1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71
72 /*
73 * This structure really needs to be cleaned up.
74 * Most of it is for TCP, and not used by any of
75 * the other protocols.
76 */
77
78 /* Define this to get the SOCK_DBG debugging facility. */
79 #define SOCK_DEBUGGING
80 #ifdef SOCK_DEBUGGING
81 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
82 printk(KERN_DEBUG msg); } while (0)
83 #else
84 /* Validate arguments and do nothing */
85 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)86 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
87 {
88 }
89 #endif
90
91 /* This is the per-socket lock. The spinlock provides a synchronization
92 * between user contexts and software interrupt processing, whereas the
93 * mini-semaphore synchronizes multiple users amongst themselves.
94 */
95 typedef struct {
96 spinlock_t slock;
97 int owned;
98 wait_queue_head_t wq;
99 /*
100 * We express the mutex-alike socket_lock semantics
101 * to the lock validator by explicitly managing
102 * the slock as a lock variant (in addition to
103 * the slock itself):
104 */
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 struct lockdep_map dep_map;
107 #endif
108 } socket_lock_t;
109
110 struct sock;
111 struct proto;
112 struct net;
113
114 typedef __u32 __bitwise __portpair;
115 typedef __u64 __bitwise __addrpair;
116
117 /**
118 * struct sock_common - minimal network layer representation of sockets
119 * @skc_daddr: Foreign IPv4 addr
120 * @skc_rcv_saddr: Bound local IPv4 addr
121 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
122 * @skc_hash: hash value used with various protocol lookup tables
123 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
124 * @skc_dport: placeholder for inet_dport/tw_dport
125 * @skc_num: placeholder for inet_num/tw_num
126 * @skc_portpair: __u32 union of @skc_dport & @skc_num
127 * @skc_family: network address family
128 * @skc_state: Connection state
129 * @skc_reuse: %SO_REUSEADDR setting
130 * @skc_reuseport: %SO_REUSEPORT setting
131 * @skc_ipv6only: socket is IPV6 only
132 * @skc_net_refcnt: socket is using net ref counting
133 * @skc_bound_dev_if: bound device index if != 0
134 * @skc_bind_node: bind hash linkage for various protocol lookup tables
135 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
136 * @skc_prot: protocol handlers inside a network family
137 * @skc_net: reference to the network namespace of this socket
138 * @skc_v6_daddr: IPV6 destination address
139 * @skc_v6_rcv_saddr: IPV6 source address
140 * @skc_cookie: socket's cookie value
141 * @skc_node: main hash linkage for various protocol lookup tables
142 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
143 * @skc_tx_queue_mapping: tx queue number for this connection
144 * @skc_rx_queue_mapping: rx queue number for this connection
145 * @skc_flags: place holder for sk_flags
146 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
147 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
148 * @skc_listener: connection request listener socket (aka rsk_listener)
149 * [union with @skc_flags]
150 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
151 * [union with @skc_flags]
152 * @skc_incoming_cpu: record/match cpu processing incoming packets
153 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
154 * [union with @skc_incoming_cpu]
155 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
156 * [union with @skc_incoming_cpu]
157 * @skc_refcnt: reference count
158 *
159 * This is the minimal network layer representation of sockets, the header
160 * for struct sock and struct inet_timewait_sock.
161 */
162 struct sock_common {
163 /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned
164 * address on 64bit arches : cf INET_MATCH()
165 */
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
204
205 atomic64_t skc_cookie;
206
207 /* following fields are padding to force
208 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
209 * assuming IPV6 is enabled. We use this padding differently
210 * for different kind of 'sockets'
211 */
212 union {
213 unsigned long skc_flags;
214 struct sock *skc_listener; /* request_sock */
215 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
216 };
217 /*
218 * fields between dontcopy_begin/dontcopy_end
219 * are not copied in sock_copy()
220 */
221 /* private: */
222 int skc_dontcopy_begin[0];
223 /* public: */
224 union {
225 struct hlist_node skc_node;
226 struct hlist_nulls_node skc_nulls_node;
227 };
228 unsigned short skc_tx_queue_mapping;
229 #ifdef CONFIG_XPS
230 unsigned short skc_rx_queue_mapping;
231 #endif
232 union {
233 int skc_incoming_cpu;
234 u32 skc_rcv_wnd;
235 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
236 };
237
238 refcount_t skc_refcnt;
239 /* private: */
240 int skc_dontcopy_end[0];
241 union {
242 u32 skc_rxhash;
243 u32 skc_window_clamp;
244 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
245 };
246 /* public: */
247 };
248
249 struct bpf_local_storage;
250
251 /**
252 * struct sock - network layer representation of sockets
253 * @__sk_common: shared layout with inet_timewait_sock
254 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
255 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
256 * @sk_lock: synchronizer
257 * @sk_kern_sock: True if sock is using kernel lock classes
258 * @sk_rcvbuf: size of receive buffer in bytes
259 * @sk_wq: sock wait queue and async head
260 * @sk_rx_dst: receive input route used by early demux
261 * @sk_dst_cache: destination cache
262 * @sk_dst_pending_confirm: need to confirm neighbour
263 * @sk_policy: flow policy
264 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
265 * @sk_receive_queue: incoming packets
266 * @sk_wmem_alloc: transmit queue bytes committed
267 * @sk_tsq_flags: TCP Small Queues flags
268 * @sk_write_queue: Packet sending queue
269 * @sk_omem_alloc: "o" is "option" or "other"
270 * @sk_wmem_queued: persistent queue size
271 * @sk_forward_alloc: space allocated forward
272 * @sk_napi_id: id of the last napi context to receive data for sk
273 * @sk_ll_usec: usecs to busypoll when there is no data
274 * @sk_allocation: allocation mode
275 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
276 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
277 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
278 * @sk_sndbuf: size of send buffer in bytes
279 * @__sk_flags_offset: empty field used to determine location of bitfield
280 * @sk_padding: unused element for alignment
281 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
282 * @sk_no_check_rx: allow zero checksum in RX packets
283 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
284 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
285 * @sk_route_forced_caps: static, forced route capabilities
286 * (set in tcp_init_sock())
287 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
288 * @sk_gso_max_size: Maximum GSO segment size to build
289 * @sk_gso_max_segs: Maximum number of GSO segments
290 * @sk_pacing_shift: scaling factor for TCP Small Queues
291 * @sk_lingertime: %SO_LINGER l_linger setting
292 * @sk_backlog: always used with the per-socket spinlock held
293 * @sk_callback_lock: used with the callbacks in the end of this struct
294 * @sk_error_queue: rarely used
295 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
296 * IPV6_ADDRFORM for instance)
297 * @sk_err: last error
298 * @sk_err_soft: errors that don't cause failure but are the cause of a
299 * persistent failure not just 'timed out'
300 * @sk_drops: raw/udp drops counter
301 * @sk_ack_backlog: current listen backlog
302 * @sk_max_ack_backlog: listen backlog set in listen()
303 * @sk_uid: user id of owner
304 * @sk_priority: %SO_PRIORITY setting
305 * @sk_type: socket type (%SOCK_STREAM, etc)
306 * @sk_protocol: which protocol this socket belongs in this network family
307 * @sk_peer_pid: &struct pid for this socket's peer
308 * @sk_peer_cred: %SO_PEERCRED setting
309 * @sk_rcvlowat: %SO_RCVLOWAT setting
310 * @sk_rcvtimeo: %SO_RCVTIMEO setting
311 * @sk_sndtimeo: %SO_SNDTIMEO setting
312 * @sk_txhash: computed flow hash for use on transmit
313 * @sk_filter: socket filtering instructions
314 * @sk_timer: sock cleanup timer
315 * @sk_stamp: time stamp of last packet received
316 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
317 * @sk_tsflags: SO_TIMESTAMPING socket options
318 * @sk_tskey: counter to disambiguate concurrent tstamp requests
319 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
320 * @sk_socket: Identd and reporting IO signals
321 * @sk_user_data: RPC layer private data
322 * @sk_frag: cached page frag
323 * @sk_peek_off: current peek_offset value
324 * @sk_send_head: front of stuff to transmit
325 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
326 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
327 * @sk_security: used by security modules
328 * @sk_mark: generic packet mark
329 * @sk_cgrp_data: cgroup data for this cgroup
330 * @sk_memcg: this socket's memory cgroup association
331 * @sk_write_pending: a write to stream socket waits to start
332 * @sk_state_change: callback to indicate change in the state of the sock
333 * @sk_data_ready: callback to indicate there is data to be processed
334 * @sk_write_space: callback to indicate there is bf sending space available
335 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
336 * @sk_backlog_rcv: callback to process the backlog
337 * @sk_validate_xmit_skb: ptr to an optional validate function
338 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
339 * @sk_reuseport_cb: reuseport group container
340 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
341 * @sk_rcu: used during RCU grace period
342 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
343 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
344 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
345 * @sk_txtime_unused: unused txtime flags
346 */
347 struct sock {
348 /*
349 * Now struct inet_timewait_sock also uses sock_common, so please just
350 * don't add nothing before this first member (__sk_common) --acme
351 */
352 struct sock_common __sk_common;
353 #define sk_node __sk_common.skc_node
354 #define sk_nulls_node __sk_common.skc_nulls_node
355 #define sk_refcnt __sk_common.skc_refcnt
356 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
357 #ifdef CONFIG_XPS
358 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
359 #endif
360
361 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
362 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
363 #define sk_hash __sk_common.skc_hash
364 #define sk_portpair __sk_common.skc_portpair
365 #define sk_num __sk_common.skc_num
366 #define sk_dport __sk_common.skc_dport
367 #define sk_addrpair __sk_common.skc_addrpair
368 #define sk_daddr __sk_common.skc_daddr
369 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
370 #define sk_family __sk_common.skc_family
371 #define sk_state __sk_common.skc_state
372 #define sk_reuse __sk_common.skc_reuse
373 #define sk_reuseport __sk_common.skc_reuseport
374 #define sk_ipv6only __sk_common.skc_ipv6only
375 #define sk_net_refcnt __sk_common.skc_net_refcnt
376 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
377 #define sk_bind_node __sk_common.skc_bind_node
378 #define sk_prot __sk_common.skc_prot
379 #define sk_net __sk_common.skc_net
380 #define sk_v6_daddr __sk_common.skc_v6_daddr
381 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
382 #define sk_cookie __sk_common.skc_cookie
383 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
384 #define sk_flags __sk_common.skc_flags
385 #define sk_rxhash __sk_common.skc_rxhash
386
387 socket_lock_t sk_lock;
388 atomic_t sk_drops;
389 int sk_rcvlowat;
390 struct sk_buff_head sk_error_queue;
391 struct sk_buff *sk_rx_skb_cache;
392 struct sk_buff_head sk_receive_queue;
393 /*
394 * The backlog queue is special, it is always used with
395 * the per-socket spinlock held and requires low latency
396 * access. Therefore we special case it's implementation.
