1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Derived from "arch/i386/kernel/process.c"
4 * Copyright (C) 1995 Linus Torvalds
5 *
6 * Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
7 * Paul Mackerras (paulus@cs.anu.edu.au)
8 *
9 * PowerPC version
10 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
11 */
12
13 #include <linux/errno.h>
14 #include <linux/sched.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/smp.h>
21 #include <linux/stddef.h>
22 #include <linux/unistd.h>
23 #include <linux/ptrace.h>
24 #include <linux/slab.h>
25 #include <linux/user.h>
26 #include <linux/elf.h>
27 #include <linux/prctl.h>
28 #include <linux/init_task.h>
29 #include <linux/export.h>
30 #include <linux/kallsyms.h>
31 #include <linux/mqueue.h>
32 #include <linux/hardirq.h>
33 #include <linux/utsname.h>
34 #include <linux/ftrace.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/personality.h>
37 #include <linux/random.h>
38 #include <linux/hw_breakpoint.h>
39 #include <linux/uaccess.h>
40 #include <linux/elf-randomize.h>
41 #include <linux/pkeys.h>
42 #include <linux/seq_buf.h>
43
44 #include <asm/io.h>
45 #include <asm/processor.h>
46 #include <asm/mmu.h>
47 #include <asm/prom.h>
48 #include <asm/machdep.h>
49 #include <asm/time.h>
50 #include <asm/runlatch.h>
51 #include <asm/syscalls.h>
52 #include <asm/switch_to.h>
53 #include <asm/tm.h>
54 #include <asm/debug.h>
55 #ifdef CONFIG_PPC64
56 #include <asm/firmware.h>
57 #include <asm/hw_irq.h>
58 #endif
59 #include <asm/code-patching.h>
60 #include <asm/exec.h>
61 #include <asm/livepatch.h>
62 #include <asm/cpu_has_feature.h>
63 #include <asm/asm-prototypes.h>
64 #include <asm/stacktrace.h>
65 #include <asm/hw_breakpoint.h>
66
67 #include <linux/kprobes.h>
68 #include <linux/kdebug.h>
69
70 /* Transactional Memory debug */
71 #ifdef TM_DEBUG_SW
72 #define TM_DEBUG(x...) printk(KERN_INFO x)
73 #else
74 #define TM_DEBUG(x...) do { } while(0)
75 #endif
76
77 extern unsigned long _get_SP(void);
78
79 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
80 /*
81 * Are we running in "Suspend disabled" mode? If so we have to block any
82 * sigreturn that would get us into suspended state, and we also warn in some
83 * other paths that we should never reach with suspend disabled.
84 */
85 bool tm_suspend_disabled __ro_after_init = false;
86
check_if_tm_restore_required(struct task_struct * tsk)87 static void check_if_tm_restore_required(struct task_struct *tsk)
88 {
89 /*
90 * If we are saving the current thread's registers, and the
91 * thread is in a transactional state, set the TIF_RESTORE_TM
92 * bit so that we know to restore the registers before
93 * returning to userspace.
94 */
95 if (tsk == current && tsk->thread.regs &&
96 MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
97 !test_thread_flag(TIF_RESTORE_TM)) {
98 tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
99 set_thread_flag(TIF_RESTORE_TM);
100 }
101 }
102
103 #else
check_if_tm_restore_required(struct task_struct * tsk)104 static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
105 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
106
107 bool strict_msr_control;
108 EXPORT_SYMBOL(strict_msr_control);
109
enable_strict_msr_control(char * str)110 static int __init enable_strict_msr_control(char *str)
111 {
112 strict_msr_control = true;
113 pr_info("Enabling strict facility control\n");
114
115 return 0;
116 }
117 early_param("ppc_strict_facility_enable", enable_strict_msr_control);
118
119 /* notrace because it's called by restore_math */
msr_check_and_set(unsigned long bits)120 unsigned long notrace msr_check_and_set(unsigned long bits)
121 {
122 unsigned long oldmsr = mfmsr();
123 unsigned long newmsr;
124
125 newmsr = oldmsr | bits;
126
127 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
128 newmsr |= MSR_VSX;
129
130 if (oldmsr != newmsr)
131 mtmsr_isync(newmsr);
132
133 return newmsr;
134 }
135 EXPORT_SYMBOL_GPL(msr_check_and_set);
136
137 /* notrace because it's called by restore_math */
__msr_check_and_clear(unsigned long bits)138 void notrace __msr_check_and_clear(unsigned long bits)
139 {
140 unsigned long oldmsr = mfmsr();
141 unsigned long newmsr;
142
143 newmsr = oldmsr & ~bits;
144
145 if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
146 newmsr &= ~MSR_VSX;
147
148 if (oldmsr != newmsr)
149 mtmsr_isync(newmsr);
150 }
151 EXPORT_SYMBOL(__msr_check_and_clear);
152
153 #ifdef CONFIG_PPC_FPU
__giveup_fpu(struct task_struct * tsk)154 static void __giveup_fpu(struct task_struct *tsk)
155 {
156 unsigned long msr;
157
158 save_fpu(tsk);
159 msr = tsk->thread.regs->msr;
160 msr &= ~(MSR_FP|MSR_FE0|MSR_FE1);
161 if (cpu_has_feature(CPU_FTR_VSX))
162 msr &= ~MSR_VSX;
163 tsk->thread.regs->msr = msr;
164 }
165
giveup_fpu(struct task_struct * tsk)166 void giveup_fpu(struct task_struct *tsk)
167 {
168 check_if_tm_restore_required(tsk);
169
170 msr_check_and_set(MSR_FP);
171 __giveup_fpu(tsk);
172 msr_check_and_clear(MSR_FP);
173 }
174 EXPORT_SYMBOL(giveup_fpu);
175
176 /*
177 * Make sure the floating-point register state in the
178 * the thread_struct is up to date for task tsk.
179 */
flush_fp_to_thread(struct task_struct * tsk)180 void flush_fp_to_thread(struct task_struct *tsk)
181 {
182 if (tsk->thread.regs) {
183 /*
184 * We need to disable preemption here because if we didn't,
185 * another process could get scheduled after the regs->msr
186 * test but before we have finished saving the FP registers
187 * to the thread_struct. That process could take over the
188 * FPU, and then when we get scheduled again we would store
189 * bogus values for the remaining FP registers.
190 */
191 preempt_disable();
192 if (tsk->thread.regs->msr & MSR_FP) {
193 /*
194 * This should only ever be called for current or
195 * for a stopped child process. Since we save away
196 * the FP register state on context switch,
197 * there is something wrong if a stopped child appears
198 * to still have its FP state in the CPU registers.
199 */
200 BUG_ON(tsk != current);
201 giveup_fpu(tsk);
202 }
203 preempt_enable();
204 }
205 }
206 EXPORT_SYMBOL_GPL(flush_fp_to_thread);
207
enable_kernel_fp(void)208 void enable_kernel_fp(void)
209 {
210 unsigned long cpumsr;
211
212 WARN_ON(preemptible());
213
214 cpumsr = msr_check_and_set(MSR_FP);
215
216 if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
217 check_if_tm_restore_required(current);
218 /*
219 * If a thread has already been reclaimed then the
220 * checkpointed registers are on the CPU but have definitely
221 * been saved by the reclaim code. Don't need to and *cannot*
222 * giveup as this would save to the 'live' structure not the
223 * checkpointed structure.
224 */
225 if (!MSR_TM_ACTIVE(cpumsr) &&
226 MSR_TM_ACTIVE(current->thread.regs->msr))
227 return;
228 __giveup_fpu(current);
229 }
230 }
231 EXPORT_SYMBOL(enable_kernel_fp);
232 #else
__giveup_fpu(struct task_struct * tsk)233 static inline void __giveup_fpu(struct task_struct *tsk) { }
234 #endif /* CONFIG_PPC_FPU */
235
236 #ifdef CONFIG_ALTIVEC
__giveup_altivec(struct task_struct * tsk)237 static void __giveup_altivec(struct task_struct *tsk)
238 {
239 unsigned long msr;
240
241 save_altivec(tsk);
242 msr = tsk->thread.regs->msr;
243 msr &= ~MSR_VEC;
244 if (cpu_has_feature(CPU_FTR_VSX))
245 msr &= ~MSR_VSX;
246 tsk->thread.regs->msr = msr;
247 }
248
giveup_altivec(struct task_struct * tsk)249 void giveup_altivec(struct task_struct *tsk)
250 {
251 check_if_tm_restore_required(tsk);
252
253 msr_check_and_set(MSR_VEC);
254 __giveup_altivec(tsk);
255 msr_check_and_clear(MSR_VEC);
256 }
257 EXPORT_SYMBOL(giveup_altivec);
258
enable_kernel_altivec(void)259 void enable_kernel_altivec(void)
260 {
261 unsigned long cpumsr;
262
263 WARN_ON(preemptible());
264
265 cpumsr = msr_check_and_set(MSR_VEC);
266
267 if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
268 check_if_tm_restore_required(current);
269 /*
270 * If a thread has already been reclaimed then the
271 * checkpointed registers are on the CPU but have definitely
272 * been saved by the reclaim code. Don't need to and *cannot*
273 * giveup as this would save to the 'live' structure not the
274 * checkpointed structure.
275 */
276 if (!MSR_TM_ACTIVE(cpumsr) &&
277 MSR_TM_ACTIVE(current->thread.regs->msr))
278 return;
279 __giveup_altivec(current);
280 }
281 }
282 EXPORT_SYMBOL(enable_kernel_altivec);
283
284 /*
285 * Make sure the VMX/Altivec register state in the
286 * the thread_struct is up to date for task tsk.
