1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * Kernel-based Virtual Machine driver for Linux
4   *
5   * This module enables machines with Intel VT-x extensions to run virtual
6   * machines without emulation or binary translation.
7   *
8   * MMU support
9   *
10   * Copyright (C) 2006 Qumranet, Inc.
11   * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12   *
13   * Authors:
14   *   Yaniv Kamay  <yaniv@qumranet.com>
15   *   Avi Kivity   <avi@qumranet.com>
16   */
17  
18  #include "irq.h"
19  #include "ioapic.h"
20  #include "mmu.h"
21  #include "mmu_internal.h"
22  #include "tdp_mmu.h"
23  #include "x86.h"
24  #include "kvm_cache_regs.h"
25  #include "kvm_emulate.h"
26  #include "cpuid.h"
27  #include "spte.h"
28  
29  #include <linux/kvm_host.h>
30  #include <linux/types.h>
31  #include <linux/string.h>
32  #include <linux/mm.h>
33  #include <linux/highmem.h>
34  #include <linux/moduleparam.h>
35  #include <linux/export.h>
36  #include <linux/swap.h>
37  #include <linux/hugetlb.h>
38  #include <linux/compiler.h>
39  #include <linux/srcu.h>
40  #include <linux/slab.h>
41  #include <linux/sched/signal.h>
42  #include <linux/uaccess.h>
43  #include <linux/hash.h>
44  #include <linux/kern_levels.h>
45  #include <linux/kthread.h>
46  
47  #include <asm/page.h>
48  #include <asm/memtype.h>
49  #include <asm/cmpxchg.h>
50  #include <asm/io.h>
51  #include <asm/vmx.h>
52  #include <asm/kvm_page_track.h>
53  #include "trace.h"
54  
55  extern bool itlb_multihit_kvm_mitigation;
56  
57  static int __read_mostly nx_huge_pages = -1;
58  #ifdef CONFIG_PREEMPT_RT
59  /* Recovery can cause latency spikes, disable it for PREEMPT_RT.  */
60  static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
61  #else
62  static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
63  #endif
64  
65  static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
66  static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
67  
68  static const struct kernel_param_ops nx_huge_pages_ops = {
69  	.set = set_nx_huge_pages,
70  	.get = param_get_bool,
71  };
72  
73  static const struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
74  	.set = set_nx_huge_pages_recovery_ratio,
75  	.get = param_get_uint,
76  };
77  
78  module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
79  __MODULE_PARM_TYPE(nx_huge_pages, "bool");
80  module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
81  		&nx_huge_pages_recovery_ratio, 0644);
82  __MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
83  
84  static bool __read_mostly force_flush_and_sync_on_reuse;
85  module_param_named(flush_on_reuse, force_flush_and_sync_on_reuse, bool, 0644);
86  
87  /*
88   * When setting this variable to true it enables Two-Dimensional-Paging
89   * where the hardware walks 2 page tables:
90   * 1. the guest-virtual to guest-physical
91   * 2. while doing 1. it walks guest-physical to host-physical
92   * If the hardware supports that we don't need to do shadow paging.
93   */
94  bool tdp_enabled = false;
95  
96  static int max_huge_page_level __read_mostly;
97  static int max_tdp_level __read_mostly;
98  
99  enum {
100  	AUDIT_PRE_PAGE_FAULT,
101  	AUDIT_POST_PAGE_FAULT,
102  	AUDIT_PRE_PTE_WRITE,
103  	AUDIT_POST_PTE_WRITE,
104  	AUDIT_PRE_SYNC,
105  	AUDIT_POST_SYNC
106  };
107  
108  #ifdef MMU_DEBUG
109  bool dbg = 0;
110  module_param(dbg, bool, 0644);
111  #endif
112  
113  #define PTE_PREFETCH_NUM		8
114  
115  #define PT32_LEVEL_BITS 10
116  
117  #define PT32_LEVEL_SHIFT(level) \
118  		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
119  
120  #define PT32_LVL_OFFSET_MASK(level) \
121  	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
122  						* PT32_LEVEL_BITS))) - 1))
123  
124  #define PT32_INDEX(address, level)\
125  	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
126  
127  
128  #define PT32_BASE_ADDR_MASK PAGE_MASK
129  #define PT32_DIR_BASE_ADDR_MASK \
130  	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
131  #define PT32_LVL_ADDR_MASK(level) \
132  	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133  					    * PT32_LEVEL_BITS))) - 1))
134  
135  #include <trace/events/kvm.h>
136  
137  /* make pte_list_desc fit well in cache line */
138  #define PTE_LIST_EXT 3
139  
140  struct pte_list_desc {
141  	u64 *sptes[PTE_LIST_EXT];
142  	struct pte_list_desc *more;
143  };
144  
145  struct kvm_shadow_walk_iterator {
146  	u64 addr;
147  	hpa_t shadow_addr;
148  	u64 *sptep;
149  	int level;
150  	unsigned index;
151  };
152  
153  #define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker)     \
154  	for (shadow_walk_init_using_root(&(_walker), (_vcpu),              \
155  					 (_root), (_addr));                \
156  	     shadow_walk_okay(&(_walker));			           \
157  	     shadow_walk_next(&(_walker)))
158  
159  #define for_each_shadow_entry(_vcpu, _addr, _walker)            \
160  	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
161  	     shadow_walk_okay(&(_walker));			\
162  	     shadow_walk_next(&(_walker)))
163  
164  #define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
165  	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
166  	     shadow_walk_okay(&(_walker)) &&				\
167  		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
168  	     __shadow_walk_next(&(_walker), spte))
169  
170  static struct kmem_cache *pte_list_desc_cache;
171  struct kmem_cache *mmu_page_header_cache;
172  static struct percpu_counter kvm_total_used_mmu_pages;
173  
174  static void mmu_spte_set(u64 *sptep, u64 spte);
175  static union kvm_mmu_page_role
176  kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
177  
178  #define CREATE_TRACE_POINTS
179  #include "mmutrace.h"
180  
181  
kvm_available_flush_tlb_with_range(void)182  static inline bool kvm_available_flush_tlb_with_range(void)
183  {
184  	return kvm_x86_ops.tlb_remote_flush_with_range;
185  }
186  
kvm_flush_remote_tlbs_with_range(struct kvm * kvm,struct kvm_tlb_range * range)187  static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
188  		struct kvm_tlb_range *range)
189  {
190  	int ret = -ENOTSUPP;
191  
192  	if (range && kvm_x86_ops.tlb_remote_flush_with_range)
193  		ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
194  
195  	if (ret)
196  		kvm_flush_remote_tlbs(kvm);
197  }
198  
kvm_flush_remote_tlbs_with_address(struct kvm * kvm,u64 start_gfn,u64 pages)199  void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
200  		u64 start_gfn, u64 pages)
201  {
202  	struct kvm_tlb_range range;
203  
204  	range.start_gfn = start_gfn;
205  	range.pages = pages;
206  
207  	kvm_flush_remote_tlbs_with_range(kvm, &range);
208  }
209  
is_nx_huge_page_enabled(void)210  bool is_nx_huge_page_enabled(void)
211  {
212  	return READ_ONCE(nx_huge_pages);
213  }
214  
mark_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,u64 gfn,unsigned int access)215  static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
216  			   unsigned int access)
217  {
218  	u64 mask = make_mmio_spte(vcpu, gfn, access);
219  
220  	trace_mark_mmio_spte(sptep, gfn, mask);
221  	mmu_spte_set(sptep, mask);
222  }
223  
get_mmio_spte_gfn(u64 spte)224  static gfn_t get_mmio_spte_gfn(u64 spte)
225  {
226  	u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
227  
228  	gpa |= (spte >> SHADOW_NONPRESENT_OR_RSVD_MASK_LEN)
229  	       & shadow_nonpresent_or_rsvd_mask;
230  
231  	return gpa >> PAGE_SHIFT;
232  }
233  
get_mmio_spte_access(u64 spte)234  static unsigned get_mmio_spte_access(u64 spte)
235  {
236  	return spte & shadow_mmio_access_mask;
237  }
238  
set_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,kvm_pfn_t pfn,unsigned int access)239  static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
240  			  kvm_pfn_t pfn, unsigned int access)
241  {
242  	if (unlikely(is_noslot_pfn(pfn))) {
243  		mark_mmio_spte(vcpu, sptep, gfn, access);
244  		return true;
245  	}
246  
247  	return false;
248  }
249  
check_mmio_spte(struct kvm_vcpu * vcpu,u64 spte)250  static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
251  {
252  	u64 kvm_gen, spte_gen, gen;
253  
254  	gen = kvm_vcpu_memslots(vcpu)->generation;
255  	if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
256  		return false;
257  
258  	kvm_gen = gen & MMIO_SPTE_GEN_MASK;
259  	spte_gen = get_mmio_spte_generation(spte);
260  
261  	trace_check_mmio_spte(spte, kvm_gen, spte_gen);
262  	return likely(kvm_gen == spte_gen);
263  }
264  
translate_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u32 access,struct x86_exception * exception)265  static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
266                                    struct x86_exception *exception)
267  {
268  	/* Check if guest physical address doesn't exceed guest maximum */
269  	if (kvm_vcpu_is_illegal_gpa(vcpu, gpa)) {
270  		exception->error_code |= PFERR_RSVD_MASK;
271  		return UNMAPPED_GVA;
272  	}
273  
274          return gpa;
275  }
276  
is_cpuid_PSE36(void)277  static int is_cpuid_PSE36(void)
278  {
279  	return 1;
280  }
281  
is_nx(struct kvm_vcpu * vcpu)282  static int is_nx(struct kvm_vcpu *vcpu)
283  {
284  	return vcpu->arch.efer & EFER_NX;
285  }
286  
pse36_gfn_delta(u32 gpte)287  static gfn_t pse36_gfn_delta(u32 gpte)
288  {
289  	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
290  
291  	return (gpte & PT32_DIR_PSE36_MASK) << shift;
292  }
293  
294  #ifdef CONFIG_X86_64
__set_spte(u64 * sptep,u64 spte)295  static void __set_spte(u64 *sptep, u64 spte)
296  {
297  	WRITE_ONCE(*sptep, spte);
298  }
299  
__update_clear_spte_fast(u64 * sptep,u64 spte)300  static void __update_clear_spte_fast(u64 *sptep, u64 spte)
301  {
302  	WRITE_ONCE(*sptep, spte);
303  }
304  
__update_clear_spte_slow(u64 * sptep,u64 spte)305  static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
306  {
307  	return xchg(sptep, spte);
308  }
309  
__get_spte_lockless(u64 * sptep)310  static u64 __get_spte_lockless(u64 *sptep)
311  {
312  	return READ_ONCE(*sptep);
313  }
314  #else
315  union split_spte {
316  	struct {
317  		u32 spte_low;
318  		u32 spte_high;
319  	};
320  	u64 spte;
321  };
322  
count_spte_clear(u64 * sptep,u64 spte)323  static void count_spte_clear(u64 *sptep, u64 spte)
324  {
325  	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
326  
327  	if (is_shadow_present_pte(spte))
328  		return;
329  
330  	/* Ensure the spte is completely set before we increase the count */
331  	smp_wmb();
332  	sp->clear_spte_count++;
333  }
334  
__set_spte(u64 * sptep,u64 spte)335  static void __set_spte(u64 *sptep, u64 spte)
336  {
337  	union split_spte *ssptep, sspte;
338  
339  	ssptep = (union split_spte *)sptep;
340  	sspte = (union split_spte)spte;
341  
342  	ssptep->spte_high = sspte.spte_high;
343  
344  	/*
345  	 * If we map the spte from nonpresent to present, We should store
346  	 * the high bits firstly, then set present bit, so cpu can not
347  	 * fetch this spte while we are setting the spte.
348  	 */
349  	smp_wmb();
350  
351  	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
352  }
353  
__update_clear_spte_fast(u64 * sptep,u64 spte)354  static void __update_clear_spte_fast(u64 *sptep, u64 spte)
355  {
356  	union split_spte *ssptep, sspte;
357  
358  	ssptep = (union split_spte *)sptep;
359  	sspte = (union split_spte)spte;
360  
361  	WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
362  
363  	/*
364  	 * If we map the spte from present to nonpresent, we should clear
365  	 * present bit firstly to avoid vcpu fetch the old high bits.
366  	 */
367  	smp_wmb();
368  
369  	ssptep->spte_high = sspte.spte_high;
370  	count_spte_clear(sptep, spte);
371  }
372  
__update_clear_spte_slow(u64 * sptep,u64 spte)373  static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
374  {
375  	union split_spte *ssptep, sspte, orig;
376  
377  	ssptep = (union split_spte *)sptep;
378  	sspte = (union split_spte)spte;
379  
380  	/* xchg acts as a barrier before the setting of the high bits */
381  	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
382  	orig.spte_high = ssptep->spte_high;
383  	ssptep->spte_high = sspte.spte_high;
384  	count_spte_clear(sptep, spte);
385  
386  	return orig.spte;
387  }
388  
389  /*
390   * The idea using the light way get the spte on x86_32 guest is from
391   * gup_get_pte (mm/gup.c).
392   *
393   * An spte tlb flush may be pending, because kvm_set_pte_rmapp
394   * coalesces them and we are running out of the MMU lock.  Therefore
395   * we need to protect against in-progress updates of the spte.
396   *
397   * Reading the spte while an update is in progress may get the old value
398   * for the high part of the spte.  The race is fine for a present->non-present
399   * change (because the high part of the spte is ignored for non-present spte),
400   * but for a present->present change we must reread the spte.
401   *
402   * All such changes are done in two steps (present->non-present and
403   * non-present->present), hence it is enough to count the number of
404   * present->non-present updates: if it changed while reading the spte,
405   * we might have hit the race.  This is done using clear_spte_count.
406   */
__get_spte_lockless(u64 * sptep)407  static u64 __get_spte_lockless(u64 *sptep)
408  {
409  	struct kvm_mmu_page *sp =  sptep_to_sp(sptep);
410  	union split_spte spte, *orig = (union split_spte *)sptep;
411  	int count;
412  
413  retry:
414  	count = sp->clear_spte_count;
415  	smp_rmb();
416  
417  	spte.spte_low = orig->spte_low;
418  	smp_rmb();
419  
420  	spte.spte_high = orig->spte_high;
421  	smp_rmb();
422  
423  	if (unlikely(spte.spte_low != orig->spte_low ||
424  	      count != sp->clear_spte_count))
425  		goto retry;
426  
427  	return spte.spte;
428  }
429  #endif
430  
spte_has_volatile_bits(u64 spte)431  static bool spte_has_volatile_bits(u64 spte)
432  {
433  	if (!is_shadow_present_pte(spte))
434  		return false;
435  
436  	/*
437  	 * Always atomically update spte if it can be updated
438  	 * out of mmu-lock, it can ensure dirty bit is not lost,
439  	 * also, it can help us to get a stable is_writable_pte()
440  	 * to ensure tlb flush is not missed.
441  	 */
442  	if (spte_can_locklessly_be_made_writable(spte) ||
443  	    is_access_track_spte(spte))
444  		return true;
445  
446  	if (spte_ad_enabled(spte)) {
447  		if ((spte & shadow_accessed_mask) == 0 ||
448  	    	    (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
449  			return true;
450  	}
451  
452  	return false;
453  }
454  
455  /* Rules for using mmu_spte_set:
456   * Set the sptep from nonpresent to present.
457   * Note: the sptep being assigned *must* be either not present
458   * or in a state where the hardware will not attempt to update
459   * the spte.
460   */
mmu_spte_set(u64 * sptep,u64 new_spte)461  static void mmu_spte_set(u64 *sptep, u64 new_spte)
462  {
463  	WARN_ON(is_shadow_present_pte(*sptep));
464  	__set_spte(sptep, new_spte);
465  }
466  
467  /*
468   * Update the SPTE (excluding the PFN), but do not track changes in its
469   * accessed/dirty status.
470   */
mmu_spte_update_no_track(u64 * sptep,u64 new_spte)471  static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
472  {
473  	u64 old_spte = *sptep;
474  
475  	WARN_ON(!is_shadow_present_pte(new_spte));
476  
477  	if (!is_shadow_present_pte(old_spte)) {
478  		mmu_spte_set(sptep, new_spte);
479  		return old_spte;
480  	}
481  
482  	if (!spte_has_volatile_bits(old_spte))
483  		__update_clear_spte_fast(sptep, new_spte);
484  	else
485  		old_spte = __update_clear_spte_slow(sptep, new_spte);
486  
487  	WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
488  
489  	return old_spte;
490  }
491  
492  /* Rules for using mmu_spte_update:
493   * Update the state bits, it means the mapped pfn is not changed.
494   *
495   * Whenever we overwrite a writable spte with a read-only one we
496   * should flush remote TLBs. Otherwise rmap_write_protect
497   * will find a read-only spte, even though the writable spte
498   * might be cached on a CPU's TLB, the return value indicates this
499   * case.
500   *
501   * Returns true if the TLB needs to be flushed
502   */
mmu_spte_update(u64 * sptep,u64 new_spte)503  static bool mmu_spte_update(u64 *sptep, u64 new_spte)
504  {
505  	bool flush = false;
506  	u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
507  
508  	if (!is_shadow_present_pte(old_spte))
509  		return false;
510  
511  	/*
512  	 * For the spte updated out of mmu-lock is safe, since
513  	 * we always atomically update it, see the comments in
514  	 * spte_has_volatile_bits().
515  	 */
516  	if (spte_can_locklessly_be_made_writable(old_spte) &&
517  	      !is_writable_pte(new_spte))
518  		flush = true;
519  
520  	/*
521  	 * Flush TLB when accessed/dirty states are changed in the page tables,
522  	 * to guarantee consistency between TLB and page tables.
523  	 */
524  
525  	if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
526  		flush = true;
527  		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
528  	}
529  
530  	if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
531  		flush = true;
532  		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
533  	}
534  
535  	return flush;
536  }
537  
538  /*
539   * Rules for using mmu_spte_clear_track_bits:
540   * It sets the sptep from present to nonpresent, and track the
541   * state bits, it is used to clear the last level sptep.
542   * Returns non-zero if the PTE was previously valid.
543   */
mmu_spte_clear_track_bits(u64 * sptep)544  static int mmu_spte_clear_track_bits(u64 *sptep)
545  {
546  	kvm_pfn_t pfn;
547  	u64 old_spte = *sptep;
548  
549  	if (!spte_has_volatile_bits(old_spte))
550  		__update_clear_spte_fast(sptep, 0ull);
551  	else
552  		old_spte = __update_clear_spte_slow(sptep, 0ull);
553  
554  	if (!is_shadow_present_pte(old_spte))
555  		return 0;
556  
557  	pfn = spte_to_pfn(old_spte);
558  
559  	/*
560  	 * KVM does not hold the refcount of the page used by
561  	 * kvm mmu, before reclaiming the page, we should
562  	 * unmap it from mmu first.
563  	 */
564  	WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
565  
566  	if (is_accessed_spte(old_spte))
567  		kvm_set_pfn_accessed(pfn);
568  
569  	if (is_dirty_spte(old_spte))
570  		kvm_set_pfn_dirty(pfn);
571  
572  	return 1;
573  }
574  
575  /*
576   * Rules for using mmu_spte_clear_no_track:
577   * Directly clear spte without caring the state bits of sptep,
578   * it is used to set the upper level spte.
579   */
mmu_spte_clear_no_track(u64 * sptep)580  static void mmu_spte_clear_no_track(u64 *sptep)
581  {
582  	__update_clear_spte_fast(sptep, 0ull);
583  }
584  
mmu_spte_get_lockless(u64 * sptep)585  static u64 mmu_spte_get_lockless(u64 *sptep)
586  {
587  	return __get_spte_lockless(sptep);
588  }
589  
590  /* Restore an acc-track PTE back to a regular PTE */
restore_acc_track_spte(u64 spte)591  static u64 restore_acc_track_spte(u64 spte)
592  {
593  	u64 new_spte = spte;
594  	u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
595  			 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
596  
597  	WARN_ON_ONCE(spte_ad_enabled(spte));
598  	WARN_ON_ONCE(!is_access_track_spte(spte));
599  
600  	new_spte &= ~shadow_acc_track_mask;
601  	new_spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
602  		      SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
603  	new_spte |= saved_bits;
604  
605  	return new_spte;
606  }
607  
608  /* Returns the Accessed status of the PTE and resets it at the same time. */
mmu_spte_age(u64 * sptep)609  static bool mmu_spte_age(u64 *sptep)
610  {
611  	u64 spte = mmu_spte_get_lockless(sptep);
612  
613  	if (!is_accessed_spte(spte))
614  		return false;
615  
616  	if (spte_ad_enabled(spte)) {
617  		clear_bit((ffs(shadow_accessed_mask) - 1),
618  			  (unsigned long *)sptep);
619  	} else {
620  		/*
621  		 * Capture the dirty status of the page, so that it doesn't get
622  		 * lost when the SPTE is marked for access tracking.
623  		 */
624  		if (is_writable_pte(spte))
625  			kvm_set_pfn_dirty(spte_to_pfn(spte));
626  
627  		spte = mark_spte_for_access_track(spte);
628  		mmu_spte_update_no_track(sptep, spte);
629  	}
630  
631  	return true;
632  }
633  
walk_shadow_page_lockless_begin(struct kvm_vcpu * vcpu)634  static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
635  {
636  	/*
637  	 * Prevent page table teardown by making any free-er wait during
638  	 * kvm_flush_remote_tlbs() IPI to all active vcpus.
639  	 */
640  	local_irq_disable();
641  
642  	/*
643  	 * Make sure a following spte read is not reordered ahead of the write
644  	 * to vcpu->mode.
645  	 */
646  	smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
647  }
648  
walk_shadow_page_lockless_end(struct kvm_vcpu * vcpu)649  static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
650  {
651  	/*
652  	 * Make sure the write to vcpu->mode is not reordered in front of
653  	 * reads to sptes.  If it does, kvm_mmu_commit_zap_page() can see us
654  	 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
655  	 */
656  	smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
657  	local_irq_enable();
658  }
659  
mmu_topup_memory_caches(struct kvm_vcpu * vcpu,bool maybe_indirect)660  static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu, bool maybe_indirect)
661  {
662  	int r;
663  
664  	/* 1 rmap, 1 parent PTE per level, and the prefetched rmaps. */
665  	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
666  				       1 + PT64_ROOT_MAX_LEVEL + PTE_PREFETCH_NUM);
667  	if (r)
668  		return r;
669  	r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_shadow_page_cache,
670  				       PT64_ROOT_MAX_LEVEL);
671  	if (r)
672  		return r;
673  	if (maybe_indirect) {
674  		r = kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_gfn_array_cache,
675  					       PT64_ROOT_MAX_LEVEL);
676  		if (r)
677  			return r;
678  	}
679  	return kvm_mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
680  					  PT64_ROOT_MAX_LEVEL);
681  }
682  
mmu_free_memory_caches(struct kvm_vcpu * vcpu)683  static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684  {
685  	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache);
686  	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_shadow_page_cache);
687  	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_gfn_array_cache);
688  	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
689  }
690  
mmu_alloc_pte_list_desc(struct kvm_vcpu * vcpu)691  static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
692  {
693  	return kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
694  }
695  
mmu_free_pte_list_desc(struct pte_list_desc * pte_list_desc)696  static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
697  {
698  	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
699  }
700  
kvm_mmu_page_get_gfn(struct kvm_mmu_page * sp,int index)701  static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
702  {
703  	if (!sp->role.direct)
704  		return sp->gfns[index];
705  
706  	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
707  }
708  
kvm_mmu_page_set_gfn(struct kvm_mmu_page * sp,int index,gfn_t gfn)709  static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
710  {
711  	if (!sp->role.direct) {
712  		sp->gfns[index] = gfn;
713  		return;
714  	}
715  
716  	if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
717  		pr_err_ratelimited("gfn mismatch under direct page %llx "
718  				   "(expected %llx, got %llx)\n",
719  				   sp->gfn,
720  				   kvm_mmu_page_get_gfn(sp, index), gfn);
721  }
722  
723  /*
724   * Return the pointer to the large page information for a given gfn,
725   * handling slots that are not large page aligned.
726   */
lpage_info_slot(gfn_t gfn,struct kvm_memory_slot * slot,int level)727  static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
728  					      struct kvm_memory_slot *slot,
729  					      int level)
730  {
731  	unsigned long idx;
732  
733  	idx = gfn_to_index(gfn, slot->base_gfn, level);
734  	return &slot->arch.lpage_info[level - 2][idx];
735  }
736  
update_gfn_disallow_lpage_count(struct kvm_memory_slot * slot,gfn_t gfn,int count)737  static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
738  					    gfn_t gfn, int count)
739  {
740  	struct kvm_lpage_info *linfo;
741  	int i;
742  
743  	for (i = PG_LEVEL_2M; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
744  		linfo = lpage_info_slot(gfn, slot, i);
745  		linfo->disallow_lpage += count;
746  		WARN_ON(linfo->disallow_lpage < 0);
747  	}
748  }
749  
kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)750  void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
751  {
752  	update_gfn_disallow_lpage_count(slot, gfn, 1);
753  }
754  
kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot * slot,gfn_t gfn)755  void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
756  {
757  	update_gfn_disallow_lpage_count(slot, gfn, -1);
758  }
759  
account_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)760  static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
761  {
762  	struct kvm_memslots *slots;
763  	struct kvm_memory_slot *slot;
764  	gfn_t gfn;
765  
766  	kvm->arch.indirect_shadow_pages++;
767  	gfn = sp->gfn;
768  	slots = kvm_memslots_for_spte_role(kvm, sp->role);
769  	slot = __gfn_to_memslot(slots, gfn);
770  
771  	/* the non-leaf shadow pages are keeping readonly. */
772  	if (sp->role.level > PG_LEVEL_4K)
773  		return kvm_slot_page_track_add_page(kvm, slot, gfn,
774  						    KVM_PAGE_TRACK_WRITE);
775  
776  	kvm_mmu_gfn_disallow_lpage(slot, gfn);
777  }
778  
account_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)779  void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
780  {
781  	if (sp->lpage_disallowed)
782  		return;
783  
784  	++kvm->stat.nx_lpage_splits;
785  	list_add_tail(&sp->lpage_disallowed_link,
786  		      &kvm->arch.lpage_disallowed_mmu_pages);
787  	sp->lpage_disallowed = true;
788  }
789  
unaccount_shadowed(struct kvm * kvm,struct kvm_mmu_page * sp)790  static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
791  {
792  	struct kvm_memslots *slots;
793  	struct kvm_memory_slot *slot;
794  	gfn_t gfn;
795  
796  	kvm->arch.indirect_shadow_pages--;
797  	gfn = sp->gfn;
798  	slots = kvm_memslots_for_spte_role(kvm, sp->role);
799  	slot = __gfn_to_memslot(slots, gfn);
800  	if (sp->role.level > PG_LEVEL_4K)
801  		return kvm_slot_page_track_remove_page(kvm, slot, gfn,
802  						       KVM_PAGE_TRACK_WRITE);
803  
804  	kvm_mmu_gfn_allow_lpage(slot, gfn);
805  }
806  
unaccount_huge_nx_page(struct kvm * kvm,struct kvm_mmu_page * sp)807  void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
808  {
809  	--kvm->stat.nx_lpage_splits;
810  	sp->lpage_disallowed = false;
811  	list_del(&sp->lpage_disallowed_link);
812  }
813  
814  static struct kvm_memory_slot *
gfn_to_memslot_dirty_bitmap(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)815  gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
816  			    bool no_dirty_log)
817  {
818  	struct kvm_memory_slot *slot;
819  
820  	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
821  	if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
822  		return NULL;
823  	if (no_dirty_log && slot->dirty_bitmap)
824  		return NULL;
825  
826  	return slot;
827  }
828  
829  /*
830   * About rmap_head encoding:
831   *
832   * If the bit zero of rmap_head->val is clear, then it points to the only spte
833   * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
834   * pte_list_desc containing more mappings.
