1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/iversion.h>
19 #include <linux/writeback.h>
20 #include <linux/buffer_head.h> /* sync_mapping_buffers */
21 #include <linux/fs_context.h>
22 #include <linux/pseudo_fs.h>
23 #include <linux/fsnotify.h>
24 #include <linux/unicode.h>
25 #include <linux/fscrypt.h>
26
27 #include <linux/uaccess.h>
28
29 #include "internal.h"
30
simple_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path,
32 struct kstat *stat, u32 request_mask,
33 unsigned int query_flags)
34 {
35 struct inode *inode = d_inode(path->dentry);
36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
38 return 0;
39 }
40 EXPORT_SYMBOL(simple_getattr);
41
simple_statfs(struct dentry * dentry,struct kstatfs * buf)42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
43 {
44 buf->f_type = dentry->d_sb->s_magic;
45 buf->f_bsize = PAGE_SIZE;
46 buf->f_namelen = NAME_MAX;
47 return 0;
48 }
49 EXPORT_SYMBOL(simple_statfs);
50
51 /*
52 * Retaining negative dentries for an in-memory filesystem just wastes
53 * memory and lookup time: arrange for them to be deleted immediately.
54 */
always_delete_dentry(const struct dentry * dentry)55 int always_delete_dentry(const struct dentry *dentry)
56 {
57 return 1;
58 }
59 EXPORT_SYMBOL(always_delete_dentry);
60
61 const struct dentry_operations simple_dentry_operations = {
62 .d_delete = always_delete_dentry,
63 };
64 EXPORT_SYMBOL(simple_dentry_operations);
65
66 /*
67 * Lookup the data. This is trivial - if the dentry didn't already
68 * exist, we know it is negative. Set d_op to delete negative dentries.
69 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
71 {
72 if (dentry->d_name.len > NAME_MAX)
73 return ERR_PTR(-ENAMETOOLONG);
74 if (!dentry->d_sb->s_d_op)
75 d_set_d_op(dentry, &simple_dentry_operations);
76 d_add(dentry, NULL);
77 return NULL;
78 }
79 EXPORT_SYMBOL(simple_lookup);
80
dcache_dir_open(struct inode * inode,struct file * file)81 int dcache_dir_open(struct inode *inode, struct file *file)
82 {
83 file->private_data = d_alloc_cursor(file->f_path.dentry);
84
85 return file->private_data ? 0 : -ENOMEM;
86 }
87 EXPORT_SYMBOL(dcache_dir_open);
88
dcache_dir_close(struct inode * inode,struct file * file)89 int dcache_dir_close(struct inode *inode, struct file *file)
90 {
91 dput(file->private_data);
92 return 0;
93 }
94 EXPORT_SYMBOL(dcache_dir_close);
95
96 /* parent is locked at least shared */
97 /*
98 * Returns an element of siblings' list.
99 * We are looking for <count>th positive after <p>; if
100 * found, dentry is grabbed and returned to caller.
101 * If no such element exists, NULL is returned.
102 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)103 static struct dentry *scan_positives(struct dentry *cursor,
104 struct list_head *p,
105 loff_t count,
106 struct dentry *last)
107 {
108 struct dentry *dentry = cursor->d_parent, *found = NULL;
109
110 spin_lock(&dentry->d_lock);
111 while ((p = p->next) != &dentry->d_subdirs) {
112 struct dentry *d = list_entry(p, struct dentry, d_child);
113 // we must at least skip cursors, to avoid livelocks
114 if (d->d_flags & DCACHE_DENTRY_CURSOR)
115 continue;
116 if (simple_positive(d) && !--count) {
117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
118 if (simple_positive(d))
119 found = dget_dlock(d);
120 spin_unlock(&d->d_lock);
121 if (likely(found))
122 break;
123 count = 1;
124 }
125 if (need_resched()) {
126 list_move(&cursor->d_child, p);
127 p = &cursor->d_child;
128 spin_unlock(&dentry->d_lock);
129 cond_resched();
130 spin_lock(&dentry->d_lock);
131 }
132 }
133 spin_unlock(&dentry->d_lock);
134 dput(last);
135 return found;
136 }
137
dcache_dir_lseek(struct file * file,loff_t offset,int whence)138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
139 {
140 struct dentry *dentry = file->f_path.dentry;
141 switch (whence) {
142 case 1:
143 offset += file->f_pos;
144 fallthrough;
145 case 0:
146 if (offset >= 0)
147 break;
148 fallthrough;
149 default:
150 return -EINVAL;
151 }
152 if (offset != file->f_pos) {
153 struct dentry *cursor = file->private_data;
154 struct dentry *to = NULL;
155
156 inode_lock_shared(dentry->d_inode);
157
158 if (offset > 2)
159 to = scan_positives(cursor, &dentry->d_subdirs,
160 offset - 2, NULL);
161 spin_lock(&dentry->d_lock);
162 if (to)
163 list_move(&cursor->d_child, &to->d_child);
164 else
165 list_del_init(&cursor->d_child);
166 spin_unlock(&dentry->d_lock);
167 dput(to);
168
169 file->f_pos = offset;
170
171 inode_unlock_shared(dentry->d_inode);
172 }
173 return offset;
174 }
175 EXPORT_SYMBOL(dcache_dir_lseek);
176
177 /*
178 * Directory is locked and all positive dentries in it are safe, since
179 * for ramfs-type trees they can't go away without unlink() or rmdir(),
180 * both impossible due to the lock on directory.
181 */
182
dcache_readdir(struct file * file,struct dir_context * ctx)183 int dcache_readdir(struct file *file, struct dir_context *ctx)
184 {
185 struct dentry *dentry = file->f_path.dentry;
186 struct dentry *cursor = file->private_data;
187 struct list_head *anchor = &dentry->d_subdirs;
188 struct dentry *next = NULL;
189 struct list_head *p;
190
191 if (!dir_emit_dots(file, ctx))
192 return 0;
193
194 if (ctx->pos == 2)
195 p = anchor;
196 else if (!list_empty(&cursor->d_child))
197 p = &cursor->d_child;
198 else
199 return 0;
200
201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
203 d_inode(next)->i_ino,
204 fs_umode_to_dtype(d_inode(next)->i_mode)))
205 break;
206 ctx->pos++;
207 p = &next->d_child;
208 }
209 spin_lock(&dentry->d_lock);
210 if (next)
211 list_move_tail(&cursor->d_child, &next->d_child);
212 else
213 list_del_init(&cursor->d_child);
214 spin_unlock(&dentry->d_lock);
215 dput(next);
216
217 return 0;
218 }
219 EXPORT_SYMBOL(dcache_readdir);
220
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
222 {
223 return -EISDIR;
224 }
225 EXPORT_SYMBOL(generic_read_dir);
226
227 const struct file_operations simple_dir_operations = {
228 .open = dcache_dir_open,
229 .release = dcache_dir_close,
230 .llseek = dcache_dir_lseek,
231 .read = generic_read_dir,
232 .iterate_shared = dcache_readdir,
233 .fsync = noop_fsync,
234 };
235 EXPORT_SYMBOL(simple_dir_operations);
236
237 const struct inode_operations simple_dir_inode_operations = {
238 .lookup = simple_lookup,
239 };
240 EXPORT_SYMBOL(simple_dir_inode_operations);
241
offset_set(struct dentry * dentry,u32 offset)242 static void offset_set(struct dentry *dentry, u32 offset)
243 {
244 dentry->d_fsdata = (void *)((uintptr_t)(offset));
245 }
246
dentry2offset(struct dentry * dentry)247 static u32 dentry2offset(struct dentry *dentry)
248 {
249 return (u32)((uintptr_t)(dentry->d_fsdata));
250 }
251
252 static struct lock_class_key simple_offset_xa_lock;
253
254 /**
255 * simple_offset_init - initialize an offset_ctx
256 * @octx: directory offset map to be initialized
257 *
258 */
simple_offset_init(struct offset_ctx * octx)259 void simple_offset_init(struct offset_ctx *octx)
260 {
261 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1);
262 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock);
263
264 /* 0 is '.', 1 is '..', so always start with offset 2 */
265 octx->next_offset = 2;
266 }
267
268 /**
269 * simple_offset_add - Add an entry to a directory's offset map
270 * @octx: directory offset ctx to be updated
271 * @dentry: new dentry being added
272 *
273 * Returns zero on success. @so_ctx and the dentry offset are updated.