287 */
flush_altivec_to_thread(struct task_struct * tsk)288 void flush_altivec_to_thread(struct task_struct *tsk)
289 {
290 if (tsk->thread.regs) {
291 preempt_disable();
292 if (tsk->thread.regs->msr & MSR_VEC) {
293 BUG_ON(tsk != current);
294 giveup_altivec(tsk);
295 }
296 preempt_enable();
297 }
298 }
299 EXPORT_SYMBOL_GPL(flush_altivec_to_thread);
300 #endif /* CONFIG_ALTIVEC */
301
302 #ifdef CONFIG_VSX
__giveup_vsx(struct task_struct * tsk)303 static void __giveup_vsx(struct task_struct *tsk)
304 {
305 unsigned long msr = tsk->thread.regs->msr;
306
307 /*
308 * We should never be ssetting MSR_VSX without also setting
309 * MSR_FP and MSR_VEC
310 */
311 WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));
312
313 /* __giveup_fpu will clear MSR_VSX */
314 if (msr & MSR_FP)
315 __giveup_fpu(tsk);
316 if (msr & MSR_VEC)
317 __giveup_altivec(tsk);
318 }
319
giveup_vsx(struct task_struct * tsk)320 static void giveup_vsx(struct task_struct *tsk)
321 {
322 check_if_tm_restore_required(tsk);
323
324 msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
325 __giveup_vsx(tsk);
326 msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
327 }
328
enable_kernel_vsx(void)329 void enable_kernel_vsx(void)
330 {
331 unsigned long cpumsr;
332
333 WARN_ON(preemptible());
334
335 cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
336
337 if (current->thread.regs &&
338 (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
339 check_if_tm_restore_required(current);
340 /*
341 * If a thread has already been reclaimed then the
342 * checkpointed registers are on the CPU but have definitely
343 * been saved by the reclaim code. Don't need to and *cannot*
344 * giveup as this would save to the 'live' structure not the
345 * checkpointed structure.
346 */
347 if (!MSR_TM_ACTIVE(cpumsr) &&
348 MSR_TM_ACTIVE(current->thread.regs->msr))
349 return;
350 __giveup_vsx(current);
351 }
352 }
353 EXPORT_SYMBOL(enable_kernel_vsx);
354
flush_vsx_to_thread(struct task_struct * tsk)355 void flush_vsx_to_thread(struct task_struct *tsk)
356 {
357 if (tsk->thread.regs) {
358 preempt_disable();
359 if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
360 BUG_ON(tsk != current);
361 giveup_vsx(tsk);
362 }
363 preempt_enable();
364 }
365 }
366 EXPORT_SYMBOL_GPL(flush_vsx_to_thread);
367 #endif /* CONFIG_VSX */
368
369 #ifdef CONFIG_SPE
giveup_spe(struct task_struct * tsk)370 void giveup_spe(struct task_struct *tsk)
371 {
372 check_if_tm_restore_required(tsk);
373
374 msr_check_and_set(MSR_SPE);
375 __giveup_spe(tsk);
376 msr_check_and_clear(MSR_SPE);
377 }
378 EXPORT_SYMBOL(giveup_spe);
379
enable_kernel_spe(void)380 void enable_kernel_spe(void)
381 {
382 WARN_ON(preemptible());
383
384 msr_check_and_set(MSR_SPE);
385
386 if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
387 check_if_tm_restore_required(current);
388 __giveup_spe(current);
389 }
390 }
391 EXPORT_SYMBOL(enable_kernel_spe);
392
flush_spe_to_thread(struct task_struct * tsk)393 void flush_spe_to_thread(struct task_struct *tsk)
394 {
395 if (tsk->thread.regs) {
396 preempt_disable();
397 if (tsk->thread.regs->msr & MSR_SPE) {
398 BUG_ON(tsk != current);
399 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
400 giveup_spe(tsk);
401 }
402 preempt_enable();
403 }
404 }
405 #endif /* CONFIG_SPE */
406
407 static unsigned long msr_all_available;
408
init_msr_all_available(void)409 static int __init init_msr_all_available(void)
410 {
411 if (IS_ENABLED(CONFIG_PPC_FPU))
412 msr_all_available |= MSR_FP;
413 if (cpu_has_feature(CPU_FTR_ALTIVEC))
414 msr_all_available |= MSR_VEC;
415 if (cpu_has_feature(CPU_FTR_VSX))
416 msr_all_available |= MSR_VSX;
417 if (cpu_has_feature(CPU_FTR_SPE))
418 msr_all_available |= MSR_SPE;
419
420 return 0;
421 }
422 early_initcall(init_msr_all_available);
423
giveup_all(struct task_struct * tsk)424 void giveup_all(struct task_struct *tsk)
425 {
426 unsigned long usermsr;
427
428 if (!tsk->thread.regs)
429 return;
430
431 check_if_tm_restore_required(tsk);
432
433 usermsr = tsk->thread.regs->msr;
434
435 if ((usermsr & msr_all_available) == 0)
436 return;
437
438 msr_check_and_set(msr_all_available);
439
440 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
441
442 if (usermsr & MSR_FP)
443 __giveup_fpu(tsk);
444 if (usermsr & MSR_VEC)
445 __giveup_altivec(tsk);
446 if (usermsr & MSR_SPE)
447 __giveup_spe(tsk);
448
449 msr_check_and_clear(msr_all_available);
450 }
451 EXPORT_SYMBOL(giveup_all);
452
453 #ifdef CONFIG_PPC_BOOK3S_64
454 #ifdef CONFIG_PPC_FPU
should_restore_fp(void)455 static bool should_restore_fp(void)
456 {
457 if (current->thread.load_fp) {
458 current->thread.load_fp++;
459 return true;
460 }
461 return false;
462 }
463
do_restore_fp(void)464 static void do_restore_fp(void)
465 {
466 load_fp_state(¤t->thread.fp_state);
467 }
468 #else
should_restore_fp(void)469 static bool should_restore_fp(void) { return false; }
do_restore_fp(void)470 static void do_restore_fp(void) { }
471 #endif /* CONFIG_PPC_FPU */
472
473 #ifdef CONFIG_ALTIVEC
should_restore_altivec(void)474 static bool should_restore_altivec(void)
475 {
476 if (cpu_has_feature(CPU_FTR_ALTIVEC) && (current->thread.load_vec)) {
477 current->thread.load_vec++;
478 return true;
479 }
480 return false;
481 }
482
do_restore_altivec(void)483 static void do_restore_altivec(void)
484 {
485 load_vr_state(¤t->thread.vr_state);
486 current->thread.used_vr = 1;
487 }
488 #else
should_restore_altivec(void)489 static bool should_restore_altivec(void) { return false; }
do_restore_altivec(void)490 static void do_restore_altivec(void) { }
491 #endif /* CONFIG_ALTIVEC */
492
should_restore_vsx(void)493 static bool should_restore_vsx(void)
494 {
495 if (cpu_has_feature(CPU_FTR_VSX))
496 return true;
497 return false;
498 }
499 #ifdef CONFIG_VSX
do_restore_vsx(void)500 static void do_restore_vsx(void)
501 {
502 current->thread.used_vsr = 1;
503 }
504 #else
do_restore_vsx(void)505 static void do_restore_vsx(void) { }
506 #endif /* CONFIG_VSX */
507
508 /*
509 * The exception exit path calls restore_math() with interrupts hard disabled
510 * but the soft irq state not "reconciled". ftrace code that calls
511 * local_irq_save/restore causes warnings.
512 *
513 * Rather than complicate the exit path, just don't trace restore_math. This
514 * could be done by having ftrace entry code check for this un-reconciled
515 * condition where MSR[EE]=0 and PACA_IRQ_HARD_DIS is not set, and
516 * temporarily fix it up for the duration of the ftrace call.
517 */
restore_math(struct pt_regs * regs)518 void notrace restore_math(struct pt_regs *regs)
519 {
520 unsigned long msr;
521 unsigned long new_msr = 0;
522
523 msr = regs->msr;
524
525 /*
526 * new_msr tracks the facilities that are to be restored. Only reload
527 * if the bit is not set in the user MSR (if it is set, the registers
528 * are live for the user thread).
529 */
530 if ((!(msr & MSR_FP)) && should_restore_fp())
531 new_msr |= MSR_FP;
532
533 if ((!(msr & MSR_VEC)) && should_restore_altivec())
534 new_msr |= MSR_VEC;
535
536 if ((!(msr & MSR_VSX)) && should_restore_vsx()) {
537 if (((msr | new_msr) & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC))
538 new_msr |= MSR_VSX;
539 }
540
541 if (new_msr) {
542 unsigned long fpexc_mode = 0;
543
544 msr_check_and_set(new_msr);
545
546 if (new_msr & MSR_FP) {
547 do_restore_fp();
548
549 // This also covers VSX, because VSX implies FP
550 fpexc_mode = current->thread.fpexc_mode;
551 }
552
553 if (new_msr & MSR_VEC)
554 do_restore_altivec();
555
556 if (new_msr & MSR_VSX)
557 do_restore_vsx();
558
559 msr_check_and_clear(new_msr);
560
561 regs->msr |= new_msr | fpexc_mode;
562 }
563 }
564 #endif /* CONFIG_PPC_BOOK3S_64 */
565
save_all(struct task_struct * tsk)566 static void save_all(struct task_struct *tsk)
567 {
568 unsigned long usermsr;
569
570 if (!tsk->thread.regs)
571 return;
572
573 usermsr = tsk->thread.regs->msr;
574
575 if ((usermsr & msr_all_available) == 0)
576 return;
577
578 msr_check_and_set(msr_all_available);
579
580 WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));
581
582 if (usermsr & MSR_FP)
583 save_fpu(tsk);
584
585 if (usermsr & MSR_VEC)
586 save_altivec(tsk);
587
588 if (usermsr & MSR_SPE)
589 __giveup_spe(tsk);
590
591 msr_check_and_clear(msr_all_available);
592 thread_pkey_regs_save(&tsk->thread);
593 }
594
flush_all_to_thread(struct task_struct * tsk)595 void flush_all_to_thread(struct task_struct *tsk)
596 {
597 if (tsk->thread.regs) {
598 preempt_disable();
599 BUG_ON(tsk != current);
600 #ifdef CONFIG_SPE
601 if (tsk->thread.regs->msr & MSR_SPE)
602 tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
603 #endif
604 save_all(tsk);
605
606 preempt_enable();
607 }
608 }
609 EXPORT_SYMBOL(flush_all_to_thread);
610
611 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
do_send_trap(struct pt_regs * regs,unsigned long address,unsigned long error_code,int breakpt)612 void do_send_trap(struct pt_regs *regs, unsigned long address,
613 unsigned long error_code, int breakpt)
614 {
615 current->thread.trap_nr = TRAP_HWBKPT;
616 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
617 11, SIGSEGV) == NOTIFY_STOP)
618 return;
619
620 /* Deliver the signal to userspace */
621 force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
622 (void __user *)address);
623 }
624 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
625
do_break_handler(struct pt_regs * regs)626 static void do_break_handler(struct pt_regs *regs)
627 {
628 struct arch_hw_breakpoint null_brk = {0};
629 struct arch_hw_breakpoint *info;
630 struct ppc_inst instr = ppc_inst(0);
631 int type = 0;
632 int size = 0;
633 unsigned long ea;
634 int i;
635
636 /*
637 * If underneath hw supports only one watchpoint, we know it
638 * caused exception. 8xx also falls into this category.