397 * Note : rmem_alloc is in this structure to fill a hole
398 * on 64bit arches, not because its logically part of
399 * backlog.
400 */
401 struct {
402 atomic_t rmem_alloc;
403 int len;
404 struct sk_buff *head;
405 struct sk_buff *tail;
406 } sk_backlog;
407 #define sk_rmem_alloc sk_backlog.rmem_alloc
408
409 int sk_forward_alloc;
410 #ifdef CONFIG_NET_RX_BUSY_POLL
411 unsigned int sk_ll_usec;
412 /* ===== mostly read cache line ===== */
413 unsigned int sk_napi_id;
414 #endif
415 int sk_rcvbuf;
416
417 struct sk_filter __rcu *sk_filter;
418 union {
419 struct socket_wq __rcu *sk_wq;
420 /* private: */
421 struct socket_wq *sk_wq_raw;
422 /* public: */
423 };
424 #ifdef CONFIG_XFRM
425 struct xfrm_policy __rcu *sk_policy[2];
426 #endif
427 struct dst_entry *sk_rx_dst;
428 struct dst_entry __rcu *sk_dst_cache;
429 atomic_t sk_omem_alloc;
430 int sk_sndbuf;
431
432 /* ===== cache line for TX ===== */
433 int sk_wmem_queued;
434 refcount_t sk_wmem_alloc;
435 unsigned long sk_tsq_flags;
436 union {
437 struct sk_buff *sk_send_head;
438 struct rb_root tcp_rtx_queue;
439 };
440 struct sk_buff *sk_tx_skb_cache;
441 struct sk_buff_head sk_write_queue;
442 __s32 sk_peek_off;
443 int sk_write_pending;
444 __u32 sk_dst_pending_confirm;
445 u32 sk_pacing_status; /* see enum sk_pacing */
446 long sk_sndtimeo;
447 struct timer_list sk_timer;
448 __u32 sk_priority;
449 __u32 sk_mark;
450 unsigned long sk_pacing_rate; /* bytes per second */
451 unsigned long sk_max_pacing_rate;
452 struct page_frag sk_frag;
453 netdev_features_t sk_route_caps;
454 netdev_features_t sk_route_nocaps;
455 netdev_features_t sk_route_forced_caps;
456 int sk_gso_type;
457 unsigned int sk_gso_max_size;
458 gfp_t sk_allocation;
459 __u32 sk_txhash;
460
461 /*
462 * Because of non atomicity rules, all
463 * changes are protected by socket lock.
464 */
465 u8 sk_padding : 1,
466 sk_kern_sock : 1,
467 sk_no_check_tx : 1,
468 sk_no_check_rx : 1,
469 sk_userlocks : 4;
470 u8 sk_pacing_shift;
471 u16 sk_type;
472 u16 sk_protocol;
473 u16 sk_gso_max_segs;
474 unsigned long sk_lingertime;
475 struct proto *sk_prot_creator;
476 rwlock_t sk_callback_lock;
477 int sk_err,
478 sk_err_soft;
479 u32 sk_ack_backlog;
480 u32 sk_max_ack_backlog;
481 kuid_t sk_uid;
482 struct pid *sk_peer_pid;
483 const struct cred *sk_peer_cred;
484 long sk_rcvtimeo;
485 ktime_t sk_stamp;
486 #if BITS_PER_LONG==32
487 seqlock_t sk_stamp_seq;
488 #endif
489 u16 sk_tsflags;
490 u8 sk_shutdown;
491 u32 sk_tskey;
492 atomic_t sk_zckey;
493
494 u8 sk_clockid;
495 u8 sk_txtime_deadline_mode : 1,
496 sk_txtime_report_errors : 1,
497 sk_txtime_unused : 6;
498
499 struct socket *sk_socket;
500 void *sk_user_data;
501 #ifdef CONFIG_SECURITY
502 void *sk_security;
503 #endif
504 struct sock_cgroup_data sk_cgrp_data;
505 struct mem_cgroup *sk_memcg;
506 void (*sk_state_change)(struct sock *sk);
507 void (*sk_data_ready)(struct sock *sk);
508 void (*sk_write_space)(struct sock *sk);
509 void (*sk_error_report)(struct sock *sk);
510 int (*sk_backlog_rcv)(struct sock *sk,
511 struct sk_buff *skb);
512 #ifdef CONFIG_SOCK_VALIDATE_XMIT
513 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
514 struct net_device *dev,
515 struct sk_buff *skb);
516 #endif
517 void (*sk_destruct)(struct sock *sk);
518 struct sock_reuseport __rcu *sk_reuseport_cb;
519 #ifdef CONFIG_BPF_SYSCALL
520 struct bpf_local_storage __rcu *sk_bpf_storage;
521 #endif
522 struct rcu_head sk_rcu;
523 };
524
525 enum sk_pacing {
526 SK_PACING_NONE = 0,
527 SK_PACING_NEEDED = 1,
528 SK_PACING_FQ = 2,
529 };
530
531 /* Pointer stored in sk_user_data might not be suitable for copying
532 * when cloning the socket. For instance, it can point to a reference
533 * counted object. sk_user_data bottom bit is set if pointer must not
534 * be copied.
535 */
536 #define SK_USER_DATA_NOCOPY 1UL
537 #define SK_USER_DATA_BPF 2UL /* Managed by BPF */
538 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF)
539
540 /**
541 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
542 * @sk: socket
543 */
sk_user_data_is_nocopy(const struct sock * sk)544 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
545 {
546 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
547 }
548
549 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
550
551 #define rcu_dereference_sk_user_data(sk) \
552 ({ \
553 void *__tmp = rcu_dereference(__sk_user_data((sk))); \
554 (void *)((uintptr_t)__tmp & SK_USER_DATA_PTRMASK); \
555 })
556 #define rcu_assign_sk_user_data(sk, ptr) \
557 ({ \
558 uintptr_t __tmp = (uintptr_t)(ptr); \
559 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
560 rcu_assign_pointer(__sk_user_data((sk)), __tmp); \
561 })
562 #define rcu_assign_sk_user_data_nocopy(sk, ptr) \
563 ({ \
564 uintptr_t __tmp = (uintptr_t)(ptr); \
565 WARN_ON_ONCE(__tmp & ~SK_USER_DATA_PTRMASK); \
566 rcu_assign_pointer(__sk_user_data((sk)), \
567 __tmp | SK_USER_DATA_NOCOPY); \
568 })
569
570 /*
571 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
572 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
573 * on a socket means that the socket will reuse everybody else's port
574 * without looking at the other's sk_reuse value.
575 */
576
577 #define SK_NO_REUSE 0
578 #define SK_CAN_REUSE 1
579 #define SK_FORCE_REUSE 2
580
581 int sk_set_peek_off(struct sock *sk, int val);
582
sk_peek_offset(struct sock * sk,int flags)583 static inline int sk_peek_offset(struct sock *sk, int flags)
584 {
585 if (unlikely(flags & MSG_PEEK)) {
586 return READ_ONCE(sk->sk_peek_off);
587 }
588
589 return 0;
590 }
591
sk_peek_offset_bwd(struct sock * sk,int val)592 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
593 {
594 s32 off = READ_ONCE(sk->sk_peek_off);
595
596 if (unlikely(off >= 0)) {
597 off = max_t(s32, off - val, 0);
598 WRITE_ONCE(sk->sk_peek_off, off);
599 }
600 }
601
sk_peek_offset_fwd(struct sock * sk,int val)602 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
603 {
604 sk_peek_offset_bwd(sk, -val);
605 }
606
607 /*
608 * Hashed lists helper routines
609 */
sk_entry(const struct hlist_node * node)610 static inline struct sock *sk_entry(const struct hlist_node *node)
611 {
612 return hlist_entry(node, struct sock, sk_node);
613 }
614
__sk_head(const struct hlist_head * head)615 static inline struct sock *__sk_head(const struct hlist_head *head)
616 {
617 return hlist_entry(head->first, struct sock, sk_node);
618 }
619
sk_head(const struct hlist_head * head)620 static inline struct sock *sk_head(const struct hlist_head *head)
621 {
622 return hlist_empty(head) ? NULL : __sk_head(head);
623 }
624
__sk_nulls_head(const struct hlist_nulls_head * head)625 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
626 {
627 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
628 }
629
sk_nulls_head(const struct hlist_nulls_head * head)630 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
631 {
632 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
633 }
634
sk_next(const struct sock * sk)635 static inline struct sock *sk_next(const struct sock *sk)
636 {
637 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
638 }
639
sk_nulls_next(const struct sock * sk)640 static inline struct sock *sk_nulls_next(const struct sock *sk)
641 {
642 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
643 hlist_nulls_entry(sk->sk_nulls_node.next,
644 struct sock, sk_nulls_node) :
645 NULL;
646 }
647
sk_unhashed(const struct sock * sk)648 static inline bool sk_unhashed(const struct sock *sk)
649 {
650 return hlist_unhashed(&sk->sk_node);
651 }
652
sk_hashed(const struct sock * sk)653 static inline bool sk_hashed(const struct sock *sk)
654 {
655 return !sk_unhashed(sk);
656 }
657
sk_node_init(struct hlist_node * node)658 static inline void sk_node_init(struct hlist_node *node)
659 {
660 node->pprev = NULL;
661 }
662
sk_nulls_node_init(struct hlist_nulls_node * node)663 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
664 {
665 node->pprev = NULL;
666 }
667
__sk_del_node(struct sock * sk)668 static inline void __sk_del_node(struct sock *sk)
669 {
670 __hlist_del(&sk->sk_node);
671 }
672
673 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)674 static inline bool __sk_del_node_init(struct sock *sk)
675 {
676 if (sk_hashed(sk)) {
677 __sk_del_node(sk);
678 sk_node_init(&sk->sk_node);
679 return true;
680 }
681 return false;
682 }
683
684 /* Grab socket reference count. This operation is valid only
685 when sk is ALREADY grabbed f.e. it is found in hash table
686 or a list and the lookup is made under lock preventing hash table
687 modifications.