835   */
836  
837  /*
838   * Returns the number of pointers in the rmap chain, not counting the new one.
839   */
pte_list_add(struct kvm_vcpu * vcpu,u64 * spte,struct kvm_rmap_head * rmap_head)840  static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
841  			struct kvm_rmap_head *rmap_head)
842  {
843  	struct pte_list_desc *desc;
844  	int i, count = 0;
845  
846  	if (!rmap_head->val) {
847  		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
848  		rmap_head->val = (unsigned long)spte;
849  	} else if (!(rmap_head->val & 1)) {
850  		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
851  		desc = mmu_alloc_pte_list_desc(vcpu);
852  		desc->sptes[0] = (u64 *)rmap_head->val;
853  		desc->sptes[1] = spte;
854  		rmap_head->val = (unsigned long)desc | 1;
855  		++count;
856  	} else {
857  		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
858  		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
859  		while (desc->sptes[PTE_LIST_EXT-1]) {
860  			count += PTE_LIST_EXT;
861  
862  			if (!desc->more) {
863  				desc->more = mmu_alloc_pte_list_desc(vcpu);
864  				desc = desc->more;
865  				break;
866  			}
867  			desc = desc->more;
868  		}
869  		for (i = 0; desc->sptes[i]; ++i)
870  			++count;
871  		desc->sptes[i] = spte;
872  	}
873  	return count;
874  }
875  
876  static void
pte_list_desc_remove_entry(struct kvm_rmap_head * rmap_head,struct pte_list_desc * desc,int i,struct pte_list_desc * prev_desc)877  pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
878  			   struct pte_list_desc *desc, int i,
879  			   struct pte_list_desc *prev_desc)
880  {
881  	int j;
882  
883  	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
884  		;
885  	desc->sptes[i] = desc->sptes[j];
886  	desc->sptes[j] = NULL;
887  	if (j != 0)
888  		return;
889  	if (!prev_desc && !desc->more)
890  		rmap_head->val = 0;
891  	else
892  		if (prev_desc)
893  			prev_desc->more = desc->more;
894  		else
895  			rmap_head->val = (unsigned long)desc->more | 1;
896  	mmu_free_pte_list_desc(desc);
897  }
898  
__pte_list_remove(u64 * spte,struct kvm_rmap_head * rmap_head)899  static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
900  {
901  	struct pte_list_desc *desc;
902  	struct pte_list_desc *prev_desc;
903  	int i;
904  
905  	if (!rmap_head->val) {
906  		pr_err("%s: %p 0->BUG\n", __func__, spte);
907  		BUG();
908  	} else if (!(rmap_head->val & 1)) {
909  		rmap_printk("%s:  %p 1->0\n", __func__, spte);
910  		if ((u64 *)rmap_head->val != spte) {
911  			pr_err("%s:  %p 1->BUG\n", __func__, spte);
912  			BUG();
913  		}
914  		rmap_head->val = 0;
915  	} else {
916  		rmap_printk("%s:  %p many->many\n", __func__, spte);
917  		desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
918  		prev_desc = NULL;
919  		while (desc) {
920  			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
921  				if (desc->sptes[i] == spte) {
922  					pte_list_desc_remove_entry(rmap_head,
923  							desc, i, prev_desc);
924  					return;
925  				}
926  			}
927  			prev_desc = desc;
928  			desc = desc->more;
929  		}
930  		pr_err("%s: %p many->many\n", __func__, spte);
931  		BUG();
932  	}
933  }
934  
pte_list_remove(struct kvm_rmap_head * rmap_head,u64 * sptep)935  static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
936  {
937  	mmu_spte_clear_track_bits(sptep);
938  	__pte_list_remove(sptep, rmap_head);
939  }
940  
__gfn_to_rmap(gfn_t gfn,int level,struct kvm_memory_slot * slot)941  static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
942  					   struct kvm_memory_slot *slot)
943  {
944  	unsigned long idx;
945  
946  	idx = gfn_to_index(gfn, slot->base_gfn, level);
947  	return &slot->arch.rmap[level - PG_LEVEL_4K][idx];
948  }
949  
gfn_to_rmap(struct kvm * kvm,gfn_t gfn,struct kvm_mmu_page * sp)950  static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
951  					 struct kvm_mmu_page *sp)
952  {
953  	struct kvm_memslots *slots;
954  	struct kvm_memory_slot *slot;
955  
956  	slots = kvm_memslots_for_spte_role(kvm, sp->role);
957  	slot = __gfn_to_memslot(slots, gfn);
958  	return __gfn_to_rmap(gfn, sp->role.level, slot);
959  }
960  
rmap_can_add(struct kvm_vcpu * vcpu)961  static bool rmap_can_add(struct kvm_vcpu *vcpu)
962  {
963  	struct kvm_mmu_memory_cache *mc;
964  
965  	mc = &vcpu->arch.mmu_pte_list_desc_cache;
966  	return kvm_mmu_memory_cache_nr_free_objects(mc);
967  }
968  
rmap_add(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)969  static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
970  {
971  	struct kvm_mmu_page *sp;
972  	struct kvm_rmap_head *rmap_head;
973  
974  	sp = sptep_to_sp(spte);
975  	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
976  	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
977  	return pte_list_add(vcpu, spte, rmap_head);
978  }
979  
rmap_remove(struct kvm * kvm,u64 * spte)980  static void rmap_remove(struct kvm *kvm, u64 *spte)
981  {
982  	struct kvm_mmu_page *sp;
983  	gfn_t gfn;
984  	struct kvm_rmap_head *rmap_head;
985  
986  	sp = sptep_to_sp(spte);
987  	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
988  	rmap_head = gfn_to_rmap(kvm, gfn, sp);
989  	__pte_list_remove(spte, rmap_head);
990  }
991  
992  /*
993   * Used by the following functions to iterate through the sptes linked by a
994   * rmap.  All fields are private and not assumed to be used outside.
995   */
996  struct rmap_iterator {
997  	/* private fields */
998  	struct pte_list_desc *desc;	/* holds the sptep if not NULL */
999  	int pos;			/* index of the sptep */
1000  };
1001  
1002  /*
1003   * Iteration must be started by this function.  This should also be used after
1004   * removing/dropping sptes from the rmap link because in such cases the
1005   * information in the iterator may not be valid.
1006   *
1007   * Returns sptep if found, NULL otherwise.
1008   */
rmap_get_first(struct kvm_rmap_head * rmap_head,struct rmap_iterator * iter)1009  static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1010  			   struct rmap_iterator *iter)
1011  {
1012  	u64 *sptep;
1013  
1014  	if (!rmap_head->val)
1015  		return NULL;
1016  
1017  	if (!(rmap_head->val & 1)) {
1018  		iter->desc = NULL;
1019  		sptep = (u64 *)rmap_head->val;
1020  		goto out;
1021  	}
1022  
1023  	iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1024  	iter->pos = 0;
1025  	sptep = iter->desc->sptes[iter->pos];
1026  out:
1027  	BUG_ON(!is_shadow_present_pte(*sptep));
1028  	return sptep;
1029  }
1030  
1031  /*
1032   * Must be used with a valid iterator: e.g. after rmap_get_first().
1033   *
1034   * Returns sptep if found, NULL otherwise.
1035   */
rmap_get_next(struct rmap_iterator * iter)1036  static u64 *rmap_get_next(struct rmap_iterator *iter)
1037  {
1038  	u64 *sptep;
1039  
1040  	if (iter->desc) {
1041  		if (iter->pos < PTE_LIST_EXT - 1) {
1042  			++iter->pos;
1043  			sptep = iter->desc->sptes[iter->pos];
1044  			if (sptep)
1045  				goto out;
1046  		}
1047  
1048  		iter->desc = iter->desc->more;
1049  
1050  		if (iter->desc) {
1051  			iter->pos = 0;
1052  			/* desc->sptes[0] cannot be NULL */
1053  			sptep = iter->desc->sptes[iter->pos];
1054  			goto out;
1055  		}
1056  	}
1057  
1058  	return NULL;
1059  out:
1060  	BUG_ON(!is_shadow_present_pte(*sptep));
1061  	return sptep;
1062  }
1063  
1064  #define for_each_rmap_spte(_rmap_head_, _iter_, _spte_)			\
1065  	for (_spte_ = rmap_get_first(_rmap_head_, _iter_);		\
1066  	     _spte_; _spte_ = rmap_get_next(_iter_))
1067  
drop_spte(struct kvm * kvm,u64 * sptep)1068  static void drop_spte(struct kvm *kvm, u64 *sptep)
1069  {
1070  	if (mmu_spte_clear_track_bits(sptep))
1071  		rmap_remove(kvm, sptep);
1072  }
1073  
1074  
__drop_large_spte(struct kvm * kvm,u64 * sptep)1075  static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1076  {
1077  	if (is_large_pte(*sptep)) {
1078  		WARN_ON(sptep_to_sp(sptep)->role.level == PG_LEVEL_4K);
1079  		drop_spte(kvm, sptep);
1080  		--kvm->stat.lpages;
1081  		return true;
1082  	}
1083  
1084  	return false;
1085  }
1086  
drop_large_spte(struct kvm_vcpu * vcpu,u64 * sptep)1087  static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1088  {
1089  	if (__drop_large_spte(vcpu->kvm, sptep)) {
1090  		struct kvm_mmu_page *sp = sptep_to_sp(sptep);
1091  
1092  		kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1093  			KVM_PAGES_PER_HPAGE(sp->role.level));
1094  	}
1095  }
1096  
1097  /*
1098   * Write-protect on the specified @sptep, @pt_protect indicates whether
1099   * spte write-protection is caused by protecting shadow page table.
1100   *
1101   * Note: write protection is difference between dirty logging and spte
1102   * protection:
1103   * - for dirty logging, the spte can be set to writable at anytime if
1104   *   its dirty bitmap is properly set.
1105   * - for spte protection, the spte can be writable only after unsync-ing
1106   *   shadow page.
1107   *
1108   * Return true if tlb need be flushed.
1109   */
spte_write_protect(u64 * sptep,bool pt_protect)1110  static bool spte_write_protect(u64 *sptep, bool pt_protect)
1111  {
1112  	u64 spte = *sptep;
1113  
1114  	if (!is_writable_pte(spte) &&
1115  	      !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
1116  		return false;
1117  
1118  	rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1119  
1120  	if (pt_protect)
1121  		spte &= ~SPTE_MMU_WRITEABLE;
1122  	spte = spte & ~PT_WRITABLE_MASK;
1123  
1124  	return mmu_spte_update(sptep, spte);
1125  }
1126  
__rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head,bool pt_protect)1127  static bool __rmap_write_protect(struct kvm *kvm,
1128  				 struct kvm_rmap_head *rmap_head,
1129  				 bool pt_protect)
1130  {
1131  	u64 *sptep;
1132  	struct rmap_iterator iter;
1133  	bool flush = false;
1134  
1135  	for_each_rmap_spte(rmap_head, &iter, sptep)
1136  		flush |= spte_write_protect(sptep, pt_protect);
1137  
1138  	return flush;
1139  }
1140  
spte_clear_dirty(u64 * sptep)1141  static bool spte_clear_dirty(u64 *sptep)
1142  {
1143  	u64 spte = *sptep;
1144  
1145  	rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1146  
1147  	MMU_WARN_ON(!spte_ad_enabled(spte));
1148  	spte &= ~shadow_dirty_mask;
1149  	return mmu_spte_update(sptep, spte);
1150  }
1151  
spte_wrprot_for_clear_dirty(u64 * sptep)1152  static bool spte_wrprot_for_clear_dirty(u64 *sptep)
1153  {
1154  	bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1155  					       (unsigned long *)sptep);
1156  	if (was_writable && !spte_ad_enabled(*sptep))
1157  		kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1158  
1159  	return was_writable;
1160  }
1161  
1162  /*
1163   * Gets the GFN ready for another round of dirty logging by clearing the
1164   *	- D bit on ad-enabled SPTEs, and
1165   *	- W bit on ad-disabled SPTEs.
1166   * Returns true iff any D or W bits were cleared.
1167   */
__rmap_clear_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1168  static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1169  {
1170  	u64 *sptep;
1171  	struct rmap_iterator iter;
1172  	bool flush = false;
1173  
1174  	for_each_rmap_spte(rmap_head, &iter, sptep)
1175  		if (spte_ad_need_write_protect(*sptep))
1176  			flush |= spte_wrprot_for_clear_dirty(sptep);
1177  		else
1178  			flush |= spte_clear_dirty(sptep);
1179  
1180  	return flush;
1181  }
1182  
spte_set_dirty(u64 * sptep)1183  static bool spte_set_dirty(u64 *sptep)
1184  {
1185  	u64 spte = *sptep;
1186  
1187  	rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1188  
1189  	/*
1190  	 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1191  	 * do not bother adding back write access to pages marked
1192  	 * SPTE_AD_WRPROT_ONLY_MASK.
1193  	 */
1194  	spte |= shadow_dirty_mask;
1195  
1196  	return mmu_spte_update(sptep, spte);
1197  }
1198  
__rmap_set_dirty(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1199  static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1200  {
1201  	u64 *sptep;
1202  	struct rmap_iterator iter;
1203  	bool flush = false;
1204  
1205  	for_each_rmap_spte(rmap_head, &iter, sptep)
1206  		if (spte_ad_enabled(*sptep))
1207  			flush |= spte_set_dirty(sptep);
1208  
1209  	return flush;
1210  }
1211  
1212  /**
1213   * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1214   * @kvm: kvm instance
1215   * @slot: slot to protect
1216   * @gfn_offset: start of the BITS_PER_LONG pages we care about
1217   * @mask: indicates which pages we should protect
1218   *
1219   * Used when we do not need to care about huge page mappings: e.g. during dirty
1220   * logging we do not have any such mappings.
1221   */
kvm_mmu_write_protect_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1222  static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1223  				     struct kvm_memory_slot *slot,
1224  				     gfn_t gfn_offset, unsigned long mask)
1225  {
1226  	struct kvm_rmap_head *rmap_head;
1227  
1228  	if (kvm->arch.tdp_mmu_enabled)
1229  		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1230  				slot->base_gfn + gfn_offset, mask, true);
1231  	while (mask) {
1232  		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1233  					  PG_LEVEL_4K, slot);
1234  		__rmap_write_protect(kvm, rmap_head, false);
1235  
1236  		/* clear the first set bit */
1237  		mask &= mask - 1;
1238  	}
1239  }
1240  
1241  /**
1242   * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1243   * protect the page if the D-bit isn't supported.
1244   * @kvm: kvm instance
1245   * @slot: slot to clear D-bit
1246   * @gfn_offset: start of the BITS_PER_LONG pages we care about
1247   * @mask: indicates which pages we should clear D-bit
1248   *
1249   * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1250   */
kvm_mmu_clear_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1251  void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1252  				     struct kvm_memory_slot *slot,
1253  				     gfn_t gfn_offset, unsigned long mask)
1254  {
1255  	struct kvm_rmap_head *rmap_head;
1256  
1257  	if (kvm->arch.tdp_mmu_enabled)
1258  		kvm_tdp_mmu_clear_dirty_pt_masked(kvm, slot,
1259  				slot->base_gfn + gfn_offset, mask, false);
1260  	while (mask) {
1261  		rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1262  					  PG_LEVEL_4K, slot);
1263  		__rmap_clear_dirty(kvm, rmap_head);
1264  
1265  		/* clear the first set bit */
1266  		mask &= mask - 1;
1267  	}
1268  }
1269  EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1270  
1271  /**
1272   * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1273   * PT level pages.
1274   *
1275   * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1276   * enable dirty logging for them.
1277   *
1278   * Used when we do not need to care about huge page mappings: e.g. during dirty
1279   * logging we do not have any such mappings.
1280   */
kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm * kvm,struct kvm_memory_slot * slot,gfn_t gfn_offset,unsigned long mask)1281  void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1282  				struct kvm_memory_slot *slot,
1283  				gfn_t gfn_offset, unsigned long mask)
1284  {
1285  	if (kvm_x86_ops.enable_log_dirty_pt_masked)
1286  		kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1287  				mask);
1288  	else
1289  		kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
1290  }
1291  
kvm_mmu_slot_gfn_write_protect(struct kvm * kvm,struct kvm_memory_slot * slot,u64 gfn)1292  bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1293  				    struct kvm_memory_slot *slot, u64 gfn)
1294  {
1295  	struct kvm_rmap_head *rmap_head;
1296  	int i;
1297  	bool write_protected = false;
1298  
1299  	for (i = PG_LEVEL_4K; i <= KVM_MAX_HUGEPAGE_LEVEL; ++i) {
1300  		rmap_head = __gfn_to_rmap(gfn, i, slot);
1301  		write_protected |= __rmap_write_protect(kvm, rmap_head, true);
1302  	}
1303  
1304  	if (kvm->arch.tdp_mmu_enabled)
1305  		write_protected |=
1306  			kvm_tdp_mmu_write_protect_gfn(kvm, slot, gfn);
1307  
1308  	return write_protected;
1309  }
1310  
rmap_write_protect(struct kvm_vcpu * vcpu,u64 gfn)1311  static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1312  {
1313  	struct kvm_memory_slot *slot;
1314  
1315  	slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1316  	return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1317  }
1318  
kvm_zap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head)1319  static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
1320  {
1321  	u64 *sptep;
1322  	struct rmap_iterator iter;
1323  	bool flush = false;
1324  
1325  	while ((sptep = rmap_get_first(rmap_head, &iter))) {
1326  		rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1327  
1328  		pte_list_remove(rmap_head, sptep);
1329  		flush = true;
1330  	}
1331  
1332  	return flush;
1333  }
1334  
kvm_unmap_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1335  static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1336  			   struct kvm_memory_slot *slot, gfn_t gfn, int level,
1337  			   unsigned long data)
1338  {
1339  	return kvm_zap_rmapp(kvm, rmap_head);
1340  }
1341  
kvm_set_pte_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1342  static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1343  			     struct kvm_memory_slot *slot, gfn_t gfn, int level,
1344  			     unsigned long data)
1345  {
1346  	u64 *sptep;
1347  	struct rmap_iterator iter;
1348  	int need_flush = 0;
1349  	u64 new_spte;
1350  	pte_t *ptep = (pte_t *)data;
1351  	kvm_pfn_t new_pfn;
1352  
1353  	WARN_ON(pte_huge(*ptep));
1354  	new_pfn = pte_pfn(*ptep);
1355  
1356  restart:
1357  	for_each_rmap_spte(rmap_head, &iter, sptep) {
1358  		rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1359  			    sptep, *sptep, gfn, level);
1360  
1361  		need_flush = 1;
1362  
1363  		if (pte_write(*ptep)) {
1364  			pte_list_remove(rmap_head, sptep);
1365  			goto restart;
1366  		} else {
1367  			new_spte = kvm_mmu_changed_pte_notifier_make_spte(
1368  					*sptep, new_pfn);
1369  
1370  			mmu_spte_clear_track_bits(sptep);
1371  			mmu_spte_set(sptep, new_spte);
1372  		}
1373  	}
1374  
1375  	if (need_flush && kvm_available_flush_tlb_with_range()) {
1376  		kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1377  		return 0;
1378  	}
1379  
1380  	return need_flush;
1381  }
1382  
1383  struct slot_rmap_walk_iterator {
1384  	/* input fields. */
1385  	struct kvm_memory_slot *slot;
1386  	gfn_t start_gfn;
1387  	gfn_t end_gfn;
1388  	int start_level;
1389  	int end_level;
1390  
1391  	/* output fields. */
1392  	gfn_t gfn;
1393  	struct kvm_rmap_head *rmap;
1394  	int level;
1395  
1396  	/* private field. */
1397  	struct kvm_rmap_head *end_rmap;
1398  };
1399  
1400  static void
rmap_walk_init_level(struct slot_rmap_walk_iterator * iterator,int level)1401  rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1402  {
1403  	iterator->level = level;
1404  	iterator->gfn = iterator->start_gfn;
1405  	iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1406  	iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1407  					   iterator->slot);
1408  }
1409  
1410  static void
slot_rmap_walk_init(struct slot_rmap_walk_iterator * iterator,struct kvm_memory_slot * slot,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn)1411  slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1412  		    struct kvm_memory_slot *slot, int start_level,
1413  		    int end_level, gfn_t start_gfn, gfn_t end_gfn)
1414  {
1415  	iterator->slot = slot;
1416  	iterator->start_level = start_level;
1417  	iterator->end_level = end_level;
1418  	iterator->start_gfn = start_gfn;
1419  	iterator->end_gfn = end_gfn;
1420  
1421  	rmap_walk_init_level(iterator, iterator->start_level);
1422  }
1423  
slot_rmap_walk_okay(struct slot_rmap_walk_iterator * iterator)1424  static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1425  {
1426  	return !!iterator->rmap;
1427  }
1428  
slot_rmap_walk_next(struct slot_rmap_walk_iterator * iterator)1429  static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1430  {
1431  	if (++iterator->rmap <= iterator->end_rmap) {
1432  		iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1433  		return;
1434  	}
1435  
1436  	if (++iterator->level > iterator->end_level) {
1437  		iterator->rmap = NULL;
1438  		return;
1439  	}
1440  
1441  	rmap_walk_init_level(iterator, iterator->level);
1442  }
1443  
1444  #define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_,	\
1445  	   _start_gfn, _end_gfn, _iter_)				\
1446  	for (slot_rmap_walk_init(_iter_, _slot_, _start_level_,		\
1447  				 _end_level_, _start_gfn, _end_gfn);	\
1448  	     slot_rmap_walk_okay(_iter_);				\
1449  	     slot_rmap_walk_next(_iter_))
1450  
kvm_handle_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1451  static int kvm_handle_hva_range(struct kvm *kvm,
1452  				unsigned long start,
1453  				unsigned long end,
1454  				unsigned long data,
1455  				int (*handler)(struct kvm *kvm,
1456  					       struct kvm_rmap_head *rmap_head,
1457  					       struct kvm_memory_slot *slot,
1458  					       gfn_t gfn,
1459  					       int level,
1460  					       unsigned long data))
1461  {
1462  	struct kvm_memslots *slots;
1463  	struct kvm_memory_slot *memslot;
1464  	struct slot_rmap_walk_iterator iterator;
1465  	int ret = 0;
1466  	int i;
1467  
1468  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1469  		slots = __kvm_memslots(kvm, i);
1470  		kvm_for_each_memslot(memslot, slots) {
1471  			unsigned long hva_start, hva_end;
1472  			gfn_t gfn_start, gfn_end;
1473  
1474  			hva_start = max(start, memslot->userspace_addr);
1475  			hva_end = min(end, memslot->userspace_addr +
1476  				      (memslot->npages << PAGE_SHIFT));
1477  			if (hva_start >= hva_end)
1478  				continue;
1479  			/*
1480  			 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1481  			 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1482  			 */
1483  			gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1484  			gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1485  
1486  			for_each_slot_rmap_range(memslot, PG_LEVEL_4K,
1487  						 KVM_MAX_HUGEPAGE_LEVEL,
1488  						 gfn_start, gfn_end - 1,
1489  						 &iterator)
1490  				ret |= handler(kvm, iterator.rmap, memslot,
1491  					       iterator.gfn, iterator.level, data);
1492  		}
1493  	}
1494  
1495  	return ret;
1496  }
1497  
kvm_handle_hva(struct kvm * kvm,unsigned long hva,unsigned long data,int (* handler)(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data))1498  static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1499  			  unsigned long data,
1500  			  int (*handler)(struct kvm *kvm,
1501  					 struct kvm_rmap_head *rmap_head,
1502  					 struct kvm_memory_slot *slot,
1503  					 gfn_t gfn, int level,
1504  					 unsigned long data))
1505  {
1506  	return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
1507  }
1508  
kvm_unmap_hva_range(struct kvm * kvm,unsigned long start,unsigned long end,unsigned flags)1509  int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end,
1510  			unsigned flags)
1511  {
1512  	int r;
1513  
1514  	r = kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1515  
1516  	if (kvm->arch.tdp_mmu_enabled)
1517  		r |= kvm_tdp_mmu_zap_hva_range(kvm, start, end);
1518  
1519  	return r;
1520  }
1521  
kvm_set_spte_hva(struct kvm * kvm,unsigned long hva,pte_t pte)1522  int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1523  {
1524  	int r;
1525  
1526  	r = kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1527  
1528  	if (kvm->arch.tdp_mmu_enabled)
1529  		r |= kvm_tdp_mmu_set_spte_hva(kvm, hva, &pte);
1530  
1531  	return r;
1532  }
1533  
kvm_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1534  static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1535  			 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1536  			 unsigned long data)
1537  {
1538  	u64 *sptep;
1539  	struct rmap_iterator iter;
1540  	int young = 0;
1541  
1542  	for_each_rmap_spte(rmap_head, &iter, sptep)
1543  		young |= mmu_spte_age(sptep);
1544  
1545  	trace_kvm_age_page(gfn, level, slot, young);
1546  	return young;
1547  }
1548  
kvm_test_age_rmapp(struct kvm * kvm,struct kvm_rmap_head * rmap_head,struct kvm_memory_slot * slot,gfn_t gfn,int level,unsigned long data)1549  static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
1550  			      struct kvm_memory_slot *slot, gfn_t gfn,
1551  			      int level, unsigned long data)
1552  {
1553  	u64 *sptep;
1554  	struct rmap_iterator iter;
1555  
1556  	for_each_rmap_spte(rmap_head, &iter, sptep)
1557  		if (is_accessed_spte(*sptep))
1558  			return 1;
1559  	return 0;
1560  }
1561  
1562  #define RMAP_RECYCLE_THRESHOLD 1000
1563  
rmap_recycle(struct kvm_vcpu * vcpu,u64 * spte,gfn_t gfn)1564  static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1565  {
1566  	struct kvm_rmap_head *rmap_head;
1567  	struct kvm_mmu_page *sp;
1568  
1569  	sp = sptep_to_sp(spte);
1570  
1571  	rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1572  
1573  	kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
1574  	kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1575  			KVM_PAGES_PER_HPAGE(sp->role.level));
1576  }
1577  
kvm_age_hva(struct kvm * kvm,unsigned long start,unsigned long end)1578  int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1579  {
1580  	int young = false;
1581  
1582  	young = kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
1583  	if (kvm->arch.tdp_mmu_enabled)
1584  		young |= kvm_tdp_mmu_age_hva_range(kvm, start, end);
1585  
1586  	return young;
1587  }
1588  
kvm_test_age_hva(struct kvm * kvm,unsigned long hva)1589  int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1590  {
1591  	int young = false;
1592  
1593  	young = kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1594  	if (kvm->arch.tdp_mmu_enabled)
1595  		young |= kvm_tdp_mmu_test_age_hva(kvm, hva);
1596  
1597  	return young;
1598  }
1599  
1600  #ifdef MMU_DEBUG
is_empty_shadow_page(u64 * spt)1601  static int is_empty_shadow_page(u64 *spt)
1602  {
1603  	u64 *pos;
1604  	u64 *end;
1605  
1606  	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1607  		if (is_shadow_present_pte(*pos)) {
1608  			printk(KERN_ERR "%s: %p %llx\n", __func__,
1609  			       pos, *pos);
1610  			return 0;
1611  		}
1612  	return 1;
1613  }
1614  #endif
1615  
1616  /*
1617   * This value is the sum of all of the kvm instances's
1618   * kvm->arch.n_used_mmu_pages values.  We need a global,
1619   * aggregate version in order to make the slab shrinker
1620   * faster
1621   */
kvm_mod_used_mmu_pages(struct kvm * kvm,unsigned long nr)1622  static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
1623  {
1624  	kvm->arch.n_used_mmu_pages += nr;
1625  	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1626  }
1627  
kvm_mmu_free_page(struct kvm_mmu_page * sp)1628  static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1629  {
1630  	MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
1631  	hlist_del(&sp->hash_link);
1632  	list_del(&sp->link);
1633  	free_page((unsigned long)sp->spt);
1634  	if (!sp->role.direct)
1635  		free_page((unsigned long)sp->gfns);
1636  	kmem_cache_free(mmu_page_header_cache, sp);
1637  }
1638  
kvm_page_table_hashfn(gfn_t gfn)1639  static unsigned kvm_page_table_hashfn(gfn_t gfn)
1640  {
1641  	return hash_64(gfn, KVM_MMU_HASH_SHIFT);
1642  }
1643  
mmu_page_add_parent_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * parent_pte)1644  static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1645  				    struct kvm_mmu_page *sp, u64 *parent_pte)
1646  {
1647  	if (!parent_pte)
1648  		return;
1649  
1650  	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1651  }
1652  
mmu_page_remove_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1653  static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1654  				       u64 *parent_pte)
1655  {
1656  	__pte_list_remove(parent_pte, &sp->parent_ptes);
1657  }
1658  
drop_parent_pte(struct kvm_mmu_page * sp,u64 * parent_pte)1659  static void drop_parent_pte(struct kvm_mmu_page *sp,
1660  			    u64 *parent_pte)
1661  {
1662  	mmu_page_remove_parent_pte(sp, parent_pte);
1663  	mmu_spte_clear_no_track(parent_pte);
1664  }
1665  
kvm_mmu_alloc_page(struct kvm_vcpu * vcpu,int direct)1666  static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
1667  {
1668  	struct kvm_mmu_page *sp;
1669  
1670  	sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1671  	sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
1672  	if (!direct)
1673  		sp->gfns = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_gfn_array_cache);
1674  	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1675  
1676  	/*
1677  	 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
1678  	 * depends on valid pages being added to the head of the list.  See
1679  	 * comments in kvm_zap_obsolete_pages().