639 */
640 if (nr_wp_slots() == 1) {
641 __set_breakpoint(0, &null_brk);
642 current->thread.hw_brk[0] = null_brk;
643 current->thread.hw_brk[0].flags |= HW_BRK_FLAG_DISABLED;
644 return;
645 }
646
647 /* Otherwise findout which DAWR caused exception and disable it. */
648 wp_get_instr_detail(regs, &instr, &type, &size, &ea);
649
650 for (i = 0; i < nr_wp_slots(); i++) {
651 info = ¤t->thread.hw_brk[i];
652 if (!info->address)
653 continue;
654
655 if (wp_check_constraints(regs, instr, ea, type, size, info)) {
656 __set_breakpoint(i, &null_brk);
657 current->thread.hw_brk[i] = null_brk;
658 current->thread.hw_brk[i].flags |= HW_BRK_FLAG_DISABLED;
659 }
660 }
661 }
662
do_break(struct pt_regs * regs,unsigned long address,unsigned long error_code)663 void do_break (struct pt_regs *regs, unsigned long address,
664 unsigned long error_code)
665 {
666 current->thread.trap_nr = TRAP_HWBKPT;
667 if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
668 11, SIGSEGV) == NOTIFY_STOP)
669 return;
670
671 if (debugger_break_match(regs))
672 return;
673
674 /*
675 * We reach here only when watchpoint exception is generated by ptrace
676 * event (or hw is buggy!). Now if CONFIG_HAVE_HW_BREAKPOINT is set,
677 * watchpoint is already handled by hw_breakpoint_handler() so we don't
678 * have to do anything. But when CONFIG_HAVE_HW_BREAKPOINT is not set,
679 * we need to manually handle the watchpoint here.
680 */
681 if (!IS_ENABLED(CONFIG_HAVE_HW_BREAKPOINT))
682 do_break_handler(regs);
683
684 /* Deliver the signal to userspace */
685 force_sig_fault(SIGTRAP, TRAP_HWBKPT, (void __user *)address);
686 }
687 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
688
689 static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk[HBP_NUM_MAX]);
690
691 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
692 /*
693 * Set the debug registers back to their default "safe" values.
694 */
set_debug_reg_defaults(struct thread_struct * thread)695 static void set_debug_reg_defaults(struct thread_struct *thread)
696 {
697 thread->debug.iac1 = thread->debug.iac2 = 0;
698 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
699 thread->debug.iac3 = thread->debug.iac4 = 0;
700 #endif
701 thread->debug.dac1 = thread->debug.dac2 = 0;
702 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
703 thread->debug.dvc1 = thread->debug.dvc2 = 0;
704 #endif
705 thread->debug.dbcr0 = 0;
706 #ifdef CONFIG_BOOKE
707 /*
708 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
709 */
710 thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
711 DBCR1_IAC3US | DBCR1_IAC4US;
712 /*
713 * Force Data Address Compare User/Supervisor bits to be User-only
714 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
715 */
716 thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
717 #else
718 thread->debug.dbcr1 = 0;
719 #endif
720 }
721
prime_debug_regs(struct debug_reg * debug)722 static void prime_debug_regs(struct debug_reg *debug)
723 {
724 /*
725 * We could have inherited MSR_DE from userspace, since
726 * it doesn't get cleared on exception entry. Make sure
727 * MSR_DE is clear before we enable any debug events.
728 */
729 mtmsr(mfmsr() & ~MSR_DE);
730
731 mtspr(SPRN_IAC1, debug->iac1);
732 mtspr(SPRN_IAC2, debug->iac2);
733 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
734 mtspr(SPRN_IAC3, debug->iac3);
735 mtspr(SPRN_IAC4, debug->iac4);
736 #endif
737 mtspr(SPRN_DAC1, debug->dac1);
738 mtspr(SPRN_DAC2, debug->dac2);
739 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
740 mtspr(SPRN_DVC1, debug->dvc1);
741 mtspr(SPRN_DVC2, debug->dvc2);
742 #endif
743 mtspr(SPRN_DBCR0, debug->dbcr0);
744 mtspr(SPRN_DBCR1, debug->dbcr1);
745 #ifdef CONFIG_BOOKE
746 mtspr(SPRN_DBCR2, debug->dbcr2);
747 #endif
748 }
749 /*
750 * Unless neither the old or new thread are making use of the
751 * debug registers, set the debug registers from the values
752 * stored in the new thread.
753 */
switch_booke_debug_regs(struct debug_reg * new_debug)754 void switch_booke_debug_regs(struct debug_reg *new_debug)
755 {
756 if ((current->thread.debug.dbcr0 & DBCR0_IDM)
757 || (new_debug->dbcr0 & DBCR0_IDM))
758 prime_debug_regs(new_debug);
759 }
760 EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
761 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
762 #ifndef CONFIG_HAVE_HW_BREAKPOINT
set_breakpoint(int i,struct arch_hw_breakpoint * brk)763 static void set_breakpoint(int i, struct arch_hw_breakpoint *brk)
764 {
765 preempt_disable();
766 __set_breakpoint(i, brk);
767 preempt_enable();
768 }
769
set_debug_reg_defaults(struct thread_struct * thread)770 static void set_debug_reg_defaults(struct thread_struct *thread)
771 {
772 int i;
773 struct arch_hw_breakpoint null_brk = {0};
774
775 for (i = 0; i < nr_wp_slots(); i++) {
776 thread->hw_brk[i] = null_brk;
777 if (ppc_breakpoint_available())
778 set_breakpoint(i, &thread->hw_brk[i]);
779 }
780 }
781
hw_brk_match(struct arch_hw_breakpoint * a,struct arch_hw_breakpoint * b)782 static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
783 struct arch_hw_breakpoint *b)
784 {
785 if (a->address != b->address)
786 return false;
787 if (a->type != b->type)
788 return false;
789 if (a->len != b->len)
790 return false;
791 /* no need to check hw_len. it's calculated from address and len */
792 return true;
793 }
794
switch_hw_breakpoint(struct task_struct * new)795 static void switch_hw_breakpoint(struct task_struct *new)
796 {
797 int i;
798
799 for (i = 0; i < nr_wp_slots(); i++) {
800 if (likely(hw_brk_match(this_cpu_ptr(¤t_brk[i]),
801 &new->thread.hw_brk[i])))
802 continue;
803
804 __set_breakpoint(i, &new->thread.hw_brk[i]);
805 }
806 }
807 #endif /* !CONFIG_HAVE_HW_BREAKPOINT */
808 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
809
810 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
__set_dabr(unsigned long dabr,unsigned long dabrx)811 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
812 {
813 mtspr(SPRN_DAC1, dabr);
814 if (IS_ENABLED(CONFIG_PPC_47x))
815 isync();
816 return 0;
817 }
818 #elif defined(CONFIG_PPC_BOOK3S)
__set_dabr(unsigned long dabr,unsigned long dabrx)819 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
820 {
821 mtspr(SPRN_DABR, dabr);
822 if (cpu_has_feature(CPU_FTR_DABRX))
823 mtspr(SPRN_DABRX, dabrx);
824 return 0;
825 }
826 #else
__set_dabr(unsigned long dabr,unsigned long dabrx)827 static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
828 {
829 return -EINVAL;
830 }
831 #endif
832
set_dabr(struct arch_hw_breakpoint * brk)833 static inline int set_dabr(struct arch_hw_breakpoint *brk)
834 {
835 unsigned long dabr, dabrx;
836
837 dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
838 dabrx = ((brk->type >> 3) & 0x7);
839
840 if (ppc_md.set_dabr)
841 return ppc_md.set_dabr(dabr, dabrx);
842
843 return __set_dabr(dabr, dabrx);
844 }
845
set_breakpoint_8xx(struct arch_hw_breakpoint * brk)846 static inline int set_breakpoint_8xx(struct arch_hw_breakpoint *brk)
847 {
848 unsigned long lctrl1 = LCTRL1_CTE_GT | LCTRL1_CTF_LT | LCTRL1_CRWE_RW |
849 LCTRL1_CRWF_RW;
850 unsigned long lctrl2 = LCTRL2_LW0EN | LCTRL2_LW0LADC | LCTRL2_SLW0EN;
851 unsigned long start_addr = ALIGN_DOWN(brk->address, HW_BREAKPOINT_SIZE);
852 unsigned long end_addr = ALIGN(brk->address + brk->len, HW_BREAKPOINT_SIZE);
853
854 if (start_addr == 0)
855 lctrl2 |= LCTRL2_LW0LA_F;
856 else if (end_addr == 0)
857 lctrl2 |= LCTRL2_LW0LA_E;
858 else
859 lctrl2 |= LCTRL2_LW0LA_EandF;
860
861 mtspr(SPRN_LCTRL2, 0);
862
863 if ((brk->type & HW_BRK_TYPE_RDWR) == 0)
864 return 0;
865
866 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
867 lctrl1 |= LCTRL1_CRWE_RO | LCTRL1_CRWF_RO;
868 if ((brk->type & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
869 lctrl1 |= LCTRL1_CRWE_WO | LCTRL1_CRWF_WO;
870
871 mtspr(SPRN_CMPE, start_addr - 1);
872 mtspr(SPRN_CMPF, end_addr);
873 mtspr(SPRN_LCTRL1, lctrl1);
874 mtspr(SPRN_LCTRL2, lctrl2);
875
876 return 0;
877 }
878
__set_breakpoint(int nr,struct arch_hw_breakpoint * brk)879 void __set_breakpoint(int nr, struct arch_hw_breakpoint *brk)
880 {
881 memcpy(this_cpu_ptr(¤t_brk[nr]), brk, sizeof(*brk));
882
883 if (dawr_enabled())
884 // Power8 or later
885 set_dawr(nr, brk);
886 else if (IS_ENABLED(CONFIG_PPC_8xx))
887 set_breakpoint_8xx(brk);
888 else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
889 // Power7 or earlier
890 set_dabr(brk);
891 else
892 // Shouldn't happen due to higher level checks
893 WARN_ON_ONCE(1);
894 }
895
896 /* Check if we have DAWR or DABR hardware */
ppc_breakpoint_available(void)897 bool ppc_breakpoint_available(void)
898 {
899 if (dawr_enabled())
900 return true; /* POWER8 DAWR or POWER9 forced DAWR */
901 if (cpu_has_feature(CPU_FTR_ARCH_207S))
902 return false; /* POWER9 with DAWR disabled */
903 /* DABR: Everything but POWER8 and POWER9 */
904 return true;
905 }
906 EXPORT_SYMBOL_GPL(ppc_breakpoint_available);
907
908 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
909
tm_enabled(struct task_struct * tsk)910 static inline bool tm_enabled(struct task_struct *tsk)
911 {
912 return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
913 }
914
tm_reclaim_thread(struct thread_struct * thr,uint8_t cause)915 static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
916 {
917 /*
918 * Use the current MSR TM suspended bit to track if we have
919 * checkpointed state outstanding.
