1 // SPDX-License-Identifier: GPL-2.0
2 /*  Copyright(c) 2016-20 Intel Corporation. */
3 
4 #include <linux/lockdep.h>
5 #include <linux/mm.h>
6 #include <linux/mman.h>
7 #include <linux/shmem_fs.h>
8 #include <linux/suspend.h>
9 #include <linux/sched/mm.h>
10 #include <asm/sgx.h>
11 #include "encl.h"
12 #include "encls.h"
13 #include "sgx.h"
14 
15 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
16 			    struct sgx_backing *backing);
17 
18 #define PCMDS_PER_PAGE (PAGE_SIZE / sizeof(struct sgx_pcmd))
19 /*
20  * 32 PCMD entries share a PCMD page. PCMD_FIRST_MASK is used to
21  * determine the page index associated with the first PCMD entry
22  * within a PCMD page.
23  */
24 #define PCMD_FIRST_MASK GENMASK(4, 0)
25 
26 /**
27  * reclaimer_writing_to_pcmd() - Query if any enclave page associated with
28  *                               a PCMD page is in process of being reclaimed.
29  * @encl:        Enclave to which PCMD page belongs
30  * @start_addr:  Address of enclave page using first entry within the PCMD page
31  *
32  * When an enclave page is reclaimed some Paging Crypto MetaData (PCMD) is
33  * stored. The PCMD data of a reclaimed enclave page contains enough
34  * information for the processor to verify the page at the time
35  * it is loaded back into the Enclave Page Cache (EPC).
36  *
37  * The backing storage to which enclave pages are reclaimed is laid out as
38  * follows:
39  * Encrypted enclave pages:SECS page:PCMD pages
40  *
41  * Each PCMD page contains the PCMD metadata of
42  * PAGE_SIZE/sizeof(struct sgx_pcmd) enclave pages.
43  *
44  * A PCMD page can only be truncated if it is (a) empty, and (b) not in the
45  * process of getting data (and thus soon being non-empty). (b) is tested with
46  * a check if an enclave page sharing the PCMD page is in the process of being
47  * reclaimed.
48  *
49  * The reclaimer sets the SGX_ENCL_PAGE_BEING_RECLAIMED flag when it
50  * intends to reclaim that enclave page - it means that the PCMD page
51  * associated with that enclave page is about to get some data and thus
52  * even if the PCMD page is empty, it should not be truncated.
53  *
54  * Context: Enclave mutex (&sgx_encl->lock) must be held.
55  * Return: 1 if the reclaimer is about to write to the PCMD page
56  *         0 if the reclaimer has no intention to write to the PCMD page
57  */
reclaimer_writing_to_pcmd(struct sgx_encl * encl,unsigned long start_addr)58 static int reclaimer_writing_to_pcmd(struct sgx_encl *encl,
59 				     unsigned long start_addr)
60 {
61 	int reclaimed = 0;
62 	int i;
63 
64 	/*
65 	 * PCMD_FIRST_MASK is based on number of PCMD entries within
66 	 * PCMD page being 32.
67 	 */
68 	BUILD_BUG_ON(PCMDS_PER_PAGE != 32);
69 
70 	for (i = 0; i < PCMDS_PER_PAGE; i++) {
71 		struct sgx_encl_page *entry;
72 		unsigned long addr;
73 
74 		addr = start_addr + i * PAGE_SIZE;
75 
76 		/*
77 		 * Stop when reaching the SECS page - it does not
78 		 * have a page_array entry and its reclaim is
79 		 * started and completed with enclave mutex held so
80 		 * it does not use the SGX_ENCL_PAGE_BEING_RECLAIMED
81 		 * flag.
82 		 */
83 		if (addr == encl->base + encl->size)
84 			break;
85 
86 		entry = xa_load(&encl->page_array, PFN_DOWN(addr));
87 		if (!entry)
88 			continue;
89 
90 		/*
91 		 * VA page slot ID uses same bit as the flag so it is important
92 		 * to ensure that the page is not already in backing store.
93 		 */
94 		if (entry->epc_page &&
95 		    (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)) {
96 			reclaimed = 1;
97 			break;
98 		}
99 	}
100 
101 	return reclaimed;
102 }
103 
104 /*
105  * Calculate byte offset of a PCMD struct associated with an enclave page. PCMD's
106  * follow right after the EPC data in the backing storage. In addition to the
107  * visible enclave pages, there's one extra page slot for SECS, before PCMD
108  * structs.
109  */
sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl * encl,unsigned long page_index)110 static inline pgoff_t sgx_encl_get_backing_page_pcmd_offset(struct sgx_encl *encl,
111 							    unsigned long page_index)
112 {
113 	pgoff_t epc_end_off = encl->size + sizeof(struct sgx_secs);
114 
115 	return epc_end_off + page_index * sizeof(struct sgx_pcmd);
116 }
117 
118 /*
119  * Free a page from the backing storage in the given page index.
120  */
sgx_encl_truncate_backing_page(struct sgx_encl * encl,unsigned long page_index)121 static inline void sgx_encl_truncate_backing_page(struct sgx_encl *encl, unsigned long page_index)
122 {
123 	struct inode *inode = file_inode(encl->backing);
124 
125 	shmem_truncate_range(inode, PFN_PHYS(page_index), PFN_PHYS(page_index) + PAGE_SIZE - 1);
126 }
127 
128 /*
129  * ELDU: Load an EPC page as unblocked. For more info, see "OS Management of EPC
130  * Pages" in the SDM.
131  */
__sgx_encl_eldu(struct sgx_encl_page * encl_page,struct sgx_epc_page * epc_page,struct sgx_epc_page * secs_page)132 static int __sgx_encl_eldu(struct sgx_encl_page *encl_page,
133 			   struct sgx_epc_page *epc_page,
134 			   struct sgx_epc_page *secs_page)
135 {
136 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
137 	struct sgx_encl *encl = encl_page->encl;
138 	pgoff_t page_index, page_pcmd_off;
139 	unsigned long pcmd_first_page;
140 	struct sgx_pageinfo pginfo;
141 	struct sgx_backing b;
142 	bool pcmd_page_empty;
143 	u8 *pcmd_page;
144 	int ret;
145 
146 	if (secs_page)
147 		page_index = PFN_DOWN(encl_page->desc - encl_page->encl->base);
148 	else
149 		page_index = PFN_DOWN(encl->size);
150 
151 	/*
152 	 * Address of enclave page using the first entry within the PCMD page.
