1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 2016-20 Intel Corporation. */
3
4 #include <linux/file.h>
5 #include <linux/freezer.h>
6 #include <linux/highmem.h>
7 #include <linux/kthread.h>
8 #include <linux/miscdevice.h>
9 #include <linux/pagemap.h>
10 #include <linux/ratelimit.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/signal.h>
13 #include <linux/slab.h>
14 #include <asm/sgx.h>
15 #include "driver.h"
16 #include "encl.h"
17 #include "encls.h"
18
19 struct sgx_epc_section sgx_epc_sections[SGX_MAX_EPC_SECTIONS];
20 static int sgx_nr_epc_sections;
21 static struct task_struct *ksgxd_tsk;
22 static DECLARE_WAIT_QUEUE_HEAD(ksgxd_waitq);
23
24 /*
25 * These variables are part of the state of the reclaimer, and must be accessed
26 * with sgx_reclaimer_lock acquired.
27 */
28 static LIST_HEAD(sgx_active_page_list);
29 static DEFINE_SPINLOCK(sgx_reclaimer_lock);
30
31 /* The free page list lock protected variables prepend the lock. */
32 static unsigned long sgx_nr_free_pages;
33
34 /* Nodes with one or more EPC sections. */
35 static nodemask_t sgx_numa_mask;
36
37 /*
38 * Array with one list_head for each possible NUMA node. Each
39 * list contains all the sgx_epc_section's which are on that
40 * node.
41 */
42 static struct sgx_numa_node *sgx_numa_nodes;
43
44 static LIST_HEAD(sgx_dirty_page_list);
45
46 /*
47 * Reset post-kexec EPC pages to the uninitialized state. The pages are removed
48 * from the input list, and made available for the page allocator. SECS pages
49 * prepending their children in the input list are left intact.
50 */
__sgx_sanitize_pages(struct list_head * dirty_page_list)51 static void __sgx_sanitize_pages(struct list_head *dirty_page_list)
52 {
53 struct sgx_epc_page *page;
54 LIST_HEAD(dirty);
55 int ret;
56
57 /* dirty_page_list is thread-local, no need for a lock: */
58 while (!list_empty(dirty_page_list)) {
59 if (kthread_should_stop())
60 return;
61
62 page = list_first_entry(dirty_page_list, struct sgx_epc_page, list);
63
64 ret = __eremove(sgx_get_epc_virt_addr(page));
65 if (!ret) {
66 /*
67 * page is now sanitized. Make it available via the SGX
68 * page allocator:
69 */
70 list_del(&page->list);
71 sgx_free_epc_page(page);
72 } else {
73 /* The page is not yet clean - move to the dirty list. */
74 list_move_tail(&page->list, &dirty);
75 }
76
77 cond_resched();
78 }
79
80 list_splice(&dirty, dirty_page_list);
81 }
82
sgx_reclaimer_age(struct sgx_epc_page * epc_page)83 static bool sgx_reclaimer_age(struct sgx_epc_page *epc_page)
84 {
85 struct sgx_encl_page *page = epc_page->owner;
86 struct sgx_encl *encl = page->encl;
87 struct sgx_encl_mm *encl_mm;
88 bool ret = true;
89 int idx;
90
91 idx = srcu_read_lock(&encl->srcu);
92
93 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
94 if (!mmget_not_zero(encl_mm->mm))
95 continue;
96
97 mmap_read_lock(encl_mm->mm);
98 ret = !sgx_encl_test_and_clear_young(encl_mm->mm, page);
99 mmap_read_unlock(encl_mm->mm);
100
101 mmput_async(encl_mm->mm);
102
103 if (!ret)
104 break;
105 }
106
107 srcu_read_unlock(&encl->srcu, idx);
108
109 if (!ret)
110 return false;
111
112 return true;
113 }
114
sgx_reclaimer_block(struct sgx_epc_page * epc_page)115 static void sgx_reclaimer_block(struct sgx_epc_page *epc_page)