920 * On signal delivery, we'd normally reclaim the checkpointed
921 * state to obtain stack pointer (see:get_tm_stackpointer()).
922 * This will then directly return to userspace without going
923 * through __switch_to(). However, if the stack frame is bad,
924 * we need to exit this thread which calls __switch_to() which
925 * will again attempt to reclaim the already saved tm state.
926 * Hence we need to check that we've not already reclaimed
927 * this state.
928 * We do this using the current MSR, rather tracking it in
929 * some specific thread_struct bit, as it has the additional
930 * benefit of checking for a potential TM bad thing exception.
931 */
932 if (!MSR_TM_SUSPENDED(mfmsr()))
933 return;
934
935 giveup_all(container_of(thr, struct task_struct, thread));
936
937 tm_reclaim(thr, cause);
938
939 /*
940 * If we are in a transaction and FP is off then we can't have
941 * used FP inside that transaction. Hence the checkpointed
942 * state is the same as the live state. We need to copy the
943 * live state to the checkpointed state so that when the
944 * transaction is restored, the checkpointed state is correct
945 * and the aborted transaction sees the correct state. We use
946 * ckpt_regs.msr here as that's what tm_reclaim will use to
947 * determine if it's going to write the checkpointed state or
948 * not. So either this will write the checkpointed registers,
949 * or reclaim will. Similarly for VMX.
950 */
951 if ((thr->ckpt_regs.msr & MSR_FP) == 0)
952 memcpy(&thr->ckfp_state, &thr->fp_state,
953 sizeof(struct thread_fp_state));
954 if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
955 memcpy(&thr->ckvr_state, &thr->vr_state,
956 sizeof(struct thread_vr_state));
957 }
958
tm_reclaim_current(uint8_t cause)959 void tm_reclaim_current(uint8_t cause)
960 {
961 tm_enable();
962 tm_reclaim_thread(¤t->thread, cause);
963 }
964
tm_reclaim_task(struct task_struct * tsk)965 static inline void tm_reclaim_task(struct task_struct *tsk)
966 {
967 /* We have to work out if we're switching from/to a task that's in the
968 * middle of a transaction.
969 *
970 * In switching we need to maintain a 2nd register state as
971 * oldtask->thread.ckpt_regs. We tm_reclaim(oldproc); this saves the
972 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
973 * ckvr_state
974 *
975 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
976 */
977 struct thread_struct *thr = &tsk->thread;
978
979 if (!thr->regs)
980 return;
981
982 if (!MSR_TM_ACTIVE(thr->regs->msr))
983 goto out_and_saveregs;
984
985 WARN_ON(tm_suspend_disabled);
986
987 TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
988 "ccr=%lx, msr=%lx, trap=%lx)\n",
989 tsk->pid, thr->regs->nip,
990 thr->regs->ccr, thr->regs->msr,
991 thr->regs->trap);
992
993 tm_reclaim_thread(thr, TM_CAUSE_RESCHED);
994
995 TM_DEBUG("--- tm_reclaim on pid %d complete\n",
996 tsk->pid);
997
998 out_and_saveregs:
999 /* Always save the regs here, even if a transaction's not active.
1000 * This context-switches a thread's TM info SPRs. We do it here to
1001 * be consistent with the restore path (in recheckpoint) which
1002 * cannot happen later in _switch().
1003 */
1004 tm_save_sprs(thr);
1005 }
1006
1007 extern void __tm_recheckpoint(struct thread_struct *thread);
1008
tm_recheckpoint(struct thread_struct * thread)1009 void tm_recheckpoint(struct thread_struct *thread)
1010 {
1011 unsigned long flags;
1012
1013 if (!(thread->regs->msr & MSR_TM))
1014 return;
1015
1016 /* We really can't be interrupted here as the TEXASR registers can't
1017 * change and later in the trecheckpoint code, we have a userspace R1.
1018 * So let's hard disable over this region.
1019 */
1020 local_irq_save(flags);
1021 hard_irq_disable();
1022
1023 /* The TM SPRs are restored here, so that TEXASR.FS can be set
1024 * before the trecheckpoint and no explosion occurs.
1025 */
1026 tm_restore_sprs(thread);
1027
1028 __tm_recheckpoint(thread);
1029
1030 local_irq_restore(flags);
1031 }
1032
tm_recheckpoint_new_task(struct task_struct * new)1033 static inline void tm_recheckpoint_new_task(struct task_struct *new)
1034 {
1035 if (!cpu_has_feature(CPU_FTR_TM))
1036 return;
1037
1038 /* Recheckpoint the registers of the thread we're about to switch to.
1039 *
1040 * If the task was using FP, we non-lazily reload both the original and
1041 * the speculative FP register states. This is because the kernel
1042 * doesn't see if/when a TM rollback occurs, so if we take an FP
1043 * unavailable later, we are unable to determine which set of FP regs
1044 * need to be restored.
1045 */
1046 if (!tm_enabled(new))
1047 return;
1048
1049 if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
1050 tm_restore_sprs(&new->thread);
1051 return;
1052 }
1053 /* Recheckpoint to restore original checkpointed register state. */
1054 TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
1055 new->pid, new->thread.regs->msr);
1056
1057 tm_recheckpoint(&new->thread);
1058
1059 /*
1060 * The checkpointed state has been restored but the live state has
1061 * not, ensure all the math functionality is turned off to trigger
1062 * restore_math() to reload.
1063 */
1064 new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);
1065
1066 TM_DEBUG("*** tm_recheckpoint of pid %d complete "
1067 "(kernel msr 0x%lx)\n",
1068 new->pid, mfmsr());
1069 }
1070
__switch_to_tm(struct task_struct * prev,struct task_struct * new)1071 static inline void __switch_to_tm(struct task_struct *prev,
1072 struct task_struct *new)
1073 {
1074 if (cpu_has_feature(CPU_FTR_TM)) {
1075 if (tm_enabled(prev) || tm_enabled(new))
1076 tm_enable();
1077
1078 if (tm_enabled(prev)) {
1079 prev->thread.load_tm++;
1080 tm_reclaim_task(prev);
1081 if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
1082 prev->thread.regs->msr &= ~MSR_TM;
1083 }
1084
1085 tm_recheckpoint_new_task(new);
1086 }
1087 }
1088
1089 /*
1090 * This is called if we are on the way out to userspace and the
1091 * TIF_RESTORE_TM flag is set. It checks if we need to reload
1092 * FP and/or vector state and does so if necessary.
1093 * If userspace is inside a transaction (whether active or
1094 * suspended) and FP/VMX/VSX instructions have ever been enabled
1095 * inside that transaction, then we have to keep them enabled
1096 * and keep the FP/VMX/VSX state loaded while ever the transaction
1097 * continues. The reason is that if we didn't, and subsequently
1098 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
1099 * we don't know whether it's the same transaction, and thus we
1100 * don't know which of the checkpointed state and the transactional
1101 * state to use.
1102 */
restore_tm_state(struct pt_regs * regs)1103 void restore_tm_state(struct pt_regs *regs)
1104 {
1105 unsigned long msr_diff;
1106
1107 /*
1108 * This is the only moment we should clear TIF_RESTORE_TM as
1109 * it is here that ckpt_regs.msr and pt_regs.msr become the same
1110 * again, anything else could lead to an incorrect ckpt_msr being
1111 * saved and therefore incorrect signal contexts.
1112 */
1113 clear_thread_flag(TIF_RESTORE_TM);
1114 if (!MSR_TM_ACTIVE(regs->msr))
1115 return;
1116
1117 msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
1118 msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;
1119
1120 /* Ensure that restore_math() will restore */
1121 if (msr_diff & MSR_FP)
1122 current->thread.load_fp = 1;
1123 #ifdef CONFIG_ALTIVEC
1124 if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
1125 current->thread.load_vec = 1;
1126 #endif
1127 restore_math(regs);
1128
1129 regs->msr |= msr_diff;
1130 }
1131
1132 #else
1133 #define tm_recheckpoint_new_task(new)
1134 #define __switch_to_tm(prev, new)
1135 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1136
save_sprs(struct thread_struct * t)1137 static inline void save_sprs(struct thread_struct *t)
1138 {
1139 #ifdef CONFIG_ALTIVEC
1140 if (cpu_has_feature(CPU_FTR_ALTIVEC))
1141 t->vrsave = mfspr(SPRN_VRSAVE);
1142 #endif
1143 #ifdef CONFIG_PPC_BOOK3S_64
1144 if (cpu_has_feature(CPU_FTR_DSCR))
1145 t->dscr = mfspr(SPRN_DSCR);
1146
1147 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1148 t->bescr = mfspr(SPRN_BESCR);
1149 t->ebbhr = mfspr(SPRN_EBBHR);
1150 t->ebbrr = mfspr(SPRN_EBBRR);
1151
1152 t->fscr = mfspr(SPRN_FSCR);
1153
1154 /*
1155 * Note that the TAR is not available for use in the kernel.