688 */
689
sock_hold(struct sock * sk)690 static __always_inline void sock_hold(struct sock *sk)
691 {
692 refcount_inc(&sk->sk_refcnt);
693 }
694
695 /* Ungrab socket in the context, which assumes that socket refcnt
696 cannot hit zero, f.e. it is true in context of any socketcall.
697 */
__sock_put(struct sock * sk)698 static __always_inline void __sock_put(struct sock *sk)
699 {
700 refcount_dec(&sk->sk_refcnt);
701 }
702
sk_del_node_init(struct sock * sk)703 static inline bool sk_del_node_init(struct sock *sk)
704 {
705 bool rc = __sk_del_node_init(sk);
706
707 if (rc) {
708 /* paranoid for a while -acme */
709 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
710 __sock_put(sk);
711 }
712 return rc;
713 }
714 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
715
__sk_nulls_del_node_init_rcu(struct sock * sk)716 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
717 {
718 if (sk_hashed(sk)) {
719 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
720 return true;
721 }
722 return false;
723 }
724
sk_nulls_del_node_init_rcu(struct sock * sk)725 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
726 {
727 bool rc = __sk_nulls_del_node_init_rcu(sk);
728
729 if (rc) {
730 /* paranoid for a while -acme */
731 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
732 __sock_put(sk);
733 }
734 return rc;
735 }
736
__sk_add_node(struct sock * sk,struct hlist_head * list)737 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
738 {
739 hlist_add_head(&sk->sk_node, list);
740 }
741
sk_add_node(struct sock * sk,struct hlist_head * list)742 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
743 {
744 sock_hold(sk);
745 __sk_add_node(sk, list);
746 }
747
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)748 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
749 {
750 sock_hold(sk);
751 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
752 sk->sk_family == AF_INET6)
753 hlist_add_tail_rcu(&sk->sk_node, list);
754 else
755 hlist_add_head_rcu(&sk->sk_node, list);
756 }
757
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)758 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
759 {
760 sock_hold(sk);
761 hlist_add_tail_rcu(&sk->sk_node, list);
762 }
763
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)764 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
765 {
766 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
767 }
768
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)769 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
770 {
771 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
772 }
773
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)774 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
775 {
776 sock_hold(sk);
777 __sk_nulls_add_node_rcu(sk, list);
778 }
779
__sk_del_bind_node(struct sock * sk)780 static inline void __sk_del_bind_node(struct sock *sk)
781 {
782 __hlist_del(&sk->sk_bind_node);
783 }
784
sk_add_bind_node(struct sock * sk,struct hlist_head * list)785 static inline void sk_add_bind_node(struct sock *sk,
786 struct hlist_head *list)
787 {
788 hlist_add_head(&sk->sk_bind_node, list);
789 }
790
791 #define sk_for_each(__sk, list) \
792 hlist_for_each_entry(__sk, list, sk_node)
793 #define sk_for_each_rcu(__sk, list) \
794 hlist_for_each_entry_rcu(__sk, list, sk_node)
795 #define sk_nulls_for_each(__sk, node, list) \
796 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
797 #define sk_nulls_for_each_rcu(__sk, node, list) \
798 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
799 #define sk_for_each_from(__sk) \
800 hlist_for_each_entry_from(__sk, sk_node)
801 #define sk_nulls_for_each_from(__sk, node) \
802 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
803 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
804 #define sk_for_each_safe(__sk, tmp, list) \
805 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
806 #define sk_for_each_bound(__sk, list) \
807 hlist_for_each_entry(__sk, list, sk_bind_node)
808
809 /**
810 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
811 * @tpos: the type * to use as a loop cursor.
812 * @pos: the &struct hlist_node to use as a loop cursor.
813 * @head: the head for your list.
814 * @offset: offset of hlist_node within the struct.
815 *
816 */
817 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
818 for (pos = rcu_dereference(hlist_first_rcu(head)); \
819 pos != NULL && \
820 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
821 pos = rcu_dereference(hlist_next_rcu(pos)))
822
sk_user_ns(struct sock * sk)823 static inline struct user_namespace *sk_user_ns(struct sock *sk)
824 {
825 /* Careful only use this in a context where these parameters
826 * can not change and must all be valid, such as recvmsg from
827 * userspace.
828 */
829 return sk->sk_socket->file->f_cred->user_ns;
830 }
831
832 /* Sock flags */
833 enum sock_flags {
834 SOCK_DEAD,
835 SOCK_DONE,
836 SOCK_URGINLINE,
837 SOCK_KEEPOPEN,
838 SOCK_LINGER,
839 SOCK_DESTROY,
840 SOCK_BROADCAST,
841 SOCK_TIMESTAMP,
842 SOCK_ZAPPED,
843 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
844 SOCK_DBG, /* %SO_DEBUG setting */
845 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
846 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
847 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
848 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
849 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
850 SOCK_FASYNC, /* fasync() active */
851 SOCK_RXQ_OVFL,
852 SOCK_ZEROCOPY, /* buffers from userspace */
853 SOCK_WIFI_STATUS, /* push wifi status to userspace */
854 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
855 * Will use last 4 bytes of packet sent from
856 * user-space instead.
857 */
858 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
859 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
860 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
861 SOCK_TXTIME,
862 SOCK_XDP, /* XDP is attached */
863 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
864 };
865
866 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
867
sock_copy_flags(struct sock * nsk,struct sock * osk)868 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
869 {
870 nsk->sk_flags = osk->sk_flags;
871 }
872
sock_set_flag(struct sock * sk,enum sock_flags flag)873 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
874 {
875 __set_bit(flag, &sk->sk_flags);
876 }
877
sock_reset_flag(struct sock * sk,enum sock_flags flag)878 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
879 {
880 __clear_bit(flag, &sk->sk_flags);
881 }
882
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)883 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
884 int valbool)
885 {
886 if (valbool)
887 sock_set_flag(sk, bit);
888 else
889 sock_reset_flag(sk, bit);
890 }
891
sock_flag(const struct sock * sk,enum sock_flags flag)892 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
893 {
894 return test_bit(flag, &sk->sk_flags);
895 }
896
897 #ifdef CONFIG_NET
898 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)899 static inline int sk_memalloc_socks(void)
900 {
901 return static_branch_unlikely(&memalloc_socks_key);
902 }
903
904 void __receive_sock(struct file *file);
905 #else
906
sk_memalloc_socks(void)907 static inline int sk_memalloc_socks(void)
908 {
909 return 0;
910 }
911
__receive_sock(struct file * file)912 static inline void __receive_sock(struct file *file)
913 { }
914 #endif
915
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)916 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
917 {
918 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
919 }
920
sk_acceptq_removed(struct sock * sk)921 static inline void sk_acceptq_removed(struct sock *sk)
922 {
923 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
924 }
925
sk_acceptq_added(struct sock * sk)926 static inline void sk_acceptq_added(struct sock *sk)
927 {
928 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
929 }
930
sk_acceptq_is_full(const struct sock * sk)931 static inline bool sk_acceptq_is_full(const struct sock *sk)
932 {
933 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
934 }
935
936 /*
937 * Compute minimal free write space needed to queue new packets.
938 */
sk_stream_min_wspace(const struct sock * sk)939 static inline int sk_stream_min_wspace(const struct sock *sk)
940 {
941 return READ_ONCE(sk->sk_wmem_queued) >> 1;
942 }
943
sk_stream_wspace(const struct sock * sk)944 static inline int sk_stream_wspace(const struct sock *sk)
945 {
946 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
947 }
948
sk_wmem_queued_add(struct sock * sk,int val)949 static inline void sk_wmem_queued_add(struct sock *sk, int val)
950 {
951 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
952 }
953
954 void sk_stream_write_space(struct sock *sk);
955
956 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)957 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
958 {
959 /* dont let skb dst not refcounted, we are going to leave rcu lock */
960 skb_dst_force(skb);
961
962 if (!sk->sk_backlog.tail)
963 WRITE_ONCE(sk->sk_backlog.head, skb);
964 else
965 sk->sk_backlog.tail->next = skb;
966
967 WRITE_ONCE(sk->sk_backlog.tail, skb);
968 skb->next = NULL;
969 }
970
971 /*
972 * Take into account size of receive queue and backlog queue
973 * Do not take into account this skb truesize,
974 * to allow even a single big packet to come.
975 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)976 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
977 {
978 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
979
980 return qsize > limit;
981 }
982
983 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)984 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
985 unsigned int limit)
986 {
987 if (sk_rcvqueues_full(sk, limit))
988 return -ENOBUFS;
989
990 /*
991 * If the skb was allocated from pfmemalloc reserves, only
992 * allow SOCK_MEMALLOC sockets to use it as this socket is
993 * helping free memory
994 */
995 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
996 return -ENOMEM;
997
998 __sk_add_backlog(sk, skb);
999 sk->sk_backlog.len += skb->truesize;
1000 return 0;
1001 }
1002
1003 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1004
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1005 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1006 {
1007 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1008 return __sk_backlog_rcv(sk, skb);
1009
1010 return sk->sk_backlog_rcv(sk, skb);
1011 }
1012
sk_incoming_cpu_update(struct sock * sk)1013 static inline void sk_incoming_cpu_update(struct sock *sk)
1014 {
1015 int cpu = raw_smp_processor_id();
1016
1017 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1018 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1019 }
1020
sock_rps_record_flow_hash(__u32 hash)1021 static inline void sock_rps_record_flow_hash(__u32 hash)
1022 {
1023 #ifdef CONFIG_RPS
1024 struct rps_sock_flow_table *sock_flow_table;
1025
1026 rcu_read_lock();
1027 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1028 rps_record_sock_flow(sock_flow_table, hash);
1029 rcu_read_unlock();
1030 #endif
1031 }
1032
sock_rps_record_flow(const struct sock * sk)1033 static inline void sock_rps_record_flow(const struct sock *sk)
1034 {
1035 #ifdef CONFIG_RPS
1036 if (static_branch_unlikely(&rfs_needed)) {
1037 /* Reading sk->sk_rxhash might incur an expensive cache line
1038 * miss.