274 * Otherwise, a negative errno value is returned.
275 */
simple_offset_add(struct offset_ctx * octx,struct dentry * dentry)276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry)
277 {
278 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX);
279 u32 offset;
280 int ret;
281
282 if (dentry2offset(dentry) != 0)
283 return -EBUSY;
284
285 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit,
286 &octx->next_offset, GFP_KERNEL);
287 if (ret < 0)
288 return ret;
289
290 offset_set(dentry, offset);
291 return 0;
292 }
293
294 /**
295 * simple_offset_remove - Remove an entry to a directory's offset map
296 * @octx: directory offset ctx to be updated
297 * @dentry: dentry being removed
298 *
299 */
simple_offset_remove(struct offset_ctx * octx,struct dentry * dentry)300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry)
301 {
302 u32 offset;
303
304 offset = dentry2offset(dentry);
305 if (offset == 0)
306 return;
307
308 xa_erase(&octx->xa, offset);
309 offset_set(dentry, 0);
310 }
311
312 /**
313 * simple_offset_rename_exchange - exchange rename with directory offsets
314 * @old_dir: parent of dentry being moved
315 * @old_dentry: dentry being moved
316 * @new_dir: destination parent
317 * @new_dentry: destination dentry
318 *
319 * Returns zero on success. Otherwise a negative errno is returned and the
320 * rename is rolled back.
321 */
simple_offset_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)322 int simple_offset_rename_exchange(struct inode *old_dir,
323 struct dentry *old_dentry,
324 struct inode *new_dir,
325 struct dentry *new_dentry)
326 {
327 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir);
328 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir);
329 u32 old_index = dentry2offset(old_dentry);
330 u32 new_index = dentry2offset(new_dentry);
331 int ret;
332
333 simple_offset_remove(old_ctx, old_dentry);
334 simple_offset_remove(new_ctx, new_dentry);
335
336 ret = simple_offset_add(new_ctx, old_dentry);
337 if (ret)
338 goto out_restore;
339
340 ret = simple_offset_add(old_ctx, new_dentry);
341 if (ret) {
342 simple_offset_remove(new_ctx, old_dentry);
343 goto out_restore;
344 }
345
346 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
347 if (ret) {
348 simple_offset_remove(new_ctx, old_dentry);
349 simple_offset_remove(old_ctx, new_dentry);
350 goto out_restore;
351 }
352 return 0;
353
354 out_restore:
355 offset_set(old_dentry, old_index);
356 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL);
357 offset_set(new_dentry, new_index);
358 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL);
359 return ret;
360 }
361
362 /**
363 * simple_offset_destroy - Release offset map
364 * @octx: directory offset ctx that is about to be destroyed
365 *
366 * During fs teardown (eg. umount), a directory's offset map might still
367 * contain entries. xa_destroy() cleans out anything that remains.
368 */
simple_offset_destroy(struct offset_ctx * octx)369 void simple_offset_destroy(struct offset_ctx *octx)
370 {
371 xa_destroy(&octx->xa);
372 }
373
374 /**
375 * offset_dir_llseek - Advance the read position of a directory descriptor
376 * @file: an open directory whose position is to be updated
377 * @offset: a byte offset
378 * @whence: enumerator describing the starting position for this update
379 *
380 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories.
381 *
382 * Returns the updated read position if successful; otherwise a
383 * negative errno is returned and the read position remains unchanged.
384 */
offset_dir_llseek(struct file * file,loff_t offset,int whence)385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence)
386 {
387 switch (whence) {
388 case SEEK_CUR:
389 offset += file->f_pos;
390 fallthrough;
391 case SEEK_SET:
392 if (offset >= 0)
393 break;
394 fallthrough;
395 default:
396 return -EINVAL;
397 }
398
399 return vfs_setpos(file, offset, U32_MAX);
400 }
401
offset_find_next(struct xa_state * xas)402 static struct dentry *offset_find_next(struct xa_state *xas)
403 {
404 struct dentry *child, *found = NULL;
405
406 rcu_read_lock();
407 child = xas_next_entry(xas, U32_MAX);
408 if (!child)
409 goto out;
410 spin_lock(&child->d_lock);
411 if (simple_positive(child))
412 found = dget_dlock(child);
413 spin_unlock(&child->d_lock);
414 out:
415 rcu_read_unlock();
416 return found;
417 }
418
offset_dir_emit(struct dir_context * ctx,struct dentry * dentry)419 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry)
420 {
421 u32 offset = dentry2offset(dentry);
422 struct inode *inode = d_inode(dentry);
423
424 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset,
425 inode->i_ino, fs_umode_to_dtype(inode->i_mode));
426 }
427
offset_iterate_dir(struct inode * inode,struct dir_context * ctx)428 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx)
429 {
430 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode);
431 XA_STATE(xas, &so_ctx->xa, ctx->pos);
432 struct dentry *dentry;
433
434 while (true) {
435 dentry = offset_find_next(&xas);
436 if (!dentry)
437 break;
438
439 if (!offset_dir_emit(ctx, dentry)) {
440 dput(dentry);
441 break;
442 }
443
444 dput(dentry);
445 ctx->pos = xas.xa_index + 1;
446 }
447 }
448
449 /**
450 * offset_readdir - Emit entries starting at offset @ctx->pos
451 * @file: an open directory to iterate over
452 * @ctx: directory iteration context
453 *
454 * Caller must hold @file's i_rwsem to prevent insertion or removal of
455 * entries during this call.
456 *
457 * On entry, @ctx->pos contains an offset that represents the first entry
458 * to be read from the directory.
459 *
460 * The operation continues until there are no more entries to read, or
461 * until the ctx->actor indicates there is no more space in the caller's
462 * output buffer.
463 *
464 * On return, @ctx->pos contains an offset that will read the next entry
465 * in this directory when offset_readdir() is called again with @ctx.