1156 * (To provide this, the TAR should be backed up/restored on
1157 * exception entry/exit instead, and be in pt_regs. FIXME,
1158 * this should be in pt_regs anyway (for debug).)
1159 */
1160 t->tar = mfspr(SPRN_TAR);
1161 }
1162 #endif
1163
1164 thread_pkey_regs_save(t);
1165 }
1166
restore_sprs(struct thread_struct * old_thread,struct thread_struct * new_thread)1167 static inline void restore_sprs(struct thread_struct *old_thread,
1168 struct thread_struct *new_thread)
1169 {
1170 #ifdef CONFIG_ALTIVEC
1171 if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
1172 old_thread->vrsave != new_thread->vrsave)
1173 mtspr(SPRN_VRSAVE, new_thread->vrsave);
1174 #endif
1175 #ifdef CONFIG_PPC_BOOK3S_64
1176 if (cpu_has_feature(CPU_FTR_DSCR)) {
1177 u64 dscr = get_paca()->dscr_default;
1178 if (new_thread->dscr_inherit)
1179 dscr = new_thread->dscr;
1180
1181 if (old_thread->dscr != dscr)
1182 mtspr(SPRN_DSCR, dscr);
1183 }
1184
1185 if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
1186 if (old_thread->bescr != new_thread->bescr)
1187 mtspr(SPRN_BESCR, new_thread->bescr);
1188 if (old_thread->ebbhr != new_thread->ebbhr)
1189 mtspr(SPRN_EBBHR, new_thread->ebbhr);
1190 if (old_thread->ebbrr != new_thread->ebbrr)
1191 mtspr(SPRN_EBBRR, new_thread->ebbrr);
1192
1193 if (old_thread->fscr != new_thread->fscr)
1194 mtspr(SPRN_FSCR, new_thread->fscr);
1195
1196 if (old_thread->tar != new_thread->tar)
1197 mtspr(SPRN_TAR, new_thread->tar);
1198 }
1199
1200 if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
1201 old_thread->tidr != new_thread->tidr)
1202 mtspr(SPRN_TIDR, new_thread->tidr);
1203 #endif
1204
1205 thread_pkey_regs_restore(new_thread, old_thread);
1206 }
1207
__switch_to(struct task_struct * prev,struct task_struct * new)1208 struct task_struct *__switch_to(struct task_struct *prev,
1209 struct task_struct *new)
1210 {
1211 struct thread_struct *new_thread, *old_thread;
1212 struct task_struct *last;
1213 #ifdef CONFIG_PPC_BOOK3S_64
1214 struct ppc64_tlb_batch *batch;
1215 #endif
1216
1217 new_thread = &new->thread;
1218 old_thread = ¤t->thread;
1219
1220 WARN_ON(!irqs_disabled());
1221
1222 #ifdef CONFIG_PPC_BOOK3S_64
1223 batch = this_cpu_ptr(&ppc64_tlb_batch);
1224 if (batch->active) {
1225 current_thread_info()->local_flags |= _TLF_LAZY_MMU;
1226 if (batch->index)
1227 __flush_tlb_pending(batch);
1228 batch->active = 0;
1229 }
1230 #endif /* CONFIG_PPC_BOOK3S_64 */
1231
1232 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1233 switch_booke_debug_regs(&new->thread.debug);
1234 #else
1235 /*
1236 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
1237 * schedule DABR
1238 */
1239 #ifndef CONFIG_HAVE_HW_BREAKPOINT
1240 switch_hw_breakpoint(new);
1241 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1242 #endif
1243
1244 /*
1245 * We need to save SPRs before treclaim/trecheckpoint as these will
1246 * change a number of them.
1247 */
1248 save_sprs(&prev->thread);
1249
1250 /* Save FPU, Altivec, VSX and SPE state */
1251 giveup_all(prev);
1252
1253 __switch_to_tm(prev, new);
1254
1255 if (!radix_enabled()) {
1256 /*
1257 * We can't take a PMU exception inside _switch() since there
1258 * is a window where the kernel stack SLB and the kernel stack
1259 * are out of sync. Hard disable here.
1260 */
1261 hard_irq_disable();
1262 }
1263
1264 /*
1265 * Call restore_sprs() before calling _switch(). If we move it after
1266 * _switch() then we miss out on calling it for new tasks. The reason
1267 * for this is we manually create a stack frame for new tasks that
1268 * directly returns through ret_from_fork() or
1269 * ret_from_kernel_thread(). See copy_thread() for details.
1270 */
1271 restore_sprs(old_thread, new_thread);
1272
1273 last = _switch(old_thread, new_thread);
1274
1275 #ifdef CONFIG_PPC_BOOK3S_64
1276 if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
1277 current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
1278 batch = this_cpu_ptr(&ppc64_tlb_batch);
1279 batch->active = 1;
1280 }
1281
1282 if (current->thread.regs) {
1283 restore_math(current->thread.regs);
1284
1285 /*
1286 * On POWER9 the copy-paste buffer can only paste into
1287 * foreign real addresses, so unprivileged processes can not
1288 * see the data or use it in any way unless they have
1289 * foreign real mappings. If the new process has the foreign
1290 * real address mappings, we must issue a cp_abort to clear
1291 * any state and prevent snooping, corruption or a covert
1292 * channel. ISA v3.1 supports paste into local memory.
1293 */
1294 if (current->mm &&
1295 (cpu_has_feature(CPU_FTR_ARCH_31) ||
1296 atomic_read(¤t->mm->context.vas_windows)))
1297 asm volatile(PPC_CP_ABORT);
1298 }
1299 #endif /* CONFIG_PPC_BOOK3S_64 */
1300
1301 return last;
1302 }
1303
1304 #define NR_INSN_TO_PRINT 16
1305
show_instructions(struct pt_regs * regs)1306 static void show_instructions(struct pt_regs *regs)
1307 {
1308 int i;
1309 unsigned long nip = regs->nip;
1310 unsigned long pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1311
1312 printk("Instruction dump:");
1313
1314 /*
1315 * If we were executing with the MMU off for instructions, adjust pc
1316 * rather than printing XXXXXXXX.
1317 */
1318 if (!IS_ENABLED(CONFIG_BOOKE) && !(regs->msr & MSR_IR)) {
1319 pc = (unsigned long)phys_to_virt(pc);
1320 nip = (unsigned long)phys_to_virt(regs->nip);
1321 }
1322
1323 for (i = 0; i < NR_INSN_TO_PRINT; i++) {
1324 int instr;
1325
1326 if (!(i % 8))
1327 pr_cont("\n");
1328
1329 if (!__kernel_text_address(pc) ||
1330 get_kernel_nofault(instr, (const void *)pc)) {
1331 pr_cont("XXXXXXXX ");
1332 } else {
1333 if (nip == pc)
1334 pr_cont("<%08x> ", instr);
1335 else
1336 pr_cont("%08x ", instr);
1337 }
1338
1339 pc += sizeof(int);
1340 }
1341
1342 pr_cont("\n");
1343 }
1344
show_user_instructions(struct pt_regs * regs)1345 void show_user_instructions(struct pt_regs *regs)
1346 {
1347 unsigned long pc;
1348 int n = NR_INSN_TO_PRINT;
1349 struct seq_buf s;
1350 char buf[96]; /* enough for 8 times 9 + 2 chars */
1351
1352 pc = regs->nip - (NR_INSN_TO_PRINT * 3 / 4 * sizeof(int));
1353
1354 seq_buf_init(&s, buf, sizeof(buf));
1355
1356 while (n) {
1357 int i;
1358
1359 seq_buf_clear(&s);
1360
1361 for (i = 0; i < 8 && n; i++, n--, pc += sizeof(int)) {
1362 int instr;
1363
1364 if (copy_from_user_nofault(&instr, (void __user *)pc,
1365 sizeof(instr))) {
1366 seq_buf_printf(&s, "XXXXXXXX ");
1367 continue;
1368 }
1369 seq_buf_printf(&s, regs->nip == pc ? "<%08x> " : "%08x ", instr);
1370 }
1371
1372 if (!seq_buf_has_overflowed(&s))
1373 pr_info("%s[%d]: code: %s\n", current->comm,
1374 current->pid, s.buffer);
1375 }
1376 }
1377
1378 struct regbit {
1379 unsigned long bit;
1380 const char *name;
1381 };
1382
1383 static struct regbit msr_bits[] = {
1384 #if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
1385 {MSR_SF, "SF"},
1386 {MSR_HV, "HV"},
1387 #endif
1388 {MSR_VEC, "VEC"},
1389 {MSR_VSX, "VSX"},
1390 #ifdef CONFIG_BOOKE
1391 {MSR_CE, "CE"},
1392 #endif
1393 {MSR_EE, "EE"},
1394 {MSR_PR, "PR"},
1395 {MSR_FP, "FP"},
1396 {MSR_ME, "ME"},
1397 #ifdef CONFIG_BOOKE
1398 {MSR_DE, "DE"},
1399 #else
1400 {MSR_SE, "SE"},
1401 {MSR_BE, "BE"},
1402 #endif
1403 {MSR_IR, "IR"},
1404 {MSR_DR, "DR"},
1405 {MSR_PMM, "PMM"},
1406 #ifndef CONFIG_BOOKE
1407 {MSR_RI, "RI"},
1408 {MSR_LE, "LE"},
1409 #endif
1410 {0, NULL}
1411 };
1412
print_bits(unsigned long val,struct regbit * bits,const char * sep)1413 static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
1414 {
1415 const char *s = "";
1416
1417 for (; bits->bit; ++bits)
1418 if (val & bits->bit) {
1419 pr_cont("%s%s", s, bits->name);
1420 s = sep;
1421 }
1422 }
1423
1424 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1425 static struct regbit msr_tm_bits[] = {
1426 {MSR_TS_T, "T"},
1427 {MSR_TS_S, "S"},
1428 {MSR_TM, "E"},
1429 {0, NULL}
1430 };
1431
print_tm_bits(unsigned long val)1432 static void print_tm_bits(unsigned long val)
1433 {
1434 /*
1435 * This only prints something if at least one of the TM bit is set.
