1 /*
2  * Linux Socket Filter - Kernel level socket filtering
3  *
4  * Based on the design of the Berkeley Packet Filter. The new
5  * internal format has been designed by PLUMgrid:
6  *
7  *	Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
8  *
9  * Authors:
10  *
11  *	Jay Schulist <jschlst@samba.org>
12  *	Alexei Starovoitov <ast@plumgrid.com>
13  *	Daniel Borkmann <dborkman@redhat.com>
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  *
20  * Andi Kleen - Fix a few bad bugs and races.
21  * Kris Katterjohn - Added many additional checks in bpf_check_classic()
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/mm.h>
27 #include <linux/fcntl.h>
28 #include <linux/socket.h>
29 #include <linux/sock_diag.h>
30 #include <linux/in.h>
31 #include <linux/inet.h>
32 #include <linux/netdevice.h>
33 #include <linux/if_packet.h>
34 #include <linux/if_arp.h>
35 #include <linux/gfp.h>
36 #include <net/inet_common.h>
37 #include <net/ip.h>
38 #include <net/protocol.h>
39 #include <net/netlink.h>
40 #include <linux/skbuff.h>
41 #include <net/sock.h>
42 #include <net/flow_dissector.h>
43 #include <linux/errno.h>
44 #include <linux/timer.h>
45 #include <linux/uaccess.h>
46 #include <asm/unaligned.h>
47 #include <asm/cmpxchg.h>
48 #include <linux/filter.h>
49 #include <linux/ratelimit.h>
50 #include <linux/seccomp.h>
51 #include <linux/if_vlan.h>
52 #include <linux/bpf.h>
53 #include <net/sch_generic.h>
54 #include <net/cls_cgroup.h>
55 #include <net/dst_metadata.h>
56 #include <net/dst.h>
57 #include <net/sock_reuseport.h>
58 #include <net/busy_poll.h>
59 #include <net/tcp.h>
60 #include <net/xfrm.h>
61 #include <linux/bpf_trace.h>
62 #include <net/xdp_sock.h>
63 #include <linux/inetdevice.h>
64 #include <net/ip_fib.h>
65 #include <net/flow.h>
66 #include <net/arp.h>
67 #include <net/ipv6.h>
68 #include <linux/seg6_local.h>
69 #include <net/seg6.h>
70 #include <net/seg6_local.h>
71 
72 /**
73  *	sk_filter_trim_cap - run a packet through a socket filter
74  *	@sk: sock associated with &sk_buff
75  *	@skb: buffer to filter
76  *	@cap: limit on how short the eBPF program may trim the packet
77  *
78  * Run the eBPF program and then cut skb->data to correct size returned by
79  * the program. If pkt_len is 0 we toss packet. If skb->len is smaller
80  * than pkt_len we keep whole skb->data. This is the socket level
81  * wrapper to BPF_PROG_RUN. It returns 0 if the packet should
82  * be accepted or -EPERM if the packet should be tossed.
83  *
84  */
sk_filter_trim_cap(struct sock * sk,struct sk_buff * skb,unsigned int cap)85 int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap)
86 {
87 	int err;
88 	struct sk_filter *filter;
89 
90 	/*
91 	 * If the skb was allocated from pfmemalloc reserves, only
92 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
93 	 * helping free memory
94 	 */
95 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) {
96 		NET_INC_STATS(sock_net(sk), LINUX_MIB_PFMEMALLOCDROP);
97 		return -ENOMEM;
98 	}
99 	err = BPF_CGROUP_RUN_PROG_INET_INGRESS(sk, skb);
100 	if (err)
101 		return err;
102 
103 	err = security_sock_rcv_skb(sk, skb);
104 	if (err)
105 		return err;
106 
107 	rcu_read_lock();
108 	filter = rcu_dereference(sk->sk_filter);
109 	if (filter) {
110 		struct sock *save_sk = skb->sk;
111 		unsigned int pkt_len;
112 
113 		skb->sk = sk;
114 		pkt_len = bpf_prog_run_save_cb(filter->prog, skb);
115 		skb->sk = save_sk;
116 		err = pkt_len ? pskb_trim(skb, max(cap, pkt_len)) : -EPERM;
117 	}
118 	rcu_read_unlock();
119 
120 	return err;
121 }
122 EXPORT_SYMBOL(sk_filter_trim_cap);
123 
BPF_CALL_1(bpf_skb_get_pay_offset,struct sk_buff *,skb)124 BPF_CALL_1(bpf_skb_get_pay_offset, struct sk_buff *, skb)
125 {
126 	return skb_get_poff(skb);
127 }
128 
BPF_CALL_3(bpf_skb_get_nlattr,struct sk_buff *,skb,u32,a,u32,x)129 BPF_CALL_3(bpf_skb_get_nlattr, struct sk_buff *, skb, u32, a, u32, x)
130 {
131 	struct nlattr *nla;
132 
133 	if (skb_is_nonlinear(skb))
134 		return 0;
135 
136 	if (skb->len < sizeof(struct nlattr))
137 		return 0;
138 
139 	if (a > skb->len - sizeof(struct nlattr))
140 		return 0;
141 
142 	nla = nla_find((struct nlattr *) &skb->data[a], skb->len - a, x);
143 	if (nla)
144 		return (void *) nla - (void *) skb->data;
145 
146 	return 0;
147 }
148 
BPF_CALL_3(bpf_skb_get_nlattr_nest,struct sk_buff *,skb,u32,a,u32,x)149 BPF_CALL_3(bpf_skb_get_nlattr_nest, struct sk_buff *, skb, u32, a, u32, x)
150 {
151 	struct nlattr *nla;
152 
153 	if (skb_is_nonlinear(skb))
154 		return 0;
155 
156 	if (skb->len < sizeof(struct nlattr))
157 		return 0;
158 
159 	if (a > skb->len - sizeof(struct nlattr))
160 		return 0;
161 
162 	nla = (struct nlattr *) &skb->data[a];
163 	if (nla->nla_len > skb->len - a)
164 		return 0;
165 
166 	nla = nla_find_nested(nla, x);
167 	if (nla)
168 		return (void *) nla - (void *) skb->data;
169 
170 	return 0;
171 }
172 
BPF_CALL_4(bpf_skb_load_helper_8,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)173 BPF_CALL_4(bpf_skb_load_helper_8, const struct sk_buff *, skb, const void *,
174 	   data, int, headlen, int, offset)
175 {
176 	u8 tmp, *ptr;
177 	const int len = sizeof(tmp);
178 
179 	if (offset >= 0) {
180 		if (headlen - offset >= len)
181 			return *(u8 *)(data + offset);
182 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
183 			return tmp;
184 	} else {
185 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
186 		if (likely(ptr))
187 			return *(u8 *)ptr;
188 	}
189 
190 	return -EFAULT;
191 }
192 
BPF_CALL_2(bpf_skb_load_helper_8_no_cache,const struct sk_buff *,skb,int,offset)193 BPF_CALL_2(bpf_skb_load_helper_8_no_cache, const struct sk_buff *, skb,
194 	   int, offset)
195 {
196 	return ____bpf_skb_load_helper_8(skb, skb->data, skb->len - skb->data_len,
197 					 offset);
198 }
199 
BPF_CALL_4(bpf_skb_load_helper_16,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)200 BPF_CALL_4(bpf_skb_load_helper_16, const struct sk_buff *, skb, const void *,
201 	   data, int, headlen, int, offset)
202 {
203 	u16 tmp, *ptr;
204 	const int len = sizeof(tmp);
205 
206 	if (offset >= 0) {
207 		if (headlen - offset >= len)
208 			return get_unaligned_be16(data + offset);
209 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
210 			return be16_to_cpu(tmp);
211 	} else {
212 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
213 		if (likely(ptr))
214 			return get_unaligned_be16(ptr);
215 	}
216 
217 	return -EFAULT;
218 }
219 
BPF_CALL_2(bpf_skb_load_helper_16_no_cache,const struct sk_buff *,skb,int,offset)220 BPF_CALL_2(bpf_skb_load_helper_16_no_cache, const struct sk_buff *, skb,
221 	   int, offset)
222 {
223 	return ____bpf_skb_load_helper_16(skb, skb->data, skb->len - skb->data_len,
224 					  offset);
225 }
226 
BPF_CALL_4(bpf_skb_load_helper_32,const struct sk_buff *,skb,const void *,data,int,headlen,int,offset)227 BPF_CALL_4(bpf_skb_load_helper_32, const struct sk_buff *, skb, const void *,
228 	   data, int, headlen, int, offset)
229 {
230 	u32 tmp, *ptr;
231 	const int len = sizeof(tmp);
232 
233 	if (likely(offset >= 0)) {
234 		if (headlen - offset >= len)
235 			return get_unaligned_be32(data + offset);
236 		if (!skb_copy_bits(skb, offset, &tmp, sizeof(tmp)))
237 			return be32_to_cpu(tmp);
238 	} else {
239 		ptr = bpf_internal_load_pointer_neg_helper(skb, offset, len);
240 		if (likely(ptr))
241 			return get_unaligned_be32(ptr);
242 	}
243 
244 	return -EFAULT;
245 }
246 
BPF_CALL_2(bpf_skb_load_helper_32_no_cache,const struct sk_buff *,skb,int,offset)247 BPF_CALL_2(bpf_skb_load_helper_32_no_cache, const struct sk_buff *, skb,
248 	   int, offset)
249 {
250 	return ____bpf_skb_load_helper_32(skb, skb->data, skb->len - skb->data_len,
251 					  offset);
252 }
253 
BPF_CALL_0(bpf_get_raw_cpu_id)254 BPF_CALL_0(bpf_get_raw_cpu_id)
255 {
256 	return raw_smp_processor_id();
257 }
258 
259 static const struct bpf_func_proto bpf_get_raw_smp_processor_id_proto = {
260 	.func		= bpf_get_raw_cpu_id,
261 	.gpl_only	= false,
262 	.ret_type	= RET_INTEGER,
263 };
264 
convert_skb_access(int skb_field,int dst_reg,int src_reg,struct bpf_insn * insn_buf)265 static u32 convert_skb_access(int skb_field, int dst_reg, int src_reg,
266 			      struct bpf_insn *insn_buf)
267 {
268 	struct bpf_insn *insn = insn_buf;
269 
270 	switch (skb_field) {
271 	case SKF_AD_MARK:
272 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, mark) != 4);
273 
274 		*insn++ = BPF_LDX_MEM(BPF_W, dst_reg, src_reg,
275 				      offsetof(struct sk_buff, mark));
276 		break;
277 
278 	case SKF_AD_PKTTYPE:
279 		*insn++ = BPF_LDX_MEM(BPF_B, dst_reg, src_reg, PKT_TYPE_OFFSET());
280 		*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, PKT_TYPE_MAX);
281 #ifdef __BIG_ENDIAN_BITFIELD
282 		*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 5);
283 #endif
284 		break;
285 
286 	case SKF_AD_QUEUE:
287 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, queue_mapping) != 2);
288 
289 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
290 				      offsetof(struct sk_buff, queue_mapping));
291 		break;
292 
293 	case SKF_AD_VLAN_TAG:
294 	case SKF_AD_VLAN_TAG_PRESENT:
295 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_tci) != 2);
296 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
297 
298 		/* dst_reg = *(u16 *) (src_reg + offsetof(vlan_tci)) */
299 		*insn++ = BPF_LDX_MEM(BPF_H, dst_reg, src_reg,
300 				      offsetof(struct sk_buff, vlan_tci));
301 		if (skb_field == SKF_AD_VLAN_TAG) {
302 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg,
303 						~VLAN_TAG_PRESENT);
304 		} else {
305 			/* dst_reg >>= 12 */
306 			*insn++ = BPF_ALU32_IMM(BPF_RSH, dst_reg, 12);
307 			/* dst_reg &= 1 */
308 			*insn++ = BPF_ALU32_IMM(BPF_AND, dst_reg, 1);
309 		}
310 		break;
311 	}
312 
313 	return insn - insn_buf;
314 }
315 
convert_bpf_extensions(struct sock_filter * fp,struct bpf_insn ** insnp)316 static bool convert_bpf_extensions(struct sock_filter *fp,
317 				   struct bpf_insn **insnp)
318 {
319 	struct bpf_insn *insn = *insnp;
320 	u32 cnt;
321 
322 	switch (fp->k) {
323 	case SKF_AD_OFF + SKF_AD_PROTOCOL:
324 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, protocol) != 2);
325 
326 		/* A = *(u16 *) (CTX + offsetof(protocol)) */
327 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
328 				      offsetof(struct sk_buff, protocol));
329 		/* A = ntohs(A) [emitting a nop or swap16] */
330 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
331 		break;
332 
333 	case SKF_AD_OFF + SKF_AD_PKTTYPE:
334 		cnt = convert_skb_access(SKF_AD_PKTTYPE, BPF_REG_A, BPF_REG_CTX, insn);
335 		insn += cnt - 1;
336 		break;
337 
338 	case SKF_AD_OFF + SKF_AD_IFINDEX:
339 	case SKF_AD_OFF + SKF_AD_HATYPE:
340 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, ifindex) != 4);
341 		BUILD_BUG_ON(FIELD_SIZEOF(struct net_device, type) != 2);
342 
343 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
344 				      BPF_REG_TMP, BPF_REG_CTX,
345 				      offsetof(struct sk_buff, dev));
346 		/* if (tmp != 0) goto pc + 1 */
347 		*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_TMP, 0, 1);
348 		*insn++ = BPF_EXIT_INSN();
349 		if (fp->k == SKF_AD_OFF + SKF_AD_IFINDEX)
350 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_TMP,
351 					    offsetof(struct net_device, ifindex));
352 		else
353 			*insn = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_TMP,
354 					    offsetof(struct net_device, type));
355 		break;
356 
357 	case SKF_AD_OFF + SKF_AD_MARK:
358 		cnt = convert_skb_access(SKF_AD_MARK, BPF_REG_A, BPF_REG_CTX, insn);
359 		insn += cnt - 1;
360 		break;
361 
362 	case SKF_AD_OFF + SKF_AD_RXHASH:
363 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, hash) != 4);
364 
365 		*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX,
366 				    offsetof(struct sk_buff, hash));
367 		break;
368 
369 	case SKF_AD_OFF + SKF_AD_QUEUE:
370 		cnt = convert_skb_access(SKF_AD_QUEUE, BPF_REG_A, BPF_REG_CTX, insn);
371 		insn += cnt - 1;
372 		break;
373 
374 	case SKF_AD_OFF + SKF_AD_VLAN_TAG:
375 		cnt = convert_skb_access(SKF_AD_VLAN_TAG,
376 					 BPF_REG_A, BPF_REG_CTX, insn);
377 		insn += cnt - 1;
378 		break;
379 
380 	case SKF_AD_OFF + SKF_AD_VLAN_TAG_PRESENT:
381 		cnt = convert_skb_access(SKF_AD_VLAN_TAG_PRESENT,
382 					 BPF_REG_A, BPF_REG_CTX, insn);
383 		insn += cnt - 1;
384 		break;
385 
386 	case SKF_AD_OFF + SKF_AD_VLAN_TPID:
387 		BUILD_BUG_ON(FIELD_SIZEOF(struct sk_buff, vlan_proto) != 2);
388 
389 		/* A = *(u16 *) (CTX + offsetof(vlan_proto)) */
390 		*insn++ = BPF_LDX_MEM(BPF_H, BPF_REG_A, BPF_REG_CTX,
391 				      offsetof(struct sk_buff, vlan_proto));
392 		/* A = ntohs(A) [emitting a nop or swap16] */
393 		*insn = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, 16);
394 		break;
395 
396 	case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
397 	case SKF_AD_OFF + SKF_AD_NLATTR:
398 	case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
399 	case SKF_AD_OFF + SKF_AD_CPU:
400 	case SKF_AD_OFF + SKF_AD_RANDOM:
401 		/* arg1 = CTX */
402 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
403 		/* arg2 = A */
404 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_A);
405 		/* arg3 = X */
406 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_X);
407 		/* Emit call(arg1=CTX, arg2=A, arg3=X) */
408 		switch (fp->k) {
409 		case SKF_AD_OFF + SKF_AD_PAY_OFFSET:
410 			*insn = BPF_EMIT_CALL(bpf_skb_get_pay_offset);
411 			break;
412 		case SKF_AD_OFF + SKF_AD_NLATTR:
413 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr);
414 			break;
415 		case SKF_AD_OFF + SKF_AD_NLATTR_NEST:
416 			*insn = BPF_EMIT_CALL(bpf_skb_get_nlattr_nest);
417 			break;
418 		case SKF_AD_OFF + SKF_AD_CPU:
419 			*insn = BPF_EMIT_CALL(bpf_get_raw_cpu_id);
420 			break;
421 		case SKF_AD_OFF + SKF_AD_RANDOM:
422 			*insn = BPF_EMIT_CALL(bpf_user_rnd_u32);
423 			bpf_user_rnd_init_once();
424 			break;
425 		}
426 		break;
427 
428 	case SKF_AD_OFF + SKF_AD_ALU_XOR_X:
429 		/* A ^= X */
430 		*insn = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_X);
431 		break;
432 
433 	default:
434 		/* This is just a dummy call to avoid letting the compiler
435 		 * evict __bpf_call_base() as an optimization. Placed here
436 		 * where no-one bothers.
437 		 */
438 		BUG_ON(__bpf_call_base(0, 0, 0, 0, 0) != 0);
439 		return false;
440 	}
441 
442 	*insnp = insn;
443 	return true;
444 }
445 
convert_bpf_ld_abs(struct sock_filter * fp,struct bpf_insn ** insnp)446 static bool convert_bpf_ld_abs(struct sock_filter *fp, struct bpf_insn **insnp)
447 {
448 	const bool unaligned_ok = IS_BUILTIN(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS);
449 	int size = bpf_size_to_bytes(BPF_SIZE(fp->code));
450 	bool endian = BPF_SIZE(fp->code) == BPF_H ||
451 		      BPF_SIZE(fp->code) == BPF_W;
452 	bool indirect = BPF_MODE(fp->code) == BPF_IND;
453 	const int ip_align = NET_IP_ALIGN;
454 	struct bpf_insn *insn = *insnp;
455 	int offset = fp->k;
456 
457 	if (!indirect &&
458 	    ((unaligned_ok && offset >= 0) ||
459 	     (!unaligned_ok && offset >= 0 &&
460 	      offset + ip_align >= 0 &&
461 	      offset + ip_align % size == 0))) {
462 		bool ldx_off_ok = offset <= S16_MAX;
463 
464 		*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_H);
465 		*insn++ = BPF_ALU64_IMM(BPF_SUB, BPF_REG_TMP, offset);
466 		*insn++ = BPF_JMP_IMM(BPF_JSLT, BPF_REG_TMP,
467 				      size, 2 + endian + (!ldx_off_ok * 2));
468 		if (ldx_off_ok) {
469 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
470 					      BPF_REG_D, offset);
471 		} else {
472 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_D);
473 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_TMP, offset);
474 			*insn++ = BPF_LDX_MEM(BPF_SIZE(fp->code), BPF_REG_A,
475 					      BPF_REG_TMP, 0);
476 		}
477 		if (endian)
478 			*insn++ = BPF_ENDIAN(BPF_FROM_BE, BPF_REG_A, size * 8);
479 		*insn++ = BPF_JMP_A(8);
480 	}
481 
482 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG1, BPF_REG_CTX);
483 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG2, BPF_REG_D);
484 	*insn++ = BPF_MOV64_REG(BPF_REG_ARG3, BPF_REG_H);
485 	if (!indirect) {
486 		*insn++ = BPF_MOV64_IMM(BPF_REG_ARG4, offset);
487 	} else {
488 		*insn++ = BPF_MOV64_REG(BPF_REG_ARG4, BPF_REG_X);
489 		if (fp->k)
490 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_ARG4, offset);
491 	}
492 
493 	switch (BPF_SIZE(fp->code)) {
494 	case BPF_B:
495 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8);
496 		break;
497 	case BPF_H:
498 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16);
499 		break;
500 	case BPF_W:
501 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32);
502 		break;
503 	default:
504 		return false;
505 	}
506 
507 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_A, 0, 2);
508 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
509 	*insn   = BPF_EXIT_INSN();
510 
511 	*insnp = insn;
512 	return true;
513 }
514 
515 /**
516  *	bpf_convert_filter - convert filter program
517  *	@prog: the user passed filter program
518  *	@len: the length of the user passed filter program
519  *	@new_prog: allocated 'struct bpf_prog' or NULL
520  *	@new_len: pointer to store length of converted program
521  *	@seen_ld_abs: bool whether we've seen ld_abs/ind
522  *
523  * Remap 'sock_filter' style classic BPF (cBPF) instruction set to 'bpf_insn'
524  * style extended BPF (eBPF).
525  * Conversion workflow:
526  *
527  * 1) First pass for calculating the new program length:
528  *   bpf_convert_filter(old_prog, old_len, NULL, &new_len, &seen_ld_abs)
529  *
530  * 2) 2nd pass to remap in two passes: 1st pass finds new
531  *    jump offsets, 2nd pass remapping:
532  *   bpf_convert_filter(old_prog, old_len, new_prog, &new_len, &seen_ld_abs)
533  */
bpf_convert_filter(struct sock_filter * prog,int len,struct bpf_prog * new_prog,int * new_len,bool * seen_ld_abs)534 static int bpf_convert_filter(struct sock_filter *prog, int len,
535 			      struct bpf_prog *new_prog, int *new_len,
536 			      bool *seen_ld_abs)
537 {
538 	int new_flen = 0, pass = 0, target, i, stack_off;
539 	struct bpf_insn *new_insn, *first_insn = NULL;
540 	struct sock_filter *fp;
541 	int *addrs = NULL;
542 	u8 bpf_src;
543 
544 	BUILD_BUG_ON(BPF_MEMWORDS * sizeof(u32) > MAX_BPF_STACK);
545 	BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
546 
547 	if (len <= 0 || len > BPF_MAXINSNS)
548 		return -EINVAL;
549 
550 	if (new_prog) {
551 		first_insn = new_prog->insnsi;
552 		addrs = kcalloc(len, sizeof(*addrs),
553 				GFP_KERNEL | __GFP_NOWARN);
554 		if (!addrs)
555 			return -ENOMEM;
556 	}
557 
558 do_pass:
559 	new_insn = first_insn;
560 	fp = prog;
561 
562 	/* Classic BPF related prologue emission. */
563 	if (new_prog) {
564 		/* Classic BPF expects A and X to be reset first. These need
565 		 * to be guaranteed to be the first two instructions.
566 		 */
567 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
568 		*new_insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_X, BPF_REG_X);
569 
570 		/* All programs must keep CTX in callee saved BPF_REG_CTX.
571 		 * In eBPF case it's done by the compiler, here we need to
572 		 * do this ourself. Initial CTX is present in BPF_REG_ARG1.
573 		 */
574 		*new_insn++ = BPF_MOV64_REG(BPF_REG_CTX, BPF_REG_ARG1);
575 		if (*seen_ld_abs) {
576 			/* For packet access in classic BPF, cache skb->data
577 			 * in callee-saved BPF R8 and skb->len - skb->data_len
578 			 * (headlen) in BPF R9. Since classic BPF is read-only
579 			 * on CTX, we only need to cache it once.
580 			 */
581 			*new_insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
582 						  BPF_REG_D, BPF_REG_CTX,
583 						  offsetof(struct sk_buff, data));
584 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_H, BPF_REG_CTX,
585 						  offsetof(struct sk_buff, len));
586 			*new_insn++ = BPF_LDX_MEM(BPF_W, BPF_REG_TMP, BPF_REG_CTX,
587 						  offsetof(struct sk_buff, data_len));
588 			*new_insn++ = BPF_ALU32_REG(BPF_SUB, BPF_REG_H, BPF_REG_TMP);
589 		}
590 	} else {
591 		new_insn += 3;
592 	}
593 
594 	for (i = 0; i < len; fp++, i++) {
595 		struct bpf_insn tmp_insns[32] = { };
596 		struct bpf_insn *insn = tmp_insns;
597 
598 		if (addrs)
599 			addrs[i] = new_insn - first_insn;
600 
601 		switch (fp->code) {
602 		/* All arithmetic insns and skb loads map as-is. */
603 		case BPF_ALU | BPF_ADD | BPF_X:
604 		case BPF_ALU | BPF_ADD | BPF_K:
605 		case BPF_ALU | BPF_SUB | BPF_X:
606 		case BPF_ALU | BPF_SUB | BPF_K:
607 		case BPF_ALU | BPF_AND | BPF_X:
608 		case BPF_ALU | BPF_AND | BPF_K:
609 		case BPF_ALU | BPF_OR | BPF_X:
610 		case BPF_ALU | BPF_OR | BPF_K:
611 		case BPF_ALU | BPF_LSH | BPF_X:
612 		case BPF_ALU | BPF_LSH | BPF_K:
613 		case BPF_ALU | BPF_RSH | BPF_X:
614 		case BPF_ALU | BPF_RSH | BPF_K:
615 		case BPF_ALU | BPF_XOR | BPF_X:
616 		case BPF_ALU | BPF_XOR | BPF_K:
617 		case BPF_ALU | BPF_MUL | BPF_X:
618 		case BPF_ALU | BPF_MUL | BPF_K:
619 		case BPF_ALU | BPF_DIV | BPF_X:
620 		case BPF_ALU | BPF_DIV | BPF_K:
621 		case BPF_ALU | BPF_MOD | BPF_X:
622 		case BPF_ALU | BPF_MOD | BPF_K:
623 		case BPF_ALU | BPF_NEG:
624 		case BPF_LD | BPF_ABS | BPF_W:
625 		case BPF_LD | BPF_ABS | BPF_H:
626 		case BPF_LD | BPF_ABS | BPF_B:
627 		case BPF_LD | BPF_IND | BPF_W:
628 		case BPF_LD | BPF_IND | BPF_H:
629 		case BPF_LD | BPF_IND | BPF_B:
630 			/* Check for overloaded BPF extension and
631 			 * directly convert it if found, otherwise
632 			 * just move on with mapping.
633 			 */
634 			if (BPF_CLASS(fp->code) == BPF_LD &&
635 			    BPF_MODE(fp->code) == BPF_ABS &&
636 			    convert_bpf_extensions(fp, &insn))
637 				break;
638 			if (BPF_CLASS(fp->code) == BPF_LD &&
639 			    convert_bpf_ld_abs(fp, &insn)) {
640 				*seen_ld_abs = true;
641 				break;
642 			}
643 
644 			if (fp->code == (BPF_ALU | BPF_DIV | BPF_X) ||
645 			    fp->code == (BPF_ALU | BPF_MOD | BPF_X)) {
646 				*insn++ = BPF_MOV32_REG(BPF_REG_X, BPF_REG_X);
647 				/* Error with exception code on div/mod by 0.
648 				 * For cBPF programs, this was always return 0.
649 				 */
650 				*insn++ = BPF_JMP_IMM(BPF_JNE, BPF_REG_X, 0, 2);
651 				*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_A, BPF_REG_A);
652 				*insn++ = BPF_EXIT_INSN();
653 			}
654 
655 			*insn = BPF_RAW_INSN(fp->code, BPF_REG_A, BPF_REG_X, 0, fp->k);
656 			break;
657 
658 		/* Jump transformation cannot use BPF block macros
659 		 * everywhere as offset calculation and target updates
660 		 * require a bit more work than the rest, i.e. jump
661 		 * opcodes map as-is, but offsets need adjustment.
662 		 */
663 
664 #define BPF_EMIT_JMP							\
665 	do {								\
666 		const s32 off_min = S16_MIN, off_max = S16_MAX;		\
667 		s32 off;						\
668 									\
669 		if (target >= len || target < 0)			\
670 			goto err;					\
671 		off = addrs ? addrs[target] - addrs[i] - 1 : 0;		\
672 		/* Adjust pc relative offset for 2nd or 3rd insn. */	\
673 		off -= insn - tmp_insns;				\
674 		/* Reject anything not fitting into insn->off. */	\
675 		if (off < off_min || off > off_max)			\
676 			goto err;					\
677 		insn->off = off;					\
678 	} while (0)
679 
680 		case BPF_JMP | BPF_JA:
681 			target = i + fp->k + 1;
682 			insn->code = fp->code;
683 			BPF_EMIT_JMP;
684 			break;
685 
686 		case BPF_JMP | BPF_JEQ | BPF_K:
687 		case BPF_JMP | BPF_JEQ | BPF_X:
688 		case BPF_JMP | BPF_JSET | BPF_K:
689 		case BPF_JMP | BPF_JSET | BPF_X:
690 		case BPF_JMP | BPF_JGT | BPF_K:
691 		case BPF_JMP | BPF_JGT | BPF_X:
692 		case BPF_JMP | BPF_JGE | BPF_K:
693 		case BPF_JMP | BPF_JGE | BPF_X:
694 			if (BPF_SRC(fp->code) == BPF_K && (int) fp->k < 0) {
695 				/* BPF immediates are signed, zero extend
696 				 * immediate into tmp register and use it
697 				 * in compare insn.
698 				 */
699 				*insn++ = BPF_MOV32_IMM(BPF_REG_TMP, fp->k);
700 
701 				insn->dst_reg = BPF_REG_A;
702 				insn->src_reg = BPF_REG_TMP;
703 				bpf_src = BPF_X;
704 			} else {
705 				insn->dst_reg = BPF_REG_A;
706 				insn->imm = fp->k;
707 				bpf_src = BPF_SRC(fp->code);
708 				insn->src_reg = bpf_src == BPF_X ? BPF_REG_X : 0;
709 			}
710 
711 			/* Common case where 'jump_false' is next insn. */
712 			if (fp->jf == 0) {
713 				insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
714 				target = i + fp->jt + 1;
715 				BPF_EMIT_JMP;
716 				break;
717 			}
718 
719 			/* Convert some jumps when 'jump_true' is next insn. */
720 			if (fp->jt == 0) {
721 				switch (BPF_OP(fp->code)) {
722 				case BPF_JEQ:
723 					insn->code = BPF_JMP | BPF_JNE | bpf_src;
724 					break;
725 				case BPF_JGT:
726 					insn->code = BPF_JMP | BPF_JLE | bpf_src;
727 					break;
728 				case BPF_JGE:
729 					insn->code = BPF_JMP | BPF_JLT | bpf_src;
730 					break;
731 				default:
732 					goto jmp_rest;
733 				}
734 
735 				target = i + fp->jf + 1;
736 				BPF_EMIT_JMP;
737 				break;
738 			}
739 jmp_rest:
740 			/* Other jumps are mapped into two insns: Jxx and JA. */
741 			target = i + fp->jt + 1;
742 			insn->code = BPF_JMP | BPF_OP(fp->code) | bpf_src;
743 			BPF_EMIT_JMP;
744 			insn++;
745 
746 			insn->code = BPF_JMP | BPF_JA;
747 			target = i + fp->jf + 1;
748 			BPF_EMIT_JMP;
749 			break;
750 
751 		/* ldxb 4 * ([14] & 0xf) is remaped into 6 insns. */
752 		case BPF_LDX | BPF_MSH | BPF_B: {
753 			struct sock_filter tmp = {
754 				.code	= BPF_LD | BPF_ABS | BPF_B,
755 				.k	= fp->k,
756 			};
757 
758 			*seen_ld_abs = true;
759 
760 			/* X = A */
761 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
762 			/* A = BPF_R0 = *(u8 *) (skb->data + K) */
763 			convert_bpf_ld_abs(&tmp, &insn);
764 			insn++;
765 			/* A &= 0xf */
766 			*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_A, 0xf);
767 			/* A <<= 2 */
768 			*insn++ = BPF_ALU32_IMM(BPF_LSH, BPF_REG_A, 2);
769 			/* tmp = X */
770 			*insn++ = BPF_MOV64_REG(BPF_REG_TMP, BPF_REG_X);
771 			/* X = A */
772 			*insn++ = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
773 			/* A = tmp */
774 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_TMP);
775 			break;
776 		}
777 		/* RET_K is remaped into 2 insns. RET_A case doesn't need an
778 		 * extra mov as BPF_REG_0 is already mapped into BPF_REG_A.
779 		 */
780 		case BPF_RET | BPF_A:
781 		case BPF_RET | BPF_K:
782 			if (BPF_RVAL(fp->code) == BPF_K)
783 				*insn++ = BPF_MOV32_RAW(BPF_K, BPF_REG_0,
784 							0, fp->k);
785 			*insn = BPF_EXIT_INSN();
786 			break;
787 
788 		/* Store to stack. */
789 		case BPF_ST:
790 		case BPF_STX:
791 			stack_off = fp->k * 4  + 4;
792 			*insn = BPF_STX_MEM(BPF_W, BPF_REG_FP, BPF_CLASS(fp->code) ==
793 					    BPF_ST ? BPF_REG_A : BPF_REG_X,
794 					    -stack_off);
795 			/* check_load_and_stores() verifies that classic BPF can
796 			 * load from stack only after write, so tracking
797 			 * stack_depth for ST|STX insns is enough
798 			 */
799 			if (new_prog && new_prog->aux->stack_depth < stack_off)
800 				new_prog->aux->stack_depth = stack_off;
801 			break;
802 
803 		/* Load from stack. */
804 		case BPF_LD | BPF_MEM:
805 		case BPF_LDX | BPF_MEM:
806 			stack_off = fp->k * 4  + 4;
807 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD  ?
808 					    BPF_REG_A : BPF_REG_X, BPF_REG_FP,
809 					    -stack_off);
810 			break;
811 
812 		/* A = K or X = K */
813 		case BPF_LD | BPF_IMM:
814 		case BPF_LDX | BPF_IMM:
815 			*insn = BPF_MOV32_IMM(BPF_CLASS(fp->code) == BPF_LD ?
816 					      BPF_REG_A : BPF_REG_X, fp->k);
817 			break;
818 
819 		/* X = A */
820 		case BPF_MISC | BPF_TAX:
821 			*insn = BPF_MOV64_REG(BPF_REG_X, BPF_REG_A);
822 			break;
823 
824 		/* A = X */
825 		case BPF_MISC | BPF_TXA:
826 			*insn = BPF_MOV64_REG(BPF_REG_A, BPF_REG_X);
827 			break;
828 
829 		/* A = skb->len or X = skb->len */
830 		case BPF_LD | BPF_W | BPF_LEN:
831 		case BPF_LDX | BPF_W | BPF_LEN:
832 			*insn = BPF_LDX_MEM(BPF_W, BPF_CLASS(fp->code) == BPF_LD ?
833 					    BPF_REG_A : BPF_REG_X, BPF_REG_CTX,
834 					    offsetof(struct sk_buff, len));
835 			break;
836 
837 		/* Access seccomp_data fields. */
838 		case BPF_LDX | BPF_ABS | BPF_W:
839 			/* A = *(u32 *) (ctx + K) */
840 			*insn = BPF_LDX_MEM(BPF_W, BPF_REG_A, BPF_REG_CTX, fp->k);
841 			break;
842 
843 		/* Unknown instruction. */
844 		default:
845 			goto err;
846 		}
847 
848 		insn++;
849 		if (new_prog)
850 			memcpy(new_insn, tmp_insns,
851 			       sizeof(*insn) * (insn - tmp_insns));
852 		new_insn += insn - tmp_insns;
853 	}
854 
855 	if (!new_prog) {
856 		/* Only calculating new length. */
857 		*new_len = new_insn - first_insn;
858 		if (*seen_ld_abs)
859 			*new_len += 4; /* Prologue bits. */
860 		return 0;
861 	}
862 
863 	pass++;
864 	if (new_flen != new_insn - first_insn) {
865 		new_flen = new_insn - first_insn;
866 		if (pass > 2)
867 			goto err;
868 		goto do_pass;
869 	}
870 
871 	kfree(addrs);
872 	BUG_ON(*new_len != new_flen);
873 	return 0;
874 err:
875 	kfree(addrs);
876 	return -EINVAL;
877 }
878 
879 /* Security:
880  *
881  * As we dont want to clear mem[] array for each packet going through
882  * __bpf_prog_run(), we check that filter loaded by user never try to read
883  * a cell if not previously written, and we check all branches to be sure
884  * a malicious user doesn't try to abuse us.