466 *
467 * Return values:
468 * %0 - Complete
469 */
offset_readdir(struct file * file,struct dir_context * ctx)470 static int offset_readdir(struct file *file, struct dir_context *ctx)
471 {
472 struct dentry *dir = file->f_path.dentry;
473
474 lockdep_assert_held(&d_inode(dir)->i_rwsem);
475
476 if (!dir_emit_dots(file, ctx))
477 return 0;
478
479 offset_iterate_dir(d_inode(dir), ctx);
480 return 0;
481 }
482
483 const struct file_operations simple_offset_dir_operations = {
484 .llseek = offset_dir_llseek,
485 .iterate_shared = offset_readdir,
486 .read = generic_read_dir,
487 .fsync = noop_fsync,
488 };
489
find_next_child(struct dentry * parent,struct dentry * prev)490 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
491 {
492 struct dentry *child = NULL;
493 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
494
495 spin_lock(&parent->d_lock);
496 while ((p = p->next) != &parent->d_subdirs) {
497 struct dentry *d = container_of(p, struct dentry, d_child);
498 if (simple_positive(d)) {
499 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
500 if (simple_positive(d))
501 child = dget_dlock(d);
502 spin_unlock(&d->d_lock);
503 if (likely(child))
504 break;
505 }
506 }
507 spin_unlock(&parent->d_lock);
508 dput(prev);
509 return child;
510 }
511
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))512 void simple_recursive_removal(struct dentry *dentry,
513 void (*callback)(struct dentry *))
514 {
515 struct dentry *this = dget(dentry);
516 while (true) {
517 struct dentry *victim = NULL, *child;
518 struct inode *inode = this->d_inode;
519
520 inode_lock(inode);
521 if (d_is_dir(this))
522 inode->i_flags |= S_DEAD;
523 while ((child = find_next_child(this, victim)) == NULL) {
524 // kill and ascend
525 // update metadata while it's still locked
526 inode_set_ctime_current(inode);
527 clear_nlink(inode);
528 inode_unlock(inode);
529 victim = this;
530 this = this->d_parent;
531 inode = this->d_inode;
532 inode_lock(inode);
533 if (simple_positive(victim)) {
534 d_invalidate(victim); // avoid lost mounts
535 if (d_is_dir(victim))
536 fsnotify_rmdir(inode, victim);
537 else
538 fsnotify_unlink(inode, victim);
539 if (callback)
540 callback(victim);
541 dput(victim); // unpin it
542 }
543 if (victim == dentry) {
544 inode->i_mtime = inode_set_ctime_current(inode);
545 if (d_is_dir(dentry))
546 drop_nlink(inode);
547 inode_unlock(inode);
548 dput(dentry);
549 return;
550 }
551 }
552 inode_unlock(inode);
553 this = child;
554 }
555 }
556 EXPORT_SYMBOL(simple_recursive_removal);
557
558 static const struct super_operations simple_super_operations = {
559 .statfs = simple_statfs,
560 };
561
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)562 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
563 {
564 struct pseudo_fs_context *ctx = fc->fs_private;
565 struct inode *root;
566
567 s->s_maxbytes = MAX_LFS_FILESIZE;
568 s->s_blocksize = PAGE_SIZE;
569 s->s_blocksize_bits = PAGE_SHIFT;
570 s->s_magic = ctx->magic;
571 s->s_op = ctx->ops ?: &simple_super_operations;
572 s->s_xattr = ctx->xattr;
573 s->s_time_gran = 1;
574 root = new_inode(s);
575 if (!root)
576 return -ENOMEM;
577
578 /*
579 * since this is the first inode, make it number 1. New inodes created
580 * after this must take care not to collide with it (by passing
581 * max_reserved of 1 to iunique).
582 */
583 root->i_ino = 1;
584 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
585 root->i_atime = root->i_mtime = inode_set_ctime_current(root);
586 s->s_root = d_make_root(root);
587 if (!s->s_root)
588 return -ENOMEM;
589 s->s_d_op = ctx->dops;
590 return 0;
591 }
592
pseudo_fs_get_tree(struct fs_context * fc)593 static int pseudo_fs_get_tree(struct fs_context *fc)
594 {
595 return get_tree_nodev(fc, pseudo_fs_fill_super);
596 }
597
pseudo_fs_free(struct fs_context * fc)598 static void pseudo_fs_free(struct fs_context *fc)
599 {
600 kfree(fc->fs_private);
601 }
602
603 static const struct fs_context_operations pseudo_fs_context_ops = {
604 .free = pseudo_fs_free,
605 .get_tree = pseudo_fs_get_tree,
606 };
607
608 /*
609 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
610 * will never be mountable)
611 */
init_pseudo(struct fs_context * fc,unsigned long magic)612 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
613 unsigned long magic)
614 {
615 struct pseudo_fs_context *ctx;
616
617 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
618 if (likely(ctx)) {
619 ctx->magic = magic;
620 fc->fs_private = ctx;
621 fc->ops = &pseudo_fs_context_ops;
622 fc->sb_flags |= SB_NOUSER;
623 fc->global = true;
624 }
625 return ctx;
626 }
627 EXPORT_SYMBOL(init_pseudo);
628
simple_open(struct inode * inode,struct file * file)629 int simple_open(struct inode *inode, struct file *file)
630 {
631 if (inode->i_private)
632 file->private_data = inode->i_private;
633 return 0;
634 }
635 EXPORT_SYMBOL(simple_open);
636
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)637 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
638 {
639 struct inode *inode = d_inode(old_dentry);
640
641 dir->i_mtime = inode_set_ctime_to_ts(dir,
642 inode_set_ctime_current(inode));
643 inc_nlink(inode);
644 ihold(inode);
645 dget(dentry);
646 d_instantiate(dentry, inode);
647 return 0;
648 }
649 EXPORT_SYMBOL(simple_link);
650
simple_empty(struct dentry * dentry)651 int simple_empty(struct dentry *dentry)
652 {
653 struct dentry *child;
654 int ret = 0;
655
656 spin_lock(&dentry->d_lock);
657 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
658 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
659 if (simple_positive(child)) {
660 spin_unlock(&child->d_lock);
661 goto out;
662 }
663 spin_unlock(&child->d_lock);
664 }
665 ret = 1;
666 out:
667 spin_unlock(&dentry->d_lock);
668 return ret;
669 }
670 EXPORT_SYMBOL(simple_empty);
671
simple_unlink(struct inode * dir,struct dentry * dentry)672 int simple_unlink(struct inode *dir, struct dentry *dentry)
673 {
674 struct inode *inode = d_inode(dentry);
675
676 dir->i_mtime = inode_set_ctime_to_ts(dir,
677 inode_set_ctime_current(inode));
678 drop_nlink(inode);
679 dput(dentry);
680 return 0;
681 }
682 EXPORT_SYMBOL(simple_unlink);
683
simple_rmdir(struct inode * dir,struct dentry * dentry)684 int simple_rmdir(struct inode *dir, struct dentry *dentry)
685 {
686 if (!simple_empty(dentry))
687 return -ENOTEMPTY;
688
689 drop_nlink(d_inode(dentry));
690 simple_unlink(dir, dentry);
691 drop_nlink(dir);
692 return 0;
693 }
694 EXPORT_SYMBOL(simple_rmdir);
695
696 /**
697 * simple_rename_timestamp - update the various inode timestamps for rename
698 * @old_dir: old parent directory
699 * @old_dentry: dentry that is being renamed
700 * @new_dir: new parent directory
701 * @new_dentry: target for rename
702 *
703 * POSIX mandates that the old and new parent directories have their ctime and
704 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have
705 * their ctime updated.
706 */
simple_rename_timestamp(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)707 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry,
708 struct inode *new_dir, struct dentry *new_dentry)
709 {
710 struct inode *newino = d_inode(new_dentry);
711
712 old_dir->i_mtime = inode_set_ctime_current(old_dir);
713 if (new_dir != old_dir)
714 new_dir->i_mtime = inode_set_ctime_current(new_dir);
715 inode_set_ctime_current(d_inode(old_dentry));
716 if (newino)
717 inode_set_ctime_current(newino);
718 }
719 EXPORT_SYMBOL_GPL(simple_rename_timestamp);
720
simple_rename_exchange(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)721 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry,
722 struct inode *new_dir, struct dentry *new_dentry)
723 {
724 bool old_is_dir = d_is_dir(old_dentry);
725 bool new_is_dir = d_is_dir(new_dentry);
726
727 if (old_dir != new_dir && old_is_dir != new_is_dir) {
728 if (old_is_dir) {
729 drop_nlink(old_dir);
730 inc_nlink(new_dir);
731 } else {
732 drop_nlink(new_dir);
733 inc_nlink(old_dir);
734 }
735 }
736 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
737 return 0;
738 }
739 EXPORT_SYMBOL_GPL(simple_rename_exchange);
740
simple_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)741 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir,
742 struct dentry *old_dentry, struct inode *new_dir,
743 struct dentry *new_dentry, unsigned int flags)
744 {
745 int they_are_dirs = d_is_dir(old_dentry);
746
747 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE))
748 return -EINVAL;
749
750 if (flags & RENAME_EXCHANGE)
751 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
752
753 if (!simple_empty(new_dentry))
754 return -ENOTEMPTY;
755
756 if (d_really_is_positive(new_dentry)) {
757 simple_unlink(new_dir, new_dentry);
758 if (they_are_dirs) {
759 drop_nlink(d_inode(new_dentry));
760 drop_nlink(old_dir);
761 }
762 } else if (they_are_dirs) {
763 drop_nlink(old_dir);
764 inc_nlink(new_dir);
765 }
766
767 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry);
768 return 0;
769 }
770 EXPORT_SYMBOL(simple_rename);
771
772 /**
773 * simple_setattr - setattr for simple filesystem
774 * @idmap: idmap of the target mount
775 * @dentry: dentry
776 * @iattr: iattr structure
777 *
778 * Returns 0 on success, -error on failure.