1680  	 */
1681  	sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
1682  	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1683  	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1684  	return sp;
1685  }
1686  
1687  static void mark_unsync(u64 *spte);
kvm_mmu_mark_parents_unsync(struct kvm_mmu_page * sp)1688  static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1689  {
1690  	u64 *sptep;
1691  	struct rmap_iterator iter;
1692  
1693  	for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
1694  		mark_unsync(sptep);
1695  	}
1696  }
1697  
mark_unsync(u64 * spte)1698  static void mark_unsync(u64 *spte)
1699  {
1700  	struct kvm_mmu_page *sp;
1701  	unsigned int index;
1702  
1703  	sp = sptep_to_sp(spte);
1704  	index = spte - sp->spt;
1705  	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1706  		return;
1707  	if (sp->unsync_children++)
1708  		return;
1709  	kvm_mmu_mark_parents_unsync(sp);
1710  }
1711  
nonpaging_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)1712  static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1713  			       struct kvm_mmu_page *sp)
1714  {
1715  	return 0;
1716  }
1717  
nonpaging_update_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * pte)1718  static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1719  				 struct kvm_mmu_page *sp, u64 *spte,
1720  				 const void *pte)
1721  {
1722  	WARN_ON(1);
1723  }
1724  
1725  #define KVM_PAGE_ARRAY_NR 16
1726  
1727  struct kvm_mmu_pages {
1728  	struct mmu_page_and_offset {
1729  		struct kvm_mmu_page *sp;
1730  		unsigned int idx;
1731  	} page[KVM_PAGE_ARRAY_NR];
1732  	unsigned int nr;
1733  };
1734  
mmu_pages_add(struct kvm_mmu_pages * pvec,struct kvm_mmu_page * sp,int idx)1735  static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1736  			 int idx)
1737  {
1738  	int i;
1739  
1740  	if (sp->unsync)
1741  		for (i=0; i < pvec->nr; i++)
1742  			if (pvec->page[i].sp == sp)
1743  				return 0;
1744  
1745  	pvec->page[pvec->nr].sp = sp;
1746  	pvec->page[pvec->nr].idx = idx;
1747  	pvec->nr++;
1748  	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1749  }
1750  
clear_unsync_child_bit(struct kvm_mmu_page * sp,int idx)1751  static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
1752  {
1753  	--sp->unsync_children;
1754  	WARN_ON((int)sp->unsync_children < 0);
1755  	__clear_bit(idx, sp->unsync_child_bitmap);
1756  }
1757  
__mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1758  static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1759  			   struct kvm_mmu_pages *pvec)
1760  {
1761  	int i, ret, nr_unsync_leaf = 0;
1762  
1763  	for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
1764  		struct kvm_mmu_page *child;
1765  		u64 ent = sp->spt[i];
1766  
1767  		if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
1768  			clear_unsync_child_bit(sp, i);
1769  			continue;
1770  		}
1771  
1772  		child = to_shadow_page(ent & PT64_BASE_ADDR_MASK);
1773  
1774  		if (child->unsync_children) {
1775  			if (mmu_pages_add(pvec, child, i))
1776  				return -ENOSPC;
1777  
1778  			ret = __mmu_unsync_walk(child, pvec);
1779  			if (!ret) {
1780  				clear_unsync_child_bit(sp, i);
1781  				continue;
1782  			} else if (ret > 0) {
1783  				nr_unsync_leaf += ret;
1784  			} else
1785  				return ret;
1786  		} else if (child->unsync) {
1787  			nr_unsync_leaf++;
1788  			if (mmu_pages_add(pvec, child, i))
1789  				return -ENOSPC;
1790  		} else
1791  			clear_unsync_child_bit(sp, i);
1792  	}
1793  
1794  	return nr_unsync_leaf;
1795  }
1796  
1797  #define INVALID_INDEX (-1)
1798  
mmu_unsync_walk(struct kvm_mmu_page * sp,struct kvm_mmu_pages * pvec)1799  static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1800  			   struct kvm_mmu_pages *pvec)
1801  {
1802  	pvec->nr = 0;
1803  	if (!sp->unsync_children)
1804  		return 0;
1805  
1806  	mmu_pages_add(pvec, sp, INVALID_INDEX);
1807  	return __mmu_unsync_walk(sp, pvec);
1808  }
1809  
kvm_unlink_unsync_page(struct kvm * kvm,struct kvm_mmu_page * sp)1810  static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1811  {
1812  	WARN_ON(!sp->unsync);
1813  	trace_kvm_mmu_sync_page(sp);
1814  	sp->unsync = 0;
1815  	--kvm->stat.mmu_unsync;
1816  }
1817  
1818  static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1819  				     struct list_head *invalid_list);
1820  static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1821  				    struct list_head *invalid_list);
1822  
1823  #define for_each_valid_sp(_kvm, _sp, _list)				\
1824  	hlist_for_each_entry(_sp, _list, hash_link)			\
1825  		if (is_obsolete_sp((_kvm), (_sp))) {			\
1826  		} else
1827  
1828  #define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn)			\
1829  	for_each_valid_sp(_kvm, _sp,					\
1830  	  &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)])	\
1831  		if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
1832  
is_ept_sp(struct kvm_mmu_page * sp)1833  static inline bool is_ept_sp(struct kvm_mmu_page *sp)
1834  {
1835  	return sp->role.cr0_wp && sp->role.smap_andnot_wp;
1836  }
1837  
1838  /* @sp->gfn should be write-protected at the call site */
__kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1839  static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1840  			    struct list_head *invalid_list)
1841  {
1842  	if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
1843  	    vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
1844  		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1845  		return false;
1846  	}
1847  
1848  	return true;
1849  }
1850  
kvm_mmu_remote_flush_or_zap(struct kvm * kvm,struct list_head * invalid_list,bool remote_flush)1851  static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
1852  					struct list_head *invalid_list,
1853  					bool remote_flush)
1854  {
1855  	if (!remote_flush && list_empty(invalid_list))
1856  		return false;
1857  
1858  	if (!list_empty(invalid_list))
1859  		kvm_mmu_commit_zap_page(kvm, invalid_list);
1860  	else
1861  		kvm_flush_remote_tlbs(kvm);
1862  	return true;
1863  }
1864  
kvm_mmu_flush_or_zap(struct kvm_vcpu * vcpu,struct list_head * invalid_list,bool remote_flush,bool local_flush)1865  static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
1866  				 struct list_head *invalid_list,
1867  				 bool remote_flush, bool local_flush)
1868  {
1869  	if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
1870  		return;
1871  
1872  	if (local_flush)
1873  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1874  }
1875  
1876  #ifdef CONFIG_KVM_MMU_AUDIT
1877  #include "mmu_audit.c"
1878  #else
kvm_mmu_audit(struct kvm_vcpu * vcpu,int point)1879  static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
mmu_audit_disable(void)1880  static void mmu_audit_disable(void) { }
1881  #endif
1882  
is_obsolete_sp(struct kvm * kvm,struct kvm_mmu_page * sp)1883  static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1884  {
1885  	return sp->role.invalid ||
1886  	       unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1887  }
1888  
kvm_sync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,struct list_head * invalid_list)1889  static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1890  			 struct list_head *invalid_list)
1891  {
1892  	kvm_unlink_unsync_page(vcpu->kvm, sp);
1893  	return __kvm_sync_page(vcpu, sp, invalid_list);
1894  }
1895  
1896  /* @gfn should be write-protected at the call site */
kvm_sync_pages(struct kvm_vcpu * vcpu,gfn_t gfn,struct list_head * invalid_list)1897  static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
1898  			   struct list_head *invalid_list)
1899  {
1900  	struct kvm_mmu_page *s;
1901  	bool ret = false;
1902  
1903  	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
1904  		if (!s->unsync)
1905  			continue;
1906  
1907  		WARN_ON(s->role.level != PG_LEVEL_4K);
1908  		ret |= kvm_sync_page(vcpu, s, invalid_list);
1909  	}
1910  
1911  	return ret;
1912  }
1913  
1914  struct mmu_page_path {
1915  	struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
1916  	unsigned int idx[PT64_ROOT_MAX_LEVEL];
1917  };
1918  
1919  #define for_each_sp(pvec, sp, parents, i)			\
1920  		for (i = mmu_pages_first(&pvec, &parents);	\
1921  			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1922  			i = mmu_pages_next(&pvec, &parents, i))
1923  
mmu_pages_next(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents,int i)1924  static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1925  			  struct mmu_page_path *parents,
1926  			  int i)
1927  {
1928  	int n;
1929  
1930  	for (n = i+1; n < pvec->nr; n++) {
1931  		struct kvm_mmu_page *sp = pvec->page[n].sp;
1932  		unsigned idx = pvec->page[n].idx;
1933  		int level = sp->role.level;
1934  
1935  		parents->idx[level-1] = idx;
1936  		if (level == PG_LEVEL_4K)
1937  			break;
1938  
1939  		parents->parent[level-2] = sp;
1940  	}
1941  
1942  	return n;
1943  }
1944  
mmu_pages_first(struct kvm_mmu_pages * pvec,struct mmu_page_path * parents)1945  static int mmu_pages_first(struct kvm_mmu_pages *pvec,
1946  			   struct mmu_page_path *parents)
1947  {
1948  	struct kvm_mmu_page *sp;
1949  	int level;
1950  
1951  	if (pvec->nr == 0)
1952  		return 0;
1953  
1954  	WARN_ON(pvec->page[0].idx != INVALID_INDEX);
1955  
1956  	sp = pvec->page[0].sp;
1957  	level = sp->role.level;
1958  	WARN_ON(level == PG_LEVEL_4K);
1959  
1960  	parents->parent[level-2] = sp;
1961  
1962  	/* Also set up a sentinel.  Further entries in pvec are all
1963  	 * children of sp, so this element is never overwritten.
1964  	 */
1965  	parents->parent[level-1] = NULL;
1966  	return mmu_pages_next(pvec, parents, 0);
1967  }
1968  
mmu_pages_clear_parents(struct mmu_page_path * parents)1969  static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1970  {
1971  	struct kvm_mmu_page *sp;
1972  	unsigned int level = 0;
1973  
1974  	do {
1975  		unsigned int idx = parents->idx[level];
1976  		sp = parents->parent[level];
1977  		if (!sp)
1978  			return;
1979  
1980  		WARN_ON(idx == INVALID_INDEX);
1981  		clear_unsync_child_bit(sp, idx);
1982  		level++;
1983  	} while (!sp->unsync_children);
1984  }
1985  
mmu_sync_children(struct kvm_vcpu * vcpu,struct kvm_mmu_page * parent)1986  static void mmu_sync_children(struct kvm_vcpu *vcpu,
1987  			      struct kvm_mmu_page *parent)
1988  {
1989  	int i;
1990  	struct kvm_mmu_page *sp;
1991  	struct mmu_page_path parents;
1992  	struct kvm_mmu_pages pages;
1993  	LIST_HEAD(invalid_list);
1994  	bool flush = false;
1995  
1996  	while (mmu_unsync_walk(parent, &pages)) {
1997  		bool protected = false;
1998  
1999  		for_each_sp(pages, sp, parents, i)
2000  			protected |= rmap_write_protect(vcpu, sp->gfn);
2001  
2002  		if (protected) {
2003  			kvm_flush_remote_tlbs(vcpu->kvm);
2004  			flush = false;
2005  		}
2006  
2007  		for_each_sp(pages, sp, parents, i) {
2008  			flush |= kvm_sync_page(vcpu, sp, &invalid_list);
2009  			mmu_pages_clear_parents(&parents);
2010  		}
2011  		if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2012  			kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2013  			cond_resched_lock(&vcpu->kvm->mmu_lock);
2014  			flush = false;
2015  		}
2016  	}
2017  
2018  	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2019  }
2020  
__clear_sp_write_flooding_count(struct kvm_mmu_page * sp)2021  static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2022  {
2023  	atomic_set(&sp->write_flooding_count,  0);
2024  }
2025  
clear_sp_write_flooding_count(u64 * spte)2026  static void clear_sp_write_flooding_count(u64 *spte)
2027  {
2028  	__clear_sp_write_flooding_count(sptep_to_sp(spte));
2029  }
2030  
kvm_mmu_get_page(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gaddr,unsigned level,int direct,unsigned int access)2031  static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2032  					     gfn_t gfn,
2033  					     gva_t gaddr,
2034  					     unsigned level,
2035  					     int direct,
2036  					     unsigned int access)
2037  {
2038  	bool direct_mmu = vcpu->arch.mmu->direct_map;
2039  	union kvm_mmu_page_role role;
2040  	struct hlist_head *sp_list;
2041  	unsigned quadrant;
2042  	struct kvm_mmu_page *sp;
2043  	bool need_sync = false;
2044  	bool flush = false;
2045  	int collisions = 0;
2046  	LIST_HEAD(invalid_list);
2047  
2048  	role = vcpu->arch.mmu->mmu_role.base;
2049  	role.level = level;
2050  	role.direct = direct;
2051  	if (role.direct)
2052  		role.gpte_is_8_bytes = true;
2053  	role.access = access;
2054  	if (!direct_mmu && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
2055  		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2056  		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2057  		role.quadrant = quadrant;
2058  	}
2059  
2060  	sp_list = &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)];
2061  	for_each_valid_sp(vcpu->kvm, sp, sp_list) {
2062  		if (sp->gfn != gfn) {
2063  			collisions++;
2064  			continue;
2065  		}
2066  
2067  		if (!need_sync && sp->unsync)
2068  			need_sync = true;
2069  
2070  		if (sp->role.word != role.word)
2071  			continue;
2072  
2073  		if (direct_mmu)
2074  			goto trace_get_page;
2075  
2076  		if (sp->unsync) {
2077  			/* The page is good, but __kvm_sync_page might still end
2078  			 * up zapping it.  If so, break in order to rebuild it.
2079  			 */
2080  			if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2081  				break;
2082  
2083  			WARN_ON(!list_empty(&invalid_list));
2084  			kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2085  		}
2086  
2087  		if (sp->unsync_children)
2088  			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
2089  
2090  		__clear_sp_write_flooding_count(sp);
2091  
2092  trace_get_page:
2093  		trace_kvm_mmu_get_page(sp, false);
2094  		goto out;
2095  	}
2096  
2097  	++vcpu->kvm->stat.mmu_cache_miss;
2098  
2099  	sp = kvm_mmu_alloc_page(vcpu, direct);
2100  
2101  	sp->gfn = gfn;
2102  	sp->role = role;
2103  	hlist_add_head(&sp->hash_link, sp_list);
2104  	if (!direct) {
2105  		/*
2106  		 * we should do write protection before syncing pages
2107  		 * otherwise the content of the synced shadow page may
2108  		 * be inconsistent with guest page table.
2109  		 */
2110  		account_shadowed(vcpu->kvm, sp);
2111  		if (level == PG_LEVEL_4K && rmap_write_protect(vcpu, gfn))
2112  			kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
2113  
2114  		if (level > PG_LEVEL_4K && need_sync)
2115  			flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
2116  	}
2117  	trace_kvm_mmu_get_page(sp, true);
2118  
2119  	kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2120  out:
2121  	if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2122  		vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
2123  	return sp;
2124  }
2125  
shadow_walk_init_using_root(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,hpa_t root,u64 addr)2126  static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2127  					struct kvm_vcpu *vcpu, hpa_t root,
2128  					u64 addr)
2129  {
2130  	iterator->addr = addr;
2131  	iterator->shadow_addr = root;
2132  	iterator->level = vcpu->arch.mmu->shadow_root_level;
2133  
2134  	if (iterator->level == PT64_ROOT_4LEVEL &&
2135  	    vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2136  	    !vcpu->arch.mmu->direct_map)
2137  		--iterator->level;
2138  
2139  	if (iterator->level == PT32E_ROOT_LEVEL) {
2140  		/*
2141  		 * prev_root is currently only used for 64-bit hosts. So only
2142  		 * the active root_hpa is valid here.
2143  		 */
2144  		BUG_ON(root != vcpu->arch.mmu->root_hpa);
2145  
2146  		iterator->shadow_addr
2147  			= vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2148  		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2149  		--iterator->level;
2150  		if (!iterator->shadow_addr)
2151  			iterator->level = 0;
2152  	}
2153  }
2154  
shadow_walk_init(struct kvm_shadow_walk_iterator * iterator,struct kvm_vcpu * vcpu,u64 addr)2155  static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2156  			     struct kvm_vcpu *vcpu, u64 addr)
2157  {
2158  	shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
2159  				    addr);
2160  }
2161  
shadow_walk_okay(struct kvm_shadow_walk_iterator * iterator)2162  static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2163  {
2164  	if (iterator->level < PG_LEVEL_4K)
2165  		return false;
2166  
2167  	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2168  	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2169  	return true;
2170  }
2171  
__shadow_walk_next(struct kvm_shadow_walk_iterator * iterator,u64 spte)2172  static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2173  			       u64 spte)
2174  {
2175  	if (is_last_spte(spte, iterator->level)) {
2176  		iterator->level = 0;
2177  		return;
2178  	}
2179  
2180  	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2181  	--iterator->level;
2182  }
2183  
shadow_walk_next(struct kvm_shadow_walk_iterator * iterator)2184  static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2185  {
2186  	__shadow_walk_next(iterator, *iterator->sptep);
2187  }
2188  
link_shadow_page(struct kvm_vcpu * vcpu,u64 * sptep,struct kvm_mmu_page * sp)2189  static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2190  			     struct kvm_mmu_page *sp)
2191  {
2192  	u64 spte;
2193  
2194  	BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2195  
2196  	spte = make_nonleaf_spte(sp->spt, sp_ad_disabled(sp));
2197  
2198  	mmu_spte_set(sptep, spte);
2199  
2200  	mmu_page_add_parent_pte(vcpu, sp, sptep);
2201  
2202  	if (sp->unsync_children || sp->unsync)
2203  		mark_unsync(sptep);
2204  }
2205  
validate_direct_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned direct_access)2206  static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2207  				   unsigned direct_access)
2208  {
2209  	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2210  		struct kvm_mmu_page *child;
2211  
2212  		/*
2213  		 * For the direct sp, if the guest pte's dirty bit
2214  		 * changed form clean to dirty, it will corrupt the
2215  		 * sp's access: allow writable in the read-only sp,
2216  		 * so we should update the spte at this point to get
2217  		 * a new sp with the correct access.
2218  		 */
2219  		child = to_shadow_page(*sptep & PT64_BASE_ADDR_MASK);
2220  		if (child->role.access == direct_access)
2221  			return;
2222  
2223  		drop_parent_pte(child, sptep);
2224  		kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
2225  	}
2226  }
2227  
2228  /* Returns the number of zapped non-leaf child shadow pages. */
mmu_page_zap_pte(struct kvm * kvm,struct kvm_mmu_page * sp,u64 * spte,struct list_head * invalid_list)2229  static int mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
2230  			    u64 *spte, struct list_head *invalid_list)
2231  {
2232  	u64 pte;
2233  	struct kvm_mmu_page *child;
2234  
2235  	pte = *spte;
2236  	if (is_shadow_present_pte(pte)) {
2237  		if (is_last_spte(pte, sp->role.level)) {
2238  			drop_spte(kvm, spte);
2239  			if (is_large_pte(pte))
2240  				--kvm->stat.lpages;
2241  		} else {
2242  			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2243  			drop_parent_pte(child, spte);
2244  
2245  			/*
2246  			 * Recursively zap nested TDP SPs, parentless SPs are
2247  			 * unlikely to be used again in the near future.  This
2248  			 * avoids retaining a large number of stale nested SPs.
2249  			 */
2250  			if (tdp_enabled && invalid_list &&
2251  			    child->role.guest_mode && !child->parent_ptes.val)
2252  				return kvm_mmu_prepare_zap_page(kvm, child,
2253  								invalid_list);
2254  		}
2255  	} else if (is_mmio_spte(pte)) {
2256  		mmu_spte_clear_no_track(spte);
2257  	}
2258  	return 0;
2259  }
2260  
kvm_mmu_page_unlink_children(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2261  static int kvm_mmu_page_unlink_children(struct kvm *kvm,
2262  					struct kvm_mmu_page *sp,
2263  					struct list_head *invalid_list)
2264  {
2265  	int zapped = 0;
2266  	unsigned i;
2267  
2268  	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2269  		zapped += mmu_page_zap_pte(kvm, sp, sp->spt + i, invalid_list);
2270  
2271  	return zapped;
2272  }
2273  
kvm_mmu_unlink_parents(struct kvm * kvm,struct kvm_mmu_page * sp)2274  static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
2275  {
2276  	u64 *sptep;
2277  	struct rmap_iterator iter;
2278  
2279  	while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
2280  		drop_parent_pte(sp, sptep);
2281  }
2282  
mmu_zap_unsync_children(struct kvm * kvm,struct kvm_mmu_page * parent,struct list_head * invalid_list)2283  static int mmu_zap_unsync_children(struct kvm *kvm,
2284  				   struct kvm_mmu_page *parent,
2285  				   struct list_head *invalid_list)
2286  {
2287  	int i, zapped = 0;
2288  	struct mmu_page_path parents;
2289  	struct kvm_mmu_pages pages;
2290  
2291  	if (parent->role.level == PG_LEVEL_4K)
2292  		return 0;
2293  
2294  	while (mmu_unsync_walk(parent, &pages)) {
2295  		struct kvm_mmu_page *sp;
2296  
2297  		for_each_sp(pages, sp, parents, i) {
2298  			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2299  			mmu_pages_clear_parents(&parents);
2300  			zapped++;
2301  		}
2302  	}
2303  
2304  	return zapped;
2305  }
2306  
__kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list,int * nr_zapped)2307  static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2308  				       struct kvm_mmu_page *sp,
2309  				       struct list_head *invalid_list,
2310  				       int *nr_zapped)
2311  {
2312  	bool list_unstable;
2313  
2314  	trace_kvm_mmu_prepare_zap_page(sp);
2315  	++kvm->stat.mmu_shadow_zapped;
2316  	*nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
2317  	*nr_zapped += kvm_mmu_page_unlink_children(kvm, sp, invalid_list);
2318  	kvm_mmu_unlink_parents(kvm, sp);
2319  
2320  	/* Zapping children means active_mmu_pages has become unstable. */
2321  	list_unstable = *nr_zapped;
2322  
2323  	if (!sp->role.invalid && !sp->role.direct)
2324  		unaccount_shadowed(kvm, sp);
2325  
2326  	if (sp->unsync)
2327  		kvm_unlink_unsync_page(kvm, sp);
2328  	if (!sp->root_count) {
2329  		/* Count self */
2330  		(*nr_zapped)++;
2331  
2332  		/*
2333  		 * Already invalid pages (previously active roots) are not on
2334  		 * the active page list.  See list_del() in the "else" case of
2335  		 * !sp->root_count.
2336  		 */
2337  		if (sp->role.invalid)
2338  			list_add(&sp->link, invalid_list);
2339  		else
2340  			list_move(&sp->link, invalid_list);
2341  		kvm_mod_used_mmu_pages(kvm, -1);
2342  	} else {
2343  		/*
2344  		 * Remove the active root from the active page list, the root
2345  		 * will be explicitly freed when the root_count hits zero.
2346  		 */
2347  		list_del(&sp->link);
2348  
2349  		/*
2350  		 * Obsolete pages cannot be used on any vCPUs, see the comment
2351  		 * in kvm_mmu_zap_all_fast().  Note, is_obsolete_sp() also
2352  		 * treats invalid shadow pages as being obsolete.
2353  		 */
2354  		if (!is_obsolete_sp(kvm, sp))
2355  			kvm_reload_remote_mmus(kvm);
2356  	}
2357  
2358  	if (sp->lpage_disallowed)
2359  		unaccount_huge_nx_page(kvm, sp);
2360  
2361  	sp->role.invalid = 1;
2362  	return list_unstable;
2363  }
2364  
kvm_mmu_prepare_zap_page(struct kvm * kvm,struct kvm_mmu_page * sp,struct list_head * invalid_list)2365  static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2366  				     struct list_head *invalid_list)
2367  {
2368  	int nr_zapped;
2369  
2370  	__kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2371  	return nr_zapped;
2372  }
2373  
kvm_mmu_commit_zap_page(struct kvm * kvm,struct list_head * invalid_list)2374  static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2375  				    struct list_head *invalid_list)
2376  {
2377  	struct kvm_mmu_page *sp, *nsp;
2378  
2379  	if (list_empty(invalid_list))
2380  		return;
2381  
2382  	/*
2383  	 * We need to make sure everyone sees our modifications to
2384  	 * the page tables and see changes to vcpu->mode here. The barrier
2385  	 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2386  	 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2387  	 *
2388  	 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2389  	 * guest mode and/or lockless shadow page table walks.
