1 /*
2  *  Copyright (C) 1991, 1992  Linus Torvalds
3  *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  */
5 #include <linux/kallsyms.h>
6 #include <linux/kprobes.h>
7 #include <linux/uaccess.h>
8 #include <linux/utsname.h>
9 #include <linux/hardirq.h>
10 #include <linux/kdebug.h>
11 #include <linux/module.h>
12 #include <linux/ptrace.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/ftrace.h>
16 #include <linux/kexec.h>
17 #include <linux/bug.h>
18 #include <linux/nmi.h>
19 #include <linux/sysfs.h>
20 #include <linux/kasan.h>
21 
22 #include <asm/cpu_entry_area.h>
23 #include <asm/stacktrace.h>
24 #include <asm/unwind.h>
25 
26 int panic_on_unrecovered_nmi;
27 int panic_on_io_nmi;
28 static int die_counter;
29 
30 static struct pt_regs exec_summary_regs;
31 
in_task_stack(unsigned long * stack,struct task_struct * task,struct stack_info * info)32 bool in_task_stack(unsigned long *stack, struct task_struct *task,
33 		   struct stack_info *info)
34 {
35 	unsigned long *begin = task_stack_page(task);
36 	unsigned long *end   = task_stack_page(task) + THREAD_SIZE;
37 
38 	if (stack < begin || stack >= end)
39 		return false;
40 
41 	info->type	= STACK_TYPE_TASK;
42 	info->begin	= begin;
43 	info->end	= end;
44 	info->next_sp	= NULL;
45 
46 	return true;
47 }
48 
in_entry_stack(unsigned long * stack,struct stack_info * info)49 bool in_entry_stack(unsigned long *stack, struct stack_info *info)
50 {
51 	struct entry_stack *ss = cpu_entry_stack(smp_processor_id());
52 
53 	void *begin = ss;
54 	void *end = ss + 1;
55 
56 	if ((void *)stack < begin || (void *)stack >= end)
57 		return false;
58 
59 	info->type	= STACK_TYPE_ENTRY;
60 	info->begin	= begin;
61 	info->end	= end;
62 	info->next_sp	= NULL;
63 
64 	return true;
65 }
66 
printk_stack_address(unsigned long address,int reliable,char * log_lvl)67 static void printk_stack_address(unsigned long address, int reliable,
68 				 char *log_lvl)
69 {
70 	touch_nmi_watchdog();
71 	printk("%s %s%pB\n", log_lvl, reliable ? "" : "? ", (void *)address);
72 }
73 
74 /*
75  * There are a couple of reasons for the 2/3rd prologue, courtesy of Linus:
76  *
77  * In case where we don't have the exact kernel image (which, if we did, we can
78  * simply disassemble and navigate to the RIP), the purpose of the bigger
79  * prologue is to have more context and to be able to correlate the code from
80  * the different toolchains better.
81  *
82  * In addition, it helps in recreating the register allocation of the failing
83  * kernel and thus make sense of the register dump.
84  *
85  * What is more, the additional complication of a variable length insn arch like
86  * x86 warrants having longer byte sequence before rIP so that the disassembler
87  * can "sync" up properly and find instruction boundaries when decoding the
88  * opcode bytes.
89  *
90  * Thus, the 2/3rds prologue and 64 byte OPCODE_BUFSIZE is just a random
91  * guesstimate in attempt to achieve all of the above.
92  */
show_opcodes(struct pt_regs * regs,const char * loglvl)93 void show_opcodes(struct pt_regs *regs, const char *loglvl)
94 {
95 #define PROLOGUE_SIZE 42
96 #define EPILOGUE_SIZE 21
97 #define OPCODE_BUFSIZE (PROLOGUE_SIZE + 1 + EPILOGUE_SIZE)
98 	u8 opcodes[OPCODE_BUFSIZE];
99 	unsigned long prologue = regs->ip - PROLOGUE_SIZE;
100 	bool bad_ip;
101 
102 	/*
103 	 * Make sure userspace isn't trying to trick us into dumping kernel
104 	 * memory by pointing the userspace instruction pointer at it.