1436 * Inside the TM[], the output means:
1437 * E: Enabled (bit 32)
1438 * S: Suspended (bit 33)
1439 * T: Transactional (bit 34)
1440 */
1441 if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
1442 pr_cont(",TM[");
1443 print_bits(val, msr_tm_bits, "");
1444 pr_cont("]");
1445 }
1446 }
1447 #else
print_tm_bits(unsigned long val)1448 static void print_tm_bits(unsigned long val) {}
1449 #endif
1450
print_msr_bits(unsigned long val)1451 static void print_msr_bits(unsigned long val)
1452 {
1453 pr_cont("<");
1454 print_bits(val, msr_bits, ",");
1455 print_tm_bits(val);
1456 pr_cont(">");
1457 }
1458
1459 #ifdef CONFIG_PPC64
1460 #define REG "%016lx"
1461 #define REGS_PER_LINE 4
1462 #define LAST_VOLATILE 13
1463 #else
1464 #define REG "%08lx"
1465 #define REGS_PER_LINE 8
1466 #define LAST_VOLATILE 12
1467 #endif
1468
show_regs(struct pt_regs * regs)1469 void show_regs(struct pt_regs * regs)
1470 {
1471 int i, trap;
1472
1473 show_regs_print_info(KERN_DEFAULT);
1474
1475 printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
1476 regs->nip, regs->link, regs->ctr);
1477 printk("REGS: %px TRAP: %04lx %s (%s)\n",
1478 regs, regs->trap, print_tainted(), init_utsname()->release);
1479 printk("MSR: "REG" ", regs->msr);
1480 print_msr_bits(regs->msr);
1481 pr_cont(" CR: %08lx XER: %08lx\n", regs->ccr, regs->xer);
1482 trap = TRAP(regs);
1483 if (!trap_is_syscall(regs) && cpu_has_feature(CPU_FTR_CFAR))
1484 pr_cont("CFAR: "REG" ", regs->orig_gpr3);
1485 if (trap == 0x200 || trap == 0x300 || trap == 0x600) {
1486 if (IS_ENABLED(CONFIG_4xx) || IS_ENABLED(CONFIG_BOOKE))
1487 pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
1488 else
1489 pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
1490 }
1491
1492 #ifdef CONFIG_PPC64
1493 pr_cont("IRQMASK: %lx ", regs->softe);
1494 #endif
1495 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1496 if (MSR_TM_ACTIVE(regs->msr))
1497 pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
1498 #endif
1499
1500 for (i = 0; i < 32; i++) {
1501 if ((i % REGS_PER_LINE) == 0)
1502 pr_cont("\nGPR%02d: ", i);
1503 pr_cont(REG " ", regs->gpr[i]);
1504 if (i == LAST_VOLATILE && !FULL_REGS(regs))
1505 break;
1506 }
1507 pr_cont("\n");
1508 /*
1509 * Lookup NIP late so we have the best change of getting the
1510 * above info out without failing
1511 */
1512 if (IS_ENABLED(CONFIG_KALLSYMS)) {
1513 printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
1514 printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
1515 }
1516 show_stack(current, (unsigned long *) regs->gpr[1], KERN_DEFAULT);
1517 if (!user_mode(regs))
1518 show_instructions(regs);
1519 }
1520
flush_thread(void)1521 void flush_thread(void)
1522 {
1523 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1524 flush_ptrace_hw_breakpoint(current);
1525 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1526 set_debug_reg_defaults(¤t->thread);
1527 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1528 }
1529
1530 #ifdef CONFIG_PPC_BOOK3S_64
arch_setup_new_exec(void)1531 void arch_setup_new_exec(void)
1532 {
1533 if (radix_enabled())
1534 return;
1535 hash__setup_new_exec();
1536 }
1537 #endif
1538
1539 #ifdef CONFIG_PPC64
1540 /**
1541 * Assign a TIDR (thread ID) for task @t and set it in the thread
1542 * structure. For now, we only support setting TIDR for 'current' task.
1543 *
1544 * Since the TID value is a truncated form of it PID, it is possible
1545 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
1546 * that 2 threads share the same TID and are waiting, one of the following
1547 * cases will happen:
1548 *
1549 * 1. The correct thread is running, the wrong thread is not
1550 * In this situation, the correct thread is woken and proceeds to pass it's
1551 * condition check.
1552 *
1553 * 2. Neither threads are running
1554 * In this situation, neither thread will be woken. When scheduled, the waiting
1555 * threads will execute either a wait, which will return immediately, followed
1556 * by a condition check, which will pass for the correct thread and fail
1557 * for the wrong thread, or they will execute the condition check immediately.
1558 *
1559 * 3. The wrong thread is running, the correct thread is not
1560 * The wrong thread will be woken, but will fail it's condition check and
1561 * re-execute wait. The correct thread, when scheduled, will execute either
1562 * it's condition check (which will pass), or wait, which returns immediately
1563 * when called the first time after the thread is scheduled, followed by it's
1564 * condition check (which will pass).
1565 *
1566 * 4. Both threads are running
1567 * Both threads will be woken. The wrong thread will fail it's condition check
1568 * and execute another wait, while the correct thread will pass it's condition
1569 * check.
1570 *
1571 * @t: the task to set the thread ID for
1572 */
set_thread_tidr(struct task_struct * t)1573 int set_thread_tidr(struct task_struct *t)
1574 {
1575 if (!cpu_has_feature(CPU_FTR_P9_TIDR))
1576 return -EINVAL;
1577
1578 if (t != current)
1579 return -EINVAL;
1580
1581 if (t->thread.tidr)
1582 return 0;
1583
1584 t->thread.tidr = (u16)task_pid_nr(t);
1585 mtspr(SPRN_TIDR, t->thread.tidr);
1586
1587 return 0;
1588 }
1589 EXPORT_SYMBOL_GPL(set_thread_tidr);
1590
1591 #endif /* CONFIG_PPC64 */
1592
1593 void
release_thread(struct task_struct * t)1594 release_thread(struct task_struct *t)
1595 {
1596 }
1597
1598 /*
1599 * this gets called so that we can store coprocessor state into memory and
1600 * copy the current task into the new thread.
1601 */
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1602 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
1603 {
1604 flush_all_to_thread(src);
1605 /*
1606 * Flush TM state out so we can copy it. __switch_to_tm() does this
1607 * flush but it removes the checkpointed state from the current CPU and
1608 * transitions the CPU out of TM mode. Hence we need to call
1609 * tm_recheckpoint_new_task() (on the same task) to restore the
1610 * checkpointed state back and the TM mode.
1611 *
1612 * Can't pass dst because it isn't ready. Doesn't matter, passing
1613 * dst is only important for __switch_to()
1614 */
1615 __switch_to_tm(src, src);
1616
1617 *dst = *src;
1618
1619 clear_task_ebb(dst);
1620
1621 return 0;
1622 }
1623
setup_ksp_vsid(struct task_struct * p,unsigned long sp)1624 static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
1625 {
1626 #ifdef CONFIG_PPC_BOOK3S_64
1627 unsigned long sp_vsid;
1628 unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
1629
1630 if (radix_enabled())
1631 return;
1632
1633 if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
1634 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
1635 << SLB_VSID_SHIFT_1T;
1636 else
1637 sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
1638 << SLB_VSID_SHIFT;
1639 sp_vsid |= SLB_VSID_KERNEL | llp;
1640 p->thread.ksp_vsid = sp_vsid;
1641 #endif
1642 }
1643
1644 /*
1645 * Copy a thread..
1646 */
1647
1648 /*
1649 * Copy architecture-specific thread state
1650 */
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long kthread_arg,struct task_struct * p,unsigned long tls)1651 int copy_thread(unsigned long clone_flags, unsigned long usp,
1652 unsigned long kthread_arg, struct task_struct *p,
1653 unsigned long tls)
1654 {
1655 struct pt_regs *childregs, *kregs;
1656 extern void ret_from_fork(void);
1657 extern void ret_from_fork_scv(void);
1658 extern void ret_from_kernel_thread(void);
1659 void (*f)(void);
1660 unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
1661 struct thread_info *ti = task_thread_info(p);
1662 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1663 int i;
1664 #endif
1665
1666 klp_init_thread_info(p);
1667
1668 /* Copy registers */
1669 sp -= sizeof(struct pt_regs);
1670 childregs = (struct pt_regs *) sp;
1671 if (unlikely(p->flags & PF_KTHREAD)) {
1672 /* kernel thread */
1673 memset(childregs, 0, sizeof(struct pt_regs));
1674 childregs->gpr[1] = sp + sizeof(struct pt_regs);
1675 /* function */
1676 if (usp)
1677 childregs->gpr[14] = ppc_function_entry((void *)usp);
1678 #ifdef CONFIG_PPC64
1679 clear_tsk_thread_flag(p, TIF_32BIT);
1680 childregs->softe = IRQS_ENABLED;
1681 #endif
1682 childregs->gpr[15] = kthread_arg;
1683 p->thread.regs = NULL; /* no user register state */
1684 ti->flags |= _TIF_RESTOREALL;
1685 f = ret_from_kernel_thread;
1686 } else {
1687 /* user thread */
1688 struct pt_regs *regs = current_pt_regs();
1689 CHECK_FULL_REGS(regs);
1690 *childregs = *regs;
1691 if (usp)
1692 childregs->gpr[1] = usp;
1693 p->thread.regs = childregs;
1694 /* 64s sets this in ret_from_fork */
1695 if (!IS_ENABLED(CONFIG_PPC_BOOK3S_64))
1696 childregs->gpr[3] = 0; /* Result from fork() */
1697 if (clone_flags & CLONE_SETTLS) {
1698 if (!is_32bit_task())
1699 childregs->gpr[13] = tls;
1700 else
1701 childregs->gpr[2] = tls;
1702 }
1703
1704 if (trap_is_scv(regs))
1705 f = ret_from_fork_scv;
1706 else
1707 f = ret_from_fork;
1708 }
1709 childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
1710 sp -= STACK_FRAME_OVERHEAD;
1711
1712 /*
1713 * The way this works is that at some point in the future
1714 * some task will call _switch to switch to the new task.