779 *
780 * simple_setattr is a simple ->setattr implementation without a proper
781 * implementation of size changes.
782 *
783 * It can either be used for in-memory filesystems or special files
784 * on simple regular filesystems. Anything that needs to change on-disk
785 * or wire state on size changes needs its own setattr method.
786 */
simple_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * iattr)787 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
788 struct iattr *iattr)
789 {
790 struct inode *inode = d_inode(dentry);
791 int error;
792
793 error = setattr_prepare(idmap, dentry, iattr);
794 if (error)
795 return error;
796
797 if (iattr->ia_valid & ATTR_SIZE)
798 truncate_setsize(inode, iattr->ia_size);
799 setattr_copy(idmap, inode, iattr);
800 mark_inode_dirty(inode);
801 return 0;
802 }
803 EXPORT_SYMBOL(simple_setattr);
804
simple_read_folio(struct file * file,struct folio * folio)805 static int simple_read_folio(struct file *file, struct folio *folio)
806 {
807 folio_zero_range(folio, 0, folio_size(folio));
808 flush_dcache_folio(folio);
809 folio_mark_uptodate(folio);
810 folio_unlock(folio);
811 return 0;
812 }
813
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,void ** fsdata)814 int simple_write_begin(struct file *file, struct address_space *mapping,
815 loff_t pos, unsigned len,
816 struct page **pagep, void **fsdata)
817 {
818 struct folio *folio;
819
820 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN,
821 mapping_gfp_mask(mapping));
822 if (IS_ERR(folio))
823 return PTR_ERR(folio);
824
825 *pagep = &folio->page;
826
827 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) {
828 size_t from = offset_in_folio(folio, pos);
829
830 folio_zero_segments(folio, 0, from,
831 from + len, folio_size(folio));
832 }
833 return 0;
834 }
835 EXPORT_SYMBOL(simple_write_begin);
836
837 /**
838 * simple_write_end - .write_end helper for non-block-device FSes
839 * @file: See .write_end of address_space_operations
840 * @mapping: "
841 * @pos: "
842 * @len: "
843 * @copied: "
844 * @page: "
845 * @fsdata: "
846 *
847 * simple_write_end does the minimum needed for updating a page after writing is
848 * done. It has the same API signature as the .write_end of
849 * address_space_operations vector. So it can just be set onto .write_end for
850 * FSes that don't need any other processing. i_mutex is assumed to be held.
851 * Block based filesystems should use generic_write_end().
852 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
853 * is not called, so a filesystem that actually does store data in .write_inode
854 * should extend on what's done here with a call to mark_inode_dirty() in the
855 * case that i_size has changed.
856 *
857 * Use *ONLY* with simple_read_folio()
858 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)859 static int simple_write_end(struct file *file, struct address_space *mapping,
860 loff_t pos, unsigned len, unsigned copied,
861 struct page *page, void *fsdata)
862 {
863 struct folio *folio = page_folio(page);
864 struct inode *inode = folio->mapping->host;
865 loff_t last_pos = pos + copied;
866
867 /* zero the stale part of the folio if we did a short copy */
868 if (!folio_test_uptodate(folio)) {
869 if (copied < len) {
870 size_t from = offset_in_folio(folio, pos);
871
872 folio_zero_range(folio, from + copied, len - copied);
873 }
874 folio_mark_uptodate(folio);
875 }
876 /*
877 * No need to use i_size_read() here, the i_size
878 * cannot change under us because we hold the i_mutex.
879 */
880 if (last_pos > inode->i_size)
881 i_size_write(inode, last_pos);
882
883 folio_mark_dirty(folio);
884 folio_unlock(folio);
885 folio_put(folio);
886
887 return copied;
888 }
889
890 /*
891 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
892 */
893 const struct address_space_operations ram_aops = {
894 .read_folio = simple_read_folio,
895 .write_begin = simple_write_begin,
896 .write_end = simple_write_end,
897 .dirty_folio = noop_dirty_folio,
898 };
899 EXPORT_SYMBOL(ram_aops);
900
901 /*
902 * the inodes created here are not hashed. If you use iunique to generate
903 * unique inode values later for this filesystem, then you must take care
904 * to pass it an appropriate max_reserved value to avoid collisions.
905 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)906 int simple_fill_super(struct super_block *s, unsigned long magic,
907 const struct tree_descr *files)
908 {
909 struct inode *inode;
910 struct dentry *root;
911 struct dentry *dentry;
912 int i;
913
914 s->s_blocksize = PAGE_SIZE;
915 s->s_blocksize_bits = PAGE_SHIFT;
916 s->s_magic = magic;
917 s->s_op = &simple_super_operations;
918 s->s_time_gran = 1;
919
920 inode = new_inode(s);
921 if (!inode)
922 return -ENOMEM;
923 /*
924 * because the root inode is 1, the files array must not contain an
925 * entry at index 1
926 */
927 inode->i_ino = 1;
928 inode->i_mode = S_IFDIR | 0755;
929 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
930 inode->i_op = &simple_dir_inode_operations;
931 inode->i_fop = &simple_dir_operations;
932 set_nlink(inode, 2);
933 root = d_make_root(inode);
934 if (!root)
935 return -ENOMEM;
936 for (i = 0; !files->name || files->name[0]; i++, files++) {
937 if (!files->name)
938 continue;
939
940 /* warn if it tries to conflict with the root inode */
941 if (unlikely(i == 1))
942 printk(KERN_WARNING "%s: %s passed in a files array"
943 "with an index of 1!\n", __func__,
944 s->s_type->name);
945
946 dentry = d_alloc_name(root, files->name);
947 if (!dentry)
948 goto out;
949 inode = new_inode(s);
950 if (!inode) {
951 dput(dentry);
952 goto out;
953 }
954 inode->i_mode = S_IFREG | files->mode;
955 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
956 inode->i_fop = files->ops;
957 inode->i_ino = i;
958 d_add(dentry, inode);
959 }
960 s->s_root = root;
961 return 0;
962 out:
963 d_genocide(root);
964 shrink_dcache_parent(root);
965 dput(root);
966 return -ENOMEM;
967 }
968 EXPORT_SYMBOL(simple_fill_super);
969
970 static DEFINE_SPINLOCK(pin_fs_lock);
971
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)972 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
973 {
974 struct vfsmount *mnt = NULL;
975 spin_lock(&pin_fs_lock);
976 if (unlikely(!*mount)) {
977 spin_unlock(&pin_fs_lock);
978 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
979 if (IS_ERR(mnt))
980 return PTR_ERR(mnt);
981 spin_lock(&pin_fs_lock);
982 if (!*mount)
983 *mount = mnt;
984 }
985 mntget(*mount);
986 ++*count;
987 spin_unlock(&pin_fs_lock);
988 mntput(mnt);
989 return 0;
990 }
991 EXPORT_SYMBOL(simple_pin_fs);
992
simple_release_fs(struct vfsmount ** mount,int * count)993 void simple_release_fs(struct vfsmount **mount, int *count)
994 {
995 struct vfsmount *mnt;
996 spin_lock(&pin_fs_lock);
997 mnt = *mount;
998 if (!--*count)
999 *mount = NULL;
1000 spin_unlock(&pin_fs_lock);
1001 mntput(mnt);
1002 }
1003 EXPORT_SYMBOL(simple_release_fs);
1004
1005 /**
1006 * simple_read_from_buffer - copy data from the buffer to user space
1007 * @to: the user space buffer to read to
1008 * @count: the maximum number of bytes to read
1009 * @ppos: the current position in the buffer
1010 * @from: the buffer to read from
1011 * @available: the size of the buffer
1012 *
1013 * The simple_read_from_buffer() function reads up to @count bytes from the
1014 * buffer @from at offset @ppos into the user space address starting at @to.