885  */
check_load_and_stores(const struct sock_filter * filter,int flen)886 static int check_load_and_stores(const struct sock_filter *filter, int flen)
887 {
888 	u16 *masks, memvalid = 0; /* One bit per cell, 16 cells */
889 	int pc, ret = 0;
890 
891 	BUILD_BUG_ON(BPF_MEMWORDS > 16);
892 
893 	masks = kmalloc_array(flen, sizeof(*masks), GFP_KERNEL);
894 	if (!masks)
895 		return -ENOMEM;
896 
897 	memset(masks, 0xff, flen * sizeof(*masks));
898 
899 	for (pc = 0; pc < flen; pc++) {
900 		memvalid &= masks[pc];
901 
902 		switch (filter[pc].code) {
903 		case BPF_ST:
904 		case BPF_STX:
905 			memvalid |= (1 << filter[pc].k);
906 			break;
907 		case BPF_LD | BPF_MEM:
908 		case BPF_LDX | BPF_MEM:
909 			if (!(memvalid & (1 << filter[pc].k))) {
910 				ret = -EINVAL;
911 				goto error;
912 			}
913 			break;
914 		case BPF_JMP | BPF_JA:
915 			/* A jump must set masks on target */
916 			masks[pc + 1 + filter[pc].k] &= memvalid;
917 			memvalid = ~0;
918 			break;
919 		case BPF_JMP | BPF_JEQ | BPF_K:
920 		case BPF_JMP | BPF_JEQ | BPF_X:
921 		case BPF_JMP | BPF_JGE | BPF_K:
922 		case BPF_JMP | BPF_JGE | BPF_X:
923 		case BPF_JMP | BPF_JGT | BPF_K:
924 		case BPF_JMP | BPF_JGT | BPF_X:
925 		case BPF_JMP | BPF_JSET | BPF_K:
926 		case BPF_JMP | BPF_JSET | BPF_X:
927 			/* A jump must set masks on targets */
928 			masks[pc + 1 + filter[pc].jt] &= memvalid;
929 			masks[pc + 1 + filter[pc].jf] &= memvalid;
930 			memvalid = ~0;
931 			break;
932 		}
933 	}
934 error:
935 	kfree(masks);
936 	return ret;
937 }
938 
chk_code_allowed(u16 code_to_probe)939 static bool chk_code_allowed(u16 code_to_probe)
940 {
941 	static const bool codes[] = {
942 		/* 32 bit ALU operations */
943 		[BPF_ALU | BPF_ADD | BPF_K] = true,
944 		[BPF_ALU | BPF_ADD | BPF_X] = true,
945 		[BPF_ALU | BPF_SUB | BPF_K] = true,
946 		[BPF_ALU | BPF_SUB | BPF_X] = true,
947 		[BPF_ALU | BPF_MUL | BPF_K] = true,
948 		[BPF_ALU | BPF_MUL | BPF_X] = true,
949 		[BPF_ALU | BPF_DIV | BPF_K] = true,
950 		[BPF_ALU | BPF_DIV | BPF_X] = true,
951 		[BPF_ALU | BPF_MOD | BPF_K] = true,
952 		[BPF_ALU | BPF_MOD | BPF_X] = true,
953 		[BPF_ALU | BPF_AND | BPF_K] = true,
954 		[BPF_ALU | BPF_AND | BPF_X] = true,
955 		[BPF_ALU | BPF_OR | BPF_K] = true,
956 		[BPF_ALU | BPF_OR | BPF_X] = true,
957 		[BPF_ALU | BPF_XOR | BPF_K] = true,
958 		[BPF_ALU | BPF_XOR | BPF_X] = true,
959 		[BPF_ALU | BPF_LSH | BPF_K] = true,
960 		[BPF_ALU | BPF_LSH | BPF_X] = true,
961 		[BPF_ALU | BPF_RSH | BPF_K] = true,
962 		[BPF_ALU | BPF_RSH | BPF_X] = true,
963 		[BPF_ALU | BPF_NEG] = true,
964 		/* Load instructions */
965 		[BPF_LD | BPF_W | BPF_ABS] = true,
966 		[BPF_LD | BPF_H | BPF_ABS] = true,
967 		[BPF_LD | BPF_B | BPF_ABS] = true,
968 		[BPF_LD | BPF_W | BPF_LEN] = true,
969 		[BPF_LD | BPF_W | BPF_IND] = true,
970 		[BPF_LD | BPF_H | BPF_IND] = true,
971 		[BPF_LD | BPF_B | BPF_IND] = true,
972 		[BPF_LD | BPF_IMM] = true,
973 		[BPF_LD | BPF_MEM] = true,
974 		[BPF_LDX | BPF_W | BPF_LEN] = true,
975 		[BPF_LDX | BPF_B | BPF_MSH] = true,
976 		[BPF_LDX | BPF_IMM] = true,
977 		[BPF_LDX | BPF_MEM] = true,
978 		/* Store instructions */
979 		[BPF_ST] = true,
980 		[BPF_STX] = true,
981 		/* Misc instructions */
982 		[BPF_MISC | BPF_TAX] = true,
983 		[BPF_MISC | BPF_TXA] = true,
984 		/* Return instructions */
985 		[BPF_RET | BPF_K] = true,
986 		[BPF_RET | BPF_A] = true,
987 		/* Jump instructions */
988 		[BPF_JMP | BPF_JA] = true,
989 		[BPF_JMP | BPF_JEQ | BPF_K] = true,
990 		[BPF_JMP | BPF_JEQ | BPF_X] = true,
991 		[BPF_JMP | BPF_JGE | BPF_K] = true,
992 		[BPF_JMP | BPF_JGE | BPF_X] = true,
993 		[BPF_JMP | BPF_JGT | BPF_K] = true,
994 		[BPF_JMP | BPF_JGT | BPF_X] = true,
995 		[BPF_JMP | BPF_JSET | BPF_K] = true,
996 		[BPF_JMP | BPF_JSET | BPF_X] = true,
997 	};
998 
999 	if (code_to_probe >= ARRAY_SIZE(codes))
1000 		return false;
1001 
1002 	return codes[code_to_probe];
1003 }
1004 
bpf_check_basics_ok(const struct sock_filter * filter,unsigned int flen)1005 static bool bpf_check_basics_ok(const struct sock_filter *filter,
1006 				unsigned int flen)
1007 {
1008 	if (filter == NULL)
1009 		return false;
1010 	if (flen == 0 || flen > BPF_MAXINSNS)
1011 		return false;
1012 
1013 	return true;
1014 }
1015 
1016 /**
1017  *	bpf_check_classic - verify socket filter code
1018  *	@filter: filter to verify
1019  *	@flen: length of filter
1020  *
1021  * Check the user's filter code. If we let some ugly
1022  * filter code slip through kaboom! The filter must contain
1023  * no references or jumps that are out of range, no illegal
1024  * instructions, and must end with a RET instruction.
1025  *
1026  * All jumps are forward as they are not signed.
1027  *
1028  * Returns 0 if the rule set is legal or -EINVAL if not.
1029  */
bpf_check_classic(const struct sock_filter * filter,unsigned int flen)1030 static int bpf_check_classic(const struct sock_filter *filter,
1031 			     unsigned int flen)
1032 {
1033 	bool anc_found;
1034 	int pc;
1035 
1036 	/* Check the filter code now */
1037 	for (pc = 0; pc < flen; pc++) {
1038 		const struct sock_filter *ftest = &filter[pc];
1039 
1040 		/* May we actually operate on this code? */
1041 		if (!chk_code_allowed(ftest->code))
1042 			return -EINVAL;
1043 
1044 		/* Some instructions need special checks */
1045 		switch (ftest->code) {
1046 		case BPF_ALU | BPF_DIV | BPF_K:
1047 		case BPF_ALU | BPF_MOD | BPF_K:
1048 			/* Check for division by zero */
1049 			if (ftest->k == 0)
1050 				return -EINVAL;
1051 			break;
1052 		case BPF_ALU | BPF_LSH | BPF_K:
1053 		case BPF_ALU | BPF_RSH | BPF_K:
1054 			if (ftest->k >= 32)
1055 				return -EINVAL;
1056 			break;
1057 		case BPF_LD | BPF_MEM:
1058 		case BPF_LDX | BPF_MEM:
1059 		case BPF_ST:
1060 		case BPF_STX:
1061 			/* Check for invalid memory addresses */
1062 			if (ftest->k >= BPF_MEMWORDS)
1063 				return -EINVAL;
1064 			break;
1065 		case BPF_JMP | BPF_JA:
1066 			/* Note, the large ftest->k might cause loops.
1067 			 * Compare this with conditional jumps below,
1068 			 * where offsets are limited. --ANK (981016)
1069 			 */
1070 			if (ftest->k >= (unsigned int)(flen - pc - 1))
1071 				return -EINVAL;
1072 			break;
1073 		case BPF_JMP | BPF_JEQ | BPF_K:
1074 		case BPF_JMP | BPF_JEQ | BPF_X:
1075 		case BPF_JMP | BPF_JGE | BPF_K:
1076 		case BPF_JMP | BPF_JGE | BPF_X:
1077 		case BPF_JMP | BPF_JGT | BPF_K:
1078 		case BPF_JMP | BPF_JGT | BPF_X:
1079 		case BPF_JMP | BPF_JSET | BPF_K:
1080 		case BPF_JMP | BPF_JSET | BPF_X:
1081 			/* Both conditionals must be safe */
1082 			if (pc + ftest->jt + 1 >= flen ||
1083 			    pc + ftest->jf + 1 >= flen)
1084 				return -EINVAL;
1085 			break;
1086 		case BPF_LD | BPF_W | BPF_ABS:
1087 		case BPF_LD | BPF_H | BPF_ABS:
1088 		case BPF_LD | BPF_B | BPF_ABS:
1089 			anc_found = false;
1090 			if (bpf_anc_helper(ftest) & BPF_ANC)
1091 				anc_found = true;
1092 			/* Ancillary operation unknown or unsupported */
1093 			if (anc_found == false && ftest->k >= SKF_AD_OFF)
1094 				return -EINVAL;
1095 		}
1096 	}
1097 
1098 	/* Last instruction must be a RET code */
1099 	switch (filter[flen - 1].code) {
1100 	case BPF_RET | BPF_K:
1101 	case BPF_RET | BPF_A:
1102 		return check_load_and_stores(filter, flen);
1103 	}
1104 
1105 	return -EINVAL;
1106 }
1107 
bpf_prog_store_orig_filter(struct bpf_prog * fp,const struct sock_fprog * fprog)1108 static int bpf_prog_store_orig_filter(struct bpf_prog *fp,
1109 				      const struct sock_fprog *fprog)
1110 {
1111 	unsigned int fsize = bpf_classic_proglen(fprog);
1112 	struct sock_fprog_kern *fkprog;
1113 
1114 	fp->orig_prog = kmalloc(sizeof(*fkprog), GFP_KERNEL);
1115 	if (!fp->orig_prog)
1116 		return -ENOMEM;
1117 
1118 	fkprog = fp->orig_prog;
1119 	fkprog->len = fprog->len;
1120 
1121 	fkprog->filter = kmemdup(fp->insns, fsize,
1122 				 GFP_KERNEL | __GFP_NOWARN);
1123 	if (!fkprog->filter) {
1124 		kfree(fp->orig_prog);
1125 		return -ENOMEM;
1126 	}
1127 
1128 	return 0;
1129 }
1130 
bpf_release_orig_filter(struct bpf_prog * fp)1131 static void bpf_release_orig_filter(struct bpf_prog *fp)
1132 {
1133 	struct sock_fprog_kern *fprog = fp->orig_prog;
1134 
1135 	if (fprog) {
1136 		kfree(fprog->filter);
1137 		kfree(fprog);
1138 	}
1139 }
1140 
__bpf_prog_release(struct bpf_prog * prog)1141 static void __bpf_prog_release(struct bpf_prog *prog)
1142 {
1143 	if (prog->type == BPF_PROG_TYPE_SOCKET_FILTER) {
1144 		bpf_prog_put(prog);
1145 	} else {
1146 		bpf_release_orig_filter(prog);
1147 		bpf_prog_free(prog);
1148 	}
1149 }
1150 
__sk_filter_release(struct sk_filter * fp)1151 static void __sk_filter_release(struct sk_filter *fp)
1152 {
1153 	__bpf_prog_release(fp->prog);
1154 	kfree(fp);
1155 }
1156 
1157 /**
1158  * 	sk_filter_release_rcu - Release a socket filter by rcu_head
1159  *	@rcu: rcu_head that contains the sk_filter to free
1160  */
sk_filter_release_rcu(struct rcu_head * rcu)1161 static void sk_filter_release_rcu(struct rcu_head *rcu)
1162 {
1163 	struct sk_filter *fp = container_of(rcu, struct sk_filter, rcu);
1164 
1165 	__sk_filter_release(fp);
1166 }
1167 
1168 /**
1169  *	sk_filter_release - release a socket filter
1170  *	@fp: filter to remove
1171  *
1172  *	Remove a filter from a socket and release its resources.
1173  */
sk_filter_release(struct sk_filter * fp)1174 static void sk_filter_release(struct sk_filter *fp)
1175 {
1176 	if (refcount_dec_and_test(&fp->refcnt))
1177 		call_rcu(&fp->rcu, sk_filter_release_rcu);
1178 }
1179 
sk_filter_uncharge(struct sock * sk,struct sk_filter * fp)1180 void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1181 {
1182 	u32 filter_size = bpf_prog_size(fp->prog->len);
1183 
1184 	atomic_sub(filter_size, &sk->sk_omem_alloc);
1185 	sk_filter_release(fp);
1186 }
1187 
1188 /* try to charge the socket memory if there is space available
1189  * return true on success
1190  */
__sk_filter_charge(struct sock * sk,struct sk_filter * fp)1191 static bool __sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1192 {
1193 	u32 filter_size = bpf_prog_size(fp->prog->len);
1194 
1195 	/* same check as in sock_kmalloc() */
1196 	if (filter_size <= sysctl_optmem_max &&
1197 	    atomic_read(&sk->sk_omem_alloc) + filter_size < sysctl_optmem_max) {
1198 		atomic_add(filter_size, &sk->sk_omem_alloc);
1199 		return true;
1200 	}
1201 	return false;
1202 }
1203 
sk_filter_charge(struct sock * sk,struct sk_filter * fp)1204 bool sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1205 {
1206 	if (!refcount_inc_not_zero(&fp->refcnt))
1207 		return false;
1208 
1209 	if (!__sk_filter_charge(sk, fp)) {
1210 		sk_filter_release(fp);
1211 		return false;
1212 	}
1213 	return true;
1214 }
1215 
bpf_migrate_filter(struct bpf_prog * fp)1216 static struct bpf_prog *bpf_migrate_filter(struct bpf_prog *fp)
1217 {
1218 	struct sock_filter *old_prog;
1219 	struct bpf_prog *old_fp;
1220 	int err, new_len, old_len = fp->len;
1221 	bool seen_ld_abs = false;
1222 
1223 	/* We are free to overwrite insns et al right here as it
1224 	 * won't be used at this point in time anymore internally
1225 	 * after the migration to the internal BPF instruction
1226 	 * representation.
1227 	 */
1228 	BUILD_BUG_ON(sizeof(struct sock_filter) !=
1229 		     sizeof(struct bpf_insn));
1230 
1231 	/* Conversion cannot happen on overlapping memory areas,
1232 	 * so we need to keep the user BPF around until the 2nd
1233 	 * pass. At this time, the user BPF is stored in fp->insns.
1234 	 */
1235 	old_prog = kmemdup(fp->insns, old_len * sizeof(struct sock_filter),
1236 			   GFP_KERNEL | __GFP_NOWARN);
1237 	if (!old_prog) {
1238 		err = -ENOMEM;
1239 		goto out_err;
1240 	}
1241 
1242 	/* 1st pass: calculate the new program length. */
1243 	err = bpf_convert_filter(old_prog, old_len, NULL, &new_len,
1244 				 &seen_ld_abs);
1245 	if (err)
1246 		goto out_err_free;
1247 
1248 	/* Expand fp for appending the new filter representation. */
1249 	old_fp = fp;
1250 	fp = bpf_prog_realloc(old_fp, bpf_prog_size(new_len), 0);
1251 	if (!fp) {
1252 		/* The old_fp is still around in case we couldn't
1253 		 * allocate new memory, so uncharge on that one.
1254 		 */
1255 		fp = old_fp;
1256 		err = -ENOMEM;
1257 		goto out_err_free;
1258 	}
1259 
1260 	fp->len = new_len;
1261 
1262 	/* 2nd pass: remap sock_filter insns into bpf_insn insns. */
1263 	err = bpf_convert_filter(old_prog, old_len, fp, &new_len,
1264 				 &seen_ld_abs);
1265 	if (err)
1266 		/* 2nd bpf_convert_filter() can fail only if it fails
1267 		 * to allocate memory, remapping must succeed. Note,
1268 		 * that at this time old_fp has already been released
1269 		 * by krealloc().
1270 		 */
1271 		goto out_err_free;
1272 
1273 	fp = bpf_prog_select_runtime(fp, &err);
1274 	if (err)
1275 		goto out_err_free;
1276 
1277 	kfree(old_prog);
1278 	return fp;
1279 
1280 out_err_free:
1281 	kfree(old_prog);
1282 out_err:
1283 	__bpf_prog_release(fp);
1284 	return ERR_PTR(err);
1285 }
1286 
bpf_prepare_filter(struct bpf_prog * fp,bpf_aux_classic_check_t trans)1287 static struct bpf_prog *bpf_prepare_filter(struct bpf_prog *fp,
1288 					   bpf_aux_classic_check_t trans)
1289 {
1290 	int err;
1291 
1292 	fp->bpf_func = NULL;
1293 	fp->jited = 0;
1294 
1295 	err = bpf_check_classic(fp->insns, fp->len);
1296 	if (err) {
1297 		__bpf_prog_release(fp);
1298 		return ERR_PTR(err);
1299 	}
1300 
1301 	/* There might be additional checks and transformations
1302 	 * needed on classic filters, f.e. in case of seccomp.
1303 	 */
1304 	if (trans) {
1305 		err = trans(fp->insns, fp->len);
1306 		if (err) {
1307 			__bpf_prog_release(fp);
1308 			return ERR_PTR(err);
1309 		}
1310 	}
1311 
1312 	/* Probe if we can JIT compile the filter and if so, do
1313 	 * the compilation of the filter.
1314 	 */
1315 	bpf_jit_compile(fp);
1316 
1317 	/* JIT compiler couldn't process this filter, so do the
1318 	 * internal BPF translation for the optimized interpreter.
1319 	 */
1320 	if (!fp->jited)
1321 		fp = bpf_migrate_filter(fp);
1322 
1323 	return fp;
1324 }
1325 
1326 /**
1327  *	bpf_prog_create - create an unattached filter
1328  *	@pfp: the unattached filter that is created
1329  *	@fprog: the filter program
1330  *
1331  * Create a filter independent of any socket. We first run some
1332  * sanity checks on it to make sure it does not explode on us later.
1333  * If an error occurs or there is insufficient memory for the filter
1334  * a negative errno code is returned. On success the return is zero.
1335  */
bpf_prog_create(struct bpf_prog ** pfp,struct sock_fprog_kern * fprog)1336 int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog)
1337 {
1338 	unsigned int fsize = bpf_classic_proglen(fprog);
1339 	struct bpf_prog *fp;
1340 
1341 	/* Make sure new filter is there and in the right amounts. */
1342 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1343 		return -EINVAL;
1344 
1345 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1346 	if (!fp)
1347 		return -ENOMEM;
1348 
1349 	memcpy(fp->insns, fprog->filter, fsize);
1350 
1351 	fp->len = fprog->len;
1352 	/* Since unattached filters are not copied back to user
1353 	 * space through sk_get_filter(), we do not need to hold
1354 	 * a copy here, and can spare us the work.
1355 	 */
1356 	fp->orig_prog = NULL;
1357 
1358 	/* bpf_prepare_filter() already takes care of freeing
1359 	 * memory in case something goes wrong.
1360 	 */
1361 	fp = bpf_prepare_filter(fp, NULL);
1362 	if (IS_ERR(fp))
1363 		return PTR_ERR(fp);
1364 
1365 	*pfp = fp;
1366 	return 0;
1367 }
1368 EXPORT_SYMBOL_GPL(bpf_prog_create);
1369 
1370 /**
1371  *	bpf_prog_create_from_user - create an unattached filter from user buffer
1372  *	@pfp: the unattached filter that is created
1373  *	@fprog: the filter program
1374  *	@trans: post-classic verifier transformation handler
1375  *	@save_orig: save classic BPF program
1376  *
1377  * This function effectively does the same as bpf_prog_create(), only
1378  * that it builds up its insns buffer from user space provided buffer.
1379  * It also allows for passing a bpf_aux_classic_check_t handler.
1380  */
bpf_prog_create_from_user(struct bpf_prog ** pfp,struct sock_fprog * fprog,bpf_aux_classic_check_t trans,bool save_orig)1381 int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
1382 			      bpf_aux_classic_check_t trans, bool save_orig)
1383 {
1384 	unsigned int fsize = bpf_classic_proglen(fprog);
1385 	struct bpf_prog *fp;
1386 	int err;
1387 
1388 	/* Make sure new filter is there and in the right amounts. */
1389 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1390 		return -EINVAL;
1391 
1392 	fp = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1393 	if (!fp)
1394 		return -ENOMEM;
1395 
1396 	if (copy_from_user(fp->insns, fprog->filter, fsize)) {
1397 		__bpf_prog_free(fp);
1398 		return -EFAULT;
1399 	}
1400 
1401 	fp->len = fprog->len;
1402 	fp->orig_prog = NULL;
1403 
1404 	if (save_orig) {
1405 		err = bpf_prog_store_orig_filter(fp, fprog);
1406 		if (err) {
1407 			__bpf_prog_free(fp);
1408 			return -ENOMEM;
1409 		}
1410 	}
1411 
1412 	/* bpf_prepare_filter() already takes care of freeing
1413 	 * memory in case something goes wrong.
1414 	 */
1415 	fp = bpf_prepare_filter(fp, trans);
1416 	if (IS_ERR(fp))
1417 		return PTR_ERR(fp);
1418 
1419 	*pfp = fp;
1420 	return 0;
1421 }
1422 EXPORT_SYMBOL_GPL(bpf_prog_create_from_user);
1423 
bpf_prog_destroy(struct bpf_prog * fp)1424 void bpf_prog_destroy(struct bpf_prog *fp)
1425 {
1426 	__bpf_prog_release(fp);
1427 }
1428 EXPORT_SYMBOL_GPL(bpf_prog_destroy);
1429 
__sk_attach_prog(struct bpf_prog * prog,struct sock * sk)1430 static int __sk_attach_prog(struct bpf_prog *prog, struct sock *sk)
1431 {
1432 	struct sk_filter *fp, *old_fp;
1433 
1434 	fp = kmalloc(sizeof(*fp), GFP_KERNEL);
1435 	if (!fp)
1436 		return -ENOMEM;
1437 
1438 	fp->prog = prog;
1439 
1440 	if (!__sk_filter_charge(sk, fp)) {
1441 		kfree(fp);
1442 		return -ENOMEM;
1443 	}
1444 	refcount_set(&fp->refcnt, 1);
1445 
1446 	old_fp = rcu_dereference_protected(sk->sk_filter,
1447 					   lockdep_sock_is_held(sk));
1448 	rcu_assign_pointer(sk->sk_filter, fp);
1449 
1450 	if (old_fp)
1451 		sk_filter_uncharge(sk, old_fp);
1452 
1453 	return 0;
1454 }
1455 
1456 static
__get_filter(struct sock_fprog * fprog,struct sock * sk)1457 struct bpf_prog *__get_filter(struct sock_fprog *fprog, struct sock *sk)
1458 {
1459 	unsigned int fsize = bpf_classic_proglen(fprog);
1460 	struct bpf_prog *prog;
1461 	int err;
1462 
1463 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1464 		return ERR_PTR(-EPERM);
1465 
1466 	/* Make sure new filter is there and in the right amounts. */
1467 	if (!bpf_check_basics_ok(fprog->filter, fprog->len))
1468 		return ERR_PTR(-EINVAL);
1469 
1470 	prog = bpf_prog_alloc(bpf_prog_size(fprog->len), 0);
1471 	if (!prog)
1472 		return ERR_PTR(-ENOMEM);
1473 
1474 	if (copy_from_user(prog->insns, fprog->filter, fsize)) {
1475 		__bpf_prog_free(prog);
1476 		return ERR_PTR(-EFAULT);
1477 	}
1478 
1479 	prog->len = fprog->len;
1480 
1481 	err = bpf_prog_store_orig_filter(prog, fprog);
1482 	if (err) {
1483 		__bpf_prog_free(prog);
1484 		return ERR_PTR(-ENOMEM);
1485 	}
1486 
1487 	/* bpf_prepare_filter() already takes care of freeing
1488 	 * memory in case something goes wrong.
1489 	 */
1490 	return bpf_prepare_filter(prog, NULL);
1491 }
1492 
1493 /**
1494  *	sk_attach_filter - attach a socket filter
1495  *	@fprog: the filter program
1496  *	@sk: the socket to use
1497  *
1498  * Attach the user's filter code. We first run some sanity checks on
1499  * it to make sure it does not explode on us later. If an error
1500  * occurs or there is insufficient memory for the filter a negative
1501  * errno code is returned. On success the return is zero.
1502  */
sk_attach_filter(struct sock_fprog * fprog,struct sock * sk)1503 int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1504 {
1505 	struct bpf_prog *prog = __get_filter(fprog, sk);
1506 	int err;
1507 
1508 	if (IS_ERR(prog))
1509 		return PTR_ERR(prog);
1510 
1511 	err = __sk_attach_prog(prog, sk);
1512 	if (err < 0) {
1513 		__bpf_prog_release(prog);
1514 		return err;
1515 	}
1516 
1517 	return 0;
1518 }
1519 EXPORT_SYMBOL_GPL(sk_attach_filter);
1520 
sk_reuseport_attach_filter(struct sock_fprog * fprog,struct sock * sk)1521 int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk)
1522 {
1523 	struct bpf_prog *prog = __get_filter(fprog, sk);
1524 	int err;
1525 
1526 	if (IS_ERR(prog))
1527 		return PTR_ERR(prog);
1528 
1529 	if (bpf_prog_size(prog->len) > sysctl_optmem_max)
1530 		err = -ENOMEM;
1531 	else
1532 		err = reuseport_attach_prog(sk, prog);
1533 
1534 	if (err)
1535 		__bpf_prog_release(prog);
1536 
1537 	return err;
1538 }
1539 
__get_bpf(u32 ufd,struct sock * sk)1540 static struct bpf_prog *__get_bpf(u32 ufd, struct sock *sk)
1541 {
1542 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1543 		return ERR_PTR(-EPERM);
1544 
1545 	return bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1546 }
1547 
sk_attach_bpf(u32 ufd,struct sock * sk)1548 int sk_attach_bpf(u32 ufd, struct sock *sk)
1549 {
1550 	struct bpf_prog *prog = __get_bpf(ufd, sk);
1551 	int err;
1552 
1553 	if (IS_ERR(prog))
1554 		return PTR_ERR(prog);
1555 
1556 	err = __sk_attach_prog(prog, sk);
1557 	if (err < 0) {
1558 		bpf_prog_put(prog);
1559 		return err;
1560 	}
1561 
1562 	return 0;
1563 }
1564 
sk_reuseport_attach_bpf(u32 ufd,struct sock * sk)1565 int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk)
1566 {
1567 	struct bpf_prog *prog;
1568 	int err;
1569 
1570 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
1571 		return -EPERM;
1572 
1573 	prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SOCKET_FILTER);
1574 	if (IS_ERR(prog) && PTR_ERR(prog) == -EINVAL)
1575 		prog = bpf_prog_get_type(ufd, BPF_PROG_TYPE_SK_REUSEPORT);
1576 	if (IS_ERR(prog))
1577 		return PTR_ERR(prog);
1578 
1579 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT) {
1580 		/* Like other non BPF_PROG_TYPE_SOCKET_FILTER
1581 		 * bpf prog (e.g. sockmap).  It depends on the
1582 		 * limitation imposed by bpf_prog_load().
1583 		 * Hence, sysctl_optmem_max is not checked.
1584 		 */
1585 		if ((sk->sk_type != SOCK_STREAM &&
1586 		     sk->sk_type != SOCK_DGRAM) ||
1587 		    (sk->sk_protocol != IPPROTO_UDP &&
1588 		     sk->sk_protocol != IPPROTO_TCP) ||
1589 		    (sk->sk_family != AF_INET &&
1590 		     sk->sk_family != AF_INET6)) {
1591 			err = -ENOTSUPP;
1592 			goto err_prog_put;
1593 		}
1594 	} else {
1595 		/* BPF_PROG_TYPE_SOCKET_FILTER */
1596 		if (bpf_prog_size(prog->len) > sysctl_optmem_max) {
1597 			err = -ENOMEM;
1598 			goto err_prog_put;
1599 		}
1600 	}
1601 
1602 	err = reuseport_attach_prog(sk, prog);
1603 err_prog_put:
1604 	if (err)
1605 		bpf_prog_put(prog);
1606 
1607 	return err;
1608 }
1609 
sk_reuseport_prog_free(struct bpf_prog * prog)1610 void sk_reuseport_prog_free(struct bpf_prog *prog)
1611 {
1612 	if (!prog)
1613 		return;
1614 
1615 	if (prog->type == BPF_PROG_TYPE_SK_REUSEPORT)
1616 		bpf_prog_put(prog);
1617 	else
1618 		bpf_prog_destroy(prog);
1619 }
1620 
1621 struct bpf_scratchpad {
1622 	union {
1623 		__be32 diff[MAX_BPF_STACK / sizeof(__be32)];
1624 		u8     buff[MAX_BPF_STACK];
1625 	};
1626 };
1627 
1628 static DEFINE_PER_CPU(struct bpf_scratchpad, bpf_sp);
1629 
__bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1630 static inline int __bpf_try_make_writable(struct sk_buff *skb,
1631 					  unsigned int write_len)
1632 {
1633 	return skb_ensure_writable(skb, write_len);
1634 }
1635 
bpf_try_make_writable(struct sk_buff * skb,unsigned int write_len)1636 static inline int bpf_try_make_writable(struct sk_buff *skb,
1637 					unsigned int write_len)
1638 {
1639 	int err = __bpf_try_make_writable(skb, write_len);
1640 
1641 	bpf_compute_data_pointers(skb);
1642 	return err;
1643 }
1644 
bpf_try_make_head_writable(struct sk_buff * skb)1645 static int bpf_try_make_head_writable(struct sk_buff *skb)
1646 {
1647 	return bpf_try_make_writable(skb, skb_headlen(skb));
1648 }
1649 
bpf_push_mac_rcsum(struct sk_buff * skb)1650 static inline void bpf_push_mac_rcsum(struct sk_buff *skb)
1651 {
1652 	if (skb_at_tc_ingress(skb))
1653 		skb_postpush_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1654 }
1655 
bpf_pull_mac_rcsum(struct sk_buff * skb)1656 static inline void bpf_pull_mac_rcsum(struct sk_buff *skb)
1657 {
1658 	if (skb_at_tc_ingress(skb))
1659 		skb_postpull_rcsum(skb, skb_mac_header(skb), skb->mac_len);
1660 }
1661 
BPF_CALL_5(bpf_skb_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len,u64,flags)1662 BPF_CALL_5(bpf_skb_store_bytes, struct sk_buff *, skb, u32, offset,
1663 	   const void *, from, u32, len, u64, flags)
1664 {
1665 	void *ptr;
1666 
1667 	if (unlikely(flags & ~(BPF_F_RECOMPUTE_CSUM | BPF_F_INVALIDATE_HASH)))
1668 		return -EINVAL;
1669 	if (unlikely(offset > 0xffff))
1670 		return -EFAULT;
1671 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
1672 		return -EFAULT;
1673 
1674 	ptr = skb->data + offset;
1675 	if (flags & BPF_F_RECOMPUTE_CSUM)
1676 		__skb_postpull_rcsum(skb, ptr, len, offset);
1677 
1678 	memcpy(ptr, from, len);
1679 
1680 	if (flags & BPF_F_RECOMPUTE_CSUM)
1681 		__skb_postpush_rcsum(skb, ptr, len, offset);
1682 	if (flags & BPF_F_INVALIDATE_HASH)
1683 		skb_clear_hash(skb);
1684 
1685 	return 0;
1686 }
1687 
1688 static const struct bpf_func_proto bpf_skb_store_bytes_proto = {
1689 	.func		= bpf_skb_store_bytes,
1690 	.gpl_only	= false,
1691 	.ret_type	= RET_INTEGER,
1692 	.arg1_type	= ARG_PTR_TO_CTX,
1693 	.arg2_type	= ARG_ANYTHING,
1694 	.arg3_type	= ARG_PTR_TO_MEM,
1695 	.arg4_type	= ARG_CONST_SIZE,
1696 	.arg5_type	= ARG_ANYTHING,
1697 };
1698 
BPF_CALL_4(bpf_skb_load_bytes,const struct sk_buff *,skb,u32,offset,void *,to,u32,len)1699 BPF_CALL_4(bpf_skb_load_bytes, const struct sk_buff *, skb, u32, offset,
1700 	   void *, to, u32, len)
1701 {
1702 	void *ptr;
1703 
1704 	if (unlikely(offset > 0xffff))
1705 		goto err_clear;
1706 
1707 	ptr = skb_header_pointer(skb, offset, len, to);
1708 	if (unlikely(!ptr))
1709 		goto err_clear;
1710 	if (ptr != to)
1711 		memcpy(to, ptr, len);
1712 
1713 	return 0;
1714 err_clear:
1715 	memset(to, 0, len);
1716 	return -EFAULT;
1717 }
1718 
1719 static const struct bpf_func_proto bpf_skb_load_bytes_proto = {
1720 	.func		= bpf_skb_load_bytes,
1721 	.gpl_only	= false,
1722 	.ret_type	= RET_INTEGER,
1723 	.arg1_type	= ARG_PTR_TO_CTX,
1724 	.arg2_type	= ARG_ANYTHING,
1725 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1726 	.arg4_type	= ARG_CONST_SIZE,
1727 };
1728 
BPF_CALL_5(bpf_skb_load_bytes_relative,const struct sk_buff *,skb,u32,offset,void *,to,u32,len,u32,start_header)1729 BPF_CALL_5(bpf_skb_load_bytes_relative, const struct sk_buff *, skb,
1730 	   u32, offset, void *, to, u32, len, u32, start_header)
1731 {
1732 	u8 *end = skb_tail_pointer(skb);
1733 	u8 *net = skb_network_header(skb);
1734 	u8 *mac = skb_mac_header(skb);
1735 	u8 *ptr;
1736 
1737 	if (unlikely(offset > 0xffff || len > (end - mac)))
1738 		goto err_clear;
1739 
1740 	switch (start_header) {
1741 	case BPF_HDR_START_MAC:
1742 		ptr = mac + offset;
1743 		break;
1744 	case BPF_HDR_START_NET:
1745 		ptr = net + offset;
1746 		break;
1747 	default:
1748 		goto err_clear;
1749 	}
1750 
1751 	if (likely(ptr >= mac && ptr + len <= end)) {
1752 		memcpy(to, ptr, len);
1753 		return 0;
1754 	}
1755 
1756 err_clear:
1757 	memset(to, 0, len);
1758 	return -EFAULT;
1759 }
1760 
1761 static const struct bpf_func_proto bpf_skb_load_bytes_relative_proto = {
1762 	.func		= bpf_skb_load_bytes_relative,
1763 	.gpl_only	= false,
1764 	.ret_type	= RET_INTEGER,
1765 	.arg1_type	= ARG_PTR_TO_CTX,
1766 	.arg2_type	= ARG_ANYTHING,
1767 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
1768 	.arg4_type	= ARG_CONST_SIZE,
1769 	.arg5_type	= ARG_ANYTHING,
1770 };
1771 
BPF_CALL_2(bpf_skb_pull_data,struct sk_buff *,skb,u32,len)1772 BPF_CALL_2(bpf_skb_pull_data, struct sk_buff *, skb, u32, len)
1773 {
1774 	/* Idea is the following: should the needed direct read/write
1775 	 * test fail during runtime, we can pull in more data and redo
1776 	 * again, since implicitly, we invalidate previous checks here.
1777 	 *
1778 	 * Or, since we know how much we need to make read/writeable,
1779 	 * this can be done once at the program beginning for direct
1780 	 * access case. By this we overcome limitations of only current
1781 	 * headroom being accessible.
1782 	 */
1783 	return bpf_try_make_writable(skb, len ? : skb_headlen(skb));
1784 }
1785 
1786 static const struct bpf_func_proto bpf_skb_pull_data_proto = {
1787 	.func		= bpf_skb_pull_data,
1788 	.gpl_only	= false,
1789 	.ret_type	= RET_INTEGER,
1790 	.arg1_type	= ARG_PTR_TO_CTX,
1791 	.arg2_type	= ARG_ANYTHING,
1792 };
1793 
sk_skb_try_make_writable(struct sk_buff * skb,unsigned int write_len)1794 static inline int sk_skb_try_make_writable(struct sk_buff *skb,
1795 					   unsigned int write_len)
1796 {
1797 	int err = __bpf_try_make_writable(skb, write_len);
1798 
1799 	bpf_compute_data_end_sk_skb(skb);
1800 	return err;
1801 }
1802 
BPF_CALL_2(sk_skb_pull_data,struct sk_buff *,skb,u32,len)1803 BPF_CALL_2(sk_skb_pull_data, struct sk_buff *, skb, u32, len)
1804 {
1805 	/* Idea is the following: should the needed direct read/write
1806 	 * test fail during runtime, we can pull in more data and redo
1807 	 * again, since implicitly, we invalidate previous checks here.
1808 	 *
1809 	 * Or, since we know how much we need to make read/writeable,
1810 	 * this can be done once at the program beginning for direct
1811 	 * access case. By this we overcome limitations of only current
1812 	 * headroom being accessible.