153 	 */
154 	pcmd_first_page = PFN_PHYS(page_index & ~PCMD_FIRST_MASK) + encl->base;
155 
156 	page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
157 
158 	ret = sgx_encl_lookup_backing(encl, page_index, &b);
159 	if (ret)
160 		return ret;
161 
162 	pginfo.addr = encl_page->desc & PAGE_MASK;
163 	pginfo.contents = (unsigned long)kmap_local_page(b.contents);
164 	pcmd_page = kmap_local_page(b.pcmd);
165 	pginfo.metadata = (unsigned long)pcmd_page + b.pcmd_offset;
166 
167 	if (secs_page)
168 		pginfo.secs = (u64)sgx_get_epc_virt_addr(secs_page);
169 	else
170 		pginfo.secs = 0;
171 
172 	ret = __eldu(&pginfo, sgx_get_epc_virt_addr(epc_page),
173 		     sgx_get_epc_virt_addr(encl_page->va_page->epc_page) + va_offset);
174 	if (ret) {
175 		if (encls_failed(ret))
176 			ENCLS_WARN(ret, "ELDU");
177 
178 		ret = -EFAULT;
179 	}
180 
181 	memset(pcmd_page + b.pcmd_offset, 0, sizeof(struct sgx_pcmd));
182 	set_page_dirty(b.pcmd);
183 
184 	/*
185 	 * The area for the PCMD in the page was zeroed above.  Check if the
186 	 * whole page is now empty meaning that all PCMD's have been zeroed:
187 	 */
188 	pcmd_page_empty = !memchr_inv(pcmd_page, 0, PAGE_SIZE);
189 
190 	kunmap_local(pcmd_page);
191 	kunmap_local((void *)(unsigned long)pginfo.contents);
192 
193 	get_page(b.pcmd);
194 	sgx_encl_put_backing(&b);
195 
196 	sgx_encl_truncate_backing_page(encl, page_index);
197 
198 	if (pcmd_page_empty && !reclaimer_writing_to_pcmd(encl, pcmd_first_page)) {
199 		sgx_encl_truncate_backing_page(encl, PFN_DOWN(page_pcmd_off));
200 		pcmd_page = kmap_local_page(b.pcmd);
201 		if (memchr_inv(pcmd_page, 0, PAGE_SIZE))
202 			pr_warn("PCMD page not empty after truncate.\n");
203 		kunmap_local(pcmd_page);
204 	}
205 
206 	put_page(b.pcmd);
207 
208 	return ret;
209 }
210 
sgx_encl_eldu(struct sgx_encl_page * encl_page,struct sgx_epc_page * secs_page)211 static struct sgx_epc_page *sgx_encl_eldu(struct sgx_encl_page *encl_page,
212 					  struct sgx_epc_page *secs_page)
213 {
214 
215 	unsigned long va_offset = encl_page->desc & SGX_ENCL_PAGE_VA_OFFSET_MASK;
216 	struct sgx_encl *encl = encl_page->encl;
217 	struct sgx_epc_page *epc_page;
218 	int ret;
219 
220 	epc_page = sgx_alloc_epc_page(encl_page, false);
221 	if (IS_ERR(epc_page))
222 		return epc_page;
223 
224 	ret = __sgx_encl_eldu(encl_page, epc_page, secs_page);
225 	if (ret) {
226 		sgx_encl_free_epc_page(epc_page);
227 		return ERR_PTR(ret);
228 	}
229 
230 	sgx_free_va_slot(encl_page->va_page, va_offset);
231 	list_move(&encl_page->va_page->list, &encl->va_pages);
232 	encl_page->desc &= ~SGX_ENCL_PAGE_VA_OFFSET_MASK;
233 	encl_page->epc_page = epc_page;
234 
235 	return epc_page;
236 }
237 
238 /*
239  * Ensure the SECS page is not swapped out.  Must be called with encl->lock
240  * to protect the enclave states including SECS and ensure the SECS page is
241  * not swapped out again while being used.
242  */
sgx_encl_load_secs(struct sgx_encl * encl)243 static struct sgx_epc_page *sgx_encl_load_secs(struct sgx_encl *encl)
244 {
245 	struct sgx_epc_page *epc_page = encl->secs.epc_page;
246 
247 	if (!epc_page)
248 		epc_page = sgx_encl_eldu(&encl->secs, NULL);
249 
250 	return epc_page;
251 }
252 
__sgx_encl_load_page(struct sgx_encl * encl,struct sgx_encl_page * entry)253 static struct sgx_encl_page *__sgx_encl_load_page(struct sgx_encl *encl,
254 						  struct sgx_encl_page *entry)
255 {
256 	struct sgx_epc_page *epc_page;
257 
258 	/* Entry successfully located. */
259 	if (entry->epc_page) {
260 		if (entry->desc & SGX_ENCL_PAGE_BEING_RECLAIMED)
261 			return ERR_PTR(-EBUSY);
262 
263 		return entry;
264 	}
265 
266 	epc_page = sgx_encl_load_secs(encl);
267 	if (IS_ERR(epc_page))
268 		return ERR_CAST(epc_page);
269 
270 	epc_page = sgx_encl_eldu(entry, encl->secs.epc_page);
271 	if (IS_ERR(epc_page))
272 		return ERR_CAST(epc_page);
273 
274 	encl->secs_child_cnt++;
275 	sgx_mark_page_reclaimable(entry->epc_page);
276 
277 	return entry;
278 }
279 
sgx_encl_load_page_in_vma(struct sgx_encl * encl,unsigned long addr,unsigned long vm_flags)280 static struct sgx_encl_page *sgx_encl_load_page_in_vma(struct sgx_encl *encl,
281 						       unsigned long addr,
282 						       unsigned long vm_flags)
283 {
284 	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
285 	struct sgx_encl_page *entry;
286 
287 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
288 	if (!entry)
289 		return ERR_PTR(-EFAULT);
290 
291 	/*
292 	 * Verify that the page has equal or higher build time
293 	 * permissions than the VMA permissions (i.e. the subset of {VM_READ,
294 	 * VM_WRITE, VM_EXECUTE} in vma->vm_flags).
295 	 */
296 	if ((entry->vm_max_prot_bits & vm_prot_bits) != vm_prot_bits)
297 		return ERR_PTR(-EFAULT);
298 
299 	return __sgx_encl_load_page(encl, entry);
300 }
301 
sgx_encl_load_page(struct sgx_encl * encl,unsigned long addr)302 struct sgx_encl_page *sgx_encl_load_page(struct sgx_encl *encl,
303 					 unsigned long addr)
304 {
305 	struct sgx_encl_page *entry;
306 
307 	entry = xa_load(&encl->page_array, PFN_DOWN(addr));
308 	if (!entry)
309 		return ERR_PTR(-EFAULT);
310 
311 	return __sgx_encl_load_page(encl, entry);
312 }
313 
314 /**
315  * sgx_encl_eaug_page() - Dynamically add page to initialized enclave
316  * @vma:	VMA obtained from fault info from where page is accessed
317  * @encl:	enclave accessing the page
318  * @addr:	address that triggered the page fault
319  *
320  * When an initialized enclave accesses a page with no backing EPC page
321  * on a SGX2 system then the EPC can be added dynamically via the SGX2
322  * ENCLS[EAUG] instruction.