2390  	 */
2391  	kvm_flush_remote_tlbs(kvm);
2392  
2393  	list_for_each_entry_safe(sp, nsp, invalid_list, link) {
2394  		WARN_ON(!sp->role.invalid || sp->root_count);
2395  		kvm_mmu_free_page(sp);
2396  	}
2397  }
2398  
kvm_mmu_zap_oldest_mmu_pages(struct kvm * kvm,unsigned long nr_to_zap)2399  static unsigned long kvm_mmu_zap_oldest_mmu_pages(struct kvm *kvm,
2400  						  unsigned long nr_to_zap)
2401  {
2402  	unsigned long total_zapped = 0;
2403  	struct kvm_mmu_page *sp, *tmp;
2404  	LIST_HEAD(invalid_list);
2405  	bool unstable;
2406  	int nr_zapped;
2407  
2408  	if (list_empty(&kvm->arch.active_mmu_pages))
2409  		return 0;
2410  
2411  restart:
2412  	list_for_each_entry_safe(sp, tmp, &kvm->arch.active_mmu_pages, link) {
2413  		/*
2414  		 * Don't zap active root pages, the page itself can't be freed
2415  		 * and zapping it will just force vCPUs to realloc and reload.
2416  		 */
2417  		if (sp->root_count)
2418  			continue;
2419  
2420  		unstable = __kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list,
2421  						      &nr_zapped);
2422  		total_zapped += nr_zapped;
2423  		if (total_zapped >= nr_to_zap)
2424  			break;
2425  
2426  		if (unstable)
2427  			goto restart;
2428  	}
2429  
2430  	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2431  
2432  	kvm->stat.mmu_recycled += total_zapped;
2433  	return total_zapped;
2434  }
2435  
kvm_mmu_available_pages(struct kvm * kvm)2436  static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
2437  {
2438  	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
2439  		return kvm->arch.n_max_mmu_pages -
2440  			kvm->arch.n_used_mmu_pages;
2441  
2442  	return 0;
2443  }
2444  
make_mmu_pages_available(struct kvm_vcpu * vcpu)2445  static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2446  {
2447  	unsigned long avail = kvm_mmu_available_pages(vcpu->kvm);
2448  
2449  	if (likely(avail >= KVM_MIN_FREE_MMU_PAGES))
2450  		return 0;
2451  
2452  	kvm_mmu_zap_oldest_mmu_pages(vcpu->kvm, KVM_REFILL_PAGES - avail);
2453  
2454  	if (!kvm_mmu_available_pages(vcpu->kvm))
2455  		return -ENOSPC;
2456  	return 0;
2457  }
2458  
2459  /*
2460   * Changing the number of mmu pages allocated to the vm
2461   * Note: if goal_nr_mmu_pages is too small, you will get dead lock
2462   */
kvm_mmu_change_mmu_pages(struct kvm * kvm,unsigned long goal_nr_mmu_pages)2463  void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
2464  {
2465  	spin_lock(&kvm->mmu_lock);
2466  
2467  	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2468  		kvm_mmu_zap_oldest_mmu_pages(kvm, kvm->arch.n_used_mmu_pages -
2469  						  goal_nr_mmu_pages);
2470  
2471  		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
2472  	}
2473  
2474  	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
2475  
2476  	spin_unlock(&kvm->mmu_lock);
2477  }
2478  
kvm_mmu_unprotect_page(struct kvm * kvm,gfn_t gfn)2479  int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
2480  {
2481  	struct kvm_mmu_page *sp;
2482  	LIST_HEAD(invalid_list);
2483  	int r;
2484  
2485  	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
2486  	r = 0;
2487  	spin_lock(&kvm->mmu_lock);
2488  	for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
2489  		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2490  			 sp->role.word);
2491  		r = 1;
2492  		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2493  	}
2494  	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2495  	spin_unlock(&kvm->mmu_lock);
2496  
2497  	return r;
2498  }
2499  EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
2500  
kvm_unsync_page(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp)2501  static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2502  {
2503  	trace_kvm_mmu_unsync_page(sp);
2504  	++vcpu->kvm->stat.mmu_unsync;
2505  	sp->unsync = 1;
2506  
2507  	kvm_mmu_mark_parents_unsync(sp);
2508  }
2509  
mmu_need_write_protect(struct kvm_vcpu * vcpu,gfn_t gfn,bool can_unsync)2510  bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2511  			    bool can_unsync)
2512  {
2513  	struct kvm_mmu_page *sp;
2514  
2515  	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2516  		return true;
2517  
2518  	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
2519  		if (!can_unsync)
2520  			return true;
2521  
2522  		if (sp->unsync)
2523  			continue;
2524  
2525  		WARN_ON(sp->role.level != PG_LEVEL_4K);
2526  		kvm_unsync_page(vcpu, sp);
2527  	}
2528  
2529  	/*
2530  	 * We need to ensure that the marking of unsync pages is visible
2531  	 * before the SPTE is updated to allow writes because
2532  	 * kvm_mmu_sync_roots() checks the unsync flags without holding
2533  	 * the MMU lock and so can race with this. If the SPTE was updated
2534  	 * before the page had been marked as unsync-ed, something like the
2535  	 * following could happen:
2536  	 *
2537  	 * CPU 1                    CPU 2
2538  	 * ---------------------------------------------------------------------
2539  	 * 1.2 Host updates SPTE
2540  	 *     to be writable
2541  	 *                      2.1 Guest writes a GPTE for GVA X.
2542  	 *                          (GPTE being in the guest page table shadowed
2543  	 *                           by the SP from CPU 1.)
2544  	 *                          This reads SPTE during the page table walk.
2545  	 *                          Since SPTE.W is read as 1, there is no
2546  	 *                          fault.
2547  	 *
2548  	 *                      2.2 Guest issues TLB flush.
2549  	 *                          That causes a VM Exit.
2550  	 *
2551  	 *                      2.3 kvm_mmu_sync_pages() reads sp->unsync.
2552  	 *                          Since it is false, so it just returns.
2553  	 *
2554  	 *                      2.4 Guest accesses GVA X.
2555  	 *                          Since the mapping in the SP was not updated,
2556  	 *                          so the old mapping for GVA X incorrectly
2557  	 *                          gets used.
2558  	 * 1.1 Host marks SP
2559  	 *     as unsync
2560  	 *     (sp->unsync = true)
2561  	 *
2562  	 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2563  	 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2564  	 * pairs with this write barrier.
2565  	 */
2566  	smp_wmb();
2567  
2568  	return false;
2569  }
2570  
set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool can_unsync,bool host_writable)2571  static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2572  		    unsigned int pte_access, int level,
2573  		    gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2574  		    bool can_unsync, bool host_writable)
2575  {
2576  	u64 spte;
2577  	struct kvm_mmu_page *sp;
2578  	int ret;
2579  
2580  	if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
2581  		return 0;
2582  
2583  	sp = sptep_to_sp(sptep);
2584  
2585  	ret = make_spte(vcpu, pte_access, level, gfn, pfn, *sptep, speculative,
2586  			can_unsync, host_writable, sp_ad_disabled(sp), &spte);
2587  
2588  	if (spte & PT_WRITABLE_MASK)
2589  		kvm_vcpu_mark_page_dirty(vcpu, gfn);
2590  
2591  	if (*sptep == spte)
2592  		ret |= SET_SPTE_SPURIOUS;
2593  	else if (mmu_spte_update(sptep, spte))
2594  		ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
2595  	return ret;
2596  }
2597  
mmu_set_spte(struct kvm_vcpu * vcpu,u64 * sptep,unsigned int pte_access,bool write_fault,int level,gfn_t gfn,kvm_pfn_t pfn,bool speculative,bool host_writable)2598  static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2599  			unsigned int pte_access, bool write_fault, int level,
2600  			gfn_t gfn, kvm_pfn_t pfn, bool speculative,
2601  			bool host_writable)
2602  {
2603  	int was_rmapped = 0;
2604  	int rmap_count;
2605  	int set_spte_ret;
2606  	int ret = RET_PF_FIXED;
2607  	bool flush = false;
2608  
2609  	pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2610  		 *sptep, write_fault, gfn);
2611  
2612  	if (is_shadow_present_pte(*sptep)) {
2613  		/*
2614  		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2615  		 * the parent of the now unreachable PTE.
2616  		 */
2617  		if (level > PG_LEVEL_4K && !is_large_pte(*sptep)) {
2618  			struct kvm_mmu_page *child;
2619  			u64 pte = *sptep;
2620  
2621  			child = to_shadow_page(pte & PT64_BASE_ADDR_MASK);
2622  			drop_parent_pte(child, sptep);
2623  			flush = true;
2624  		} else if (pfn != spte_to_pfn(*sptep)) {
2625  			pgprintk("hfn old %llx new %llx\n",
2626  				 spte_to_pfn(*sptep), pfn);
2627  			drop_spte(vcpu->kvm, sptep);
2628  			flush = true;
2629  		} else
2630  			was_rmapped = 1;
2631  	}
2632  
2633  	set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
2634  				speculative, true, host_writable);
2635  	if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
2636  		if (write_fault)
2637  			ret = RET_PF_EMULATE;
2638  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
2639  	}
2640  
2641  	if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
2642  		kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
2643  				KVM_PAGES_PER_HPAGE(level));
2644  
2645  	if (unlikely(is_mmio_spte(*sptep)))
2646  		ret = RET_PF_EMULATE;
2647  
2648  	/*
2649  	 * The fault is fully spurious if and only if the new SPTE and old SPTE
2650  	 * are identical, and emulation is not required.
2651  	 */
2652  	if ((set_spte_ret & SET_SPTE_SPURIOUS) && ret == RET_PF_FIXED) {
2653  		WARN_ON_ONCE(!was_rmapped);
2654  		return RET_PF_SPURIOUS;
2655  	}
2656  
2657  	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2658  	trace_kvm_mmu_set_spte(level, gfn, sptep);
2659  	if (!was_rmapped && is_large_pte(*sptep))
2660  		++vcpu->kvm->stat.lpages;
2661  
2662  	if (is_shadow_present_pte(*sptep)) {
2663  		if (!was_rmapped) {
2664  			rmap_count = rmap_add(vcpu, sptep, gfn);
2665  			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2666  				rmap_recycle(vcpu, sptep, gfn);
2667  		}
2668  	}
2669  
2670  	return ret;
2671  }
2672  
pte_prefetch_gfn_to_pfn(struct kvm_vcpu * vcpu,gfn_t gfn,bool no_dirty_log)2673  static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2674  				     bool no_dirty_log)
2675  {
2676  	struct kvm_memory_slot *slot;
2677  
2678  	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2679  	if (!slot)
2680  		return KVM_PFN_ERR_FAULT;
2681  
2682  	return gfn_to_pfn_memslot_atomic(slot, gfn);
2683  }
2684  
direct_pte_prefetch_many(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * start,u64 * end)2685  static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2686  				    struct kvm_mmu_page *sp,
2687  				    u64 *start, u64 *end)
2688  {
2689  	struct page *pages[PTE_PREFETCH_NUM];
2690  	struct kvm_memory_slot *slot;
2691  	unsigned int access = sp->role.access;
2692  	int i, ret;
2693  	gfn_t gfn;
2694  
2695  	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2696  	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
2697  	if (!slot)
2698  		return -1;
2699  
2700  	ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
2701  	if (ret <= 0)
2702  		return -1;
2703  
2704  	for (i = 0; i < ret; i++, gfn++, start++) {
2705  		mmu_set_spte(vcpu, start, access, false, sp->role.level, gfn,
2706  			     page_to_pfn(pages[i]), true, true);
2707  		put_page(pages[i]);
2708  	}
2709  
2710  	return 0;
2711  }
2712  
__direct_pte_prefetch(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep)2713  static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2714  				  struct kvm_mmu_page *sp, u64 *sptep)
2715  {
2716  	u64 *spte, *start = NULL;
2717  	int i;
2718  
2719  	WARN_ON(!sp->role.direct);
2720  
2721  	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2722  	spte = sp->spt + i;
2723  
2724  	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2725  		if (is_shadow_present_pte(*spte) || spte == sptep) {
2726  			if (!start)
2727  				continue;
2728  			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2729  				break;
2730  			start = NULL;
2731  		} else if (!start)
2732  			start = spte;
2733  	}
2734  }
2735  
direct_pte_prefetch(struct kvm_vcpu * vcpu,u64 * sptep)2736  static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2737  {
2738  	struct kvm_mmu_page *sp;
2739  
2740  	sp = sptep_to_sp(sptep);
2741  
2742  	/*
2743  	 * Without accessed bits, there's no way to distinguish between
2744  	 * actually accessed translations and prefetched, so disable pte
2745  	 * prefetch if accessed bits aren't available.
2746  	 */
2747  	if (sp_ad_disabled(sp))
2748  		return;
2749  
2750  	if (sp->role.level > PG_LEVEL_4K)
2751  		return;
2752  
2753  	__direct_pte_prefetch(vcpu, sp, sptep);
2754  }
2755  
host_pfn_mapping_level(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn,struct kvm_memory_slot * slot)2756  static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
2757  				  kvm_pfn_t pfn, struct kvm_memory_slot *slot)
2758  {
2759  	unsigned long hva;
2760  	pte_t *pte;
2761  	int level;
2762  
2763  	if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
2764  		return PG_LEVEL_4K;
2765  
2766  	/*
2767  	 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
2768  	 * is not solely for performance, it's also necessary to avoid the
2769  	 * "writable" check in __gfn_to_hva_many(), which will always fail on
2770  	 * read-only memslots due to gfn_to_hva() assuming writes.  Earlier
2771  	 * page fault steps have already verified the guest isn't writing a
2772  	 * read-only memslot.
2773  	 */
2774  	hva = __gfn_to_hva_memslot(slot, gfn);
2775  
2776  	pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
2777  	if (unlikely(!pte))
2778  		return PG_LEVEL_4K;
2779  
2780  	return level;
2781  }
2782  
kvm_mmu_hugepage_adjust(struct kvm_vcpu * vcpu,gfn_t gfn,int max_level,kvm_pfn_t * pfnp,bool huge_page_disallowed,int * req_level)2783  int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
2784  			    int max_level, kvm_pfn_t *pfnp,
2785  			    bool huge_page_disallowed, int *req_level)
2786  {
2787  	struct kvm_memory_slot *slot;
2788  	struct kvm_lpage_info *linfo;
2789  	kvm_pfn_t pfn = *pfnp;
2790  	kvm_pfn_t mask;
2791  	int level;
2792  
2793  	*req_level = PG_LEVEL_4K;
2794  
2795  	if (unlikely(max_level == PG_LEVEL_4K))
2796  		return PG_LEVEL_4K;
2797  
2798  	if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
2799  		return PG_LEVEL_4K;
2800  
2801  	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
2802  	if (!slot)
2803  		return PG_LEVEL_4K;
2804  
2805  	max_level = min(max_level, max_huge_page_level);
2806  	for ( ; max_level > PG_LEVEL_4K; max_level--) {
2807  		linfo = lpage_info_slot(gfn, slot, max_level);
2808  		if (!linfo->disallow_lpage)
2809  			break;
2810  	}
2811  
2812  	if (max_level == PG_LEVEL_4K)
2813  		return PG_LEVEL_4K;
2814  
2815  	level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
2816  	if (level == PG_LEVEL_4K)
2817  		return level;
2818  
2819  	*req_level = level = min(level, max_level);
2820  
2821  	/*
2822  	 * Enforce the iTLB multihit workaround after capturing the requested
2823  	 * level, which will be used to do precise, accurate accounting.
2824  	 */
2825  	if (huge_page_disallowed)
2826  		return PG_LEVEL_4K;
2827  
2828  	/*
2829  	 * mmu_notifier_retry() was successful and mmu_lock is held, so
2830  	 * the pmd can't be split from under us.
2831  	 */
2832  	mask = KVM_PAGES_PER_HPAGE(level) - 1;
2833  	VM_BUG_ON((gfn & mask) != (pfn & mask));
2834  	*pfnp = pfn & ~mask;
2835  
2836  	return level;
2837  }
2838  
disallowed_hugepage_adjust(u64 spte,gfn_t gfn,int cur_level,kvm_pfn_t * pfnp,int * goal_levelp)2839  void disallowed_hugepage_adjust(u64 spte, gfn_t gfn, int cur_level,
2840  				kvm_pfn_t *pfnp, int *goal_levelp)
2841  {
2842  	int level = *goal_levelp;
2843  
2844  	if (cur_level == level && level > PG_LEVEL_4K &&
2845  	    is_shadow_present_pte(spte) &&
2846  	    !is_large_pte(spte)) {
2847  		/*
2848  		 * A small SPTE exists for this pfn, but FNAME(fetch)
2849  		 * and __direct_map would like to create a large PTE
2850  		 * instead: just force them to go down another level,
2851  		 * patching back for them into pfn the next 9 bits of
2852  		 * the address.
2853  		 */
2854  		u64 page_mask = KVM_PAGES_PER_HPAGE(level) -
2855  				KVM_PAGES_PER_HPAGE(level - 1);
2856  		*pfnp |= gfn & page_mask;
2857  		(*goal_levelp)--;
2858  	}
2859  }
2860  
__direct_map(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,int map_writable,int max_level,kvm_pfn_t pfn,bool prefault,bool is_tdp)2861  static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
2862  			int map_writable, int max_level, kvm_pfn_t pfn,
2863  			bool prefault, bool is_tdp)
2864  {
2865  	bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
2866  	bool write = error_code & PFERR_WRITE_MASK;
2867  	bool exec = error_code & PFERR_FETCH_MASK;
2868  	bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
2869  	struct kvm_shadow_walk_iterator it;
2870  	struct kvm_mmu_page *sp;
2871  	int level, req_level, ret;
2872  	gfn_t gfn = gpa >> PAGE_SHIFT;
2873  	gfn_t base_gfn = gfn;
2874  
2875  	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
2876  		return RET_PF_RETRY;
2877  
2878  	level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
2879  					huge_page_disallowed, &req_level);
2880  
2881  	trace_kvm_mmu_spte_requested(gpa, level, pfn);
2882  	for_each_shadow_entry(vcpu, gpa, it) {
2883  		/*
2884  		 * We cannot overwrite existing page tables with an NX
2885  		 * large page, as the leaf could be executable.
2886  		 */
2887  		if (nx_huge_page_workaround_enabled)
2888  			disallowed_hugepage_adjust(*it.sptep, gfn, it.level,
2889  						   &pfn, &level);
2890  
2891  		base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
2892  		if (it.level == level)
2893  			break;
2894  
2895  		drop_large_spte(vcpu, it.sptep);
2896  		if (!is_shadow_present_pte(*it.sptep)) {
2897  			sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
2898  					      it.level - 1, true, ACC_ALL);
2899  
2900  			link_shadow_page(vcpu, it.sptep, sp);
2901  			if (is_tdp && huge_page_disallowed &&
2902  			    req_level >= it.level)
2903  				account_huge_nx_page(vcpu->kvm, sp);
2904  		}
2905  	}
2906  
2907  	ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
2908  			   write, level, base_gfn, pfn, prefault,
2909  			   map_writable);
2910  	if (ret == RET_PF_SPURIOUS)
2911  		return ret;
2912  
2913  	direct_pte_prefetch(vcpu, it.sptep);
2914  	++vcpu->stat.pf_fixed;
2915  	return ret;
2916  }
2917  
kvm_send_hwpoison_signal(unsigned long address,struct task_struct * tsk)2918  static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2919  {
2920  	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
2921  }
2922  
kvm_handle_bad_page(struct kvm_vcpu * vcpu,gfn_t gfn,kvm_pfn_t pfn)2923  static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
2924  {
2925  	/*
2926  	 * Do not cache the mmio info caused by writing the readonly gfn
2927  	 * into the spte otherwise read access on readonly gfn also can
2928  	 * caused mmio page fault and treat it as mmio access.
2929  	 */
2930  	if (pfn == KVM_PFN_ERR_RO_FAULT)
2931  		return RET_PF_EMULATE;
2932  
2933  	if (pfn == KVM_PFN_ERR_HWPOISON) {
2934  		kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
2935  		return RET_PF_RETRY;
2936  	}
2937  
2938  	return -EFAULT;
2939  }
2940  
handle_abnormal_pfn(struct kvm_vcpu * vcpu,gva_t gva,gfn_t gfn,kvm_pfn_t pfn,unsigned int access,int * ret_val)2941  static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2942  				kvm_pfn_t pfn, unsigned int access,
2943  				int *ret_val)
2944  {
2945  	/* The pfn is invalid, report the error! */
2946  	if (unlikely(is_error_pfn(pfn))) {
2947  		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2948  		return true;
2949  	}
2950  
2951  	if (unlikely(is_noslot_pfn(pfn)))
2952  		vcpu_cache_mmio_info(vcpu, gva, gfn,
2953  				     access & shadow_mmio_access_mask);
2954  
2955  	return false;
2956  }
2957  
page_fault_can_be_fast(u32 error_code)2958  static bool page_fault_can_be_fast(u32 error_code)
2959  {
2960  	/*
2961  	 * Do not fix the mmio spte with invalid generation number which
2962  	 * need to be updated by slow page fault path.
2963  	 */
2964  	if (unlikely(error_code & PFERR_RSVD_MASK))
2965  		return false;
2966  
2967  	/* See if the page fault is due to an NX violation */
2968  	if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
2969  		      == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
2970  		return false;
2971  
2972  	/*
2973  	 * #PF can be fast if:
2974  	 * 1. The shadow page table entry is not present, which could mean that
2975  	 *    the fault is potentially caused by access tracking (if enabled).
2976  	 * 2. The shadow page table entry is present and the fault
2977  	 *    is caused by write-protect, that means we just need change the W
2978  	 *    bit of the spte which can be done out of mmu-lock.
2979  	 *
2980  	 * However, if access tracking is disabled we know that a non-present
2981  	 * page must be a genuine page fault where we have to create a new SPTE.
2982  	 * So, if access tracking is disabled, we return true only for write
2983  	 * accesses to a present page.
2984  	 */
2985  
2986  	return shadow_acc_track_mask != 0 ||
2987  	       ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
2988  		== (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
2989  }
2990  
2991  /*
2992   * Returns true if the SPTE was fixed successfully. Otherwise,
2993   * someone else modified the SPTE from its original value.
2994   */
2995  static bool
fast_pf_fix_direct_spte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * sptep,u64 old_spte,u64 new_spte)2996  fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2997  			u64 *sptep, u64 old_spte, u64 new_spte)
2998  {
2999  	gfn_t gfn;
3000  
3001  	WARN_ON(!sp->role.direct);
3002  
3003  	/*
3004  	 * Theoretically we could also set dirty bit (and flush TLB) here in
3005  	 * order to eliminate unnecessary PML logging. See comments in
3006  	 * set_spte. But fast_page_fault is very unlikely to happen with PML
3007  	 * enabled, so we do not do this. This might result in the same GPA
3008  	 * to be logged in PML buffer again when the write really happens, and
3009  	 * eventually to be called by mark_page_dirty twice. But it's also no
3010  	 * harm. This also avoids the TLB flush needed after setting dirty bit
3011  	 * so non-PML cases won't be impacted.
3012  	 *
3013  	 * Compare with set_spte where instead shadow_dirty_mask is set.
3014  	 */
3015  	if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
3016  		return false;
3017  
3018  	if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
3019  		/*
3020  		 * The gfn of direct spte is stable since it is
3021  		 * calculated by sp->gfn.
3022  		 */
3023  		gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3024  		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3025  	}
3026  
3027  	return true;
3028  }
3029  
is_access_allowed(u32 fault_err_code,u64 spte)3030  static bool is_access_allowed(u32 fault_err_code, u64 spte)
3031  {
3032  	if (fault_err_code & PFERR_FETCH_MASK)
3033  		return is_executable_pte(spte);
3034  
3035  	if (fault_err_code & PFERR_WRITE_MASK)
3036  		return is_writable_pte(spte);
3037  
3038  	/* Fault was on Read access */
3039  	return spte & PT_PRESENT_MASK;
3040  }
3041  
3042  /*
3043   * Returns one of RET_PF_INVALID, RET_PF_FIXED or RET_PF_SPURIOUS.
3044   */
fast_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u32 error_code)3045  static int fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3046  			   u32 error_code)
3047  {
3048  	struct kvm_shadow_walk_iterator iterator;
3049  	struct kvm_mmu_page *sp;
3050  	int ret = RET_PF_INVALID;
3051  	u64 spte = 0ull;
3052  	uint retry_count = 0;
3053  
3054  	if (!page_fault_can_be_fast(error_code))
3055  		return ret;
3056  
3057  	walk_shadow_page_lockless_begin(vcpu);
3058  
3059  	do {
3060  		u64 new_spte;
3061  
3062  		for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
3063  			if (!is_shadow_present_pte(spte))
3064  				break;
3065  
3066  		sp = sptep_to_sp(iterator.sptep);
3067  		if (!is_last_spte(spte, sp->role.level))
3068  			break;
3069  
3070  		/*
3071  		 * Check whether the memory access that caused the fault would
3072  		 * still cause it if it were to be performed right now. If not,
3073  		 * then this is a spurious fault caused by TLB lazily flushed,
3074  		 * or some other CPU has already fixed the PTE after the
3075  		 * current CPU took the fault.
3076  		 *
3077  		 * Need not check the access of upper level table entries since
3078  		 * they are always ACC_ALL.
3079  		 */
3080  		if (is_access_allowed(error_code, spte)) {
3081  			ret = RET_PF_SPURIOUS;
3082  			break;
3083  		}
3084  
3085  		new_spte = spte;
3086  
3087  		if (is_access_track_spte(spte))
3088  			new_spte = restore_acc_track_spte(new_spte);
3089  
3090  		/*
3091  		 * Currently, to simplify the code, write-protection can
3092  		 * be removed in the fast path only if the SPTE was
3093  		 * write-protected for dirty-logging or access tracking.
3094  		 */
3095  		if ((error_code & PFERR_WRITE_MASK) &&
3096  		    spte_can_locklessly_be_made_writable(spte)) {
3097  			new_spte |= PT_WRITABLE_MASK;
3098  
3099  			/*
3100  			 * Do not fix write-permission on the large spte.  Since
3101  			 * we only dirty the first page into the dirty-bitmap in
3102  			 * fast_pf_fix_direct_spte(), other pages are missed
3103  			 * if its slot has dirty logging enabled.
3104  			 *
3105  			 * Instead, we let the slow page fault path create a
3106  			 * normal spte to fix the access.
3107  			 *
3108  			 * See the comments in kvm_arch_commit_memory_region().
3109  			 */
3110  			if (sp->role.level > PG_LEVEL_4K)
3111  				break;
3112  		}
3113  
3114  		/* Verify that the fault can be handled in the fast path */
3115  		if (new_spte == spte ||
3116  		    !is_access_allowed(error_code, new_spte))
3117  			break;
3118  
3119  		/*
3120  		 * Currently, fast page fault only works for direct mapping
3121  		 * since the gfn is not stable for indirect shadow page. See
3122  		 * Documentation/virt/kvm/locking.rst to get more detail.
