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2091 }
2092 
2093 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2094 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2095 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2096 {
2097 	sk->sk_route_nocaps |= flags;
2098 	sk->sk_route_caps &= ~flags;
2099 }
2100 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2101 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2102 					   struct iov_iter *from, char *to,
2103 					   int copy, int offset)
2104 {
2105 	if (skb->ip_summed == CHECKSUM_NONE) {
2106 		__wsum csum = 0;
2107 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2108 			return -EFAULT;
2109 		skb->csum = csum_block_add(skb->csum, csum, offset);
2110 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2111 		if (!copy_from_iter_full_nocache(to, copy, from))
2112 			return -EFAULT;
2113 	} else if (!copy_from_iter_full(to, copy, from))
2114 		return -EFAULT;
2115 
2116 	return 0;
2117 }
2118 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2119 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2120 				       struct iov_iter *from, int copy)
2121 {
2122 	int err, offset = skb->len;
2123 
2124 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2125 				       copy, offset);
2126 	if (err)
2127 		__skb_trim(skb, offset);
2128 
2129 	return err;
2130 }
2131 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2132 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2133 					   struct sk_buff *skb,
2134 					   struct page *page,
2135 					   int off, int copy)
2136 {
2137 	int err;
2138 
2139 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2140 				       copy, skb->len);
2141 	if (err)
2142 		return err;
2143 
2144 	skb->len	     += copy;
2145 	skb->data_len	     += copy;
2146 	skb->truesize	     += copy;
2147 	sk_wmem_queued_add(sk, copy);
2148 	sk_mem_charge(sk, copy);
2149 	return 0;
2150 }
2151 
2152 /**
2153  * sk_wmem_alloc_get - returns write allocations
2154  * @sk: socket
2155  *
2156  * Return: sk_wmem_alloc minus initial offset of one
2157  */
sk_wmem_alloc_get(const struct sock * sk)2158 static inline int sk_wmem_alloc_get(const struct sock *sk)
2159 {
2160 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2161 }
2162 
2163 /**
2164  * sk_rmem_alloc_get - returns read allocations
2165  * @sk: socket
2166  *
2167  * Return: sk_rmem_alloc
2168  */
sk_rmem_alloc_get(const struct sock * sk)2169 static inline int sk_rmem_alloc_get(const struct sock *sk)
2170 {
2171 	return atomic_read(&sk->sk_rmem_alloc);
2172 }
2173 
2174 /**
2175  * sk_has_allocations - check if allocations are outstanding
2176  * @sk: socket
2177  *
2178  * Return: true if socket has write or read allocations
2179  */
sk_has_allocations(const struct sock * sk)2180 static inline bool sk_has_allocations(const struct sock *sk)
2181 {
2182 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2183 }
2184 
2185 /**
2186  * skwq_has_sleeper - check if there are any waiting processes
2187  * @wq: struct socket_wq
2188  *
2189  * Return: true if socket_wq has waiting processes
2190  *
2191  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2192  * barrier call. They were added due to the race found within the tcp code.
2193  *
2194  * Consider following tcp code paths::
2195  *
2196  *   CPU1                CPU2
2197  *   sys_select          receive packet
2198  *   ...                 ...
2199  *   __add_wait_queue    update tp->rcv_nxt
2200  *   ...                 ...
2201  *   tp->rcv_nxt check   sock_def_readable
2202  *   ...                 {
2203  *   schedule               rcu_read_lock();
2204  *                          wq = rcu_dereference(sk->sk_wq);
2205  *                          if (wq && waitqueue_active(&wq->wait))
2206  *                              wake_up_interruptible(&wq->wait)
2207  *                          ...
2208  *                       }
2209  *
2210  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2211  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2212  * could then endup calling schedule and sleep forever if there are no more
2213  * data on the socket.
2214  *
2215  */
skwq_has_sleeper(struct socket_wq * wq)2216 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2217 {
2218 	return wq && wq_has_sleeper(&wq->wait);
2219 }
2220 
2221 /**
2222  * sock_poll_wait - place memory barrier behind the poll_wait call.
2223  * @filp:           file
2224  * @sock:           socket to wait on
2225  * @p:              poll_table
2226  *
2227  * See the comments in the wq_has_sleeper function.