1039 *
1040 * TCP_ESTABLISHED does cover almost all states where RFS
1041 * might be useful, and is cheaper [1] than testing :
1042 * IPv4: inet_sk(sk)->inet_daddr
1043 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1044 * OR an additional socket flag
1045 * [1] : sk_state and sk_prot are in the same cache line.
1046 */
1047 if (sk->sk_state == TCP_ESTABLISHED)
1048 sock_rps_record_flow_hash(sk->sk_rxhash);
1049 }
1050 #endif
1051 }
1052
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1053 static inline void sock_rps_save_rxhash(struct sock *sk,
1054 const struct sk_buff *skb)
1055 {
1056 #ifdef CONFIG_RPS
1057 if (unlikely(sk->sk_rxhash != skb->hash))
1058 sk->sk_rxhash = skb->hash;
1059 #endif
1060 }
1061
sock_rps_reset_rxhash(struct sock * sk)1062 static inline void sock_rps_reset_rxhash(struct sock *sk)
1063 {
1064 #ifdef CONFIG_RPS
1065 sk->sk_rxhash = 0;
1066 #endif
1067 }
1068
1069 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1070 ({ int __rc; \
1071 release_sock(__sk); \
1072 __rc = __condition; \
1073 if (!__rc) { \
1074 *(__timeo) = wait_woken(__wait, \
1075 TASK_INTERRUPTIBLE, \
1076 *(__timeo)); \
1077 } \
1078 sched_annotate_sleep(); \
1079 lock_sock(__sk); \
1080 __rc = __condition; \
1081 __rc; \
1082 })
1083
1084 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1085 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1086 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1087 int sk_stream_error(struct sock *sk, int flags, int err);
1088 void sk_stream_kill_queues(struct sock *sk);
1089 void sk_set_memalloc(struct sock *sk);
1090 void sk_clear_memalloc(struct sock *sk);
1091
1092 void __sk_flush_backlog(struct sock *sk);
1093
sk_flush_backlog(struct sock * sk)1094 static inline bool sk_flush_backlog(struct sock *sk)
1095 {
1096 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1097 __sk_flush_backlog(sk);
1098 return true;
1099 }
1100 return false;
1101 }
1102
1103 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1104
1105 struct request_sock_ops;
1106 struct timewait_sock_ops;
1107 struct inet_hashinfo;
1108 struct raw_hashinfo;
1109 struct smc_hashinfo;
1110 struct module;
1111
1112 /*
1113 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1114 * un-modified. Special care is taken when initializing object to zero.
1115 */
sk_prot_clear_nulls(struct sock * sk,int size)1116 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1117 {
1118 if (offsetof(struct sock, sk_node.next) != 0)
1119 memset(sk, 0, offsetof(struct sock, sk_node.next));
1120 memset(&sk->sk_node.pprev, 0,
1121 size - offsetof(struct sock, sk_node.pprev));
1122 }
1123
1124 /* Networking protocol blocks we attach to sockets.
1125 * socket layer -> transport layer interface
1126 */
1127 struct proto {
1128 void (*close)(struct sock *sk,
1129 long timeout);
1130 int (*pre_connect)(struct sock *sk,
1131 struct sockaddr *uaddr,
1132 int addr_len);
1133 int (*connect)(struct sock *sk,
1134 struct sockaddr *uaddr,
1135 int addr_len);
1136 int (*disconnect)(struct sock *sk, int flags);
1137
1138 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1139 bool kern);
1140
1141 int (*ioctl)(struct sock *sk, int cmd,
1142 unsigned long arg);
1143 int (*init)(struct sock *sk);
1144 void (*destroy)(struct sock *sk);
1145 void (*shutdown)(struct sock *sk, int how);
1146 int (*setsockopt)(struct sock *sk, int level,
1147 int optname, sockptr_t optval,
1148 unsigned int optlen);
1149 int (*getsockopt)(struct sock *sk, int level,
1150 int optname, char __user *optval,
1151 int __user *option);
1152 void (*keepalive)(struct sock *sk, int valbool);
1153 #ifdef CONFIG_COMPAT
1154 int (*compat_ioctl)(struct sock *sk,
1155 unsigned int cmd, unsigned long arg);
1156 #endif
1157 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1158 size_t len);
1159 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1160 size_t len, int noblock, int flags,
1161 int *addr_len);
1162 int (*sendpage)(struct sock *sk, struct page *page,
1163 int offset, size_t size, int flags);
1164 int (*bind)(struct sock *sk,
1165 struct sockaddr *addr, int addr_len);
1166 int (*bind_add)(struct sock *sk,
1167 struct sockaddr *addr, int addr_len);
1168
1169 int (*backlog_rcv) (struct sock *sk,
1170 struct sk_buff *skb);
1171
1172 void (*release_cb)(struct sock *sk);
1173
1174 /* Keeping track of sk's, looking them up, and port selection methods. */
1175 int (*hash)(struct sock *sk);
1176 void (*unhash)(struct sock *sk);
1177 void (*rehash)(struct sock *sk);
1178 int (*get_port)(struct sock *sk, unsigned short snum);
1179
1180 /* Keeping track of sockets in use */
1181 #ifdef CONFIG_PROC_FS
1182 unsigned int inuse_idx;
1183 #endif
1184
1185 bool (*stream_memory_free)(const struct sock *sk, int wake);
1186 bool (*stream_memory_read)(const struct sock *sk);
1187 /* Memory pressure */
1188 void (*enter_memory_pressure)(struct sock *sk);
1189 void (*leave_memory_pressure)(struct sock *sk);
1190 atomic_long_t *memory_allocated; /* Current allocated memory. */
1191 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1192 /*
1193 * Pressure flag: try to collapse.
1194 * Technical note: it is used by multiple contexts non atomically.
1195 * All the __sk_mem_schedule() is of this nature: accounting
1196 * is strict, actions are advisory and have some latency.
1197 */
1198 unsigned long *memory_pressure;
1199 long *sysctl_mem;
1200
1201 int *sysctl_wmem;
1202 int *sysctl_rmem;
1203 u32 sysctl_wmem_offset;
1204 u32 sysctl_rmem_offset;
1205
1206 int max_header;
1207 bool no_autobind;
1208
1209 struct kmem_cache *slab;
1210 unsigned int obj_size;
1211 slab_flags_t slab_flags;
1212 unsigned int useroffset; /* Usercopy region offset */
1213 unsigned int usersize; /* Usercopy region size */
1214
1215 struct percpu_counter *orphan_count;
1216
1217 struct request_sock_ops *rsk_prot;
1218 struct timewait_sock_ops *twsk_prot;
1219
1220 union {
1221 struct inet_hashinfo *hashinfo;
1222 struct udp_table *udp_table;
1223 struct raw_hashinfo *raw_hash;
1224 struct smc_hashinfo *smc_hash;
1225 } h;
1226
1227 struct module *owner;
1228
1229 char name[32];
1230
1231 struct list_head node;
1232 #ifdef SOCK_REFCNT_DEBUG
1233 atomic_t socks;
1234 #endif
1235 int (*diag_destroy)(struct sock *sk, int err);
1236 } __randomize_layout;
1237
1238 int proto_register(struct proto *prot, int alloc_slab);
1239 void proto_unregister(struct proto *prot);
1240 int sock_load_diag_module(int family, int protocol);
1241
1242 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1243 static inline void sk_refcnt_debug_inc(struct sock *sk)
1244 {
1245 atomic_inc(&sk->sk_prot->socks);
1246 }
1247
sk_refcnt_debug_dec(struct sock * sk)1248 static inline void sk_refcnt_debug_dec(struct sock *sk)
1249 {
1250 atomic_dec(&sk->sk_prot->socks);
1251 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1252 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1253 }
1254
sk_refcnt_debug_release(const struct sock * sk)1255 static inline void sk_refcnt_debug_release(const struct sock *sk)
1256 {
1257 if (refcount_read(&sk->sk_refcnt) != 1)
1258 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1259 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1260 }
1261 #else /* SOCK_REFCNT_DEBUG */
1262 #define sk_refcnt_debug_inc(sk) do { } while (0)
1263 #define sk_refcnt_debug_dec(sk) do { } while (0)
1264 #define sk_refcnt_debug_release(sk) do { } while (0)
1265 #endif /* SOCK_REFCNT_DEBUG */
1266
__sk_stream_memory_free(const struct sock * sk,int wake)1267 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1268 {
1269 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1270 return false;
1271
1272 return sk->sk_prot->stream_memory_free ?