323  *
324  * Returns: Appropriate vm_fault_t: VM_FAULT_NOPAGE when PTE was installed
325  * successfully, VM_FAULT_SIGBUS or VM_FAULT_OOM as error otherwise.
326  */
sgx_encl_eaug_page(struct vm_area_struct * vma,struct sgx_encl * encl,unsigned long addr)327 static vm_fault_t sgx_encl_eaug_page(struct vm_area_struct *vma,
328 				     struct sgx_encl *encl, unsigned long addr)
329 {
330 	vm_fault_t vmret = VM_FAULT_SIGBUS;
331 	struct sgx_pageinfo pginfo = {0};
332 	struct sgx_encl_page *encl_page;
333 	struct sgx_epc_page *epc_page;
334 	struct sgx_va_page *va_page;
335 	unsigned long phys_addr;
336 	u64 secinfo_flags;
337 	int ret;
338 
339 	if (!test_bit(SGX_ENCL_INITIALIZED, &encl->flags))
340 		return VM_FAULT_SIGBUS;
341 
342 	/*
343 	 * Ignore internal permission checking for dynamically added pages.
344 	 * They matter only for data added during the pre-initialization
345 	 * phase. The enclave decides the permissions by the means of
346 	 * EACCEPT, EACCEPTCOPY and EMODPE.
347 	 */
348 	secinfo_flags = SGX_SECINFO_R | SGX_SECINFO_W | SGX_SECINFO_X;
349 	encl_page = sgx_encl_page_alloc(encl, addr - encl->base, secinfo_flags);
350 	if (IS_ERR(encl_page))
351 		return VM_FAULT_OOM;
352 
353 	mutex_lock(&encl->lock);
354 
355 	epc_page = sgx_encl_load_secs(encl);
356 	if (IS_ERR(epc_page)) {
357 		if (PTR_ERR(epc_page) == -EBUSY)
358 			vmret = VM_FAULT_NOPAGE;
359 		goto err_out_unlock;
360 	}
361 
362 	epc_page = sgx_alloc_epc_page(encl_page, false);
363 	if (IS_ERR(epc_page)) {
364 		if (PTR_ERR(epc_page) == -EBUSY)
365 			vmret =  VM_FAULT_NOPAGE;
366 		goto err_out_unlock;
367 	}
368 
369 	va_page = sgx_encl_grow(encl, false);
370 	if (IS_ERR(va_page)) {
371 		if (PTR_ERR(va_page) == -EBUSY)
372 			vmret = VM_FAULT_NOPAGE;
373 		goto err_out_epc;
374 	}
375 
376 	if (va_page)
377 		list_add(&va_page->list, &encl->va_pages);
378 
379 	ret = xa_insert(&encl->page_array, PFN_DOWN(encl_page->desc),
380 			encl_page, GFP_KERNEL);
381 	/*
382 	 * If ret == -EBUSY then page was created in another flow while
383 	 * running without encl->lock
384 	 */
385 	if (ret)
386 		goto err_out_shrink;
387 
388 	pginfo.secs = (unsigned long)sgx_get_epc_virt_addr(encl->secs.epc_page);
389 	pginfo.addr = encl_page->desc & PAGE_MASK;
390 	pginfo.metadata = 0;
391 
392 	ret = __eaug(&pginfo, sgx_get_epc_virt_addr(epc_page));
393 	if (ret)
394 		goto err_out;
395 
396 	encl_page->encl = encl;
397 	encl_page->epc_page = epc_page;
398 	encl_page->type = SGX_PAGE_TYPE_REG;
399 	encl->secs_child_cnt++;
400 
401 	sgx_mark_page_reclaimable(encl_page->epc_page);
402 
403 	phys_addr = sgx_get_epc_phys_addr(epc_page);
404 	/*
405 	 * Do not undo everything when creating PTE entry fails - next #PF
406 	 * would find page ready for a PTE.
407 	 */
408 	vmret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
409 	if (vmret != VM_FAULT_NOPAGE) {
410 		mutex_unlock(&encl->lock);
411 		return VM_FAULT_SIGBUS;
412 	}
413 	mutex_unlock(&encl->lock);
414 	return VM_FAULT_NOPAGE;
415 
416 err_out:
417 	xa_erase(&encl->page_array, PFN_DOWN(encl_page->desc));
418 
419 err_out_shrink:
420 	sgx_encl_shrink(encl, va_page);
421 err_out_epc:
422 	sgx_encl_free_epc_page(epc_page);
423 err_out_unlock:
424 	mutex_unlock(&encl->lock);
425 	kfree(encl_page);
426 
427 	return vmret;
428 }
429 
sgx_vma_fault(struct vm_fault * vmf)430 static vm_fault_t sgx_vma_fault(struct vm_fault *vmf)
431 {
432 	unsigned long addr = (unsigned long)vmf->address;
433 	struct vm_area_struct *vma = vmf->vma;
434 	struct sgx_encl_page *entry;
435 	unsigned long phys_addr;
436 	struct sgx_encl *encl;
437 	vm_fault_t ret;
438 
439 	encl = vma->vm_private_data;
440 
441 	/*
442 	 * It's very unlikely but possible that allocating memory for the
443 	 * mm_list entry of a forked process failed in sgx_vma_open(). When
444 	 * this happens, vm_private_data is set to NULL.
445 	 */
446 	if (unlikely(!encl))
447 		return VM_FAULT_SIGBUS;
448 
449 	/*
450 	 * The page_array keeps track of all enclave pages, whether they
451 	 * are swapped out or not. If there is no entry for this page and
452 	 * the system supports SGX2 then it is possible to dynamically add
453 	 * a new enclave page. This is only possible for an initialized
454 	 * enclave that will be checked for right away.
455 	 */
456 	if (cpu_feature_enabled(X86_FEATURE_SGX2) &&
457 	    (!xa_load(&encl->page_array, PFN_DOWN(addr))))
458 		return sgx_encl_eaug_page(vma, encl, addr);
459 
460 	mutex_lock(&encl->lock);
461 
462 	entry = sgx_encl_load_page_in_vma(encl, addr, vma->vm_flags);
463 	if (IS_ERR(entry)) {
464 		mutex_unlock(&encl->lock);
465 
466 		if (PTR_ERR(entry) == -EBUSY)
467 			return VM_FAULT_NOPAGE;
468 
469 		return VM_FAULT_SIGBUS;
470 	}
471 
472 	phys_addr = sgx_get_epc_phys_addr(entry->epc_page);
473 
474 	ret = vmf_insert_pfn(vma, addr, PFN_DOWN(phys_addr));
475 	if (ret != VM_FAULT_NOPAGE) {
476 		mutex_unlock(&encl->lock);
477 
478 		return VM_FAULT_SIGBUS;
479 	}
480 
481 	sgx_encl_test_and_clear_young(vma->vm_mm, entry);
482 	mutex_unlock(&encl->lock);
483 
484 	return VM_FAULT_NOPAGE;
485 }
486 
sgx_vma_open(struct vm_area_struct * vma)487 static void sgx_vma_open(struct vm_area_struct *vma)
488 {
489 	struct sgx_encl *encl = vma->vm_private_data;
490 
491 	/*
492 	 * It's possible but unlikely that vm_private_data is NULL. This can
493 	 * happen in a grandchild of a process, when sgx_encl_mm_add() had
494 	 * failed to allocate memory in this callback.