1813 	 */
1814 	return sk_skb_try_make_writable(skb, len ? : skb_headlen(skb));
1815 }
1816 
1817 static const struct bpf_func_proto sk_skb_pull_data_proto = {
1818 	.func		= sk_skb_pull_data,
1819 	.gpl_only	= false,
1820 	.ret_type	= RET_INTEGER,
1821 	.arg1_type	= ARG_PTR_TO_CTX,
1822 	.arg2_type	= ARG_ANYTHING,
1823 };
1824 
BPF_CALL_5(bpf_l3_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1825 BPF_CALL_5(bpf_l3_csum_replace, struct sk_buff *, skb, u32, offset,
1826 	   u64, from, u64, to, u64, flags)
1827 {
1828 	__sum16 *ptr;
1829 
1830 	if (unlikely(flags & ~(BPF_F_HDR_FIELD_MASK)))
1831 		return -EINVAL;
1832 	if (unlikely(offset > 0xffff || offset & 1))
1833 		return -EFAULT;
1834 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1835 		return -EFAULT;
1836 
1837 	ptr = (__sum16 *)(skb->data + offset);
1838 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1839 	case 0:
1840 		if (unlikely(from != 0))
1841 			return -EINVAL;
1842 
1843 		csum_replace_by_diff(ptr, to);
1844 		break;
1845 	case 2:
1846 		csum_replace2(ptr, from, to);
1847 		break;
1848 	case 4:
1849 		csum_replace4(ptr, from, to);
1850 		break;
1851 	default:
1852 		return -EINVAL;
1853 	}
1854 
1855 	return 0;
1856 }
1857 
1858 static const struct bpf_func_proto bpf_l3_csum_replace_proto = {
1859 	.func		= bpf_l3_csum_replace,
1860 	.gpl_only	= false,
1861 	.ret_type	= RET_INTEGER,
1862 	.arg1_type	= ARG_PTR_TO_CTX,
1863 	.arg2_type	= ARG_ANYTHING,
1864 	.arg3_type	= ARG_ANYTHING,
1865 	.arg4_type	= ARG_ANYTHING,
1866 	.arg5_type	= ARG_ANYTHING,
1867 };
1868 
BPF_CALL_5(bpf_l4_csum_replace,struct sk_buff *,skb,u32,offset,u64,from,u64,to,u64,flags)1869 BPF_CALL_5(bpf_l4_csum_replace, struct sk_buff *, skb, u32, offset,
1870 	   u64, from, u64, to, u64, flags)
1871 {
1872 	bool is_pseudo = flags & BPF_F_PSEUDO_HDR;
1873 	bool is_mmzero = flags & BPF_F_MARK_MANGLED_0;
1874 	bool do_mforce = flags & BPF_F_MARK_ENFORCE;
1875 	__sum16 *ptr;
1876 
1877 	if (unlikely(flags & ~(BPF_F_MARK_MANGLED_0 | BPF_F_MARK_ENFORCE |
1878 			       BPF_F_PSEUDO_HDR | BPF_F_HDR_FIELD_MASK)))
1879 		return -EINVAL;
1880 	if (unlikely(offset > 0xffff || offset & 1))
1881 		return -EFAULT;
1882 	if (unlikely(bpf_try_make_writable(skb, offset + sizeof(*ptr))))
1883 		return -EFAULT;
1884 
1885 	ptr = (__sum16 *)(skb->data + offset);
1886 	if (is_mmzero && !do_mforce && !*ptr)
1887 		return 0;
1888 
1889 	switch (flags & BPF_F_HDR_FIELD_MASK) {
1890 	case 0:
1891 		if (unlikely(from != 0))
1892 			return -EINVAL;
1893 
1894 		inet_proto_csum_replace_by_diff(ptr, skb, to, is_pseudo);
1895 		break;
1896 	case 2:
1897 		inet_proto_csum_replace2(ptr, skb, from, to, is_pseudo);
1898 		break;
1899 	case 4:
1900 		inet_proto_csum_replace4(ptr, skb, from, to, is_pseudo);
1901 		break;
1902 	default:
1903 		return -EINVAL;
1904 	}
1905 
1906 	if (is_mmzero && !*ptr)
1907 		*ptr = CSUM_MANGLED_0;
1908 	return 0;
1909 }
1910 
1911 static const struct bpf_func_proto bpf_l4_csum_replace_proto = {
1912 	.func		= bpf_l4_csum_replace,
1913 	.gpl_only	= false,
1914 	.ret_type	= RET_INTEGER,
1915 	.arg1_type	= ARG_PTR_TO_CTX,
1916 	.arg2_type	= ARG_ANYTHING,
1917 	.arg3_type	= ARG_ANYTHING,
1918 	.arg4_type	= ARG_ANYTHING,
1919 	.arg5_type	= ARG_ANYTHING,
1920 };
1921 
BPF_CALL_5(bpf_csum_diff,__be32 *,from,u32,from_size,__be32 *,to,u32,to_size,__wsum,seed)1922 BPF_CALL_5(bpf_csum_diff, __be32 *, from, u32, from_size,
1923 	   __be32 *, to, u32, to_size, __wsum, seed)
1924 {
1925 	struct bpf_scratchpad *sp = this_cpu_ptr(&bpf_sp);
1926 	u32 diff_size = from_size + to_size;
1927 	int i, j = 0;
1928 
1929 	/* This is quite flexible, some examples:
1930 	 *
1931 	 * from_size == 0, to_size > 0,  seed := csum --> pushing data
1932 	 * from_size > 0,  to_size == 0, seed := csum --> pulling data
1933 	 * from_size > 0,  to_size > 0,  seed := 0    --> diffing data
1934 	 *
1935 	 * Even for diffing, from_size and to_size don't need to be equal.
1936 	 */
1937 	if (unlikely(((from_size | to_size) & (sizeof(__be32) - 1)) ||
1938 		     diff_size > sizeof(sp->diff)))
1939 		return -EINVAL;
1940 
1941 	for (i = 0; i < from_size / sizeof(__be32); i++, j++)
1942 		sp->diff[j] = ~from[i];
1943 	for (i = 0; i <   to_size / sizeof(__be32); i++, j++)
1944 		sp->diff[j] = to[i];
1945 
1946 	return csum_partial(sp->diff, diff_size, seed);
1947 }
1948 
1949 static const struct bpf_func_proto bpf_csum_diff_proto = {
1950 	.func		= bpf_csum_diff,
1951 	.gpl_only	= false,
1952 	.pkt_access	= true,
1953 	.ret_type	= RET_INTEGER,
1954 	.arg1_type	= ARG_PTR_TO_MEM_OR_NULL,
1955 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1956 	.arg3_type	= ARG_PTR_TO_MEM_OR_NULL,
1957 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
1958 	.arg5_type	= ARG_ANYTHING,
1959 };
1960 
BPF_CALL_2(bpf_csum_update,struct sk_buff *,skb,__wsum,csum)1961 BPF_CALL_2(bpf_csum_update, struct sk_buff *, skb, __wsum, csum)
1962 {
1963 	/* The interface is to be used in combination with bpf_csum_diff()
1964 	 * for direct packet writes. csum rotation for alignment as well
1965 	 * as emulating csum_sub() can be done from the eBPF program.
1966 	 */
1967 	if (skb->ip_summed == CHECKSUM_COMPLETE)
1968 		return (skb->csum = csum_add(skb->csum, csum));
1969 
1970 	return -ENOTSUPP;
1971 }
1972 
1973 static const struct bpf_func_proto bpf_csum_update_proto = {
1974 	.func		= bpf_csum_update,
1975 	.gpl_only	= false,
1976 	.ret_type	= RET_INTEGER,
1977 	.arg1_type	= ARG_PTR_TO_CTX,
1978 	.arg2_type	= ARG_ANYTHING,
1979 };
1980 
__bpf_rx_skb(struct net_device * dev,struct sk_buff * skb)1981 static inline int __bpf_rx_skb(struct net_device *dev, struct sk_buff *skb)
1982 {
1983 	return dev_forward_skb(dev, skb);
1984 }
1985 
__bpf_rx_skb_no_mac(struct net_device * dev,struct sk_buff * skb)1986 static inline int __bpf_rx_skb_no_mac(struct net_device *dev,
1987 				      struct sk_buff *skb)
1988 {
1989 	int ret = ____dev_forward_skb(dev, skb);
1990 
1991 	if (likely(!ret)) {
1992 		skb->dev = dev;
1993 		ret = netif_rx(skb);
1994 	}
1995 
1996 	return ret;
1997 }
1998 
__bpf_tx_skb(struct net_device * dev,struct sk_buff * skb)1999 static inline int __bpf_tx_skb(struct net_device *dev, struct sk_buff *skb)
2000 {
2001 	int ret;
2002 
2003 	if (unlikely(__this_cpu_read(xmit_recursion) > XMIT_RECURSION_LIMIT)) {
2004 		net_crit_ratelimited("bpf: recursion limit reached on datapath, buggy bpf program?\n");
2005 		kfree_skb(skb);
2006 		return -ENETDOWN;
2007 	}
2008 
2009 	skb->dev = dev;
2010 
2011 	__this_cpu_inc(xmit_recursion);
2012 	ret = dev_queue_xmit(skb);
2013 	__this_cpu_dec(xmit_recursion);
2014 
2015 	return ret;
2016 }
2017 
__bpf_redirect_no_mac(struct sk_buff * skb,struct net_device * dev,u32 flags)2018 static int __bpf_redirect_no_mac(struct sk_buff *skb, struct net_device *dev,
2019 				 u32 flags)
2020 {
2021 	/* skb->mac_len is not set on normal egress */
2022 	unsigned int mlen = skb->network_header - skb->mac_header;
2023 
2024 	__skb_pull(skb, mlen);
2025 
2026 	/* At ingress, the mac header has already been pulled once.
2027 	 * At egress, skb_pospull_rcsum has to be done in case that
2028 	 * the skb is originated from ingress (i.e. a forwarded skb)
2029 	 * to ensure that rcsum starts at net header.
2030 	 */
2031 	if (!skb_at_tc_ingress(skb))
2032 		skb_postpull_rcsum(skb, skb_mac_header(skb), mlen);
2033 	skb_pop_mac_header(skb);
2034 	skb_reset_mac_len(skb);
2035 	return flags & BPF_F_INGRESS ?
2036 	       __bpf_rx_skb_no_mac(dev, skb) : __bpf_tx_skb(dev, skb);
2037 }
2038 
__bpf_redirect_common(struct sk_buff * skb,struct net_device * dev,u32 flags)2039 static int __bpf_redirect_common(struct sk_buff *skb, struct net_device *dev,
2040 				 u32 flags)
2041 {
2042 	/* Verify that a link layer header is carried */
2043 	if (unlikely(skb->mac_header >= skb->network_header)) {
2044 		kfree_skb(skb);
2045 		return -ERANGE;
2046 	}
2047 
2048 	bpf_push_mac_rcsum(skb);
2049 	return flags & BPF_F_INGRESS ?
2050 	       __bpf_rx_skb(dev, skb) : __bpf_tx_skb(dev, skb);
2051 }
2052 
__bpf_redirect(struct sk_buff * skb,struct net_device * dev,u32 flags)2053 static int __bpf_redirect(struct sk_buff *skb, struct net_device *dev,
2054 			  u32 flags)
2055 {
2056 	if (dev_is_mac_header_xmit(dev))
2057 		return __bpf_redirect_common(skb, dev, flags);
2058 	else
2059 		return __bpf_redirect_no_mac(skb, dev, flags);
2060 }
2061 
BPF_CALL_3(bpf_clone_redirect,struct sk_buff *,skb,u32,ifindex,u64,flags)2062 BPF_CALL_3(bpf_clone_redirect, struct sk_buff *, skb, u32, ifindex, u64, flags)
2063 {
2064 	struct net_device *dev;
2065 	struct sk_buff *clone;
2066 	int ret;
2067 
2068 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2069 		return -EINVAL;
2070 
2071 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ifindex);
2072 	if (unlikely(!dev))
2073 		return -EINVAL;
2074 
2075 	clone = skb_clone(skb, GFP_ATOMIC);
2076 	if (unlikely(!clone))
2077 		return -ENOMEM;
2078 
2079 	/* For direct write, we need to keep the invariant that the skbs
2080 	 * we're dealing with need to be uncloned. Should uncloning fail
2081 	 * here, we need to free the just generated clone to unclone once
2082 	 * again.
2083 	 */
2084 	ret = bpf_try_make_head_writable(skb);
2085 	if (unlikely(ret)) {
2086 		kfree_skb(clone);
2087 		return -ENOMEM;
2088 	}
2089 
2090 	return __bpf_redirect(clone, dev, flags);
2091 }
2092 
2093 static const struct bpf_func_proto bpf_clone_redirect_proto = {
2094 	.func           = bpf_clone_redirect,
2095 	.gpl_only       = false,
2096 	.ret_type       = RET_INTEGER,
2097 	.arg1_type      = ARG_PTR_TO_CTX,
2098 	.arg2_type      = ARG_ANYTHING,
2099 	.arg3_type      = ARG_ANYTHING,
2100 };
2101 
2102 DEFINE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
2103 EXPORT_PER_CPU_SYMBOL_GPL(bpf_redirect_info);
2104 
BPF_CALL_2(bpf_redirect,u32,ifindex,u64,flags)2105 BPF_CALL_2(bpf_redirect, u32, ifindex, u64, flags)
2106 {
2107 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2108 
2109 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2110 		return TC_ACT_SHOT;
2111 
2112 	ri->ifindex = ifindex;
2113 	ri->flags = flags;
2114 
2115 	return TC_ACT_REDIRECT;
2116 }
2117 
skb_do_redirect(struct sk_buff * skb)2118 int skb_do_redirect(struct sk_buff *skb)
2119 {
2120 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
2121 	struct net_device *dev;
2122 
2123 	dev = dev_get_by_index_rcu(dev_net(skb->dev), ri->ifindex);
2124 	ri->ifindex = 0;
2125 	if (unlikely(!dev)) {
2126 		kfree_skb(skb);
2127 		return -EINVAL;
2128 	}
2129 
2130 	return __bpf_redirect(skb, dev, ri->flags);
2131 }
2132 
2133 static const struct bpf_func_proto bpf_redirect_proto = {
2134 	.func           = bpf_redirect,
2135 	.gpl_only       = false,
2136 	.ret_type       = RET_INTEGER,
2137 	.arg1_type      = ARG_ANYTHING,
2138 	.arg2_type      = ARG_ANYTHING,
2139 };
2140 
BPF_CALL_4(bpf_sk_redirect_hash,struct sk_buff *,skb,struct bpf_map *,map,void *,key,u64,flags)2141 BPF_CALL_4(bpf_sk_redirect_hash, struct sk_buff *, skb,
2142 	   struct bpf_map *, map, void *, key, u64, flags)
2143 {
2144 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2145 
2146 	/* If user passes invalid input drop the packet. */
2147 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2148 		return SK_DROP;
2149 
2150 	tcb->bpf.flags = flags;
2151 	tcb->bpf.sk_redir = __sock_hash_lookup_elem(map, key);
2152 	if (!tcb->bpf.sk_redir)
2153 		return SK_DROP;
2154 
2155 	return SK_PASS;
2156 }
2157 
2158 static const struct bpf_func_proto bpf_sk_redirect_hash_proto = {
2159 	.func           = bpf_sk_redirect_hash,
2160 	.gpl_only       = false,
2161 	.ret_type       = RET_INTEGER,
2162 	.arg1_type	= ARG_PTR_TO_CTX,
2163 	.arg2_type      = ARG_CONST_MAP_PTR,
2164 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
2165 	.arg4_type      = ARG_ANYTHING,
2166 };
2167 
BPF_CALL_4(bpf_sk_redirect_map,struct sk_buff *,skb,struct bpf_map *,map,u32,key,u64,flags)2168 BPF_CALL_4(bpf_sk_redirect_map, struct sk_buff *, skb,
2169 	   struct bpf_map *, map, u32, key, u64, flags)
2170 {
2171 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2172 
2173 	/* If user passes invalid input drop the packet. */
2174 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2175 		return SK_DROP;
2176 
2177 	tcb->bpf.flags = flags;
2178 	tcb->bpf.sk_redir = __sock_map_lookup_elem(map, key);
2179 	if (!tcb->bpf.sk_redir)
2180 		return SK_DROP;
2181 
2182 	return SK_PASS;
2183 }
2184 
do_sk_redirect_map(struct sk_buff * skb)2185 struct sock *do_sk_redirect_map(struct sk_buff *skb)
2186 {
2187 	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
2188 
2189 	return tcb->bpf.sk_redir;
2190 }
2191 
2192 static const struct bpf_func_proto bpf_sk_redirect_map_proto = {
2193 	.func           = bpf_sk_redirect_map,
2194 	.gpl_only       = false,
2195 	.ret_type       = RET_INTEGER,
2196 	.arg1_type	= ARG_PTR_TO_CTX,
2197 	.arg2_type      = ARG_CONST_MAP_PTR,
2198 	.arg3_type      = ARG_ANYTHING,
2199 	.arg4_type      = ARG_ANYTHING,
2200 };
2201 
BPF_CALL_4(bpf_msg_redirect_hash,struct sk_msg_buff *,msg,struct bpf_map *,map,void *,key,u64,flags)2202 BPF_CALL_4(bpf_msg_redirect_hash, struct sk_msg_buff *, msg,
2203 	   struct bpf_map *, map, void *, key, u64, flags)
2204 {
2205 	/* If user passes invalid input drop the packet. */
2206 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2207 		return SK_DROP;
2208 
2209 	msg->flags = flags;
2210 	msg->sk_redir = __sock_hash_lookup_elem(map, key);
2211 	if (!msg->sk_redir)
2212 		return SK_DROP;
2213 
2214 	return SK_PASS;
2215 }
2216 
2217 static const struct bpf_func_proto bpf_msg_redirect_hash_proto = {
2218 	.func           = bpf_msg_redirect_hash,
2219 	.gpl_only       = false,
2220 	.ret_type       = RET_INTEGER,
2221 	.arg1_type	= ARG_PTR_TO_CTX,
2222 	.arg2_type      = ARG_CONST_MAP_PTR,
2223 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
2224 	.arg4_type      = ARG_ANYTHING,
2225 };
2226 
BPF_CALL_4(bpf_msg_redirect_map,struct sk_msg_buff *,msg,struct bpf_map *,map,u32,key,u64,flags)2227 BPF_CALL_4(bpf_msg_redirect_map, struct sk_msg_buff *, msg,
2228 	   struct bpf_map *, map, u32, key, u64, flags)
2229 {
2230 	/* If user passes invalid input drop the packet. */
2231 	if (unlikely(flags & ~(BPF_F_INGRESS)))
2232 		return SK_DROP;
2233 
2234 	msg->flags = flags;
2235 	msg->sk_redir = __sock_map_lookup_elem(map, key);
2236 	if (!msg->sk_redir)
2237 		return SK_DROP;
2238 
2239 	return SK_PASS;
2240 }
2241 
do_msg_redirect_map(struct sk_msg_buff * msg)2242 struct sock *do_msg_redirect_map(struct sk_msg_buff *msg)
2243 {
2244 	return msg->sk_redir;
2245 }
2246 
2247 static const struct bpf_func_proto bpf_msg_redirect_map_proto = {
2248 	.func           = bpf_msg_redirect_map,
2249 	.gpl_only       = false,
2250 	.ret_type       = RET_INTEGER,
2251 	.arg1_type	= ARG_PTR_TO_CTX,
2252 	.arg2_type      = ARG_CONST_MAP_PTR,
2253 	.arg3_type      = ARG_ANYTHING,
2254 	.arg4_type      = ARG_ANYTHING,
2255 };
2256 
BPF_CALL_2(bpf_msg_apply_bytes,struct sk_msg_buff *,msg,u32,bytes)2257 BPF_CALL_2(bpf_msg_apply_bytes, struct sk_msg_buff *, msg, u32, bytes)
2258 {
2259 	msg->apply_bytes = bytes;
2260 	return 0;
2261 }
2262 
2263 static const struct bpf_func_proto bpf_msg_apply_bytes_proto = {
2264 	.func           = bpf_msg_apply_bytes,
2265 	.gpl_only       = false,
2266 	.ret_type       = RET_INTEGER,
2267 	.arg1_type	= ARG_PTR_TO_CTX,
2268 	.arg2_type      = ARG_ANYTHING,
2269 };
2270 
BPF_CALL_2(bpf_msg_cork_bytes,struct sk_msg_buff *,msg,u32,bytes)2271 BPF_CALL_2(bpf_msg_cork_bytes, struct sk_msg_buff *, msg, u32, bytes)
2272 {
2273 	msg->cork_bytes = bytes;
2274 	return 0;
2275 }
2276 
2277 static const struct bpf_func_proto bpf_msg_cork_bytes_proto = {
2278 	.func           = bpf_msg_cork_bytes,
2279 	.gpl_only       = false,
2280 	.ret_type       = RET_INTEGER,
2281 	.arg1_type	= ARG_PTR_TO_CTX,
2282 	.arg2_type      = ARG_ANYTHING,
2283 };
2284 
2285 #define sk_msg_iter_var(var)			\
2286 	do {					\
2287 		var++;				\
2288 		if (var == MAX_SKB_FRAGS)	\
2289 			var = 0;		\
2290 	} while (0)
2291 
BPF_CALL_4(bpf_msg_pull_data,struct sk_msg_buff *,msg,u32,start,u32,end,u64,flags)2292 BPF_CALL_4(bpf_msg_pull_data,
2293 	   struct sk_msg_buff *, msg, u32, start, u32, end, u64, flags)
2294 {
2295 	unsigned int len = 0, offset = 0, copy = 0, poffset = 0;
2296 	int bytes = end - start, bytes_sg_total;
2297 	struct scatterlist *sg = msg->sg_data;
2298 	int first_sg, last_sg, i, shift;
2299 	unsigned char *p, *to, *from;
2300 	struct page *page;
2301 
2302 	if (unlikely(flags || end <= start))
2303 		return -EINVAL;
2304 
2305 	/* First find the starting scatterlist element */
2306 	i = msg->sg_start;
2307 	do {
2308 		len = sg[i].length;
2309 		if (start < offset + len)
2310 			break;
2311 		offset += len;
2312 		sk_msg_iter_var(i);
2313 	} while (i != msg->sg_end);
2314 
2315 	if (unlikely(start >= offset + len))
2316 		return -EINVAL;
2317 
2318 	first_sg = i;
2319 	/* The start may point into the sg element so we need to also
2320 	 * account for the headroom.
2321 	 */
2322 	bytes_sg_total = start - offset + bytes;
2323 	if (!msg->sg_copy[i] && bytes_sg_total <= len)
2324 		goto out;
2325 
2326 	/* At this point we need to linearize multiple scatterlist
2327 	 * elements or a single shared page. Either way we need to
2328 	 * copy into a linear buffer exclusively owned by BPF. Then
2329 	 * place the buffer in the scatterlist and fixup the original
2330 	 * entries by removing the entries now in the linear buffer
2331 	 * and shifting the remaining entries. For now we do not try
2332 	 * to copy partial entries to avoid complexity of running out
2333 	 * of sg_entry slots. The downside is reading a single byte
2334 	 * will copy the entire sg entry.
2335 	 */
2336 	do {
2337 		copy += sg[i].length;
2338 		sk_msg_iter_var(i);
2339 		if (bytes_sg_total <= copy)
2340 			break;
2341 	} while (i != msg->sg_end);
2342 	last_sg = i;
2343 
2344 	if (unlikely(bytes_sg_total > copy))
2345 		return -EINVAL;
2346 
2347 	page = alloc_pages(__GFP_NOWARN | GFP_ATOMIC | __GFP_COMP,
2348 			   get_order(copy));
2349 	if (unlikely(!page))
2350 		return -ENOMEM;
2351 	p = page_address(page);
2352 
2353 	i = first_sg;
2354 	do {
2355 		from = sg_virt(&sg[i]);
2356 		len = sg[i].length;
2357 		to = p + poffset;
2358 
2359 		memcpy(to, from, len);
2360 		poffset += len;
2361 		sg[i].length = 0;
2362 		put_page(sg_page(&sg[i]));
2363 
2364 		sk_msg_iter_var(i);
2365 	} while (i != last_sg);
2366 
2367 	sg[first_sg].length = copy;
2368 	sg_set_page(&sg[first_sg], page, copy, 0);
2369 
2370 	/* To repair sg ring we need to shift entries. If we only
2371 	 * had a single entry though we can just replace it and
2372 	 * be done. Otherwise walk the ring and shift the entries.
2373 	 */
2374 	WARN_ON_ONCE(last_sg == first_sg);
2375 	shift = last_sg > first_sg ?
2376 		last_sg - first_sg - 1 :
2377 		MAX_SKB_FRAGS - first_sg + last_sg - 1;
2378 	if (!shift)
2379 		goto out;
2380 
2381 	i = first_sg;
2382 	sk_msg_iter_var(i);
2383 	do {
2384 		int move_from;
2385 
2386 		if (i + shift >= MAX_SKB_FRAGS)
2387 			move_from = i + shift - MAX_SKB_FRAGS;
2388 		else
2389 			move_from = i + shift;
2390 
2391 		if (move_from == msg->sg_end)
2392 			break;
2393 
2394 		sg[i] = sg[move_from];
2395 		sg[move_from].length = 0;
2396 		sg[move_from].page_link = 0;
2397 		sg[move_from].offset = 0;
2398 
2399 		sk_msg_iter_var(i);
2400 	} while (1);
2401 	msg->sg_end -= shift;
2402 	if (msg->sg_end < 0)
2403 		msg->sg_end += MAX_SKB_FRAGS;
2404 out:
2405 	msg->data = sg_virt(&sg[first_sg]) + start - offset;
2406 	msg->data_end = msg->data + bytes;
2407 
2408 	return 0;
2409 }
2410 
2411 static const struct bpf_func_proto bpf_msg_pull_data_proto = {
2412 	.func		= bpf_msg_pull_data,
2413 	.gpl_only	= false,
2414 	.ret_type	= RET_INTEGER,
2415 	.arg1_type	= ARG_PTR_TO_CTX,
2416 	.arg2_type	= ARG_ANYTHING,
2417 	.arg3_type	= ARG_ANYTHING,
2418 	.arg4_type	= ARG_ANYTHING,
2419 };
2420 
BPF_CALL_1(bpf_get_cgroup_classid,const struct sk_buff *,skb)2421 BPF_CALL_1(bpf_get_cgroup_classid, const struct sk_buff *, skb)
2422 {
2423 	return task_get_classid(skb);
2424 }
2425 
2426 static const struct bpf_func_proto bpf_get_cgroup_classid_proto = {
2427 	.func           = bpf_get_cgroup_classid,
2428 	.gpl_only       = false,
2429 	.ret_type       = RET_INTEGER,
2430 	.arg1_type      = ARG_PTR_TO_CTX,
2431 };
2432 
BPF_CALL_1(bpf_get_route_realm,const struct sk_buff *,skb)2433 BPF_CALL_1(bpf_get_route_realm, const struct sk_buff *, skb)
2434 {
2435 	return dst_tclassid(skb);
2436 }
2437 
2438 static const struct bpf_func_proto bpf_get_route_realm_proto = {
2439 	.func           = bpf_get_route_realm,
2440 	.gpl_only       = false,
2441 	.ret_type       = RET_INTEGER,
2442 	.arg1_type      = ARG_PTR_TO_CTX,
2443 };
2444 
BPF_CALL_1(bpf_get_hash_recalc,struct sk_buff *,skb)2445 BPF_CALL_1(bpf_get_hash_recalc, struct sk_buff *, skb)
2446 {
2447 	/* If skb_clear_hash() was called due to mangling, we can
2448 	 * trigger SW recalculation here. Later access to hash
2449 	 * can then use the inline skb->hash via context directly
2450 	 * instead of calling this helper again.
2451 	 */
2452 	return skb_get_hash(skb);
2453 }
2454 
2455 static const struct bpf_func_proto bpf_get_hash_recalc_proto = {
2456 	.func		= bpf_get_hash_recalc,
2457 	.gpl_only	= false,
2458 	.ret_type	= RET_INTEGER,
2459 	.arg1_type	= ARG_PTR_TO_CTX,
2460 };
2461 
BPF_CALL_1(bpf_set_hash_invalid,struct sk_buff *,skb)2462 BPF_CALL_1(bpf_set_hash_invalid, struct sk_buff *, skb)
2463 {
2464 	/* After all direct packet write, this can be used once for
2465 	 * triggering a lazy recalc on next skb_get_hash() invocation.
2466 	 */
2467 	skb_clear_hash(skb);
2468 	return 0;
2469 }
2470 
2471 static const struct bpf_func_proto bpf_set_hash_invalid_proto = {
2472 	.func		= bpf_set_hash_invalid,
2473 	.gpl_only	= false,
2474 	.ret_type	= RET_INTEGER,
2475 	.arg1_type	= ARG_PTR_TO_CTX,
2476 };
2477 
BPF_CALL_2(bpf_set_hash,struct sk_buff *,skb,u32,hash)2478 BPF_CALL_2(bpf_set_hash, struct sk_buff *, skb, u32, hash)
2479 {
2480 	/* Set user specified hash as L4(+), so that it gets returned
2481 	 * on skb_get_hash() call unless BPF prog later on triggers a
2482 	 * skb_clear_hash().
2483 	 */
2484 	__skb_set_sw_hash(skb, hash, true);
2485 	return 0;
2486 }
2487 
2488 static const struct bpf_func_proto bpf_set_hash_proto = {
2489 	.func		= bpf_set_hash,
2490 	.gpl_only	= false,
2491 	.ret_type	= RET_INTEGER,
2492 	.arg1_type	= ARG_PTR_TO_CTX,
2493 	.arg2_type	= ARG_ANYTHING,
2494 };
2495 
BPF_CALL_3(bpf_skb_vlan_push,struct sk_buff *,skb,__be16,vlan_proto,u16,vlan_tci)2496 BPF_CALL_3(bpf_skb_vlan_push, struct sk_buff *, skb, __be16, vlan_proto,
2497 	   u16, vlan_tci)
2498 {
2499 	int ret;
2500 
2501 	if (unlikely(vlan_proto != htons(ETH_P_8021Q) &&
2502 		     vlan_proto != htons(ETH_P_8021AD)))
2503 		vlan_proto = htons(ETH_P_8021Q);
2504 
2505 	bpf_push_mac_rcsum(skb);
2506 	ret = skb_vlan_push(skb, vlan_proto, vlan_tci);
2507 	bpf_pull_mac_rcsum(skb);
2508 
2509 	bpf_compute_data_pointers(skb);
2510 	return ret;
2511 }
2512 
2513 static const struct bpf_func_proto bpf_skb_vlan_push_proto = {
2514 	.func           = bpf_skb_vlan_push,
2515 	.gpl_only       = false,
2516 	.ret_type       = RET_INTEGER,
2517 	.arg1_type      = ARG_PTR_TO_CTX,
2518 	.arg2_type      = ARG_ANYTHING,
2519 	.arg3_type      = ARG_ANYTHING,
2520 };
2521 
BPF_CALL_1(bpf_skb_vlan_pop,struct sk_buff *,skb)2522 BPF_CALL_1(bpf_skb_vlan_pop, struct sk_buff *, skb)
2523 {
2524 	int ret;
2525 
2526 	bpf_push_mac_rcsum(skb);
2527 	ret = skb_vlan_pop(skb);
2528 	bpf_pull_mac_rcsum(skb);
2529 
2530 	bpf_compute_data_pointers(skb);
2531 	return ret;
2532 }
2533 
2534 static const struct bpf_func_proto bpf_skb_vlan_pop_proto = {
2535 	.func           = bpf_skb_vlan_pop,
2536 	.gpl_only       = false,
2537 	.ret_type       = RET_INTEGER,
2538 	.arg1_type      = ARG_PTR_TO_CTX,
2539 };
2540 
bpf_skb_generic_push(struct sk_buff * skb,u32 off,u32 len)2541 static int bpf_skb_generic_push(struct sk_buff *skb, u32 off, u32 len)
2542 {
2543 	/* Caller already did skb_cow() with len as headroom,
2544 	 * so no need to do it here.
2545 	 */
2546 	skb_push(skb, len);
2547 	memmove(skb->data, skb->data + len, off);
2548 	memset(skb->data + off, 0, len);
2549 
2550 	/* No skb_postpush_rcsum(skb, skb->data + off, len)
2551 	 * needed here as it does not change the skb->csum
2552 	 * result for checksum complete when summing over
2553 	 * zeroed blocks.
2554 	 */
2555 	return 0;
2556 }
2557 
bpf_skb_generic_pop(struct sk_buff * skb,u32 off,u32 len)2558 static int bpf_skb_generic_pop(struct sk_buff *skb, u32 off, u32 len)
2559 {
2560 	/* skb_ensure_writable() is not needed here, as we're
2561 	 * already working on an uncloned skb.
2562 	 */
2563 	if (unlikely(!pskb_may_pull(skb, off + len)))
2564 		return -ENOMEM;
2565 
2566 	skb_postpull_rcsum(skb, skb->data + off, len);
2567 	memmove(skb->data + len, skb->data, off);
2568 	__skb_pull(skb, len);
2569 
2570 	return 0;
2571 }
2572 
bpf_skb_net_hdr_push(struct sk_buff * skb,u32 off,u32 len)2573 static int bpf_skb_net_hdr_push(struct sk_buff *skb, u32 off, u32 len)
2574 {
2575 	bool trans_same = skb->transport_header == skb->network_header;
2576 	int ret;
2577 
2578 	/* There's no need for __skb_push()/__skb_pull() pair to
2579 	 * get to the start of the mac header as we're guaranteed
2580 	 * to always start from here under eBPF.
2581 	 */
2582 	ret = bpf_skb_generic_push(skb, off, len);
2583 	if (likely(!ret)) {
2584 		skb->mac_header -= len;
2585 		skb->network_header -= len;
2586 		if (trans_same)
2587 			skb->transport_header = skb->network_header;
2588 	}
2589 
2590 	return ret;
2591 }
2592 
bpf_skb_net_hdr_pop(struct sk_buff * skb,u32 off,u32 len)2593 static int bpf_skb_net_hdr_pop(struct sk_buff *skb, u32 off, u32 len)
2594 {
2595 	bool trans_same = skb->transport_header == skb->network_header;
2596 	int ret;
2597 
2598 	/* Same here, __skb_push()/__skb_pull() pair not needed. */
2599 	ret = bpf_skb_generic_pop(skb, off, len);
2600 	if (likely(!ret)) {
2601 		skb->mac_header += len;
2602 		skb->network_header += len;
2603 		if (trans_same)
2604 			skb->transport_header = skb->network_header;
2605 	}
2606 
2607 	return ret;
2608 }
2609 
bpf_skb_proto_4_to_6(struct sk_buff * skb)2610 static int bpf_skb_proto_4_to_6(struct sk_buff *skb)
2611 {
2612 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2613 	u32 off = skb_mac_header_len(skb);
2614 	int ret;
2615 
2616 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2617 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2618 		return -ENOTSUPP;
2619 
2620 	ret = skb_cow(skb, len_diff);
2621 	if (unlikely(ret < 0))
2622 		return ret;
2623 
2624 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2625 	if (unlikely(ret < 0))
2626 		return ret;
2627 
2628 	if (skb_is_gso(skb)) {
2629 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2630 
2631 		/* SKB_GSO_TCPV4 needs to be changed into
2632 		 * SKB_GSO_TCPV6.
2633 		 */
2634 		if (shinfo->gso_type & SKB_GSO_TCPV4) {
2635 			shinfo->gso_type &= ~SKB_GSO_TCPV4;
2636 			shinfo->gso_type |=  SKB_GSO_TCPV6;
2637 		}
2638 
2639 		/* Due to IPv6 header, MSS needs to be downgraded. */
2640 		skb_decrease_gso_size(shinfo, len_diff);
2641 		/* Header must be checked, and gso_segs recomputed. */
2642 		shinfo->gso_type |= SKB_GSO_DODGY;
2643 		shinfo->gso_segs = 0;
2644 	}
2645 
2646 	skb->protocol = htons(ETH_P_IPV6);
2647 	skb_clear_hash(skb);
2648 
2649 	return 0;
2650 }
2651 
bpf_skb_proto_6_to_4(struct sk_buff * skb)2652 static int bpf_skb_proto_6_to_4(struct sk_buff *skb)
2653 {
2654 	const u32 len_diff = sizeof(struct ipv6hdr) - sizeof(struct iphdr);
2655 	u32 off = skb_mac_header_len(skb);
2656 	int ret;
2657 
2658 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2659 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2660 		return -ENOTSUPP;
2661 
2662 	ret = skb_unclone(skb, GFP_ATOMIC);
2663 	if (unlikely(ret < 0))
2664 		return ret;
2665 
2666 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2667 	if (unlikely(ret < 0))
2668 		return ret;
2669 
2670 	if (skb_is_gso(skb)) {
2671 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2672 
2673 		/* SKB_GSO_TCPV6 needs to be changed into
2674 		 * SKB_GSO_TCPV4.
2675 		 */
2676 		if (shinfo->gso_type & SKB_GSO_TCPV6) {
2677 			shinfo->gso_type &= ~SKB_GSO_TCPV6;
2678 			shinfo->gso_type |=  SKB_GSO_TCPV4;
2679 		}
2680 
2681 		/* Due to IPv4 header, MSS can be upgraded. */
2682 		skb_increase_gso_size(shinfo, len_diff);
2683 		/* Header must be checked, and gso_segs recomputed. */
2684 		shinfo->gso_type |= SKB_GSO_DODGY;
2685 		shinfo->gso_segs = 0;
2686 	}
2687 
2688 	skb->protocol = htons(ETH_P_IP);
2689 	skb_clear_hash(skb);
2690 
2691 	return 0;
2692 }
2693 
bpf_skb_proto_xlat(struct sk_buff * skb,__be16 to_proto)2694 static int bpf_skb_proto_xlat(struct sk_buff *skb, __be16 to_proto)
2695 {
2696 	__be16 from_proto = skb->protocol;
2697 
2698 	if (from_proto == htons(ETH_P_IP) &&
2699 	      to_proto == htons(ETH_P_IPV6))
2700 		return bpf_skb_proto_4_to_6(skb);
2701 
2702 	if (from_proto == htons(ETH_P_IPV6) &&
2703 	      to_proto == htons(ETH_P_IP))
2704 		return bpf_skb_proto_6_to_4(skb);
2705 
2706 	return -ENOTSUPP;
2707 }
2708 
BPF_CALL_3(bpf_skb_change_proto,struct sk_buff *,skb,__be16,proto,u64,flags)2709 BPF_CALL_3(bpf_skb_change_proto, struct sk_buff *, skb, __be16, proto,
2710 	   u64, flags)
2711 {
2712 	int ret;
2713 
2714 	if (unlikely(flags))
2715 		return -EINVAL;
2716 
2717 	/* General idea is that this helper does the basic groundwork
2718 	 * needed for changing the protocol, and eBPF program fills the
2719 	 * rest through bpf_skb_store_bytes(), bpf_lX_csum_replace()
2720 	 * and other helpers, rather than passing a raw buffer here.
2721 	 *
2722 	 * The rationale is to keep this minimal and without a need to
2723 	 * deal with raw packet data. F.e. even if we would pass buffers
2724 	 * here, the program still needs to call the bpf_lX_csum_replace()
2725 	 * helpers anyway. Plus, this way we keep also separation of
2726 	 * concerns, since f.e. bpf_skb_store_bytes() should only take
2727 	 * care of stores.
2728 	 *
2729 	 * Currently, additional options and extension header space are
2730 	 * not supported, but flags register is reserved so we can adapt
2731 	 * that. For offloads, we mark packet as dodgy, so that headers
2732 	 * need to be verified first.