116 {
117 struct sgx_encl_page *page = epc_page->owner;
118 unsigned long addr = page->desc & PAGE_MASK;
119 struct sgx_encl *encl = page->encl;
120 unsigned long mm_list_version;
121 struct sgx_encl_mm *encl_mm;
122 struct vm_area_struct *vma;
123 int idx, ret;
124
125 do {
126 mm_list_version = encl->mm_list_version;
127
128 /* Pairs with smp_rmb() in sgx_encl_mm_add(). */
129 smp_rmb();
130
131 idx = srcu_read_lock(&encl->srcu);
132
133 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
134 if (!mmget_not_zero(encl_mm->mm))
135 continue;
136
137 mmap_read_lock(encl_mm->mm);
138
139 ret = sgx_encl_find(encl_mm->mm, addr, &vma);
140 if (!ret && encl == vma->vm_private_data)
141 zap_vma_ptes(vma, addr, PAGE_SIZE);
142
143 mmap_read_unlock(encl_mm->mm);
144
145 mmput_async(encl_mm->mm);
146 }
147
148 srcu_read_unlock(&encl->srcu, idx);
149 } while (unlikely(encl->mm_list_version != mm_list_version));
150
151 mutex_lock(&encl->lock);
152
153 ret = __eblock(sgx_get_epc_virt_addr(epc_page));
154 if (encls_failed(ret))
155 ENCLS_WARN(ret, "EBLOCK");
156
157 mutex_unlock(&encl->lock);
158 }
159
__sgx_encl_ewb(struct sgx_epc_page * epc_page,void * va_slot,struct sgx_backing * backing)160 static int __sgx_encl_ewb(struct sgx_epc_page *epc_page, void *va_slot,
161 struct sgx_backing *backing)
162 {
163 struct sgx_pageinfo pginfo;
164 int ret;
165
166 pginfo.addr = 0;
167 pginfo.secs = 0;
168
169 pginfo.contents = (unsigned long)kmap_atomic(backing->contents);
170 pginfo.metadata = (unsigned long)kmap_atomic(backing->pcmd) +
171 backing->pcmd_offset;
172
173 ret = __ewb(&pginfo, sgx_get_epc_virt_addr(epc_page), va_slot);
174
175 kunmap_atomic((void *)(unsigned long)(pginfo.metadata -
176 backing->pcmd_offset));
177 kunmap_atomic((void *)(unsigned long)pginfo.contents);
178
179 return ret;
180 }
181
sgx_ipi_cb(void * info)182 static void sgx_ipi_cb(void *info)
183 {
184 }
185
sgx_encl_ewb_cpumask(struct sgx_encl * encl)186 static const cpumask_t *sgx_encl_ewb_cpumask(struct sgx_encl *encl)
187 {
188 cpumask_t *cpumask = &encl->cpumask;
189 struct sgx_encl_mm *encl_mm;
190 int idx;
191
192 /*
193 * Can race with sgx_encl_mm_add(), but ETRACK has already been
194 * executed, which means that the CPUs running in the new mm will enter
195 * into the enclave with a fresh epoch.
196 */
197 cpumask_clear(cpumask);
198
199 idx = srcu_read_lock(&encl->srcu);
200
201 list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
202 if (!mmget_not_zero(encl_mm->mm))
203 continue;
204
205 cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
206
207 mmput_async(encl_mm->mm);
208 }
209
210 srcu_read_unlock(&encl->srcu, idx);
211
212 return cpumask;
213 }
214
215 /*
216 * Swap page to the regular memory transformed to the blocked state by using
217 * EBLOCK, which means that it can no longer be referenced (no new TLB entries).
218 *
219 * The first trial just tries to write the page assuming that some other thread
220 * has reset the count for threads inside the enclave by using ETRACK, and
221 * previous thread count has been zeroed out. The second trial calls ETRACK
222 * before EWB. If that fails we kick all the HW threads out, and then do EWB,
223 * which should be guaranteed the succeed.