1015 *
1016 * On success, the number of bytes read is returned and the offset @ppos is
1017 * advanced by this number, or negative value is returned on error.
1018 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)1019 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
1020 const void *from, size_t available)
1021 {
1022 loff_t pos = *ppos;
1023 size_t ret;
1024
1025 if (pos < 0)
1026 return -EINVAL;
1027 if (pos >= available || !count)
1028 return 0;
1029 if (count > available - pos)
1030 count = available - pos;
1031 ret = copy_to_user(to, from + pos, count);
1032 if (ret == count)
1033 return -EFAULT;
1034 count -= ret;
1035 *ppos = pos + count;
1036 return count;
1037 }
1038 EXPORT_SYMBOL(simple_read_from_buffer);
1039
1040 /**
1041 * simple_write_to_buffer - copy data from user space to the buffer
1042 * @to: the buffer to write to
1043 * @available: the size of the buffer
1044 * @ppos: the current position in the buffer
1045 * @from: the user space buffer to read from
1046 * @count: the maximum number of bytes to read
1047 *
1048 * The simple_write_to_buffer() function reads up to @count bytes from the user
1049 * space address starting at @from into the buffer @to at offset @ppos.
1050 *
1051 * On success, the number of bytes written is returned and the offset @ppos is
1052 * advanced by this number, or negative value is returned on error.
1053 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)1054 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
1055 const void __user *from, size_t count)
1056 {
1057 loff_t pos = *ppos;
1058 size_t res;
1059
1060 if (pos < 0)
1061 return -EINVAL;
1062 if (pos >= available || !count)
1063 return 0;
1064 if (count > available - pos)
1065 count = available - pos;
1066 res = copy_from_user(to + pos, from, count);
1067 if (res == count)
1068 return -EFAULT;
1069 count -= res;
1070 *ppos = pos + count;
1071 return count;
1072 }
1073 EXPORT_SYMBOL(simple_write_to_buffer);
1074
1075 /**
1076 * memory_read_from_buffer - copy data from the buffer
1077 * @to: the kernel space buffer to read to
1078 * @count: the maximum number of bytes to read
1079 * @ppos: the current position in the buffer
1080 * @from: the buffer to read from
1081 * @available: the size of the buffer
1082 *
1083 * The memory_read_from_buffer() function reads up to @count bytes from the
1084 * buffer @from at offset @ppos into the kernel space address starting at @to.
1085 *
1086 * On success, the number of bytes read is returned and the offset @ppos is
1087 * advanced by this number, or negative value is returned on error.
1088 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)1089 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
1090 const void *from, size_t available)
1091 {
1092 loff_t pos = *ppos;
1093
1094 if (pos < 0)
1095 return -EINVAL;
1096 if (pos >= available)
1097 return 0;
1098 if (count > available - pos)
1099 count = available - pos;
1100 memcpy(to, from + pos, count);
1101 *ppos = pos + count;
1102
1103 return count;
1104 }
1105 EXPORT_SYMBOL(memory_read_from_buffer);
1106
1107 /*
1108 * Transaction based IO.
1109 * The file expects a single write which triggers the transaction, and then
1110 * possibly a read which collects the result - which is stored in a
1111 * file-local buffer.
1112 */
1113
simple_transaction_set(struct file * file,size_t n)1114 void simple_transaction_set(struct file *file, size_t n)
1115 {
1116 struct simple_transaction_argresp *ar = file->private_data;
1117
1118 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
1119
1120 /*
1121 * The barrier ensures that ar->size will really remain zero until
1122 * ar->data is ready for reading.
1123 */
1124 smp_mb();
1125 ar->size = n;
1126 }
1127 EXPORT_SYMBOL(simple_transaction_set);
1128
simple_transaction_get(struct file * file,const char __user * buf,size_t size)1129 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
1130 {
1131 struct simple_transaction_argresp *ar;
1132 static DEFINE_SPINLOCK(simple_transaction_lock);
1133
1134 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
1135 return ERR_PTR(-EFBIG);
1136
1137 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
1138 if (!ar)
1139 return ERR_PTR(-ENOMEM);
1140
1141 spin_lock(&simple_transaction_lock);
1142
1143 /* only one write allowed per open */
1144 if (file->private_data) {
1145 spin_unlock(&simple_transaction_lock);
1146 free_page((unsigned long)ar);
1147 return ERR_PTR(-EBUSY);
1148 }
1149
1150 file->private_data = ar;
1151
1152 spin_unlock(&simple_transaction_lock);
1153
1154 if (copy_from_user(ar->data, buf, size))
1155 return ERR_PTR(-EFAULT);
1156
1157 return ar->data;
1158 }
1159 EXPORT_SYMBOL(simple_transaction_get);
1160
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)1161 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
1162 {
1163 struct simple_transaction_argresp *ar = file->private_data;
1164
1165 if (!ar)
1166 return 0;
1167 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
1168 }
1169 EXPORT_SYMBOL(simple_transaction_read);
1170
simple_transaction_release(struct inode * inode,struct file * file)1171 int simple_transaction_release(struct inode *inode, struct file *file)
1172 {
1173 free_page((unsigned long)file->private_data);
1174 return 0;
1175 }
1176 EXPORT_SYMBOL(simple_transaction_release);
1177
1178 /* Simple attribute files */
1179
1180 struct simple_attr {
1181 int (*get)(void *, u64 *);
1182 int (*set)(void *, u64);
1183 char get_buf[24]; /* enough to store a u64 and "\n\0" */
1184 char set_buf[24];
1185 void *data;
1186 const char *fmt; /* format for read operation */
1187 struct mutex mutex; /* protects access to these buffers */
1188 };
1189
1190 /* simple_attr_open is called by an actual attribute open file operation
1191 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)1192 int simple_attr_open(struct inode *inode, struct file *file,
1193 int (*get)(void *, u64 *), int (*set)(void *, u64),
1194 const char *fmt)
1195 {
1196 struct simple_attr *attr;
1197
1198 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
1199 if (!attr)
1200 return -ENOMEM;
1201
1202 attr->get = get;
1203 attr->set = set;
1204 attr->data = inode->i_private;
1205 attr->fmt = fmt;
1206 mutex_init(&attr->mutex);
1207
1208 file->private_data = attr;
1209
1210 return nonseekable_open(inode, file);
1211 }
1212 EXPORT_SYMBOL_GPL(simple_attr_open);
1213
simple_attr_release(struct inode * inode,struct file * file)1214 int simple_attr_release(struct inode *inode, struct file *file)
1215 {
1216 kfree(file->private_data);
1217 return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
1220
1221 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)1222 ssize_t simple_attr_read(struct file *file, char __user *buf,
1223 size_t len, loff_t *ppos)
1224 {
1225 struct simple_attr *attr;
1226 size_t size;
1227 ssize_t ret;
1228
1229 attr = file->private_data;
1230
1231 if (!attr->get)
1232 return -EACCES;
1233
1234 ret = mutex_lock_interruptible(&attr->mutex);
1235 if (ret)
1236 return ret;
1237
1238 if (*ppos && attr->get_buf[0]) {
1239 /* continued read */
1240 size = strlen(attr->get_buf);
1241 } else {
1242 /* first read */
1243 u64 val;
1244 ret = attr->get(attr->data, &val);
1245 if (ret)
1246 goto out;