105 	 */
106 	bad_ip = user_mode(regs) &&
107 		__chk_range_not_ok(prologue, OPCODE_BUFSIZE, TASK_SIZE_MAX);
108 
109 	if (bad_ip || probe_kernel_read(opcodes, (u8 *)prologue,
110 					OPCODE_BUFSIZE)) {
111 		printk("%sCode: Bad RIP value.\n", loglvl);
112 	} else {
113 		printk("%sCode: %" __stringify(PROLOGUE_SIZE) "ph <%02x> %"
114 		       __stringify(EPILOGUE_SIZE) "ph\n", loglvl, opcodes,
115 		       opcodes[PROLOGUE_SIZE], opcodes + PROLOGUE_SIZE + 1);
116 	}
117 }
118 
show_ip(struct pt_regs * regs,const char * loglvl)119 void show_ip(struct pt_regs *regs, const char *loglvl)
120 {
121 #ifdef CONFIG_X86_32
122 	printk("%sEIP: %pS\n", loglvl, (void *)regs->ip);
123 #else
124 	printk("%sRIP: %04x:%pS\n", loglvl, (int)regs->cs, (void *)regs->ip);
125 #endif
126 	show_opcodes(regs, loglvl);
127 }
128 
show_iret_regs(struct pt_regs * regs)129 void show_iret_regs(struct pt_regs *regs)
130 {
131 	show_ip(regs, KERN_DEFAULT);
132 	printk(KERN_DEFAULT "RSP: %04x:%016lx EFLAGS: %08lx", (int)regs->ss,
133 		regs->sp, regs->flags);
134 }
135 
show_regs_if_on_stack(struct stack_info * info,struct pt_regs * regs,bool partial)136 static void show_regs_if_on_stack(struct stack_info *info, struct pt_regs *regs,
137 				  bool partial)
138 {
139 	/*
140 	 * These on_stack() checks aren't strictly necessary: the unwind code
141 	 * has already validated the 'regs' pointer.  The checks are done for
142 	 * ordering reasons: if the registers are on the next stack, we don't
143 	 * want to print them out yet.  Otherwise they'll be shown as part of
144 	 * the wrong stack.  Later, when show_trace_log_lvl() switches to the
145 	 * next stack, this function will be called again with the same regs so
146 	 * they can be printed in the right context.
147 	 */
148 	if (!partial && on_stack(info, regs, sizeof(*regs))) {
149 		__show_regs(regs, SHOW_REGS_SHORT);
150 
151 	} else if (partial && on_stack(info, (void *)regs + IRET_FRAME_OFFSET,
152 				       IRET_FRAME_SIZE)) {
153 		/*
154 		 * When an interrupt or exception occurs in entry code, the
155 		 * full pt_regs might not have been saved yet.  In that case
156 		 * just print the iret frame.
157 		 */
158 		show_iret_regs(regs);
159 	}
160 }
161 
show_trace_log_lvl(struct task_struct * task,struct pt_regs * regs,unsigned long * stack,char * log_lvl)162 void show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs,
163 			unsigned long *stack, char *log_lvl)
164 {
165 	struct unwind_state state;
166 	struct stack_info stack_info = {0};
167 	unsigned long visit_mask = 0;
168 	int graph_idx = 0;
169 	bool partial = false;
170 
171 	printk("%sCall Trace:\n", log_lvl);
172 
173 	unwind_start(&state, task, regs, stack);
174 	stack = stack ? : get_stack_pointer(task, regs);
175 	regs = unwind_get_entry_regs(&state, &partial);
176 
177 	/*
178 	 * Iterate through the stacks, starting with the current stack pointer.
179 	 * Each stack has a pointer to the next one.
180 	 *
181 	 * x86-64 can have several stacks:
182 	 * - task stack
183 	 * - interrupt stack
184 	 * - HW exception stacks (double fault, nmi, debug, mce)
185 	 * - entry stack
186 	 *
187 	 * x86-32 can have up to four stacks:
188 	 * - task stack
189 	 * - softirq stack
190 	 * - hardirq stack
191 	 * - entry stack
192 	 */
193 	for ( ; stack; stack = PTR_ALIGN(stack_info.next_sp, sizeof(long))) {
194 		const char *stack_name;
195 
196 		if (get_stack_info(stack, task, &stack_info, &visit_mask)) {
197 			/*
198 			 * We weren't on a valid stack.  It's possible that
199 			 * we overflowed a valid stack into a guard page.