224 */
sgx_encl_ewb(struct sgx_epc_page * epc_page,struct sgx_backing * backing)225 static void sgx_encl_ewb(struct sgx_epc_page *epc_page,
226 struct sgx_backing *backing)
227 {
228 struct sgx_encl_page *encl_page = epc_page->owner;
229 struct sgx_encl *encl = encl_page->encl;
230 struct sgx_va_page *va_page;
231 unsigned int va_offset;
232 void *va_slot;
233 int ret;
234
235 encl_page->desc &= ~SGX_ENCL_PAGE_BEING_RECLAIMED;
236
237 va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
238 list);
239 va_offset = sgx_alloc_va_slot(va_page);
240 va_slot = sgx_get_epc_virt_addr(va_page->epc_page) + va_offset;
241 if (sgx_va_page_full(va_page))
242 list_move_tail(&va_page->list, &encl->va_pages);
243
244 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
245 if (ret == SGX_NOT_TRACKED) {
246 ret = __etrack(sgx_get_epc_virt_addr(encl->secs.epc_page));
247 if (ret) {
248 if (encls_failed(ret))
249 ENCLS_WARN(ret, "ETRACK");
250 }
251
252 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
253 if (ret == SGX_NOT_TRACKED) {
254 /*
255 * Slow path, send IPIs to kick cpus out of the
256 * enclave. Note, it's imperative that the cpu
257 * mask is generated *after* ETRACK, else we'll
258 * miss cpus that entered the enclave between
259 * generating the mask and incrementing epoch.
260 */
261 on_each_cpu_mask(sgx_encl_ewb_cpumask(encl),
262 sgx_ipi_cb, NULL, 1);
263 ret = __sgx_encl_ewb(epc_page, va_slot, backing);
264 }
265 }
266
267 if (ret) {
268 if (encls_failed(ret))
269 ENCLS_WARN(ret, "EWB");
270
271 sgx_free_va_slot(va_page, va_offset);
272 } else {
273 encl_page->desc |= va_offset;
274 encl_page->va_page = va_page;
275 }
276 }
277
sgx_reclaimer_write(struct sgx_epc_page * epc_page,struct sgx_backing * backing)278 static void sgx_reclaimer_write(struct sgx_epc_page *epc_page,
279 struct sgx_backing *backing)
280 {
281 struct sgx_encl_page *encl_page = epc_page->owner;
282 struct sgx_encl *encl = encl_page->encl;
283 struct sgx_backing secs_backing;
284 int ret;
285
286 mutex_lock(&encl->lock);
287
288 sgx_encl_ewb(epc_page, backing);
289 encl_page->epc_page = NULL;
290 encl->secs_child_cnt--;
291
292 if (!encl->secs_child_cnt && test_bit(SGX_ENCL_INITIALIZED, &encl->flags)) {
293 ret = sgx_encl_get_backing(encl, PFN_DOWN(encl->size),
294 &secs_backing);
295 if (ret)
296 goto out;
297
298 sgx_encl_ewb(encl->secs.epc_page, &secs_backing);
299
300 sgx_encl_free_epc_page(encl->secs.epc_page);
301 encl->secs.epc_page = NULL;
302
303 sgx_encl_put_backing(&secs_backing, true);
304 }
305
306 out:
307 mutex_unlock(&encl->lock);
308 }
309
310 /*
311 * Take a fixed number of pages from the head of the active page pool and
312 * reclaim them to the enclave's private shmem files. Skip the pages, which have
313 * been accessed since the last scan. Move those pages to the tail of active
314 * page pool so that the pages get scanned in LRU like fashion.
315 *
316 * Batch process a chunk of pages (at the moment 16) in order to degrade amount
317 * of IPI's and ETRACK's potentially required. sgx_encl_ewb() does degrade a bit
318 * among the HW threads with three stage EWB pipeline (EWB, ETRACK + EWB and IPI
319 * + EWB) but not sufficiently. Reclaiming one page at a time would also be
320 * problematic as it would increase the lock contention too much, which would
321 * halt forward progress.
322 */
sgx_reclaim_pages(void)323 static void sgx_reclaim_pages(void)
324 {
325 struct sgx_epc_page *chunk[SGX_NR_TO_SCAN];
326 struct sgx_backing backing[SGX_NR_TO_SCAN];
327 struct sgx_epc_section *section;
328 struct sgx_encl_page *encl_page;
329 struct sgx_epc_page *epc_page;
330 struct sgx_numa_node *node;
331 pgoff_t page_index;
332 int cnt = 0;
333 int ret;
334 int i;
335
336 spin_lock(&sgx_reclaimer_lock);
337 for (i = 0; i < SGX_NR_TO_SCAN; i++) {
338 if (list_empty(&sgx_active_page_list))
339 break;
340
341 epc_page = list_first_entry(&sgx_active_page_list,
342 struct sgx_epc_page, list);
343 list_del_init(&epc_page->list);
344 encl_page = epc_page->owner;
345
346 if (kref_get_unless_zero(&encl_page->encl->refcount) != 0)
347 chunk[cnt++] = epc_page;
348 else
349 /* The owner is freeing the page. No need to add the
350 * page back to the list of reclaimable pages.