495 	 */
496 	if (unlikely(!encl))
497 		return;
498 
499 	if (sgx_encl_mm_add(encl, vma->vm_mm))
500 		vma->vm_private_data = NULL;
501 }
502 
503 
504 /**
505  * sgx_encl_may_map() - Check if a requested VMA mapping is allowed
506  * @encl:		an enclave pointer
507  * @start:		lower bound of the address range, inclusive
508  * @end:		upper bound of the address range, exclusive
509  * @vm_flags:		VMA flags
510  *
511  * Iterate through the enclave pages contained within [@start, @end) to verify
512  * that the permissions requested by a subset of {VM_READ, VM_WRITE, VM_EXEC}
513  * do not contain any permissions that are not contained in the build time
514  * permissions of any of the enclave pages within the given address range.
515  *
516  * An enclave creator must declare the strongest permissions that will be
517  * needed for each enclave page. This ensures that mappings have the identical
518  * or weaker permissions than the earlier declared permissions.
519  *
520  * Return: 0 on success, -EACCES otherwise
521  */
sgx_encl_may_map(struct sgx_encl * encl,unsigned long start,unsigned long end,unsigned long vm_flags)522 int sgx_encl_may_map(struct sgx_encl *encl, unsigned long start,
523 		     unsigned long end, unsigned long vm_flags)
524 {
525 	unsigned long vm_prot_bits = vm_flags & VM_ACCESS_FLAGS;
526 	struct sgx_encl_page *page;
527 	unsigned long count = 0;
528 	int ret = 0;
529 
530 	XA_STATE(xas, &encl->page_array, PFN_DOWN(start));
531 
532 	/* Disallow mapping outside enclave's address range. */
533 	if (test_bit(SGX_ENCL_INITIALIZED, &encl->flags) &&
534 	    (start < encl->base || end > encl->base + encl->size))
535 		return -EACCES;
536 
537 	/*
538 	 * Disallow READ_IMPLIES_EXEC tasks as their VMA permissions might
539 	 * conflict with the enclave page permissions.
540 	 */
541 	if (current->personality & READ_IMPLIES_EXEC)
542 		return -EACCES;
543 
544 	mutex_lock(&encl->lock);
545 	xas_lock(&xas);
546 	xas_for_each(&xas, page, PFN_DOWN(end - 1)) {
547 		if (~page->vm_max_prot_bits & vm_prot_bits) {
548 			ret = -EACCES;
549 			break;
550 		}
551 
552 		/* Reschedule on every XA_CHECK_SCHED iteration. */
553 		if (!(++count % XA_CHECK_SCHED)) {
554 			xas_pause(&xas);
555 			xas_unlock(&xas);
556 			mutex_unlock(&encl->lock);
557 
558 			cond_resched();
559 
560 			mutex_lock(&encl->lock);
561 			xas_lock(&xas);
562 		}
563 	}
564 	xas_unlock(&xas);
565 	mutex_unlock(&encl->lock);
566 
567 	return ret;
568 }
569 
sgx_vma_mprotect(struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long newflags)570 static int sgx_vma_mprotect(struct vm_area_struct *vma, unsigned long start,
571 			    unsigned long end, unsigned long newflags)
572 {
573 	return sgx_encl_may_map(vma->vm_private_data, start, end, newflags);
574 }
575 
sgx_encl_debug_read(struct sgx_encl * encl,struct sgx_encl_page * page,unsigned long addr,void * data)576 static int sgx_encl_debug_read(struct sgx_encl *encl, struct sgx_encl_page *page,
577 			       unsigned long addr, void *data)
578 {
579 	unsigned long offset = addr & ~PAGE_MASK;
580 	int ret;
581 
582 
583 	ret = __edbgrd(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
584 	if (ret)
585 		return -EIO;
586 
587 	return 0;
588 }
589 
sgx_encl_debug_write(struct sgx_encl * encl,struct sgx_encl_page * page,unsigned long addr,void * data)590 static int sgx_encl_debug_write(struct sgx_encl *encl, struct sgx_encl_page *page,
591 				unsigned long addr, void *data)
592 {
593 	unsigned long offset = addr & ~PAGE_MASK;
594 	int ret;
595 
596 	ret = __edbgwr(sgx_get_epc_virt_addr(page->epc_page) + offset, data);
597 	if (ret)
598 		return -EIO;
599 
600 	return 0;
601 }
602 
603 /*
604  * Load an enclave page to EPC if required, and take encl->lock.
605  */
sgx_encl_reserve_page(struct sgx_encl * encl,unsigned long addr,unsigned long vm_flags)606 static struct sgx_encl_page *sgx_encl_reserve_page(struct sgx_encl *encl,
607 						   unsigned long addr,
608 						   unsigned long vm_flags)
609 {
610 	struct sgx_encl_page *entry;
611 
612 	for ( ; ; ) {
613 		mutex_lock(&encl->lock);
614 
615 		entry = sgx_encl_load_page_in_vma(encl, addr, vm_flags);
616 		if (PTR_ERR(entry) != -EBUSY)
617 			break;
618 
619 		mutex_unlock(&encl->lock);
620 	}
621 
622 	if (IS_ERR(entry))
623 		mutex_unlock(&encl->lock);
624 
625 	return entry;
626 }
627 
sgx_vma_access(struct vm_area_struct * vma,unsigned long addr,void * buf,int len,int write)628 static int sgx_vma_access(struct vm_area_struct *vma, unsigned long addr,
629 			  void *buf, int len, int write)
630 {
631 	struct sgx_encl *encl = vma->vm_private_data;
632 	struct sgx_encl_page *entry = NULL;
633 	char data[sizeof(unsigned long)];
634 	unsigned long align;
635 	int offset;
636 	int cnt;
637 	int ret = 0;
638 	int i;
639 
640 	/*
641 	 * If process was forked, VMA is still there but vm_private_data is set
642 	 * to NULL.