200 			 * See if the next page up is valid so that we can
201 			 * generate some kind of backtrace if this happens.
202 			 */
203 			stack = (unsigned long *)PAGE_ALIGN((unsigned long)stack);
204 			if (get_stack_info(stack, task, &stack_info, &visit_mask))
205 				break;
206 		}
207 
208 		stack_name = stack_type_name(stack_info.type);
209 		if (stack_name)
210 			printk("%s <%s>\n", log_lvl, stack_name);
211 
212 		if (regs)
213 			show_regs_if_on_stack(&stack_info, regs, partial);
214 
215 		/*
216 		 * Scan the stack, printing any text addresses we find.  At the
217 		 * same time, follow proper stack frames with the unwinder.
218 		 *
219 		 * Addresses found during the scan which are not reported by
220 		 * the unwinder are considered to be additional clues which are
221 		 * sometimes useful for debugging and are prefixed with '?'.
222 		 * This also serves as a failsafe option in case the unwinder
223 		 * goes off in the weeds.
224 		 */
225 		for (; stack < stack_info.end; stack++) {
226 			unsigned long real_addr;
227 			int reliable = 0;
228 			unsigned long addr = READ_ONCE_NOCHECK(*stack);
229 			unsigned long *ret_addr_p =
230 				unwind_get_return_address_ptr(&state);
231 
232 			if (!__kernel_text_address(addr))
233 				continue;
234 
235 			/*
236 			 * Don't print regs->ip again if it was already printed
237 			 * by show_regs_if_on_stack().
238 			 */
239 			if (regs && stack == &regs->ip)
240 				goto next;
241 
242 			if (stack == ret_addr_p)
243 				reliable = 1;
244 
245 			/*
246 			 * When function graph tracing is enabled for a
247 			 * function, its return address on the stack is
248 			 * replaced with the address of an ftrace handler
249 			 * (return_to_handler).  In that case, before printing
250 			 * the "real" address, we want to print the handler
251 			 * address as an "unreliable" hint that function graph
252 			 * tracing was involved.
253 			 */
254 			real_addr = ftrace_graph_ret_addr(task, &graph_idx,
255 							  addr, stack);
256 			if (real_addr != addr)
257 				printk_stack_address(addr, 0, log_lvl);
258 			printk_stack_address(real_addr, reliable, log_lvl);
259 
260 			if (!reliable)
261 				continue;
262 
263 next:
264 			/*
265 			 * Get the next frame from the unwinder.  No need to
266 			 * check for an error: if anything goes wrong, the rest
267 			 * of the addresses will just be printed as unreliable.
268 			 */
269 			unwind_next_frame(&state);
270 
271 			/* if the frame has entry regs, print them */
272 			regs = unwind_get_entry_regs(&state, &partial);
273 			if (regs)
274 				show_regs_if_on_stack(&stack_info, regs, partial);
275 		}
276 
277 		if (stack_name)
278 			printk("%s </%s>\n", log_lvl, stack_name);
279 	}
280 }
281 
show_stack(struct task_struct * task,unsigned long * sp)282 void show_stack(struct task_struct *task, unsigned long *sp)
283 {
284 	task = task ? : current;
285 
286 	/*
287 	 * Stack frames below this one aren't interesting.  Don't show them
288 	 * if we're printing for %current.