351 */
352 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
353 }
354 spin_unlock(&sgx_reclaimer_lock);
355
356 for (i = 0; i < cnt; i++) {
357 epc_page = chunk[i];
358 encl_page = epc_page->owner;
359
360 if (!sgx_reclaimer_age(epc_page))
361 goto skip;
362
363 page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
364 ret = sgx_encl_get_backing(encl_page->encl, page_index, &backing[i]);
365 if (ret)
366 goto skip;
367
368 mutex_lock(&encl_page->encl->lock);
369 encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
370 mutex_unlock(&encl_page->encl->lock);
371 continue;
372
373 skip:
374 spin_lock(&sgx_reclaimer_lock);
375 list_add_tail(&epc_page->list, &sgx_active_page_list);
376 spin_unlock(&sgx_reclaimer_lock);
377
378 kref_put(&encl_page->encl->refcount, sgx_encl_release);
379
380 chunk[i] = NULL;
381 }
382
383 for (i = 0; i < cnt; i++) {
384 epc_page = chunk[i];
385 if (epc_page)
386 sgx_reclaimer_block(epc_page);
387 }
388
389 for (i = 0; i < cnt; i++) {
390 epc_page = chunk[i];
391 if (!epc_page)
392 continue;
393
394 encl_page = epc_page->owner;
395 sgx_reclaimer_write(epc_page, &backing[i]);
396 sgx_encl_put_backing(&backing[i], true);
397
398 kref_put(&encl_page->encl->refcount, sgx_encl_release);
399 epc_page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
400
401 section = &sgx_epc_sections[epc_page->section];
402 node = section->node;
403
404 spin_lock(&node->lock);
405 list_add_tail(&epc_page->list, &node->free_page_list);
406 sgx_nr_free_pages++;
407 spin_unlock(&node->lock);
408 }
409 }
410
sgx_should_reclaim(unsigned long watermark)411 static bool sgx_should_reclaim(unsigned long watermark)
412 {
413 return sgx_nr_free_pages < watermark && !list_empty(&sgx_active_page_list);
414 }
415
ksgxd(void * p)416 static int ksgxd(void *p)
417 {
418 set_freezable();
419
420 /*
421 * Sanitize pages in order to recover from kexec(). The 2nd pass is
422 * required for SECS pages, whose child pages blocked EREMOVE.
423 */
424 __sgx_sanitize_pages(&sgx_dirty_page_list);
425 __sgx_sanitize_pages(&sgx_dirty_page_list);
426
427 /* sanity check: */
428 WARN_ON(!list_empty(&sgx_dirty_page_list));
429
430 while (!kthread_should_stop()) {
431 if (try_to_freeze())
432 continue;
433
434 wait_event_freezable(ksgxd_waitq,
435 kthread_should_stop() ||
436 sgx_should_reclaim(SGX_NR_HIGH_PAGES));
437
438 if (sgx_should_reclaim(SGX_NR_HIGH_PAGES))
439 sgx_reclaim_pages();
440
441 cond_resched();
442 }
443
444 return 0;
445 }
446
sgx_page_reclaimer_init(void)447 static bool __init sgx_page_reclaimer_init(void)
448 {
449 struct task_struct *tsk;
450
451 tsk = kthread_run(ksgxd, NULL, "ksgxd");
452 if (IS_ERR(tsk))
453 return false;
454
455 ksgxd_tsk = tsk;
456
457 return true;
458 }
459
__sgx_alloc_epc_page_from_node(int nid)460 static struct sgx_epc_page *__sgx_alloc_epc_page_from_node(int nid)
461 {
462 struct sgx_numa_node *node = &sgx_numa_nodes[nid];
463 struct sgx_epc_page *page = NULL;
464
465 spin_lock(&node->lock);
466
467 if (list_empty(&node->free_page_list)) {
468 spin_unlock(&node->lock);
469 return NULL;
470 }
471
472 page = list_first_entry(&node->free_page_list, struct sgx_epc_page, list);
473 list_del_init(&page->list);
474 sgx_nr_free_pages--;
475
476 spin_unlock(&node->lock);
477
478 return page;
479 }
480
481 /**
482 * __sgx_alloc_epc_page() - Allocate an EPC page
483 *
484 * Iterate through NUMA nodes and reserve ia free EPC page to the caller. Start
485 * from the NUMA node, where the caller is executing.