1247
1248 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
1249 attr->fmt, (unsigned long long)val);
1250 }
1251
1252 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
1253 out:
1254 mutex_unlock(&attr->mutex);
1255 return ret;
1256 }
1257 EXPORT_SYMBOL_GPL(simple_attr_read);
1258
1259 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)1260 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
1261 size_t len, loff_t *ppos, bool is_signed)
1262 {
1263 struct simple_attr *attr;
1264 unsigned long long val;
1265 size_t size;
1266 ssize_t ret;
1267
1268 attr = file->private_data;
1269 if (!attr->set)
1270 return -EACCES;
1271
1272 ret = mutex_lock_interruptible(&attr->mutex);
1273 if (ret)
1274 return ret;
1275
1276 ret = -EFAULT;
1277 size = min(sizeof(attr->set_buf) - 1, len);
1278 if (copy_from_user(attr->set_buf, buf, size))
1279 goto out;
1280
1281 attr->set_buf[size] = '\0';
1282 if (is_signed)
1283 ret = kstrtoll(attr->set_buf, 0, &val);
1284 else
1285 ret = kstrtoull(attr->set_buf, 0, &val);
1286 if (ret)
1287 goto out;
1288 ret = attr->set(attr->data, val);
1289 if (ret == 0)
1290 ret = len; /* on success, claim we got the whole input */
1291 out:
1292 mutex_unlock(&attr->mutex);
1293 return ret;
1294 }
1295
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1296 ssize_t simple_attr_write(struct file *file, const char __user *buf,
1297 size_t len, loff_t *ppos)
1298 {
1299 return simple_attr_write_xsigned(file, buf, len, ppos, false);
1300 }
1301 EXPORT_SYMBOL_GPL(simple_attr_write);
1302
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)1303 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
1304 size_t len, loff_t *ppos)
1305 {
1306 return simple_attr_write_xsigned(file, buf, len, ppos, true);
1307 }
1308 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
1309
1310 /**
1311 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1312 * @sb: filesystem to do the file handle conversion on
1313 * @fid: file handle to convert
1314 * @fh_len: length of the file handle in bytes
1315 * @fh_type: type of file handle
1316 * @get_inode: filesystem callback to retrieve inode
1317 *
1318 * This function decodes @fid as long as it has one of the well-known
1319 * Linux filehandle types and calls @get_inode on it to retrieve the
1320 * inode for the object specified in the file handle.
1321 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1322 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1323 int fh_len, int fh_type, struct inode *(*get_inode)
1324 (struct super_block *sb, u64 ino, u32 gen))
1325 {
1326 struct inode *inode = NULL;
1327
1328 if (fh_len < 2)
1329 return NULL;
1330
1331 switch (fh_type) {
1332 case FILEID_INO32_GEN:
1333 case FILEID_INO32_GEN_PARENT:
1334 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1335 break;
1336 }
1337
1338 return d_obtain_alias(inode);
1339 }
1340 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1341
1342 /**
1343 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1344 * @sb: filesystem to do the file handle conversion on
1345 * @fid: file handle to convert
1346 * @fh_len: length of the file handle in bytes
1347 * @fh_type: type of file handle
1348 * @get_inode: filesystem callback to retrieve inode
1349 *
1350 * This function decodes @fid as long as it has one of the well-known
1351 * Linux filehandle types and calls @get_inode on it to retrieve the
1352 * inode for the _parent_ object specified in the file handle if it
1353 * is specified in the file handle, or NULL otherwise.
1354 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1355 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1356 int fh_len, int fh_type, struct inode *(*get_inode)
1357 (struct super_block *sb, u64 ino, u32 gen))
1358 {
1359 struct inode *inode = NULL;
1360
1361 if (fh_len <= 2)
1362 return NULL;
1363
1364 switch (fh_type) {
1365 case FILEID_INO32_GEN_PARENT:
1366 inode = get_inode(sb, fid->i32.parent_ino,
1367 (fh_len > 3 ? fid->i32.parent_gen : 0));
1368 break;
1369 }
1370
1371 return d_obtain_alias(inode);
1372 }
1373 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1374
1375 /**
1376 * __generic_file_fsync - generic fsync implementation for simple filesystems
1377 *
1378 * @file: file to synchronize
1379 * @start: start offset in bytes
1380 * @end: end offset in bytes (inclusive)
1381 * @datasync: only synchronize essential metadata if true
1382 *
1383 * This is a generic implementation of the fsync method for simple
1384 * filesystems which track all non-inode metadata in the buffers list
1385 * hanging off the address_space structure.
1386 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1387 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1388 int datasync)
1389 {
1390 struct inode *inode = file->f_mapping->host;
1391 int err;
1392 int ret;
1393
1394 err = file_write_and_wait_range(file, start, end);
1395 if (err)
1396 return err;
1397
1398 inode_lock(inode);
1399 ret = sync_mapping_buffers(inode->i_mapping);
1400 if (!(inode->i_state & I_DIRTY_ALL))
1401 goto out;
1402 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1403 goto out;
1404
1405 err = sync_inode_metadata(inode, 1);
1406 if (ret == 0)
1407 ret = err;
1408
1409 out:
1410 inode_unlock(inode);
1411 /* check and advance again to catch errors after syncing out buffers */
1412 err = file_check_and_advance_wb_err(file);
1413 if (ret == 0)
1414 ret = err;
1415 return ret;
1416 }
1417 EXPORT_SYMBOL(__generic_file_fsync);
1418
1419 /**
1420 * generic_file_fsync - generic fsync implementation for simple filesystems
1421 * with flush
1422 * @file: file to synchronize
1423 * @start: start offset in bytes
1424 * @end: end offset in bytes (inclusive)
1425 * @datasync: only synchronize essential metadata if true
1426 *
1427 */
1428
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1429 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1430 int datasync)
1431 {
1432 struct inode *inode = file->f_mapping->host;
1433 int err;
1434
1435 err = __generic_file_fsync(file, start, end, datasync);
1436 if (err)
1437 return err;
1438 return blkdev_issue_flush(inode->i_sb->s_bdev);
1439 }
1440 EXPORT_SYMBOL(generic_file_fsync);
1441
1442 /**
1443 * generic_check_addressable - Check addressability of file system
1444 * @blocksize_bits: log of file system block size
1445 * @num_blocks: number of blocks in file system
1446 *
1447 * Determine whether a file system with @num_blocks blocks (and a
1448 * block size of 2**@blocksize_bits) is addressable by the sector_t
1449 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1450 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1451 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1452 {
1453 u64 last_fs_block = num_blocks - 1;
1454 u64 last_fs_page =
1455 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1456
1457 if (unlikely(num_blocks == 0))
1458 return 0;
1459
1460 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1461 return -EINVAL;
1462
1463 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1464 (last_fs_page > (pgoff_t)(~0ULL))) {
1465 return -EFBIG;
1466 }
1467 return 0;
1468 }
1469 EXPORT_SYMBOL(generic_check_addressable);
1470
1471 /*
1472 * No-op implementation of ->fsync for in-memory filesystems.