2733 	 */
2734 	ret = bpf_skb_proto_xlat(skb, proto);
2735 	bpf_compute_data_pointers(skb);
2736 	return ret;
2737 }
2738 
2739 static const struct bpf_func_proto bpf_skb_change_proto_proto = {
2740 	.func		= bpf_skb_change_proto,
2741 	.gpl_only	= false,
2742 	.ret_type	= RET_INTEGER,
2743 	.arg1_type	= ARG_PTR_TO_CTX,
2744 	.arg2_type	= ARG_ANYTHING,
2745 	.arg3_type	= ARG_ANYTHING,
2746 };
2747 
BPF_CALL_2(bpf_skb_change_type,struct sk_buff *,skb,u32,pkt_type)2748 BPF_CALL_2(bpf_skb_change_type, struct sk_buff *, skb, u32, pkt_type)
2749 {
2750 	/* We only allow a restricted subset to be changed for now. */
2751 	if (unlikely(!skb_pkt_type_ok(skb->pkt_type) ||
2752 		     !skb_pkt_type_ok(pkt_type)))
2753 		return -EINVAL;
2754 
2755 	skb->pkt_type = pkt_type;
2756 	return 0;
2757 }
2758 
2759 static const struct bpf_func_proto bpf_skb_change_type_proto = {
2760 	.func		= bpf_skb_change_type,
2761 	.gpl_only	= false,
2762 	.ret_type	= RET_INTEGER,
2763 	.arg1_type	= ARG_PTR_TO_CTX,
2764 	.arg2_type	= ARG_ANYTHING,
2765 };
2766 
bpf_skb_net_base_len(const struct sk_buff * skb)2767 static u32 bpf_skb_net_base_len(const struct sk_buff *skb)
2768 {
2769 	switch (skb->protocol) {
2770 	case htons(ETH_P_IP):
2771 		return sizeof(struct iphdr);
2772 	case htons(ETH_P_IPV6):
2773 		return sizeof(struct ipv6hdr);
2774 	default:
2775 		return ~0U;
2776 	}
2777 }
2778 
bpf_skb_net_grow(struct sk_buff * skb,u32 len_diff)2779 static int bpf_skb_net_grow(struct sk_buff *skb, u32 len_diff)
2780 {
2781 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2782 	int ret;
2783 
2784 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2785 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2786 		return -ENOTSUPP;
2787 
2788 	ret = skb_cow(skb, len_diff);
2789 	if (unlikely(ret < 0))
2790 		return ret;
2791 
2792 	ret = bpf_skb_net_hdr_push(skb, off, len_diff);
2793 	if (unlikely(ret < 0))
2794 		return ret;
2795 
2796 	if (skb_is_gso(skb)) {
2797 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2798 
2799 		/* Due to header grow, MSS needs to be downgraded. */
2800 		skb_decrease_gso_size(shinfo, len_diff);
2801 		/* Header must be checked, and gso_segs recomputed. */
2802 		shinfo->gso_type |= SKB_GSO_DODGY;
2803 		shinfo->gso_segs = 0;
2804 	}
2805 
2806 	return 0;
2807 }
2808 
bpf_skb_net_shrink(struct sk_buff * skb,u32 len_diff)2809 static int bpf_skb_net_shrink(struct sk_buff *skb, u32 len_diff)
2810 {
2811 	u32 off = skb_mac_header_len(skb) + bpf_skb_net_base_len(skb);
2812 	int ret;
2813 
2814 	/* SCTP uses GSO_BY_FRAGS, thus cannot adjust it. */
2815 	if (skb_is_gso(skb) && unlikely(skb_is_gso_sctp(skb)))
2816 		return -ENOTSUPP;
2817 
2818 	ret = skb_unclone(skb, GFP_ATOMIC);
2819 	if (unlikely(ret < 0))
2820 		return ret;
2821 
2822 	ret = bpf_skb_net_hdr_pop(skb, off, len_diff);
2823 	if (unlikely(ret < 0))
2824 		return ret;
2825 
2826 	if (skb_is_gso(skb)) {
2827 		struct skb_shared_info *shinfo = skb_shinfo(skb);
2828 
2829 		/* Due to header shrink, MSS can be upgraded. */
2830 		skb_increase_gso_size(shinfo, len_diff);
2831 		/* Header must be checked, and gso_segs recomputed. */
2832 		shinfo->gso_type |= SKB_GSO_DODGY;
2833 		shinfo->gso_segs = 0;
2834 	}
2835 
2836 	return 0;
2837 }
2838 
__bpf_skb_max_len(const struct sk_buff * skb)2839 static u32 __bpf_skb_max_len(const struct sk_buff *skb)
2840 {
2841 	return skb->dev ? skb->dev->mtu + skb->dev->hard_header_len :
2842 			  SKB_MAX_ALLOC;
2843 }
2844 
bpf_skb_adjust_net(struct sk_buff * skb,s32 len_diff)2845 static int bpf_skb_adjust_net(struct sk_buff *skb, s32 len_diff)
2846 {
2847 	bool trans_same = skb->transport_header == skb->network_header;
2848 	u32 len_cur, len_diff_abs = abs(len_diff);
2849 	u32 len_min = bpf_skb_net_base_len(skb);
2850 	u32 len_max = __bpf_skb_max_len(skb);
2851 	__be16 proto = skb->protocol;
2852 	bool shrink = len_diff < 0;
2853 	int ret;
2854 
2855 	if (unlikely(len_diff_abs > 0xfffU))
2856 		return -EFAULT;
2857 	if (unlikely(proto != htons(ETH_P_IP) &&
2858 		     proto != htons(ETH_P_IPV6)))
2859 		return -ENOTSUPP;
2860 
2861 	len_cur = skb->len - skb_network_offset(skb);
2862 	if (skb_transport_header_was_set(skb) && !trans_same)
2863 		len_cur = skb_network_header_len(skb);
2864 	if ((shrink && (len_diff_abs >= len_cur ||
2865 			len_cur - len_diff_abs < len_min)) ||
2866 	    (!shrink && (skb->len + len_diff_abs > len_max &&
2867 			 !skb_is_gso(skb))))
2868 		return -ENOTSUPP;
2869 
2870 	ret = shrink ? bpf_skb_net_shrink(skb, len_diff_abs) :
2871 		       bpf_skb_net_grow(skb, len_diff_abs);
2872 
2873 	bpf_compute_data_pointers(skb);
2874 	return ret;
2875 }
2876 
BPF_CALL_4(bpf_skb_adjust_room,struct sk_buff *,skb,s32,len_diff,u32,mode,u64,flags)2877 BPF_CALL_4(bpf_skb_adjust_room, struct sk_buff *, skb, s32, len_diff,
2878 	   u32, mode, u64, flags)
2879 {
2880 	if (unlikely(flags))
2881 		return -EINVAL;
2882 	if (likely(mode == BPF_ADJ_ROOM_NET))
2883 		return bpf_skb_adjust_net(skb, len_diff);
2884 
2885 	return -ENOTSUPP;
2886 }
2887 
2888 static const struct bpf_func_proto bpf_skb_adjust_room_proto = {
2889 	.func		= bpf_skb_adjust_room,
2890 	.gpl_only	= false,
2891 	.ret_type	= RET_INTEGER,
2892 	.arg1_type	= ARG_PTR_TO_CTX,
2893 	.arg2_type	= ARG_ANYTHING,
2894 	.arg3_type	= ARG_ANYTHING,
2895 	.arg4_type	= ARG_ANYTHING,
2896 };
2897 
__bpf_skb_min_len(const struct sk_buff * skb)2898 static u32 __bpf_skb_min_len(const struct sk_buff *skb)
2899 {
2900 	u32 min_len = skb_network_offset(skb);
2901 
2902 	if (skb_transport_header_was_set(skb))
2903 		min_len = skb_transport_offset(skb);
2904 	if (skb->ip_summed == CHECKSUM_PARTIAL)
2905 		min_len = skb_checksum_start_offset(skb) +
2906 			  skb->csum_offset + sizeof(__sum16);
2907 	return min_len;
2908 }
2909 
bpf_skb_grow_rcsum(struct sk_buff * skb,unsigned int new_len)2910 static int bpf_skb_grow_rcsum(struct sk_buff *skb, unsigned int new_len)
2911 {
2912 	unsigned int old_len = skb->len;
2913 	int ret;
2914 
2915 	ret = __skb_grow_rcsum(skb, new_len);
2916 	if (!ret)
2917 		memset(skb->data + old_len, 0, new_len - old_len);
2918 	return ret;
2919 }
2920 
bpf_skb_trim_rcsum(struct sk_buff * skb,unsigned int new_len)2921 static int bpf_skb_trim_rcsum(struct sk_buff *skb, unsigned int new_len)
2922 {
2923 	return __skb_trim_rcsum(skb, new_len);
2924 }
2925 
__bpf_skb_change_tail(struct sk_buff * skb,u32 new_len,u64 flags)2926 static inline int __bpf_skb_change_tail(struct sk_buff *skb, u32 new_len,
2927 					u64 flags)
2928 {
2929 	u32 max_len = __bpf_skb_max_len(skb);
2930 	u32 min_len = __bpf_skb_min_len(skb);
2931 	int ret;
2932 
2933 	if (unlikely(flags || new_len > max_len || new_len < min_len))
2934 		return -EINVAL;
2935 	if (skb->encapsulation)
2936 		return -ENOTSUPP;
2937 
2938 	/* The basic idea of this helper is that it's performing the
2939 	 * needed work to either grow or trim an skb, and eBPF program
2940 	 * rewrites the rest via helpers like bpf_skb_store_bytes(),
2941 	 * bpf_lX_csum_replace() and others rather than passing a raw
2942 	 * buffer here. This one is a slow path helper and intended
2943 	 * for replies with control messages.
2944 	 *
2945 	 * Like in bpf_skb_change_proto(), we want to keep this rather
2946 	 * minimal and without protocol specifics so that we are able
2947 	 * to separate concerns as in bpf_skb_store_bytes() should only
2948 	 * be the one responsible for writing buffers.
2949 	 *
2950 	 * It's really expected to be a slow path operation here for
2951 	 * control message replies, so we're implicitly linearizing,
2952 	 * uncloning and drop offloads from the skb by this.
2953 	 */
2954 	ret = __bpf_try_make_writable(skb, skb->len);
2955 	if (!ret) {
2956 		if (new_len > skb->len)
2957 			ret = bpf_skb_grow_rcsum(skb, new_len);
2958 		else if (new_len < skb->len)
2959 			ret = bpf_skb_trim_rcsum(skb, new_len);
2960 		if (!ret && skb_is_gso(skb))
2961 			skb_gso_reset(skb);
2962 	}
2963 	return ret;
2964 }
2965 
BPF_CALL_3(bpf_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)2966 BPF_CALL_3(bpf_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2967 	   u64, flags)
2968 {
2969 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
2970 
2971 	bpf_compute_data_pointers(skb);
2972 	return ret;
2973 }
2974 
2975 static const struct bpf_func_proto bpf_skb_change_tail_proto = {
2976 	.func		= bpf_skb_change_tail,
2977 	.gpl_only	= false,
2978 	.ret_type	= RET_INTEGER,
2979 	.arg1_type	= ARG_PTR_TO_CTX,
2980 	.arg2_type	= ARG_ANYTHING,
2981 	.arg3_type	= ARG_ANYTHING,
2982 };
2983 
BPF_CALL_3(sk_skb_change_tail,struct sk_buff *,skb,u32,new_len,u64,flags)2984 BPF_CALL_3(sk_skb_change_tail, struct sk_buff *, skb, u32, new_len,
2985 	   u64, flags)
2986 {
2987 	int ret = __bpf_skb_change_tail(skb, new_len, flags);
2988 
2989 	bpf_compute_data_end_sk_skb(skb);
2990 	return ret;
2991 }
2992 
2993 static const struct bpf_func_proto sk_skb_change_tail_proto = {
2994 	.func		= sk_skb_change_tail,
2995 	.gpl_only	= false,
2996 	.ret_type	= RET_INTEGER,
2997 	.arg1_type	= ARG_PTR_TO_CTX,
2998 	.arg2_type	= ARG_ANYTHING,
2999 	.arg3_type	= ARG_ANYTHING,
3000 };
3001 
__bpf_skb_change_head(struct sk_buff * skb,u32 head_room,u64 flags)3002 static inline int __bpf_skb_change_head(struct sk_buff *skb, u32 head_room,
3003 					u64 flags)
3004 {
3005 	u32 max_len = __bpf_skb_max_len(skb);
3006 	u32 new_len = skb->len + head_room;
3007 	int ret;
3008 
3009 	if (unlikely(flags || (!skb_is_gso(skb) && new_len > max_len) ||
3010 		     new_len < skb->len))
3011 		return -EINVAL;
3012 
3013 	ret = skb_cow(skb, head_room);
3014 	if (likely(!ret)) {
3015 		/* Idea for this helper is that we currently only
3016 		 * allow to expand on mac header. This means that
3017 		 * skb->protocol network header, etc, stay as is.
3018 		 * Compared to bpf_skb_change_tail(), we're more
3019 		 * flexible due to not needing to linearize or
3020 		 * reset GSO. Intention for this helper is to be
3021 		 * used by an L3 skb that needs to push mac header
3022 		 * for redirection into L2 device.
3023 		 */
3024 		__skb_push(skb, head_room);
3025 		memset(skb->data, 0, head_room);
3026 		skb_reset_mac_header(skb);
3027 	}
3028 
3029 	return ret;
3030 }
3031 
BPF_CALL_3(bpf_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3032 BPF_CALL_3(bpf_skb_change_head, struct sk_buff *, skb, u32, head_room,
3033 	   u64, flags)
3034 {
3035 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3036 
3037 	bpf_compute_data_pointers(skb);
3038 	return ret;
3039 }
3040 
3041 static const struct bpf_func_proto bpf_skb_change_head_proto = {
3042 	.func		= bpf_skb_change_head,
3043 	.gpl_only	= false,
3044 	.ret_type	= RET_INTEGER,
3045 	.arg1_type	= ARG_PTR_TO_CTX,
3046 	.arg2_type	= ARG_ANYTHING,
3047 	.arg3_type	= ARG_ANYTHING,
3048 };
3049 
BPF_CALL_3(sk_skb_change_head,struct sk_buff *,skb,u32,head_room,u64,flags)3050 BPF_CALL_3(sk_skb_change_head, struct sk_buff *, skb, u32, head_room,
3051 	   u64, flags)
3052 {
3053 	int ret = __bpf_skb_change_head(skb, head_room, flags);
3054 
3055 	bpf_compute_data_end_sk_skb(skb);
3056 	return ret;
3057 }
3058 
3059 static const struct bpf_func_proto sk_skb_change_head_proto = {
3060 	.func		= sk_skb_change_head,
3061 	.gpl_only	= false,
3062 	.ret_type	= RET_INTEGER,
3063 	.arg1_type	= ARG_PTR_TO_CTX,
3064 	.arg2_type	= ARG_ANYTHING,
3065 	.arg3_type	= ARG_ANYTHING,
3066 };
xdp_get_metalen(const struct xdp_buff * xdp)3067 static unsigned long xdp_get_metalen(const struct xdp_buff *xdp)
3068 {
3069 	return xdp_data_meta_unsupported(xdp) ? 0 :
3070 	       xdp->data - xdp->data_meta;
3071 }
3072 
BPF_CALL_2(bpf_xdp_adjust_head,struct xdp_buff *,xdp,int,offset)3073 BPF_CALL_2(bpf_xdp_adjust_head, struct xdp_buff *, xdp, int, offset)
3074 {
3075 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3076 	unsigned long metalen = xdp_get_metalen(xdp);
3077 	void *data_start = xdp_frame_end + metalen;
3078 	void *data = xdp->data + offset;
3079 
3080 	if (unlikely(data < data_start ||
3081 		     data > xdp->data_end - ETH_HLEN))
3082 		return -EINVAL;
3083 
3084 	if (metalen)
3085 		memmove(xdp->data_meta + offset,
3086 			xdp->data_meta, metalen);
3087 	xdp->data_meta += offset;
3088 	xdp->data = data;
3089 
3090 	return 0;
3091 }
3092 
3093 static const struct bpf_func_proto bpf_xdp_adjust_head_proto = {
3094 	.func		= bpf_xdp_adjust_head,
3095 	.gpl_only	= false,
3096 	.ret_type	= RET_INTEGER,
3097 	.arg1_type	= ARG_PTR_TO_CTX,
3098 	.arg2_type	= ARG_ANYTHING,
3099 };
3100 
BPF_CALL_2(bpf_xdp_adjust_tail,struct xdp_buff *,xdp,int,offset)3101 BPF_CALL_2(bpf_xdp_adjust_tail, struct xdp_buff *, xdp, int, offset)
3102 {
3103 	void *data_end = xdp->data_end + offset;
3104 
3105 	/* only shrinking is allowed for now. */
3106 	if (unlikely(offset >= 0))
3107 		return -EINVAL;
3108 
3109 	if (unlikely(data_end < xdp->data + ETH_HLEN))
3110 		return -EINVAL;
3111 
3112 	xdp->data_end = data_end;
3113 
3114 	return 0;
3115 }
3116 
3117 static const struct bpf_func_proto bpf_xdp_adjust_tail_proto = {
3118 	.func		= bpf_xdp_adjust_tail,
3119 	.gpl_only	= false,
3120 	.ret_type	= RET_INTEGER,
3121 	.arg1_type	= ARG_PTR_TO_CTX,
3122 	.arg2_type	= ARG_ANYTHING,
3123 };
3124 
BPF_CALL_2(bpf_xdp_adjust_meta,struct xdp_buff *,xdp,int,offset)3125 BPF_CALL_2(bpf_xdp_adjust_meta, struct xdp_buff *, xdp, int, offset)
3126 {
3127 	void *xdp_frame_end = xdp->data_hard_start + sizeof(struct xdp_frame);
3128 	void *meta = xdp->data_meta + offset;
3129 	unsigned long metalen = xdp->data - meta;
3130 
3131 	if (xdp_data_meta_unsupported(xdp))
3132 		return -ENOTSUPP;
3133 	if (unlikely(meta < xdp_frame_end ||
3134 		     meta > xdp->data))
3135 		return -EINVAL;
3136 	if (unlikely((metalen & (sizeof(__u32) - 1)) ||
3137 		     (metalen > 32)))
3138 		return -EACCES;
3139 
3140 	xdp->data_meta = meta;
3141 
3142 	return 0;
3143 }
3144 
3145 static const struct bpf_func_proto bpf_xdp_adjust_meta_proto = {
3146 	.func		= bpf_xdp_adjust_meta,
3147 	.gpl_only	= false,
3148 	.ret_type	= RET_INTEGER,
3149 	.arg1_type	= ARG_PTR_TO_CTX,
3150 	.arg2_type	= ARG_ANYTHING,
3151 };
3152 
__bpf_tx_xdp(struct net_device * dev,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3153 static int __bpf_tx_xdp(struct net_device *dev,
3154 			struct bpf_map *map,
3155 			struct xdp_buff *xdp,
3156 			u32 index)
3157 {
3158 	struct xdp_frame *xdpf;
3159 	int err, sent;
3160 
3161 	if (!dev->netdev_ops->ndo_xdp_xmit) {
3162 		return -EOPNOTSUPP;
3163 	}
3164 
3165 	err = xdp_ok_fwd_dev(dev, xdp->data_end - xdp->data);
3166 	if (unlikely(err))
3167 		return err;
3168 
3169 	xdpf = convert_to_xdp_frame(xdp);
3170 	if (unlikely(!xdpf))
3171 		return -EOVERFLOW;
3172 
3173 	sent = dev->netdev_ops->ndo_xdp_xmit(dev, 1, &xdpf, XDP_XMIT_FLUSH);
3174 	if (sent <= 0)
3175 		return sent;
3176 	return 0;
3177 }
3178 
__bpf_tx_xdp_map(struct net_device * dev_rx,void * fwd,struct bpf_map * map,struct xdp_buff * xdp,u32 index)3179 static int __bpf_tx_xdp_map(struct net_device *dev_rx, void *fwd,
3180 			    struct bpf_map *map,
3181 			    struct xdp_buff *xdp,
3182 			    u32 index)
3183 {
3184 	int err;
3185 
3186 	switch (map->map_type) {
3187 	case BPF_MAP_TYPE_DEVMAP: {
3188 		struct bpf_dtab_netdev *dst = fwd;
3189 
3190 		err = dev_map_enqueue(dst, xdp, dev_rx);
3191 		if (err)
3192 			return err;
3193 		__dev_map_insert_ctx(map, index);
3194 		break;
3195 	}
3196 	case BPF_MAP_TYPE_CPUMAP: {
3197 		struct bpf_cpu_map_entry *rcpu = fwd;
3198 
3199 		err = cpu_map_enqueue(rcpu, xdp, dev_rx);
3200 		if (err)
3201 			return err;
3202 		__cpu_map_insert_ctx(map, index);
3203 		break;
3204 	}
3205 	case BPF_MAP_TYPE_XSKMAP: {
3206 		struct xdp_sock *xs = fwd;
3207 
3208 		err = __xsk_map_redirect(map, xdp, xs);
3209 		return err;
3210 	}
3211 	default:
3212 		break;
3213 	}
3214 	return 0;
3215 }
3216 
xdp_do_flush_map(void)3217 void xdp_do_flush_map(void)
3218 {
3219 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3220 	struct bpf_map *map = ri->map_to_flush;
3221 
3222 	ri->map_to_flush = NULL;
3223 	if (map) {
3224 		switch (map->map_type) {
3225 		case BPF_MAP_TYPE_DEVMAP:
3226 			__dev_map_flush(map);
3227 			break;
3228 		case BPF_MAP_TYPE_CPUMAP:
3229 			__cpu_map_flush(map);
3230 			break;
3231 		case BPF_MAP_TYPE_XSKMAP:
3232 			__xsk_map_flush(map);
3233 			break;
3234 		default:
3235 			break;
3236 		}
3237 	}
3238 }
3239 EXPORT_SYMBOL_GPL(xdp_do_flush_map);
3240 
__xdp_map_lookup_elem(struct bpf_map * map,u32 index)3241 static void *__xdp_map_lookup_elem(struct bpf_map *map, u32 index)
3242 {
3243 	switch (map->map_type) {
3244 	case BPF_MAP_TYPE_DEVMAP:
3245 		return __dev_map_lookup_elem(map, index);
3246 	case BPF_MAP_TYPE_CPUMAP:
3247 		return __cpu_map_lookup_elem(map, index);
3248 	case BPF_MAP_TYPE_XSKMAP:
3249 		return __xsk_map_lookup_elem(map, index);
3250 	default:
3251 		return NULL;
3252 	}
3253 }
3254 
bpf_clear_redirect_map(struct bpf_map * map)3255 void bpf_clear_redirect_map(struct bpf_map *map)
3256 {
3257 	struct bpf_redirect_info *ri;
3258 	int cpu;
3259 
3260 	for_each_possible_cpu(cpu) {
3261 		ri = per_cpu_ptr(&bpf_redirect_info, cpu);
3262 		/* Avoid polluting remote cacheline due to writes if
3263 		 * not needed. Once we pass this test, we need the
3264 		 * cmpxchg() to make sure it hasn't been changed in
3265 		 * the meantime by remote CPU.
3266 		 */
3267 		if (unlikely(READ_ONCE(ri->map) == map))
3268 			cmpxchg(&ri->map, map, NULL);
3269 	}
3270 }
3271 
xdp_do_redirect_map(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3272 static int xdp_do_redirect_map(struct net_device *dev, struct xdp_buff *xdp,
3273 			       struct bpf_prog *xdp_prog, struct bpf_map *map)
3274 {
3275 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3276 	u32 index = ri->ifindex;
3277 	void *fwd = NULL;
3278 	int err;
3279 
3280 	ri->ifindex = 0;
3281 	WRITE_ONCE(ri->map, NULL);
3282 
3283 	fwd = __xdp_map_lookup_elem(map, index);
3284 	if (!fwd) {
3285 		err = -EINVAL;
3286 		goto err;
3287 	}
3288 	if (ri->map_to_flush && ri->map_to_flush != map)
3289 		xdp_do_flush_map();
3290 
3291 	err = __bpf_tx_xdp_map(dev, fwd, map, xdp, index);
3292 	if (unlikely(err))
3293 		goto err;
3294 
3295 	ri->map_to_flush = map;
3296 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3297 	return 0;
3298 err:
3299 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3300 	return err;
3301 }
3302 
xdp_do_redirect(struct net_device * dev,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3303 int xdp_do_redirect(struct net_device *dev, struct xdp_buff *xdp,
3304 		    struct bpf_prog *xdp_prog)
3305 {
3306 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3307 	struct bpf_map *map = READ_ONCE(ri->map);
3308 	struct net_device *fwd;
3309 	u32 index = ri->ifindex;
3310 	int err;
3311 
3312 	if (map)
3313 		return xdp_do_redirect_map(dev, xdp, xdp_prog, map);
3314 
3315 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3316 	ri->ifindex = 0;
3317 	if (unlikely(!fwd)) {
3318 		err = -EINVAL;
3319 		goto err;
3320 	}
3321 
3322 	err = __bpf_tx_xdp(fwd, NULL, xdp, 0);
3323 	if (unlikely(err))
3324 		goto err;
3325 
3326 	_trace_xdp_redirect(dev, xdp_prog, index);
3327 	return 0;
3328 err:
3329 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3330 	return err;
3331 }
3332 EXPORT_SYMBOL_GPL(xdp_do_redirect);
3333 
xdp_do_generic_redirect_map(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog,struct bpf_map * map)3334 static int xdp_do_generic_redirect_map(struct net_device *dev,
3335 				       struct sk_buff *skb,
3336 				       struct xdp_buff *xdp,
3337 				       struct bpf_prog *xdp_prog,
3338 				       struct bpf_map *map)
3339 {
3340 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3341 	u32 index = ri->ifindex;
3342 	void *fwd = NULL;
3343 	int err = 0;
3344 
3345 	ri->ifindex = 0;
3346 	WRITE_ONCE(ri->map, NULL);
3347 
3348 	fwd = __xdp_map_lookup_elem(map, index);
3349 	if (unlikely(!fwd)) {
3350 		err = -EINVAL;
3351 		goto err;
3352 	}
3353 
3354 	if (map->map_type == BPF_MAP_TYPE_DEVMAP) {
3355 		struct bpf_dtab_netdev *dst = fwd;
3356 
3357 		err = dev_map_generic_redirect(dst, skb, xdp_prog);
3358 		if (unlikely(err))
3359 			goto err;
3360 	} else if (map->map_type == BPF_MAP_TYPE_XSKMAP) {
3361 		struct xdp_sock *xs = fwd;
3362 
3363 		err = xsk_generic_rcv(xs, xdp);
3364 		if (err)
3365 			goto err;
3366 		consume_skb(skb);
3367 	} else {
3368 		/* TODO: Handle BPF_MAP_TYPE_CPUMAP */
3369 		err = -EBADRQC;
3370 		goto err;
3371 	}
3372 
3373 	_trace_xdp_redirect_map(dev, xdp_prog, fwd, map, index);
3374 	return 0;
3375 err:
3376 	_trace_xdp_redirect_map_err(dev, xdp_prog, fwd, map, index, err);
3377 	return err;
3378 }
3379 
xdp_do_generic_redirect(struct net_device * dev,struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)3380 int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
3381 			    struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
3382 {
3383 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3384 	struct bpf_map *map = READ_ONCE(ri->map);
3385 	u32 index = ri->ifindex;
3386 	struct net_device *fwd;
3387 	int err = 0;
3388 
3389 	if (map)
3390 		return xdp_do_generic_redirect_map(dev, skb, xdp, xdp_prog,
3391 						   map);
3392 	ri->ifindex = 0;
3393 	fwd = dev_get_by_index_rcu(dev_net(dev), index);
3394 	if (unlikely(!fwd)) {
3395 		err = -EINVAL;
3396 		goto err;
3397 	}
3398 
3399 	err = xdp_ok_fwd_dev(fwd, skb->len);
3400 	if (unlikely(err))
3401 		goto err;
3402 
3403 	skb->dev = fwd;
3404 	_trace_xdp_redirect(dev, xdp_prog, index);
3405 	generic_xdp_tx(skb, xdp_prog);
3406 	return 0;
3407 err:
3408 	_trace_xdp_redirect_err(dev, xdp_prog, index, err);
3409 	return err;
3410 }
3411 EXPORT_SYMBOL_GPL(xdp_do_generic_redirect);
3412 
BPF_CALL_2(bpf_xdp_redirect,u32,ifindex,u64,flags)3413 BPF_CALL_2(bpf_xdp_redirect, u32, ifindex, u64, flags)
3414 {
3415 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3416 
3417 	if (unlikely(flags))
3418 		return XDP_ABORTED;
3419 
3420 	ri->ifindex = ifindex;
3421 	ri->flags = flags;
3422 	WRITE_ONCE(ri->map, NULL);
3423 
3424 	return XDP_REDIRECT;
3425 }
3426 
3427 static const struct bpf_func_proto bpf_xdp_redirect_proto = {
3428 	.func           = bpf_xdp_redirect,
3429 	.gpl_only       = false,
3430 	.ret_type       = RET_INTEGER,
3431 	.arg1_type      = ARG_ANYTHING,
3432 	.arg2_type      = ARG_ANYTHING,
3433 };
3434 
BPF_CALL_3(bpf_xdp_redirect_map,struct bpf_map *,map,u32,ifindex,u64,flags)3435 BPF_CALL_3(bpf_xdp_redirect_map, struct bpf_map *, map, u32, ifindex,
3436 	   u64, flags)
3437 {
3438 	struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
3439 
3440 	if (unlikely(flags))
3441 		return XDP_ABORTED;
3442 
3443 	ri->ifindex = ifindex;
3444 	ri->flags = flags;
3445 	WRITE_ONCE(ri->map, map);
3446 
3447 	return XDP_REDIRECT;
3448 }
3449 
3450 static const struct bpf_func_proto bpf_xdp_redirect_map_proto = {
3451 	.func           = bpf_xdp_redirect_map,
3452 	.gpl_only       = false,
3453 	.ret_type       = RET_INTEGER,
3454 	.arg1_type      = ARG_CONST_MAP_PTR,
3455 	.arg2_type      = ARG_ANYTHING,
3456 	.arg3_type      = ARG_ANYTHING,
3457 };
3458 
bpf_skb_copy(void * dst_buff,const void * skb,unsigned long off,unsigned long len)3459 static unsigned long bpf_skb_copy(void *dst_buff, const void *skb,
3460 				  unsigned long off, unsigned long len)
3461 {
3462 	void *ptr = skb_header_pointer(skb, off, len, dst_buff);
3463 
3464 	if (unlikely(!ptr))
3465 		return len;
3466 	if (ptr != dst_buff)
3467 		memcpy(dst_buff, ptr, len);
3468 
3469 	return 0;
3470 }
3471 
BPF_CALL_5(bpf_skb_event_output,struct sk_buff *,skb,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3472 BPF_CALL_5(bpf_skb_event_output, struct sk_buff *, skb, struct bpf_map *, map,
3473 	   u64, flags, void *, meta, u64, meta_size)
3474 {
3475 	u64 skb_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3476 
3477 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3478 		return -EINVAL;
3479 	if (unlikely(skb_size > skb->len))
3480 		return -EFAULT;
3481 
3482 	return bpf_event_output(map, flags, meta, meta_size, skb, skb_size,
3483 				bpf_skb_copy);
3484 }
3485 
3486 static const struct bpf_func_proto bpf_skb_event_output_proto = {
3487 	.func		= bpf_skb_event_output,
3488 	.gpl_only	= true,
3489 	.ret_type	= RET_INTEGER,
3490 	.arg1_type	= ARG_PTR_TO_CTX,
3491 	.arg2_type	= ARG_CONST_MAP_PTR,
3492 	.arg3_type	= ARG_ANYTHING,
3493 	.arg4_type	= ARG_PTR_TO_MEM,
3494 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3495 };
3496 
bpf_tunnel_key_af(u64 flags)3497 static unsigned short bpf_tunnel_key_af(u64 flags)
3498 {
3499 	return flags & BPF_F_TUNINFO_IPV6 ? AF_INET6 : AF_INET;
3500 }
3501 
BPF_CALL_4(bpf_skb_get_tunnel_key,struct sk_buff *,skb,struct bpf_tunnel_key *,to,u32,size,u64,flags)3502 BPF_CALL_4(bpf_skb_get_tunnel_key, struct sk_buff *, skb, struct bpf_tunnel_key *, to,
3503 	   u32, size, u64, flags)
3504 {
3505 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3506 	u8 compat[sizeof(struct bpf_tunnel_key)];
3507 	void *to_orig = to;
3508 	int err;
3509 
3510 	if (unlikely(!info || (flags & ~(BPF_F_TUNINFO_IPV6)))) {
3511 		err = -EINVAL;
3512 		goto err_clear;
3513 	}
3514 	if (ip_tunnel_info_af(info) != bpf_tunnel_key_af(flags)) {
3515 		err = -EPROTO;
3516 		goto err_clear;
3517 	}
3518 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3519 		err = -EINVAL;
3520 		switch (size) {
3521 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3522 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3523 			goto set_compat;
3524 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3525 			/* Fixup deprecated structure layouts here, so we have
3526 			 * a common path later on.
3527 			 */
3528 			if (ip_tunnel_info_af(info) != AF_INET)
3529 				goto err_clear;
3530 set_compat:
3531 			to = (struct bpf_tunnel_key *)compat;
3532 			break;
3533 		default:
3534 			goto err_clear;
3535 		}
3536 	}
3537 
3538 	to->tunnel_id = be64_to_cpu(info->key.tun_id);
3539 	to->tunnel_tos = info->key.tos;
3540 	to->tunnel_ttl = info->key.ttl;
3541 	to->tunnel_ext = 0;
3542 
3543 	if (flags & BPF_F_TUNINFO_IPV6) {
3544 		memcpy(to->remote_ipv6, &info->key.u.ipv6.src,
3545 		       sizeof(to->remote_ipv6));
3546 		to->tunnel_label = be32_to_cpu(info->key.label);
3547 	} else {
3548 		to->remote_ipv4 = be32_to_cpu(info->key.u.ipv4.src);
3549 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
3550 		to->tunnel_label = 0;
3551 	}
3552 
3553 	if (unlikely(size != sizeof(struct bpf_tunnel_key)))
3554 		memcpy(to_orig, to, size);
3555 
3556 	return 0;
3557 err_clear:
3558 	memset(to_orig, 0, size);
3559 	return err;
3560 }
3561 
3562 static const struct bpf_func_proto bpf_skb_get_tunnel_key_proto = {
3563 	.func		= bpf_skb_get_tunnel_key,
3564 	.gpl_only	= false,
3565 	.ret_type	= RET_INTEGER,
3566 	.arg1_type	= ARG_PTR_TO_CTX,
3567 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3568 	.arg3_type	= ARG_CONST_SIZE,
3569 	.arg4_type	= ARG_ANYTHING,
3570 };
3571 
BPF_CALL_3(bpf_skb_get_tunnel_opt,struct sk_buff *,skb,u8 *,to,u32,size)3572 BPF_CALL_3(bpf_skb_get_tunnel_opt, struct sk_buff *, skb, u8 *, to, u32, size)
3573 {
3574 	const struct ip_tunnel_info *info = skb_tunnel_info(skb);
3575 	int err;
3576 
3577 	if (unlikely(!info ||
3578 		     !(info->key.tun_flags & TUNNEL_OPTIONS_PRESENT))) {
3579 		err = -ENOENT;
3580 		goto err_clear;
3581 	}
3582 	if (unlikely(size < info->options_len)) {
3583 		err = -ENOMEM;
3584 		goto err_clear;
3585 	}
3586 
3587 	ip_tunnel_info_opts_get(to, info);
3588 	if (size > info->options_len)
3589 		memset(to + info->options_len, 0, size - info->options_len);
3590 
3591 	return info->options_len;
3592 err_clear:
3593 	memset(to, 0, size);
3594 	return err;
3595 }
3596 
3597 static const struct bpf_func_proto bpf_skb_get_tunnel_opt_proto = {
3598 	.func		= bpf_skb_get_tunnel_opt,
3599 	.gpl_only	= false,
3600 	.ret_type	= RET_INTEGER,
3601 	.arg1_type	= ARG_PTR_TO_CTX,
3602 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
3603 	.arg3_type	= ARG_CONST_SIZE,
3604 };
3605 
3606 static struct metadata_dst __percpu *md_dst;
3607 
BPF_CALL_4(bpf_skb_set_tunnel_key,struct sk_buff *,skb,const struct bpf_tunnel_key *,from,u32,size,u64,flags)3608 BPF_CALL_4(bpf_skb_set_tunnel_key, struct sk_buff *, skb,
3609 	   const struct bpf_tunnel_key *, from, u32, size, u64, flags)
3610 {
3611 	struct metadata_dst *md = this_cpu_ptr(md_dst);
3612 	u8 compat[sizeof(struct bpf_tunnel_key)];
3613 	struct ip_tunnel_info *info;
3614 
3615 	if (unlikely(flags & ~(BPF_F_TUNINFO_IPV6 | BPF_F_ZERO_CSUM_TX |
3616 			       BPF_F_DONT_FRAGMENT | BPF_F_SEQ_NUMBER)))
3617 		return -EINVAL;
3618 	if (unlikely(size != sizeof(struct bpf_tunnel_key))) {
3619 		switch (size) {
3620 		case offsetof(struct bpf_tunnel_key, tunnel_label):
3621 		case offsetof(struct bpf_tunnel_key, tunnel_ext):
3622 		case offsetof(struct bpf_tunnel_key, remote_ipv6[1]):
3623 			/* Fixup deprecated structure layouts here, so we have
3624 			 * a common path later on.