486 *
487 * Return:
488 * - an EPC page: A borrowed EPC pages were available.
489 * - NULL: Out of EPC pages.
490 */
__sgx_alloc_epc_page(void)491 struct sgx_epc_page *__sgx_alloc_epc_page(void)
492 {
493 struct sgx_epc_page *page;
494 int nid_of_current = numa_node_id();
495 int nid = nid_of_current;
496
497 if (node_isset(nid_of_current, sgx_numa_mask)) {
498 page = __sgx_alloc_epc_page_from_node(nid_of_current);
499 if (page)
500 return page;
501 }
502
503 /* Fall back to the non-local NUMA nodes: */
504 while (true) {
505 nid = next_node_in(nid, sgx_numa_mask);
506 if (nid == nid_of_current)
507 break;
508
509 page = __sgx_alloc_epc_page_from_node(nid);
510 if (page)
511 return page;
512 }
513
514 return ERR_PTR(-ENOMEM);
515 }
516
517 /**
518 * sgx_mark_page_reclaimable() - Mark a page as reclaimable
519 * @page: EPC page
520 *
521 * Mark a page as reclaimable and add it to the active page list. Pages
522 * are automatically removed from the active list when freed.
523 */
sgx_mark_page_reclaimable(struct sgx_epc_page * page)524 void sgx_mark_page_reclaimable(struct sgx_epc_page *page)
525 {
526 spin_lock(&sgx_reclaimer_lock);
527 page->flags |= SGX_EPC_PAGE_RECLAIMER_TRACKED;
528 list_add_tail(&page->list, &sgx_active_page_list);
529 spin_unlock(&sgx_reclaimer_lock);
530 }
531
532 /**
533 * sgx_unmark_page_reclaimable() - Remove a page from the reclaim list
534 * @page: EPC page
535 *
536 * Clear the reclaimable flag and remove the page from the active page list.
537 *
538 * Return:
539 * 0 on success,
540 * -EBUSY if the page is in the process of being reclaimed
541 */
sgx_unmark_page_reclaimable(struct sgx_epc_page * page)542 int sgx_unmark_page_reclaimable(struct sgx_epc_page *page)
543 {
544 spin_lock(&sgx_reclaimer_lock);
545 if (page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED) {
546 /* The page is being reclaimed. */
547 if (list_empty(&page->list)) {
548 spin_unlock(&sgx_reclaimer_lock);
549 return -EBUSY;
550 }
551
552 list_del(&page->list);
553 page->flags &= ~SGX_EPC_PAGE_RECLAIMER_TRACKED;
554 }
555 spin_unlock(&sgx_reclaimer_lock);
556
557 return 0;
558 }
559
560 /**
561 * sgx_alloc_epc_page() - Allocate an EPC page
562 * @owner: the owner of the EPC page
563 * @reclaim: reclaim pages if necessary
564 *
565 * Iterate through EPC sections and borrow a free EPC page to the caller. When a
566 * page is no longer needed it must be released with sgx_free_epc_page(). If
567 * @reclaim is set to true, directly reclaim pages when we are out of pages. No
568 * mm's can be locked when @reclaim is set to true.
569 *
570 * Finally, wake up ksgxd when the number of pages goes below the watermark
571 * before returning back to the caller.
572 *
573 * Return:
574 * an EPC page,
575 * -errno on error
576 */
sgx_alloc_epc_page(void * owner,bool reclaim)577 struct sgx_epc_page *sgx_alloc_epc_page(void *owner, bool reclaim)
578 {
579 struct sgx_epc_page *page;
580
581 for ( ; ; ) {
582 page = __sgx_alloc_epc_page();
583 if (!IS_ERR(page)) {
584 page->owner = owner;
585 break;
586 }
587
588 if (list_empty(&sgx_active_page_list))
589 return ERR_PTR(-ENOMEM);
590
591 if (!reclaim) {
592 page = ERR_PTR(-EBUSY);
593 break;
594 }
595
596 if (signal_pending(current)) {
597 page = ERR_PTR(-ERESTARTSYS);
598 break;
599 }
600
601 sgx_reclaim_pages();
602 cond_resched();
603 }
604
605 if (sgx_should_reclaim(SGX_NR_LOW_PAGES))
606 wake_up(&ksgxd_waitq);
607
608 return page;
609 }
610
611 /**
612 * sgx_free_epc_page() - Free an EPC page
613 * @page: an EPC page
614 *
615 * Put the EPC page back to the list of free pages. It's the caller's
616 * responsibility to make sure that the page is in uninitialized state. In other
617 * words, do EREMOVE, EWB or whatever operation is necessary before calling
618 * this function.