1273 sk->sk_prot->stream_memory_free(sk, wake) : true;
1274 }
1275
sk_stream_memory_free(const struct sock * sk)1276 static inline bool sk_stream_memory_free(const struct sock *sk)
1277 {
1278 return __sk_stream_memory_free(sk, 0);
1279 }
1280
__sk_stream_is_writeable(const struct sock * sk,int wake)1281 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1282 {
1283 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1284 __sk_stream_memory_free(sk, wake);
1285 }
1286
sk_stream_is_writeable(const struct sock * sk)1287 static inline bool sk_stream_is_writeable(const struct sock *sk)
1288 {
1289 return __sk_stream_is_writeable(sk, 0);
1290 }
1291
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1292 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1293 struct cgroup *ancestor)
1294 {
1295 #ifdef CONFIG_SOCK_CGROUP_DATA
1296 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1297 ancestor);
1298 #else
1299 return -ENOTSUPP;
1300 #endif
1301 }
1302
sk_has_memory_pressure(const struct sock * sk)1303 static inline bool sk_has_memory_pressure(const struct sock *sk)
1304 {
1305 return sk->sk_prot->memory_pressure != NULL;
1306 }
1307
sk_under_memory_pressure(const struct sock * sk)1308 static inline bool sk_under_memory_pressure(const struct sock *sk)
1309 {
1310 if (!sk->sk_prot->memory_pressure)
1311 return false;
1312
1313 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1314 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1315 return true;
1316
1317 return !!*sk->sk_prot->memory_pressure;
1318 }
1319
1320 static inline long
sk_memory_allocated(const struct sock * sk)1321 sk_memory_allocated(const struct sock *sk)
1322 {
1323 return atomic_long_read(sk->sk_prot->memory_allocated);
1324 }
1325
1326 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1327 sk_memory_allocated_add(struct sock *sk, int amt)
1328 {
1329 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1330 }
1331
1332 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1333 sk_memory_allocated_sub(struct sock *sk, int amt)
1334 {
1335 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1336 }
1337
sk_sockets_allocated_dec(struct sock * sk)1338 static inline void sk_sockets_allocated_dec(struct sock *sk)
1339 {
1340 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1341 }
1342
sk_sockets_allocated_inc(struct sock * sk)1343 static inline void sk_sockets_allocated_inc(struct sock *sk)
1344 {
1345 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1346 }
1347
1348 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1349 sk_sockets_allocated_read_positive(struct sock *sk)
1350 {
1351 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1352 }
1353
1354 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1355 proto_sockets_allocated_sum_positive(struct proto *prot)
1356 {
1357 return percpu_counter_sum_positive(prot->sockets_allocated);
1358 }
1359
1360 static inline long
proto_memory_allocated(struct proto * prot)1361 proto_memory_allocated(struct proto *prot)
1362 {
1363 return atomic_long_read(prot->memory_allocated);
1364 }
1365
1366 static inline bool
proto_memory_pressure(struct proto * prot)1367 proto_memory_pressure(struct proto *prot)
1368 {
1369 if (!prot->memory_pressure)
1370 return false;
1371 return !!*prot->memory_pressure;
1372 }
1373
1374
1375 #ifdef CONFIG_PROC_FS
1376 /* Called with local bh disabled */
1377 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1378 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1379 int sock_inuse_get(struct net *net);
1380 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1381 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1382 int inc)
1383 {
1384 }
1385 #endif
1386
1387
1388 /* With per-bucket locks this operation is not-atomic, so that
1389 * this version is not worse.
1390 */
__sk_prot_rehash(struct sock * sk)1391 static inline int __sk_prot_rehash(struct sock *sk)
1392 {
1393 sk->sk_prot->unhash(sk);
1394 return sk->sk_prot->hash(sk);
1395 }
1396
1397 /* About 10 seconds */
1398 #define SOCK_DESTROY_TIME (10*HZ)
1399
1400 /* Sockets 0-1023 can't be bound to unless you are superuser */
1401 #define PROT_SOCK 1024
1402
1403 #define SHUTDOWN_MASK 3
1404 #define RCV_SHUTDOWN 1
1405 #define SEND_SHUTDOWN 2
1406
1407 #define SOCK_SNDBUF_LOCK 1
1408 #define SOCK_RCVBUF_LOCK 2
1409 #define SOCK_BINDADDR_LOCK 4
1410 #define SOCK_BINDPORT_LOCK 8
1411
1412 struct socket_alloc {
1413 struct socket socket;
1414 struct inode vfs_inode;
1415 };
1416
SOCKET_I(struct inode * inode)1417 static inline struct socket *SOCKET_I(struct inode *inode)
1418 {
1419 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1420 }
1421
SOCK_INODE(struct socket * socket)1422 static inline struct inode *SOCK_INODE(struct socket *socket)
1423 {
1424 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1425 }
1426
1427 /*
1428 * Functions for memory accounting
1429 */
1430 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1431 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1432 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1433 void __sk_mem_reclaim(struct sock *sk, int amount);
1434
1435 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1436 * do not necessarily have 16x time more memory than 4KB ones.
1437 */
1438 #define SK_MEM_QUANTUM 4096
1439 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1440 #define SK_MEM_SEND 0
1441 #define SK_MEM_RECV 1
1442
1443 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1444 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1445 {
1446 long val = sk->sk_prot->sysctl_mem[index];
1447
1448 #if PAGE_SIZE > SK_MEM_QUANTUM
1449 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1450 #elif PAGE_SIZE < SK_MEM_QUANTUM
1451 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1452 #endif
1453 return val;
1454 }
1455
sk_mem_pages(int amt)1456 static inline int sk_mem_pages(int amt)
1457 {
1458 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1459 }
1460
sk_has_account(struct sock * sk)1461 static inline bool sk_has_account(struct sock *sk)
1462 {
1463 /* return true if protocol supports memory accounting */
1464 return !!sk->sk_prot->memory_allocated;
1465 }
1466
sk_wmem_schedule(struct sock * sk,int size)1467 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1468 {
1469 if (!sk_has_account(sk))
1470 return true;
1471 return size <= sk->sk_forward_alloc ||
1472 __sk_mem_schedule(sk, size, SK_MEM_SEND);
1473 }
1474
1475 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1476 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1477 {
1478 if (!sk_has_account(sk))
1479 return true;
1480 return size <= sk->sk_forward_alloc ||
1481 __sk_mem_schedule(sk, size, SK_MEM_RECV) ||
1482 skb_pfmemalloc(skb);
1483 }
1484
sk_mem_reclaim(struct sock * sk)1485 static inline void sk_mem_reclaim(struct sock *sk)
1486 {
1487 if (!sk_has_account(sk))
1488 return;
1489 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1490 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1491 }
1492
sk_mem_reclaim_partial(struct sock * sk)1493 static inline void sk_mem_reclaim_partial(struct sock *sk)
1494 {
1495 if (!sk_has_account(sk))
1496 return;
1497 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1498 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1499 }
1500
sk_mem_charge(struct sock * sk,int size)1501 static inline void sk_mem_charge(struct sock *sk, int size)
1502 {
1503 if (!sk_has_account(sk))
1504 return;
1505 sk->sk_forward_alloc -= size;
1506 }
1507
sk_mem_uncharge(struct sock * sk,int size)1508 static inline void sk_mem_uncharge(struct sock *sk, int size)
1509 {
1510 if (!sk_has_account(sk))
1511 return;
1512 sk->sk_forward_alloc += size;
1513
1514 /* Avoid a possible overflow.
1515 * TCP send queues can make this happen, if sk_mem_reclaim()
1516 * is not called and more than 2 GBytes are released at once.
1517 *
1518 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1519 * no need to hold that much forward allocation anyway.
1520 */
1521 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1522 __sk_mem_reclaim(sk, 1 << 20);
1523 }
1524
1525 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1526 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1527 {
1528 sk_wmem_queued_add(sk, -skb->truesize);
1529 sk_mem_uncharge(sk, skb->truesize);
1530 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1531 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1532 skb_ext_reset(skb);
1533 skb_zcopy_clear(skb, true);
1534 sk->sk_tx_skb_cache = skb;
1535 return;
1536 }
1537 __kfree_skb(skb);
1538 }
1539
sock_release_ownership(struct sock * sk)1540 static inline void sock_release_ownership(struct sock *sk)
1541 {
1542 if (sk->sk_lock.owned) {
1543 sk->sk_lock.owned = 0;
1544
1545 /* The sk_lock has mutex_unlock() semantics: */
1546 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1547 }
1548 }
1549
1550 /*
1551 * Macro so as to not evaluate some arguments when
1552 * lockdep is not enabled.
1553 *
1554 * Mark both the sk_lock and the sk_lock.slock as a
1555 * per-address-family lock class.
1556 */
1557 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1558 do { \
1559 sk->sk_lock.owned = 0; \
1560 init_waitqueue_head(&sk->sk_lock.wq); \
1561 spin_lock_init(&(sk)->sk_lock.slock); \
1562 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1563 sizeof((sk)->sk_lock)); \
1564 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1565 (skey), (sname)); \
1566 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1567 } while (0)
1568
1569 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1570 static inline bool lockdep_sock_is_held(const struct sock *sk)
1571 {
1572 return lockdep_is_held(&sk->sk_lock) ||
1573 lockdep_is_held(&sk->sk_lock.slock);
1574 }
1575 #endif
1576
1577 void lock_sock_nested(struct sock *sk, int subclass);
1578
lock_sock(struct sock * sk)1579 static inline void lock_sock(struct sock *sk)
1580 {
1581 lock_sock_nested(sk, 0);
1582 }
1583
1584 void __release_sock(struct sock *sk);
1585 void release_sock(struct sock *sk);
1586
1587 /* BH context may only use the following locking interface. */
1588 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1589 #define bh_lock_sock_nested(__sk) \
1590 spin_lock_nested(&((__sk)->sk_lock.slock), \
1591 SINGLE_DEPTH_NESTING)
1592 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1593
1594 bool lock_sock_fast(struct sock *sk);
1595 /**
1596 * unlock_sock_fast - complement of lock_sock_fast
1597 * @sk: socket
1598 * @slow: slow mode
1599 *
1600 * fast unlock socket for user context.
1601 * If slow mode is on, we call regular release_sock()
1602 */
unlock_sock_fast(struct sock * sk,bool slow)1603 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1604 {
1605 if (slow)
1606 release_sock(sk);
1607 else
1608 spin_unlock_bh(&sk->sk_lock.slock);
1609 }
1610
1611 /* Used by processes to "lock" a socket state, so that
1612 * interrupts and bottom half handlers won't change it
1613 * from under us. It essentially blocks any incoming
1614 * packets, so that we won't get any new data or any
1615 * packets that change the state of the socket.
1616 *
1617 * While locked, BH processing will add new packets to
1618 * the backlog queue. This queue is processed by the
1619 * owner of the socket lock right before it is released.
1620 *
1621 * Since ~2.3.5 it is also exclusive sleep lock serializing
1622 * accesses from user process context.