1715 * That will pop off the stack frame created below and start
1716 * the new task running at ret_from_fork. The new task will
1717 * do some house keeping and then return from the fork or clone
1718 * system call, using the stack frame created above.
1719 */
1720 ((unsigned long *)sp)[0] = 0;
1721 sp -= sizeof(struct pt_regs);
1722 kregs = (struct pt_regs *) sp;
1723 sp -= STACK_FRAME_OVERHEAD;
1724 p->thread.ksp = sp;
1725 #ifdef CONFIG_PPC32
1726 p->thread.ksp_limit = (unsigned long)end_of_stack(p);
1727 #endif
1728 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1729 for (i = 0; i < nr_wp_slots(); i++)
1730 p->thread.ptrace_bps[i] = NULL;
1731 #endif
1732
1733 p->thread.fp_save_area = NULL;
1734 #ifdef CONFIG_ALTIVEC
1735 p->thread.vr_save_area = NULL;
1736 #endif
1737
1738 setup_ksp_vsid(p, sp);
1739
1740 #ifdef CONFIG_PPC64
1741 if (cpu_has_feature(CPU_FTR_DSCR)) {
1742 p->thread.dscr_inherit = current->thread.dscr_inherit;
1743 p->thread.dscr = mfspr(SPRN_DSCR);
1744 }
1745 if (cpu_has_feature(CPU_FTR_HAS_PPR))
1746 childregs->ppr = DEFAULT_PPR;
1747
1748 p->thread.tidr = 0;
1749 #endif
1750 kregs->nip = ppc_function_entry(f);
1751 return 0;
1752 }
1753
1754 void preload_new_slb_context(unsigned long start, unsigned long sp);
1755
1756 /*
1757 * Set up a thread for executing a new program
1758 */
start_thread(struct pt_regs * regs,unsigned long start,unsigned long sp)1759 void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
1760 {
1761 #ifdef CONFIG_PPC64
1762 unsigned long load_addr = regs->gpr[2]; /* saved by ELF_PLAT_INIT */
1763
1764 if (IS_ENABLED(CONFIG_PPC_BOOK3S_64) && !radix_enabled())
1765 preload_new_slb_context(start, sp);
1766 #endif
1767
1768 /*
1769 * If we exec out of a kernel thread then thread.regs will not be
1770 * set. Do it now.
1771 */
1772 if (!current->thread.regs) {
1773 struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
1774 current->thread.regs = regs - 1;
1775 }
1776
1777 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1778 /*
1779 * Clear any transactional state, we're exec()ing. The cause is
1780 * not important as there will never be a recheckpoint so it's not
1781 * user visible.
1782 */
1783 if (MSR_TM_SUSPENDED(mfmsr()))
1784 tm_reclaim_current(0);
1785 #endif
1786
1787 memset(regs->gpr, 0, sizeof(regs->gpr));
1788 regs->ctr = 0;
1789 regs->link = 0;
1790 regs->xer = 0;
1791 regs->ccr = 0;
1792 regs->gpr[1] = sp;
1793
1794 /*
1795 * We have just cleared all the nonvolatile GPRs, so make
1796 * FULL_REGS(regs) return true. This is necessary to allow
1797 * ptrace to examine the thread immediately after exec.
1798 */
1799 SET_FULL_REGS(regs);
1800
1801 #ifdef CONFIG_PPC32
1802 regs->mq = 0;
1803 regs->nip = start;
1804 regs->msr = MSR_USER;
1805 #else
1806 if (!is_32bit_task()) {
1807 unsigned long entry;
1808
1809 if (is_elf2_task()) {
1810 /* Look ma, no function descriptors! */
1811 entry = start;
1812
1813 /*
1814 * Ulrich says:
1815 * The latest iteration of the ABI requires that when
1816 * calling a function (at its global entry point),
1817 * the caller must ensure r12 holds the entry point
1818 * address (so that the function can quickly
1819 * establish addressability).
1820 */
1821 regs->gpr[12] = start;
1822 /* Make sure that's restored on entry to userspace. */
1823 set_thread_flag(TIF_RESTOREALL);
1824 } else {
1825 unsigned long toc;
1826
1827 /* start is a relocated pointer to the function
1828 * descriptor for the elf _start routine. The first
1829 * entry in the function descriptor is the entry
1830 * address of _start and the second entry is the TOC
1831 * value we need to use.
1832 */
1833 __get_user(entry, (unsigned long __user *)start);
1834 __get_user(toc, (unsigned long __user *)start+1);
1835
1836 /* Check whether the e_entry function descriptor entries
1837 * need to be relocated before we can use them.
1838 */
1839 if (load_addr != 0) {
1840 entry += load_addr;
1841 toc += load_addr;
1842 }
1843 regs->gpr[2] = toc;
1844 }
1845 regs->nip = entry;
1846 regs->msr = MSR_USER64;
1847 } else {
1848 regs->nip = start;
1849 regs->gpr[2] = 0;
1850 regs->msr = MSR_USER32;
1851 }
1852 #endif
1853 #ifdef CONFIG_VSX
1854 current->thread.used_vsr = 0;
1855 #endif
1856 current->thread.load_slb = 0;
1857 current->thread.load_fp = 0;
1858 memset(¤t->thread.fp_state, 0, sizeof(current->thread.fp_state));
1859 current->thread.fp_save_area = NULL;
1860 #ifdef CONFIG_ALTIVEC
1861 memset(¤t->thread.vr_state, 0, sizeof(current->thread.vr_state));
1862 current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
1863 current->thread.vr_save_area = NULL;
1864 current->thread.vrsave = 0;
1865 current->thread.used_vr = 0;
1866 current->thread.load_vec = 0;
1867 #endif /* CONFIG_ALTIVEC */
1868 #ifdef CONFIG_SPE
1869 memset(current->thread.evr, 0, sizeof(current->thread.evr));
1870 current->thread.acc = 0;
1871 current->thread.spefscr = 0;
1872 current->thread.used_spe = 0;
1873 #endif /* CONFIG_SPE */
1874 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1875 current->thread.tm_tfhar = 0;
1876 current->thread.tm_texasr = 0;
1877 current->thread.tm_tfiar = 0;
1878 current->thread.load_tm = 0;
1879 #endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
1880
1881 thread_pkey_regs_init(¤t->thread);
1882 }
1883 EXPORT_SYMBOL(start_thread);
1884
1885 #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
1886 | PR_FP_EXC_RES | PR_FP_EXC_INV)
1887
set_fpexc_mode(struct task_struct * tsk,unsigned int val)1888 int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
1889 {
1890 struct pt_regs *regs = tsk->thread.regs;
1891
1892 /* This is a bit hairy. If we are an SPE enabled processor
1893 * (have embedded fp) we store the IEEE exception enable flags in
1894 * fpexc_mode. fpexc_mode is also used for setting FP exception
1895 * mode (asyn, precise, disabled) for 'Classic' FP. */
1896 if (val & PR_FP_EXC_SW_ENABLE) {
1897 if (cpu_has_feature(CPU_FTR_SPE)) {
1898 /*
1899 * When the sticky exception bits are set
1900 * directly by userspace, it must call prctl
1901 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1902 * in the existing prctl settings) or
1903 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1904 * the bits being set). <fenv.h> functions
1905 * saving and restoring the whole
1906 * floating-point environment need to do so
1907 * anyway to restore the prctl settings from
1908 * the saved environment.
1909 */
1910 #ifdef CONFIG_SPE
1911 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1912 tsk->thread.fpexc_mode = val &
1913 (PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
1914 #endif
1915 return 0;
1916 } else {
1917 return -EINVAL;
1918 }
1919 }
1920
1921 /* on a CONFIG_SPE this does not hurt us. The bits that
1922 * __pack_fe01 use do not overlap with bits used for
1923 * PR_FP_EXC_SW_ENABLE. Additionally, the MSR[FE0,FE1] bits
1924 * on CONFIG_SPE implementations are reserved so writing to
1925 * them does not change anything */
1926 if (val > PR_FP_EXC_PRECISE)
1927 return -EINVAL;
1928 tsk->thread.fpexc_mode = __pack_fe01(val);
1929 if (regs != NULL && (regs->msr & MSR_FP) != 0)
1930 regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
1931 | tsk->thread.fpexc_mode;
1932 return 0;
1933 }
1934
get_fpexc_mode(struct task_struct * tsk,unsigned long adr)1935 int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
1936 {
1937 unsigned int val = 0;
1938
1939 if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE) {
1940 if (cpu_has_feature(CPU_FTR_SPE)) {
1941 /*
1942 * When the sticky exception bits are set
1943 * directly by userspace, it must call prctl
1944 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
1945 * in the existing prctl settings) or
1946 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
1947 * the bits being set). <fenv.h> functions
1948 * saving and restoring the whole
1949 * floating-point environment need to do so
1950 * anyway to restore the prctl settings from
1951 * the saved environment.