2228  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2229 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2230 				  poll_table *p)
2231 {
2232 	if (!poll_does_not_wait(p)) {
2233 		poll_wait(filp, &sock->wq.wait, p);
2234 		/* We need to be sure we are in sync with the
2235 		 * socket flags modification.
2236 		 *
2237 		 * This memory barrier is paired in the wq_has_sleeper.
2238 		 */
2239 		smp_mb();
2240 	}
2241 }
2242 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2243 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2244 {
2245 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2246 	u32 txhash = READ_ONCE(sk->sk_txhash);
2247 
2248 	if (txhash) {
2249 		skb->l4_hash = 1;
2250 		skb->hash = txhash;
2251 	}
2252 }
2253 
2254 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2255 
2256 /*
2257  *	Queue a received datagram if it will fit. Stream and sequenced
2258  *	protocols can't normally use this as they need to fit buffers in
2259  *	and play with them.
2260  *
2261  *	Inlined as it's very short and called for pretty much every
2262  *	packet ever received.
2263  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2264 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2265 {
2266 	skb_orphan(skb);
2267 	skb->sk = sk;
2268 	skb->destructor = sock_rfree;
2269 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2270 	sk_mem_charge(sk, skb->truesize);
2271 }
2272 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2273 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2274 {
2275 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2276 		skb_orphan(skb);
2277 		skb->destructor = sock_efree;
2278 		skb->sk = sk;
2279 		return true;
2280 	}
2281 	return false;
2282 }
2283 
skb_prepare_for_gro(struct sk_buff * skb)2284 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2285 {
2286 	if (skb->destructor != sock_wfree) {
2287 		skb_orphan(skb);
2288 		return;
2289 	}
2290 	skb->slow_gro = 1;
2291 }
2292 
2293 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2294 		    unsigned long expires);
2295 
2296 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2297 
2298 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2299 
2300 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2301 			struct sk_buff *skb, unsigned int flags,
2302 			void (*destructor)(struct sock *sk,
2303 					   struct sk_buff *skb));
2304 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2305 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2306 
2307 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2308 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2309 
2310 /*
2311  *	Recover an error report and clear atomically
2312  */
2313 
sock_error(struct sock * sk)2314 static inline int sock_error(struct sock *sk)
2315 {
2316 	int err;
2317 
2318 	/* Avoid an atomic operation for the common case.
2319 	 * This is racy since another cpu/thread can change sk_err under us.
2320 	 */
2321 	if (likely(data_race(!sk->sk_err)))
2322 		return 0;
2323 
2324 	err = xchg(&sk->sk_err, 0);
2325 	return -err;
2326 }
2327 
2328 void sk_error_report(struct sock *sk);
2329 
sock_wspace(struct sock * sk)2330 static inline unsigned long sock_wspace(struct sock *sk)
2331 {
2332 	int amt = 0;
2333 
2334 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2335 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2336 		if (amt < 0)
2337 			amt = 0;
2338 	}
2339 	return amt;
2340 }
2341 
2342 /* Note:
2343  *  We use sk->sk_wq_raw, from contexts knowing this
2344  *  pointer is not NULL and cannot disappear/change.
2345  */
sk_set_bit(int nr,struct sock * sk)2346 static inline void sk_set_bit(int nr, struct sock *sk)
2347 {
2348 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2349 	    !sock_flag(sk, SOCK_FASYNC))
2350 		return;
2351 
2352 	set_bit(nr, &sk->sk_wq_raw->flags);
2353 }
2354 
sk_clear_bit(int nr,struct sock * sk)2355 static inline void sk_clear_bit(int nr, struct sock *sk)
2356 {
2357 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2358 	    !sock_flag(sk, SOCK_FASYNC))
2359 		return;
2360 
2361 	clear_bit(nr, &sk->sk_wq_raw->flags);
2362 }
2363 
sk_wake_async(const struct sock * sk,int how,int band)2364 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2365 {
2366 	if (sock_flag(sk, SOCK_FASYNC)) {
2367 		rcu_read_lock();
2368 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2369 		rcu_read_unlock();
2370 	}
2371 }
2372 
2373 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2374  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2375  * Note: for send buffers, TCP works better if we can build two skbs at
2376  * minimum.