643 	 */
644 	if (!encl)
645 		return -EFAULT;
646 
647 	if (!test_bit(SGX_ENCL_DEBUG, &encl->flags))
648 		return -EFAULT;
649 
650 	for (i = 0; i < len; i += cnt) {
651 		entry = sgx_encl_reserve_page(encl, (addr + i) & PAGE_MASK,
652 					      vma->vm_flags);
653 		if (IS_ERR(entry)) {
654 			ret = PTR_ERR(entry);
655 			break;
656 		}
657 
658 		align = ALIGN_DOWN(addr + i, sizeof(unsigned long));
659 		offset = (addr + i) & (sizeof(unsigned long) - 1);
660 		cnt = sizeof(unsigned long) - offset;
661 		cnt = min(cnt, len - i);
662 
663 		ret = sgx_encl_debug_read(encl, entry, align, data);
664 		if (ret)
665 			goto out;
666 
667 		if (write) {
668 			memcpy(data + offset, buf + i, cnt);
669 			ret = sgx_encl_debug_write(encl, entry, align, data);
670 			if (ret)
671 				goto out;
672 		} else {
673 			memcpy(buf + i, data + offset, cnt);
674 		}
675 
676 out:
677 		mutex_unlock(&encl->lock);
678 
679 		if (ret)
680 			break;
681 	}
682 
683 	return ret < 0 ? ret : i;
684 }
685 
686 const struct vm_operations_struct sgx_vm_ops = {
687 	.fault = sgx_vma_fault,
688 	.mprotect = sgx_vma_mprotect,
689 	.open = sgx_vma_open,
690 	.access = sgx_vma_access,
691 };
692 
693 /**
694  * sgx_encl_release - Destroy an enclave instance
695  * @ref:	address of a kref inside &sgx_encl
696  *
697  * Used together with kref_put(). Frees all the resources associated with the
698  * enclave and the instance itself.
699  */
sgx_encl_release(struct kref * ref)700 void sgx_encl_release(struct kref *ref)
701 {
702 	struct sgx_encl *encl = container_of(ref, struct sgx_encl, refcount);
703 	unsigned long max_page_index = PFN_DOWN(encl->base + encl->size - 1);
704 	struct sgx_va_page *va_page;
705 	struct sgx_encl_page *entry;
706 	unsigned long count = 0;
707 
708 	XA_STATE(xas, &encl->page_array, PFN_DOWN(encl->base));
709 
710 	xas_lock(&xas);
711 	xas_for_each(&xas, entry, max_page_index) {
712 		if (entry->epc_page) {
713 			/*
714 			 * The page and its radix tree entry cannot be freed
715 			 * if the page is being held by the reclaimer.
716 			 */
717 			if (sgx_unmark_page_reclaimable(entry->epc_page))
718 				continue;
719 
720 			sgx_encl_free_epc_page(entry->epc_page);
721 			encl->secs_child_cnt--;
722 			entry->epc_page = NULL;
723 		}
724 
725 		kfree(entry);
726 		/*
727 		 * Invoke scheduler on every XA_CHECK_SCHED iteration
728 		 * to prevent soft lockups.
729 		 */
730 		if (!(++count % XA_CHECK_SCHED)) {
731 			xas_pause(&xas);
732 			xas_unlock(&xas);
733 
734 			cond_resched();
735 
736 			xas_lock(&xas);
737 		}
738 	}
739 	xas_unlock(&xas);
740 
741 	xa_destroy(&encl->page_array);
742 
743 	if (!encl->secs_child_cnt && encl->secs.epc_page) {
744 		sgx_encl_free_epc_page(encl->secs.epc_page);
745 		encl->secs.epc_page = NULL;
746 	}
747 
748 	while (!list_empty(&encl->va_pages)) {
749 		va_page = list_first_entry(&encl->va_pages, struct sgx_va_page,
750 					   list);
751 		list_del(&va_page->list);
752 		sgx_encl_free_epc_page(va_page->epc_page);
753 		kfree(va_page);
754 	}
755 
756 	if (encl->backing)
757 		fput(encl->backing);
758 
759 	cleanup_srcu_struct(&encl->srcu);
760 
761 	WARN_ON_ONCE(!list_empty(&encl->mm_list));
762 
763 	/* Detect EPC page leak's. */
764 	WARN_ON_ONCE(encl->secs_child_cnt);
765 	WARN_ON_ONCE(encl->secs.epc_page);
766 
767 	kfree(encl);
768 }
769 
770 /*
771  * 'mm' is exiting and no longer needs mmu notifications.
772  */
sgx_mmu_notifier_release(struct mmu_notifier * mn,struct mm_struct * mm)773 static void sgx_mmu_notifier_release(struct mmu_notifier *mn,
774 				     struct mm_struct *mm)
775 {
776 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
777 	struct sgx_encl_mm *tmp = NULL;
778 	bool found = false;
779 
780 	/*
781 	 * The enclave itself can remove encl_mm.  Note, objects can't be moved
782 	 * off an RCU protected list, but deletion is ok.
783 	 */
784 	spin_lock(&encl_mm->encl->mm_lock);
785 	list_for_each_entry(tmp, &encl_mm->encl->mm_list, list) {
786 		if (tmp == encl_mm) {
787 			list_del_rcu(&encl_mm->list);
788 			found = true;
789 			break;
790 		}
791 	}
792 	spin_unlock(&encl_mm->encl->mm_lock);
793 
794 	if (found) {
795 		synchronize_srcu(&encl_mm->encl->srcu);
796 		mmu_notifier_put(mn);
797 	}
798 }
799 
sgx_mmu_notifier_free(struct mmu_notifier * mn)800 static void sgx_mmu_notifier_free(struct mmu_notifier *mn)
801 {
802 	struct sgx_encl_mm *encl_mm = container_of(mn, struct sgx_encl_mm, mmu_notifier);
803 
804 	/* 'encl_mm' is going away, put encl_mm->encl reference: */
805 	kref_put(&encl_mm->encl->refcount, sgx_encl_release);
806 
807 	kfree(encl_mm);
808 }
809 
810 static const struct mmu_notifier_ops sgx_mmu_notifier_ops = {
811 	.release		= sgx_mmu_notifier_release,
812 	.free_notifier		= sgx_mmu_notifier_free,
813 };
814 
sgx_encl_find_mm(struct sgx_encl * encl,struct mm_struct * mm)815 static struct sgx_encl_mm *sgx_encl_find_mm(struct sgx_encl *encl,
816 					    struct mm_struct *mm)
817 {
818 	struct sgx_encl_mm *encl_mm = NULL;
819 	struct sgx_encl_mm *tmp;
820 	int idx;
821 
822 	idx = srcu_read_lock(&encl->srcu);
823 
824 	list_for_each_entry_rcu(tmp, &encl->mm_list, list) {
825 		if (tmp->mm == mm) {
826 			encl_mm = tmp;
827 			break;
828 		}
829 	}
830 
831 	srcu_read_unlock(&encl->srcu, idx);
832 
833 	return encl_mm;
834 }
835 
sgx_encl_mm_add(struct sgx_encl * encl,struct mm_struct * mm)836 int sgx_encl_mm_add(struct sgx_encl *encl, struct mm_struct *mm)
837 {
838 	struct sgx_encl_mm *encl_mm;
839 	int ret;
840 
841 	/*
842 	 * Even though a single enclave may be mapped into an mm more than once,
843 	 * each 'mm' only appears once on encl->mm_list. This is guaranteed by
844 	 * holding the mm's mmap lock for write before an mm can be added or
845 	 * remove to an encl->mm_list.