1623 */
1624
sock_owned_by_me(const struct sock * sk)1625 static inline void sock_owned_by_me(const struct sock *sk)
1626 {
1627 #ifdef CONFIG_LOCKDEP
1628 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1629 #endif
1630 }
1631
sock_owned_by_user(const struct sock * sk)1632 static inline bool sock_owned_by_user(const struct sock *sk)
1633 {
1634 sock_owned_by_me(sk);
1635 return sk->sk_lock.owned;
1636 }
1637
sock_owned_by_user_nocheck(const struct sock * sk)1638 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1639 {
1640 return sk->sk_lock.owned;
1641 }
1642
1643 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1644 static inline bool sock_allow_reclassification(const struct sock *csk)
1645 {
1646 struct sock *sk = (struct sock *)csk;
1647
1648 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1649 }
1650
1651 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1652 struct proto *prot, int kern);
1653 void sk_free(struct sock *sk);
1654 void sk_destruct(struct sock *sk);
1655 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1656 void sk_free_unlock_clone(struct sock *sk);
1657
1658 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1659 gfp_t priority);
1660 void __sock_wfree(struct sk_buff *skb);
1661 void sock_wfree(struct sk_buff *skb);
1662 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1663 gfp_t priority);
1664 void skb_orphan_partial(struct sk_buff *skb);
1665 void sock_rfree(struct sk_buff *skb);
1666 void sock_efree(struct sk_buff *skb);
1667 #ifdef CONFIG_INET
1668 void sock_edemux(struct sk_buff *skb);
1669 void sock_pfree(struct sk_buff *skb);
1670 #else
1671 #define sock_edemux sock_efree
1672 #endif
1673
1674 int sock_setsockopt(struct socket *sock, int level, int op,
1675 sockptr_t optval, unsigned int optlen);
1676
1677 int sock_getsockopt(struct socket *sock, int level, int op,
1678 char __user *optval, int __user *optlen);
1679 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1680 bool timeval, bool time32);
1681 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1682 int noblock, int *errcode);
1683 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1684 unsigned long data_len, int noblock,
1685 int *errcode, int max_page_order);
1686 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1687 void sock_kfree_s(struct sock *sk, void *mem, int size);
1688 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1689 void sk_send_sigurg(struct sock *sk);
1690
1691 struct sockcm_cookie {
1692 u64 transmit_time;
1693 u32 mark;
1694 u16 tsflags;
1695 };
1696
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1697 static inline void sockcm_init(struct sockcm_cookie *sockc,
1698 const struct sock *sk)
1699 {
1700 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1701 }
1702
1703 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1704 struct sockcm_cookie *sockc);
1705 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1706 struct sockcm_cookie *sockc);
1707
1708 /*
1709 * Functions to fill in entries in struct proto_ops when a protocol
1710 * does not implement a particular function.
1711 */
1712 int sock_no_bind(struct socket *, struct sockaddr *, int);
1713 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1714 int sock_no_socketpair(struct socket *, struct socket *);
1715 int sock_no_accept(struct socket *, struct socket *, int, bool);
1716 int sock_no_getname(struct socket *, struct sockaddr *, int);
1717 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1718 int sock_no_listen(struct socket *, int);
1719 int sock_no_shutdown(struct socket *, int);
1720 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1721 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1722 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1723 int sock_no_mmap(struct file *file, struct socket *sock,
1724 struct vm_area_struct *vma);
1725 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1726 size_t size, int flags);
1727 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1728 int offset, size_t size, int flags);
1729
1730 /*
1731 * Functions to fill in entries in struct proto_ops when a protocol
1732 * uses the inet style.
1733 */
1734 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1735 char __user *optval, int __user *optlen);
1736 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1737 int flags);
1738 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1739 sockptr_t optval, unsigned int optlen);
1740
1741 void sk_common_release(struct sock *sk);
1742
1743 /*
1744 * Default socket callbacks and setup code
1745 */
1746
1747 /* Initialise core socket variables */
1748 void sock_init_data(struct socket *sock, struct sock *sk);
1749
1750 /*
1751 * Socket reference counting postulates.
1752 *
1753 * * Each user of socket SHOULD hold a reference count.
1754 * * Each access point to socket (an hash table bucket, reference from a list,
1755 * running timer, skb in flight MUST hold a reference count.
1756 * * When reference count hits 0, it means it will never increase back.
1757 * * When reference count hits 0, it means that no references from
1758 * outside exist to this socket and current process on current CPU
1759 * is last user and may/should destroy this socket.
1760 * * sk_free is called from any context: process, BH, IRQ. When
1761 * it is called, socket has no references from outside -> sk_free
1762 * may release descendant resources allocated by the socket, but
1763 * to the time when it is called, socket is NOT referenced by any
1764 * hash tables, lists etc.
1765 * * Packets, delivered from outside (from network or from another process)
1766 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1767 * when they sit in queue. Otherwise, packets will leak to hole, when
1768 * socket is looked up by one cpu and unhasing is made by another CPU.
1769 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1770 * (leak to backlog). Packet socket does all the processing inside
1771 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1772 * use separate SMP lock, so that they are prone too.
1773 */
1774
1775 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1776 static inline void sock_put(struct sock *sk)
1777 {
1778 if (refcount_dec_and_test(&sk->sk_refcnt))
1779 sk_free(sk);
1780 }
1781 /* Generic version of sock_put(), dealing with all sockets
1782 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1783 */
1784 void sock_gen_put(struct sock *sk);
1785
1786 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1787 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1788 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1789 const int nested)
1790 {
1791 return __sk_receive_skb(sk, skb, nested, 1, true);
1792 }
1793
sk_tx_queue_set(struct sock * sk,int tx_queue)1794 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1795 {
1796 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1797 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1798 return;
1799 sk->sk_tx_queue_mapping = tx_queue;
1800 }
1801
1802 #define NO_QUEUE_MAPPING USHRT_MAX
1803
sk_tx_queue_clear(struct sock * sk)1804 static inline void sk_tx_queue_clear(struct sock *sk)
1805 {
1806 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1807 }
1808
sk_tx_queue_get(const struct sock * sk)1809 static inline int sk_tx_queue_get(const struct sock *sk)
1810 {
1811 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1812 return sk->sk_tx_queue_mapping;
1813
1814 return -1;
1815 }
1816
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1817 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1818 {
1819 #ifdef CONFIG_XPS
1820 if (skb_rx_queue_recorded(skb)) {
1821 u16 rx_queue = skb_get_rx_queue(skb);
1822
1823 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1824 return;
1825
1826 sk->sk_rx_queue_mapping = rx_queue;
1827 }
1828 #endif
1829 }
1830
sk_rx_queue_clear(struct sock * sk)1831 static inline void sk_rx_queue_clear(struct sock *sk)
1832 {
1833 #ifdef CONFIG_XPS
1834 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1835 #endif
1836 }
1837
1838 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1839 static inline int sk_rx_queue_get(const struct sock *sk)
1840 {
1841 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1842 return sk->sk_rx_queue_mapping;
1843
1844 return -1;
1845 }
1846 #endif
1847
sk_set_socket(struct sock * sk,struct socket * sock)1848 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1849 {
1850 sk->sk_socket = sock;
1851 }
1852
sk_sleep(struct sock * sk)1853 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1854 {
1855 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1856 return &rcu_dereference_raw(sk->sk_wq)->wait;
1857 }
1858 /* Detach socket from process context.
1859 * Announce socket dead, detach it from wait queue and inode.
1860 * Note that parent inode held reference count on this struct sock,
1861 * we do not release it in this function, because protocol
1862 * probably wants some additional cleanups or even continuing
1863 * to work with this socket (TCP).
1864 */
sock_orphan(struct sock * sk)1865 static inline void sock_orphan(struct sock *sk)
1866 {
1867 write_lock_bh(&sk->sk_callback_lock);
1868 sock_set_flag(sk, SOCK_DEAD);
1869 sk_set_socket(sk, NULL);
1870 sk->sk_wq = NULL;
1871 write_unlock_bh(&sk->sk_callback_lock);
1872 }
1873
sock_graft(struct sock * sk,struct socket * parent)1874 static inline void sock_graft(struct sock *sk, struct socket *parent)
1875 {
1876 WARN_ON(parent->sk);
1877 write_lock_bh(&sk->sk_callback_lock);
1878 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1879 parent->sk = sk;
1880 sk_set_socket(sk, parent);
1881 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1882 security_sock_graft(sk, parent);
1883 write_unlock_bh(&sk->sk_callback_lock);
1884 }
1885
1886 kuid_t sock_i_uid(struct sock *sk);
1887 unsigned long sock_i_ino(struct sock *sk);
1888
sock_net_uid(const struct net * net,const struct sock * sk)1889 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1890 {
1891 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1892 }
1893
net_tx_rndhash(void)1894 static inline u32 net_tx_rndhash(void)
1895 {
1896 u32 v = prandom_u32();
1897
1898 return v ?: 1;
1899 }
1900
sk_set_txhash(struct sock * sk)1901 static inline void sk_set_txhash(struct sock *sk)
1902 {
1903 sk->sk_txhash = net_tx_rndhash();
1904 }
1905
sk_rethink_txhash(struct sock * sk)1906 static inline void sk_rethink_txhash(struct sock *sk)
1907 {
1908 if (sk->sk_txhash)
1909 sk_set_txhash(sk);
1910 }
1911
1912 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1913 __sk_dst_get(struct sock *sk)
1914 {
1915 return rcu_dereference_check(sk->sk_dst_cache,
1916 lockdep_sock_is_held(sk));
1917 }
1918
1919 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1920 sk_dst_get(struct sock *sk)
1921 {
1922 struct dst_entry *dst;
1923
1924 rcu_read_lock();
1925 dst = rcu_dereference(sk->sk_dst_cache);
1926 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1927 dst = NULL;
1928 rcu_read_unlock();
1929 return dst;
1930 }
1931
dst_negative_advice(struct sock * sk)1932 static inline void dst_negative_advice(struct sock *sk)
1933 {
1934 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1935
1936 sk_rethink_txhash(sk);
1937
1938 if (dst && dst->ops->negative_advice) {
1939 ndst = dst->ops->negative_advice(dst);
1940
1941 if (ndst != dst) {
1942 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1943 sk_tx_queue_clear(sk);
1944 sk->sk_dst_pending_confirm = 0;
1945 }
1946 }
1947 }
1948
1949 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)1950 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1951 {
1952 struct dst_entry *old_dst;
1953
1954 sk_tx_queue_clear(sk);
1955 sk->sk_dst_pending_confirm = 0;
1956 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
1957 lockdep_sock_is_held(sk));
1958 rcu_assign_pointer(sk->sk_dst_cache, dst);
1959 dst_release(old_dst);
1960 }