3123  		 */
3124  		if (fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte,
3125  					    new_spte)) {
3126  			ret = RET_PF_FIXED;
3127  			break;
3128  		}
3129  
3130  		if (++retry_count > 4) {
3131  			printk_once(KERN_WARNING
3132  				"kvm: Fast #PF retrying more than 4 times.\n");
3133  			break;
3134  		}
3135  
3136  	} while (true);
3137  
3138  	trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
3139  			      spte, ret);
3140  	walk_shadow_page_lockless_end(vcpu);
3141  
3142  	return ret;
3143  }
3144  
mmu_free_root_page(struct kvm * kvm,hpa_t * root_hpa,struct list_head * invalid_list)3145  static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3146  			       struct list_head *invalid_list)
3147  {
3148  	struct kvm_mmu_page *sp;
3149  
3150  	if (!VALID_PAGE(*root_hpa))
3151  		return;
3152  
3153  	sp = to_shadow_page(*root_hpa & PT64_BASE_ADDR_MASK);
3154  
3155  	if (kvm_mmu_put_root(kvm, sp)) {
3156  		if (sp->tdp_mmu_page)
3157  			kvm_tdp_mmu_free_root(kvm, sp);
3158  		else if (sp->role.invalid)
3159  			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
3160  	}
3161  
3162  	*root_hpa = INVALID_PAGE;
3163  }
3164  
3165  /* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
kvm_mmu_free_roots(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,ulong roots_to_free)3166  void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3167  			ulong roots_to_free)
3168  {
3169  	struct kvm *kvm = vcpu->kvm;
3170  	int i;
3171  	LIST_HEAD(invalid_list);
3172  	bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
3173  
3174  	BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
3175  
3176  	/* Before acquiring the MMU lock, see if we need to do any real work. */
3177  	if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3178  		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3179  			if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3180  			    VALID_PAGE(mmu->prev_roots[i].hpa))
3181  				break;
3182  
3183  		if (i == KVM_MMU_NUM_PREV_ROOTS)
3184  			return;
3185  	}
3186  
3187  	spin_lock(&kvm->mmu_lock);
3188  
3189  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3190  		if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3191  			mmu_free_root_page(kvm, &mmu->prev_roots[i].hpa,
3192  					   &invalid_list);
3193  
3194  	if (free_active_root) {
3195  		if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3196  		    (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3197  			mmu_free_root_page(kvm, &mmu->root_hpa, &invalid_list);
3198  		} else {
3199  			for (i = 0; i < 4; ++i)
3200  				if (mmu->pae_root[i] != 0)
3201  					mmu_free_root_page(kvm,
3202  							   &mmu->pae_root[i],
3203  							   &invalid_list);
3204  			mmu->root_hpa = INVALID_PAGE;
3205  		}
3206  		mmu->root_pgd = 0;
3207  	}
3208  
3209  	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3210  	spin_unlock(&kvm->mmu_lock);
3211  }
3212  EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
3213  
mmu_check_root(struct kvm_vcpu * vcpu,gfn_t root_gfn)3214  static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3215  {
3216  	int ret = 0;
3217  
3218  	if (!kvm_vcpu_is_visible_gfn(vcpu, root_gfn)) {
3219  		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3220  		ret = 1;
3221  	}
3222  
3223  	return ret;
3224  }
3225  
mmu_alloc_root(struct kvm_vcpu * vcpu,gfn_t gfn,gva_t gva,u8 level,bool direct)3226  static hpa_t mmu_alloc_root(struct kvm_vcpu *vcpu, gfn_t gfn, gva_t gva,
3227  			    u8 level, bool direct)
3228  {
3229  	struct kvm_mmu_page *sp;
3230  
3231  	spin_lock(&vcpu->kvm->mmu_lock);
3232  
3233  	if (make_mmu_pages_available(vcpu)) {
3234  		spin_unlock(&vcpu->kvm->mmu_lock);
3235  		return INVALID_PAGE;
3236  	}
3237  	sp = kvm_mmu_get_page(vcpu, gfn, gva, level, direct, ACC_ALL);
3238  	++sp->root_count;
3239  
3240  	spin_unlock(&vcpu->kvm->mmu_lock);
3241  	return __pa(sp->spt);
3242  }
3243  
mmu_alloc_direct_roots(struct kvm_vcpu * vcpu)3244  static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3245  {
3246  	u8 shadow_root_level = vcpu->arch.mmu->shadow_root_level;
3247  	hpa_t root;
3248  	unsigned i;
3249  
3250  	if (vcpu->kvm->arch.tdp_mmu_enabled) {
3251  		root = kvm_tdp_mmu_get_vcpu_root_hpa(vcpu);
3252  
3253  		if (!VALID_PAGE(root))
3254  			return -ENOSPC;
3255  		vcpu->arch.mmu->root_hpa = root;
3256  	} else if (shadow_root_level >= PT64_ROOT_4LEVEL) {
3257  		root = mmu_alloc_root(vcpu, 0, 0, shadow_root_level,
3258  				      true);
3259  
3260  		if (!VALID_PAGE(root))
3261  			return -ENOSPC;
3262  		vcpu->arch.mmu->root_hpa = root;
3263  	} else if (shadow_root_level == PT32E_ROOT_LEVEL) {
3264  		for (i = 0; i < 4; ++i) {
3265  			MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3266  
3267  			root = mmu_alloc_root(vcpu, i << (30 - PAGE_SHIFT),
3268  					      i << 30, PT32_ROOT_LEVEL, true);
3269  			if (!VALID_PAGE(root))
3270  				return -ENOSPC;
3271  			vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
3272  		}
3273  		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3274  	} else
3275  		BUG();
3276  
3277  	/* root_pgd is ignored for direct MMUs. */
3278  	vcpu->arch.mmu->root_pgd = 0;
3279  
3280  	return 0;
3281  }
3282  
mmu_alloc_shadow_roots(struct kvm_vcpu * vcpu)3283  static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
3284  {
3285  	u64 pdptr, pm_mask;
3286  	gfn_t root_gfn, root_pgd;
3287  	hpa_t root;
3288  	int i;
3289  
3290  	root_pgd = vcpu->arch.mmu->get_guest_pgd(vcpu);
3291  	root_gfn = root_pgd >> PAGE_SHIFT;
3292  
3293  	if (mmu_check_root(vcpu, root_gfn))
3294  		return 1;
3295  
3296  	/*
3297  	 * Do we shadow a long mode page table? If so we need to
3298  	 * write-protect the guests page table root.
3299  	 */
3300  	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3301  		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->root_hpa));
3302  
3303  		root = mmu_alloc_root(vcpu, root_gfn, 0,
3304  				      vcpu->arch.mmu->shadow_root_level, false);
3305  		if (!VALID_PAGE(root))
3306  			return -ENOSPC;
3307  		vcpu->arch.mmu->root_hpa = root;
3308  		goto set_root_pgd;
3309  	}
3310  
3311  	/*
3312  	 * We shadow a 32 bit page table. This may be a legacy 2-level
3313  	 * or a PAE 3-level page table. In either case we need to be aware that
3314  	 * the shadow page table may be a PAE or a long mode page table.
3315  	 */
3316  	pm_mask = PT_PRESENT_MASK;
3317  	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
3318  		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3319  
3320  	for (i = 0; i < 4; ++i) {
3321  		MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu->pae_root[i]));
3322  		if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3323  			pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
3324  			if (!(pdptr & PT_PRESENT_MASK)) {
3325  				vcpu->arch.mmu->pae_root[i] = 0;
3326  				continue;
3327  			}
3328  			root_gfn = pdptr >> PAGE_SHIFT;
3329  			if (mmu_check_root(vcpu, root_gfn))
3330  				return 1;
3331  		}
3332  
3333  		root = mmu_alloc_root(vcpu, root_gfn, i << 30,
3334  				      PT32_ROOT_LEVEL, false);
3335  		if (!VALID_PAGE(root))
3336  			return -ENOSPC;
3337  		vcpu->arch.mmu->pae_root[i] = root | pm_mask;
3338  	}
3339  	vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
3340  
3341  	/*
3342  	 * If we shadow a 32 bit page table with a long mode page
3343  	 * table we enter this path.
3344  	 */
3345  	if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3346  		if (vcpu->arch.mmu->lm_root == NULL) {
3347  			/*
3348  			 * The additional page necessary for this is only
3349  			 * allocated on demand.
3350  			 */
3351  
3352  			u64 *lm_root;
3353  
3354  			lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
3355  			if (lm_root == NULL)
3356  				return 1;
3357  
3358  			lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
3359  
3360  			vcpu->arch.mmu->lm_root = lm_root;
3361  		}
3362  
3363  		vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
3364  	}
3365  
3366  set_root_pgd:
3367  	vcpu->arch.mmu->root_pgd = root_pgd;
3368  
3369  	return 0;
3370  }
3371  
mmu_alloc_roots(struct kvm_vcpu * vcpu)3372  static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3373  {
3374  	if (vcpu->arch.mmu->direct_map)
3375  		return mmu_alloc_direct_roots(vcpu);
3376  	else
3377  		return mmu_alloc_shadow_roots(vcpu);
3378  }
3379  
kvm_mmu_sync_roots(struct kvm_vcpu * vcpu)3380  void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3381  {
3382  	int i;
3383  	struct kvm_mmu_page *sp;
3384  
3385  	if (vcpu->arch.mmu->direct_map)
3386  		return;
3387  
3388  	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
3389  		return;
3390  
3391  	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3392  
3393  	if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3394  		hpa_t root = vcpu->arch.mmu->root_hpa;
3395  		sp = to_shadow_page(root);
3396  
3397  		/*
3398  		 * Even if another CPU was marking the SP as unsync-ed
3399  		 * simultaneously, any guest page table changes are not
3400  		 * guaranteed to be visible anyway until this VCPU issues a TLB
3401  		 * flush strictly after those changes are made. We only need to
3402  		 * ensure that the other CPU sets these flags before any actual
3403  		 * changes to the page tables are made. The comments in
3404  		 * mmu_need_write_protect() describe what could go wrong if this
3405  		 * requirement isn't satisfied.
3406  		 */
3407  		if (!smp_load_acquire(&sp->unsync) &&
3408  		    !smp_load_acquire(&sp->unsync_children))
3409  			return;
3410  
3411  		spin_lock(&vcpu->kvm->mmu_lock);
3412  		kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3413  
3414  		mmu_sync_children(vcpu, sp);
3415  
3416  		kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3417  		spin_unlock(&vcpu->kvm->mmu_lock);
3418  		return;
3419  	}
3420  
3421  	spin_lock(&vcpu->kvm->mmu_lock);
3422  	kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3423  
3424  	for (i = 0; i < 4; ++i) {
3425  		hpa_t root = vcpu->arch.mmu->pae_root[i];
3426  
3427  		if (root && VALID_PAGE(root)) {
3428  			root &= PT64_BASE_ADDR_MASK;
3429  			sp = to_shadow_page(root);
3430  			mmu_sync_children(vcpu, sp);
3431  		}
3432  	}
3433  
3434  	kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
3435  	spin_unlock(&vcpu->kvm->mmu_lock);
3436  }
3437  EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
3438  
nonpaging_gva_to_gpa(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3439  static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
3440  				  u32 access, struct x86_exception *exception)
3441  {
3442  	if (exception)
3443  		exception->error_code = 0;
3444  	return vaddr;
3445  }
3446  
nonpaging_gva_to_gpa_nested(struct kvm_vcpu * vcpu,gpa_t vaddr,u32 access,struct x86_exception * exception)3447  static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
3448  					 u32 access,
3449  					 struct x86_exception *exception)
3450  {
3451  	if (exception)
3452  		exception->error_code = 0;
3453  	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
3454  }
3455  
3456  static bool
__is_rsvd_bits_set(struct rsvd_bits_validate * rsvd_check,u64 pte,int level)3457  __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3458  {
3459  	int bit7 = (pte >> 7) & 1;
3460  
3461  	return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
3462  }
3463  
__is_bad_mt_xwr(struct rsvd_bits_validate * rsvd_check,u64 pte)3464  static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
3465  {
3466  	return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
3467  }
3468  
mmio_info_in_cache(struct kvm_vcpu * vcpu,u64 addr,bool direct)3469  static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3470  {
3471  	/*
3472  	 * A nested guest cannot use the MMIO cache if it is using nested
3473  	 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3474  	 */
3475  	if (mmu_is_nested(vcpu))
3476  		return false;
3477  
3478  	if (direct)
3479  		return vcpu_match_mmio_gpa(vcpu, addr);
3480  
3481  	return vcpu_match_mmio_gva(vcpu, addr);
3482  }
3483  
3484  /*
3485   * Return the level of the lowest level SPTE added to sptes.
3486   * That SPTE may be non-present.
3487   */
get_walk(struct kvm_vcpu * vcpu,u64 addr,u64 * sptes)3488  static int get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes)
3489  {
3490  	struct kvm_shadow_walk_iterator iterator;
3491  	int leaf = vcpu->arch.mmu->root_level;
3492  	u64 spte;
3493  
3494  
3495  	walk_shadow_page_lockless_begin(vcpu);
3496  
3497  	for (shadow_walk_init(&iterator, vcpu, addr);
3498  	     shadow_walk_okay(&iterator);
3499  	     __shadow_walk_next(&iterator, spte)) {
3500  		leaf = iterator.level;
3501  		spte = mmu_spte_get_lockless(iterator.sptep);
3502  
3503  		sptes[leaf - 1] = spte;
3504  
3505  		if (!is_shadow_present_pte(spte))
3506  			break;
3507  
3508  	}
3509  
3510  	walk_shadow_page_lockless_end(vcpu);
3511  
3512  	return leaf;
3513  }
3514  
3515  /* return true if reserved bit is detected on spte. */
get_mmio_spte(struct kvm_vcpu * vcpu,u64 addr,u64 * sptep)3516  static bool get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
3517  {
3518  	u64 sptes[PT64_ROOT_MAX_LEVEL];
3519  	struct rsvd_bits_validate *rsvd_check;
3520  	int root = vcpu->arch.mmu->shadow_root_level;
3521  	int leaf;
3522  	int level;
3523  	bool reserved = false;
3524  
3525  	if (!VALID_PAGE(vcpu->arch.mmu->root_hpa)) {
3526  		*sptep = 0ull;
3527  		return reserved;
3528  	}
3529  
3530  	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3531  		leaf = kvm_tdp_mmu_get_walk(vcpu, addr, sptes);
3532  	else
3533  		leaf = get_walk(vcpu, addr, sptes);
3534  
3535  	rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
3536  
3537  	for (level = root; level >= leaf; level--) {
3538  		if (!is_shadow_present_pte(sptes[level - 1]))
3539  			break;
3540  		/*
3541  		 * Use a bitwise-OR instead of a logical-OR to aggregate the
3542  		 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3543  		 * adding a Jcc in the loop.
3544  		 */
3545  		reserved |= __is_bad_mt_xwr(rsvd_check, sptes[level - 1]) |
3546  			    __is_rsvd_bits_set(rsvd_check, sptes[level - 1],
3547  					       level);
3548  	}
3549  
3550  	if (reserved) {
3551  		pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3552  		       __func__, addr);
3553  		for (level = root; level >= leaf; level--)
3554  			pr_err("------ spte 0x%llx level %d.\n",
3555  			       sptes[level - 1], level);
3556  	}
3557  
3558  	*sptep = sptes[leaf - 1];
3559  
3560  	return reserved;
3561  }
3562  
handle_mmio_page_fault(struct kvm_vcpu * vcpu,u64 addr,bool direct)3563  static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3564  {
3565  	u64 spte;
3566  	bool reserved;
3567  
3568  	if (mmio_info_in_cache(vcpu, addr, direct))
3569  		return RET_PF_EMULATE;
3570  
3571  	reserved = get_mmio_spte(vcpu, addr, &spte);
3572  	if (WARN_ON(reserved))
3573  		return -EINVAL;
3574  
3575  	if (is_mmio_spte(spte)) {
3576  		gfn_t gfn = get_mmio_spte_gfn(spte);
3577  		unsigned int access = get_mmio_spte_access(spte);
3578  
3579  		if (!check_mmio_spte(vcpu, spte))
3580  			return RET_PF_INVALID;
3581  
3582  		if (direct)
3583  			addr = 0;
3584  
3585  		trace_handle_mmio_page_fault(addr, gfn, access);
3586  		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3587  		return RET_PF_EMULATE;
3588  	}
3589  
3590  	/*
3591  	 * If the page table is zapped by other cpus, let CPU fault again on
3592  	 * the address.
3593  	 */
3594  	return RET_PF_RETRY;
3595  }
3596  
page_fault_handle_page_track(struct kvm_vcpu * vcpu,u32 error_code,gfn_t gfn)3597  static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3598  					 u32 error_code, gfn_t gfn)
3599  {
3600  	if (unlikely(error_code & PFERR_RSVD_MASK))
3601  		return false;
3602  
3603  	if (!(error_code & PFERR_PRESENT_MASK) ||
3604  	      !(error_code & PFERR_WRITE_MASK))
3605  		return false;
3606  
3607  	/*
3608  	 * guest is writing the page which is write tracked which can
3609  	 * not be fixed by page fault handler.
3610  	 */
3611  	if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3612  		return true;
3613  
3614  	return false;
3615  }
3616  
shadow_page_table_clear_flood(struct kvm_vcpu * vcpu,gva_t addr)3617  static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3618  {
3619  	struct kvm_shadow_walk_iterator iterator;
3620  	u64 spte;
3621  
3622  	walk_shadow_page_lockless_begin(vcpu);
3623  	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3624  		clear_sp_write_flooding_count(iterator.sptep);
3625  		if (!is_shadow_present_pte(spte))
3626  			break;
3627  	}
3628  	walk_shadow_page_lockless_end(vcpu);
3629  }
3630  
kvm_arch_setup_async_pf(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,gfn_t gfn)3631  static bool kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
3632  				    gfn_t gfn)
3633  {
3634  	struct kvm_arch_async_pf arch;
3635  
3636  	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3637  	arch.gfn = gfn;
3638  	arch.direct_map = vcpu->arch.mmu->direct_map;
3639  	arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
3640  
3641  	return kvm_setup_async_pf(vcpu, cr2_or_gpa,
3642  				  kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
3643  }
3644  
try_async_pf(struct kvm_vcpu * vcpu,bool prefault,gfn_t gfn,gpa_t cr2_or_gpa,kvm_pfn_t * pfn,bool write,bool * writable)3645  static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3646  			 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
3647  			 bool *writable)
3648  {
3649  	struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3650  	bool async;
3651  
3652  	/* Don't expose private memslots to L2. */
3653  	if (is_guest_mode(vcpu) && !kvm_is_visible_memslot(slot)) {
3654  		*pfn = KVM_PFN_NOSLOT;
3655  		*writable = false;
3656  		return false;
3657  	}
3658  
3659  	async = false;
3660  	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
3661  	if (!async)
3662  		return false; /* *pfn has correct page already */
3663  
3664  	if (!prefault && kvm_can_do_async_pf(vcpu)) {
3665  		trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
3666  		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3667  			trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
3668  			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3669  			return true;
3670  		} else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
3671  			return true;
3672  	}
3673  
3674  	*pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
3675  	return false;
3676  }
3677  
direct_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault,int max_level,bool is_tdp)3678  static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3679  			     bool prefault, int max_level, bool is_tdp)
3680  {
3681  	bool write = error_code & PFERR_WRITE_MASK;
3682  	bool map_writable;
3683  
3684  	gfn_t gfn = gpa >> PAGE_SHIFT;
3685  	unsigned long mmu_seq;
3686  	kvm_pfn_t pfn;
3687  	int r;
3688  
3689  	if (page_fault_handle_page_track(vcpu, error_code, gfn))
3690  		return RET_PF_EMULATE;
3691  
3692  	if (!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)) {
3693  		r = fast_page_fault(vcpu, gpa, error_code);
3694  		if (r != RET_PF_INVALID)
3695  			return r;
3696  	}
3697  
3698  	r = mmu_topup_memory_caches(vcpu, false);
3699  	if (r)
3700  		return r;
3701  
3702  	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3703  	smp_rmb();
3704  
3705  	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3706  		return RET_PF_RETRY;
3707  
3708  	if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
3709  		return r;
3710  
3711  	r = RET_PF_RETRY;
3712  	spin_lock(&vcpu->kvm->mmu_lock);
3713  	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
3714  		goto out_unlock;
3715  	r = make_mmu_pages_available(vcpu);
3716  	if (r)
3717  		goto out_unlock;
3718  
3719  	if (is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa))
3720  		r = kvm_tdp_mmu_map(vcpu, gpa, error_code, map_writable, max_level,
3721  				    pfn, prefault);
3722  	else
3723  		r = __direct_map(vcpu, gpa, error_code, map_writable, max_level, pfn,
3724  				 prefault, is_tdp);
3725  
3726  out_unlock:
3727  	spin_unlock(&vcpu->kvm->mmu_lock);
3728  	kvm_release_pfn_clean(pfn);
3729  	return r;
3730  }
3731  
nonpaging_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)3732  static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
3733  				u32 error_code, bool prefault)
3734  {
3735  	pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
3736  
3737  	/* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
3738  	return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
3739  				 PG_LEVEL_2M, false);
3740  }
3741  
kvm_handle_page_fault(struct kvm_vcpu * vcpu,u64 error_code,u64 fault_address,char * insn,int insn_len)3742  int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
3743  				u64 fault_address, char *insn, int insn_len)
3744  {
3745  	int r = 1;
3746  	u32 flags = vcpu->arch.apf.host_apf_flags;
3747  
3748  #ifndef CONFIG_X86_64
3749  	/* A 64-bit CR2 should be impossible on 32-bit KVM. */
3750  	if (WARN_ON_ONCE(fault_address >> 32))
3751  		return -EFAULT;
3752  #endif
3753  
3754  	vcpu->arch.l1tf_flush_l1d = true;
3755  	if (!flags) {
3756  		trace_kvm_page_fault(fault_address, error_code);
3757  
3758  		if (kvm_event_needs_reinjection(vcpu))
3759  			kvm_mmu_unprotect_page_virt(vcpu, fault_address);
3760  		r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
3761  				insn_len);
3762  	} else if (flags & KVM_PV_REASON_PAGE_NOT_PRESENT) {
3763  		vcpu->arch.apf.host_apf_flags = 0;
3764  		local_irq_disable();
3765  		kvm_async_pf_task_wait_schedule(fault_address);
3766  		local_irq_enable();
3767  	} else {
3768  		WARN_ONCE(1, "Unexpected host async PF flags: %x\n", flags);
3769  	}
3770  
3771  	return r;
3772  }
3773  EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
3774  
kvm_tdp_page_fault(struct kvm_vcpu * vcpu,gpa_t gpa,u32 error_code,bool prefault)3775  int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
3776  		       bool prefault)
3777  {
3778  	int max_level;
3779  
3780  	for (max_level = KVM_MAX_HUGEPAGE_LEVEL;
3781  	     max_level > PG_LEVEL_4K;
3782  	     max_level--) {
3783  		int page_num = KVM_PAGES_PER_HPAGE(max_level);
3784  		gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
3785  
3786  		if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
3787  			break;
3788  	}
3789  
3790  	return direct_page_fault(vcpu, gpa, error_code, prefault,
3791  				 max_level, true);
3792  }
3793  
nonpaging_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)3794  static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3795  				   struct kvm_mmu *context)
3796  {
3797  	context->page_fault = nonpaging_page_fault;
3798  	context->gva_to_gpa = nonpaging_gva_to_gpa;
3799  	context->sync_page = nonpaging_sync_page;
3800  	context->invlpg = NULL;
3801  	context->update_pte = nonpaging_update_pte;
3802  	context->root_level = 0;
3803  	context->shadow_root_level = PT32E_ROOT_LEVEL;
3804  	context->direct_map = true;
3805  	context->nx = false;
3806  }
3807  
is_root_usable(struct kvm_mmu_root_info * root,gpa_t pgd,union kvm_mmu_page_role role)3808  static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t pgd,
3809  				  union kvm_mmu_page_role role)
3810  {
3811  	return (role.direct || pgd == root->pgd) &&
3812  	       VALID_PAGE(root->hpa) && to_shadow_page(root->hpa) &&
3813  	       role.word == to_shadow_page(root->hpa)->role.word;
3814  }
3815  
3816  /*
3817   * Find out if a previously cached root matching the new pgd/role is available.
3818   * The current root is also inserted into the cache.
3819   * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
3820   * returned.
3821   * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
3822   * false is returned. This root should now be freed by the caller.
3823   */
cached_root_available(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)3824  static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3825  				  union kvm_mmu_page_role new_role)
3826  {
3827  	uint i;
3828  	struct kvm_mmu_root_info root;
3829  	struct kvm_mmu *mmu = vcpu->arch.mmu;
3830  
3831  	root.pgd = mmu->root_pgd;
3832  	root.hpa = mmu->root_hpa;
3833  
3834  	if (is_root_usable(&root, new_pgd, new_role))
3835  		return true;
3836  
3837  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
3838  		swap(root, mmu->prev_roots[i]);
3839  
3840  		if (is_root_usable(&root, new_pgd, new_role))
3841  			break;
3842  	}
3843  
3844  	mmu->root_hpa = root.hpa;
3845  	mmu->root_pgd = root.pgd;
3846  
3847  	return i < KVM_MMU_NUM_PREV_ROOTS;
3848  }
3849  
fast_pgd_switch(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role)3850  static bool fast_pgd_switch(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3851  			    union kvm_mmu_page_role new_role)
3852  {
3853  	struct kvm_mmu *mmu = vcpu->arch.mmu;
3854  
3855  	/*
3856  	 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
3857  	 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
3858  	 * later if necessary.
3859  	 */
3860  	if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3861  	    mmu->root_level >= PT64_ROOT_4LEVEL)
3862  		return cached_root_available(vcpu, new_pgd, new_role);
3863  
3864  	return false;
3865  }
3866  
__kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,union kvm_mmu_page_role new_role,bool skip_tlb_flush,bool skip_mmu_sync)3867  static void __kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd,
3868  			      union kvm_mmu_page_role new_role,
3869  			      bool skip_tlb_flush, bool skip_mmu_sync)
3870  {
3871  	if (!fast_pgd_switch(vcpu, new_pgd, new_role)) {
3872  		kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, KVM_MMU_ROOT_CURRENT);
3873  		return;
3874  	}
3875  
3876  	/*
3877  	 * It's possible that the cached previous root page is obsolete because
3878  	 * of a change in the MMU generation number. However, changing the
3879  	 * generation number is accompanied by KVM_REQ_MMU_RELOAD, which will
3880  	 * free the root set here and allocate a new one.
3881  	 */
3882  	kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
3883  
3884  	if (!skip_mmu_sync || force_flush_and_sync_on_reuse)
3885  		kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
3886  	if (!skip_tlb_flush || force_flush_and_sync_on_reuse)
3887  		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
3888  
3889  	/*
3890  	 * The last MMIO access's GVA and GPA are cached in the VCPU. When
3891  	 * switching to a new CR3, that GVA->GPA mapping may no longer be
3892  	 * valid. So clear any cached MMIO info even when we don't need to sync
3893  	 * the shadow page tables.