3625 			 */
3626 			memcpy(compat, from, size);
3627 			memset(compat + size, 0, sizeof(compat) - size);
3628 			from = (const struct bpf_tunnel_key *) compat;
3629 			break;
3630 		default:
3631 			return -EINVAL;
3632 		}
3633 	}
3634 	if (unlikely((!(flags & BPF_F_TUNINFO_IPV6) && from->tunnel_label) ||
3635 		     from->tunnel_ext))
3636 		return -EINVAL;
3637 
3638 	skb_dst_drop(skb);
3639 	dst_hold((struct dst_entry *) md);
3640 	skb_dst_set(skb, (struct dst_entry *) md);
3641 
3642 	info = &md->u.tun_info;
3643 	memset(info, 0, sizeof(*info));
3644 	info->mode = IP_TUNNEL_INFO_TX;
3645 
3646 	info->key.tun_flags = TUNNEL_KEY | TUNNEL_CSUM | TUNNEL_NOCACHE;
3647 	if (flags & BPF_F_DONT_FRAGMENT)
3648 		info->key.tun_flags |= TUNNEL_DONT_FRAGMENT;
3649 	if (flags & BPF_F_ZERO_CSUM_TX)
3650 		info->key.tun_flags &= ~TUNNEL_CSUM;
3651 	if (flags & BPF_F_SEQ_NUMBER)
3652 		info->key.tun_flags |= TUNNEL_SEQ;
3653 
3654 	info->key.tun_id = cpu_to_be64(from->tunnel_id);
3655 	info->key.tos = from->tunnel_tos;
3656 	info->key.ttl = from->tunnel_ttl;
3657 
3658 	if (flags & BPF_F_TUNINFO_IPV6) {
3659 		info->mode |= IP_TUNNEL_INFO_IPV6;
3660 		memcpy(&info->key.u.ipv6.dst, from->remote_ipv6,
3661 		       sizeof(from->remote_ipv6));
3662 		info->key.label = cpu_to_be32(from->tunnel_label) &
3663 				  IPV6_FLOWLABEL_MASK;
3664 	} else {
3665 		info->key.u.ipv4.dst = cpu_to_be32(from->remote_ipv4);
3666 	}
3667 
3668 	return 0;
3669 }
3670 
3671 static const struct bpf_func_proto bpf_skb_set_tunnel_key_proto = {
3672 	.func		= bpf_skb_set_tunnel_key,
3673 	.gpl_only	= false,
3674 	.ret_type	= RET_INTEGER,
3675 	.arg1_type	= ARG_PTR_TO_CTX,
3676 	.arg2_type	= ARG_PTR_TO_MEM,
3677 	.arg3_type	= ARG_CONST_SIZE,
3678 	.arg4_type	= ARG_ANYTHING,
3679 };
3680 
BPF_CALL_3(bpf_skb_set_tunnel_opt,struct sk_buff *,skb,const u8 *,from,u32,size)3681 BPF_CALL_3(bpf_skb_set_tunnel_opt, struct sk_buff *, skb,
3682 	   const u8 *, from, u32, size)
3683 {
3684 	struct ip_tunnel_info *info = skb_tunnel_info(skb);
3685 	const struct metadata_dst *md = this_cpu_ptr(md_dst);
3686 
3687 	if (unlikely(info != &md->u.tun_info || (size & (sizeof(u32) - 1))))
3688 		return -EINVAL;
3689 	if (unlikely(size > IP_TUNNEL_OPTS_MAX))
3690 		return -ENOMEM;
3691 
3692 	ip_tunnel_info_opts_set(info, from, size, TUNNEL_OPTIONS_PRESENT);
3693 
3694 	return 0;
3695 }
3696 
3697 static const struct bpf_func_proto bpf_skb_set_tunnel_opt_proto = {
3698 	.func		= bpf_skb_set_tunnel_opt,
3699 	.gpl_only	= false,
3700 	.ret_type	= RET_INTEGER,
3701 	.arg1_type	= ARG_PTR_TO_CTX,
3702 	.arg2_type	= ARG_PTR_TO_MEM,
3703 	.arg3_type	= ARG_CONST_SIZE,
3704 };
3705 
3706 static const struct bpf_func_proto *
bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)3707 bpf_get_skb_set_tunnel_proto(enum bpf_func_id which)
3708 {
3709 	if (!md_dst) {
3710 		struct metadata_dst __percpu *tmp;
3711 
3712 		tmp = metadata_dst_alloc_percpu(IP_TUNNEL_OPTS_MAX,
3713 						METADATA_IP_TUNNEL,
3714 						GFP_KERNEL);
3715 		if (!tmp)
3716 			return NULL;
3717 		if (cmpxchg(&md_dst, NULL, tmp))
3718 			metadata_dst_free_percpu(tmp);
3719 	}
3720 
3721 	switch (which) {
3722 	case BPF_FUNC_skb_set_tunnel_key:
3723 		return &bpf_skb_set_tunnel_key_proto;
3724 	case BPF_FUNC_skb_set_tunnel_opt:
3725 		return &bpf_skb_set_tunnel_opt_proto;
3726 	default:
3727 		return NULL;
3728 	}
3729 }
3730 
BPF_CALL_3(bpf_skb_under_cgroup,struct sk_buff *,skb,struct bpf_map *,map,u32,idx)3731 BPF_CALL_3(bpf_skb_under_cgroup, struct sk_buff *, skb, struct bpf_map *, map,
3732 	   u32, idx)
3733 {
3734 	struct bpf_array *array = container_of(map, struct bpf_array, map);
3735 	struct cgroup *cgrp;
3736 	struct sock *sk;
3737 
3738 	sk = skb_to_full_sk(skb);
3739 	if (!sk || !sk_fullsock(sk))
3740 		return -ENOENT;
3741 	if (unlikely(idx >= array->map.max_entries))
3742 		return -E2BIG;
3743 
3744 	cgrp = READ_ONCE(array->ptrs[idx]);
3745 	if (unlikely(!cgrp))
3746 		return -EAGAIN;
3747 
3748 	return sk_under_cgroup_hierarchy(sk, cgrp);
3749 }
3750 
3751 static const struct bpf_func_proto bpf_skb_under_cgroup_proto = {
3752 	.func		= bpf_skb_under_cgroup,
3753 	.gpl_only	= false,
3754 	.ret_type	= RET_INTEGER,
3755 	.arg1_type	= ARG_PTR_TO_CTX,
3756 	.arg2_type	= ARG_CONST_MAP_PTR,
3757 	.arg3_type	= ARG_ANYTHING,
3758 };
3759 
3760 #ifdef CONFIG_SOCK_CGROUP_DATA
BPF_CALL_1(bpf_skb_cgroup_id,const struct sk_buff *,skb)3761 BPF_CALL_1(bpf_skb_cgroup_id, const struct sk_buff *, skb)
3762 {
3763 	struct sock *sk = skb_to_full_sk(skb);
3764 	struct cgroup *cgrp;
3765 
3766 	if (!sk || !sk_fullsock(sk))
3767 		return 0;
3768 
3769 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3770 	return cgrp->kn->id.id;
3771 }
3772 
3773 static const struct bpf_func_proto bpf_skb_cgroup_id_proto = {
3774 	.func           = bpf_skb_cgroup_id,
3775 	.gpl_only       = false,
3776 	.ret_type       = RET_INTEGER,
3777 	.arg1_type      = ARG_PTR_TO_CTX,
3778 };
3779 
BPF_CALL_2(bpf_skb_ancestor_cgroup_id,const struct sk_buff *,skb,int,ancestor_level)3780 BPF_CALL_2(bpf_skb_ancestor_cgroup_id, const struct sk_buff *, skb, int,
3781 	   ancestor_level)
3782 {
3783 	struct sock *sk = skb_to_full_sk(skb);
3784 	struct cgroup *ancestor;
3785 	struct cgroup *cgrp;
3786 
3787 	if (!sk || !sk_fullsock(sk))
3788 		return 0;
3789 
3790 	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
3791 	ancestor = cgroup_ancestor(cgrp, ancestor_level);
3792 	if (!ancestor)
3793 		return 0;
3794 
3795 	return ancestor->kn->id.id;
3796 }
3797 
3798 static const struct bpf_func_proto bpf_skb_ancestor_cgroup_id_proto = {
3799 	.func           = bpf_skb_ancestor_cgroup_id,
3800 	.gpl_only       = false,
3801 	.ret_type       = RET_INTEGER,
3802 	.arg1_type      = ARG_PTR_TO_CTX,
3803 	.arg2_type      = ARG_ANYTHING,
3804 };
3805 #endif
3806 
bpf_xdp_copy(void * dst_buff,const void * src_buff,unsigned long off,unsigned long len)3807 static unsigned long bpf_xdp_copy(void *dst_buff, const void *src_buff,
3808 				  unsigned long off, unsigned long len)
3809 {
3810 	memcpy(dst_buff, src_buff + off, len);
3811 	return 0;
3812 }
3813 
BPF_CALL_5(bpf_xdp_event_output,struct xdp_buff *,xdp,struct bpf_map *,map,u64,flags,void *,meta,u64,meta_size)3814 BPF_CALL_5(bpf_xdp_event_output, struct xdp_buff *, xdp, struct bpf_map *, map,
3815 	   u64, flags, void *, meta, u64, meta_size)
3816 {
3817 	u64 xdp_size = (flags & BPF_F_CTXLEN_MASK) >> 32;
3818 
3819 	if (unlikely(flags & ~(BPF_F_CTXLEN_MASK | BPF_F_INDEX_MASK)))
3820 		return -EINVAL;
3821 	if (unlikely(xdp_size > (unsigned long)(xdp->data_end - xdp->data)))
3822 		return -EFAULT;
3823 
3824 	return bpf_event_output(map, flags, meta, meta_size, xdp->data,
3825 				xdp_size, bpf_xdp_copy);
3826 }
3827 
3828 static const struct bpf_func_proto bpf_xdp_event_output_proto = {
3829 	.func		= bpf_xdp_event_output,
3830 	.gpl_only	= true,
3831 	.ret_type	= RET_INTEGER,
3832 	.arg1_type	= ARG_PTR_TO_CTX,
3833 	.arg2_type	= ARG_CONST_MAP_PTR,
3834 	.arg3_type	= ARG_ANYTHING,
3835 	.arg4_type	= ARG_PTR_TO_MEM,
3836 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
3837 };
3838 
BPF_CALL_1(bpf_get_socket_cookie,struct sk_buff *,skb)3839 BPF_CALL_1(bpf_get_socket_cookie, struct sk_buff *, skb)
3840 {
3841 	return skb->sk ? sock_gen_cookie(skb->sk) : 0;
3842 }
3843 
3844 static const struct bpf_func_proto bpf_get_socket_cookie_proto = {
3845 	.func           = bpf_get_socket_cookie,
3846 	.gpl_only       = false,
3847 	.ret_type       = RET_INTEGER,
3848 	.arg1_type      = ARG_PTR_TO_CTX,
3849 };
3850 
BPF_CALL_1(bpf_get_socket_cookie_sock_addr,struct bpf_sock_addr_kern *,ctx)3851 BPF_CALL_1(bpf_get_socket_cookie_sock_addr, struct bpf_sock_addr_kern *, ctx)
3852 {
3853 	return sock_gen_cookie(ctx->sk);
3854 }
3855 
3856 static const struct bpf_func_proto bpf_get_socket_cookie_sock_addr_proto = {
3857 	.func		= bpf_get_socket_cookie_sock_addr,
3858 	.gpl_only	= false,
3859 	.ret_type	= RET_INTEGER,
3860 	.arg1_type	= ARG_PTR_TO_CTX,
3861 };
3862 
BPF_CALL_1(bpf_get_socket_cookie_sock_ops,struct bpf_sock_ops_kern *,ctx)3863 BPF_CALL_1(bpf_get_socket_cookie_sock_ops, struct bpf_sock_ops_kern *, ctx)
3864 {
3865 	return sock_gen_cookie(ctx->sk);
3866 }
3867 
3868 static const struct bpf_func_proto bpf_get_socket_cookie_sock_ops_proto = {
3869 	.func		= bpf_get_socket_cookie_sock_ops,
3870 	.gpl_only	= false,
3871 	.ret_type	= RET_INTEGER,
3872 	.arg1_type	= ARG_PTR_TO_CTX,
3873 };
3874 
BPF_CALL_1(bpf_get_socket_uid,struct sk_buff *,skb)3875 BPF_CALL_1(bpf_get_socket_uid, struct sk_buff *, skb)
3876 {
3877 	struct sock *sk = sk_to_full_sk(skb->sk);
3878 	kuid_t kuid;
3879 
3880 	if (!sk || !sk_fullsock(sk))
3881 		return overflowuid;
3882 	kuid = sock_net_uid(sock_net(sk), sk);
3883 	return from_kuid_munged(sock_net(sk)->user_ns, kuid);
3884 }
3885 
3886 static const struct bpf_func_proto bpf_get_socket_uid_proto = {
3887 	.func           = bpf_get_socket_uid,
3888 	.gpl_only       = false,
3889 	.ret_type       = RET_INTEGER,
3890 	.arg1_type      = ARG_PTR_TO_CTX,
3891 };
3892 
BPF_CALL_5(bpf_setsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)3893 BPF_CALL_5(bpf_setsockopt, struct bpf_sock_ops_kern *, bpf_sock,
3894 	   int, level, int, optname, char *, optval, int, optlen)
3895 {
3896 	struct sock *sk = bpf_sock->sk;
3897 	int ret = 0;
3898 	int val;
3899 
3900 	if (!sk_fullsock(sk))
3901 		return -EINVAL;
3902 
3903 	if (level == SOL_SOCKET) {
3904 		if (optlen != sizeof(int))
3905 			return -EINVAL;
3906 		val = *((int *)optval);
3907 
3908 		/* Only some socketops are supported */
3909 		switch (optname) {
3910 		case SO_RCVBUF:
3911 			sk->sk_userlocks |= SOCK_RCVBUF_LOCK;
3912 			sk->sk_rcvbuf = max_t(int, val * 2, SOCK_MIN_RCVBUF);
3913 			break;
3914 		case SO_SNDBUF:
3915 			sk->sk_userlocks |= SOCK_SNDBUF_LOCK;
3916 			sk->sk_sndbuf = max_t(int, val * 2, SOCK_MIN_SNDBUF);
3917 			break;
3918 		case SO_MAX_PACING_RATE:
3919 			sk->sk_max_pacing_rate = val;
3920 			sk->sk_pacing_rate = min(sk->sk_pacing_rate,
3921 						 sk->sk_max_pacing_rate);
3922 			break;
3923 		case SO_PRIORITY:
3924 			sk->sk_priority = val;
3925 			break;
3926 		case SO_RCVLOWAT:
3927 			if (val < 0)
3928 				val = INT_MAX;
3929 			sk->sk_rcvlowat = val ? : 1;
3930 			break;
3931 		case SO_MARK:
3932 			sk->sk_mark = val;
3933 			break;
3934 		default:
3935 			ret = -EINVAL;
3936 		}
3937 #ifdef CONFIG_INET
3938 	} else if (level == SOL_IP) {
3939 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
3940 			return -EINVAL;
3941 
3942 		val = *((int *)optval);
3943 		/* Only some options are supported */
3944 		switch (optname) {
3945 		case IP_TOS:
3946 			if (val < -1 || val > 0xff) {
3947 				ret = -EINVAL;
3948 			} else {
3949 				struct inet_sock *inet = inet_sk(sk);
3950 
3951 				if (val == -1)
3952 					val = 0;
3953 				inet->tos = val;
3954 			}
3955 			break;
3956 		default:
3957 			ret = -EINVAL;
3958 		}
3959 #if IS_ENABLED(CONFIG_IPV6)
3960 	} else if (level == SOL_IPV6) {
3961 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
3962 			return -EINVAL;
3963 
3964 		val = *((int *)optval);
3965 		/* Only some options are supported */
3966 		switch (optname) {
3967 		case IPV6_TCLASS:
3968 			if (val < -1 || val > 0xff) {
3969 				ret = -EINVAL;
3970 			} else {
3971 				struct ipv6_pinfo *np = inet6_sk(sk);
3972 
3973 				if (val == -1)
3974 					val = 0;
3975 				np->tclass = val;
3976 			}
3977 			break;
3978 		default:
3979 			ret = -EINVAL;
3980 		}
3981 #endif
3982 	} else if (level == SOL_TCP &&
3983 		   sk->sk_prot->setsockopt == tcp_setsockopt) {
3984 		if (optname == TCP_CONGESTION) {
3985 			char name[TCP_CA_NAME_MAX];
3986 			bool reinit = bpf_sock->op > BPF_SOCK_OPS_NEEDS_ECN;
3987 
3988 			strncpy(name, optval, min_t(long, optlen,
3989 						    TCP_CA_NAME_MAX-1));
3990 			name[TCP_CA_NAME_MAX-1] = 0;
3991 			ret = tcp_set_congestion_control(sk, name, false,
3992 							 reinit);
3993 		} else {
3994 			struct tcp_sock *tp = tcp_sk(sk);
3995 
3996 			if (optlen != sizeof(int))
3997 				return -EINVAL;
3998 
3999 			val = *((int *)optval);
4000 			/* Only some options are supported */
4001 			switch (optname) {
4002 			case TCP_BPF_IW:
4003 				if (val <= 0 || tp->data_segs_out > 0)
4004 					ret = -EINVAL;
4005 				else
4006 					tp->snd_cwnd = val;
4007 				break;
4008 			case TCP_BPF_SNDCWND_CLAMP:
4009 				if (val <= 0) {
4010 					ret = -EINVAL;
4011 				} else {
4012 					tp->snd_cwnd_clamp = val;
4013 					tp->snd_ssthresh = val;
4014 				}
4015 				break;
4016 			default:
4017 				ret = -EINVAL;
4018 			}
4019 		}
4020 #endif
4021 	} else {
4022 		ret = -EINVAL;
4023 	}
4024 	return ret;
4025 }
4026 
4027 static const struct bpf_func_proto bpf_setsockopt_proto = {
4028 	.func		= bpf_setsockopt,
4029 	.gpl_only	= false,
4030 	.ret_type	= RET_INTEGER,
4031 	.arg1_type	= ARG_PTR_TO_CTX,
4032 	.arg2_type	= ARG_ANYTHING,
4033 	.arg3_type	= ARG_ANYTHING,
4034 	.arg4_type	= ARG_PTR_TO_MEM,
4035 	.arg5_type	= ARG_CONST_SIZE,
4036 };
4037 
BPF_CALL_5(bpf_getsockopt,struct bpf_sock_ops_kern *,bpf_sock,int,level,int,optname,char *,optval,int,optlen)4038 BPF_CALL_5(bpf_getsockopt, struct bpf_sock_ops_kern *, bpf_sock,
4039 	   int, level, int, optname, char *, optval, int, optlen)
4040 {
4041 	struct sock *sk = bpf_sock->sk;
4042 
4043 	if (!sk_fullsock(sk))
4044 		goto err_clear;
4045 
4046 #ifdef CONFIG_INET
4047 	if (level == SOL_TCP && sk->sk_prot->getsockopt == tcp_getsockopt) {
4048 		if (optname == TCP_CONGESTION) {
4049 			struct inet_connection_sock *icsk = inet_csk(sk);
4050 
4051 			if (!icsk->icsk_ca_ops || optlen <= 1)
4052 				goto err_clear;
4053 			strncpy(optval, icsk->icsk_ca_ops->name, optlen);
4054 			optval[optlen - 1] = 0;
4055 		} else {
4056 			goto err_clear;
4057 		}
4058 	} else if (level == SOL_IP) {
4059 		struct inet_sock *inet = inet_sk(sk);
4060 
4061 		if (optlen != sizeof(int) || sk->sk_family != AF_INET)
4062 			goto err_clear;
4063 
4064 		/* Only some options are supported */
4065 		switch (optname) {
4066 		case IP_TOS:
4067 			*((int *)optval) = (int)inet->tos;
4068 			break;
4069 		default:
4070 			goto err_clear;
4071 		}
4072 #if IS_ENABLED(CONFIG_IPV6)
4073 	} else if (level == SOL_IPV6) {
4074 		struct ipv6_pinfo *np = inet6_sk(sk);
4075 
4076 		if (optlen != sizeof(int) || sk->sk_family != AF_INET6)
4077 			goto err_clear;
4078 
4079 		/* Only some options are supported */
4080 		switch (optname) {
4081 		case IPV6_TCLASS:
4082 			*((int *)optval) = (int)np->tclass;
4083 			break;
4084 		default:
4085 			goto err_clear;
4086 		}
4087 #endif
4088 	} else {
4089 		goto err_clear;
4090 	}
4091 	return 0;
4092 #endif
4093 err_clear:
4094 	memset(optval, 0, optlen);
4095 	return -EINVAL;
4096 }
4097 
4098 static const struct bpf_func_proto bpf_getsockopt_proto = {
4099 	.func		= bpf_getsockopt,
4100 	.gpl_only	= false,
4101 	.ret_type	= RET_INTEGER,
4102 	.arg1_type	= ARG_PTR_TO_CTX,
4103 	.arg2_type	= ARG_ANYTHING,
4104 	.arg3_type	= ARG_ANYTHING,
4105 	.arg4_type	= ARG_PTR_TO_UNINIT_MEM,
4106 	.arg5_type	= ARG_CONST_SIZE,
4107 };
4108 
BPF_CALL_2(bpf_sock_ops_cb_flags_set,struct bpf_sock_ops_kern *,bpf_sock,int,argval)4109 BPF_CALL_2(bpf_sock_ops_cb_flags_set, struct bpf_sock_ops_kern *, bpf_sock,
4110 	   int, argval)
4111 {
4112 	struct sock *sk = bpf_sock->sk;
4113 	int val = argval & BPF_SOCK_OPS_ALL_CB_FLAGS;
4114 
4115 	if (!IS_ENABLED(CONFIG_INET) || !sk_fullsock(sk))
4116 		return -EINVAL;
4117 
4118 	if (val)
4119 		tcp_sk(sk)->bpf_sock_ops_cb_flags = val;
4120 
4121 	return argval & (~BPF_SOCK_OPS_ALL_CB_FLAGS);
4122 }
4123 
4124 static const struct bpf_func_proto bpf_sock_ops_cb_flags_set_proto = {
4125 	.func		= bpf_sock_ops_cb_flags_set,
4126 	.gpl_only	= false,
4127 	.ret_type	= RET_INTEGER,
4128 	.arg1_type	= ARG_PTR_TO_CTX,
4129 	.arg2_type	= ARG_ANYTHING,
4130 };
4131 
4132 const struct ipv6_bpf_stub *ipv6_bpf_stub __read_mostly;
4133 EXPORT_SYMBOL_GPL(ipv6_bpf_stub);
4134 
BPF_CALL_3(bpf_bind,struct bpf_sock_addr_kern *,ctx,struct sockaddr *,addr,int,addr_len)4135 BPF_CALL_3(bpf_bind, struct bpf_sock_addr_kern *, ctx, struct sockaddr *, addr,
4136 	   int, addr_len)
4137 {
4138 #ifdef CONFIG_INET
4139 	struct sock *sk = ctx->sk;
4140 	int err;
4141 
4142 	/* Binding to port can be expensive so it's prohibited in the helper.
4143 	 * Only binding to IP is supported.
4144 	 */
4145 	err = -EINVAL;
4146 	if (addr->sa_family == AF_INET) {
4147 		if (addr_len < sizeof(struct sockaddr_in))
4148 			return err;
4149 		if (((struct sockaddr_in *)addr)->sin_port != htons(0))
4150 			return err;
4151 		return __inet_bind(sk, addr, addr_len, true, false);
4152 #if IS_ENABLED(CONFIG_IPV6)
4153 	} else if (addr->sa_family == AF_INET6) {
4154 		if (addr_len < SIN6_LEN_RFC2133)
4155 			return err;
4156 		if (((struct sockaddr_in6 *)addr)->sin6_port != htons(0))
4157 			return err;
4158 		/* ipv6_bpf_stub cannot be NULL, since it's called from
4159 		 * bpf_cgroup_inet6_connect hook and ipv6 is already loaded
4160 		 */
4161 		return ipv6_bpf_stub->inet6_bind(sk, addr, addr_len, true, false);
4162 #endif /* CONFIG_IPV6 */
4163 	}
4164 #endif /* CONFIG_INET */
4165 
4166 	return -EAFNOSUPPORT;
4167 }
4168 
4169 static const struct bpf_func_proto bpf_bind_proto = {
4170 	.func		= bpf_bind,
4171 	.gpl_only	= false,
4172 	.ret_type	= RET_INTEGER,
4173 	.arg1_type	= ARG_PTR_TO_CTX,
4174 	.arg2_type	= ARG_PTR_TO_MEM,
4175 	.arg3_type	= ARG_CONST_SIZE,
4176 };
4177 
4178 #ifdef CONFIG_XFRM
BPF_CALL_5(bpf_skb_get_xfrm_state,struct sk_buff *,skb,u32,index,struct bpf_xfrm_state *,to,u32,size,u64,flags)4179 BPF_CALL_5(bpf_skb_get_xfrm_state, struct sk_buff *, skb, u32, index,
4180 	   struct bpf_xfrm_state *, to, u32, size, u64, flags)
4181 {
4182 	const struct sec_path *sp = skb_sec_path(skb);
4183 	const struct xfrm_state *x;
4184 
4185 	if (!sp || unlikely(index >= sp->len || flags))
4186 		goto err_clear;
4187 
4188 	x = sp->xvec[index];
4189 
4190 	if (unlikely(size != sizeof(struct bpf_xfrm_state)))
4191 		goto err_clear;
4192 
4193 	to->reqid = x->props.reqid;
4194 	to->spi = x->id.spi;
4195 	to->family = x->props.family;
4196 	to->ext = 0;
4197 
4198 	if (to->family == AF_INET6) {
4199 		memcpy(to->remote_ipv6, x->props.saddr.a6,
4200 		       sizeof(to->remote_ipv6));
4201 	} else {
4202 		to->remote_ipv4 = x->props.saddr.a4;
4203 		memset(&to->remote_ipv6[1], 0, sizeof(__u32) * 3);
4204 	}
4205 
4206 	return 0;
4207 err_clear:
4208 	memset(to, 0, size);
4209 	return -EINVAL;
4210 }
4211 
4212 static const struct bpf_func_proto bpf_skb_get_xfrm_state_proto = {
4213 	.func		= bpf_skb_get_xfrm_state,
4214 	.gpl_only	= false,
4215 	.ret_type	= RET_INTEGER,
4216 	.arg1_type	= ARG_PTR_TO_CTX,
4217 	.arg2_type	= ARG_ANYTHING,
4218 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
4219 	.arg4_type	= ARG_CONST_SIZE,
4220 	.arg5_type	= ARG_ANYTHING,
4221 };
4222 #endif
4223 
4224 #if IS_ENABLED(CONFIG_INET) || IS_ENABLED(CONFIG_IPV6)
bpf_fib_set_fwd_params(struct bpf_fib_lookup * params,const struct neighbour * neigh,const struct net_device * dev)4225 static int bpf_fib_set_fwd_params(struct bpf_fib_lookup *params,
4226 				  const struct neighbour *neigh,
4227 				  const struct net_device *dev)
4228 {
4229 	memcpy(params->dmac, neigh->ha, ETH_ALEN);
4230 	memcpy(params->smac, dev->dev_addr, ETH_ALEN);
4231 	params->h_vlan_TCI = 0;
4232 	params->h_vlan_proto = 0;
4233 	params->ifindex = dev->ifindex;
4234 
4235 	return 0;
4236 }
4237 #endif
4238 
4239 #if IS_ENABLED(CONFIG_INET)
bpf_ipv4_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4240 static int bpf_ipv4_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4241 			       u32 flags, bool check_mtu)
4242 {
4243 	struct in_device *in_dev;
4244 	struct neighbour *neigh;
4245 	struct net_device *dev;
4246 	struct fib_result res;
4247 	struct fib_nh *nh;
4248 	struct flowi4 fl4;
4249 	int err;
4250 	u32 mtu;
4251 
4252 	dev = dev_get_by_index_rcu(net, params->ifindex);
4253 	if (unlikely(!dev))
4254 		return -ENODEV;
4255 
4256 	/* verify forwarding is enabled on this interface */
4257 	in_dev = __in_dev_get_rcu(dev);
4258 	if (unlikely(!in_dev || !IN_DEV_FORWARD(in_dev)))
4259 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4260 
4261 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4262 		fl4.flowi4_iif = 1;
4263 		fl4.flowi4_oif = params->ifindex;
4264 	} else {
4265 		fl4.flowi4_iif = params->ifindex;
4266 		fl4.flowi4_oif = 0;
4267 	}
4268 	fl4.flowi4_tos = params->tos & IPTOS_RT_MASK;
4269 	fl4.flowi4_scope = RT_SCOPE_UNIVERSE;
4270 	fl4.flowi4_flags = 0;
4271 
4272 	fl4.flowi4_proto = params->l4_protocol;
4273 	fl4.daddr = params->ipv4_dst;
4274 	fl4.saddr = params->ipv4_src;
4275 	fl4.fl4_sport = params->sport;
4276 	fl4.fl4_dport = params->dport;
4277 
4278 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4279 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4280 		struct fib_table *tb;
4281 
4282 		tb = fib_get_table(net, tbid);
4283 		if (unlikely(!tb))
4284 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4285 
4286 		err = fib_table_lookup(tb, &fl4, &res, FIB_LOOKUP_NOREF);
4287 	} else {
4288 		fl4.flowi4_mark = 0;
4289 		fl4.flowi4_secid = 0;
4290 		fl4.flowi4_tun_key.tun_id = 0;
4291 		fl4.flowi4_uid = sock_net_uid(net, NULL);
4292 
4293 		err = fib_lookup(net, &fl4, &res, FIB_LOOKUP_NOREF);
4294 	}
4295 
4296 	if (err) {
4297 		/* map fib lookup errors to RTN_ type */
4298 		if (err == -EINVAL)
4299 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4300 		if (err == -EHOSTUNREACH)
4301 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4302 		if (err == -EACCES)
4303 			return BPF_FIB_LKUP_RET_PROHIBIT;
4304 
4305 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4306 	}
4307 
4308 	if (res.type != RTN_UNICAST)
4309 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4310 
4311 	if (res.fi->fib_nhs > 1)
4312 		fib_select_path(net, &res, &fl4, NULL);
4313 
4314 	if (check_mtu) {
4315 		mtu = ip_mtu_from_fib_result(&res, params->ipv4_dst);
4316 		if (params->tot_len > mtu)
4317 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4318 	}
4319 
4320 	nh = &res.fi->fib_nh[res.nh_sel];
4321 
4322 	/* do not handle lwt encaps right now */
4323 	if (nh->nh_lwtstate)
4324 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4325 
4326 	dev = nh->nh_dev;
4327 	if (nh->nh_gw)
4328 		params->ipv4_dst = nh->nh_gw;
4329 
4330 	params->rt_metric = res.fi->fib_priority;
4331 
4332 	/* xdp and cls_bpf programs are run in RCU-bh so
4333 	 * rcu_read_lock_bh is not needed here
4334 	 */
4335 	neigh = __ipv4_neigh_lookup_noref(dev, (__force u32)params->ipv4_dst);
4336 	if (!neigh)
4337 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4338 
4339 	return bpf_fib_set_fwd_params(params, neigh, dev);
4340 }
4341 #endif
4342 
4343 #if IS_ENABLED(CONFIG_IPV6)
bpf_ipv6_fib_lookup(struct net * net,struct bpf_fib_lookup * params,u32 flags,bool check_mtu)4344 static int bpf_ipv6_fib_lookup(struct net *net, struct bpf_fib_lookup *params,
4345 			       u32 flags, bool check_mtu)
4346 {
4347 	struct in6_addr *src = (struct in6_addr *) params->ipv6_src;
4348 	struct in6_addr *dst = (struct in6_addr *) params->ipv6_dst;
4349 	struct neighbour *neigh;
4350 	struct net_device *dev;
4351 	struct inet6_dev *idev;
4352 	struct fib6_info *f6i;
4353 	struct flowi6 fl6;
4354 	int strict = 0;
4355 	int oif;
4356 	u32 mtu;
4357 
4358 	/* link local addresses are never forwarded */
4359 	if (rt6_need_strict(dst) || rt6_need_strict(src))
4360 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4361 
4362 	dev = dev_get_by_index_rcu(net, params->ifindex);
4363 	if (unlikely(!dev))
4364 		return -ENODEV;
4365 
4366 	idev = __in6_dev_get_safely(dev);
4367 	if (unlikely(!idev || !net->ipv6.devconf_all->forwarding))
4368 		return BPF_FIB_LKUP_RET_FWD_DISABLED;
4369 
4370 	if (flags & BPF_FIB_LOOKUP_OUTPUT) {
4371 		fl6.flowi6_iif = 1;
4372 		oif = fl6.flowi6_oif = params->ifindex;
4373 	} else {
4374 		oif = fl6.flowi6_iif = params->ifindex;
4375 		fl6.flowi6_oif = 0;
4376 		strict = RT6_LOOKUP_F_HAS_SADDR;
4377 	}
4378 	fl6.flowlabel = params->flowinfo;
4379 	fl6.flowi6_scope = 0;
4380 	fl6.flowi6_flags = 0;
4381 	fl6.mp_hash = 0;
4382 
4383 	fl6.flowi6_proto = params->l4_protocol;
4384 	fl6.daddr = *dst;
4385 	fl6.saddr = *src;
4386 	fl6.fl6_sport = params->sport;
4387 	fl6.fl6_dport = params->dport;
4388 
4389 	if (flags & BPF_FIB_LOOKUP_DIRECT) {
4390 		u32 tbid = l3mdev_fib_table_rcu(dev) ? : RT_TABLE_MAIN;
4391 		struct fib6_table *tb;
4392 
4393 		tb = ipv6_stub->fib6_get_table(net, tbid);
4394 		if (unlikely(!tb))
4395 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4396 
4397 		f6i = ipv6_stub->fib6_table_lookup(net, tb, oif, &fl6, strict);
4398 	} else {
4399 		fl6.flowi6_mark = 0;
4400 		fl6.flowi6_secid = 0;
4401 		fl6.flowi6_tun_key.tun_id = 0;
4402 		fl6.flowi6_uid = sock_net_uid(net, NULL);
4403 
4404 		f6i = ipv6_stub->fib6_lookup(net, oif, &fl6, strict);
4405 	}
4406 
4407 	if (unlikely(IS_ERR_OR_NULL(f6i) || f6i == net->ipv6.fib6_null_entry))
4408 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4409 
4410 	if (unlikely(f6i->fib6_flags & RTF_REJECT)) {
4411 		switch (f6i->fib6_type) {
4412 		case RTN_BLACKHOLE:
4413 			return BPF_FIB_LKUP_RET_BLACKHOLE;
4414 		case RTN_UNREACHABLE:
4415 			return BPF_FIB_LKUP_RET_UNREACHABLE;
4416 		case RTN_PROHIBIT:
4417 			return BPF_FIB_LKUP_RET_PROHIBIT;
4418 		default:
4419 			return BPF_FIB_LKUP_RET_NOT_FWDED;
4420 		}
4421 	}
4422 
4423 	if (f6i->fib6_type != RTN_UNICAST)
4424 		return BPF_FIB_LKUP_RET_NOT_FWDED;
4425 
4426 	if (f6i->fib6_nsiblings && fl6.flowi6_oif == 0)
4427 		f6i = ipv6_stub->fib6_multipath_select(net, f6i, &fl6,
4428 						       fl6.flowi6_oif, NULL,
4429 						       strict);
4430 
4431 	if (check_mtu) {
4432 		mtu = ipv6_stub->ip6_mtu_from_fib6(f6i, dst, src);
4433 		if (params->tot_len > mtu)
4434 			return BPF_FIB_LKUP_RET_FRAG_NEEDED;
4435 	}
4436 
4437 	if (f6i->fib6_nh.nh_lwtstate)
4438 		return BPF_FIB_LKUP_RET_UNSUPP_LWT;
4439 
4440 	if (f6i->fib6_flags & RTF_GATEWAY)
4441 		*dst = f6i->fib6_nh.nh_gw;
4442 
4443 	dev = f6i->fib6_nh.nh_dev;
4444 	params->rt_metric = f6i->fib6_metric;
4445 
4446 	/* xdp and cls_bpf programs are run in RCU-bh so rcu_read_lock_bh is
4447 	 * not needed here. Can not use __ipv6_neigh_lookup_noref here
4448 	 * because we need to get nd_tbl via the stub
4449 	 */
4450 	neigh = ___neigh_lookup_noref(ipv6_stub->nd_tbl, neigh_key_eq128,
4451 				      ndisc_hashfn, dst, dev);
4452 	if (!neigh)
4453 		return BPF_FIB_LKUP_RET_NO_NEIGH;
4454 
4455 	return bpf_fib_set_fwd_params(params, neigh, dev);
4456 }
4457 #endif
4458 
BPF_CALL_4(bpf_xdp_fib_lookup,struct xdp_buff *,ctx,struct bpf_fib_lookup *,params,int,plen,u32,flags)4459 BPF_CALL_4(bpf_xdp_fib_lookup, struct xdp_buff *, ctx,
4460 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4461 {
4462 	if (plen < sizeof(*params))
4463 		return -EINVAL;
4464 
4465 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4466 		return -EINVAL;
4467 
4468 	switch (params->family) {
4469 #if IS_ENABLED(CONFIG_INET)
4470 	case AF_INET:
4471 		return bpf_ipv4_fib_lookup(dev_net(ctx->rxq->dev), params,
4472 					   flags, true);
4473 #endif
4474 #if IS_ENABLED(CONFIG_IPV6)
4475 	case AF_INET6:
4476 		return bpf_ipv6_fib_lookup(dev_net(ctx->rxq->dev), params,
4477 					   flags, true);
4478 #endif
4479 	}
4480 	return -EAFNOSUPPORT;
4481 }
4482 
4483 static const struct bpf_func_proto bpf_xdp_fib_lookup_proto = {
4484 	.func		= bpf_xdp_fib_lookup,
4485 	.gpl_only	= true,
4486 	.ret_type	= RET_INTEGER,
4487 	.arg1_type      = ARG_PTR_TO_CTX,
4488 	.arg2_type      = ARG_PTR_TO_MEM,
4489 	.arg3_type      = ARG_CONST_SIZE,
4490 	.arg4_type	= ARG_ANYTHING,
4491 };
4492 
BPF_CALL_4(bpf_skb_fib_lookup,struct sk_buff *,skb,struct bpf_fib_lookup *,params,int,plen,u32,flags)4493 BPF_CALL_4(bpf_skb_fib_lookup, struct sk_buff *, skb,
4494 	   struct bpf_fib_lookup *, params, int, plen, u32, flags)
4495 {
4496 	struct net *net = dev_net(skb->dev);
4497 	int rc = -EAFNOSUPPORT;
4498 
4499 	if (plen < sizeof(*params))
4500 		return -EINVAL;
4501 
4502 	if (flags & ~(BPF_FIB_LOOKUP_DIRECT | BPF_FIB_LOOKUP_OUTPUT))
4503 		return -EINVAL;
4504 
4505 	switch (params->family) {
4506 #if IS_ENABLED(CONFIG_INET)
4507 	case AF_INET:
4508 		rc = bpf_ipv4_fib_lookup(net, params, flags, false);
4509 		break;
4510 #endif
4511 #if IS_ENABLED(CONFIG_IPV6)
4512 	case AF_INET6:
4513 		rc = bpf_ipv6_fib_lookup(net, params, flags, false);
4514 		break;
4515 #endif
4516 	}
4517 
4518 	if (!rc) {
4519 		struct net_device *dev;
4520 
4521 		dev = dev_get_by_index_rcu(net, params->ifindex);
4522 		if (!is_skb_forwardable(dev, skb))
4523 			rc = BPF_FIB_LKUP_RET_FRAG_NEEDED;
4524 	}
4525 
4526 	return rc;
4527 }
4528 
4529 static const struct bpf_func_proto bpf_skb_fib_lookup_proto = {
4530 	.func		= bpf_skb_fib_lookup,
4531 	.gpl_only	= true,
4532 	.ret_type	= RET_INTEGER,
4533 	.arg1_type      = ARG_PTR_TO_CTX,
4534 	.arg2_type      = ARG_PTR_TO_MEM,
4535 	.arg3_type      = ARG_CONST_SIZE,
4536 	.arg4_type	= ARG_ANYTHING,
4537 };
4538 
4539 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