2377  */
2378 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2379 
2380 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2381 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2382 
sk_stream_moderate_sndbuf(struct sock * sk)2383 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2384 {
2385 	u32 val;
2386 
2387 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2388 		return;
2389 
2390 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2391 
2392 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2393 }
2394 
2395 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2396 				    bool force_schedule);
2397 
2398 /**
2399  * sk_page_frag - return an appropriate page_frag
2400  * @sk: socket
2401  *
2402  * Use the per task page_frag instead of the per socket one for
2403  * optimization when we know that we're in the normal context and owns
2404  * everything that's associated with %current.
2405  *
2406  * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2407  * inside other socket operations and end up recursing into sk_page_frag()
2408  * while it's already in use.
2409  *
2410  * Return: a per task page_frag if context allows that,
2411  * otherwise a per socket one.
2412  */
sk_page_frag(struct sock * sk)2413 static inline struct page_frag *sk_page_frag(struct sock *sk)
2414 {
2415 	if (gfpflags_normal_context(sk->sk_allocation))
2416 		return &current->task_frag;
2417 
2418 	return &sk->sk_frag;
2419 }
2420 
2421 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2422 
2423 /*
2424  *	Default write policy as shown to user space via poll/select/SIGIO
2425  */
sock_writeable(const struct sock * sk)2426 static inline bool sock_writeable(const struct sock *sk)
2427 {
2428 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2429 }
2430 
gfp_any(void)2431 static inline gfp_t gfp_any(void)
2432 {
2433 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2434 }
2435 
gfp_memcg_charge(void)2436 static inline gfp_t gfp_memcg_charge(void)
2437 {
2438 	return in_softirq() ? GFP_NOWAIT : GFP_KERNEL;
2439 }
2440 
sock_rcvtimeo(const struct sock * sk,bool noblock)2441 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2442 {
2443 	return noblock ? 0 : sk->sk_rcvtimeo;
2444 }
2445 
sock_sndtimeo(const struct sock * sk,bool noblock)2446 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2447 {
2448 	return noblock ? 0 : sk->sk_sndtimeo;
2449 }
2450 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2451 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2452 {
2453 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2454 
2455 	return v ?: 1;
2456 }
2457 
2458 /* Alas, with timeout socket operations are not restartable.
2459  * Compare this to poll().
2460  */
sock_intr_errno(long timeo)2461 static inline int sock_intr_errno(long timeo)
2462 {
2463 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2464 }
2465 
2466 struct sock_skb_cb {
2467 	u32 dropcount;
2468 };
2469 
2470 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2471  * using skb->cb[] would keep using it directly and utilize its
2472  * alignement guarantee.
2473  */
2474 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2475 			    sizeof(struct sock_skb_cb)))
2476 
2477 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2478 			    SOCK_SKB_CB_OFFSET))
2479 
2480 #define sock_skb_cb_check_size(size) \
2481 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2482 
2483 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2484 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2485 {
2486 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2487 						atomic_read(&sk->sk_drops) : 0;
2488 }
2489 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2490 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2491 {
2492 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2493 
2494 	atomic_add(segs, &sk->sk_drops);
2495 }
2496 
sock_read_timestamp(struct sock * sk)2497 static inline ktime_t sock_read_timestamp(struct sock *sk)
2498 {
2499 #if BITS_PER_LONG==32
2500 	unsigned int seq;
2501 	ktime_t kt;
2502 
2503 	do {
2504 		seq = read_seqbegin(&sk->sk_stamp_seq);
2505 		kt = sk->sk_stamp;
2506 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2507 
2508 	return kt;
2509 #else
2510 	return READ_ONCE(sk->sk_stamp);
2511 #endif
2512 }
2513 
sock_write_timestamp(struct sock * sk,ktime_t kt)2514 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2515 {
2516 #if BITS_PER_LONG==32
2517 	write_seqlock(&sk->sk_stamp_seq);
2518 	sk->sk_stamp = kt;
2519 	write_sequnlock(&sk->sk_stamp_seq);
2520 #else
2521 	WRITE_ONCE(sk->sk_stamp, kt);
2522 #endif
2523 }
2524 
2525 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2526 			   struct sk_buff *skb);
2527 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2528 			     struct sk_buff *skb);
2529 
2530 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2531 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2532 {
2533 	ktime_t kt = skb->tstamp;
2534 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2535 
2536 	/*
2537 	 * generate control messages if
2538 	 * - receive time stamping in software requested
2539 	 * - software time stamp available and wanted
2540 	 * - hardware time stamps available and wanted