1473 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1474 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1475 {
1476 return 0;
1477 }
1478 EXPORT_SYMBOL(noop_fsync);
1479
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1480 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1481 {
1482 /*
1483 * iomap based filesystems support direct I/O without need for
1484 * this callback. However, it still needs to be set in
1485 * inode->a_ops so that open/fcntl know that direct I/O is
1486 * generally supported.
1487 */
1488 return -EINVAL;
1489 }
1490 EXPORT_SYMBOL_GPL(noop_direct_IO);
1491
1492 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1493 void kfree_link(void *p)
1494 {
1495 kfree(p);
1496 }
1497 EXPORT_SYMBOL(kfree_link);
1498
alloc_anon_inode(struct super_block * s)1499 struct inode *alloc_anon_inode(struct super_block *s)
1500 {
1501 static const struct address_space_operations anon_aops = {
1502 .dirty_folio = noop_dirty_folio,
1503 };
1504 struct inode *inode = new_inode_pseudo(s);
1505
1506 if (!inode)
1507 return ERR_PTR(-ENOMEM);
1508
1509 inode->i_ino = get_next_ino();
1510 inode->i_mapping->a_ops = &anon_aops;
1511
1512 /*
1513 * Mark the inode dirty from the very beginning,
1514 * that way it will never be moved to the dirty
1515 * list because mark_inode_dirty() will think
1516 * that it already _is_ on the dirty list.
1517 */
1518 inode->i_state = I_DIRTY;
1519 inode->i_mode = S_IRUSR | S_IWUSR;
1520 inode->i_uid = current_fsuid();
1521 inode->i_gid = current_fsgid();
1522 inode->i_flags |= S_PRIVATE;
1523 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1524 return inode;
1525 }
1526 EXPORT_SYMBOL(alloc_anon_inode);
1527
1528 /**
1529 * simple_nosetlease - generic helper for prohibiting leases
1530 * @filp: file pointer
1531 * @arg: type of lease to obtain
1532 * @flp: new lease supplied for insertion
1533 * @priv: private data for lm_setup operation
1534 *
1535 * Generic helper for filesystems that do not wish to allow leases to be set.
1536 * All arguments are ignored and it just returns -EINVAL.
1537 */
1538 int
simple_nosetlease(struct file * filp,int arg,struct file_lock ** flp,void ** priv)1539 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp,
1540 void **priv)
1541 {
1542 return -EINVAL;
1543 }
1544 EXPORT_SYMBOL(simple_nosetlease);
1545
1546 /**
1547 * simple_get_link - generic helper to get the target of "fast" symlinks
1548 * @dentry: not used here
1549 * @inode: the symlink inode
1550 * @done: not used here
1551 *
1552 * Generic helper for filesystems to use for symlink inodes where a pointer to
1553 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1554 * since as an optimization the path lookup code uses any non-NULL ->i_link
1555 * directly, without calling ->get_link(). But ->get_link() still must be set,
1556 * to mark the inode_operations as being for a symlink.
1557 *
1558 * Return: the symlink target
1559 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1560 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1561 struct delayed_call *done)
1562 {
1563 return inode->i_link;
1564 }
1565 EXPORT_SYMBOL(simple_get_link);
1566
1567 const struct inode_operations simple_symlink_inode_operations = {
1568 .get_link = simple_get_link,
1569 };
1570 EXPORT_SYMBOL(simple_symlink_inode_operations);
1571
1572 /*
1573 * Operations for a permanently empty directory.
1574 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1575 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1576 {
1577 return ERR_PTR(-ENOENT);
1578 }
1579
empty_dir_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1580 static int empty_dir_getattr(struct mnt_idmap *idmap,
1581 const struct path *path, struct kstat *stat,
1582 u32 request_mask, unsigned int query_flags)
1583 {
1584 struct inode *inode = d_inode(path->dentry);
1585 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat);
1586 return 0;
1587 }
1588
empty_dir_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1589 static int empty_dir_setattr(struct mnt_idmap *idmap,
1590 struct dentry *dentry, struct iattr *attr)
1591 {
1592 return -EPERM;
1593 }
1594
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1595 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1596 {
1597 return -EOPNOTSUPP;
1598 }
1599
1600 static const struct inode_operations empty_dir_inode_operations = {
1601 .lookup = empty_dir_lookup,
1602 .permission = generic_permission,
1603 .setattr = empty_dir_setattr,
1604 .getattr = empty_dir_getattr,
1605 .listxattr = empty_dir_listxattr,
1606 };
1607
empty_dir_llseek(struct file * file,loff_t offset,int whence)1608 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1609 {
1610 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1611 return generic_file_llseek_size(file, offset, whence, 2, 2);
1612 }
1613
empty_dir_readdir(struct file * file,struct dir_context * ctx)1614 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1615 {
1616 dir_emit_dots(file, ctx);
1617 return 0;
1618 }
1619
1620 static const struct file_operations empty_dir_operations = {
1621 .llseek = empty_dir_llseek,
1622 .read = generic_read_dir,
1623 .iterate_shared = empty_dir_readdir,
1624 .fsync = noop_fsync,
1625 };
1626
1627
make_empty_dir_inode(struct inode * inode)1628 void make_empty_dir_inode(struct inode *inode)
1629 {
1630 set_nlink(inode, 2);
1631 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1632 inode->i_uid = GLOBAL_ROOT_UID;
1633 inode->i_gid = GLOBAL_ROOT_GID;
1634 inode->i_rdev = 0;
1635 inode->i_size = 0;
1636 inode->i_blkbits = PAGE_SHIFT;
1637 inode->i_blocks = 0;
1638
1639 inode->i_op = &empty_dir_inode_operations;
1640 inode->i_opflags &= ~IOP_XATTR;
1641 inode->i_fop = &empty_dir_operations;
1642 }
1643
is_empty_dir_inode(struct inode * inode)1644 bool is_empty_dir_inode(struct inode *inode)
1645 {
1646 return (inode->i_fop == &empty_dir_operations) &&
1647 (inode->i_op == &empty_dir_inode_operations);
1648 }
1649
1650 #if IS_ENABLED(CONFIG_UNICODE)
1651 /**
1652 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1653 * @dentry: dentry whose name we are checking against
1654 * @len: len of name of dentry
1655 * @str: str pointer to name of dentry
1656 * @name: Name to compare against
1657 *
1658 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1659 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1660 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1661 const char *str, const struct qstr *name)
1662 {
1663 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1664 const struct inode *dir = READ_ONCE(parent->d_inode);
1665 const struct super_block *sb = dentry->d_sb;
1666 const struct unicode_map *um = sb->s_encoding;
1667 struct qstr qstr = QSTR_INIT(str, len);
1668 char strbuf[DNAME_INLINE_LEN];
1669 int ret;
1670
1671 if (!dir || !IS_CASEFOLDED(dir))
1672 goto fallback;
1673 /*
1674 * If the dentry name is stored in-line, then it may be concurrently
1675 * modified by a rename. If this happens, the VFS will eventually retry
1676 * the lookup, so it doesn't matter what ->d_compare() returns.
1677 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1678 * string. Therefore, we have to copy the name into a temporary buffer.