846 	 */
847 	mmap_assert_write_locked(mm);
848 
849 	/*
850 	 * It's possible that an entry already exists in the mm_list, because it
851 	 * is removed only on VFS release or process exit.
852 	 */
853 	if (sgx_encl_find_mm(encl, mm))
854 		return 0;
855 
856 	encl_mm = kzalloc(sizeof(*encl_mm), GFP_KERNEL);
857 	if (!encl_mm)
858 		return -ENOMEM;
859 
860 	/* Grab a refcount for the encl_mm->encl reference: */
861 	kref_get(&encl->refcount);
862 	encl_mm->encl = encl;
863 	encl_mm->mm = mm;
864 	encl_mm->mmu_notifier.ops = &sgx_mmu_notifier_ops;
865 
866 	ret = __mmu_notifier_register(&encl_mm->mmu_notifier, mm);
867 	if (ret) {
868 		kfree(encl_mm);
869 		return ret;
870 	}
871 
872 	spin_lock(&encl->mm_lock);
873 	list_add_rcu(&encl_mm->list, &encl->mm_list);
874 	/* Pairs with smp_rmb() in sgx_zap_enclave_ptes(). */
875 	smp_wmb();
876 	encl->mm_list_version++;
877 	spin_unlock(&encl->mm_lock);
878 
879 	return 0;
880 }
881 
882 /**
883  * sgx_encl_cpumask() - Query which CPUs might be accessing the enclave
884  * @encl: the enclave
885  *
886  * Some SGX functions require that no cached linear-to-physical address
887  * mappings are present before they can succeed. For example, ENCLS[EWB]
888  * copies a page from the enclave page cache to regular main memory but
889  * it fails if it cannot ensure that there are no cached
890  * linear-to-physical address mappings referring to the page.
891  *
892  * SGX hardware flushes all cached linear-to-physical mappings on a CPU
893  * when an enclave is exited via ENCLU[EEXIT] or an Asynchronous Enclave
894  * Exit (AEX). Exiting an enclave will thus ensure cached linear-to-physical
895  * address mappings are cleared but coordination with the tracking done within
896  * the SGX hardware is needed to support the SGX functions that depend on this
897  * cache clearing.
898  *
899  * When the ENCLS[ETRACK] function is issued on an enclave the hardware
900  * tracks threads operating inside the enclave at that time. The SGX
901  * hardware tracking require that all the identified threads must have
902  * exited the enclave in order to flush the mappings before a function such
903  * as ENCLS[EWB] will be permitted
904  *
905  * The following flow is used to support SGX functions that require that
906  * no cached linear-to-physical address mappings are present:
907  * 1) Execute ENCLS[ETRACK] to initiate hardware tracking.
908  * 2) Use this function (sgx_encl_cpumask()) to query which CPUs might be
909  *    accessing the enclave.
910  * 3) Send IPI to identified CPUs, kicking them out of the enclave and
911  *    thus flushing all locally cached linear-to-physical address mappings.
912  * 4) Execute SGX function.
913  *
914  * Context: It is required to call this function after ENCLS[ETRACK].
915  *          This will ensure that if any new mm appears (racing with
916  *          sgx_encl_mm_add()) then the new mm will enter into the
917  *          enclave with fresh linear-to-physical address mappings.
918  *
919  *          It is required that all IPIs are completed before a new
920  *          ENCLS[ETRACK] is issued so be sure to protect steps 1 to 3
921  *          of the above flow with the enclave's mutex.
922  *
923  * Return: cpumask of CPUs that might be accessing @encl
924  */
sgx_encl_cpumask(struct sgx_encl * encl)925 const cpumask_t *sgx_encl_cpumask(struct sgx_encl *encl)
926 {
927 	cpumask_t *cpumask = &encl->cpumask;
928 	struct sgx_encl_mm *encl_mm;
929 	int idx;
930 
931 	cpumask_clear(cpumask);
932 
933 	idx = srcu_read_lock(&encl->srcu);
934 
935 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
936 		if (!mmget_not_zero(encl_mm->mm))
937 			continue;
938 
939 		cpumask_or(cpumask, cpumask, mm_cpumask(encl_mm->mm));
940 
941 		mmput_async(encl_mm->mm);
942 	}
943 
944 	srcu_read_unlock(&encl->srcu, idx);
945 
946 	return cpumask;
947 }
948 
sgx_encl_get_backing_page(struct sgx_encl * encl,pgoff_t index)949 static struct page *sgx_encl_get_backing_page(struct sgx_encl *encl,
950 					      pgoff_t index)
951 {
952 	struct address_space *mapping = encl->backing->f_mapping;
953 	gfp_t gfpmask = mapping_gfp_mask(mapping);
954 
955 	return shmem_read_mapping_page_gfp(mapping, index, gfpmask);
956 }
957 
958 /**
959  * __sgx_encl_get_backing() - Pin the backing storage
960  * @encl:	an enclave pointer
961  * @page_index:	enclave page index
962  * @backing:	data for accessing backing storage for the page
963  *
964  * Pin the backing storage pages for storing the encrypted contents and Paging
965  * Crypto MetaData (PCMD) of an enclave page.
966  *
967  * Return:
968  *   0 on success,
969  *   -errno otherwise.
970  */
__sgx_encl_get_backing(struct sgx_encl * encl,unsigned long page_index,struct sgx_backing * backing)971 static int __sgx_encl_get_backing(struct sgx_encl *encl, unsigned long page_index,
972 			 struct sgx_backing *backing)
973 {
974 	pgoff_t page_pcmd_off = sgx_encl_get_backing_page_pcmd_offset(encl, page_index);
975 	struct page *contents;
976 	struct page *pcmd;
977 
978 	contents = sgx_encl_get_backing_page(encl, page_index);
979 	if (IS_ERR(contents))
980 		return PTR_ERR(contents);
981 
982 	pcmd = sgx_encl_get_backing_page(encl, PFN_DOWN(page_pcmd_off));
983 	if (IS_ERR(pcmd)) {
984 		put_page(contents);
985 		return PTR_ERR(pcmd);
986 	}
987 
988 	backing->contents = contents;
989 	backing->pcmd = pcmd;
990 	backing->pcmd_offset = page_pcmd_off & (PAGE_SIZE - 1);
991 
992 	return 0;
993 }
994 
995 /*
996  * When called from ksgxd, returns the mem_cgroup of a struct mm stored
997  * in the enclave's mm_list. When not called from ksgxd, just returns
998  * the mem_cgroup of the current task.
999  */
sgx_encl_get_mem_cgroup(struct sgx_encl * encl)1000 static struct mem_cgroup *sgx_encl_get_mem_cgroup(struct sgx_encl *encl)
1001 {
1002 	struct mem_cgroup *memcg = NULL;
1003 	struct sgx_encl_mm *encl_mm;
1004 	int idx;
1005 
1006 	/*
1007 	 * If called from normal task context, return the mem_cgroup
1008 	 * of the current task's mm. The remainder of the handling is for
1009 	 * ksgxd.