3894  	 */
3895  	vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
3896  
3897  	/*
3898  	 * If this is a direct root page, it doesn't have a write flooding
3899  	 * count. Otherwise, clear the write flooding count.
3900  	 */
3901  	if (!new_role.direct)
3902  		__clear_sp_write_flooding_count(
3903  				to_shadow_page(vcpu->arch.mmu->root_hpa));
3904  }
3905  
kvm_mmu_new_pgd(struct kvm_vcpu * vcpu,gpa_t new_pgd,bool skip_tlb_flush,bool skip_mmu_sync)3906  void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd, bool skip_tlb_flush,
3907  		     bool skip_mmu_sync)
3908  {
3909  	__kvm_mmu_new_pgd(vcpu, new_pgd, kvm_mmu_calc_root_page_role(vcpu),
3910  			  skip_tlb_flush, skip_mmu_sync);
3911  }
3912  EXPORT_SYMBOL_GPL(kvm_mmu_new_pgd);
3913  
get_cr3(struct kvm_vcpu * vcpu)3914  static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3915  {
3916  	return kvm_read_cr3(vcpu);
3917  }
3918  
sync_mmio_spte(struct kvm_vcpu * vcpu,u64 * sptep,gfn_t gfn,unsigned int access,int * nr_present)3919  static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
3920  			   unsigned int access, int *nr_present)
3921  {
3922  	if (unlikely(is_mmio_spte(*sptep))) {
3923  		if (gfn != get_mmio_spte_gfn(*sptep)) {
3924  			mmu_spte_clear_no_track(sptep);
3925  			return true;
3926  		}
3927  
3928  		(*nr_present)++;
3929  		mark_mmio_spte(vcpu, sptep, gfn, access);
3930  		return true;
3931  	}
3932  
3933  	return false;
3934  }
3935  
is_last_gpte(struct kvm_mmu * mmu,unsigned level,unsigned gpte)3936  static inline bool is_last_gpte(struct kvm_mmu *mmu,
3937  				unsigned level, unsigned gpte)
3938  {
3939  	/*
3940  	 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
3941  	 * If it is clear, there are no large pages at this level, so clear
3942  	 * PT_PAGE_SIZE_MASK in gpte if that is the case.
3943  	 */
3944  	gpte &= level - mmu->last_nonleaf_level;
3945  
3946  	/*
3947  	 * PG_LEVEL_4K always terminates.  The RHS has bit 7 set
3948  	 * iff level <= PG_LEVEL_4K, which for our purpose means
3949  	 * level == PG_LEVEL_4K; set PT_PAGE_SIZE_MASK in gpte then.
3950  	 */
3951  	gpte |= level - PG_LEVEL_4K - 1;
3952  
3953  	return gpte & PT_PAGE_SIZE_MASK;
3954  }
3955  
3956  #define PTTYPE_EPT 18 /* arbitrary */
3957  #define PTTYPE PTTYPE_EPT
3958  #include "paging_tmpl.h"
3959  #undef PTTYPE
3960  
3961  #define PTTYPE 64
3962  #include "paging_tmpl.h"
3963  #undef PTTYPE
3964  
3965  #define PTTYPE 32
3966  #include "paging_tmpl.h"
3967  #undef PTTYPE
3968  
3969  static void
__reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct rsvd_bits_validate * rsvd_check,int maxphyaddr,int level,bool nx,bool gbpages,bool pse,bool amd)3970  __reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3971  			struct rsvd_bits_validate *rsvd_check,
3972  			int maxphyaddr, int level, bool nx, bool gbpages,
3973  			bool pse, bool amd)
3974  {
3975  	u64 exb_bit_rsvd = 0;
3976  	u64 gbpages_bit_rsvd = 0;
3977  	u64 nonleaf_bit8_rsvd = 0;
3978  
3979  	rsvd_check->bad_mt_xwr = 0;
3980  
3981  	if (!nx)
3982  		exb_bit_rsvd = rsvd_bits(63, 63);
3983  	if (!gbpages)
3984  		gbpages_bit_rsvd = rsvd_bits(7, 7);
3985  
3986  	/*
3987  	 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3988  	 * leaf entries) on AMD CPUs only.
3989  	 */
3990  	if (amd)
3991  		nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3992  
3993  	switch (level) {
3994  	case PT32_ROOT_LEVEL:
3995  		/* no rsvd bits for 2 level 4K page table entries */
3996  		rsvd_check->rsvd_bits_mask[0][1] = 0;
3997  		rsvd_check->rsvd_bits_mask[0][0] = 0;
3998  		rsvd_check->rsvd_bits_mask[1][0] =
3999  			rsvd_check->rsvd_bits_mask[0][0];
4000  
4001  		if (!pse) {
4002  			rsvd_check->rsvd_bits_mask[1][1] = 0;
4003  			break;
4004  		}
4005  
4006  		if (is_cpuid_PSE36())
4007  			/* 36bits PSE 4MB page */
4008  			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
4009  		else
4010  			/* 32 bits PSE 4MB page */
4011  			rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
4012  		break;
4013  	case PT32E_ROOT_LEVEL:
4014  		rsvd_check->rsvd_bits_mask[0][2] =
4015  			rsvd_bits(maxphyaddr, 63) |
4016  			rsvd_bits(5, 8) | rsvd_bits(1, 2);	/* PDPTE */
4017  		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4018  			rsvd_bits(maxphyaddr, 62);	/* PDE */
4019  		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4020  			rsvd_bits(maxphyaddr, 62); 	/* PTE */
4021  		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4022  			rsvd_bits(maxphyaddr, 62) |
4023  			rsvd_bits(13, 20);		/* large page */
4024  		rsvd_check->rsvd_bits_mask[1][0] =
4025  			rsvd_check->rsvd_bits_mask[0][0];
4026  		break;
4027  	case PT64_ROOT_5LEVEL:
4028  		rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4029  			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4030  			rsvd_bits(maxphyaddr, 51);
4031  		rsvd_check->rsvd_bits_mask[1][4] =
4032  			rsvd_check->rsvd_bits_mask[0][4];
4033  		fallthrough;
4034  	case PT64_ROOT_4LEVEL:
4035  		rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4036  			nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4037  			rsvd_bits(maxphyaddr, 51);
4038  		rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4039  			gbpages_bit_rsvd |
4040  			rsvd_bits(maxphyaddr, 51);
4041  		rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4042  			rsvd_bits(maxphyaddr, 51);
4043  		rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4044  			rsvd_bits(maxphyaddr, 51);
4045  		rsvd_check->rsvd_bits_mask[1][3] =
4046  			rsvd_check->rsvd_bits_mask[0][3];
4047  		rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
4048  			gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
4049  			rsvd_bits(13, 29);
4050  		rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4051  			rsvd_bits(maxphyaddr, 51) |
4052  			rsvd_bits(13, 20);		/* large page */
4053  		rsvd_check->rsvd_bits_mask[1][0] =
4054  			rsvd_check->rsvd_bits_mask[0][0];
4055  		break;
4056  	}
4057  }
4058  
reset_rsvds_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4059  static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4060  				  struct kvm_mmu *context)
4061  {
4062  	__reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4063  				cpuid_maxphyaddr(vcpu), context->root_level,
4064  				context->nx,
4065  				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4066  				is_pse(vcpu),
4067  				guest_cpuid_is_amd_or_hygon(vcpu));
4068  }
4069  
4070  static void
__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate * rsvd_check,int maxphyaddr,bool execonly)4071  __reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4072  			    int maxphyaddr, bool execonly)
4073  {
4074  	u64 bad_mt_xwr;
4075  
4076  	rsvd_check->rsvd_bits_mask[0][4] =
4077  		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4078  	rsvd_check->rsvd_bits_mask[0][3] =
4079  		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
4080  	rsvd_check->rsvd_bits_mask[0][2] =
4081  		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4082  	rsvd_check->rsvd_bits_mask[0][1] =
4083  		rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
4084  	rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
4085  
4086  	/* large page */
4087  	rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
4088  	rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4089  	rsvd_check->rsvd_bits_mask[1][2] =
4090  		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
4091  	rsvd_check->rsvd_bits_mask[1][1] =
4092  		rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
4093  	rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
4094  
4095  	bad_mt_xwr = 0xFFull << (2 * 8);	/* bits 3..5 must not be 2 */
4096  	bad_mt_xwr |= 0xFFull << (3 * 8);	/* bits 3..5 must not be 3 */
4097  	bad_mt_xwr |= 0xFFull << (7 * 8);	/* bits 3..5 must not be 7 */
4098  	bad_mt_xwr |= REPEAT_BYTE(1ull << 2);	/* bits 0..2 must not be 010 */
4099  	bad_mt_xwr |= REPEAT_BYTE(1ull << 6);	/* bits 0..2 must not be 110 */
4100  	if (!execonly) {
4101  		/* bits 0..2 must not be 100 unless VMX capabilities allow it */
4102  		bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
4103  	}
4104  	rsvd_check->bad_mt_xwr = bad_mt_xwr;
4105  }
4106  
reset_rsvds_bits_mask_ept(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4107  static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4108  		struct kvm_mmu *context, bool execonly)
4109  {
4110  	__reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4111  				    cpuid_maxphyaddr(vcpu), execonly);
4112  }
4113  
4114  /*
4115   * the page table on host is the shadow page table for the page
4116   * table in guest or amd nested guest, its mmu features completely
4117   * follow the features in guest.
4118   */
4119  void
reset_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4120  reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4121  {
4122  	bool uses_nx = context->nx ||
4123  		context->mmu_role.base.smep_andnot_wp;
4124  	struct rsvd_bits_validate *shadow_zero_check;
4125  	int i;
4126  
4127  	/*
4128  	 * Passing "true" to the last argument is okay; it adds a check
4129  	 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4130  	 */
4131  	shadow_zero_check = &context->shadow_zero_check;
4132  	__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4133  				shadow_phys_bits,
4134  				context->shadow_root_level, uses_nx,
4135  				guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4136  				is_pse(vcpu), true);
4137  
4138  	if (!shadow_me_mask)
4139  		return;
4140  
4141  	for (i = context->shadow_root_level; --i >= 0;) {
4142  		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4143  		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4144  	}
4145  
4146  }
4147  EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4148  
boot_cpu_is_amd(void)4149  static inline bool boot_cpu_is_amd(void)
4150  {
4151  	WARN_ON_ONCE(!tdp_enabled);
4152  	return shadow_x_mask == 0;
4153  }
4154  
4155  /*
4156   * the direct page table on host, use as much mmu features as
4157   * possible, however, kvm currently does not do execution-protection.
4158   */
4159  static void
reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4160  reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4161  				struct kvm_mmu *context)
4162  {
4163  	struct rsvd_bits_validate *shadow_zero_check;
4164  	int i;
4165  
4166  	shadow_zero_check = &context->shadow_zero_check;
4167  
4168  	if (boot_cpu_is_amd())
4169  		__reset_rsvds_bits_mask(vcpu, shadow_zero_check,
4170  					shadow_phys_bits,
4171  					context->shadow_root_level, false,
4172  					boot_cpu_has(X86_FEATURE_GBPAGES),
4173  					true, true);
4174  	else
4175  		__reset_rsvds_bits_mask_ept(shadow_zero_check,
4176  					    shadow_phys_bits,
4177  					    false);
4178  
4179  	if (!shadow_me_mask)
4180  		return;
4181  
4182  	for (i = context->shadow_root_level; --i >= 0;) {
4183  		shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4184  		shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4185  	}
4186  }
4187  
4188  /*
4189   * as the comments in reset_shadow_zero_bits_mask() except it
4190   * is the shadow page table for intel nested guest.
4191   */
4192  static void
reset_ept_shadow_zero_bits_mask(struct kvm_vcpu * vcpu,struct kvm_mmu * context,bool execonly)4193  reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4194  				struct kvm_mmu *context, bool execonly)
4195  {
4196  	__reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4197  				    shadow_phys_bits, execonly);
4198  }
4199  
4200  #define BYTE_MASK(access) \
4201  	((1 & (access) ? 2 : 0) | \
4202  	 (2 & (access) ? 4 : 0) | \
4203  	 (3 & (access) ? 8 : 0) | \
4204  	 (4 & (access) ? 16 : 0) | \
4205  	 (5 & (access) ? 32 : 0) | \
4206  	 (6 & (access) ? 64 : 0) | \
4207  	 (7 & (access) ? 128 : 0))
4208  
4209  
update_permission_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4210  static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4211  				      struct kvm_mmu *mmu, bool ept)
4212  {
4213  	unsigned byte;
4214  
4215  	const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4216  	const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4217  	const u8 u = BYTE_MASK(ACC_USER_MASK);
4218  
4219  	bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4220  	bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4221  	bool cr0_wp = is_write_protection(vcpu);
4222  
4223  	for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
4224  		unsigned pfec = byte << 1;
4225  
4226  		/*
4227  		 * Each "*f" variable has a 1 bit for each UWX value
4228  		 * that causes a fault with the given PFEC.
4229  		 */
4230  
4231  		/* Faults from writes to non-writable pages */
4232  		u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
4233  		/* Faults from user mode accesses to supervisor pages */
4234  		u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
4235  		/* Faults from fetches of non-executable pages*/
4236  		u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
4237  		/* Faults from kernel mode fetches of user pages */
4238  		u8 smepf = 0;
4239  		/* Faults from kernel mode accesses of user pages */
4240  		u8 smapf = 0;
4241  
4242  		if (!ept) {
4243  			/* Faults from kernel mode accesses to user pages */
4244  			u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4245  
4246  			/* Not really needed: !nx will cause pte.nx to fault */
4247  			if (!mmu->nx)
4248  				ff = 0;
4249  
4250  			/* Allow supervisor writes if !cr0.wp */
4251  			if (!cr0_wp)
4252  				wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4253  
4254  			/* Disallow supervisor fetches of user code if cr4.smep */
4255  			if (cr4_smep)
4256  				smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4257  
4258  			/*
4259  			 * SMAP:kernel-mode data accesses from user-mode
4260  			 * mappings should fault. A fault is considered
4261  			 * as a SMAP violation if all of the following
4262  			 * conditions are true:
4263  			 *   - X86_CR4_SMAP is set in CR4
4264  			 *   - A user page is accessed
4265  			 *   - The access is not a fetch
4266  			 *   - Page fault in kernel mode
4267  			 *   - if CPL = 3 or X86_EFLAGS_AC is clear
4268  			 *
4269  			 * Here, we cover the first three conditions.
4270  			 * The fourth is computed dynamically in permission_fault();
4271  			 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4272  			 * *not* subject to SMAP restrictions.
4273  			 */
4274  			if (cr4_smap)
4275  				smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
4276  		}
4277  
4278  		mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
4279  	}
4280  }
4281  
4282  /*
4283  * PKU is an additional mechanism by which the paging controls access to
4284  * user-mode addresses based on the value in the PKRU register.  Protection
4285  * key violations are reported through a bit in the page fault error code.
4286  * Unlike other bits of the error code, the PK bit is not known at the
4287  * call site of e.g. gva_to_gpa; it must be computed directly in
4288  * permission_fault based on two bits of PKRU, on some machine state (CR4,
4289  * CR0, EFER, CPL), and on other bits of the error code and the page tables.
4290  *
4291  * In particular the following conditions come from the error code, the
4292  * page tables and the machine state:
4293  * - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4294  * - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4295  * - PK is always zero if U=0 in the page tables
4296  * - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4297  *
4298  * The PKRU bitmask caches the result of these four conditions.  The error
4299  * code (minus the P bit) and the page table's U bit form an index into the
4300  * PKRU bitmask.  Two bits of the PKRU bitmask are then extracted and ANDed
4301  * with the two bits of the PKRU register corresponding to the protection key.
4302  * For the first three conditions above the bits will be 00, thus masking
4303  * away both AD and WD.  For all reads or if the last condition holds, WD
4304  * only will be masked away.
4305  */
update_pkru_bitmask(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,bool ept)4306  static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4307  				bool ept)
4308  {
4309  	unsigned bit;
4310  	bool wp;
4311  
4312  	if (ept) {
4313  		mmu->pkru_mask = 0;
4314  		return;
4315  	}
4316  
4317  	/* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4318  	if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4319  		mmu->pkru_mask = 0;
4320  		return;
4321  	}
4322  
4323  	wp = is_write_protection(vcpu);
4324  
4325  	for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4326  		unsigned pfec, pkey_bits;
4327  		bool check_pkey, check_write, ff, uf, wf, pte_user;
4328  
4329  		pfec = bit << 1;
4330  		ff = pfec & PFERR_FETCH_MASK;
4331  		uf = pfec & PFERR_USER_MASK;
4332  		wf = pfec & PFERR_WRITE_MASK;
4333  
4334  		/* PFEC.RSVD is replaced by ACC_USER_MASK. */
4335  		pte_user = pfec & PFERR_RSVD_MASK;
4336  
4337  		/*
4338  		 * Only need to check the access which is not an
4339  		 * instruction fetch and is to a user page.
4340  		 */
4341  		check_pkey = (!ff && pte_user);
4342  		/*
4343  		 * write access is controlled by PKRU if it is a
4344  		 * user access or CR0.WP = 1.
4345  		 */
4346  		check_write = check_pkey && wf && (uf || wp);
4347  
4348  		/* PKRU.AD stops both read and write access. */
4349  		pkey_bits = !!check_pkey;
4350  		/* PKRU.WD stops write access. */
4351  		pkey_bits |= (!!check_write) << 1;
4352  
4353  		mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4354  	}
4355  }
4356  
update_last_nonleaf_level(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)4357  static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
4358  {
4359  	unsigned root_level = mmu->root_level;
4360  
4361  	mmu->last_nonleaf_level = root_level;
4362  	if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4363  		mmu->last_nonleaf_level++;
4364  }
4365  
paging64_init_context_common(struct kvm_vcpu * vcpu,struct kvm_mmu * context,int level)4366  static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4367  					 struct kvm_mmu *context,
4368  					 int level)
4369  {
4370  	context->nx = is_nx(vcpu);
4371  	context->root_level = level;
4372  
4373  	reset_rsvds_bits_mask(vcpu, context);
4374  	update_permission_bitmask(vcpu, context, false);
4375  	update_pkru_bitmask(vcpu, context, false);
4376  	update_last_nonleaf_level(vcpu, context);
4377  
4378  	MMU_WARN_ON(!is_pae(vcpu));
4379  	context->page_fault = paging64_page_fault;
4380  	context->gva_to_gpa = paging64_gva_to_gpa;
4381  	context->sync_page = paging64_sync_page;
4382  	context->invlpg = paging64_invlpg;
4383  	context->update_pte = paging64_update_pte;
4384  	context->shadow_root_level = level;
4385  	context->direct_map = false;
4386  }
4387  
paging64_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4388  static void paging64_init_context(struct kvm_vcpu *vcpu,
4389  				  struct kvm_mmu *context)
4390  {
4391  	int root_level = is_la57_mode(vcpu) ?
4392  			 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4393  
4394  	paging64_init_context_common(vcpu, context, root_level);
4395  }
4396  
paging32_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4397  static void paging32_init_context(struct kvm_vcpu *vcpu,
4398  				  struct kvm_mmu *context)
4399  {
4400  	context->nx = false;
4401  	context->root_level = PT32_ROOT_LEVEL;
4402  
4403  	reset_rsvds_bits_mask(vcpu, context);
4404  	update_permission_bitmask(vcpu, context, false);
4405  	update_pkru_bitmask(vcpu, context, false);
4406  	update_last_nonleaf_level(vcpu, context);
4407  
4408  	context->page_fault = paging32_page_fault;
4409  	context->gva_to_gpa = paging32_gva_to_gpa;
4410  	context->sync_page = paging32_sync_page;
4411  	context->invlpg = paging32_invlpg;
4412  	context->update_pte = paging32_update_pte;
4413  	context->shadow_root_level = PT32E_ROOT_LEVEL;
4414  	context->direct_map = false;
4415  }
4416  
paging32E_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context)4417  static void paging32E_init_context(struct kvm_vcpu *vcpu,
4418  				   struct kvm_mmu *context)
4419  {
4420  	paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
4421  }
4422  
kvm_calc_mmu_role_ext(struct kvm_vcpu * vcpu)4423  static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4424  {
4425  	union kvm_mmu_extended_role ext = {0};
4426  
4427  	ext.cr0_pg = !!is_paging(vcpu);
4428  	ext.cr4_pae = !!is_pae(vcpu);
4429  	ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4430  	ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4431  	ext.cr4_pse = !!is_pse(vcpu);
4432  	ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
4433  	ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
4434  
4435  	ext.valid = 1;
4436  
4437  	return ext;
4438  }
4439  
kvm_calc_mmu_role_common(struct kvm_vcpu * vcpu,bool base_only)4440  static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4441  						   bool base_only)
4442  {
4443  	union kvm_mmu_role role = {0};
4444  
4445  	role.base.access = ACC_ALL;
4446  	role.base.nxe = !!is_nx(vcpu);
4447  	role.base.cr0_wp = is_write_protection(vcpu);
4448  	role.base.smm = is_smm(vcpu);
4449  	role.base.guest_mode = is_guest_mode(vcpu);
4450  
4451  	if (base_only)
4452  		return role;
4453  
4454  	role.ext = kvm_calc_mmu_role_ext(vcpu);
4455  
4456  	return role;
4457  }
4458  
kvm_mmu_get_tdp_level(struct kvm_vcpu * vcpu)4459  static inline int kvm_mmu_get_tdp_level(struct kvm_vcpu *vcpu)
4460  {
4461  	/* Use 5-level TDP if and only if it's useful/necessary. */
4462  	if (max_tdp_level == 5 && cpuid_maxphyaddr(vcpu) <= 48)
4463  		return 4;
4464  
4465  	return max_tdp_level;
4466  }
4467  
4468  static union kvm_mmu_role
kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)4469  kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4470  {
4471  	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4472  
4473  	role.base.ad_disabled = (shadow_accessed_mask == 0);
4474  	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4475  	role.base.direct = true;
4476  	role.base.gpte_is_8_bytes = true;
4477  
4478  	return role;
4479  }
4480  
init_kvm_tdp_mmu(struct kvm_vcpu * vcpu)4481  static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
4482  {
4483  	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4484  	union kvm_mmu_role new_role =
4485  		kvm_calc_tdp_mmu_root_page_role(vcpu, false);
4486  
4487  	if (new_role.as_u64 == context->mmu_role.as_u64)
4488  		return;
4489  
4490  	context->mmu_role.as_u64 = new_role.as_u64;
4491  	context->page_fault = kvm_tdp_page_fault;
4492  	context->sync_page = nonpaging_sync_page;
4493  	context->invlpg = NULL;
4494  	context->update_pte = nonpaging_update_pte;
4495  	context->shadow_root_level = kvm_mmu_get_tdp_level(vcpu);
4496  	context->direct_map = true;
4497  	context->get_guest_pgd = get_cr3;
4498  	context->get_pdptr = kvm_pdptr_read;
4499  	context->inject_page_fault = kvm_inject_page_fault;
4500  
4501  	if (!is_paging(vcpu)) {
4502  		context->nx = false;
4503  		context->gva_to_gpa = nonpaging_gva_to_gpa;
4504  		context->root_level = 0;
4505  	} else if (is_long_mode(vcpu)) {
4506  		context->nx = is_nx(vcpu);
4507  		context->root_level = is_la57_mode(vcpu) ?
4508  				PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4509  		reset_rsvds_bits_mask(vcpu, context);
4510  		context->gva_to_gpa = paging64_gva_to_gpa;
4511  	} else if (is_pae(vcpu)) {
4512  		context->nx = is_nx(vcpu);
4513  		context->root_level = PT32E_ROOT_LEVEL;
4514  		reset_rsvds_bits_mask(vcpu, context);
4515  		context->gva_to_gpa = paging64_gva_to_gpa;
4516  	} else {
4517  		context->nx = false;
4518  		context->root_level = PT32_ROOT_LEVEL;
4519  		reset_rsvds_bits_mask(vcpu, context);
4520  		context->gva_to_gpa = paging32_gva_to_gpa;
4521  	}
4522  
4523  	update_permission_bitmask(vcpu, context, false);
4524  	update_pkru_bitmask(vcpu, context, false);
4525  	update_last_nonleaf_level(vcpu, context);
4526  	reset_tdp_shadow_zero_bits_mask(vcpu, context);
4527  }
4528  
4529  static union kvm_mmu_role
kvm_calc_shadow_root_page_role_common(struct kvm_vcpu * vcpu,bool base_only)4530  kvm_calc_shadow_root_page_role_common(struct kvm_vcpu *vcpu, bool base_only)
4531  {
4532  	union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4533  
4534  	role.base.smep_andnot_wp = role.ext.cr4_smep &&
4535  		!is_write_protection(vcpu);
4536  	role.base.smap_andnot_wp = role.ext.cr4_smap &&
4537  		!is_write_protection(vcpu);
4538  	role.base.gpte_is_8_bytes = !!is_pae(vcpu);
4539  
4540  	return role;
4541  }
4542  
4543  static union kvm_mmu_role
kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu * vcpu,bool base_only)4544  kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4545  {
4546  	union kvm_mmu_role role =
4547  		kvm_calc_shadow_root_page_role_common(vcpu, base_only);
4548  
4549  	role.base.direct = !is_paging(vcpu);
4550  
4551  	if (!is_long_mode(vcpu))
4552  		role.base.level = PT32E_ROOT_LEVEL;
4553  	else if (is_la57_mode(vcpu))
4554  		role.base.level = PT64_ROOT_5LEVEL;
4555  	else
4556  		role.base.level = PT64_ROOT_4LEVEL;
4557  
4558  	return role;
4559  }
4560  
shadow_mmu_init_context(struct kvm_vcpu * vcpu,struct kvm_mmu * context,u32 cr0,u32 cr4,u32 efer,union kvm_mmu_role new_role)4561  static void shadow_mmu_init_context(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
4562  				    u32 cr0, u32 cr4, u32 efer,
4563  				    union kvm_mmu_role new_role)
4564  {
4565  	if (!(cr0 & X86_CR0_PG))
4566  		nonpaging_init_context(vcpu, context);
4567  	else if (efer & EFER_LMA)
4568  		paging64_init_context(vcpu, context);
4569  	else if (cr4 & X86_CR4_PAE)
4570  		paging32E_init_context(vcpu, context);
4571  	else
4572  		paging32_init_context(vcpu, context);
4573  
4574  	context->mmu_role.as_u64 = new_role.as_u64;
4575  	reset_shadow_zero_bits_mask(vcpu, context);
4576  }
4577  
kvm_init_shadow_mmu(struct kvm_vcpu * vcpu,u32 cr0,u32 cr4,u32 efer)4578  static void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer)
4579  {
4580  	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4581  	union kvm_mmu_role new_role =
4582  		kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4583  
4584  	if (new_role.as_u64 != context->mmu_role.as_u64)
4585  		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4586  }
4587  
4588  static union kvm_mmu_role
kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu * vcpu)4589  kvm_calc_shadow_npt_root_page_role(struct kvm_vcpu *vcpu)
4590  {
4591  	union kvm_mmu_role role =
4592  		kvm_calc_shadow_root_page_role_common(vcpu, false);
4593  
4594  	role.base.direct = false;
4595  	role.base.level = kvm_mmu_get_tdp_level(vcpu);
4596  
4597  	return role;
4598  }
4599  
kvm_init_shadow_npt_mmu(struct kvm_vcpu * vcpu,u32 cr0,u32 cr4,u32 efer,gpa_t nested_cr3)4600  void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
4601  			     gpa_t nested_cr3)
4602  {
4603  	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4604  	union kvm_mmu_role new_role = kvm_calc_shadow_npt_root_page_role(vcpu);
4605  
4606  	context->shadow_root_level = new_role.base.level;
4607  
4608  	__kvm_mmu_new_pgd(vcpu, nested_cr3, new_role.base, false, false);
4609  
4610  	if (new_role.as_u64 != context->mmu_role.as_u64)
4611  		shadow_mmu_init_context(vcpu, context, cr0, cr4, efer, new_role);
4612  }
4613  EXPORT_SYMBOL_GPL(kvm_init_shadow_npt_mmu);
4614  
4615  static union kvm_mmu_role
kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu * vcpu,bool accessed_dirty,bool execonly,u8 level)4616  kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4617  				   bool execonly, u8 level)
4618  {
4619  	union kvm_mmu_role role = {0};
4620  
4621  	/* SMM flag is inherited from root_mmu */
4622  	role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
4623  
4624  	role.base.level = level;
4625  	role.base.gpte_is_8_bytes = true;
4626  	role.base.direct = false;
4627  	role.base.ad_disabled = !accessed_dirty;
4628  	role.base.guest_mode = true;
4629  	role.base.access = ACC_ALL;
4630  
4631  	/*
4632  	 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
4633  	 * SMAP variation to denote shadow EPT entries.