bpf_push_seg6_encap(struct sk_buff * skb,u32 type,void * hdr,u32 len)4540 static int bpf_push_seg6_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)
4541 {
4542 	int err;
4543 	struct ipv6_sr_hdr *srh = (struct ipv6_sr_hdr *)hdr;
4544 
4545 	if (!seg6_validate_srh(srh, len))
4546 		return -EINVAL;
4547 
4548 	switch (type) {
4549 	case BPF_LWT_ENCAP_SEG6_INLINE:
4550 		if (skb->protocol != htons(ETH_P_IPV6))
4551 			return -EBADMSG;
4552 
4553 		err = seg6_do_srh_inline(skb, srh);
4554 		break;
4555 	case BPF_LWT_ENCAP_SEG6:
4556 		skb_reset_inner_headers(skb);
4557 		skb->encapsulation = 1;
4558 		err = seg6_do_srh_encap(skb, srh, IPPROTO_IPV6);
4559 		break;
4560 	default:
4561 		return -EINVAL;
4562 	}
4563 
4564 	bpf_compute_data_pointers(skb);
4565 	if (err)
4566 		return err;
4567 
4568 	ipv6_hdr(skb)->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4569 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
4570 
4571 	return seg6_lookup_nexthop(skb, NULL, 0);
4572 }
4573 #endif /* CONFIG_IPV6_SEG6_BPF */
4574 
BPF_CALL_4(bpf_lwt_push_encap,struct sk_buff *,skb,u32,type,void *,hdr,u32,len)4575 BPF_CALL_4(bpf_lwt_push_encap, struct sk_buff *, skb, u32, type, void *, hdr,
4576 	   u32, len)
4577 {
4578 	switch (type) {
4579 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4580 	case BPF_LWT_ENCAP_SEG6:
4581 	case BPF_LWT_ENCAP_SEG6_INLINE:
4582 		return bpf_push_seg6_encap(skb, type, hdr, len);
4583 #endif
4584 	default:
4585 		return -EINVAL;
4586 	}
4587 }
4588 
4589 static const struct bpf_func_proto bpf_lwt_push_encap_proto = {
4590 	.func		= bpf_lwt_push_encap,
4591 	.gpl_only	= false,
4592 	.ret_type	= RET_INTEGER,
4593 	.arg1_type	= ARG_PTR_TO_CTX,
4594 	.arg2_type	= ARG_ANYTHING,
4595 	.arg3_type	= ARG_PTR_TO_MEM,
4596 	.arg4_type	= ARG_CONST_SIZE
4597 };
4598 
4599 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
BPF_CALL_4(bpf_lwt_seg6_store_bytes,struct sk_buff *,skb,u32,offset,const void *,from,u32,len)4600 BPF_CALL_4(bpf_lwt_seg6_store_bytes, struct sk_buff *, skb, u32, offset,
4601 	   const void *, from, u32, len)
4602 {
4603 	struct seg6_bpf_srh_state *srh_state =
4604 		this_cpu_ptr(&seg6_bpf_srh_states);
4605 	struct ipv6_sr_hdr *srh = srh_state->srh;
4606 	void *srh_tlvs, *srh_end, *ptr;
4607 	int srhoff = 0;
4608 
4609 	if (srh == NULL)
4610 		return -EINVAL;
4611 
4612 	srh_tlvs = (void *)((char *)srh + ((srh->first_segment + 1) << 4));
4613 	srh_end = (void *)((char *)srh + sizeof(*srh) + srh_state->hdrlen);
4614 
4615 	ptr = skb->data + offset;
4616 	if (ptr >= srh_tlvs && ptr + len <= srh_end)
4617 		srh_state->valid = false;
4618 	else if (ptr < (void *)&srh->flags ||
4619 		 ptr + len > (void *)&srh->segments)
4620 		return -EFAULT;
4621 
4622 	if (unlikely(bpf_try_make_writable(skb, offset + len)))
4623 		return -EFAULT;
4624 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4625 		return -EINVAL;
4626 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4627 
4628 	memcpy(skb->data + offset, from, len);
4629 	return 0;
4630 }
4631 
4632 static const struct bpf_func_proto bpf_lwt_seg6_store_bytes_proto = {
4633 	.func		= bpf_lwt_seg6_store_bytes,
4634 	.gpl_only	= false,
4635 	.ret_type	= RET_INTEGER,
4636 	.arg1_type	= ARG_PTR_TO_CTX,
4637 	.arg2_type	= ARG_ANYTHING,
4638 	.arg3_type	= ARG_PTR_TO_MEM,
4639 	.arg4_type	= ARG_CONST_SIZE
4640 };
4641 
bpf_update_srh_state(struct sk_buff * skb)4642 static void bpf_update_srh_state(struct sk_buff *skb)
4643 {
4644 	struct seg6_bpf_srh_state *srh_state =
4645 		this_cpu_ptr(&seg6_bpf_srh_states);
4646 	int srhoff = 0;
4647 
4648 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0) {
4649 		srh_state->srh = NULL;
4650 	} else {
4651 		srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4652 		srh_state->hdrlen = srh_state->srh->hdrlen << 3;
4653 		srh_state->valid = true;
4654 	}
4655 }
4656 
BPF_CALL_4(bpf_lwt_seg6_action,struct sk_buff *,skb,u32,action,void *,param,u32,param_len)4657 BPF_CALL_4(bpf_lwt_seg6_action, struct sk_buff *, skb,
4658 	   u32, action, void *, param, u32, param_len)
4659 {
4660 	struct seg6_bpf_srh_state *srh_state =
4661 		this_cpu_ptr(&seg6_bpf_srh_states);
4662 	int hdroff = 0;
4663 	int err;
4664 
4665 	switch (action) {
4666 	case SEG6_LOCAL_ACTION_END_X:
4667 		if (!seg6_bpf_has_valid_srh(skb))
4668 			return -EBADMSG;
4669 		if (param_len != sizeof(struct in6_addr))
4670 			return -EINVAL;
4671 		return seg6_lookup_nexthop(skb, (struct in6_addr *)param, 0);
4672 	case SEG6_LOCAL_ACTION_END_T:
4673 		if (!seg6_bpf_has_valid_srh(skb))
4674 			return -EBADMSG;
4675 		if (param_len != sizeof(int))
4676 			return -EINVAL;
4677 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4678 	case SEG6_LOCAL_ACTION_END_DT6:
4679 		if (!seg6_bpf_has_valid_srh(skb))
4680 			return -EBADMSG;
4681 		if (param_len != sizeof(int))
4682 			return -EINVAL;
4683 
4684 		if (ipv6_find_hdr(skb, &hdroff, IPPROTO_IPV6, NULL, NULL) < 0)
4685 			return -EBADMSG;
4686 		if (!pskb_pull(skb, hdroff))
4687 			return -EBADMSG;
4688 
4689 		skb_postpull_rcsum(skb, skb_network_header(skb), hdroff);
4690 		skb_reset_network_header(skb);
4691 		skb_reset_transport_header(skb);
4692 		skb->encapsulation = 0;
4693 
4694 		bpf_compute_data_pointers(skb);
4695 		bpf_update_srh_state(skb);
4696 		return seg6_lookup_nexthop(skb, NULL, *(int *)param);
4697 	case SEG6_LOCAL_ACTION_END_B6:
4698 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4699 			return -EBADMSG;
4700 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6_INLINE,
4701 					  param, param_len);
4702 		if (!err)
4703 			bpf_update_srh_state(skb);
4704 
4705 		return err;
4706 	case SEG6_LOCAL_ACTION_END_B6_ENCAP:
4707 		if (srh_state->srh && !seg6_bpf_has_valid_srh(skb))
4708 			return -EBADMSG;
4709 		err = bpf_push_seg6_encap(skb, BPF_LWT_ENCAP_SEG6,
4710 					  param, param_len);
4711 		if (!err)
4712 			bpf_update_srh_state(skb);
4713 
4714 		return err;
4715 	default:
4716 		return -EINVAL;
4717 	}
4718 }
4719 
4720 static const struct bpf_func_proto bpf_lwt_seg6_action_proto = {
4721 	.func		= bpf_lwt_seg6_action,
4722 	.gpl_only	= false,
4723 	.ret_type	= RET_INTEGER,
4724 	.arg1_type	= ARG_PTR_TO_CTX,
4725 	.arg2_type	= ARG_ANYTHING,
4726 	.arg3_type	= ARG_PTR_TO_MEM,
4727 	.arg4_type	= ARG_CONST_SIZE
4728 };
4729 
BPF_CALL_3(bpf_lwt_seg6_adjust_srh,struct sk_buff *,skb,u32,offset,s32,len)4730 BPF_CALL_3(bpf_lwt_seg6_adjust_srh, struct sk_buff *, skb, u32, offset,
4731 	   s32, len)
4732 {
4733 	struct seg6_bpf_srh_state *srh_state =
4734 		this_cpu_ptr(&seg6_bpf_srh_states);
4735 	struct ipv6_sr_hdr *srh = srh_state->srh;
4736 	void *srh_end, *srh_tlvs, *ptr;
4737 	struct ipv6hdr *hdr;
4738 	int srhoff = 0;
4739 	int ret;
4740 
4741 	if (unlikely(srh == NULL))
4742 		return -EINVAL;
4743 
4744 	srh_tlvs = (void *)((unsigned char *)srh + sizeof(*srh) +
4745 			((srh->first_segment + 1) << 4));
4746 	srh_end = (void *)((unsigned char *)srh + sizeof(*srh) +
4747 			srh_state->hdrlen);
4748 	ptr = skb->data + offset;
4749 
4750 	if (unlikely(ptr < srh_tlvs || ptr > srh_end))
4751 		return -EFAULT;
4752 	if (unlikely(len < 0 && (void *)((char *)ptr - len) > srh_end))
4753 		return -EFAULT;
4754 
4755 	if (len > 0) {
4756 		ret = skb_cow_head(skb, len);
4757 		if (unlikely(ret < 0))
4758 			return ret;
4759 
4760 		ret = bpf_skb_net_hdr_push(skb, offset, len);
4761 	} else {
4762 		ret = bpf_skb_net_hdr_pop(skb, offset, -1 * len);
4763 	}
4764 
4765 	bpf_compute_data_pointers(skb);
4766 	if (unlikely(ret < 0))
4767 		return ret;
4768 
4769 	hdr = (struct ipv6hdr *)skb->data;
4770 	hdr->payload_len = htons(skb->len - sizeof(struct ipv6hdr));
4771 
4772 	if (ipv6_find_hdr(skb, &srhoff, IPPROTO_ROUTING, NULL, NULL) < 0)
4773 		return -EINVAL;
4774 	srh_state->srh = (struct ipv6_sr_hdr *)(skb->data + srhoff);
4775 	srh_state->hdrlen += len;
4776 	srh_state->valid = false;
4777 	return 0;
4778 }
4779 
4780 static const struct bpf_func_proto bpf_lwt_seg6_adjust_srh_proto = {
4781 	.func		= bpf_lwt_seg6_adjust_srh,
4782 	.gpl_only	= false,
4783 	.ret_type	= RET_INTEGER,
4784 	.arg1_type	= ARG_PTR_TO_CTX,
4785 	.arg2_type	= ARG_ANYTHING,
4786 	.arg3_type	= ARG_ANYTHING,
4787 };
4788 #endif /* CONFIG_IPV6_SEG6_BPF */
4789 
bpf_helper_changes_pkt_data(void * func)4790 bool bpf_helper_changes_pkt_data(void *func)
4791 {
4792 	if (func == bpf_skb_vlan_push ||
4793 	    func == bpf_skb_vlan_pop ||
4794 	    func == bpf_skb_store_bytes ||
4795 	    func == bpf_skb_change_proto ||
4796 	    func == bpf_skb_change_head ||
4797 	    func == sk_skb_change_head ||
4798 	    func == bpf_skb_change_tail ||
4799 	    func == sk_skb_change_tail ||
4800 	    func == bpf_skb_adjust_room ||
4801 	    func == bpf_skb_pull_data ||
4802 	    func == sk_skb_pull_data ||
4803 	    func == bpf_clone_redirect ||
4804 	    func == bpf_l3_csum_replace ||
4805 	    func == bpf_l4_csum_replace ||
4806 	    func == bpf_xdp_adjust_head ||
4807 	    func == bpf_xdp_adjust_meta ||
4808 	    func == bpf_msg_pull_data ||
4809 	    func == bpf_xdp_adjust_tail ||
4810 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
4811 	    func == bpf_lwt_seg6_store_bytes ||
4812 	    func == bpf_lwt_seg6_adjust_srh ||
4813 	    func == bpf_lwt_seg6_action ||
4814 #endif
4815 	    func == bpf_lwt_push_encap)
4816 		return true;
4817 
4818 	return false;
4819 }
4820 
4821 static const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id)4822 bpf_base_func_proto(enum bpf_func_id func_id)
4823 {
4824 	switch (func_id) {
4825 	case BPF_FUNC_map_lookup_elem:
4826 		return &bpf_map_lookup_elem_proto;
4827 	case BPF_FUNC_map_update_elem:
4828 		return &bpf_map_update_elem_proto;
4829 	case BPF_FUNC_map_delete_elem:
4830 		return &bpf_map_delete_elem_proto;
4831 	case BPF_FUNC_get_prandom_u32:
4832 		return &bpf_get_prandom_u32_proto;
4833 	case BPF_FUNC_get_smp_processor_id:
4834 		return &bpf_get_raw_smp_processor_id_proto;
4835 	case BPF_FUNC_get_numa_node_id:
4836 		return &bpf_get_numa_node_id_proto;
4837 	case BPF_FUNC_tail_call:
4838 		return &bpf_tail_call_proto;
4839 	case BPF_FUNC_ktime_get_ns:
4840 		return &bpf_ktime_get_ns_proto;
4841 	case BPF_FUNC_trace_printk:
4842 		if (capable(CAP_SYS_ADMIN))
4843 			return bpf_get_trace_printk_proto();
4844 		/* else: fall through */
4845 	default:
4846 		return NULL;
4847 	}
4848 }
4849 
4850 static const struct bpf_func_proto *
sock_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4851 sock_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4852 {
4853 	switch (func_id) {
4854 	/* inet and inet6 sockets are created in a process
4855 	 * context so there is always a valid uid/gid
4856 	 */
4857 	case BPF_FUNC_get_current_uid_gid:
4858 		return &bpf_get_current_uid_gid_proto;
4859 	case BPF_FUNC_get_local_storage:
4860 		return &bpf_get_local_storage_proto;
4861 	default:
4862 		return bpf_base_func_proto(func_id);
4863 	}
4864 }
4865 
4866 static const struct bpf_func_proto *
sock_addr_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4867 sock_addr_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4868 {
4869 	switch (func_id) {
4870 	/* inet and inet6 sockets are created in a process
4871 	 * context so there is always a valid uid/gid
4872 	 */
4873 	case BPF_FUNC_get_current_uid_gid:
4874 		return &bpf_get_current_uid_gid_proto;
4875 	case BPF_FUNC_bind:
4876 		switch (prog->expected_attach_type) {
4877 		case BPF_CGROUP_INET4_CONNECT:
4878 		case BPF_CGROUP_INET6_CONNECT:
4879 			return &bpf_bind_proto;
4880 		default:
4881 			return NULL;
4882 		}
4883 	case BPF_FUNC_get_socket_cookie:
4884 		return &bpf_get_socket_cookie_sock_addr_proto;
4885 	case BPF_FUNC_get_local_storage:
4886 		return &bpf_get_local_storage_proto;
4887 	default:
4888 		return bpf_base_func_proto(func_id);
4889 	}
4890 }
4891 
4892 static const struct bpf_func_proto *
sk_filter_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4893 sk_filter_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4894 {
4895 	switch (func_id) {
4896 	case BPF_FUNC_skb_load_bytes:
4897 		return &bpf_skb_load_bytes_proto;
4898 	case BPF_FUNC_skb_load_bytes_relative:
4899 		return &bpf_skb_load_bytes_relative_proto;
4900 	case BPF_FUNC_get_socket_cookie:
4901 		return &bpf_get_socket_cookie_proto;
4902 	case BPF_FUNC_get_socket_uid:
4903 		return &bpf_get_socket_uid_proto;
4904 	default:
4905 		return bpf_base_func_proto(func_id);
4906 	}
4907 }
4908 
4909 static const struct bpf_func_proto *
cg_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4910 cg_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4911 {
4912 	switch (func_id) {
4913 	case BPF_FUNC_get_local_storage:
4914 		return &bpf_get_local_storage_proto;
4915 	default:
4916 		return sk_filter_func_proto(func_id, prog);
4917 	}
4918 }
4919 
4920 static const struct bpf_func_proto *
tc_cls_act_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)4921 tc_cls_act_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
4922 {
4923 	switch (func_id) {
4924 	case BPF_FUNC_skb_store_bytes:
4925 		return &bpf_skb_store_bytes_proto;
4926 	case BPF_FUNC_skb_load_bytes:
4927 		return &bpf_skb_load_bytes_proto;
4928 	case BPF_FUNC_skb_load_bytes_relative:
4929 		return &bpf_skb_load_bytes_relative_proto;
4930 	case BPF_FUNC_skb_pull_data:
4931 		return &bpf_skb_pull_data_proto;
4932 	case BPF_FUNC_csum_diff:
4933 		return &bpf_csum_diff_proto;
4934 	case BPF_FUNC_csum_update:
4935 		return &bpf_csum_update_proto;
4936 	case BPF_FUNC_l3_csum_replace:
4937 		return &bpf_l3_csum_replace_proto;
4938 	case BPF_FUNC_l4_csum_replace:
4939 		return &bpf_l4_csum_replace_proto;
4940 	case BPF_FUNC_clone_redirect:
4941 		return &bpf_clone_redirect_proto;
4942 	case BPF_FUNC_get_cgroup_classid:
4943 		return &bpf_get_cgroup_classid_proto;
4944 	case BPF_FUNC_skb_vlan_push:
4945 		return &bpf_skb_vlan_push_proto;
4946 	case BPF_FUNC_skb_vlan_pop:
4947 		return &bpf_skb_vlan_pop_proto;
4948 	case BPF_FUNC_skb_change_proto:
4949 		return &bpf_skb_change_proto_proto;
4950 	case BPF_FUNC_skb_change_type:
4951 		return &bpf_skb_change_type_proto;
4952 	case BPF_FUNC_skb_adjust_room:
4953 		return &bpf_skb_adjust_room_proto;
4954 	case BPF_FUNC_skb_change_tail:
4955 		return &bpf_skb_change_tail_proto;
4956 	case BPF_FUNC_skb_get_tunnel_key:
4957 		return &bpf_skb_get_tunnel_key_proto;
4958 	case BPF_FUNC_skb_set_tunnel_key:
4959 		return bpf_get_skb_set_tunnel_proto(func_id);
4960 	case BPF_FUNC_skb_get_tunnel_opt:
4961 		return &bpf_skb_get_tunnel_opt_proto;
4962 	case BPF_FUNC_skb_set_tunnel_opt:
4963 		return bpf_get_skb_set_tunnel_proto(func_id);
4964 	case BPF_FUNC_redirect:
4965 		return &bpf_redirect_proto;
4966 	case BPF_FUNC_get_route_realm:
4967 		return &bpf_get_route_realm_proto;
4968 	case BPF_FUNC_get_hash_recalc:
4969 		return &bpf_get_hash_recalc_proto;
4970 	case BPF_FUNC_set_hash_invalid:
4971 		return &bpf_set_hash_invalid_proto;
4972 	case BPF_FUNC_set_hash:
4973 		return &bpf_set_hash_proto;
4974 	case BPF_FUNC_perf_event_output:
4975 		return &bpf_skb_event_output_proto;
4976 	case BPF_FUNC_get_smp_processor_id:
4977 		return &bpf_get_smp_processor_id_proto;
4978 	case BPF_FUNC_skb_under_cgroup:
4979 		return &bpf_skb_under_cgroup_proto;
4980 	case BPF_FUNC_get_socket_cookie:
4981 		return &bpf_get_socket_cookie_proto;
4982 	case BPF_FUNC_get_socket_uid:
4983 		return &bpf_get_socket_uid_proto;
4984 	case BPF_FUNC_fib_lookup:
4985 		return &bpf_skb_fib_lookup_proto;
4986 #ifdef CONFIG_XFRM
4987 	case BPF_FUNC_skb_get_xfrm_state:
4988 		return &bpf_skb_get_xfrm_state_proto;
4989 #endif
4990 #ifdef CONFIG_SOCK_CGROUP_DATA
4991 	case BPF_FUNC_skb_cgroup_id:
4992 		return &bpf_skb_cgroup_id_proto;
4993 	case BPF_FUNC_skb_ancestor_cgroup_id:
4994 		return &bpf_skb_ancestor_cgroup_id_proto;
4995 #endif
4996 	default:
4997 		return bpf_base_func_proto(func_id);
4998 	}
4999 }
5000 
5001 static const struct bpf_func_proto *
xdp_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5002 xdp_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5003 {
5004 	switch (func_id) {
5005 	case BPF_FUNC_perf_event_output:
5006 		return &bpf_xdp_event_output_proto;
5007 	case BPF_FUNC_get_smp_processor_id:
5008 		return &bpf_get_smp_processor_id_proto;
5009 	case BPF_FUNC_csum_diff:
5010 		return &bpf_csum_diff_proto;
5011 	case BPF_FUNC_xdp_adjust_head:
5012 		return &bpf_xdp_adjust_head_proto;
5013 	case BPF_FUNC_xdp_adjust_meta:
5014 		return &bpf_xdp_adjust_meta_proto;
5015 	case BPF_FUNC_redirect:
5016 		return &bpf_xdp_redirect_proto;
5017 	case BPF_FUNC_redirect_map:
5018 		return &bpf_xdp_redirect_map_proto;
5019 	case BPF_FUNC_xdp_adjust_tail:
5020 		return &bpf_xdp_adjust_tail_proto;
5021 	case BPF_FUNC_fib_lookup:
5022 		return &bpf_xdp_fib_lookup_proto;
5023 	default:
5024 		return bpf_base_func_proto(func_id);
5025 	}
5026 }
5027 
5028 static const struct bpf_func_proto *
sock_ops_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5029 sock_ops_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5030 {
5031 	switch (func_id) {
5032 	case BPF_FUNC_setsockopt:
5033 		return &bpf_setsockopt_proto;
5034 	case BPF_FUNC_getsockopt:
5035 		return &bpf_getsockopt_proto;
5036 	case BPF_FUNC_sock_ops_cb_flags_set:
5037 		return &bpf_sock_ops_cb_flags_set_proto;
5038 	case BPF_FUNC_sock_map_update:
5039 		return &bpf_sock_map_update_proto;
5040 	case BPF_FUNC_sock_hash_update:
5041 		return &bpf_sock_hash_update_proto;
5042 	case BPF_FUNC_get_socket_cookie:
5043 		return &bpf_get_socket_cookie_sock_ops_proto;
5044 	case BPF_FUNC_get_local_storage:
5045 		return &bpf_get_local_storage_proto;
5046 	default:
5047 		return bpf_base_func_proto(func_id);
5048 	}
5049 }
5050 
5051 static const struct bpf_func_proto *
sk_msg_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5052 sk_msg_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5053 {
5054 	switch (func_id) {
5055 	case BPF_FUNC_msg_redirect_map:
5056 		return &bpf_msg_redirect_map_proto;
5057 	case BPF_FUNC_msg_redirect_hash:
5058 		return &bpf_msg_redirect_hash_proto;
5059 	case BPF_FUNC_msg_apply_bytes:
5060 		return &bpf_msg_apply_bytes_proto;
5061 	case BPF_FUNC_msg_cork_bytes:
5062 		return &bpf_msg_cork_bytes_proto;
5063 	case BPF_FUNC_msg_pull_data:
5064 		return &bpf_msg_pull_data_proto;
5065 	case BPF_FUNC_get_local_storage:
5066 		return &bpf_get_local_storage_proto;
5067 	default:
5068 		return bpf_base_func_proto(func_id);
5069 	}
5070 }
5071 
5072 static const struct bpf_func_proto *
sk_skb_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5073 sk_skb_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5074 {
5075 	switch (func_id) {
5076 	case BPF_FUNC_skb_store_bytes:
5077 		return &bpf_skb_store_bytes_proto;
5078 	case BPF_FUNC_skb_load_bytes:
5079 		return &bpf_skb_load_bytes_proto;
5080 	case BPF_FUNC_skb_pull_data:
5081 		return &sk_skb_pull_data_proto;
5082 	case BPF_FUNC_skb_change_tail:
5083 		return &sk_skb_change_tail_proto;
5084 	case BPF_FUNC_skb_change_head:
5085 		return &sk_skb_change_head_proto;
5086 	case BPF_FUNC_get_socket_cookie:
5087 		return &bpf_get_socket_cookie_proto;
5088 	case BPF_FUNC_get_socket_uid:
5089 		return &bpf_get_socket_uid_proto;
5090 	case BPF_FUNC_sk_redirect_map:
5091 		return &bpf_sk_redirect_map_proto;
5092 	case BPF_FUNC_sk_redirect_hash:
5093 		return &bpf_sk_redirect_hash_proto;
5094 	case BPF_FUNC_get_local_storage:
5095 		return &bpf_get_local_storage_proto;
5096 	default:
5097 		return bpf_base_func_proto(func_id);
5098 	}
5099 }
5100 
5101 static const struct bpf_func_proto *
lwt_out_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5102 lwt_out_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5103 {
5104 	switch (func_id) {
5105 	case BPF_FUNC_skb_load_bytes:
5106 		return &bpf_skb_load_bytes_proto;
5107 	case BPF_FUNC_skb_pull_data:
5108 		return &bpf_skb_pull_data_proto;
5109 	case BPF_FUNC_csum_diff:
5110 		return &bpf_csum_diff_proto;
5111 	case BPF_FUNC_get_cgroup_classid:
5112 		return &bpf_get_cgroup_classid_proto;
5113 	case BPF_FUNC_get_route_realm:
5114 		return &bpf_get_route_realm_proto;
5115 	case BPF_FUNC_get_hash_recalc:
5116 		return &bpf_get_hash_recalc_proto;
5117 	case BPF_FUNC_perf_event_output:
5118 		return &bpf_skb_event_output_proto;
5119 	case BPF_FUNC_get_smp_processor_id:
5120 		return &bpf_get_smp_processor_id_proto;
5121 	case BPF_FUNC_skb_under_cgroup:
5122 		return &bpf_skb_under_cgroup_proto;
5123 	default:
5124 		return bpf_base_func_proto(func_id);
5125 	}
5126 }
5127 
5128 static const struct bpf_func_proto *
lwt_in_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5129 lwt_in_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5130 {
5131 	switch (func_id) {
5132 	case BPF_FUNC_lwt_push_encap:
5133 		return &bpf_lwt_push_encap_proto;
5134 	default:
5135 		return lwt_out_func_proto(func_id, prog);
5136 	}
5137 }
5138 
5139 static const struct bpf_func_proto *
lwt_xmit_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5140 lwt_xmit_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5141 {
5142 	switch (func_id) {
5143 	case BPF_FUNC_skb_get_tunnel_key:
5144 		return &bpf_skb_get_tunnel_key_proto;
5145 	case BPF_FUNC_skb_set_tunnel_key:
5146 		return bpf_get_skb_set_tunnel_proto(func_id);
5147 	case BPF_FUNC_skb_get_tunnel_opt:
5148 		return &bpf_skb_get_tunnel_opt_proto;
5149 	case BPF_FUNC_skb_set_tunnel_opt:
5150 		return bpf_get_skb_set_tunnel_proto(func_id);
5151 	case BPF_FUNC_redirect:
5152 		return &bpf_redirect_proto;
5153 	case BPF_FUNC_clone_redirect:
5154 		return &bpf_clone_redirect_proto;
5155 	case BPF_FUNC_skb_change_tail:
5156 		return &bpf_skb_change_tail_proto;
5157 	case BPF_FUNC_skb_change_head:
5158 		return &bpf_skb_change_head_proto;
5159 	case BPF_FUNC_skb_store_bytes:
5160 		return &bpf_skb_store_bytes_proto;
5161 	case BPF_FUNC_csum_update:
5162 		return &bpf_csum_update_proto;
5163 	case BPF_FUNC_l3_csum_replace:
5164 		return &bpf_l3_csum_replace_proto;
5165 	case BPF_FUNC_l4_csum_replace:
5166 		return &bpf_l4_csum_replace_proto;
5167 	case BPF_FUNC_set_hash_invalid:
5168 		return &bpf_set_hash_invalid_proto;
5169 	default:
5170 		return lwt_out_func_proto(func_id, prog);
5171 	}
5172 }
5173 
5174 static const struct bpf_func_proto *
lwt_seg6local_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)5175 lwt_seg6local_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
5176 {
5177 	switch (func_id) {
5178 #if IS_ENABLED(CONFIG_IPV6_SEG6_BPF)
5179 	case BPF_FUNC_lwt_seg6_store_bytes:
5180 		return &bpf_lwt_seg6_store_bytes_proto;
5181 	case BPF_FUNC_lwt_seg6_action:
5182 		return &bpf_lwt_seg6_action_proto;
5183 	case BPF_FUNC_lwt_seg6_adjust_srh:
5184 		return &bpf_lwt_seg6_adjust_srh_proto;
5185 #endif
5186 	default:
5187 		return lwt_out_func_proto(func_id, prog);
5188 	}
5189 }
5190 
bpf_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5191 static bool bpf_skb_is_valid_access(int off, int size, enum bpf_access_type type,
5192 				    const struct bpf_prog *prog,
5193 				    struct bpf_insn_access_aux *info)
5194 {
5195 	const int size_default = sizeof(__u32);
5196 
5197 	if (off < 0 || off >= sizeof(struct __sk_buff))
5198 		return false;
5199 
5200 	/* The verifier guarantees that size > 0. */
5201 	if (off % size != 0)
5202 		return false;
5203 
5204 	switch (off) {
5205 	case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5206 		if (off + size > offsetofend(struct __sk_buff, cb[4]))
5207 			return false;
5208 		break;
5209 	case bpf_ctx_range_till(struct __sk_buff, remote_ip6[0], remote_ip6[3]):
5210 	case bpf_ctx_range_till(struct __sk_buff, local_ip6[0], local_ip6[3]):
5211 	case bpf_ctx_range_till(struct __sk_buff, remote_ip4, remote_ip4):
5212 	case bpf_ctx_range_till(struct __sk_buff, local_ip4, local_ip4):
5213 	case bpf_ctx_range(struct __sk_buff, data):
5214 	case bpf_ctx_range(struct __sk_buff, data_meta):
5215 	case bpf_ctx_range(struct __sk_buff, data_end):
5216 		if (size != size_default)
5217 			return false;
5218 		break;
5219 	default:
5220 		/* Only narrow read access allowed for now. */
5221 		if (type == BPF_WRITE) {
5222 			if (size != size_default)
5223 				return false;
5224 		} else {
5225 			bpf_ctx_record_field_size(info, size_default);
5226 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5227 				return false;
5228 		}
5229 	}
5230 
5231 	return true;
5232 }
5233 
sk_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5234 static bool sk_filter_is_valid_access(int off, int size,
5235 				      enum bpf_access_type type,
5236 				      const struct bpf_prog *prog,
5237 				      struct bpf_insn_access_aux *info)
5238 {
5239 	switch (off) {
5240 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5241 	case bpf_ctx_range(struct __sk_buff, data):
5242 	case bpf_ctx_range(struct __sk_buff, data_meta):
5243 	case bpf_ctx_range(struct __sk_buff, data_end):
5244 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5245 		return false;
5246 	}
5247 
5248 	if (type == BPF_WRITE) {
5249 		switch (off) {
5250 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5251 			break;
5252 		default:
5253 			return false;
5254 		}
5255 	}
5256 
5257 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5258 }
5259 
lwt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5260 static bool lwt_is_valid_access(int off, int size,
5261 				enum bpf_access_type type,
5262 				const struct bpf_prog *prog,
5263 				struct bpf_insn_access_aux *info)
5264 {
5265 	switch (off) {
5266 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5267 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5268 	case bpf_ctx_range(struct __sk_buff, data_meta):
5269 		return false;
5270 	}
5271 
5272 	if (type == BPF_WRITE) {
5273 		switch (off) {
5274 		case bpf_ctx_range(struct __sk_buff, mark):
5275 		case bpf_ctx_range(struct __sk_buff, priority):
5276 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5277 			break;
5278 		default:
5279 			return false;
5280 		}
5281 	}
5282 
5283 	switch (off) {
5284 	case bpf_ctx_range(struct __sk_buff, data):
5285 		info->reg_type = PTR_TO_PACKET;
5286 		break;
5287 	case bpf_ctx_range(struct __sk_buff, data_end):
5288 		info->reg_type = PTR_TO_PACKET_END;
5289 		break;
5290 	}
5291 
5292 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5293 }
5294 
5295 /* Attach type specific accesses */
__sock_filter_check_attach_type(int off,enum bpf_access_type access_type,enum bpf_attach_type attach_type)5296 static bool __sock_filter_check_attach_type(int off,
5297 					    enum bpf_access_type access_type,
5298 					    enum bpf_attach_type attach_type)
5299 {
5300 	switch (off) {
5301 	case offsetof(struct bpf_sock, bound_dev_if):
5302 	case offsetof(struct bpf_sock, mark):
5303 	case offsetof(struct bpf_sock, priority):
5304 		switch (attach_type) {
5305 		case BPF_CGROUP_INET_SOCK_CREATE:
5306 			goto full_access;
5307 		default:
5308 			return false;
5309 		}
5310 	case bpf_ctx_range(struct bpf_sock, src_ip4):
5311 		switch (attach_type) {
5312 		case BPF_CGROUP_INET4_POST_BIND:
5313 			goto read_only;
5314 		default:
5315 			return false;
5316 		}
5317 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5318 		switch (attach_type) {
5319 		case BPF_CGROUP_INET6_POST_BIND:
5320 			goto read_only;
5321 		default:
5322 			return false;
5323 		}
5324 	case bpf_ctx_range(struct bpf_sock, src_port):
5325 		switch (attach_type) {
5326 		case BPF_CGROUP_INET4_POST_BIND:
5327 		case BPF_CGROUP_INET6_POST_BIND:
5328 			goto read_only;
5329 		default:
5330 			return false;
5331 		}
5332 	}
5333 read_only:
5334 	return access_type == BPF_READ;
5335 full_access:
5336 	return true;
5337 }
5338 
__sock_filter_check_size(int off,int size,struct bpf_insn_access_aux * info)5339 static bool __sock_filter_check_size(int off, int size,
5340 				     struct bpf_insn_access_aux *info)
5341 {
5342 	const int size_default = sizeof(__u32);
5343 
5344 	switch (off) {
5345 	case bpf_ctx_range(struct bpf_sock, src_ip4):
5346 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
5347 		bpf_ctx_record_field_size(info, size_default);
5348 		return bpf_ctx_narrow_access_ok(off, size, size_default);
5349 	}
5350 
5351 	return size == size_default;
5352 }
5353 
sock_filter_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5354 static bool sock_filter_is_valid_access(int off, int size,
5355 					enum bpf_access_type type,
5356 					const struct bpf_prog *prog,
5357 					struct bpf_insn_access_aux *info)
5358 {
5359 	if (off < 0 || off >= sizeof(struct bpf_sock))
5360 		return false;
5361 	if (off % size != 0)
5362 		return false;
5363 	if (!__sock_filter_check_attach_type(off, type,
5364 					     prog->expected_attach_type))
5365 		return false;
5366 	if (!__sock_filter_check_size(off, size, info))
5367 		return false;
5368 	return true;
5369 }
5370 
bpf_unclone_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog,int drop_verdict)5371 static int bpf_unclone_prologue(struct bpf_insn *insn_buf, bool direct_write,
5372 				const struct bpf_prog *prog, int drop_verdict)
5373 {
5374 	struct bpf_insn *insn = insn_buf;
5375 
5376 	if (!direct_write)
5377 		return 0;
5378 
5379 	/* if (!skb->cloned)
5380 	 *       goto start;
5381 	 *
5382 	 * (Fast-path, otherwise approximation that we might be
5383 	 *  a clone, do the rest in helper.)