289 	 */
290 	if (!sp && task == current)
291 		sp = get_stack_pointer(current, NULL);
292 
293 	show_trace_log_lvl(task, NULL, sp, KERN_DEFAULT);
294 }
295 
show_stack_regs(struct pt_regs * regs)296 void show_stack_regs(struct pt_regs *regs)
297 {
298 	show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
299 }
300 
301 static arch_spinlock_t die_lock = __ARCH_SPIN_LOCK_UNLOCKED;
302 static int die_owner = -1;
303 static unsigned int die_nest_count;
304 
oops_begin(void)305 unsigned long oops_begin(void)
306 {
307 	int cpu;
308 	unsigned long flags;
309 
310 	oops_enter();
311 
312 	/* racy, but better than risking deadlock. */
313 	raw_local_irq_save(flags);
314 	cpu = smp_processor_id();
315 	if (!arch_spin_trylock(&die_lock)) {
316 		if (cpu == die_owner)
317 			/* nested oops. should stop eventually */;
318 		else
319 			arch_spin_lock(&die_lock);
320 	}
321 	die_nest_count++;
322 	die_owner = cpu;
323 	console_verbose();
324 	bust_spinlocks(1);
325 	return flags;
326 }
327 NOKPROBE_SYMBOL(oops_begin);
328 
329 void __noreturn rewind_stack_do_exit(int signr);
330 
oops_end(unsigned long flags,struct pt_regs * regs,int signr)331 void oops_end(unsigned long flags, struct pt_regs *regs, int signr)
332 {
333 	if (regs && kexec_should_crash(current))
334 		crash_kexec(regs);
335 
336 	bust_spinlocks(0);
337 	die_owner = -1;
338 	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
339 	die_nest_count--;
340 	if (!die_nest_count)
341 		/* Nest count reaches zero, release the lock. */
342 		arch_spin_unlock(&die_lock);
343 	raw_local_irq_restore(flags);
344 	oops_exit();
345 
346 	/* Executive summary in case the oops scrolled away */
347 	__show_regs(&exec_summary_regs, SHOW_REGS_ALL);
348 
349 	if (!signr)
350 		return;
351 	if (in_interrupt())
352 		panic("Fatal exception in interrupt");
353 	if (panic_on_oops)
354 		panic("Fatal exception");
355 
356 	/*
357 	 * We're not going to return, but we might be on an IST stack or
358 	 * have very little stack space left.  Rewind the stack and kill
359 	 * the task.
360 	 * Before we rewind the stack, we have to tell KASAN that we're going to
361 	 * reuse the task stack and that existing poisons are invalid.
362 	 */
363 	kasan_unpoison_task_stack(current);
364 	rewind_stack_do_exit(signr);
365 }
366 NOKPROBE_SYMBOL(oops_end);
367 
__die(const char * str,struct pt_regs * regs,long err)368 int __die(const char *str, struct pt_regs *regs, long err)
369 {
370 	/* Save the regs of the first oops for the executive summary later. */
371 	if (!die_counter)
372 		exec_summary_regs = *regs;
373 
374 	printk(KERN_DEFAULT
375 	       "%s: %04lx [#%d]%s%s%s%s%s\n", str, err & 0xffff, ++die_counter,
376 	       IS_ENABLED(CONFIG_PREEMPT) ? " PREEMPT"         : "",
377 	       IS_ENABLED(CONFIG_SMP)     ? " SMP"             : "",
378 	       debug_pagealloc_enabled()  ? " DEBUG_PAGEALLOC" : "",
379 	       IS_ENABLED(CONFIG_KASAN)   ? " KASAN"           : "",
380 	       IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION) ?
381 	       (boot_cpu_has(X86_FEATURE_PTI) ? " PTI" : " NOPTI") : "");
382 
383 	show_regs(regs);
384 	print_modules();
385 
386 	if (notify_die(DIE_OOPS, str, regs, err,
387 			current->thread.trap_nr, SIGSEGV) == NOTIFY_STOP)
388 		return 1;
389 
390 	return 0;
391 }
392 NOKPROBE_SYMBOL(__die);
393 
394 /*
395  * This is gone through when something in the kernel has done something bad
396  * and is about to be terminated:
397  */
die(const char * str,struct pt_regs * regs,long err)398 void die(const char *str, struct pt_regs *regs, long err)
399 {
400 	unsigned long flags = oops_begin();
401 	int sig = SIGSEGV;
402 
403 	if (__die(str, regs, err))
404 		sig = 0;
405 	oops_end(flags, regs, sig);
406 }
407 
show_regs(struct pt_regs * regs)408 void show_regs(struct pt_regs *regs)
409 {
410 	show_regs_print_info(KERN_DEFAULT);
411 
412 	__show_regs(regs, user_mode(regs) ? SHOW_REGS_USER : SHOW_REGS_ALL);
413 
414 	/*
415 	 * When in-kernel, we also print out the stack at the time of the fault..
416 	 */
417 	if (!user_mode(regs))
418 		show_trace_log_lvl(current, regs, NULL, KERN_DEFAULT);
419 }
420