4634  	 */
4635  	role.base.cr0_wp = true;
4636  	role.base.smap_andnot_wp = true;
4637  
4638  	role.ext = kvm_calc_mmu_role_ext(vcpu);
4639  	role.ext.execonly = execonly;
4640  
4641  	return role;
4642  }
4643  
kvm_init_shadow_ept_mmu(struct kvm_vcpu * vcpu,bool execonly,bool accessed_dirty,gpa_t new_eptp)4644  void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
4645  			     bool accessed_dirty, gpa_t new_eptp)
4646  {
4647  	struct kvm_mmu *context = &vcpu->arch.guest_mmu;
4648  	u8 level = vmx_eptp_page_walk_level(new_eptp);
4649  	union kvm_mmu_role new_role =
4650  		kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4651  						   execonly, level);
4652  
4653  	__kvm_mmu_new_pgd(vcpu, new_eptp, new_role.base, true, true);
4654  
4655  	if (new_role.as_u64 == context->mmu_role.as_u64)
4656  		return;
4657  
4658  	context->shadow_root_level = level;
4659  
4660  	context->nx = true;
4661  	context->ept_ad = accessed_dirty;
4662  	context->page_fault = ept_page_fault;
4663  	context->gva_to_gpa = ept_gva_to_gpa;
4664  	context->sync_page = ept_sync_page;
4665  	context->invlpg = ept_invlpg;
4666  	context->update_pte = ept_update_pte;
4667  	context->root_level = level;
4668  	context->direct_map = false;
4669  	context->mmu_role.as_u64 = new_role.as_u64;
4670  
4671  	update_permission_bitmask(vcpu, context, true);
4672  	update_pkru_bitmask(vcpu, context, true);
4673  	update_last_nonleaf_level(vcpu, context);
4674  	reset_rsvds_bits_mask_ept(vcpu, context, execonly);
4675  	reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
4676  }
4677  EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4678  
init_kvm_softmmu(struct kvm_vcpu * vcpu)4679  static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
4680  {
4681  	struct kvm_mmu *context = &vcpu->arch.root_mmu;
4682  
4683  	kvm_init_shadow_mmu(vcpu,
4684  			    kvm_read_cr0_bits(vcpu, X86_CR0_PG),
4685  			    kvm_read_cr4_bits(vcpu, X86_CR4_PAE),
4686  			    vcpu->arch.efer);
4687  
4688  	context->get_guest_pgd     = get_cr3;
4689  	context->get_pdptr         = kvm_pdptr_read;
4690  	context->inject_page_fault = kvm_inject_page_fault;
4691  }
4692  
init_kvm_nested_mmu(struct kvm_vcpu * vcpu)4693  static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
4694  {
4695  	union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
4696  	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4697  
4698  	if (new_role.as_u64 == g_context->mmu_role.as_u64)
4699  		return;
4700  
4701  	g_context->mmu_role.as_u64 = new_role.as_u64;
4702  	g_context->get_guest_pgd     = get_cr3;
4703  	g_context->get_pdptr         = kvm_pdptr_read;
4704  	g_context->inject_page_fault = kvm_inject_page_fault;
4705  
4706  	/*
4707  	 * L2 page tables are never shadowed, so there is no need to sync
4708  	 * SPTEs.
4709  	 */
4710  	g_context->invlpg            = NULL;
4711  
4712  	/*
4713  	 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
4714  	 * L1's nested page tables (e.g. EPT12). The nested translation
4715  	 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4716  	 * L2's page tables as the first level of translation and L1's
4717  	 * nested page tables as the second level of translation. Basically
4718  	 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
4719  	 */
4720  	if (!is_paging(vcpu)) {
4721  		g_context->nx = false;
4722  		g_context->root_level = 0;
4723  		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4724  	} else if (is_long_mode(vcpu)) {
4725  		g_context->nx = is_nx(vcpu);
4726  		g_context->root_level = is_la57_mode(vcpu) ?
4727  					PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4728  		reset_rsvds_bits_mask(vcpu, g_context);
4729  		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4730  	} else if (is_pae(vcpu)) {
4731  		g_context->nx = is_nx(vcpu);
4732  		g_context->root_level = PT32E_ROOT_LEVEL;
4733  		reset_rsvds_bits_mask(vcpu, g_context);
4734  		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4735  	} else {
4736  		g_context->nx = false;
4737  		g_context->root_level = PT32_ROOT_LEVEL;
4738  		reset_rsvds_bits_mask(vcpu, g_context);
4739  		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4740  	}
4741  
4742  	update_permission_bitmask(vcpu, g_context, false);
4743  	update_pkru_bitmask(vcpu, g_context, false);
4744  	update_last_nonleaf_level(vcpu, g_context);
4745  }
4746  
kvm_init_mmu(struct kvm_vcpu * vcpu,bool reset_roots)4747  void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
4748  {
4749  	if (reset_roots) {
4750  		uint i;
4751  
4752  		vcpu->arch.mmu->root_hpa = INVALID_PAGE;
4753  
4754  		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
4755  			vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
4756  	}
4757  
4758  	if (mmu_is_nested(vcpu))
4759  		init_kvm_nested_mmu(vcpu);
4760  	else if (tdp_enabled)
4761  		init_kvm_tdp_mmu(vcpu);
4762  	else
4763  		init_kvm_softmmu(vcpu);
4764  }
4765  EXPORT_SYMBOL_GPL(kvm_init_mmu);
4766  
4767  static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu * vcpu)4768  kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
4769  {
4770  	union kvm_mmu_role role;
4771  
4772  	if (tdp_enabled)
4773  		role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
4774  	else
4775  		role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
4776  
4777  	return role.base;
4778  }
4779  
kvm_mmu_reset_context(struct kvm_vcpu * vcpu)4780  void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
4781  {
4782  	kvm_mmu_unload(vcpu);
4783  	kvm_init_mmu(vcpu, true);
4784  }
4785  EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
4786  
kvm_mmu_load(struct kvm_vcpu * vcpu)4787  int kvm_mmu_load(struct kvm_vcpu *vcpu)
4788  {
4789  	int r;
4790  
4791  	r = mmu_topup_memory_caches(vcpu, !vcpu->arch.mmu->direct_map);
4792  	if (r)
4793  		goto out;
4794  	r = mmu_alloc_roots(vcpu);
4795  	kvm_mmu_sync_roots(vcpu);
4796  	if (r)
4797  		goto out;
4798  	kvm_mmu_load_pgd(vcpu);
4799  	kvm_x86_ops.tlb_flush_current(vcpu);
4800  out:
4801  	return r;
4802  }
4803  EXPORT_SYMBOL_GPL(kvm_mmu_load);
4804  
kvm_mmu_unload(struct kvm_vcpu * vcpu)4805  void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4806  {
4807  	kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
4808  	WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
4809  	kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4810  	WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
4811  }
4812  EXPORT_SYMBOL_GPL(kvm_mmu_unload);
4813  
mmu_pte_write_new_pte(struct kvm_vcpu * vcpu,struct kvm_mmu_page * sp,u64 * spte,const void * new)4814  static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
4815  				  struct kvm_mmu_page *sp, u64 *spte,
4816  				  const void *new)
4817  {
4818  	if (sp->role.level != PG_LEVEL_4K) {
4819  		++vcpu->kvm->stat.mmu_pde_zapped;
4820  		return;
4821          }
4822  
4823  	++vcpu->kvm->stat.mmu_pte_updated;
4824  	vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
4825  }
4826  
need_remote_flush(u64 old,u64 new)4827  static bool need_remote_flush(u64 old, u64 new)
4828  {
4829  	if (!is_shadow_present_pte(old))
4830  		return false;
4831  	if (!is_shadow_present_pte(new))
4832  		return true;
4833  	if ((old ^ new) & PT64_BASE_ADDR_MASK)
4834  		return true;
4835  	old ^= shadow_nx_mask;
4836  	new ^= shadow_nx_mask;
4837  	return (old & ~new & PT64_PERM_MASK) != 0;
4838  }
4839  
mmu_pte_write_fetch_gpte(struct kvm_vcpu * vcpu,gpa_t * gpa,int * bytes)4840  static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4841  				    int *bytes)
4842  {
4843  	u64 gentry = 0;
4844  	int r;
4845  
4846  	/*
4847  	 * Assume that the pte write on a page table of the same type
4848  	 * as the current vcpu paging mode since we update the sptes only
4849  	 * when they have the same mode.
4850  	 */
4851  	if (is_pae(vcpu) && *bytes == 4) {
4852  		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
4853  		*gpa &= ~(gpa_t)7;
4854  		*bytes = 8;
4855  	}
4856  
4857  	if (*bytes == 4 || *bytes == 8) {
4858  		r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
4859  		if (r)
4860  			gentry = 0;
4861  	}
4862  
4863  	return gentry;
4864  }
4865  
4866  /*
4867   * If we're seeing too many writes to a page, it may no longer be a page table,
4868   * or we may be forking, in which case it is better to unmap the page.
4869   */
detect_write_flooding(struct kvm_mmu_page * sp)4870  static bool detect_write_flooding(struct kvm_mmu_page *sp)
4871  {
4872  	/*
4873  	 * Skip write-flooding detected for the sp whose level is 1, because
4874  	 * it can become unsync, then the guest page is not write-protected.
4875  	 */
4876  	if (sp->role.level == PG_LEVEL_4K)
4877  		return false;
4878  
4879  	atomic_inc(&sp->write_flooding_count);
4880  	return atomic_read(&sp->write_flooding_count) >= 3;
4881  }
4882  
4883  /*
4884   * Misaligned accesses are too much trouble to fix up; also, they usually
4885   * indicate a page is not used as a page table.
4886   */
detect_write_misaligned(struct kvm_mmu_page * sp,gpa_t gpa,int bytes)4887  static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4888  				    int bytes)
4889  {
4890  	unsigned offset, pte_size, misaligned;
4891  
4892  	pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4893  		 gpa, bytes, sp->role.word);
4894  
4895  	offset = offset_in_page(gpa);
4896  	pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
4897  
4898  	/*
4899  	 * Sometimes, the OS only writes the last one bytes to update status
4900  	 * bits, for example, in linux, andb instruction is used in clear_bit().
4901  	 */
4902  	if (!(offset & (pte_size - 1)) && bytes == 1)
4903  		return false;
4904  
4905  	misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4906  	misaligned |= bytes < 4;
4907  
4908  	return misaligned;
4909  }
4910  
get_written_sptes(struct kvm_mmu_page * sp,gpa_t gpa,int * nspte)4911  static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4912  {
4913  	unsigned page_offset, quadrant;
4914  	u64 *spte;
4915  	int level;
4916  
4917  	page_offset = offset_in_page(gpa);
4918  	level = sp->role.level;
4919  	*nspte = 1;
4920  	if (!sp->role.gpte_is_8_bytes) {
4921  		page_offset <<= 1;	/* 32->64 */
4922  		/*
4923  		 * A 32-bit pde maps 4MB while the shadow pdes map
4924  		 * only 2MB.  So we need to double the offset again
4925  		 * and zap two pdes instead of one.
4926  		 */
4927  		if (level == PT32_ROOT_LEVEL) {
4928  			page_offset &= ~7; /* kill rounding error */
4929  			page_offset <<= 1;
4930  			*nspte = 2;
4931  		}
4932  		quadrant = page_offset >> PAGE_SHIFT;
4933  		page_offset &= ~PAGE_MASK;
4934  		if (quadrant != sp->role.quadrant)
4935  			return NULL;
4936  	}
4937  
4938  	spte = &sp->spt[page_offset / sizeof(*spte)];
4939  	return spte;
4940  }
4941  
4942  /*
4943   * Ignore various flags when determining if a SPTE can be immediately
4944   * overwritten for the current MMU.
4945   *  - level: explicitly checked in mmu_pte_write_new_pte(), and will never
4946   *    match the current MMU role, as MMU's level tracks the root level.
4947   *  - access: updated based on the new guest PTE
4948   *  - quadrant: handled by get_written_sptes()
4949   *  - invalid: always false (loop only walks valid shadow pages)
4950   */
4951  static const union kvm_mmu_page_role role_ign = {
4952  	.level = 0xf,
4953  	.access = 0x7,
4954  	.quadrant = 0x3,
4955  	.invalid = 0x1,
4956  };
4957  
kvm_mmu_pte_write(struct kvm_vcpu * vcpu,gpa_t gpa,const u8 * new,int bytes,struct kvm_page_track_notifier_node * node)4958  static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4959  			      const u8 *new, int bytes,
4960  			      struct kvm_page_track_notifier_node *node)
4961  {
4962  	gfn_t gfn = gpa >> PAGE_SHIFT;
4963  	struct kvm_mmu_page *sp;
4964  	LIST_HEAD(invalid_list);
4965  	u64 entry, gentry, *spte;
4966  	int npte;
4967  	bool remote_flush, local_flush;
4968  
4969  	/*
4970  	 * If we don't have indirect shadow pages, it means no page is
4971  	 * write-protected, so we can exit simply.
4972  	 */
4973  	if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4974  		return;
4975  
4976  	remote_flush = local_flush = false;
4977  
4978  	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4979  
4980  	/*
4981  	 * No need to care whether allocation memory is successful
4982  	 * or not since pte prefetch is skiped if it does not have
4983  	 * enough objects in the cache.
4984  	 */
4985  	mmu_topup_memory_caches(vcpu, true);
4986  
4987  	spin_lock(&vcpu->kvm->mmu_lock);
4988  
4989  	gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
4990  
4991  	++vcpu->kvm->stat.mmu_pte_write;
4992  	kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
4993  
4994  	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
4995  		if (detect_write_misaligned(sp, gpa, bytes) ||
4996  		      detect_write_flooding(sp)) {
4997  			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4998  			++vcpu->kvm->stat.mmu_flooded;
4999  			continue;
5000  		}
5001  
5002  		spte = get_written_sptes(sp, gpa, &npte);
5003  		if (!spte)
5004  			continue;
5005  
5006  		local_flush = true;
5007  		while (npte--) {
5008  			u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5009  
5010  			entry = *spte;
5011  			mmu_page_zap_pte(vcpu->kvm, sp, spte, NULL);
5012  			if (gentry &&
5013  			    !((sp->role.word ^ base_role) & ~role_ign.word) &&
5014  			    rmap_can_add(vcpu))
5015  				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
5016  			if (need_remote_flush(entry, *spte))
5017  				remote_flush = true;
5018  			++spte;
5019  		}
5020  	}
5021  	kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
5022  	kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
5023  	spin_unlock(&vcpu->kvm->mmu_lock);
5024  }
5025  
kvm_mmu_unprotect_page_virt(struct kvm_vcpu * vcpu,gva_t gva)5026  int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5027  {
5028  	gpa_t gpa;
5029  	int r;
5030  
5031  	if (vcpu->arch.mmu->direct_map)
5032  		return 0;
5033  
5034  	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
5035  
5036  	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
5037  
5038  	return r;
5039  }
5040  EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
5041  
kvm_mmu_page_fault(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,u64 error_code,void * insn,int insn_len)5042  int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
5043  		       void *insn, int insn_len)
5044  {
5045  	int r, emulation_type = EMULTYPE_PF;
5046  	bool direct = vcpu->arch.mmu->direct_map;
5047  
5048  	if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
5049  		return RET_PF_RETRY;
5050  
5051  	r = RET_PF_INVALID;
5052  	if (unlikely(error_code & PFERR_RSVD_MASK)) {
5053  		r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
5054  		if (r == RET_PF_EMULATE)
5055  			goto emulate;
5056  	}
5057  
5058  	if (r == RET_PF_INVALID) {
5059  		r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5060  					  lower_32_bits(error_code), false);
5061  		if (WARN_ON_ONCE(r == RET_PF_INVALID))
5062  			return -EIO;
5063  	}
5064  
5065  	if (r < 0)
5066  		return r;
5067  	if (r != RET_PF_EMULATE)
5068  		return 1;
5069  
5070  	/*
5071  	 * Before emulating the instruction, check if the error code
5072  	 * was due to a RO violation while translating the guest page.
5073  	 * This can occur when using nested virtualization with nested
5074  	 * paging in both guests. If true, we simply unprotect the page
5075  	 * and resume the guest.
5076  	 */
5077  	if (vcpu->arch.mmu->direct_map &&
5078  	    (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
5079  		kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
5080  		return 1;
5081  	}
5082  
5083  	/*
5084  	 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5085  	 * optimistically try to just unprotect the page and let the processor
5086  	 * re-execute the instruction that caused the page fault.  Do not allow
5087  	 * retrying MMIO emulation, as it's not only pointless but could also
5088  	 * cause us to enter an infinite loop because the processor will keep
5089  	 * faulting on the non-existent MMIO address.  Retrying an instruction
5090  	 * from a nested guest is also pointless and dangerous as we are only
5091  	 * explicitly shadowing L1's page tables, i.e. unprotecting something
5092  	 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
5093  	 */
5094  	if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
5095  		emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
5096  emulate:
5097  	return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
5098  				       insn_len);
5099  }
5100  EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5101  
kvm_mmu_invalidate_gva(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu,gva_t gva,hpa_t root_hpa)5102  void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5103  			    gva_t gva, hpa_t root_hpa)
5104  {
5105  	int i;
5106  
5107  	/* It's actually a GPA for vcpu->arch.guest_mmu.  */
5108  	if (mmu != &vcpu->arch.guest_mmu) {
5109  		/* INVLPG on a non-canonical address is a NOP according to the SDM.  */
5110  		if (is_noncanonical_address(gva, vcpu))
5111  			return;
5112  
5113  		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5114  	}
5115  
5116  	if (!mmu->invlpg)
5117  		return;
5118  
5119  	if (root_hpa == INVALID_PAGE) {
5120  		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5121  
5122  		/*
5123  		 * INVLPG is required to invalidate any global mappings for the VA,
5124  		 * irrespective of PCID. Since it would take us roughly similar amount
5125  		 * of work to determine whether any of the prev_root mappings of the VA
5126  		 * is marked global, or to just sync it blindly, so we might as well
5127  		 * just always sync it.
5128  		 *
5129  		 * Mappings not reachable via the current cr3 or the prev_roots will be
5130  		 * synced when switching to that cr3, so nothing needs to be done here
5131  		 * for them.
5132  		 */
5133  		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5134  			if (VALID_PAGE(mmu->prev_roots[i].hpa))
5135  				mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5136  	} else {
5137  		mmu->invlpg(vcpu, gva, root_hpa);
5138  	}
5139  }
5140  EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
5141  
kvm_mmu_invlpg(struct kvm_vcpu * vcpu,gva_t gva)5142  void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5143  {
5144  	kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
5145  	++vcpu->stat.invlpg;
5146  }
5147  EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5148  
5149  
kvm_mmu_invpcid_gva(struct kvm_vcpu * vcpu,gva_t gva,unsigned long pcid)5150  void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5151  {
5152  	struct kvm_mmu *mmu = vcpu->arch.mmu;
5153  	bool tlb_flush = false;
5154  	uint i;
5155  
5156  	if (pcid == kvm_get_active_pcid(vcpu)) {
5157  		mmu->invlpg(vcpu, gva, mmu->root_hpa);
5158  		tlb_flush = true;
5159  	}
5160  
5161  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5162  		if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5163  		    pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd)) {
5164  			mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5165  			tlb_flush = true;
5166  		}
5167  	}
5168  
5169  	if (tlb_flush)
5170  		kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5171  
5172  	++vcpu->stat.invlpg;
5173  
5174  	/*
5175  	 * Mappings not reachable via the current cr3 or the prev_roots will be
5176  	 * synced when switching to that cr3, so nothing needs to be done here
5177  	 * for them.
5178  	 */
5179  }
5180  EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5181  
kvm_configure_mmu(bool enable_tdp,int tdp_max_root_level,int tdp_huge_page_level)5182  void kvm_configure_mmu(bool enable_tdp, int tdp_max_root_level,
5183  		       int tdp_huge_page_level)
5184  {
5185  	tdp_enabled = enable_tdp;
5186  	max_tdp_level = tdp_max_root_level;
5187  
5188  	/*
5189  	 * max_huge_page_level reflects KVM's MMU capabilities irrespective
5190  	 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5191  	 * the kernel is not.  But, KVM never creates a page size greater than
5192  	 * what is used by the kernel for any given HVA, i.e. the kernel's
5193  	 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5194  	 */
5195  	if (tdp_enabled)
5196  		max_huge_page_level = tdp_huge_page_level;
5197  	else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5198  		max_huge_page_level = PG_LEVEL_1G;
5199  	else
5200  		max_huge_page_level = PG_LEVEL_2M;
5201  }
5202  EXPORT_SYMBOL_GPL(kvm_configure_mmu);
5203  
5204  /* The return value indicates if tlb flush on all vcpus is needed. */
5205  typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5206  
5207  /* The caller should hold mmu-lock before calling this function. */
5208  static __always_inline bool
slot_handle_level_range(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,gfn_t start_gfn,gfn_t end_gfn,bool lock_flush_tlb)5209  slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5210  			slot_level_handler fn, int start_level, int end_level,
5211  			gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5212  {
5213  	struct slot_rmap_walk_iterator iterator;
5214  	bool flush = false;
5215  
5216  	for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5217  			end_gfn, &iterator) {
5218  		if (iterator.rmap)
5219  			flush |= fn(kvm, iterator.rmap);
5220  
5221  		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5222  			if (flush && lock_flush_tlb) {
5223  				kvm_flush_remote_tlbs_with_address(kvm,
5224  						start_gfn,
5225  						iterator.gfn - start_gfn + 1);
5226  				flush = false;
5227  			}
5228  			cond_resched_lock(&kvm->mmu_lock);
5229  		}
5230  	}
5231  
5232  	if (flush && lock_flush_tlb) {
5233  		kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5234  						   end_gfn - start_gfn + 1);
5235  		flush = false;
5236  	}
5237  
5238  	return flush;
5239  }
5240  
5241  static __always_inline bool
slot_handle_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,int start_level,int end_level,bool lock_flush_tlb)5242  slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5243  		  slot_level_handler fn, int start_level, int end_level,
5244  		  bool lock_flush_tlb)
5245  {
5246  	return slot_handle_level_range(kvm, memslot, fn, start_level,
5247  			end_level, memslot->base_gfn,
5248  			memslot->base_gfn + memslot->npages - 1,
5249  			lock_flush_tlb);
5250  }
5251  
5252  static __always_inline bool
slot_handle_all_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5253  slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5254  		      slot_level_handler fn, bool lock_flush_tlb)
5255  {
5256  	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5257  				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5258  }
5259  
5260  static __always_inline bool
slot_handle_large_level(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5261  slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5262  			slot_level_handler fn, bool lock_flush_tlb)
5263  {
5264  	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K + 1,
5265  				 KVM_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5266  }
5267  
5268  static __always_inline bool
slot_handle_leaf(struct kvm * kvm,struct kvm_memory_slot * memslot,slot_level_handler fn,bool lock_flush_tlb)5269  slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5270  		 slot_level_handler fn, bool lock_flush_tlb)
5271  {
5272  	return slot_handle_level(kvm, memslot, fn, PG_LEVEL_4K,
5273  				 PG_LEVEL_4K, lock_flush_tlb);
5274  }
5275  
free_mmu_pages(struct kvm_mmu * mmu)5276  static void free_mmu_pages(struct kvm_mmu *mmu)
5277  {
5278  	free_page((unsigned long)mmu->pae_root);
5279  	free_page((unsigned long)mmu->lm_root);
5280  }
5281  
__kvm_mmu_create(struct kvm_vcpu * vcpu,struct kvm_mmu * mmu)5282  static int __kvm_mmu_create(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
5283  {
5284  	struct page *page;
5285  	int i;
5286  
5287  	mmu->root_hpa = INVALID_PAGE;
5288  	mmu->root_pgd = 0;
5289  	mmu->translate_gpa = translate_gpa;
5290  	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5291  		mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
5292  
5293  	/*
5294  	 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5295  	 * while the PDP table is a per-vCPU construct that's allocated at MMU
5296  	 * creation.  When emulating 32-bit mode, cr3 is only 32 bits even on
5297  	 * x86_64.  Therefore we need to allocate the PDP table in the first
5298  	 * 4GB of memory, which happens to fit the DMA32 zone.  Except for
5299  	 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5300  	 * skip allocating the PDP table.
5301  	 */
5302  	if (tdp_enabled && kvm_mmu_get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
5303  		return 0;
5304  
5305  	page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
5306  	if (!page)
5307  		return -ENOMEM;
5308  
5309  	mmu->pae_root = page_address(page);
5310  	for (i = 0; i < 4; ++i)
5311  		mmu->pae_root[i] = INVALID_PAGE;
5312  
5313  	return 0;
5314  }
5315  
kvm_mmu_create(struct kvm_vcpu * vcpu)5316  int kvm_mmu_create(struct kvm_vcpu *vcpu)
5317  {
5318  	int ret;
5319  
5320  	vcpu->arch.mmu_pte_list_desc_cache.kmem_cache = pte_list_desc_cache;
5321  	vcpu->arch.mmu_pte_list_desc_cache.gfp_zero = __GFP_ZERO;
5322  
5323  	vcpu->arch.mmu_page_header_cache.kmem_cache = mmu_page_header_cache;
5324  	vcpu->arch.mmu_page_header_cache.gfp_zero = __GFP_ZERO;
5325  
5326  	vcpu->arch.mmu_shadow_page_cache.gfp_zero = __GFP_ZERO;
5327  
5328  	vcpu->arch.mmu = &vcpu->arch.root_mmu;
5329  	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
5330  
5331  	vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
5332  
5333  	ret = __kvm_mmu_create(vcpu, &vcpu->arch.guest_mmu);
5334  	if (ret)
5335  		return ret;
5336  
5337  	ret = __kvm_mmu_create(vcpu, &vcpu->arch.root_mmu);
5338  	if (ret)
5339  		goto fail_allocate_root;
5340  
5341  	return ret;
5342   fail_allocate_root:
5343  	free_mmu_pages(&vcpu->arch.guest_mmu);
5344  	return ret;
5345  }
5346  
5347  #define BATCH_ZAP_PAGES	10
kvm_zap_obsolete_pages(struct kvm * kvm)5348  static void kvm_zap_obsolete_pages(struct kvm *kvm)
5349  {
5350  	struct kvm_mmu_page *sp, *node;
5351  	int nr_zapped, batch = 0;
5352  
5353  restart:
5354  	list_for_each_entry_safe_reverse(sp, node,
5355  	      &kvm->arch.active_mmu_pages, link) {
5356  		/*
5357  		 * No obsolete valid page exists before a newly created page
5358  		 * since active_mmu_pages is a FIFO list.