1961
1962 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)1963 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1964 {
1965 struct dst_entry *old_dst;
1966
1967 sk_tx_queue_clear(sk);
1968 sk->sk_dst_pending_confirm = 0;
1969 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
1970 dst_release(old_dst);
1971 }
1972
1973 static inline void
__sk_dst_reset(struct sock * sk)1974 __sk_dst_reset(struct sock *sk)
1975 {
1976 __sk_dst_set(sk, NULL);
1977 }
1978
1979 static inline void
sk_dst_reset(struct sock * sk)1980 sk_dst_reset(struct sock *sk)
1981 {
1982 sk_dst_set(sk, NULL);
1983 }
1984
1985 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1986
1987 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1988
sk_dst_confirm(struct sock * sk)1989 static inline void sk_dst_confirm(struct sock *sk)
1990 {
1991 if (!READ_ONCE(sk->sk_dst_pending_confirm))
1992 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
1993 }
1994
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)1995 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
1996 {
1997 if (skb_get_dst_pending_confirm(skb)) {
1998 struct sock *sk = skb->sk;
1999 unsigned long now = jiffies;
2000
2001 /* avoid dirtying neighbour */
2002 if (READ_ONCE(n->confirmed) != now)
2003 WRITE_ONCE(n->confirmed, now);
2004 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2005 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2006 }
2007 }
2008
2009 bool sk_mc_loop(struct sock *sk);
2010
sk_can_gso(const struct sock * sk)2011 static inline bool sk_can_gso(const struct sock *sk)
2012 {
2013 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2014 }
2015
2016 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2017
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2018 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2019 {
2020 sk->sk_route_nocaps |= flags;
2021 sk->sk_route_caps &= ~flags;
2022 }
2023
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2024 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2025 struct iov_iter *from, char *to,
2026 int copy, int offset)
2027 {
2028 if (skb->ip_summed == CHECKSUM_NONE) {
2029 __wsum csum = 0;
2030 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2031 return -EFAULT;
2032 skb->csum = csum_block_add(skb->csum, csum, offset);
2033 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2034 if (!copy_from_iter_full_nocache(to, copy, from))
2035 return -EFAULT;
2036 } else if (!copy_from_iter_full(to, copy, from))
2037 return -EFAULT;
2038
2039 return 0;
2040 }
2041
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2042 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2043 struct iov_iter *from, int copy)
2044 {
2045 int err, offset = skb->len;
2046
2047 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2048 copy, offset);
2049 if (err)
2050 __skb_trim(skb, offset);
2051
2052 return err;
2053 }
2054
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2055 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2056 struct sk_buff *skb,
2057 struct page *page,
2058 int off, int copy)
2059 {
2060 int err;
2061
2062 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2063 copy, skb->len);
2064 if (err)
2065 return err;
2066
2067 skb->len += copy;
2068 skb->data_len += copy;
2069 skb->truesize += copy;
2070 sk_wmem_queued_add(sk, copy);
2071 sk_mem_charge(sk, copy);
2072 return 0;
2073 }
2074
2075 /**
2076 * sk_wmem_alloc_get - returns write allocations
2077 * @sk: socket
2078 *
2079 * Return: sk_wmem_alloc minus initial offset of one
2080 */
sk_wmem_alloc_get(const struct sock * sk)2081 static inline int sk_wmem_alloc_get(const struct sock *sk)
2082 {
2083 return refcount_read(&sk->sk_wmem_alloc) - 1;
2084 }
2085
2086 /**
2087 * sk_rmem_alloc_get - returns read allocations
2088 * @sk: socket
2089 *
2090 * Return: sk_rmem_alloc
2091 */
sk_rmem_alloc_get(const struct sock * sk)2092 static inline int sk_rmem_alloc_get(const struct sock *sk)
2093 {
2094 return atomic_read(&sk->sk_rmem_alloc);
2095 }
2096
2097 /**
2098 * sk_has_allocations - check if allocations are outstanding
2099 * @sk: socket
2100 *
2101 * Return: true if socket has write or read allocations
2102 */
sk_has_allocations(const struct sock * sk)2103 static inline bool sk_has_allocations(const struct sock *sk)
2104 {
2105 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2106 }
2107
2108 /**
2109 * skwq_has_sleeper - check if there are any waiting processes
2110 * @wq: struct socket_wq
2111 *
2112 * Return: true if socket_wq has waiting processes
2113 *
2114 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2115 * barrier call. They were added due to the race found within the tcp code.
2116 *
2117 * Consider following tcp code paths::
2118 *
2119 * CPU1 CPU2
2120 * sys_select receive packet
2121 * ... ...
2122 * __add_wait_queue update tp->rcv_nxt
2123 * ... ...
2124 * tp->rcv_nxt check sock_def_readable
2125 * ... {
2126 * schedule rcu_read_lock();
2127 * wq = rcu_dereference(sk->sk_wq);
2128 * if (wq && waitqueue_active(&wq->wait))
2129 * wake_up_interruptible(&wq->wait)
2130 * ...
2131 * }
2132 *
2133 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2134 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2135 * could then endup calling schedule and sleep forever if there are no more
2136 * data on the socket.
2137 *
2138 */
skwq_has_sleeper(struct socket_wq * wq)2139 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2140 {
2141 return wq && wq_has_sleeper(&wq->wait);
2142 }
2143
2144 /**
2145 * sock_poll_wait - place memory barrier behind the poll_wait call.
2146 * @filp: file
2147 * @sock: socket to wait on
2148 * @p: poll_table
2149 *
2150 * See the comments in the wq_has_sleeper function.
2151 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2152 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2153 poll_table *p)
2154 {
2155 if (!poll_does_not_wait(p)) {
2156 poll_wait(filp, &sock->wq.wait, p);
2157 /* We need to be sure we are in sync with the
2158 * socket flags modification.
2159 *
2160 * This memory barrier is paired in the wq_has_sleeper.
2161 */
2162 smp_mb();
2163 }
2164 }
2165
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2166 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2167 {
2168 if (sk->sk_txhash) {
2169 skb->l4_hash = 1;
2170 skb->hash = sk->sk_txhash;
2171 }
2172 }
2173
2174 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2175
2176 /*
2177 * Queue a received datagram if it will fit. Stream and sequenced
2178 * protocols can't normally use this as they need to fit buffers in
2179 * and play with them.
2180 *
2181 * Inlined as it's very short and called for pretty much every
2182 * packet ever received.
2183 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2184 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2185 {
2186 skb_orphan(skb);
2187 skb->sk = sk;
2188 skb->destructor = sock_rfree;
2189 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2190 sk_mem_charge(sk, skb->truesize);
2191 }
2192
2193 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2194 unsigned long expires);
2195
2196 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2197
2198 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2199
2200 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2201 struct sk_buff *skb, unsigned int flags,
2202 void (*destructor)(struct sock *sk,
2203 struct sk_buff *skb));
2204 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2205 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2206
2207 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2208 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2209
2210 /*
2211 * Recover an error report and clear atomically
2212 */
2213
sock_error(struct sock * sk)2214 static inline int sock_error(struct sock *sk)
2215 {
2216 int err;
2217 if (likely(!sk->sk_err))
2218 return 0;
2219 err = xchg(&sk->sk_err, 0);
2220 return -err;
2221 }
2222
sock_wspace(struct sock * sk)2223 static inline unsigned long sock_wspace(struct sock *sk)
2224 {
2225 int amt = 0;
2226
2227 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2228 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2229 if (amt < 0)
2230 amt = 0;
2231 }
2232 return amt;
2233 }
2234
2235 /* Note:
2236 * We use sk->sk_wq_raw, from contexts knowing this
2237 * pointer is not NULL and cannot disappear/change.
2238 */
sk_set_bit(int nr,struct sock * sk)2239 static inline void sk_set_bit(int nr, struct sock *sk)
2240 {
2241 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2242 !sock_flag(sk, SOCK_FASYNC))
2243 return;
2244
2245 set_bit(nr, &sk->sk_wq_raw->flags);
2246 }
2247
sk_clear_bit(int nr,struct sock * sk)2248 static inline void sk_clear_bit(int nr, struct sock *sk)
2249 {
2250 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2251 !sock_flag(sk, SOCK_FASYNC))
2252 return;
2253
2254 clear_bit(nr, &sk->sk_wq_raw->flags);
2255 }
2256
sk_wake_async(const struct sock * sk,int how,int band)2257 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2258 {
2259 if (sock_flag(sk, SOCK_FASYNC)) {
2260 rcu_read_lock();
2261 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2262 rcu_read_unlock();
2263 }
2264 }
2265
2266 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2267 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2268 * Note: for send buffers, TCP works better if we can build two skbs at
2269 * minimum.
2270 */
2271 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2272
2273 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2274 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2275
sk_stream_moderate_sndbuf(struct sock * sk)2276 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2277 {
2278 u32 val;
2279
2280 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2281 return;
2282
2283 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2284
2285 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2286 }
2287
2288 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2289 bool force_schedule);
2290
2291 /**
2292 * sk_page_frag - return an appropriate page_frag
2293 * @sk: socket
2294 *
2295 * Use the per task page_frag instead of the per socket one for
2296 * optimization when we know that we're in the normal context and owns
2297 * everything that's associated with %current.
2298 *
2299 * gfpflags_allow_blocking() isn't enough here as direct reclaim may nest
2300 * inside other socket operations and end up recursing into sk_page_frag()
2301 * while it's already in use.
2302 *
2303 * Return: a per task page_frag if context allows that,
2304 * otherwise a per socket one.
2305 */
sk_page_frag(struct sock * sk)2306 static inline struct page_frag *sk_page_frag(struct sock *sk)
2307 {
2308 if (gfpflags_normal_context(sk->sk_allocation))
2309 return ¤t->task_frag;
2310
2311 return &sk->sk_frag;
2312 }
2313
2314 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2315
2316 /*
2317 * Default write policy as shown to user space via poll/select/SIGIO
2318 */
sock_writeable(const struct sock * sk)2319 static inline bool sock_writeable(const struct sock *sk)
2320 {
2321 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2322 }
2323
gfp_any(void)2324 static inline gfp_t gfp_any(void)
2325 {
2326 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2327 }
2328
sock_rcvtimeo(const struct sock * sk,bool noblock)2329 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2330 {
2331 return noblock ? 0 : sk->sk_rcvtimeo;
2332 }
2333
sock_sndtimeo(const struct sock * sk,bool noblock)2334 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2335 {
2336 return noblock ? 0 : sk->sk_sndtimeo;
2337 }
2338
sock_rcvlowat(const struct sock * sk,int waitall,int len)2339 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2340 {
2341 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2342
2343 return v ?: 1;
2344 }
2345
2346 /* Alas, with timeout socket operations are not restartable.