5384 	 */
5385 	*insn++ = BPF_LDX_MEM(BPF_B, BPF_REG_6, BPF_REG_1, CLONED_OFFSET());
5386 	*insn++ = BPF_ALU32_IMM(BPF_AND, BPF_REG_6, CLONED_MASK);
5387 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_6, 0, 7);
5388 
5389 	/* ret = bpf_skb_pull_data(skb, 0); */
5390 	*insn++ = BPF_MOV64_REG(BPF_REG_6, BPF_REG_1);
5391 	*insn++ = BPF_ALU64_REG(BPF_XOR, BPF_REG_2, BPF_REG_2);
5392 	*insn++ = BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0,
5393 			       BPF_FUNC_skb_pull_data);
5394 	/* if (!ret)
5395 	 *      goto restore;
5396 	 * return TC_ACT_SHOT;
5397 	 */
5398 	*insn++ = BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2);
5399 	*insn++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_0, drop_verdict);
5400 	*insn++ = BPF_EXIT_INSN();
5401 
5402 	/* restore: */
5403 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_6);
5404 	/* start: */
5405 	*insn++ = prog->insnsi[0];
5406 
5407 	return insn - insn_buf;
5408 }
5409 
bpf_gen_ld_abs(const struct bpf_insn * orig,struct bpf_insn * insn_buf)5410 static int bpf_gen_ld_abs(const struct bpf_insn *orig,
5411 			  struct bpf_insn *insn_buf)
5412 {
5413 	bool indirect = BPF_MODE(orig->code) == BPF_IND;
5414 	struct bpf_insn *insn = insn_buf;
5415 
5416 	/* We're guaranteed here that CTX is in R6. */
5417 	*insn++ = BPF_MOV64_REG(BPF_REG_1, BPF_REG_CTX);
5418 	if (!indirect) {
5419 		*insn++ = BPF_MOV64_IMM(BPF_REG_2, orig->imm);
5420 	} else {
5421 		*insn++ = BPF_MOV64_REG(BPF_REG_2, orig->src_reg);
5422 		if (orig->imm)
5423 			*insn++ = BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, orig->imm);
5424 	}
5425 
5426 	switch (BPF_SIZE(orig->code)) {
5427 	case BPF_B:
5428 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_8_no_cache);
5429 		break;
5430 	case BPF_H:
5431 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_16_no_cache);
5432 		break;
5433 	case BPF_W:
5434 		*insn++ = BPF_EMIT_CALL(bpf_skb_load_helper_32_no_cache);
5435 		break;
5436 	}
5437 
5438 	*insn++ = BPF_JMP_IMM(BPF_JSGE, BPF_REG_0, 0, 2);
5439 	*insn++ = BPF_ALU32_REG(BPF_XOR, BPF_REG_0, BPF_REG_0);
5440 	*insn++ = BPF_EXIT_INSN();
5441 
5442 	return insn - insn_buf;
5443 }
5444 
tc_cls_act_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)5445 static int tc_cls_act_prologue(struct bpf_insn *insn_buf, bool direct_write,
5446 			       const struct bpf_prog *prog)
5447 {
5448 	return bpf_unclone_prologue(insn_buf, direct_write, prog, TC_ACT_SHOT);
5449 }
5450 
tc_cls_act_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5451 static bool tc_cls_act_is_valid_access(int off, int size,
5452 				       enum bpf_access_type type,
5453 				       const struct bpf_prog *prog,
5454 				       struct bpf_insn_access_aux *info)
5455 {
5456 	if (type == BPF_WRITE) {
5457 		switch (off) {
5458 		case bpf_ctx_range(struct __sk_buff, mark):
5459 		case bpf_ctx_range(struct __sk_buff, tc_index):
5460 		case bpf_ctx_range(struct __sk_buff, priority):
5461 		case bpf_ctx_range(struct __sk_buff, tc_classid):
5462 		case bpf_ctx_range_till(struct __sk_buff, cb[0], cb[4]):
5463 			break;
5464 		default:
5465 			return false;
5466 		}
5467 	}
5468 
5469 	switch (off) {
5470 	case bpf_ctx_range(struct __sk_buff, data):
5471 		info->reg_type = PTR_TO_PACKET;
5472 		break;
5473 	case bpf_ctx_range(struct __sk_buff, data_meta):
5474 		info->reg_type = PTR_TO_PACKET_META;
5475 		break;
5476 	case bpf_ctx_range(struct __sk_buff, data_end):
5477 		info->reg_type = PTR_TO_PACKET_END;
5478 		break;
5479 	case bpf_ctx_range_till(struct __sk_buff, family, local_port):
5480 		return false;
5481 	}
5482 
5483 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5484 }
5485 
__is_valid_xdp_access(int off,int size)5486 static bool __is_valid_xdp_access(int off, int size)
5487 {
5488 	if (off < 0 || off >= sizeof(struct xdp_md))
5489 		return false;
5490 	if (off % size != 0)
5491 		return false;
5492 	if (size != sizeof(__u32))
5493 		return false;
5494 
5495 	return true;
5496 }
5497 
xdp_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5498 static bool xdp_is_valid_access(int off, int size,
5499 				enum bpf_access_type type,
5500 				const struct bpf_prog *prog,
5501 				struct bpf_insn_access_aux *info)
5502 {
5503 	if (type == BPF_WRITE) {
5504 		if (bpf_prog_is_dev_bound(prog->aux)) {
5505 			switch (off) {
5506 			case offsetof(struct xdp_md, rx_queue_index):
5507 				return __is_valid_xdp_access(off, size);
5508 			}
5509 		}
5510 		return false;
5511 	}
5512 
5513 	switch (off) {
5514 	case offsetof(struct xdp_md, data):
5515 		info->reg_type = PTR_TO_PACKET;
5516 		break;
5517 	case offsetof(struct xdp_md, data_meta):
5518 		info->reg_type = PTR_TO_PACKET_META;
5519 		break;
5520 	case offsetof(struct xdp_md, data_end):
5521 		info->reg_type = PTR_TO_PACKET_END;
5522 		break;
5523 	}
5524 
5525 	return __is_valid_xdp_access(off, size);
5526 }
5527 
bpf_warn_invalid_xdp_action(u32 act)5528 void bpf_warn_invalid_xdp_action(u32 act)
5529 {
5530 	const u32 act_max = XDP_REDIRECT;
5531 
5532 	WARN_ONCE(1, "%s XDP return value %u, expect packet loss!\n",
5533 		  act > act_max ? "Illegal" : "Driver unsupported",
5534 		  act);
5535 }
5536 EXPORT_SYMBOL_GPL(bpf_warn_invalid_xdp_action);
5537 
sock_addr_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5538 static bool sock_addr_is_valid_access(int off, int size,
5539 				      enum bpf_access_type type,
5540 				      const struct bpf_prog *prog,
5541 				      struct bpf_insn_access_aux *info)
5542 {
5543 	const int size_default = sizeof(__u32);
5544 
5545 	if (off < 0 || off >= sizeof(struct bpf_sock_addr))
5546 		return false;
5547 	if (off % size != 0)
5548 		return false;
5549 
5550 	/* Disallow access to IPv6 fields from IPv4 contex and vise
5551 	 * versa.
5552 	 */
5553 	switch (off) {
5554 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5555 		switch (prog->expected_attach_type) {
5556 		case BPF_CGROUP_INET4_BIND:
5557 		case BPF_CGROUP_INET4_CONNECT:
5558 		case BPF_CGROUP_UDP4_SENDMSG:
5559 			break;
5560 		default:
5561 			return false;
5562 		}
5563 		break;
5564 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5565 		switch (prog->expected_attach_type) {
5566 		case BPF_CGROUP_INET6_BIND:
5567 		case BPF_CGROUP_INET6_CONNECT:
5568 		case BPF_CGROUP_UDP6_SENDMSG:
5569 			break;
5570 		default:
5571 			return false;
5572 		}
5573 		break;
5574 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5575 		switch (prog->expected_attach_type) {
5576 		case BPF_CGROUP_UDP4_SENDMSG:
5577 			break;
5578 		default:
5579 			return false;
5580 		}
5581 		break;
5582 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5583 				msg_src_ip6[3]):
5584 		switch (prog->expected_attach_type) {
5585 		case BPF_CGROUP_UDP6_SENDMSG:
5586 			break;
5587 		default:
5588 			return false;
5589 		}
5590 		break;
5591 	}
5592 
5593 	switch (off) {
5594 	case bpf_ctx_range(struct bpf_sock_addr, user_ip4):
5595 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
5596 	case bpf_ctx_range(struct bpf_sock_addr, msg_src_ip4):
5597 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
5598 				msg_src_ip6[3]):
5599 		/* Only narrow read access allowed for now. */
5600 		if (type == BPF_READ) {
5601 			bpf_ctx_record_field_size(info, size_default);
5602 			if (!bpf_ctx_narrow_access_ok(off, size, size_default))
5603 				return false;
5604 		} else {
5605 			if (size != size_default)
5606 				return false;
5607 		}
5608 		break;
5609 	case bpf_ctx_range(struct bpf_sock_addr, user_port):
5610 		if (size != size_default)
5611 			return false;
5612 		break;
5613 	default:
5614 		if (type == BPF_READ) {
5615 			if (size != size_default)
5616 				return false;
5617 		} else {
5618 			return false;
5619 		}
5620 	}
5621 
5622 	return true;
5623 }
5624 
sock_ops_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5625 static bool sock_ops_is_valid_access(int off, int size,
5626 				     enum bpf_access_type type,
5627 				     const struct bpf_prog *prog,
5628 				     struct bpf_insn_access_aux *info)
5629 {
5630 	const int size_default = sizeof(__u32);
5631 
5632 	if (off < 0 || off >= sizeof(struct bpf_sock_ops))
5633 		return false;
5634 
5635 	/* The verifier guarantees that size > 0. */
5636 	if (off % size != 0)
5637 		return false;
5638 
5639 	if (type == BPF_WRITE) {
5640 		switch (off) {
5641 		case offsetof(struct bpf_sock_ops, reply):
5642 		case offsetof(struct bpf_sock_ops, sk_txhash):
5643 			if (size != size_default)
5644 				return false;
5645 			break;
5646 		default:
5647 			return false;
5648 		}
5649 	} else {
5650 		switch (off) {
5651 		case bpf_ctx_range_till(struct bpf_sock_ops, bytes_received,
5652 					bytes_acked):
5653 			if (size != sizeof(__u64))
5654 				return false;
5655 			break;
5656 		default:
5657 			if (size != size_default)
5658 				return false;
5659 			break;
5660 		}
5661 	}
5662 
5663 	return true;
5664 }
5665 
sk_skb_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)5666 static int sk_skb_prologue(struct bpf_insn *insn_buf, bool direct_write,
5667 			   const struct bpf_prog *prog)
5668 {
5669 	return bpf_unclone_prologue(insn_buf, direct_write, prog, SK_DROP);
5670 }
5671 
sk_skb_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5672 static bool sk_skb_is_valid_access(int off, int size,
5673 				   enum bpf_access_type type,
5674 				   const struct bpf_prog *prog,
5675 				   struct bpf_insn_access_aux *info)
5676 {
5677 	switch (off) {
5678 	case bpf_ctx_range(struct __sk_buff, tc_classid):
5679 	case bpf_ctx_range(struct __sk_buff, data_meta):
5680 		return false;
5681 	}
5682 
5683 	if (type == BPF_WRITE) {
5684 		switch (off) {
5685 		case bpf_ctx_range(struct __sk_buff, tc_index):
5686 		case bpf_ctx_range(struct __sk_buff, priority):
5687 			break;
5688 		default:
5689 			return false;
5690 		}
5691 	}
5692 
5693 	switch (off) {
5694 	case bpf_ctx_range(struct __sk_buff, mark):
5695 		return false;
5696 	case bpf_ctx_range(struct __sk_buff, data):
5697 		info->reg_type = PTR_TO_PACKET;
5698 		break;
5699 	case bpf_ctx_range(struct __sk_buff, data_end):
5700 		info->reg_type = PTR_TO_PACKET_END;
5701 		break;
5702 	}
5703 
5704 	return bpf_skb_is_valid_access(off, size, type, prog, info);
5705 }
5706 
sk_msg_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)5707 static bool sk_msg_is_valid_access(int off, int size,
5708 				   enum bpf_access_type type,
5709 				   const struct bpf_prog *prog,
5710 				   struct bpf_insn_access_aux *info)
5711 {
5712 	if (type == BPF_WRITE)
5713 		return false;
5714 
5715 	switch (off) {
5716 	case offsetof(struct sk_msg_md, data):
5717 		info->reg_type = PTR_TO_PACKET;
5718 		if (size != sizeof(__u64))
5719 			return false;
5720 		break;
5721 	case offsetof(struct sk_msg_md, data_end):
5722 		info->reg_type = PTR_TO_PACKET_END;
5723 		if (size != sizeof(__u64))
5724 			return false;
5725 		break;
5726 	default:
5727 		if (size != sizeof(__u32))
5728 			return false;
5729 	}
5730 
5731 	if (off < 0 || off >= sizeof(struct sk_msg_md))
5732 		return false;
5733 	if (off % size != 0)
5734 		return false;
5735 
5736 	return true;
5737 }
5738 
bpf_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)5739 static u32 bpf_convert_ctx_access(enum bpf_access_type type,
5740 				  const struct bpf_insn *si,
5741 				  struct bpf_insn *insn_buf,
5742 				  struct bpf_prog *prog, u32 *target_size)
5743 {
5744 	struct bpf_insn *insn = insn_buf;
5745 	int off;
5746 
5747 	switch (si->off) {
5748 	case offsetof(struct __sk_buff, len):
5749 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5750 				      bpf_target_off(struct sk_buff, len, 4,
5751 						     target_size));
5752 		break;
5753 
5754 	case offsetof(struct __sk_buff, protocol):
5755 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5756 				      bpf_target_off(struct sk_buff, protocol, 2,
5757 						     target_size));
5758 		break;
5759 
5760 	case offsetof(struct __sk_buff, vlan_proto):
5761 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5762 				      bpf_target_off(struct sk_buff, vlan_proto, 2,
5763 						     target_size));
5764 		break;
5765 
5766 	case offsetof(struct __sk_buff, priority):
5767 		if (type == BPF_WRITE)
5768 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5769 					      bpf_target_off(struct sk_buff, priority, 4,
5770 							     target_size));
5771 		else
5772 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5773 					      bpf_target_off(struct sk_buff, priority, 4,
5774 							     target_size));
5775 		break;
5776 
5777 	case offsetof(struct __sk_buff, ingress_ifindex):
5778 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5779 				      bpf_target_off(struct sk_buff, skb_iif, 4,
5780 						     target_size));
5781 		break;
5782 
5783 	case offsetof(struct __sk_buff, ifindex):
5784 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
5785 				      si->dst_reg, si->src_reg,
5786 				      offsetof(struct sk_buff, dev));
5787 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 1);
5788 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5789 				      bpf_target_off(struct net_device, ifindex, 4,
5790 						     target_size));
5791 		break;
5792 
5793 	case offsetof(struct __sk_buff, hash):
5794 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5795 				      bpf_target_off(struct sk_buff, hash, 4,
5796 						     target_size));
5797 		break;
5798 
5799 	case offsetof(struct __sk_buff, mark):
5800 		if (type == BPF_WRITE)
5801 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
5802 					      bpf_target_off(struct sk_buff, mark, 4,
5803 							     target_size));
5804 		else
5805 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5806 					      bpf_target_off(struct sk_buff, mark, 4,
5807 							     target_size));
5808 		break;
5809 
5810 	case offsetof(struct __sk_buff, pkt_type):
5811 		*target_size = 1;
5812 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->src_reg,
5813 				      PKT_TYPE_OFFSET());
5814 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, PKT_TYPE_MAX);
5815 #ifdef __BIG_ENDIAN_BITFIELD
5816 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 5);
5817 #endif
5818 		break;
5819 
5820 	case offsetof(struct __sk_buff, queue_mapping):
5821 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5822 				      bpf_target_off(struct sk_buff, queue_mapping, 2,
5823 						     target_size));
5824 		break;
5825 
5826 	case offsetof(struct __sk_buff, vlan_present):
5827 	case offsetof(struct __sk_buff, vlan_tci):
5828 		BUILD_BUG_ON(VLAN_TAG_PRESENT != 0x1000);
5829 
5830 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5831 				      bpf_target_off(struct sk_buff, vlan_tci, 2,
5832 						     target_size));
5833 		if (si->off == offsetof(struct __sk_buff, vlan_tci)) {
5834 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg,
5835 						~VLAN_TAG_PRESENT);
5836 		} else {
5837 			*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, 12);
5838 			*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, 1);
5839 		}
5840 		break;
5841 
5842 	case offsetof(struct __sk_buff, cb[0]) ...
5843 	     offsetofend(struct __sk_buff, cb[4]) - 1:
5844 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, data) < 20);
5845 		BUILD_BUG_ON((offsetof(struct sk_buff, cb) +
5846 			      offsetof(struct qdisc_skb_cb, data)) %
5847 			     sizeof(__u64));
5848 
5849 		prog->cb_access = 1;
5850 		off  = si->off;
5851 		off -= offsetof(struct __sk_buff, cb[0]);
5852 		off += offsetof(struct sk_buff, cb);
5853 		off += offsetof(struct qdisc_skb_cb, data);
5854 		if (type == BPF_WRITE)
5855 			*insn++ = BPF_STX_MEM(BPF_SIZE(si->code), si->dst_reg,
5856 					      si->src_reg, off);
5857 		else
5858 			*insn++ = BPF_LDX_MEM(BPF_SIZE(si->code), si->dst_reg,
5859 					      si->src_reg, off);
5860 		break;
5861 
5862 	case offsetof(struct __sk_buff, tc_classid):
5863 		BUILD_BUG_ON(FIELD_SIZEOF(struct qdisc_skb_cb, tc_classid) != 2);
5864 
5865 		off  = si->off;
5866 		off -= offsetof(struct __sk_buff, tc_classid);
5867 		off += offsetof(struct sk_buff, cb);
5868 		off += offsetof(struct qdisc_skb_cb, tc_classid);
5869 		*target_size = 2;
5870 		if (type == BPF_WRITE)
5871 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg,
5872 					      si->src_reg, off);
5873 		else
5874 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg,
5875 					      si->src_reg, off);
5876 		break;
5877 
5878 	case offsetof(struct __sk_buff, data):
5879 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, data),
5880 				      si->dst_reg, si->src_reg,
5881 				      offsetof(struct sk_buff, data));
5882 		break;
5883 
5884 	case offsetof(struct __sk_buff, data_meta):
5885 		off  = si->off;
5886 		off -= offsetof(struct __sk_buff, data_meta);
5887 		off += offsetof(struct sk_buff, cb);
5888 		off += offsetof(struct bpf_skb_data_end, data_meta);
5889 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5890 				      si->src_reg, off);
5891 		break;
5892 
5893 	case offsetof(struct __sk_buff, data_end):
5894 		off  = si->off;
5895 		off -= offsetof(struct __sk_buff, data_end);
5896 		off += offsetof(struct sk_buff, cb);
5897 		off += offsetof(struct bpf_skb_data_end, data_end);
5898 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
5899 				      si->src_reg, off);
5900 		break;
5901 
5902 	case offsetof(struct __sk_buff, tc_index):
5903 #ifdef CONFIG_NET_SCHED
5904 		if (type == BPF_WRITE)
5905 			*insn++ = BPF_STX_MEM(BPF_H, si->dst_reg, si->src_reg,
5906 					      bpf_target_off(struct sk_buff, tc_index, 2,
5907 							     target_size));
5908 		else
5909 			*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
5910 					      bpf_target_off(struct sk_buff, tc_index, 2,
5911 							     target_size));
5912 #else
5913 		*target_size = 2;
5914 		if (type == BPF_WRITE)
5915 			*insn++ = BPF_MOV64_REG(si->dst_reg, si->dst_reg);
5916 		else
5917 			*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5918 #endif
5919 		break;
5920 
5921 	case offsetof(struct __sk_buff, napi_id):
5922 #if defined(CONFIG_NET_RX_BUSY_POLL)
5923 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
5924 				      bpf_target_off(struct sk_buff, napi_id, 4,
5925 						     target_size));
5926 		*insn++ = BPF_JMP_IMM(BPF_JGE, si->dst_reg, MIN_NAPI_ID, 1);
5927 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5928 #else
5929 		*target_size = 4;
5930 		*insn++ = BPF_MOV64_IMM(si->dst_reg, 0);
5931 #endif
5932 		break;
5933 	case offsetof(struct __sk_buff, family):
5934 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
5935 
5936 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5937 				      si->dst_reg, si->src_reg,
5938 				      offsetof(struct sk_buff, sk));
5939 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
5940 				      bpf_target_off(struct sock_common,
5941 						     skc_family,
5942 						     2, target_size));
5943 		break;
5944 	case offsetof(struct __sk_buff, remote_ip4):
5945 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
5946 
5947 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5948 				      si->dst_reg, si->src_reg,
5949 				      offsetof(struct sk_buff, sk));
5950 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5951 				      bpf_target_off(struct sock_common,
5952 						     skc_daddr,
5953 						     4, target_size));
5954 		break;
5955 	case offsetof(struct __sk_buff, local_ip4):
5956 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5957 					  skc_rcv_saddr) != 4);
5958 
5959 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5960 				      si->dst_reg, si->src_reg,
5961 				      offsetof(struct sk_buff, sk));
5962 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5963 				      bpf_target_off(struct sock_common,
5964 						     skc_rcv_saddr,
5965 						     4, target_size));
5966 		break;
5967 	case offsetof(struct __sk_buff, remote_ip6[0]) ...
5968 	     offsetof(struct __sk_buff, remote_ip6[3]):
5969 #if IS_ENABLED(CONFIG_IPV6)
5970 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5971 					  skc_v6_daddr.s6_addr32[0]) != 4);
5972 
5973 		off = si->off;
5974 		off -= offsetof(struct __sk_buff, remote_ip6[0]);
5975 
5976 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5977 				      si->dst_reg, si->src_reg,
5978 				      offsetof(struct sk_buff, sk));
5979 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
5980 				      offsetof(struct sock_common,
5981 					       skc_v6_daddr.s6_addr32[0]) +
5982 				      off);
5983 #else
5984 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
5985 #endif
5986 		break;
5987 	case offsetof(struct __sk_buff, local_ip6[0]) ...
5988 	     offsetof(struct __sk_buff, local_ip6[3]):
5989 #if IS_ENABLED(CONFIG_IPV6)
5990 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
5991 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
5992 
5993 		off = si->off;
5994 		off -= offsetof(struct __sk_buff, local_ip6[0]);
5995 
5996 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
5997 				      si->dst_reg, si->src_reg,
5998 				      offsetof(struct sk_buff, sk));
5999 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6000 				      offsetof(struct sock_common,
6001 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6002 				      off);
6003 #else
6004 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6005 #endif
6006 		break;
6007 
6008 	case offsetof(struct __sk_buff, remote_port):
6009 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6010 
6011 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6012 				      si->dst_reg, si->src_reg,
6013 				      offsetof(struct sk_buff, sk));
6014 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6015 				      bpf_target_off(struct sock_common,
6016 						     skc_dport,
6017 						     2, target_size));
6018 #ifndef __BIG_ENDIAN_BITFIELD
6019 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6020 #endif
6021 		break;
6022 
6023 	case offsetof(struct __sk_buff, local_port):
6024 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6025 
6026 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, sk),
6027 				      si->dst_reg, si->src_reg,
6028 				      offsetof(struct sk_buff, sk));
6029 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6030 				      bpf_target_off(struct sock_common,
6031 						     skc_num, 2, target_size));
6032 		break;
6033 	}
6034 
6035 	return insn - insn_buf;
6036 }
6037 
sock_filter_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6038 static u32 sock_filter_convert_ctx_access(enum bpf_access_type type,
6039 					  const struct bpf_insn *si,
6040 					  struct bpf_insn *insn_buf,
6041 					  struct bpf_prog *prog, u32 *target_size)
6042 {
6043 	struct bpf_insn *insn = insn_buf;
6044 	int off;
6045 
6046 	switch (si->off) {
6047 	case offsetof(struct bpf_sock, bound_dev_if):
6048 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_bound_dev_if) != 4);
6049 
6050 		if (type == BPF_WRITE)
6051 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6052 					offsetof(struct sock, sk_bound_dev_if));
6053 		else
6054 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6055 				      offsetof(struct sock, sk_bound_dev_if));
6056 		break;
6057 
6058 	case offsetof(struct bpf_sock, mark):
6059 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_mark) != 4);
6060 
6061 		if (type == BPF_WRITE)
6062 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6063 					offsetof(struct sock, sk_mark));
6064 		else
6065 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6066 				      offsetof(struct sock, sk_mark));
6067 		break;
6068 
6069 	case offsetof(struct bpf_sock, priority):
6070 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_priority) != 4);
6071 
6072 		if (type == BPF_WRITE)
6073 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6074 					offsetof(struct sock, sk_priority));
6075 		else
6076 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6077 				      offsetof(struct sock, sk_priority));
6078 		break;
6079 
6080 	case offsetof(struct bpf_sock, family):
6081 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock, sk_family) != 2);
6082 
6083 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->src_reg,
6084 				      offsetof(struct sock, sk_family));
6085 		break;
6086 
6087 	case offsetof(struct bpf_sock, type):
6088 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6089 				      offsetof(struct sock, __sk_flags_offset));
6090 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6091 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6092 		break;
6093 
6094 	case offsetof(struct bpf_sock, protocol):
6095 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6096 				      offsetof(struct sock, __sk_flags_offset));
6097 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6098 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_PROTO_SHIFT);
6099 		break;
6100 
6101 	case offsetof(struct bpf_sock, src_ip4):
6102 		*insn++ = BPF_LDX_MEM(
6103 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6104 			bpf_target_off(struct sock_common, skc_rcv_saddr,
6105 				       FIELD_SIZEOF(struct sock_common,
6106 						    skc_rcv_saddr),
6107 				       target_size));
6108 		break;
6109 
6110 	case bpf_ctx_range_till(struct bpf_sock, src_ip6[0], src_ip6[3]):
6111 #if IS_ENABLED(CONFIG_IPV6)
6112 		off = si->off;
6113 		off -= offsetof(struct bpf_sock, src_ip6[0]);
6114 		*insn++ = BPF_LDX_MEM(
6115 			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
6116 			bpf_target_off(
6117 				struct sock_common,
6118 				skc_v6_rcv_saddr.s6_addr32[0],
6119 				FIELD_SIZEOF(struct sock_common,
6120 					     skc_v6_rcv_saddr.s6_addr32[0]),
6121 				target_size) + off);
6122 #else
6123 		(void)off;
6124 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6125 #endif
6126 		break;
6127 
6128 	case offsetof(struct bpf_sock, src_port):
6129 		*insn++ = BPF_LDX_MEM(
6130 			BPF_FIELD_SIZEOF(struct sock_common, skc_num),
6131 			si->dst_reg, si->src_reg,
6132 			bpf_target_off(struct sock_common, skc_num,
6133 				       FIELD_SIZEOF(struct sock_common,
6134 						    skc_num),
6135 				       target_size));
6136 		break;
6137 	}
6138 
6139 	return insn - insn_buf;
6140 }
6141 
tc_cls_act_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6142 static u32 tc_cls_act_convert_ctx_access(enum bpf_access_type type,
6143 					 const struct bpf_insn *si,
6144 					 struct bpf_insn *insn_buf,
6145 					 struct bpf_prog *prog, u32 *target_size)
6146 {
6147 	struct bpf_insn *insn = insn_buf;
6148 
6149 	switch (si->off) {
6150 	case offsetof(struct __sk_buff, ifindex):
6151 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_buff, dev),
6152 				      si->dst_reg, si->src_reg,
6153 				      offsetof(struct sk_buff, dev));
6154 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6155 				      bpf_target_off(struct net_device, ifindex, 4,
6156 						     target_size));
6157 		break;
6158 	default:
6159 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
6160 					      target_size);
6161 	}
6162 
6163 	return insn - insn_buf;
6164 }
6165 
xdp_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6166 static u32 xdp_convert_ctx_access(enum bpf_access_type type,
6167 				  const struct bpf_insn *si,
6168 				  struct bpf_insn *insn_buf,
6169 				  struct bpf_prog *prog, u32 *target_size)
6170 {
6171 	struct bpf_insn *insn = insn_buf;
6172 
6173 	switch (si->off) {
6174 	case offsetof(struct xdp_md, data):
6175 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data),
6176 				      si->dst_reg, si->src_reg,
6177 				      offsetof(struct xdp_buff, data));
6178 		break;
6179 	case offsetof(struct xdp_md, data_meta):
6180 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_meta),
6181 				      si->dst_reg, si->src_reg,
6182 				      offsetof(struct xdp_buff, data_meta));
6183 		break;
6184 	case offsetof(struct xdp_md, data_end):
6185 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, data_end),
6186 				      si->dst_reg, si->src_reg,
6187 				      offsetof(struct xdp_buff, data_end));
6188 		break;
6189 	case offsetof(struct xdp_md, ingress_ifindex):
6190 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6191 				      si->dst_reg, si->src_reg,
6192 				      offsetof(struct xdp_buff, rxq));
6193 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_rxq_info, dev),
6194 				      si->dst_reg, si->dst_reg,
6195 				      offsetof(struct xdp_rxq_info, dev));
6196 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6197 				      offsetof(struct net_device, ifindex));
6198 		break;
6199 	case offsetof(struct xdp_md, rx_queue_index):
6200 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct xdp_buff, rxq),
6201 				      si->dst_reg, si->src_reg,
6202 				      offsetof(struct xdp_buff, rxq));
6203 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6204 				      offsetof(struct xdp_rxq_info,
6205 					       queue_index));
6206 		break;
6207 	}
6208 
6209 	return insn - insn_buf;
6210 }
6211 
6212 /* SOCK_ADDR_LOAD_NESTED_FIELD() loads Nested Field S.F.NF where S is type of
6213  * context Structure, F is Field in context structure that contains a pointer
6214  * to Nested Structure of type NS that has the field NF.
6215  *
6216  * SIZE encodes the load size (BPF_B, BPF_H, etc). It's up to caller to make
6217  * sure that SIZE is not greater than actual size of S.F.NF.
6218  *
6219  * If offset OFF is provided, the load happens from that offset relative to
6220  * offset of NF.
6221  */
6222 #define SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF)	       \
6223 	do {								       \
6224 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), si->dst_reg,     \
6225 				      si->src_reg, offsetof(S, F));	       \
6226 		*insn++ = BPF_LDX_MEM(					       \
6227 			SIZE, si->dst_reg, si->dst_reg,			       \
6228 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
6229 				       target_size)			       \
6230 				+ OFF);					       \
6231 	} while (0)
6232 
6233 #define SOCK_ADDR_LOAD_NESTED_FIELD(S, NS, F, NF)			       \
6234 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(S, NS, F, NF,		       \
6235 					     BPF_FIELD_SIZEOF(NS, NF), 0)
6236 
6237 /* SOCK_ADDR_STORE_NESTED_FIELD_OFF() has semantic similar to
6238  * SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF() but for store operation.
6239  *
6240  * It doesn't support SIZE argument though since narrow stores are not
6241  * supported for now.
6242  *
6243  * In addition it uses Temporary Field TF (member of struct S) as the 3rd
6244  * "register" since two registers available in convert_ctx_access are not
6245  * enough: we can't override neither SRC, since it contains value to store, nor
6246  * DST since it contains pointer to context that may be used by later
6247  * instructions. But we need a temporary place to save pointer to nested
6248  * structure whose field we want to store to.
6249  */
6250 #define SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF, TF)		       \
6251 	do {								       \
6252 		int tmp_reg = BPF_REG_9;				       \
6253 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
6254 			--tmp_reg;					       \
6255 		if (si->src_reg == tmp_reg || si->dst_reg == tmp_reg)	       \
6256 			--tmp_reg;					       \
6257 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, tmp_reg,	       \
6258 				      offsetof(S, TF));			       \
6259 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(S, F), tmp_reg,	       \
6260 				      si->dst_reg, offsetof(S, F));	       \
6261 		*insn++ = BPF_STX_MEM(					       \
6262 			BPF_FIELD_SIZEOF(NS, NF), tmp_reg, si->src_reg,	       \
6263 			bpf_target_off(NS, NF, FIELD_SIZEOF(NS, NF),	       \
6264 				       target_size)			       \
6265 				+ OFF);					       \
6266 		*insn++ = BPF_LDX_MEM(BPF_DW, tmp_reg, si->dst_reg,	       \
6267 				      offsetof(S, TF));			       \
6268 	} while (0)
6269 
6270 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(S, NS, F, NF, SIZE, OFF, \
6271 						      TF)		       \
6272 	do {								       \
6273 		if (type == BPF_WRITE) {				       \
6274 			SOCK_ADDR_STORE_NESTED_FIELD_OFF(S, NS, F, NF, OFF,    \
6275 							 TF);		       \
6276 		} else {						       \
6277 			SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(		       \
6278 				S, NS, F, NF, SIZE, OFF);  \
6279 		}							       \
6280 	} while (0)
6281 
6282 #define SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(S, NS, F, NF, TF)		       \
6283 	SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(			       \
6284 		S, NS, F, NF, BPF_FIELD_SIZEOF(NS, NF), 0, TF)
6285 
sock_addr_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6286 static u32 sock_addr_convert_ctx_access(enum bpf_access_type type,
6287 					const struct bpf_insn *si,
6288 					struct bpf_insn *insn_buf,
6289 					struct bpf_prog *prog, u32 *target_size)
6290 {
6291 	struct bpf_insn *insn = insn_buf;
6292 	int off;
6293 
6294 	switch (si->off) {
6295 	case offsetof(struct bpf_sock_addr, user_family):
6296 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6297 					    struct sockaddr, uaddr, sa_family);
6298 		break;
6299 
6300 	case offsetof(struct bpf_sock_addr, user_ip4):
6301 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6302 			struct bpf_sock_addr_kern, struct sockaddr_in, uaddr,
6303 			sin_addr, BPF_SIZE(si->code), 0, tmp_reg);
6304 		break;
6305 
6306 	case bpf_ctx_range_till(struct bpf_sock_addr, user_ip6[0], user_ip6[3]):
6307 		off = si->off;
6308 		off -= offsetof(struct bpf_sock_addr, user_ip6[0]);
6309 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6310 			struct bpf_sock_addr_kern, struct sockaddr_in6, uaddr,
6311 			sin6_addr.s6_addr32[0], BPF_SIZE(si->code), off,
6312 			tmp_reg);
6313 		break;
6314 
6315 	case offsetof(struct bpf_sock_addr, user_port):
6316 		/* To get port we need to know sa_family first and then treat
6317 		 * sockaddr as either sockaddr_in or sockaddr_in6.
6318 		 * Though we can simplify since port field has same offset and
6319 		 * size in both structures.
6320 		 * Here we check this invariant and use just one of the
6321 		 * structures if it's true.
6322 		 */
6323 		BUILD_BUG_ON(offsetof(struct sockaddr_in, sin_port) !=
6324 			     offsetof(struct sockaddr_in6, sin6_port));
6325 		BUILD_BUG_ON(FIELD_SIZEOF(struct sockaddr_in, sin_port) !=
6326 			     FIELD_SIZEOF(struct sockaddr_in6, sin6_port));
6327 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD(struct bpf_sock_addr_kern,
6328 						     struct sockaddr_in6, uaddr,
6329 						     sin6_port, tmp_reg);
6330 		break;
6331 
6332 	case offsetof(struct bpf_sock_addr, family):
6333 		SOCK_ADDR_LOAD_NESTED_FIELD(struct bpf_sock_addr_kern,
6334 					    struct sock, sk, sk_family);
6335 		break;
6336 
6337 	case offsetof(struct bpf_sock_addr, type):
6338 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6339 			struct bpf_sock_addr_kern, struct sock, sk,
6340 			__sk_flags_offset, BPF_W, 0);
6341 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_TYPE_MASK);
6342 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg, SK_FL_TYPE_SHIFT);
6343 		break;
6344 
6345 	case offsetof(struct bpf_sock_addr, protocol):
6346 		SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(
6347 			struct bpf_sock_addr_kern, struct sock, sk,
6348 			__sk_flags_offset, BPF_W, 0);
6349 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
6350 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
6351 					SK_FL_PROTO_SHIFT);
6352 		break;
6353 
6354 	case offsetof(struct bpf_sock_addr, msg_src_ip4):
6355 		/* Treat t_ctx as struct in_addr for msg_src_ip4. */
6356 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6357 			struct bpf_sock_addr_kern, struct in_addr, t_ctx,
6358 			s_addr, BPF_SIZE(si->code), 0, tmp_reg);
6359 		break;
6360 
6361 	case bpf_ctx_range_till(struct bpf_sock_addr, msg_src_ip6[0],
6362 				msg_src_ip6[3]):
6363 		off = si->off;
6364 		off -= offsetof(struct bpf_sock_addr, msg_src_ip6[0]);
6365 		/* Treat t_ctx as struct in6_addr for msg_src_ip6. */
6366 		SOCK_ADDR_LOAD_OR_STORE_NESTED_FIELD_SIZE_OFF(
6367 			struct bpf_sock_addr_kern, struct in6_addr, t_ctx,
6368 			s6_addr32[0], BPF_SIZE(si->code), off, tmp_reg);
6369 		break;
6370 	}
6371 
6372 	return insn - insn_buf;
6373 }
6374 
sock_ops_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6375 static u32 sock_ops_convert_ctx_access(enum bpf_access_type type,
6376 				       const struct bpf_insn *si,
6377 				       struct bpf_insn *insn_buf,
6378 				       struct bpf_prog *prog,
6379 				       u32 *target_size)
6380 {
6381 	struct bpf_insn *insn = insn_buf;
6382 	int off;
6383 
6384 	switch (si->off) {
6385 	case offsetof(struct bpf_sock_ops, op) ...
6386 	     offsetof(struct bpf_sock_ops, replylong[3]):
6387 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, op) !=
6388 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, op));
6389 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, reply) !=
6390 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, reply));
6391 		BUILD_BUG_ON(FIELD_SIZEOF(struct bpf_sock_ops, replylong) !=
6392 			     FIELD_SIZEOF(struct bpf_sock_ops_kern, replylong));
6393 		off = si->off;
6394 		off -= offsetof(struct bpf_sock_ops, op);
6395 		off += offsetof(struct bpf_sock_ops_kern, op);
6396 		if (type == BPF_WRITE)
6397 			*insn++ = BPF_STX_MEM(BPF_W, si->dst_reg, si->src_reg,
6398 					      off);
6399 		else
6400 			*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->src_reg,
6401 					      off);
6402 		break;
6403 
6404 	case offsetof(struct bpf_sock_ops, family):
6405 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6406 
6407 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6408 					      struct bpf_sock_ops_kern, sk),
6409 				      si->dst_reg, si->src_reg,
6410 				      offsetof(struct bpf_sock_ops_kern, sk));
6411 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6412 				      offsetof(struct sock_common, skc_family));
6413 		break;
6414 
6415 	case offsetof(struct bpf_sock_ops, remote_ip4):
6416 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6417 
6418 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6419 						struct bpf_sock_ops_kern, sk),
6420 				      si->dst_reg, si->src_reg,
6421 				      offsetof(struct bpf_sock_ops_kern, sk));
6422 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6423 				      offsetof(struct sock_common, skc_daddr));
6424 		break;
6425 
6426 	case offsetof(struct bpf_sock_ops, local_ip4):
6427 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6428 					  skc_rcv_saddr) != 4);
6429 
6430 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6431 					      struct bpf_sock_ops_kern, sk),
6432 				      si->dst_reg, si->src_reg,
6433 				      offsetof(struct bpf_sock_ops_kern, sk));
6434 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6435 				      offsetof(struct sock_common,
6436 					       skc_rcv_saddr));
6437 		break;
6438 
6439 	case offsetof(struct bpf_sock_ops, remote_ip6[0]) ...