619 */
sgx_free_epc_page(struct sgx_epc_page * page)620 void sgx_free_epc_page(struct sgx_epc_page *page)
621 {
622 struct sgx_epc_section *section = &sgx_epc_sections[page->section];
623 struct sgx_numa_node *node = section->node;
624
625 spin_lock(&node->lock);
626
627 list_add_tail(&page->list, &node->free_page_list);
628 sgx_nr_free_pages++;
629
630 spin_unlock(&node->lock);
631 }
632
sgx_setup_epc_section(u64 phys_addr,u64 size,unsigned long index,struct sgx_epc_section * section)633 static bool __init sgx_setup_epc_section(u64 phys_addr, u64 size,
634 unsigned long index,
635 struct sgx_epc_section *section)
636 {
637 unsigned long nr_pages = size >> PAGE_SHIFT;
638 unsigned long i;
639
640 section->virt_addr = memremap(phys_addr, size, MEMREMAP_WB);
641 if (!section->virt_addr)
642 return false;
643
644 section->pages = vmalloc(nr_pages * sizeof(struct sgx_epc_page));
645 if (!section->pages) {
646 memunmap(section->virt_addr);
647 return false;
648 }
649
650 section->phys_addr = phys_addr;
651
652 for (i = 0; i < nr_pages; i++) {
653 section->pages[i].section = index;
654 section->pages[i].flags = 0;
655 section->pages[i].owner = NULL;
656 list_add_tail(§ion->pages[i].list, &sgx_dirty_page_list);
657 }
658
659 return true;
660 }
661
662 /**
663 * A section metric is concatenated in a way that @low bits 12-31 define the
664 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
665 * metric.
666 */
sgx_calc_section_metric(u64 low,u64 high)667 static inline u64 __init sgx_calc_section_metric(u64 low, u64 high)
668 {
669 return (low & GENMASK_ULL(31, 12)) +
670 ((high & GENMASK_ULL(19, 0)) << 32);
671 }
672
sgx_page_cache_init(void)673 static bool __init sgx_page_cache_init(void)
674 {
675 u32 eax, ebx, ecx, edx, type;
676 u64 pa, size;
677 int nid;
678 int i;
679
680 sgx_numa_nodes = kmalloc_array(num_possible_nodes(), sizeof(*sgx_numa_nodes), GFP_KERNEL);
681 if (!sgx_numa_nodes)
682 return false;
683
684 for (i = 0; i < ARRAY_SIZE(sgx_epc_sections); i++) {
685 cpuid_count(SGX_CPUID, i + SGX_CPUID_EPC, &eax, &ebx, &ecx, &edx);
686
687 type = eax & SGX_CPUID_EPC_MASK;
688 if (type == SGX_CPUID_EPC_INVALID)
689 break;
690
691 if (type != SGX_CPUID_EPC_SECTION) {
692 pr_err_once("Unknown EPC section type: %u\n", type);
693 break;
694 }
695
696 pa = sgx_calc_section_metric(eax, ebx);
697 size = sgx_calc_section_metric(ecx, edx);
698
699 pr_info("EPC section 0x%llx-0x%llx\n", pa, pa + size - 1);
700
701 if (!sgx_setup_epc_section(pa, size, i, &sgx_epc_sections[i])) {
702 pr_err("No free memory for an EPC section\n");
703 break;
704 }
705
706 nid = numa_map_to_online_node(phys_to_target_node(pa));
707 if (nid == NUMA_NO_NODE) {
708 /* The physical address is already printed above. */
709 pr_warn(FW_BUG "Unable to map EPC section to online node. Fallback to the NUMA node 0.\n");
710 nid = 0;
711 }
712
713 if (!node_isset(nid, sgx_numa_mask)) {
714 spin_lock_init(&sgx_numa_nodes[nid].lock);
715 INIT_LIST_HEAD(&sgx_numa_nodes[nid].free_page_list);
716 node_set(nid, sgx_numa_mask);
717 }
718
719 sgx_epc_sections[i].node = &sgx_numa_nodes[nid];
720
721 sgx_nr_epc_sections++;
722 }
723
724 if (!sgx_nr_epc_sections) {
725 pr_err("There are zero EPC sections.\n");
726 return false;
727 }
728
729 return true;
730 }
731
732 /*
733 * Update the SGX_LEPUBKEYHASH MSRs to the values specified by caller.