2541 	 */
2542 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2543 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2544 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2545 	    (hwtstamps->hwtstamp &&
2546 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2547 		__sock_recv_timestamp(msg, sk, skb);
2548 	else
2549 		sock_write_timestamp(sk, kt);
2550 
2551 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2552 		__sock_recv_wifi_status(msg, sk, skb);
2553 }
2554 
2555 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2556 			      struct sk_buff *skb);
2557 
2558 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2559 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2560 					  struct sk_buff *skb)
2561 {
2562 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2563 			   (1UL << SOCK_RCVTSTAMP))
2564 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2565 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2566 
2567 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2568 		__sock_recv_ts_and_drops(msg, sk, skb);
2569 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2570 		sock_write_timestamp(sk, skb->tstamp);
2571 	else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2572 		sock_write_timestamp(sk, 0);
2573 }
2574 
2575 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2576 
2577 /**
2578  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2579  * @sk:		socket sending this packet
2580  * @tsflags:	timestamping flags to use
2581  * @tx_flags:	completed with instructions for time stamping
2582  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2583  *
2584  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2585  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2586 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2587 				      __u8 *tx_flags, __u32 *tskey)
2588 {
2589 	if (unlikely(tsflags)) {
2590 		__sock_tx_timestamp(tsflags, tx_flags);
2591 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2592 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2593 			*tskey = sk->sk_tskey++;
2594 	}
2595 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2596 		*tx_flags |= SKBTX_WIFI_STATUS;
2597 }
2598 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2599 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2600 				     __u8 *tx_flags)
2601 {
2602 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2603 }
2604 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2605 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2606 {
2607 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2608 			   &skb_shinfo(skb)->tskey);
2609 }
2610 
2611 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2612 /**
2613  * sk_eat_skb - Release a skb if it is no longer needed
2614  * @sk: socket to eat this skb from
2615  * @skb: socket buffer to eat
2616  *
2617  * This routine must be called with interrupts disabled or with the socket
2618  * locked so that the sk_buff queue operation is ok.
2619 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2620 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2621 {
2622 	__skb_unlink(skb, &sk->sk_receive_queue);
2623 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2624 	    !sk->sk_rx_skb_cache) {
2625 		sk->sk_rx_skb_cache = skb;
2626 		skb_orphan(skb);
2627 		return;
2628 	}
2629 	__kfree_skb(skb);
2630 }
2631 
2632 static inline
sock_net(const struct sock * sk)2633 struct net *sock_net(const struct sock *sk)
2634 {
2635 	return read_pnet(&sk->sk_net);
2636 }
2637 
2638 static inline
sock_net_set(struct sock * sk,struct net * net)2639 void sock_net_set(struct sock *sk, struct net *net)
2640 {
2641 	write_pnet(&sk->sk_net, net);
2642 }
2643 
2644 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2645 skb_sk_is_prefetched(struct sk_buff *skb)
2646 {
2647 #ifdef CONFIG_INET
2648 	return skb->destructor == sock_pfree;
2649 #else
2650 	return false;
2651 #endif /* CONFIG_INET */
2652 }
2653 
2654 /* This helper checks if a socket is a full socket,
2655  * ie _not_ a timewait or request socket.
2656  */
sk_fullsock(const struct sock * sk)2657 static inline bool sk_fullsock(const struct sock *sk)
2658 {
2659 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2660 }
2661 
2662 static inline bool
sk_is_refcounted(struct sock * sk)2663 sk_is_refcounted(struct sock *sk)
2664 {
2665 	/* Only full sockets have sk->sk_flags. */
2666 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2667 }
2668 
2669 /**
2670  * skb_steal_sock - steal a socket from an sk_buff
2671  * @skb: sk_buff to steal the socket from
2672  * @refcounted: is set to true if the socket is reference-counted
2673  */
2674 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2675 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2676 {
2677 	if (skb->sk) {
2678 		struct sock *sk = skb->sk;
2679 
2680 		*refcounted = true;
2681 		if (skb_sk_is_prefetched(skb))
2682 			*refcounted = sk_is_refcounted(sk);
2683 		skb->destructor = NULL;
2684 		skb->sk = NULL;
2685 		return sk;
2686 	}
2687 	*refcounted = false;
2688 	return NULL;
2689 }
2690 
2691 /* Checks if this SKB belongs to an HW offloaded socket
2692  * and whether any SW fallbacks are required based on dev.