1010 	 */
1011 	if (!current_is_ksgxd())
1012 		return get_mem_cgroup_from_mm(current->mm);
1013 
1014 	/*
1015 	 * Search the enclave's mm_list to find an mm associated with
1016 	 * this enclave to charge the allocation to.
1017 	 */
1018 	idx = srcu_read_lock(&encl->srcu);
1019 
1020 	list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1021 		if (!mmget_not_zero(encl_mm->mm))
1022 			continue;
1023 
1024 		memcg = get_mem_cgroup_from_mm(encl_mm->mm);
1025 
1026 		mmput_async(encl_mm->mm);
1027 
1028 		break;
1029 	}
1030 
1031 	srcu_read_unlock(&encl->srcu, idx);
1032 
1033 	/*
1034 	 * In the rare case that there isn't an mm associated with
1035 	 * the enclave, set memcg to the current active mem_cgroup.
1036 	 * This will be the root mem_cgroup if there is no active
1037 	 * mem_cgroup.
1038 	 */
1039 	if (!memcg)
1040 		return get_mem_cgroup_from_mm(NULL);
1041 
1042 	return memcg;
1043 }
1044 
1045 /**
1046  * sgx_encl_alloc_backing() - create a new backing storage page
1047  * @encl:	an enclave pointer
1048  * @page_index:	enclave page index
1049  * @backing:	data for accessing backing storage for the page
1050  *
1051  * When called from ksgxd, sets the active memcg from one of the
1052  * mms in the enclave's mm_list prior to any backing page allocation,
1053  * in order to ensure that shmem page allocations are charged to the
1054  * enclave.  Create a backing page for loading data back into an EPC page with
1055  * ELDU.  This function takes a reference on a new backing page which
1056  * must be dropped with a corresponding call to sgx_encl_put_backing().
1057  *
1058  * Return:
1059  *   0 on success,
1060  *   -errno otherwise.
1061  */
sgx_encl_alloc_backing(struct sgx_encl * encl,unsigned long page_index,struct sgx_backing * backing)1062 int sgx_encl_alloc_backing(struct sgx_encl *encl, unsigned long page_index,
1063 			   struct sgx_backing *backing)
1064 {
1065 	struct mem_cgroup *encl_memcg = sgx_encl_get_mem_cgroup(encl);
1066 	struct mem_cgroup *memcg = set_active_memcg(encl_memcg);
1067 	int ret;
1068 
1069 	ret = __sgx_encl_get_backing(encl, page_index, backing);
1070 
1071 	set_active_memcg(memcg);
1072 	mem_cgroup_put(encl_memcg);
1073 
1074 	return ret;
1075 }
1076 
1077 /**
1078  * sgx_encl_lookup_backing() - retrieve an existing backing storage page
1079  * @encl:	an enclave pointer
1080  * @page_index:	enclave page index
1081  * @backing:	data for accessing backing storage for the page
1082  *
1083  * Retrieve a backing page for loading data back into an EPC page with ELDU.
1084  * It is the caller's responsibility to ensure that it is appropriate to use
1085  * sgx_encl_lookup_backing() rather than sgx_encl_alloc_backing(). If lookup is
1086  * not used correctly, this will cause an allocation which is not accounted for.
1087  * This function takes a reference on an existing backing page which must be
1088  * dropped with a corresponding call to sgx_encl_put_backing().
1089  *
1090  * Return:
1091  *   0 on success,
1092  *   -errno otherwise.
1093  */
sgx_encl_lookup_backing(struct sgx_encl * encl,unsigned long page_index,struct sgx_backing * backing)1094 static int sgx_encl_lookup_backing(struct sgx_encl *encl, unsigned long page_index,
1095 			   struct sgx_backing *backing)
1096 {
1097 	return __sgx_encl_get_backing(encl, page_index, backing);
1098 }
1099 
1100 /**
1101  * sgx_encl_put_backing() - Unpin the backing storage
1102  * @backing:	data for accessing backing storage for the page
1103  */
sgx_encl_put_backing(struct sgx_backing * backing)1104 void sgx_encl_put_backing(struct sgx_backing *backing)
1105 {
1106 	put_page(backing->pcmd);
1107 	put_page(backing->contents);
1108 }
1109 
sgx_encl_test_and_clear_young_cb(pte_t * ptep,unsigned long addr,void * data)1110 static int sgx_encl_test_and_clear_young_cb(pte_t *ptep, unsigned long addr,
1111 					    void *data)
1112 {
1113 	pte_t pte;
1114 	int ret;
1115 
1116 	ret = pte_young(*ptep);
1117 	if (ret) {
1118 		pte = pte_mkold(*ptep);
1119 		set_pte_at((struct mm_struct *)data, addr, ptep, pte);
1120 	}
1121 
1122 	return ret;
1123 }
1124 
1125 /**
1126  * sgx_encl_test_and_clear_young() - Test and reset the accessed bit
1127  * @mm:		mm_struct that is checked
1128  * @page:	enclave page to be tested for recent access
1129  *
1130  * Checks the Access (A) bit from the PTE corresponding to the enclave page and
1131  * clears it.
1132  *
1133  * Return: 1 if the page has been recently accessed and 0 if not.
1134  */
sgx_encl_test_and_clear_young(struct mm_struct * mm,struct sgx_encl_page * page)1135 int sgx_encl_test_and_clear_young(struct mm_struct *mm,
1136 				  struct sgx_encl_page *page)
1137 {
1138 	unsigned long addr = page->desc & PAGE_MASK;
1139 	struct sgx_encl *encl = page->encl;
1140 	struct vm_area_struct *vma;
1141 	int ret;
1142 
1143 	ret = sgx_encl_find(mm, addr, &vma);
1144 	if (ret)
1145 		return 0;
1146 
1147 	if (encl != vma->vm_private_data)
1148 		return 0;
1149 
1150 	ret = apply_to_page_range(vma->vm_mm, addr, PAGE_SIZE,
1151 				  sgx_encl_test_and_clear_young_cb, vma->vm_mm);
1152 	if (ret < 0)
1153 		return 0;
1154 
1155 	return ret;
1156 }
1157 
sgx_encl_page_alloc(struct sgx_encl * encl,unsigned long offset,u64 secinfo_flags)1158 struct sgx_encl_page *sgx_encl_page_alloc(struct sgx_encl *encl,
1159 					  unsigned long offset,
1160 					  u64 secinfo_flags)
1161 {
1162 	struct sgx_encl_page *encl_page;
1163 	unsigned long prot;
1164 
1165 	encl_page = kzalloc(sizeof(*encl_page), GFP_KERNEL);
1166 	if (!encl_page)
1167 		return ERR_PTR(-ENOMEM);
1168 
1169 	encl_page->desc = encl->base + offset;
1170 	encl_page->encl = encl;
1171 
1172 	prot = _calc_vm_trans(secinfo_flags, SGX_SECINFO_R, PROT_READ)  |
1173 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_W, PROT_WRITE) |
1174 	       _calc_vm_trans(secinfo_flags, SGX_SECINFO_X, PROT_EXEC);
1175 
1176 	/*
1177 	 * TCS pages must always RW set for CPU access while the SECINFO
1178 	 * permissions are *always* zero - the CPU ignores the user provided
1179 	 * values and silently overwrites them with zero permissions.