734 * Bare-metal driver requires to update them to hash of enclave's signer
735 * before EINIT. KVM needs to update them to guest's virtual MSR values
736 * before doing EINIT from guest.
737 */
sgx_update_lepubkeyhash(u64 * lepubkeyhash)738 void sgx_update_lepubkeyhash(u64 *lepubkeyhash)
739 {
740 int i;
741
742 WARN_ON_ONCE(preemptible());
743
744 for (i = 0; i < 4; i++)
745 wrmsrl(MSR_IA32_SGXLEPUBKEYHASH0 + i, lepubkeyhash[i]);
746 }
747
748 const struct file_operations sgx_provision_fops = {
749 .owner = THIS_MODULE,
750 };
751
752 static struct miscdevice sgx_dev_provision = {
753 .minor = MISC_DYNAMIC_MINOR,
754 .name = "sgx_provision",
755 .nodename = "sgx_provision",
756 .fops = &sgx_provision_fops,
757 };
758
759 /**
760 * sgx_set_attribute() - Update allowed attributes given file descriptor
761 * @allowed_attributes: Pointer to allowed enclave attributes
762 * @attribute_fd: File descriptor for specific attribute
763 *
764 * Append enclave attribute indicated by file descriptor to allowed
765 * attributes. Currently only SGX_ATTR_PROVISIONKEY indicated by
766 * /dev/sgx_provision is supported.
767 *
768 * Return:
769 * -0: SGX_ATTR_PROVISIONKEY is appended to allowed_attributes
770 * -EINVAL: Invalid, or not supported file descriptor
771 */
sgx_set_attribute(unsigned long * allowed_attributes,unsigned int attribute_fd)772 int sgx_set_attribute(unsigned long *allowed_attributes,
773 unsigned int attribute_fd)
774 {
775 struct file *file;
776
777 file = fget(attribute_fd);
778 if (!file)
779 return -EINVAL;
780
781 if (file->f_op != &sgx_provision_fops) {
782 fput(file);
783 return -EINVAL;
784 }
785
786 *allowed_attributes |= SGX_ATTR_PROVISIONKEY;
787
788 fput(file);
789 return 0;
790 }
791 EXPORT_SYMBOL_GPL(sgx_set_attribute);
792
sgx_init(void)793 static int __init sgx_init(void)
794 {
795 int ret;
796 int i;
797
798 if (!cpu_feature_enabled(X86_FEATURE_SGX))
799 return -ENODEV;
800
801 if (!sgx_page_cache_init())
802 return -ENOMEM;
803
804 if (!sgx_page_reclaimer_init()) {
805 ret = -ENOMEM;
806 goto err_page_cache;
807 }
808
809 ret = misc_register(&sgx_dev_provision);
810 if (ret)
811 goto err_kthread;
812
813 /*
814 * Always try to initialize the native *and* KVM drivers.
815 * The KVM driver is less picky than the native one and
816 * can function if the native one is not supported on the
817 * current system or fails to initialize.
818 *
819 * Error out only if both fail to initialize.
820 */
821 ret = sgx_drv_init();
822
823 if (sgx_vepc_init() && ret)
824 goto err_provision;
825
826 return 0;
827
828 err_provision:
829 misc_deregister(&sgx_dev_provision);
830
831 err_kthread:
832 kthread_stop(ksgxd_tsk);
833
834 err_page_cache:
835 for (i = 0; i < sgx_nr_epc_sections; i++) {
836 vfree(sgx_epc_sections[i].pages);
837 memunmap(sgx_epc_sections[i].virt_addr);
838 }
839
840 return ret;
841 }
842
843 device_initcall(sgx_init);
844