1952 */
1953 #ifdef CONFIG_SPE
1954 tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
1955 val = tsk->thread.fpexc_mode;
1956 #endif
1957 } else
1958 return -EINVAL;
1959 } else {
1960 val = __unpack_fe01(tsk->thread.fpexc_mode);
1961 }
1962 return put_user(val, (unsigned int __user *) adr);
1963 }
1964
set_endian(struct task_struct * tsk,unsigned int val)1965 int set_endian(struct task_struct *tsk, unsigned int val)
1966 {
1967 struct pt_regs *regs = tsk->thread.regs;
1968
1969 if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
1970 (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
1971 return -EINVAL;
1972
1973 if (regs == NULL)
1974 return -EINVAL;
1975
1976 if (val == PR_ENDIAN_BIG)
1977 regs->msr &= ~MSR_LE;
1978 else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
1979 regs->msr |= MSR_LE;
1980 else
1981 return -EINVAL;
1982
1983 return 0;
1984 }
1985
get_endian(struct task_struct * tsk,unsigned long adr)1986 int get_endian(struct task_struct *tsk, unsigned long adr)
1987 {
1988 struct pt_regs *regs = tsk->thread.regs;
1989 unsigned int val;
1990
1991 if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
1992 !cpu_has_feature(CPU_FTR_REAL_LE))
1993 return -EINVAL;
1994
1995 if (regs == NULL)
1996 return -EINVAL;
1997
1998 if (regs->msr & MSR_LE) {
1999 if (cpu_has_feature(CPU_FTR_REAL_LE))
2000 val = PR_ENDIAN_LITTLE;
2001 else
2002 val = PR_ENDIAN_PPC_LITTLE;
2003 } else
2004 val = PR_ENDIAN_BIG;
2005
2006 return put_user(val, (unsigned int __user *)adr);
2007 }
2008
set_unalign_ctl(struct task_struct * tsk,unsigned int val)2009 int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
2010 {
2011 tsk->thread.align_ctl = val;
2012 return 0;
2013 }
2014
get_unalign_ctl(struct task_struct * tsk,unsigned long adr)2015 int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
2016 {
2017 return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
2018 }
2019
valid_irq_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2020 static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
2021 unsigned long nbytes)
2022 {
2023 unsigned long stack_page;
2024 unsigned long cpu = task_cpu(p);
2025
2026 stack_page = (unsigned long)hardirq_ctx[cpu];
2027 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2028 return 1;
2029
2030 stack_page = (unsigned long)softirq_ctx[cpu];
2031 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2032 return 1;
2033
2034 return 0;
2035 }
2036
valid_emergency_stack(unsigned long sp,struct task_struct * p,unsigned long nbytes)2037 static inline int valid_emergency_stack(unsigned long sp, struct task_struct *p,
2038 unsigned long nbytes)
2039 {
2040 #ifdef CONFIG_PPC64
2041 unsigned long stack_page;
2042 unsigned long cpu = task_cpu(p);
2043
2044 stack_page = (unsigned long)paca_ptrs[cpu]->emergency_sp - THREAD_SIZE;
2045 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2046 return 1;
2047
2048 # ifdef CONFIG_PPC_BOOK3S_64
2049 stack_page = (unsigned long)paca_ptrs[cpu]->nmi_emergency_sp - THREAD_SIZE;
2050 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2051 return 1;
2052
2053 stack_page = (unsigned long)paca_ptrs[cpu]->mc_emergency_sp - THREAD_SIZE;
2054 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2055 return 1;
2056 # endif
2057 #endif
2058
2059 return 0;
2060 }
2061
2062
validate_sp(unsigned long sp,struct task_struct * p,unsigned long nbytes)2063 int validate_sp(unsigned long sp, struct task_struct *p,
2064 unsigned long nbytes)
2065 {
2066 unsigned long stack_page = (unsigned long)task_stack_page(p);
2067
2068 if (sp < THREAD_SIZE)
2069 return 0;
2070
2071 if (sp >= stack_page && sp <= stack_page + THREAD_SIZE - nbytes)
2072 return 1;
2073
2074 if (valid_irq_stack(sp, p, nbytes))
2075 return 1;
2076
2077 return valid_emergency_stack(sp, p, nbytes);
2078 }
2079
2080 EXPORT_SYMBOL(validate_sp);
2081
__get_wchan(struct task_struct * p)2082 static unsigned long __get_wchan(struct task_struct *p)
2083 {
2084 unsigned long ip, sp;
2085 int count = 0;
2086
2087 if (!p || p == current || p->state == TASK_RUNNING)
2088 return 0;
2089
2090 sp = p->thread.ksp;
2091 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
2092 return 0;
2093
2094 do {
2095 sp = *(unsigned long *)sp;
2096 if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
2097 p->state == TASK_RUNNING)
2098 return 0;
2099 if (count > 0) {
2100 ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
2101 if (!in_sched_functions(ip))
2102 return ip;
2103 }
2104 } while (count++ < 16);
2105 return 0;
2106 }
2107
get_wchan(struct task_struct * p)2108 unsigned long get_wchan(struct task_struct *p)
2109 {
2110 unsigned long ret;
2111
2112 if (!try_get_task_stack(p))
2113 return 0;
2114
2115 ret = __get_wchan(p);
2116
2117 put_task_stack(p);
2118
2119 return ret;
2120 }
2121
2122 static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
2123
show_stack(struct task_struct * tsk,unsigned long * stack,const char * loglvl)2124 void show_stack(struct task_struct *tsk, unsigned long *stack,
2125 const char *loglvl)
2126 {
2127 unsigned long sp, ip, lr, newsp;
2128 int count = 0;
2129 int firstframe = 1;
2130 unsigned long ret_addr;
2131 int ftrace_idx = 0;
2132
2133 if (tsk == NULL)
2134 tsk = current;
2135
2136 if (!try_get_task_stack(tsk))
2137 return;
2138
2139 sp = (unsigned long) stack;
2140 if (sp == 0) {
2141 if (tsk == current)
2142 sp = current_stack_frame();
2143 else
2144 sp = tsk->thread.ksp;
2145 }
2146
2147 lr = 0;
2148 printk("%sCall Trace:\n", loglvl);
2149 do {
2150 if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
2151 break;
2152
2153 stack = (unsigned long *) sp;
2154 newsp = stack[0];
2155 ip = stack[STACK_FRAME_LR_SAVE];
2156 if (!firstframe || ip != lr) {
2157 printk("%s["REG"] ["REG"] %pS",
2158 loglvl, sp, ip, (void *)ip);
2159 ret_addr = ftrace_graph_ret_addr(current,
2160 &ftrace_idx, ip, stack);
2161 if (ret_addr != ip)
2162 pr_cont(" (%pS)", (void *)ret_addr);
2163 if (firstframe)
2164 pr_cont(" (unreliable)");
2165 pr_cont("\n");
2166 }
2167 firstframe = 0;
2168
2169 /*
2170 * See if this is an exception frame.
2171 * We look for the "regshere" marker in the current frame.
2172 */
2173 if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
2174 && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
2175 struct pt_regs *regs = (struct pt_regs *)
2176 (sp + STACK_FRAME_OVERHEAD);
2177 lr = regs->link;
2178 printk("%s--- interrupt: %lx at %pS\n LR = %pS\n",
2179 loglvl, regs->trap,
2180 (void *)regs->nip, (void *)lr);
2181 firstframe = 1;
2182 }
2183
2184 sp = newsp;
2185 } while (count++ < kstack_depth_to_print);
2186
2187 put_task_stack(tsk);
2188 }
2189
2190 #ifdef CONFIG_PPC64
2191 /* Called with hard IRQs off */
__ppc64_runlatch_on(void)2192 void notrace __ppc64_runlatch_on(void)
2193 {
2194 struct thread_info *ti = current_thread_info();
2195
2196 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2197 /*
2198 * Least significant bit (RUN) is the only writable bit of
2199 * the CTRL register, so we can avoid mfspr. 2.06 is not the
2200 * earliest ISA where this is the case, but it's convenient.
2201 */
2202 mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
2203 } else {
2204 unsigned long ctrl;
2205
2206 /*
2207 * Some architectures (e.g., Cell) have writable fields other
2208 * than RUN, so do the read-modify-write.
2209 */
2210 ctrl = mfspr(SPRN_CTRLF);
2211 ctrl |= CTRL_RUNLATCH;
2212 mtspr(SPRN_CTRLT, ctrl);
2213 }
2214
2215 ti->local_flags |= _TLF_RUNLATCH;
2216 }
2217
2218 /* Called with hard IRQs off */
__ppc64_runlatch_off(void)2219 void notrace __ppc64_runlatch_off(void)
2220 {
2221 struct thread_info *ti = current_thread_info();
2222
2223 ti->local_flags &= ~_TLF_RUNLATCH;
2224
2225 if (cpu_has_feature(CPU_FTR_ARCH_206)) {
2226 mtspr(SPRN_CTRLT, 0);
2227 } else {
2228 unsigned long ctrl;
2229
2230 ctrl = mfspr(SPRN_CTRLF);
2231 ctrl &= ~CTRL_RUNLATCH;
2232 mtspr(SPRN_CTRLT, ctrl);
2233 }
2234 }
2235 #endif /* CONFIG_PPC64 */
2236
arch_align_stack(unsigned long sp)2237 unsigned long arch_align_stack(unsigned long sp)
2238 {
2239 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
2240 sp -= get_random_int() & ~PAGE_MASK;
2241 return sp & ~0xf;
2242 }
2243
brk_rnd(void)2244 static inline unsigned long brk_rnd(void)
2245 {
2246 unsigned long rnd = 0;
2247
2248 /* 8MB for 32bit, 1GB for 64bit */
2249 if (is_32bit_task())
2250 rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
2251 else
2252 rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));
2253
2254 return rnd << PAGE_SHIFT;
2255 }
2256
arch_randomize_brk(struct mm_struct * mm)2257 unsigned long arch_randomize_brk(struct mm_struct *mm)
2258 {
2259 unsigned long base = mm->brk;
2260 unsigned long ret;
2261
2262 #ifdef CONFIG_PPC_BOOK3S_64
2263 /*
2264 * If we are using 1TB segments and we are allowed to randomise
2265 * the heap, we can put it above 1TB so it is backed by a 1TB
2266 * segment. Otherwise the heap will be in the bottom 1TB
2267 * which always uses 256MB segments and this may result in a
2268 * performance penalty. We don't need to worry about radix. For
2269 * radix, mmu_highuser_ssize remains unchanged from 256MB.
2270 */
2271 if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
2272 base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
2273 #endif
2274
2275 ret = PAGE_ALIGN(base + brk_rnd());
2276
2277 if (ret < mm->brk)
2278 return mm->brk;
2279
2280 return ret;
2281 }
2282
2283