1679 */
1680 if (len <= DNAME_INLINE_LEN - 1) {
1681 memcpy(strbuf, str, len);
1682 strbuf[len] = 0;
1683 qstr.name = strbuf;
1684 /* prevent compiler from optimizing out the temporary buffer */
1685 barrier();
1686 }
1687 ret = utf8_strncasecmp(um, name, &qstr);
1688 if (ret >= 0)
1689 return ret;
1690
1691 if (sb_has_strict_encoding(sb))
1692 return -EINVAL;
1693 fallback:
1694 if (len != name->len)
1695 return 1;
1696 return !!memcmp(str, name->name, len);
1697 }
1698
1699 /**
1700 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1701 * @dentry: dentry of the parent directory
1702 * @str: qstr of name whose hash we should fill in
1703 *
1704 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1705 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1706 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1707 {
1708 const struct inode *dir = READ_ONCE(dentry->d_inode);
1709 struct super_block *sb = dentry->d_sb;
1710 const struct unicode_map *um = sb->s_encoding;
1711 int ret = 0;
1712
1713 if (!dir || !IS_CASEFOLDED(dir))
1714 return 0;
1715
1716 ret = utf8_casefold_hash(um, dentry, str);
1717 if (ret < 0 && sb_has_strict_encoding(sb))
1718 return -EINVAL;
1719 return 0;
1720 }
1721
1722 static const struct dentry_operations generic_ci_dentry_ops = {
1723 .d_hash = generic_ci_d_hash,
1724 .d_compare = generic_ci_d_compare,
1725 };
1726 #endif
1727
1728 #ifdef CONFIG_FS_ENCRYPTION
1729 static const struct dentry_operations generic_encrypted_dentry_ops = {
1730 .d_revalidate = fscrypt_d_revalidate,
1731 };
1732 #endif
1733
1734 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1735 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1736 .d_hash = generic_ci_d_hash,
1737 .d_compare = generic_ci_d_compare,
1738 .d_revalidate = fscrypt_d_revalidate,
1739 };
1740 #endif
1741
1742 /**
1743 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1744 * @dentry: dentry to set ops on
1745 *
1746 * Casefolded directories need d_hash and d_compare set, so that the dentries
1747 * contained in them are handled case-insensitively. Note that these operations
1748 * are needed on the parent directory rather than on the dentries in it, and
1749 * while the casefolding flag can be toggled on and off on an empty directory,
1750 * dentry_operations can't be changed later. As a result, if the filesystem has
1751 * casefolding support enabled at all, we have to give all dentries the
1752 * casefolding operations even if their inode doesn't have the casefolding flag
1753 * currently (and thus the casefolding ops would be no-ops for now).
1754 *
1755 * Encryption works differently in that the only dentry operation it needs is
1756 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1757 * The no-key flag can't be set "later", so we don't have to worry about that.
1758 *
1759 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1760 * with certain dentry operations) and to avoid taking an unnecessary
1761 * performance hit, we use custom dentry_operations for each possible
1762 * combination rather than always installing all operations.
1763 */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1764 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1765 {
1766 #ifdef CONFIG_FS_ENCRYPTION
1767 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1768 #endif
1769 #if IS_ENABLED(CONFIG_UNICODE)
1770 bool needs_ci_ops = dentry->d_sb->s_encoding;
1771 #endif
1772 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE)
1773 if (needs_encrypt_ops && needs_ci_ops) {
1774 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1775 return;
1776 }
1777 #endif
1778 #ifdef CONFIG_FS_ENCRYPTION
1779 if (needs_encrypt_ops) {
1780 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1781 return;
1782 }
1783 #endif
1784 #if IS_ENABLED(CONFIG_UNICODE)
1785 if (needs_ci_ops) {
1786 d_set_d_op(dentry, &generic_ci_dentry_ops);
1787 return;
1788 }
1789 #endif
1790 }
1791 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1792
1793 /**
1794 * inode_maybe_inc_iversion - increments i_version
1795 * @inode: inode with the i_version that should be updated
1796 * @force: increment the counter even if it's not necessary?
1797 *
1798 * Every time the inode is modified, the i_version field must be seen to have
1799 * changed by any observer.
1800 *
1801 * If "force" is set or the QUERIED flag is set, then ensure that we increment
1802 * the value, and clear the queried flag.
1803 *
1804 * In the common case where neither is set, then we can return "false" without
1805 * updating i_version.
1806 *
1807 * If this function returns false, and no other metadata has changed, then we
1808 * can avoid logging the metadata.
1809 */
inode_maybe_inc_iversion(struct inode * inode,bool force)1810 bool inode_maybe_inc_iversion(struct inode *inode, bool force)
1811 {
1812 u64 cur, new;
1813
1814 /*
1815 * The i_version field is not strictly ordered with any other inode
1816 * information, but the legacy inode_inc_iversion code used a spinlock
1817 * to serialize increments.
1818 *
1819 * Here, we add full memory barriers to ensure that any de-facto
1820 * ordering with other info is preserved.
1821 *
1822 * This barrier pairs with the barrier in inode_query_iversion()
1823 */
1824 smp_mb();
1825 cur = inode_peek_iversion_raw(inode);
1826 do {
1827 /* If flag is clear then we needn't do anything */
1828 if (!force && !(cur & I_VERSION_QUERIED))
1829 return false;
1830
1831 /* Since lowest bit is flag, add 2 to avoid it */
1832 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT;
1833 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1834 return true;
1835 }
1836 EXPORT_SYMBOL(inode_maybe_inc_iversion);
1837
1838 /**
1839 * inode_query_iversion - read i_version for later use
1840 * @inode: inode from which i_version should be read
1841 *
1842 * Read the inode i_version counter. This should be used by callers that wish
1843 * to store the returned i_version for later comparison. This will guarantee
1844 * that a later query of the i_version will result in a different value if
1845 * anything has changed.
1846 *
1847 * In this implementation, we fetch the current value, set the QUERIED flag and
1848 * then try to swap it into place with a cmpxchg, if it wasn't already set. If
1849 * that fails, we try again with the newly fetched value from the cmpxchg.
1850 */
inode_query_iversion(struct inode * inode)1851 u64 inode_query_iversion(struct inode *inode)
1852 {
1853 u64 cur, new;
1854
1855 cur = inode_peek_iversion_raw(inode);
1856 do {
1857 /* If flag is already set, then no need to swap */
1858 if (cur & I_VERSION_QUERIED) {
1859 /*
1860 * This barrier (and the implicit barrier in the
1861 * cmpxchg below) pairs with the barrier in
1862 * inode_maybe_inc_iversion().
1863 */
1864 smp_mb();
1865 break;
1866 }
1867
1868 new = cur | I_VERSION_QUERIED;
1869 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new));
1870 return cur >> I_VERSION_QUERIED_SHIFT;
1871 }
1872 EXPORT_SYMBOL(inode_query_iversion);
1873
direct_write_fallback(struct kiocb * iocb,struct iov_iter * iter,ssize_t direct_written,ssize_t buffered_written)1874 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter,
1875 ssize_t direct_written, ssize_t buffered_written)
1876 {
1877 struct address_space *mapping = iocb->ki_filp->f_mapping;
1878 loff_t pos = iocb->ki_pos - buffered_written;
1879 loff_t end = iocb->ki_pos - 1;
1880 int err;
1881
1882 /*
1883 * If the buffered write fallback returned an error, we want to return
1884 * the number of bytes which were written by direct I/O, or the error
1885 * code if that was zero.
1886 *
1887 * Note that this differs from normal direct-io semantics, which will
1888 * return -EFOO even if some bytes were written.
1889 */
1890 if (unlikely(buffered_written < 0)) {
1891 if (direct_written)
1892 return direct_written;
1893 return buffered_written;
1894 }
1895
1896 /*
1897 * We need to ensure that the page cache pages are written to disk and
1898 * invalidated to preserve the expected O_DIRECT semantics.
1899 */
1900 err = filemap_write_and_wait_range(mapping, pos, end);
1901 if (err < 0) {
1902 /*
1903 * We don't know how much we wrote, so just return the number of
1904 * bytes which were direct-written
1905 */
1906 iocb->ki_pos -= buffered_written;
1907 if (direct_written)
1908 return direct_written;
1909 return err;
1910 }
1911 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT);
1912 return direct_written + buffered_written;
1913 }
1914 EXPORT_SYMBOL_GPL(direct_write_fallback);
1915