6440 	     offsetof(struct bpf_sock_ops, remote_ip6[3]):
6441 #if IS_ENABLED(CONFIG_IPV6)
6442 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6443 					  skc_v6_daddr.s6_addr32[0]) != 4);
6444 
6445 		off = si->off;
6446 		off -= offsetof(struct bpf_sock_ops, remote_ip6[0]);
6447 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6448 						struct bpf_sock_ops_kern, sk),
6449 				      si->dst_reg, si->src_reg,
6450 				      offsetof(struct bpf_sock_ops_kern, sk));
6451 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6452 				      offsetof(struct sock_common,
6453 					       skc_v6_daddr.s6_addr32[0]) +
6454 				      off);
6455 #else
6456 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6457 #endif
6458 		break;
6459 
6460 	case offsetof(struct bpf_sock_ops, local_ip6[0]) ...
6461 	     offsetof(struct bpf_sock_ops, local_ip6[3]):
6462 #if IS_ENABLED(CONFIG_IPV6)
6463 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6464 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6465 
6466 		off = si->off;
6467 		off -= offsetof(struct bpf_sock_ops, local_ip6[0]);
6468 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6469 						struct bpf_sock_ops_kern, sk),
6470 				      si->dst_reg, si->src_reg,
6471 				      offsetof(struct bpf_sock_ops_kern, sk));
6472 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6473 				      offsetof(struct sock_common,
6474 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6475 				      off);
6476 #else
6477 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6478 #endif
6479 		break;
6480 
6481 	case offsetof(struct bpf_sock_ops, remote_port):
6482 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6483 
6484 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6485 						struct bpf_sock_ops_kern, sk),
6486 				      si->dst_reg, si->src_reg,
6487 				      offsetof(struct bpf_sock_ops_kern, sk));
6488 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6489 				      offsetof(struct sock_common, skc_dport));
6490 #ifndef __BIG_ENDIAN_BITFIELD
6491 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6492 #endif
6493 		break;
6494 
6495 	case offsetof(struct bpf_sock_ops, local_port):
6496 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6497 
6498 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6499 						struct bpf_sock_ops_kern, sk),
6500 				      si->dst_reg, si->src_reg,
6501 				      offsetof(struct bpf_sock_ops_kern, sk));
6502 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6503 				      offsetof(struct sock_common, skc_num));
6504 		break;
6505 
6506 	case offsetof(struct bpf_sock_ops, is_fullsock):
6507 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6508 						struct bpf_sock_ops_kern,
6509 						is_fullsock),
6510 				      si->dst_reg, si->src_reg,
6511 				      offsetof(struct bpf_sock_ops_kern,
6512 					       is_fullsock));
6513 		break;
6514 
6515 	case offsetof(struct bpf_sock_ops, state):
6516 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_state) != 1);
6517 
6518 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6519 						struct bpf_sock_ops_kern, sk),
6520 				      si->dst_reg, si->src_reg,
6521 				      offsetof(struct bpf_sock_ops_kern, sk));
6522 		*insn++ = BPF_LDX_MEM(BPF_B, si->dst_reg, si->dst_reg,
6523 				      offsetof(struct sock_common, skc_state));
6524 		break;
6525 
6526 	case offsetof(struct bpf_sock_ops, rtt_min):
6527 		BUILD_BUG_ON(FIELD_SIZEOF(struct tcp_sock, rtt_min) !=
6528 			     sizeof(struct minmax));
6529 		BUILD_BUG_ON(sizeof(struct minmax) <
6530 			     sizeof(struct minmax_sample));
6531 
6532 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6533 						struct bpf_sock_ops_kern, sk),
6534 				      si->dst_reg, si->src_reg,
6535 				      offsetof(struct bpf_sock_ops_kern, sk));
6536 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6537 				      offsetof(struct tcp_sock, rtt_min) +
6538 				      FIELD_SIZEOF(struct minmax_sample, t));
6539 		break;
6540 
6541 /* Helper macro for adding read access to tcp_sock or sock fields. */
6542 #define SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6543 	do {								      \
6544 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
6545 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6546 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6547 						struct bpf_sock_ops_kern,     \
6548 						is_fullsock),		      \
6549 				      si->dst_reg, si->src_reg,		      \
6550 				      offsetof(struct bpf_sock_ops_kern,      \
6551 					       is_fullsock));		      \
6552 		*insn++ = BPF_JMP_IMM(BPF_JEQ, si->dst_reg, 0, 2);	      \
6553 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6554 						struct bpf_sock_ops_kern, sk),\
6555 				      si->dst_reg, si->src_reg,		      \
6556 				      offsetof(struct bpf_sock_ops_kern, sk));\
6557 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(OBJ,		      \
6558 						       OBJ_FIELD),	      \
6559 				      si->dst_reg, si->dst_reg,		      \
6560 				      offsetof(OBJ, OBJ_FIELD));	      \
6561 	} while (0)
6562 
6563 /* Helper macro for adding write access to tcp_sock or sock fields.
6564  * The macro is called with two registers, dst_reg which contains a pointer
6565  * to ctx (context) and src_reg which contains the value that should be
6566  * stored. However, we need an additional register since we cannot overwrite
6567  * dst_reg because it may be used later in the program.
6568  * Instead we "borrow" one of the other register. We first save its value
6569  * into a new (temp) field in bpf_sock_ops_kern, use it, and then restore
6570  * it at the end of the macro.
6571  */
6572 #define SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ)			      \
6573 	do {								      \
6574 		int reg = BPF_REG_9;					      \
6575 		BUILD_BUG_ON(FIELD_SIZEOF(OBJ, OBJ_FIELD) >		      \
6576 			     FIELD_SIZEOF(struct bpf_sock_ops, BPF_FIELD));   \
6577 		if (si->dst_reg == reg || si->src_reg == reg)		      \
6578 			reg--;						      \
6579 		if (si->dst_reg == reg || si->src_reg == reg)		      \
6580 			reg--;						      \
6581 		*insn++ = BPF_STX_MEM(BPF_DW, si->dst_reg, reg,		      \
6582 				      offsetof(struct bpf_sock_ops_kern,      \
6583 					       temp));			      \
6584 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6585 						struct bpf_sock_ops_kern,     \
6586 						is_fullsock),		      \
6587 				      reg, si->dst_reg,			      \
6588 				      offsetof(struct bpf_sock_ops_kern,      \
6589 					       is_fullsock));		      \
6590 		*insn++ = BPF_JMP_IMM(BPF_JEQ, reg, 0, 2);		      \
6591 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(			      \
6592 						struct bpf_sock_ops_kern, sk),\
6593 				      reg, si->dst_reg,			      \
6594 				      offsetof(struct bpf_sock_ops_kern, sk));\
6595 		*insn++ = BPF_STX_MEM(BPF_FIELD_SIZEOF(OBJ, OBJ_FIELD),	      \
6596 				      reg, si->src_reg,			      \
6597 				      offsetof(OBJ, OBJ_FIELD));	      \
6598 		*insn++ = BPF_LDX_MEM(BPF_DW, reg, si->dst_reg,		      \
6599 				      offsetof(struct bpf_sock_ops_kern,      \
6600 					       temp));			      \
6601 	} while (0)
6602 
6603 #define SOCK_OPS_GET_OR_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ, TYPE)	      \
6604 	do {								      \
6605 		if (TYPE == BPF_WRITE)					      \
6606 			SOCK_OPS_SET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
6607 		else							      \
6608 			SOCK_OPS_GET_FIELD(BPF_FIELD, OBJ_FIELD, OBJ);	      \
6609 	} while (0)
6610 
6611 	case offsetof(struct bpf_sock_ops, snd_cwnd):
6612 		SOCK_OPS_GET_FIELD(snd_cwnd, snd_cwnd, struct tcp_sock);
6613 		break;
6614 
6615 	case offsetof(struct bpf_sock_ops, srtt_us):
6616 		SOCK_OPS_GET_FIELD(srtt_us, srtt_us, struct tcp_sock);
6617 		break;
6618 
6619 	case offsetof(struct bpf_sock_ops, bpf_sock_ops_cb_flags):
6620 		SOCK_OPS_GET_FIELD(bpf_sock_ops_cb_flags, bpf_sock_ops_cb_flags,
6621 				   struct tcp_sock);
6622 		break;
6623 
6624 	case offsetof(struct bpf_sock_ops, snd_ssthresh):
6625 		SOCK_OPS_GET_FIELD(snd_ssthresh, snd_ssthresh, struct tcp_sock);
6626 		break;
6627 
6628 	case offsetof(struct bpf_sock_ops, rcv_nxt):
6629 		SOCK_OPS_GET_FIELD(rcv_nxt, rcv_nxt, struct tcp_sock);
6630 		break;
6631 
6632 	case offsetof(struct bpf_sock_ops, snd_nxt):
6633 		SOCK_OPS_GET_FIELD(snd_nxt, snd_nxt, struct tcp_sock);
6634 		break;
6635 
6636 	case offsetof(struct bpf_sock_ops, snd_una):
6637 		SOCK_OPS_GET_FIELD(snd_una, snd_una, struct tcp_sock);
6638 		break;
6639 
6640 	case offsetof(struct bpf_sock_ops, mss_cache):
6641 		SOCK_OPS_GET_FIELD(mss_cache, mss_cache, struct tcp_sock);
6642 		break;
6643 
6644 	case offsetof(struct bpf_sock_ops, ecn_flags):
6645 		SOCK_OPS_GET_FIELD(ecn_flags, ecn_flags, struct tcp_sock);
6646 		break;
6647 
6648 	case offsetof(struct bpf_sock_ops, rate_delivered):
6649 		SOCK_OPS_GET_FIELD(rate_delivered, rate_delivered,
6650 				   struct tcp_sock);
6651 		break;
6652 
6653 	case offsetof(struct bpf_sock_ops, rate_interval_us):
6654 		SOCK_OPS_GET_FIELD(rate_interval_us, rate_interval_us,
6655 				   struct tcp_sock);
6656 		break;
6657 
6658 	case offsetof(struct bpf_sock_ops, packets_out):
6659 		SOCK_OPS_GET_FIELD(packets_out, packets_out, struct tcp_sock);
6660 		break;
6661 
6662 	case offsetof(struct bpf_sock_ops, retrans_out):
6663 		SOCK_OPS_GET_FIELD(retrans_out, retrans_out, struct tcp_sock);
6664 		break;
6665 
6666 	case offsetof(struct bpf_sock_ops, total_retrans):
6667 		SOCK_OPS_GET_FIELD(total_retrans, total_retrans,
6668 				   struct tcp_sock);
6669 		break;
6670 
6671 	case offsetof(struct bpf_sock_ops, segs_in):
6672 		SOCK_OPS_GET_FIELD(segs_in, segs_in, struct tcp_sock);
6673 		break;
6674 
6675 	case offsetof(struct bpf_sock_ops, data_segs_in):
6676 		SOCK_OPS_GET_FIELD(data_segs_in, data_segs_in, struct tcp_sock);
6677 		break;
6678 
6679 	case offsetof(struct bpf_sock_ops, segs_out):
6680 		SOCK_OPS_GET_FIELD(segs_out, segs_out, struct tcp_sock);
6681 		break;
6682 
6683 	case offsetof(struct bpf_sock_ops, data_segs_out):
6684 		SOCK_OPS_GET_FIELD(data_segs_out, data_segs_out,
6685 				   struct tcp_sock);
6686 		break;
6687 
6688 	case offsetof(struct bpf_sock_ops, lost_out):
6689 		SOCK_OPS_GET_FIELD(lost_out, lost_out, struct tcp_sock);
6690 		break;
6691 
6692 	case offsetof(struct bpf_sock_ops, sacked_out):
6693 		SOCK_OPS_GET_FIELD(sacked_out, sacked_out, struct tcp_sock);
6694 		break;
6695 
6696 	case offsetof(struct bpf_sock_ops, sk_txhash):
6697 		SOCK_OPS_GET_OR_SET_FIELD(sk_txhash, sk_txhash,
6698 					  struct sock, type);
6699 		break;
6700 
6701 	case offsetof(struct bpf_sock_ops, bytes_received):
6702 		SOCK_OPS_GET_FIELD(bytes_received, bytes_received,
6703 				   struct tcp_sock);
6704 		break;
6705 
6706 	case offsetof(struct bpf_sock_ops, bytes_acked):
6707 		SOCK_OPS_GET_FIELD(bytes_acked, bytes_acked, struct tcp_sock);
6708 		break;
6709 
6710 	}
6711 	return insn - insn_buf;
6712 }
6713 
sk_skb_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6714 static u32 sk_skb_convert_ctx_access(enum bpf_access_type type,
6715 				     const struct bpf_insn *si,
6716 				     struct bpf_insn *insn_buf,
6717 				     struct bpf_prog *prog, u32 *target_size)
6718 {
6719 	struct bpf_insn *insn = insn_buf;
6720 	int off;
6721 
6722 	switch (si->off) {
6723 	case offsetof(struct __sk_buff, data_end):
6724 		off  = si->off;
6725 		off -= offsetof(struct __sk_buff, data_end);
6726 		off += offsetof(struct sk_buff, cb);
6727 		off += offsetof(struct tcp_skb_cb, bpf.data_end);
6728 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(void *), si->dst_reg,
6729 				      si->src_reg, off);
6730 		break;
6731 	default:
6732 		return bpf_convert_ctx_access(type, si, insn_buf, prog,
6733 					      target_size);
6734 	}
6735 
6736 	return insn - insn_buf;
6737 }
6738 
sk_msg_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)6739 static u32 sk_msg_convert_ctx_access(enum bpf_access_type type,
6740 				     const struct bpf_insn *si,
6741 				     struct bpf_insn *insn_buf,
6742 				     struct bpf_prog *prog, u32 *target_size)
6743 {
6744 	struct bpf_insn *insn = insn_buf;
6745 #if IS_ENABLED(CONFIG_IPV6)
6746 	int off;
6747 #endif
6748 
6749 	switch (si->off) {
6750 	case offsetof(struct sk_msg_md, data):
6751 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data),
6752 				      si->dst_reg, si->src_reg,
6753 				      offsetof(struct sk_msg_buff, data));
6754 		break;
6755 	case offsetof(struct sk_msg_md, data_end):
6756 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_msg_buff, data_end),
6757 				      si->dst_reg, si->src_reg,
6758 				      offsetof(struct sk_msg_buff, data_end));
6759 		break;
6760 	case offsetof(struct sk_msg_md, family):
6761 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_family) != 2);
6762 
6763 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6764 					      struct sk_msg_buff, sk),
6765 				      si->dst_reg, si->src_reg,
6766 				      offsetof(struct sk_msg_buff, sk));
6767 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6768 				      offsetof(struct sock_common, skc_family));
6769 		break;
6770 
6771 	case offsetof(struct sk_msg_md, remote_ip4):
6772 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_daddr) != 4);
6773 
6774 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6775 						struct sk_msg_buff, sk),
6776 				      si->dst_reg, si->src_reg,
6777 				      offsetof(struct sk_msg_buff, sk));
6778 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6779 				      offsetof(struct sock_common, skc_daddr));
6780 		break;
6781 
6782 	case offsetof(struct sk_msg_md, local_ip4):
6783 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6784 					  skc_rcv_saddr) != 4);
6785 
6786 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6787 					      struct sk_msg_buff, sk),
6788 				      si->dst_reg, si->src_reg,
6789 				      offsetof(struct sk_msg_buff, sk));
6790 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6791 				      offsetof(struct sock_common,
6792 					       skc_rcv_saddr));
6793 		break;
6794 
6795 	case offsetof(struct sk_msg_md, remote_ip6[0]) ...
6796 	     offsetof(struct sk_msg_md, remote_ip6[3]):
6797 #if IS_ENABLED(CONFIG_IPV6)
6798 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6799 					  skc_v6_daddr.s6_addr32[0]) != 4);
6800 
6801 		off = si->off;
6802 		off -= offsetof(struct sk_msg_md, remote_ip6[0]);
6803 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6804 						struct sk_msg_buff, sk),
6805 				      si->dst_reg, si->src_reg,
6806 				      offsetof(struct sk_msg_buff, sk));
6807 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6808 				      offsetof(struct sock_common,
6809 					       skc_v6_daddr.s6_addr32[0]) +
6810 				      off);
6811 #else
6812 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6813 #endif
6814 		break;
6815 
6816 	case offsetof(struct sk_msg_md, local_ip6[0]) ...
6817 	     offsetof(struct sk_msg_md, local_ip6[3]):
6818 #if IS_ENABLED(CONFIG_IPV6)
6819 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common,
6820 					  skc_v6_rcv_saddr.s6_addr32[0]) != 4);
6821 
6822 		off = si->off;
6823 		off -= offsetof(struct sk_msg_md, local_ip6[0]);
6824 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6825 						struct sk_msg_buff, sk),
6826 				      si->dst_reg, si->src_reg,
6827 				      offsetof(struct sk_msg_buff, sk));
6828 		*insn++ = BPF_LDX_MEM(BPF_W, si->dst_reg, si->dst_reg,
6829 				      offsetof(struct sock_common,
6830 					       skc_v6_rcv_saddr.s6_addr32[0]) +
6831 				      off);
6832 #else
6833 		*insn++ = BPF_MOV32_IMM(si->dst_reg, 0);
6834 #endif
6835 		break;
6836 
6837 	case offsetof(struct sk_msg_md, remote_port):
6838 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_dport) != 2);
6839 
6840 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6841 						struct sk_msg_buff, sk),
6842 				      si->dst_reg, si->src_reg,
6843 				      offsetof(struct sk_msg_buff, sk));
6844 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6845 				      offsetof(struct sock_common, skc_dport));
6846 #ifndef __BIG_ENDIAN_BITFIELD
6847 		*insn++ = BPF_ALU32_IMM(BPF_LSH, si->dst_reg, 16);
6848 #endif
6849 		break;
6850 
6851 	case offsetof(struct sk_msg_md, local_port):
6852 		BUILD_BUG_ON(FIELD_SIZEOF(struct sock_common, skc_num) != 2);
6853 
6854 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(
6855 						struct sk_msg_buff, sk),
6856 				      si->dst_reg, si->src_reg,
6857 				      offsetof(struct sk_msg_buff, sk));
6858 		*insn++ = BPF_LDX_MEM(BPF_H, si->dst_reg, si->dst_reg,
6859 				      offsetof(struct sock_common, skc_num));
6860 		break;
6861 	}
6862 
6863 	return insn - insn_buf;
6864 }
6865 
6866 const struct bpf_verifier_ops sk_filter_verifier_ops = {
6867 	.get_func_proto		= sk_filter_func_proto,
6868 	.is_valid_access	= sk_filter_is_valid_access,
6869 	.convert_ctx_access	= bpf_convert_ctx_access,
6870 	.gen_ld_abs		= bpf_gen_ld_abs,
6871 };
6872 
6873 const struct bpf_prog_ops sk_filter_prog_ops = {
6874 	.test_run		= bpf_prog_test_run_skb,
6875 };
6876 
6877 const struct bpf_verifier_ops tc_cls_act_verifier_ops = {
6878 	.get_func_proto		= tc_cls_act_func_proto,
6879 	.is_valid_access	= tc_cls_act_is_valid_access,
6880 	.convert_ctx_access	= tc_cls_act_convert_ctx_access,
6881 	.gen_prologue		= tc_cls_act_prologue,
6882 	.gen_ld_abs		= bpf_gen_ld_abs,
6883 };
6884 
6885 const struct bpf_prog_ops tc_cls_act_prog_ops = {
6886 	.test_run		= bpf_prog_test_run_skb,
6887 };
6888 
6889 const struct bpf_verifier_ops xdp_verifier_ops = {
6890 	.get_func_proto		= xdp_func_proto,
6891 	.is_valid_access	= xdp_is_valid_access,
6892 	.convert_ctx_access	= xdp_convert_ctx_access,
6893 };
6894 
6895 const struct bpf_prog_ops xdp_prog_ops = {
6896 	.test_run		= bpf_prog_test_run_xdp,
6897 };
6898 
6899 const struct bpf_verifier_ops cg_skb_verifier_ops = {
6900 	.get_func_proto		= cg_skb_func_proto,
6901 	.is_valid_access	= sk_filter_is_valid_access,
6902 	.convert_ctx_access	= bpf_convert_ctx_access,
6903 };
6904 
6905 const struct bpf_prog_ops cg_skb_prog_ops = {
6906 	.test_run		= bpf_prog_test_run_skb,
6907 };
6908 
6909 const struct bpf_verifier_ops lwt_in_verifier_ops = {
6910 	.get_func_proto		= lwt_in_func_proto,
6911 	.is_valid_access	= lwt_is_valid_access,
6912 	.convert_ctx_access	= bpf_convert_ctx_access,
6913 };
6914 
6915 const struct bpf_prog_ops lwt_in_prog_ops = {
6916 	.test_run		= bpf_prog_test_run_skb,
6917 };
6918 
6919 const struct bpf_verifier_ops lwt_out_verifier_ops = {
6920 	.get_func_proto		= lwt_out_func_proto,
6921 	.is_valid_access	= lwt_is_valid_access,
6922 	.convert_ctx_access	= bpf_convert_ctx_access,
6923 };
6924 
6925 const struct bpf_prog_ops lwt_out_prog_ops = {
6926 	.test_run		= bpf_prog_test_run_skb,
6927 };
6928 
6929 const struct bpf_verifier_ops lwt_xmit_verifier_ops = {
6930 	.get_func_proto		= lwt_xmit_func_proto,
6931 	.is_valid_access	= lwt_is_valid_access,
6932 	.convert_ctx_access	= bpf_convert_ctx_access,
6933 	.gen_prologue		= tc_cls_act_prologue,
6934 };
6935 
6936 const struct bpf_prog_ops lwt_xmit_prog_ops = {
6937 	.test_run		= bpf_prog_test_run_skb,
6938 };
6939 
6940 const struct bpf_verifier_ops lwt_seg6local_verifier_ops = {
6941 	.get_func_proto		= lwt_seg6local_func_proto,
6942 	.is_valid_access	= lwt_is_valid_access,
6943 	.convert_ctx_access	= bpf_convert_ctx_access,
6944 };
6945 
6946 const struct bpf_prog_ops lwt_seg6local_prog_ops = {
6947 	.test_run		= bpf_prog_test_run_skb,
6948 };
6949 
6950 const struct bpf_verifier_ops cg_sock_verifier_ops = {
6951 	.get_func_proto		= sock_filter_func_proto,
6952 	.is_valid_access	= sock_filter_is_valid_access,
6953 	.convert_ctx_access	= sock_filter_convert_ctx_access,
6954 };
6955 
6956 const struct bpf_prog_ops cg_sock_prog_ops = {
6957 };
6958 
6959 const struct bpf_verifier_ops cg_sock_addr_verifier_ops = {
6960 	.get_func_proto		= sock_addr_func_proto,
6961 	.is_valid_access	= sock_addr_is_valid_access,
6962 	.convert_ctx_access	= sock_addr_convert_ctx_access,
6963 };
6964 
6965 const struct bpf_prog_ops cg_sock_addr_prog_ops = {
6966 };
6967 
6968 const struct bpf_verifier_ops sock_ops_verifier_ops = {
6969 	.get_func_proto		= sock_ops_func_proto,
6970 	.is_valid_access	= sock_ops_is_valid_access,
6971 	.convert_ctx_access	= sock_ops_convert_ctx_access,
6972 };
6973 
6974 const struct bpf_prog_ops sock_ops_prog_ops = {
6975 };
6976 
6977 const struct bpf_verifier_ops sk_skb_verifier_ops = {
6978 	.get_func_proto		= sk_skb_func_proto,
6979 	.is_valid_access	= sk_skb_is_valid_access,
6980 	.convert_ctx_access	= sk_skb_convert_ctx_access,
6981 	.gen_prologue		= sk_skb_prologue,
6982 };
6983 
6984 const struct bpf_prog_ops sk_skb_prog_ops = {
6985 };
6986 
6987 const struct bpf_verifier_ops sk_msg_verifier_ops = {
6988 	.get_func_proto		= sk_msg_func_proto,
6989 	.is_valid_access	= sk_msg_is_valid_access,
6990 	.convert_ctx_access	= sk_msg_convert_ctx_access,
6991 };
6992 
6993 const struct bpf_prog_ops sk_msg_prog_ops = {
6994 };
6995 
sk_detach_filter(struct sock * sk)6996 int sk_detach_filter(struct sock *sk)
6997 {
6998 	int ret = -ENOENT;
6999 	struct sk_filter *filter;
7000 
7001 	if (sock_flag(sk, SOCK_FILTER_LOCKED))
7002 		return -EPERM;
7003 
7004 	filter = rcu_dereference_protected(sk->sk_filter,
7005 					   lockdep_sock_is_held(sk));
7006 	if (filter) {
7007 		RCU_INIT_POINTER(sk->sk_filter, NULL);
7008 		sk_filter_uncharge(sk, filter);
7009 		ret = 0;
7010 	}
7011 
7012 	return ret;
7013 }
7014 EXPORT_SYMBOL_GPL(sk_detach_filter);
7015 
sk_get_filter(struct sock * sk,struct sock_filter __user * ubuf,unsigned int len)7016 int sk_get_filter(struct sock *sk, struct sock_filter __user *ubuf,
7017 		  unsigned int len)
7018 {
7019 	struct sock_fprog_kern *fprog;
7020 	struct sk_filter *filter;
7021 	int ret = 0;
7022 
7023 	lock_sock(sk);
7024 	filter = rcu_dereference_protected(sk->sk_filter,
7025 					   lockdep_sock_is_held(sk));
7026 	if (!filter)
7027 		goto out;
7028 
7029 	/* We're copying the filter that has been originally attached,
7030 	 * so no conversion/decode needed anymore. eBPF programs that
7031 	 * have no original program cannot be dumped through this.
7032 	 */
7033 	ret = -EACCES;
7034 	fprog = filter->prog->orig_prog;
7035 	if (!fprog)
7036 		goto out;
7037 
7038 	ret = fprog->len;
7039 	if (!len)
7040 		/* User space only enquires number of filter blocks. */
7041 		goto out;
7042 
7043 	ret = -EINVAL;
7044 	if (len < fprog->len)
7045 		goto out;
7046 
7047 	ret = -EFAULT;
7048 	if (copy_to_user(ubuf, fprog->filter, bpf_classic_proglen(fprog)))
7049 		goto out;
7050 
7051 	/* Instead of bytes, the API requests to return the number
7052 	 * of filter blocks.
7053 	 */
7054 	ret = fprog->len;
7055 out:
7056 	release_sock(sk);
7057 	return ret;
7058 }
7059 
7060 #ifdef CONFIG_INET
7061 struct sk_reuseport_kern {
7062 	struct sk_buff *skb;
7063 	struct sock *sk;
7064 	struct sock *selected_sk;
7065 	void *data_end;
7066 	u32 hash;
7067 	u32 reuseport_id;
7068 	bool bind_inany;
7069 };
7070 
bpf_init_reuseport_kern(struct sk_reuseport_kern * reuse_kern,struct sock_reuseport * reuse,struct sock * sk,struct sk_buff * skb,u32 hash)7071 static void bpf_init_reuseport_kern(struct sk_reuseport_kern *reuse_kern,
7072 				    struct sock_reuseport *reuse,
7073 				    struct sock *sk, struct sk_buff *skb,
7074 				    u32 hash)
7075 {
7076 	reuse_kern->skb = skb;
7077 	reuse_kern->sk = sk;
7078 	reuse_kern->selected_sk = NULL;
7079 	reuse_kern->data_end = skb->data + skb_headlen(skb);
7080 	reuse_kern->hash = hash;
7081 	reuse_kern->reuseport_id = reuse->reuseport_id;
7082 	reuse_kern->bind_inany = reuse->bind_inany;
7083 }
7084 
bpf_run_sk_reuseport(struct sock_reuseport * reuse,struct sock * sk,struct bpf_prog * prog,struct sk_buff * skb,u32 hash)7085 struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
7086 				  struct bpf_prog *prog, struct sk_buff *skb,
7087 				  u32 hash)
7088 {
7089 	struct sk_reuseport_kern reuse_kern;
7090 	enum sk_action action;
7091 
7092 	bpf_init_reuseport_kern(&reuse_kern, reuse, sk, skb, hash);
7093 	action = BPF_PROG_RUN(prog, &reuse_kern);
7094 
7095 	if (action == SK_PASS)
7096 		return reuse_kern.selected_sk;
7097 	else
7098 		return ERR_PTR(-ECONNREFUSED);
7099 }
7100 
BPF_CALL_4(sk_select_reuseport,struct sk_reuseport_kern *,reuse_kern,struct bpf_map *,map,void *,key,u32,flags)7101 BPF_CALL_4(sk_select_reuseport, struct sk_reuseport_kern *, reuse_kern,
7102 	   struct bpf_map *, map, void *, key, u32, flags)
7103 {
7104 	struct sock_reuseport *reuse;
7105 	struct sock *selected_sk;
7106 
7107 	selected_sk = map->ops->map_lookup_elem(map, key);
7108 	if (!selected_sk)
7109 		return -ENOENT;
7110 
7111 	reuse = rcu_dereference(selected_sk->sk_reuseport_cb);
7112 	if (!reuse)
7113 		/* selected_sk is unhashed (e.g. by close()) after the
7114 		 * above map_lookup_elem().  Treat selected_sk has already
7115 		 * been removed from the map.
7116 		 */
7117 		return -ENOENT;
7118 
7119 	if (unlikely(reuse->reuseport_id != reuse_kern->reuseport_id)) {
7120 		struct sock *sk;
7121 
7122 		if (unlikely(!reuse_kern->reuseport_id))
7123 			/* There is a small race between adding the
7124 			 * sk to the map and setting the
7125 			 * reuse_kern->reuseport_id.
7126 			 * Treat it as the sk has not been added to
7127 			 * the bpf map yet.
7128 			 */
7129 			return -ENOENT;
7130 
7131 		sk = reuse_kern->sk;
7132 		if (sk->sk_protocol != selected_sk->sk_protocol)
7133 			return -EPROTOTYPE;
7134 		else if (sk->sk_family != selected_sk->sk_family)
7135 			return -EAFNOSUPPORT;
7136 
7137 		/* Catch all. Likely bound to a different sockaddr. */
7138 		return -EBADFD;
7139 	}
7140 
7141 	reuse_kern->selected_sk = selected_sk;
7142 
7143 	return 0;
7144 }
7145 
7146 static const struct bpf_func_proto sk_select_reuseport_proto = {
7147 	.func           = sk_select_reuseport,
7148 	.gpl_only       = false,
7149 	.ret_type       = RET_INTEGER,
7150 	.arg1_type	= ARG_PTR_TO_CTX,
7151 	.arg2_type      = ARG_CONST_MAP_PTR,
7152 	.arg3_type      = ARG_PTR_TO_MAP_KEY,
7153 	.arg4_type	= ARG_ANYTHING,
7154 };
7155 
BPF_CALL_4(sk_reuseport_load_bytes,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len)7156 BPF_CALL_4(sk_reuseport_load_bytes,
7157 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7158 	   void *, to, u32, len)
7159 {
7160 	return ____bpf_skb_load_bytes(reuse_kern->skb, offset, to, len);
7161 }
7162 
7163 static const struct bpf_func_proto sk_reuseport_load_bytes_proto = {
7164 	.func		= sk_reuseport_load_bytes,
7165 	.gpl_only	= false,
7166 	.ret_type	= RET_INTEGER,
7167 	.arg1_type	= ARG_PTR_TO_CTX,
7168 	.arg2_type	= ARG_ANYTHING,
7169 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
7170 	.arg4_type	= ARG_CONST_SIZE,
7171 };
7172 
BPF_CALL_5(sk_reuseport_load_bytes_relative,const struct sk_reuseport_kern *,reuse_kern,u32,offset,void *,to,u32,len,u32,start_header)7173 BPF_CALL_5(sk_reuseport_load_bytes_relative,
7174 	   const struct sk_reuseport_kern *, reuse_kern, u32, offset,
7175 	   void *, to, u32, len, u32, start_header)
7176 {
7177 	return ____bpf_skb_load_bytes_relative(reuse_kern->skb, offset, to,
7178 					       len, start_header);
7179 }
7180 
7181 static const struct bpf_func_proto sk_reuseport_load_bytes_relative_proto = {
7182 	.func		= sk_reuseport_load_bytes_relative,
7183 	.gpl_only	= false,
7184 	.ret_type	= RET_INTEGER,
7185 	.arg1_type	= ARG_PTR_TO_CTX,
7186 	.arg2_type	= ARG_ANYTHING,
7187 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
7188 	.arg4_type	= ARG_CONST_SIZE,
7189 	.arg5_type	= ARG_ANYTHING,
7190 };
7191 
7192 static const struct bpf_func_proto *
sk_reuseport_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)7193 sk_reuseport_func_proto(enum bpf_func_id func_id,
7194 			const struct bpf_prog *prog)
7195 {
7196 	switch (func_id) {
7197 	case BPF_FUNC_sk_select_reuseport:
7198 		return &sk_select_reuseport_proto;
7199 	case BPF_FUNC_skb_load_bytes:
7200 		return &sk_reuseport_load_bytes_proto;
7201 	case BPF_FUNC_skb_load_bytes_relative:
7202 		return &sk_reuseport_load_bytes_relative_proto;
7203 	default:
7204 		return bpf_base_func_proto(func_id);
7205 	}
7206 }
7207 
7208 static bool
sk_reuseport_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)7209 sk_reuseport_is_valid_access(int off, int size,
7210 			     enum bpf_access_type type,
7211 			     const struct bpf_prog *prog,
7212 			     struct bpf_insn_access_aux *info)
7213 {
7214 	const u32 size_default = sizeof(__u32);
7215 
7216 	if (off < 0 || off >= sizeof(struct sk_reuseport_md) ||
7217 	    off % size || type != BPF_READ)
7218 		return false;
7219 
7220 	switch (off) {
7221 	case offsetof(struct sk_reuseport_md, data):
7222 		info->reg_type = PTR_TO_PACKET;
7223 		return size == sizeof(__u64);
7224 
7225 	case offsetof(struct sk_reuseport_md, data_end):
7226 		info->reg_type = PTR_TO_PACKET_END;
7227 		return size == sizeof(__u64);
7228 
7229 	case offsetof(struct sk_reuseport_md, hash):
7230 		return size == size_default;
7231 
7232 	/* Fields that allow narrowing */
7233 	case offsetof(struct sk_reuseport_md, eth_protocol):
7234 		if (size < FIELD_SIZEOF(struct sk_buff, protocol))
7235 			return false;
7236 		/* fall through */
7237 	case offsetof(struct sk_reuseport_md, ip_protocol):
7238 	case offsetof(struct sk_reuseport_md, bind_inany):
7239 	case offsetof(struct sk_reuseport_md, len):
7240 		bpf_ctx_record_field_size(info, size_default);
7241 		return bpf_ctx_narrow_access_ok(off, size, size_default);
7242 
7243 	default:
7244 		return false;
7245 	}
7246 }
7247 
7248 #define SK_REUSEPORT_LOAD_FIELD(F) ({					\
7249 	*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7250 			      si->dst_reg, si->src_reg,			\
7251 			      bpf_target_off(struct sk_reuseport_kern, F, \
7252 					     FIELD_SIZEOF(struct sk_reuseport_kern, F), \
7253 					     target_size));		\
7254 	})
7255 
7256 #define SK_REUSEPORT_LOAD_SKB_FIELD(SKB_FIELD)				\
7257 	SOCK_ADDR_LOAD_NESTED_FIELD(struct sk_reuseport_kern,		\
7258 				    struct sk_buff,			\
7259 				    skb,				\
7260 				    SKB_FIELD)
7261 
7262 #define SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(SK_FIELD, BPF_SIZE, EXTRA_OFF) \
7263 	SOCK_ADDR_LOAD_NESTED_FIELD_SIZE_OFF(struct sk_reuseport_kern,	\
7264 					     struct sock,		\
7265 					     sk,			\
7266 					     SK_FIELD, BPF_SIZE, EXTRA_OFF)
7267 
sk_reuseport_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)7268 static u32 sk_reuseport_convert_ctx_access(enum bpf_access_type type,
7269 					   const struct bpf_insn *si,
7270 					   struct bpf_insn *insn_buf,
7271 					   struct bpf_prog *prog,
7272 					   u32 *target_size)
7273 {
7274 	struct bpf_insn *insn = insn_buf;
7275 
7276 	switch (si->off) {
7277 	case offsetof(struct sk_reuseport_md, data):
7278 		SK_REUSEPORT_LOAD_SKB_FIELD(data);
7279 		break;
7280 
7281 	case offsetof(struct sk_reuseport_md, len):
7282 		SK_REUSEPORT_LOAD_SKB_FIELD(len);
7283 		break;
7284 
7285 	case offsetof(struct sk_reuseport_md, eth_protocol):
7286 		SK_REUSEPORT_LOAD_SKB_FIELD(protocol);
7287 		break;
7288 
7289 	case offsetof(struct sk_reuseport_md, ip_protocol):
7290 		BUILD_BUG_ON(HWEIGHT32(SK_FL_PROTO_MASK) != BITS_PER_BYTE);
7291 		SK_REUSEPORT_LOAD_SK_FIELD_SIZE_OFF(__sk_flags_offset,
7292 						    BPF_W, 0);
7293 		*insn++ = BPF_ALU32_IMM(BPF_AND, si->dst_reg, SK_FL_PROTO_MASK);
7294 		*insn++ = BPF_ALU32_IMM(BPF_RSH, si->dst_reg,
7295 					SK_FL_PROTO_SHIFT);
7296 		/* SK_FL_PROTO_MASK and SK_FL_PROTO_SHIFT are endian
7297 		 * aware.  No further narrowing or masking is needed.
7298 		 */
7299 		*target_size = 1;
7300 		break;
7301 
7302 	case offsetof(struct sk_reuseport_md, data_end):
7303 		SK_REUSEPORT_LOAD_FIELD(data_end);
7304 		break;
7305 
7306 	case offsetof(struct sk_reuseport_md, hash):
7307 		SK_REUSEPORT_LOAD_FIELD(hash);
7308 		break;
7309 
7310 	case offsetof(struct sk_reuseport_md, bind_inany):
7311 		SK_REUSEPORT_LOAD_FIELD(bind_inany);
7312 		break;
7313 	}
7314 
7315 	return insn - insn_buf;
7316 }
7317 
7318 const struct bpf_verifier_ops sk_reuseport_verifier_ops = {
7319 	.get_func_proto		= sk_reuseport_func_proto,
7320 	.is_valid_access	= sk_reuseport_is_valid_access,
7321 	.convert_ctx_access	= sk_reuseport_convert_ctx_access,
7322 };
7323 
7324 const struct bpf_prog_ops sk_reuseport_prog_ops = {
7325 };
7326 #endif /* CONFIG_INET */
7327