2347 * Compare this to poll().
2348 */
sock_intr_errno(long timeo)2349 static inline int sock_intr_errno(long timeo)
2350 {
2351 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2352 }
2353
2354 struct sock_skb_cb {
2355 u32 dropcount;
2356 };
2357
2358 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2359 * using skb->cb[] would keep using it directly and utilize its
2360 * alignement guarantee.
2361 */
2362 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2363 sizeof(struct sock_skb_cb)))
2364
2365 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2366 SOCK_SKB_CB_OFFSET))
2367
2368 #define sock_skb_cb_check_size(size) \
2369 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2370
2371 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2372 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2373 {
2374 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2375 atomic_read(&sk->sk_drops) : 0;
2376 }
2377
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2378 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2379 {
2380 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2381
2382 atomic_add(segs, &sk->sk_drops);
2383 }
2384
sock_read_timestamp(struct sock * sk)2385 static inline ktime_t sock_read_timestamp(struct sock *sk)
2386 {
2387 #if BITS_PER_LONG==32
2388 unsigned int seq;
2389 ktime_t kt;
2390
2391 do {
2392 seq = read_seqbegin(&sk->sk_stamp_seq);
2393 kt = sk->sk_stamp;
2394 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2395
2396 return kt;
2397 #else
2398 return READ_ONCE(sk->sk_stamp);
2399 #endif
2400 }
2401
sock_write_timestamp(struct sock * sk,ktime_t kt)2402 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2403 {
2404 #if BITS_PER_LONG==32
2405 write_seqlock(&sk->sk_stamp_seq);
2406 sk->sk_stamp = kt;
2407 write_sequnlock(&sk->sk_stamp_seq);
2408 #else
2409 WRITE_ONCE(sk->sk_stamp, kt);
2410 #endif
2411 }
2412
2413 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2414 struct sk_buff *skb);
2415 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2416 struct sk_buff *skb);
2417
2418 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2419 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2420 {
2421 ktime_t kt = skb->tstamp;
2422 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2423
2424 /*
2425 * generate control messages if
2426 * - receive time stamping in software requested
2427 * - software time stamp available and wanted
2428 * - hardware time stamps available and wanted
2429 */
2430 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2431 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2432 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2433 (hwtstamps->hwtstamp &&
2434 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2435 __sock_recv_timestamp(msg, sk, skb);
2436 else
2437 sock_write_timestamp(sk, kt);
2438
2439 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2440 __sock_recv_wifi_status(msg, sk, skb);
2441 }
2442
2443 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2444 struct sk_buff *skb);
2445
2446 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2447 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2448 struct sk_buff *skb)
2449 {
2450 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2451 (1UL << SOCK_RCVTSTAMP))
2452 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2453 SOF_TIMESTAMPING_RAW_HARDWARE)
2454
2455 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2456 __sock_recv_ts_and_drops(msg, sk, skb);
2457 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2458 sock_write_timestamp(sk, skb->tstamp);
2459 else if (unlikely(sk->sk_stamp == SK_DEFAULT_STAMP))
2460 sock_write_timestamp(sk, 0);
2461 }
2462
2463 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2464
2465 /**
2466 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2467 * @sk: socket sending this packet
2468 * @tsflags: timestamping flags to use
2469 * @tx_flags: completed with instructions for time stamping
2470 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2471 *
2472 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2473 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2474 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2475 __u8 *tx_flags, __u32 *tskey)
2476 {
2477 if (unlikely(tsflags)) {
2478 __sock_tx_timestamp(tsflags, tx_flags);
2479 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2480 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2481 *tskey = sk->sk_tskey++;
2482 }
2483 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2484 *tx_flags |= SKBTX_WIFI_STATUS;
2485 }
2486
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2487 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2488 __u8 *tx_flags)
2489 {
2490 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2491 }
2492
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2493 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2494 {
2495 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2496 &skb_shinfo(skb)->tskey);
2497 }
2498
2499 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2500 /**
2501 * sk_eat_skb - Release a skb if it is no longer needed
2502 * @sk: socket to eat this skb from
2503 * @skb: socket buffer to eat
2504 *
2505 * This routine must be called with interrupts disabled or with the socket
2506 * locked so that the sk_buff queue operation is ok.
2507 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2508 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2509 {
2510 __skb_unlink(skb, &sk->sk_receive_queue);
2511 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2512 !sk->sk_rx_skb_cache) {
2513 sk->sk_rx_skb_cache = skb;
2514 skb_orphan(skb);
2515 return;
2516 }
2517 __kfree_skb(skb);
2518 }
2519
2520 static inline
sock_net(const struct sock * sk)2521 struct net *sock_net(const struct sock *sk)
2522 {
2523 return read_pnet(&sk->sk_net);
2524 }
2525
2526 static inline
sock_net_set(struct sock * sk,struct net * net)2527 void sock_net_set(struct sock *sk, struct net *net)
2528 {
2529 write_pnet(&sk->sk_net, net);
2530 }
2531
2532 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2533 skb_sk_is_prefetched(struct sk_buff *skb)
2534 {
2535 #ifdef CONFIG_INET
2536 return skb->destructor == sock_pfree;
2537 #else
2538 return false;
2539 #endif /* CONFIG_INET */
2540 }
2541
2542 /* This helper checks if a socket is a full socket,
2543 * ie _not_ a timewait or request socket.
2544 */
sk_fullsock(const struct sock * sk)2545 static inline bool sk_fullsock(const struct sock *sk)
2546 {
2547 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2548 }
2549
2550 static inline bool
sk_is_refcounted(struct sock * sk)2551 sk_is_refcounted(struct sock *sk)
2552 {
2553 /* Only full sockets have sk->sk_flags. */
2554 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2555 }
2556
2557 /**
2558 * skb_steal_sock - steal a socket from an sk_buff
2559 * @skb: sk_buff to steal the socket from
2560 * @refcounted: is set to true if the socket is reference-counted
2561 */
2562 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2563 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2564 {
2565 if (skb->sk) {
2566 struct sock *sk = skb->sk;
2567
2568 *refcounted = true;
2569 if (skb_sk_is_prefetched(skb))
2570 *refcounted = sk_is_refcounted(sk);
2571 skb->destructor = NULL;
2572 skb->sk = NULL;
2573 return sk;
2574 }
2575 *refcounted = false;
2576 return NULL;
2577 }
2578
2579 /* Checks if this SKB belongs to an HW offloaded socket
2580 * and whether any SW fallbacks are required based on dev.
2581 * Check decrypted mark in case skb_orphan() cleared socket.
2582 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2583 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2584 struct net_device *dev)
2585 {
2586 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2587 struct sock *sk = skb->sk;
2588
2589 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2590 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2591 #ifdef CONFIG_TLS_DEVICE
2592 } else if (unlikely(skb->decrypted)) {
2593 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2594 kfree_skb(skb);
2595 skb = NULL;
2596 #endif
2597 }
2598 #endif
2599
2600 return skb;
2601 }
2602
2603 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2604 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2605 */
sk_listener(const struct sock * sk)2606 static inline bool sk_listener(const struct sock *sk)
2607 {
2608 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2609 }
2610
2611 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2612 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2613 int type);
2614
2615 bool sk_ns_capable(const struct sock *sk,
2616 struct user_namespace *user_ns, int cap);
2617 bool sk_capable(const struct sock *sk, int cap);
2618 bool sk_net_capable(const struct sock *sk, int cap);
2619
2620 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2621
2622 /* Take into consideration the size of the struct sk_buff overhead in the
2623 * determination of these values, since that is non-constant across
2624 * platforms. This makes socket queueing behavior and performance
2625 * not depend upon such differences.
2626 */
2627 #define _SK_MEM_PACKETS 256
2628 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2629 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2630 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2631
2632 extern __u32 sysctl_wmem_max;
2633 extern __u32 sysctl_rmem_max;
2634
2635 extern int sysctl_tstamp_allow_data;
2636 extern int sysctl_optmem_max;
2637
2638 extern __u32 sysctl_wmem_default;
2639 extern __u32 sysctl_rmem_default;
2640
2641 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2642
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2643 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2644 {
2645 /* Does this proto have per netns sysctl_wmem ? */
2646 if (proto->sysctl_wmem_offset)
2647 return *(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset);
2648
2649 return *proto->sysctl_wmem;
2650 }
2651
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2652 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2653 {
2654 /* Does this proto have per netns sysctl_rmem ? */
2655 if (proto->sysctl_rmem_offset)
2656 return *(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset);
2657
2658 return *proto->sysctl_rmem;
2659 }
2660
2661 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2662 * Some wifi drivers need to tweak it to get more chunks.
2663 * They can use this helper from their ndo_start_xmit()
2664 */
sk_pacing_shift_update(struct sock * sk,int val)2665 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2666 {
2667 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2668 return;
2669 WRITE_ONCE(sk->sk_pacing_shift, val);
2670 }
2671
2672 /* if a socket is bound to a device, check that the given device
2673 * index is either the same or that the socket is bound to an L3
2674 * master device and the given device index is also enslaved to
2675 * that L3 master
2676 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2677 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2678 {
2679 int mdif;
2680
2681 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2682 return true;
2683
2684 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2685 if (mdif && mdif == sk->sk_bound_dev_if)
2686 return true;
2687
2688 return false;
2689 }
2690
2691 void sock_def_readable(struct sock *sk);
2692
2693 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2694 void sock_enable_timestamps(struct sock *sk);
2695 void sock_no_linger(struct sock *sk);
2696 void sock_set_keepalive(struct sock *sk);
2697 void sock_set_priority(struct sock *sk, u32 priority);
2698 void sock_set_rcvbuf(struct sock *sk, int val);
2699 void sock_set_mark(struct sock *sk, u32 val);
2700 void sock_set_reuseaddr(struct sock *sk);
2701 void sock_set_reuseport(struct sock *sk);
2702 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2703
2704 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2705
2706 #endif /* _SOCK_H */
2707