5359  		 */
5360  		if (!is_obsolete_sp(kvm, sp))
5361  			break;
5362  
5363  		/*
5364  		 * Invalid pages should never land back on the list of active
5365  		 * pages.  Skip the bogus page, otherwise we'll get stuck in an
5366  		 * infinite loop if the page gets put back on the list (again).
5367  		 */
5368  		if (WARN_ON(sp->role.invalid))
5369  			continue;
5370  
5371  		/*
5372  		 * No need to flush the TLB since we're only zapping shadow
5373  		 * pages with an obsolete generation number and all vCPUS have
5374  		 * loaded a new root, i.e. the shadow pages being zapped cannot
5375  		 * be in active use by the guest.
5376  		 */
5377  		if (batch >= BATCH_ZAP_PAGES &&
5378  		    cond_resched_lock(&kvm->mmu_lock)) {
5379  			batch = 0;
5380  			goto restart;
5381  		}
5382  
5383  		if (__kvm_mmu_prepare_zap_page(kvm, sp,
5384  				&kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
5385  			batch += nr_zapped;
5386  			goto restart;
5387  		}
5388  	}
5389  
5390  	/*
5391  	 * Trigger a remote TLB flush before freeing the page tables to ensure
5392  	 * KVM is not in the middle of a lockless shadow page table walk, which
5393  	 * may reference the pages.
5394  	 */
5395  	kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5396  }
5397  
5398  /*
5399   * Fast invalidate all shadow pages and use lock-break technique
5400   * to zap obsolete pages.
5401   *
5402   * It's required when memslot is being deleted or VM is being
5403   * destroyed, in these cases, we should ensure that KVM MMU does
5404   * not use any resource of the being-deleted slot or all slots
5405   * after calling the function.
5406   */
kvm_mmu_zap_all_fast(struct kvm * kvm)5407  static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5408  {
5409  	lockdep_assert_held(&kvm->slots_lock);
5410  
5411  	spin_lock(&kvm->mmu_lock);
5412  	trace_kvm_mmu_zap_all_fast(kvm);
5413  
5414  	/*
5415  	 * Toggle mmu_valid_gen between '0' and '1'.  Because slots_lock is
5416  	 * held for the entire duration of zapping obsolete pages, it's
5417  	 * impossible for there to be multiple invalid generations associated
5418  	 * with *valid* shadow pages at any given time, i.e. there is exactly
5419  	 * one valid generation and (at most) one invalid generation.
5420  	 */
5421  	kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
5422  
5423  	/*
5424  	 * Notify all vcpus to reload its shadow page table and flush TLB.
5425  	 * Then all vcpus will switch to new shadow page table with the new
5426  	 * mmu_valid_gen.
5427  	 *
5428  	 * Note: we need to do this under the protection of mmu_lock,
5429  	 * otherwise, vcpu would purge shadow page but miss tlb flush.
5430  	 */
5431  	kvm_reload_remote_mmus(kvm);
5432  
5433  	kvm_zap_obsolete_pages(kvm);
5434  
5435  	if (kvm->arch.tdp_mmu_enabled)
5436  		kvm_tdp_mmu_zap_all(kvm);
5437  
5438  	spin_unlock(&kvm->mmu_lock);
5439  }
5440  
kvm_has_zapped_obsolete_pages(struct kvm * kvm)5441  static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5442  {
5443  	return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5444  }
5445  
kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm * kvm,struct kvm_memory_slot * slot,struct kvm_page_track_notifier_node * node)5446  static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
5447  			struct kvm_memory_slot *slot,
5448  			struct kvm_page_track_notifier_node *node)
5449  {
5450  	kvm_mmu_zap_all_fast(kvm);
5451  }
5452  
kvm_mmu_init_vm(struct kvm * kvm)5453  void kvm_mmu_init_vm(struct kvm *kvm)
5454  {
5455  	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5456  
5457  	kvm_mmu_init_tdp_mmu(kvm);
5458  
5459  	node->track_write = kvm_mmu_pte_write;
5460  	node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
5461  	kvm_page_track_register_notifier(kvm, node);
5462  }
5463  
kvm_mmu_uninit_vm(struct kvm * kvm)5464  void kvm_mmu_uninit_vm(struct kvm *kvm)
5465  {
5466  	struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5467  
5468  	kvm_page_track_unregister_notifier(kvm, node);
5469  
5470  	kvm_mmu_uninit_tdp_mmu(kvm);
5471  }
5472  
kvm_zap_gfn_range(struct kvm * kvm,gfn_t gfn_start,gfn_t gfn_end)5473  void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5474  {
5475  	struct kvm_memslots *slots;
5476  	struct kvm_memory_slot *memslot;
5477  	int i;
5478  	bool flush;
5479  
5480  	spin_lock(&kvm->mmu_lock);
5481  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5482  		slots = __kvm_memslots(kvm, i);
5483  		kvm_for_each_memslot(memslot, slots) {
5484  			gfn_t start, end;
5485  
5486  			start = max(gfn_start, memslot->base_gfn);
5487  			end = min(gfn_end, memslot->base_gfn + memslot->npages);
5488  			if (start >= end)
5489  				continue;
5490  
5491  			slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5492  						PG_LEVEL_4K,
5493  						KVM_MAX_HUGEPAGE_LEVEL,
5494  						start, end - 1, true);
5495  		}
5496  	}
5497  
5498  	if (kvm->arch.tdp_mmu_enabled) {
5499  		flush = kvm_tdp_mmu_zap_gfn_range(kvm, gfn_start, gfn_end);
5500  		if (flush)
5501  			kvm_flush_remote_tlbs(kvm);
5502  	}
5503  
5504  	spin_unlock(&kvm->mmu_lock);
5505  }
5506  
slot_rmap_write_protect(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5507  static bool slot_rmap_write_protect(struct kvm *kvm,
5508  				    struct kvm_rmap_head *rmap_head)
5509  {
5510  	return __rmap_write_protect(kvm, rmap_head, false);
5511  }
5512  
kvm_mmu_slot_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot,int start_level)5513  void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5514  				      struct kvm_memory_slot *memslot,
5515  				      int start_level)
5516  {
5517  	bool flush;
5518  
5519  	spin_lock(&kvm->mmu_lock);
5520  	flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5521  				start_level, KVM_MAX_HUGEPAGE_LEVEL, false);
5522  	if (kvm->arch.tdp_mmu_enabled)
5523  		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_4K);
5524  	spin_unlock(&kvm->mmu_lock);
5525  
5526  	/*
5527  	 * We can flush all the TLBs out of the mmu lock without TLB
5528  	 * corruption since we just change the spte from writable to
5529  	 * readonly so that we only need to care the case of changing
5530  	 * spte from present to present (changing the spte from present
5531  	 * to nonpresent will flush all the TLBs immediately), in other
5532  	 * words, the only case we care is mmu_spte_update() where we
5533  	 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
5534  	 * instead of PT_WRITABLE_MASK, that means it does not depend
5535  	 * on PT_WRITABLE_MASK anymore.
5536  	 */
5537  	if (flush)
5538  		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5539  }
5540  
kvm_mmu_zap_collapsible_spte(struct kvm * kvm,struct kvm_rmap_head * rmap_head)5541  static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
5542  					 struct kvm_rmap_head *rmap_head)
5543  {
5544  	u64 *sptep;
5545  	struct rmap_iterator iter;
5546  	int need_tlb_flush = 0;
5547  	kvm_pfn_t pfn;
5548  	struct kvm_mmu_page *sp;
5549  
5550  restart:
5551  	for_each_rmap_spte(rmap_head, &iter, sptep) {
5552  		sp = sptep_to_sp(sptep);
5553  		pfn = spte_to_pfn(*sptep);
5554  
5555  		/*
5556  		 * We cannot do huge page mapping for indirect shadow pages,
5557  		 * which are found on the last rmap (level = 1) when not using
5558  		 * tdp; such shadow pages are synced with the page table in
5559  		 * the guest, and the guest page table is using 4K page size
5560  		 * mapping if the indirect sp has level = 1.
5561  		 */
5562  		if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
5563  		    (kvm_is_zone_device_pfn(pfn) ||
5564  		     PageCompound(pfn_to_page(pfn)))) {
5565  			pte_list_remove(rmap_head, sptep);
5566  
5567  			if (kvm_available_flush_tlb_with_range())
5568  				kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5569  					KVM_PAGES_PER_HPAGE(sp->role.level));
5570  			else
5571  				need_tlb_flush = 1;
5572  
5573  			goto restart;
5574  		}
5575  	}
5576  
5577  	return need_tlb_flush;
5578  }
5579  
kvm_mmu_zap_collapsible_sptes(struct kvm * kvm,const struct kvm_memory_slot * memslot)5580  void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
5581  				   const struct kvm_memory_slot *memslot)
5582  {
5583  	/* FIXME: const-ify all uses of struct kvm_memory_slot.  */
5584  	spin_lock(&kvm->mmu_lock);
5585  	slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5586  			 kvm_mmu_zap_collapsible_spte, true);
5587  
5588  	if (kvm->arch.tdp_mmu_enabled)
5589  		kvm_tdp_mmu_zap_collapsible_sptes(kvm, memslot);
5590  	spin_unlock(&kvm->mmu_lock);
5591  }
5592  
kvm_arch_flush_remote_tlbs_memslot(struct kvm * kvm,struct kvm_memory_slot * memslot)5593  void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5594  					struct kvm_memory_slot *memslot)
5595  {
5596  	/*
5597  	 * All current use cases for flushing the TLBs for a specific memslot
5598  	 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5599  	 * The interaction between the various operations on memslot must be
5600  	 * serialized by slots_locks to ensure the TLB flush from one operation
5601  	 * is observed by any other operation on the same memslot.
5602  	 */
5603  	lockdep_assert_held(&kvm->slots_lock);
5604  	kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5605  					   memslot->npages);
5606  }
5607  
kvm_mmu_slot_leaf_clear_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5608  void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5609  				   struct kvm_memory_slot *memslot)
5610  {
5611  	bool flush;
5612  
5613  	spin_lock(&kvm->mmu_lock);
5614  	flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
5615  	if (kvm->arch.tdp_mmu_enabled)
5616  		flush |= kvm_tdp_mmu_clear_dirty_slot(kvm, memslot);
5617  	spin_unlock(&kvm->mmu_lock);
5618  
5619  	/*
5620  	 * It's also safe to flush TLBs out of mmu lock here as currently this
5621  	 * function is only used for dirty logging, in which case flushing TLB
5622  	 * out of mmu lock also guarantees no dirty pages will be lost in
5623  	 * dirty_bitmap.
5624  	 */
5625  	if (flush)
5626  		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5627  }
5628  EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5629  
kvm_mmu_slot_largepage_remove_write_access(struct kvm * kvm,struct kvm_memory_slot * memslot)5630  void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5631  					struct kvm_memory_slot *memslot)
5632  {
5633  	bool flush;
5634  
5635  	spin_lock(&kvm->mmu_lock);
5636  	flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5637  					false);
5638  	if (kvm->arch.tdp_mmu_enabled)
5639  		flush |= kvm_tdp_mmu_wrprot_slot(kvm, memslot, PG_LEVEL_2M);
5640  	spin_unlock(&kvm->mmu_lock);
5641  
5642  	if (flush)
5643  		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5644  }
5645  EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5646  
kvm_mmu_slot_set_dirty(struct kvm * kvm,struct kvm_memory_slot * memslot)5647  void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5648  			    struct kvm_memory_slot *memslot)
5649  {
5650  	bool flush;
5651  
5652  	spin_lock(&kvm->mmu_lock);
5653  	flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
5654  	if (kvm->arch.tdp_mmu_enabled)
5655  		flush |= kvm_tdp_mmu_slot_set_dirty(kvm, memslot);
5656  	spin_unlock(&kvm->mmu_lock);
5657  
5658  	if (flush)
5659  		kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
5660  }
5661  EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5662  
kvm_mmu_zap_all(struct kvm * kvm)5663  void kvm_mmu_zap_all(struct kvm *kvm)
5664  {
5665  	struct kvm_mmu_page *sp, *node;
5666  	LIST_HEAD(invalid_list);
5667  	int ign;
5668  
5669  	spin_lock(&kvm->mmu_lock);
5670  restart:
5671  	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
5672  		if (WARN_ON(sp->role.invalid))
5673  			continue;
5674  		if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5675  			goto restart;
5676  		if (cond_resched_lock(&kvm->mmu_lock))
5677  			goto restart;
5678  	}
5679  
5680  	kvm_mmu_commit_zap_page(kvm, &invalid_list);
5681  
5682  	if (kvm->arch.tdp_mmu_enabled)
5683  		kvm_tdp_mmu_zap_all(kvm);
5684  
5685  	spin_unlock(&kvm->mmu_lock);
5686  }
5687  
kvm_mmu_invalidate_mmio_sptes(struct kvm * kvm,u64 gen)5688  void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
5689  {
5690  	WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
5691  
5692  	gen &= MMIO_SPTE_GEN_MASK;
5693  
5694  	/*
5695  	 * Generation numbers are incremented in multiples of the number of
5696  	 * address spaces in order to provide unique generations across all
5697  	 * address spaces.  Strip what is effectively the address space
5698  	 * modifier prior to checking for a wrap of the MMIO generation so
5699  	 * that a wrap in any address space is detected.
5700  	 */
5701  	gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
5702  
5703  	/*
5704  	 * The very rare case: if the MMIO generation number has wrapped,
5705  	 * zap all shadow pages.
5706  	 */
5707  	if (unlikely(gen == 0)) {
5708  		kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
5709  		kvm_mmu_zap_all_fast(kvm);
5710  	}
5711  }
5712  
5713  static unsigned long
mmu_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)5714  mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
5715  {
5716  	struct kvm *kvm;
5717  	int nr_to_scan = sc->nr_to_scan;
5718  	unsigned long freed = 0;
5719  
5720  	mutex_lock(&kvm_lock);
5721  
5722  	list_for_each_entry(kvm, &vm_list, vm_list) {
5723  		int idx;
5724  		LIST_HEAD(invalid_list);
5725  
5726  		/*
5727  		 * Never scan more than sc->nr_to_scan VM instances.
5728  		 * Will not hit this condition practically since we do not try
5729  		 * to shrink more than one VM and it is very unlikely to see
5730  		 * !n_used_mmu_pages so many times.
5731  		 */
5732  		if (!nr_to_scan--)
5733  			break;
5734  		/*
5735  		 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5736  		 * here. We may skip a VM instance errorneosly, but we do not
5737  		 * want to shrink a VM that only started to populate its MMU
5738  		 * anyway.
5739  		 */
5740  		if (!kvm->arch.n_used_mmu_pages &&
5741  		    !kvm_has_zapped_obsolete_pages(kvm))
5742  			continue;
5743  
5744  		idx = srcu_read_lock(&kvm->srcu);
5745  		spin_lock(&kvm->mmu_lock);
5746  
5747  		if (kvm_has_zapped_obsolete_pages(kvm)) {
5748  			kvm_mmu_commit_zap_page(kvm,
5749  			      &kvm->arch.zapped_obsolete_pages);
5750  			goto unlock;
5751  		}
5752  
5753  		freed = kvm_mmu_zap_oldest_mmu_pages(kvm, sc->nr_to_scan);
5754  
5755  unlock:
5756  		spin_unlock(&kvm->mmu_lock);
5757  		srcu_read_unlock(&kvm->srcu, idx);
5758  
5759  		/*
5760  		 * unfair on small ones
5761  		 * per-vm shrinkers cry out
5762  		 * sadness comes quickly
5763  		 */
5764  		list_move_tail(&kvm->vm_list, &vm_list);
5765  		break;
5766  	}
5767  
5768  	mutex_unlock(&kvm_lock);
5769  	return freed;
5770  }
5771  
5772  static unsigned long
mmu_shrink_count(struct shrinker * shrink,struct shrink_control * sc)5773  mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5774  {
5775  	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
5776  }
5777  
5778  static struct shrinker mmu_shrinker = {
5779  	.count_objects = mmu_shrink_count,
5780  	.scan_objects = mmu_shrink_scan,
5781  	.seeks = DEFAULT_SEEKS * 10,
5782  };
5783  
mmu_destroy_caches(void)5784  static void mmu_destroy_caches(void)
5785  {
5786  	kmem_cache_destroy(pte_list_desc_cache);
5787  	kmem_cache_destroy(mmu_page_header_cache);
5788  }
5789  
kvm_set_mmio_spte_mask(void)5790  static void kvm_set_mmio_spte_mask(void)
5791  {
5792  	u64 mask;
5793  
5794  	/*
5795  	 * Set a reserved PA bit in MMIO SPTEs to generate page faults with
5796  	 * PFEC.RSVD=1 on MMIO accesses.  64-bit PTEs (PAE, x86-64, and EPT
5797  	 * paging) support a maximum of 52 bits of PA, i.e. if the CPU supports
5798  	 * 52-bit physical addresses then there are no reserved PA bits in the
5799  	 * PTEs and so the reserved PA approach must be disabled.
5800  	 */
5801  	if (shadow_phys_bits < 52)
5802  		mask = BIT_ULL(51) | PT_PRESENT_MASK;
5803  	else
5804  		mask = 0;
5805  
5806  	kvm_mmu_set_mmio_spte_mask(mask, ACC_WRITE_MASK | ACC_USER_MASK);
5807  }
5808  
get_nx_auto_mode(void)5809  static bool get_nx_auto_mode(void)
5810  {
5811  	/* Return true when CPU has the bug, and mitigations are ON */
5812  	return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
5813  }
5814  
__set_nx_huge_pages(bool val)5815  static void __set_nx_huge_pages(bool val)
5816  {
5817  	nx_huge_pages = itlb_multihit_kvm_mitigation = val;
5818  }
5819  
set_nx_huge_pages(const char * val,const struct kernel_param * kp)5820  static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
5821  {
5822  	bool old_val = nx_huge_pages;
5823  	bool new_val;
5824  
5825  	/* In "auto" mode deploy workaround only if CPU has the bug. */
5826  	if (sysfs_streq(val, "off"))
5827  		new_val = 0;
5828  	else if (sysfs_streq(val, "force"))
5829  		new_val = 1;
5830  	else if (sysfs_streq(val, "auto"))
5831  		new_val = get_nx_auto_mode();
5832  	else if (strtobool(val, &new_val) < 0)
5833  		return -EINVAL;
5834  
5835  	__set_nx_huge_pages(new_val);
5836  
5837  	if (new_val != old_val) {
5838  		struct kvm *kvm;
5839  
5840  		mutex_lock(&kvm_lock);
5841  
5842  		list_for_each_entry(kvm, &vm_list, vm_list) {
5843  			mutex_lock(&kvm->slots_lock);
5844  			kvm_mmu_zap_all_fast(kvm);
5845  			mutex_unlock(&kvm->slots_lock);
5846  
5847  			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5848  		}
5849  		mutex_unlock(&kvm_lock);
5850  	}
5851  
5852  	return 0;
5853  }
5854  
kvm_mmu_module_init(void)5855  int kvm_mmu_module_init(void)
5856  {
5857  	int ret = -ENOMEM;
5858  
5859  	if (nx_huge_pages == -1)
5860  		__set_nx_huge_pages(get_nx_auto_mode());
5861  
5862  	/*
5863  	 * MMU roles use union aliasing which is, generally speaking, an
5864  	 * undefined behavior. However, we supposedly know how compilers behave
5865  	 * and the current status quo is unlikely to change. Guardians below are
5866  	 * supposed to let us know if the assumption becomes false.
5867  	 */
5868  	BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
5869  	BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
5870  	BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
5871  
5872  	kvm_mmu_reset_all_pte_masks();
5873  
5874  	kvm_set_mmio_spte_mask();
5875  
5876  	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
5877  					    sizeof(struct pte_list_desc),
5878  					    0, SLAB_ACCOUNT, NULL);
5879  	if (!pte_list_desc_cache)
5880  		goto out;
5881  
5882  	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
5883  						  sizeof(struct kvm_mmu_page),
5884  						  0, SLAB_ACCOUNT, NULL);
5885  	if (!mmu_page_header_cache)
5886  		goto out;
5887  
5888  	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
5889  		goto out;
5890  
5891  	ret = register_shrinker(&mmu_shrinker);
5892  	if (ret)
5893  		goto out;
5894  
5895  	return 0;
5896  
5897  out:
5898  	mmu_destroy_caches();
5899  	return ret;
5900  }
5901  
5902  /*
5903   * Calculate mmu pages needed for kvm.
5904   */
kvm_mmu_calculate_default_mmu_pages(struct kvm * kvm)5905  unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
5906  {
5907  	unsigned long nr_mmu_pages;
5908  	unsigned long nr_pages = 0;
5909  	struct kvm_memslots *slots;
5910  	struct kvm_memory_slot *memslot;
5911  	int i;
5912  
5913  	for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5914  		slots = __kvm_memslots(kvm, i);
5915  
5916  		kvm_for_each_memslot(memslot, slots)
5917  			nr_pages += memslot->npages;
5918  	}
5919  
5920  	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
5921  	nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
5922  
5923  	return nr_mmu_pages;
5924  }
5925  
kvm_mmu_destroy(struct kvm_vcpu * vcpu)5926  void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
5927  {
5928  	kvm_mmu_unload(vcpu);
5929  	free_mmu_pages(&vcpu->arch.root_mmu);
5930  	free_mmu_pages(&vcpu->arch.guest_mmu);
5931  	mmu_free_memory_caches(vcpu);
5932  }
5933  
kvm_mmu_module_exit(void)5934  void kvm_mmu_module_exit(void)
5935  {
5936  	mmu_destroy_caches();
5937  	percpu_counter_destroy(&kvm_total_used_mmu_pages);
5938  	unregister_shrinker(&mmu_shrinker);
5939  	mmu_audit_disable();
5940  }
5941  
set_nx_huge_pages_recovery_ratio(const char * val,const struct kernel_param * kp)5942  static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
5943  {
5944  	unsigned int old_val;
5945  	int err;
5946  
5947  	old_val = nx_huge_pages_recovery_ratio;
5948  	err = param_set_uint(val, kp);
5949  	if (err)
5950  		return err;
5951  
5952  	if (READ_ONCE(nx_huge_pages) &&
5953  	    !old_val && nx_huge_pages_recovery_ratio) {
5954  		struct kvm *kvm;
5955  
5956  		mutex_lock(&kvm_lock);
5957  
5958  		list_for_each_entry(kvm, &vm_list, vm_list)
5959  			wake_up_process(kvm->arch.nx_lpage_recovery_thread);
5960  
5961  		mutex_unlock(&kvm_lock);
5962  	}
5963  
5964  	return err;
5965  }
5966  
kvm_recover_nx_lpages(struct kvm * kvm)5967  static void kvm_recover_nx_lpages(struct kvm *kvm)
5968  {
5969  	int rcu_idx;
5970  	struct kvm_mmu_page *sp;
5971  	unsigned int ratio;
5972  	LIST_HEAD(invalid_list);
5973  	ulong to_zap;
5974  
5975  	rcu_idx = srcu_read_lock(&kvm->srcu);
5976  	spin_lock(&kvm->mmu_lock);
5977  
5978  	ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
5979  	to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
5980  	for ( ; to_zap; --to_zap) {
5981  		if (list_empty(&kvm->arch.lpage_disallowed_mmu_pages))
5982  			break;
5983  
5984  		/*
5985  		 * We use a separate list instead of just using active_mmu_pages
5986  		 * because the number of lpage_disallowed pages is expected to
5987  		 * be relatively small compared to the total.
5988  		 */
5989  		sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
5990  				      struct kvm_mmu_page,
5991  				      lpage_disallowed_link);
5992  		WARN_ON_ONCE(!sp->lpage_disallowed);
5993  		if (sp->tdp_mmu_page)
5994  			kvm_tdp_mmu_zap_gfn_range(kvm, sp->gfn,
5995  				sp->gfn + KVM_PAGES_PER_HPAGE(sp->role.level));
5996  		else {
5997  			kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
5998  			WARN_ON_ONCE(sp->lpage_disallowed);
5999  		}
6000  
6001  		if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6002  			kvm_mmu_commit_zap_page(kvm, &invalid_list);
6003  			cond_resched_lock(&kvm->mmu_lock);
6004  		}
6005  	}
6006  	kvm_mmu_commit_zap_page(kvm, &invalid_list);
6007  
6008  	spin_unlock(&kvm->mmu_lock);
6009  	srcu_read_unlock(&kvm->srcu, rcu_idx);
6010  }
6011  
get_nx_lpage_recovery_timeout(u64 start_time)6012  static long get_nx_lpage_recovery_timeout(u64 start_time)
6013  {
6014  	return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6015  		? start_time + 60 * HZ - get_jiffies_64()
6016  		: MAX_SCHEDULE_TIMEOUT;
6017  }
6018  
kvm_nx_lpage_recovery_worker(struct kvm * kvm,uintptr_t data)6019  static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6020  {
6021  	u64 start_time;
6022  	long remaining_time;
6023  
6024  	while (true) {
6025  		start_time = get_jiffies_64();
6026  		remaining_time = get_nx_lpage_recovery_timeout(start_time);
6027  
6028  		set_current_state(TASK_INTERRUPTIBLE);
6029  		while (!kthread_should_stop() && remaining_time > 0) {
6030  			schedule_timeout(remaining_time);
6031  			remaining_time = get_nx_lpage_recovery_timeout(start_time);
6032  			set_current_state(TASK_INTERRUPTIBLE);
6033  		}
6034  
6035  		set_current_state(TASK_RUNNING);
6036  
6037  		if (kthread_should_stop())
6038  			return 0;
6039  
6040  		kvm_recover_nx_lpages(kvm);
6041  	}
6042  }
6043  
kvm_mmu_post_init_vm(struct kvm * kvm)6044  int kvm_mmu_post_init_vm(struct kvm *kvm)
6045  {
6046  	int err;
6047  
6048  	err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6049  					  "kvm-nx-lpage-recovery",
6050  					  &kvm->arch.nx_lpage_recovery_thread);
6051  	if (!err)
6052  		kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6053  
6054  	return err;
6055  }
6056  
kvm_mmu_pre_destroy_vm(struct kvm * kvm)6057  void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6058  {
6059  	if (kvm->arch.nx_lpage_recovery_thread)
6060  		kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6061  }
6062