1180 	 */
1181 	if ((secinfo_flags & SGX_SECINFO_PAGE_TYPE_MASK) == SGX_SECINFO_TCS)
1182 		prot |= PROT_READ | PROT_WRITE;
1183 
1184 	/* Calculate maximum of the VM flags for the page. */
1185 	encl_page->vm_max_prot_bits = calc_vm_prot_bits(prot, 0);
1186 
1187 	return encl_page;
1188 }
1189 
1190 /**
1191  * sgx_zap_enclave_ptes() - remove PTEs mapping the address from enclave
1192  * @encl: the enclave
1193  * @addr: page aligned pointer to single page for which PTEs will be removed
1194  *
1195  * Multiple VMAs may have an enclave page mapped. Remove the PTE mapping
1196  * @addr from each VMA. Ensure that page fault handler is ready to handle
1197  * new mappings of @addr before calling this function.
1198  */
sgx_zap_enclave_ptes(struct sgx_encl * encl,unsigned long addr)1199 void sgx_zap_enclave_ptes(struct sgx_encl *encl, unsigned long addr)
1200 {
1201 	unsigned long mm_list_version;
1202 	struct sgx_encl_mm *encl_mm;
1203 	struct vm_area_struct *vma;
1204 	int idx, ret;
1205 
1206 	do {
1207 		mm_list_version = encl->mm_list_version;
1208 
1209 		/* Pairs with smp_wmb() in sgx_encl_mm_add(). */
1210 		smp_rmb();
1211 
1212 		idx = srcu_read_lock(&encl->srcu);
1213 
1214 		list_for_each_entry_rcu(encl_mm, &encl->mm_list, list) {
1215 			if (!mmget_not_zero(encl_mm->mm))
1216 				continue;
1217 
1218 			mmap_read_lock(encl_mm->mm);
1219 
1220 			ret = sgx_encl_find(encl_mm->mm, addr, &vma);
1221 			if (!ret && encl == vma->vm_private_data)
1222 				zap_vma_ptes(vma, addr, PAGE_SIZE);
1223 
1224 			mmap_read_unlock(encl_mm->mm);
1225 
1226 			mmput_async(encl_mm->mm);
1227 		}
1228 
1229 		srcu_read_unlock(&encl->srcu, idx);
1230 	} while (unlikely(encl->mm_list_version != mm_list_version));
1231 }
1232 
1233 /**
1234  * sgx_alloc_va_page() - Allocate a Version Array (VA) page
1235  * @reclaim: Reclaim EPC pages directly if none available. Enclave
1236  *           mutex should not be held if this is set.
1237  *
1238  * Allocate a free EPC page and convert it to a Version Array (VA) page.
1239  *
1240  * Return:
1241  *   a VA page,
1242  *   -errno otherwise
1243  */
sgx_alloc_va_page(bool reclaim)1244 struct sgx_epc_page *sgx_alloc_va_page(bool reclaim)
1245 {
1246 	struct sgx_epc_page *epc_page;
1247 	int ret;
1248 
1249 	epc_page = sgx_alloc_epc_page(NULL, reclaim);
1250 	if (IS_ERR(epc_page))
1251 		return ERR_CAST(epc_page);
1252 
1253 	ret = __epa(sgx_get_epc_virt_addr(epc_page));
1254 	if (ret) {
1255 		WARN_ONCE(1, "EPA returned %d (0x%x)", ret, ret);
1256 		sgx_encl_free_epc_page(epc_page);
1257 		return ERR_PTR(-EFAULT);
1258 	}
1259 
1260 	return epc_page;
1261 }
1262 
1263 /**
1264  * sgx_alloc_va_slot - allocate a VA slot
1265  * @va_page:	a &struct sgx_va_page instance
1266  *
1267  * Allocates a slot from a &struct sgx_va_page instance.
1268  *
1269  * Return: offset of the slot inside the VA page
1270  */
sgx_alloc_va_slot(struct sgx_va_page * va_page)1271 unsigned int sgx_alloc_va_slot(struct sgx_va_page *va_page)
1272 {
1273 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1274 
1275 	if (slot < SGX_VA_SLOT_COUNT)
1276 		set_bit(slot, va_page->slots);
1277 
1278 	return slot << 3;
1279 }
1280 
1281 /**
1282  * sgx_free_va_slot - free a VA slot
1283  * @va_page:	a &struct sgx_va_page instance
1284  * @offset:	offset of the slot inside the VA page
1285  *
1286  * Frees a slot from a &struct sgx_va_page instance.
1287  */
sgx_free_va_slot(struct sgx_va_page * va_page,unsigned int offset)1288 void sgx_free_va_slot(struct sgx_va_page *va_page, unsigned int offset)
1289 {
1290 	clear_bit(offset >> 3, va_page->slots);
1291 }
1292 
1293 /**
1294  * sgx_va_page_full - is the VA page full?
1295  * @va_page:	a &struct sgx_va_page instance
1296  *
1297  * Return: true if all slots have been taken
1298  */
sgx_va_page_full(struct sgx_va_page * va_page)1299 bool sgx_va_page_full(struct sgx_va_page *va_page)
1300 {
1301 	int slot = find_first_zero_bit(va_page->slots, SGX_VA_SLOT_COUNT);
1302 
1303 	return slot == SGX_VA_SLOT_COUNT;
1304 }
1305 
1306 /**
1307  * sgx_encl_free_epc_page - free an EPC page assigned to an enclave
1308  * @page:	EPC page to be freed
1309  *
1310  * Free an EPC page assigned to an enclave. It does EREMOVE for the page, and
1311  * only upon success, it puts the page back to free page list.  Otherwise, it
1312  * gives a WARNING to indicate page is leaked.
1313  */
sgx_encl_free_epc_page(struct sgx_epc_page * page)1314 void sgx_encl_free_epc_page(struct sgx_epc_page *page)
1315 {
1316 	int ret;
1317 
1318 	WARN_ON_ONCE(page->flags & SGX_EPC_PAGE_RECLAIMER_TRACKED);
1319 
1320 	ret = __eremove(sgx_get_epc_virt_addr(page));
1321 	if (WARN_ONCE(ret, EREMOVE_ERROR_MESSAGE, ret, ret))
1322 		return;
1323 
1324 	sgx_free_epc_page(page);
1325 }
1326