2693  * Check decrypted mark in case skb_orphan() cleared socket.
2694  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2695 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2696 						   struct net_device *dev)
2697 {
2698 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2699 	struct sock *sk = skb->sk;
2700 
2701 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2702 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2703 #ifdef CONFIG_TLS_DEVICE
2704 	} else if (unlikely(skb->decrypted)) {
2705 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2706 		kfree_skb(skb);
2707 		skb = NULL;
2708 #endif
2709 	}
2710 #endif
2711 
2712 	return skb;
2713 }
2714 
2715 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2716  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2717  */
sk_listener(const struct sock * sk)2718 static inline bool sk_listener(const struct sock *sk)
2719 {
2720 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2721 }
2722 
2723 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2724 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2725 		       int type);
2726 
2727 bool sk_ns_capable(const struct sock *sk,
2728 		   struct user_namespace *user_ns, int cap);
2729 bool sk_capable(const struct sock *sk, int cap);
2730 bool sk_net_capable(const struct sock *sk, int cap);
2731 
2732 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2733 
2734 /* Take into consideration the size of the struct sk_buff overhead in the
2735  * determination of these values, since that is non-constant across
2736  * platforms.  This makes socket queueing behavior and performance
2737  * not depend upon such differences.
2738  */
2739 #define _SK_MEM_PACKETS		256
2740 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2741 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2742 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2743 
2744 extern __u32 sysctl_wmem_max;
2745 extern __u32 sysctl_rmem_max;
2746 
2747 extern int sysctl_tstamp_allow_data;
2748 extern int sysctl_optmem_max;
2749 
2750 extern __u32 sysctl_wmem_default;
2751 extern __u32 sysctl_rmem_default;
2752 
2753 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2754 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2755 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2756 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2757 {
2758 	/* Does this proto have per netns sysctl_wmem ? */
2759 	if (proto->sysctl_wmem_offset)
2760 		return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2761 
2762 	return *proto->sysctl_wmem;
2763 }
2764 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2765 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2766 {
2767 	/* Does this proto have per netns sysctl_rmem ? */
2768 	if (proto->sysctl_rmem_offset)
2769 		return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2770 
2771 	return *proto->sysctl_rmem;
2772 }
2773 
2774 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2775  * Some wifi drivers need to tweak it to get more chunks.
2776  * They can use this helper from their ndo_start_xmit()
2777  */
sk_pacing_shift_update(struct sock * sk,int val)2778 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2779 {
2780 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2781 		return;
2782 	WRITE_ONCE(sk->sk_pacing_shift, val);
2783 }
2784 
2785 /* if a socket is bound to a device, check that the given device
2786  * index is either the same or that the socket is bound to an L3
2787  * master device and the given device index is also enslaved to
2788  * that L3 master
2789  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2790 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2791 {
2792 	int mdif;
2793 
2794 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2795 		return true;
2796 
2797 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2798 	if (mdif && mdif == sk->sk_bound_dev_if)
2799 		return true;
2800 
2801 	return false;
2802 }
2803 
2804 void sock_def_readable(struct sock *sk);
2805 
2806 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2807 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2808 int sock_set_timestamping(struct sock *sk, int optname,
2809 			  struct so_timestamping timestamping);
2810 
2811 void sock_enable_timestamps(struct sock *sk);
2812 void sock_no_linger(struct sock *sk);
2813 void sock_set_keepalive(struct sock *sk);
2814 void sock_set_priority(struct sock *sk, u32 priority);
2815 void sock_set_rcvbuf(struct sock *sk, int val);
2816 void sock_set_mark(struct sock *sk, u32 val);
2817 void sock_set_reuseaddr(struct sock *sk);
2818 void sock_set_reuseport(struct sock *sk);
2819 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2820 
2821 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2822 
sk_is_readable(struct sock * sk)2823 static inline bool sk_is_readable(struct sock *sk)
2824 {
2825 	if (sk->sk_prot->sock_is_readable)
2826 		return sk->sk_prot->sock_is_readable(sk);
2827 	return false;
2828 }
2829 #endif	/* _SOCK_H */
2830