1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87 
88 /*
89  * Don't use the *_dontuse flags.  Use the macros.  Otherwise you'll break
90  * locked- and dirty-page accounting.
91  *
92  * The page flags field is split into two parts, the main flags area
93  * which extends from the low bits upwards, and the fields area which
94  * extends from the high bits downwards.
95  *
96  *  | FIELD | ... | FLAGS |
97  *  N-1           ^       0
98  *               (NR_PAGEFLAGS)
99  *
100  * The fields area is reserved for fields mapping zone, node (for NUMA) and
101  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
102  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
103  */
104 enum pageflags {
105 	PG_locked,		/* Page is locked. Don't touch. */
106 	PG_referenced,
107 	PG_uptodate,
108 	PG_dirty,
109 	PG_lru,
110 	PG_active,
111 	PG_workingset,
112 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
113 	PG_error,
114 	PG_slab,
115 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
116 	PG_arch_1,
117 	PG_reserved,
118 	PG_private,		/* If pagecache, has fs-private data */
119 	PG_private_2,		/* If pagecache, has fs aux data */
120 	PG_writeback,		/* Page is under writeback */
121 	PG_head,		/* A head page */
122 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
123 	PG_reclaim,		/* To be reclaimed asap */
124 	PG_swapbacked,		/* Page is backed by RAM/swap */
125 	PG_unevictable,		/* Page is "unevictable"  */
126 #ifdef CONFIG_MMU
127 	PG_mlocked,		/* Page is vma mlocked */
128 #endif
129 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
130 	PG_uncached,		/* Page has been mapped as uncached */
131 #endif
132 #ifdef CONFIG_MEMORY_FAILURE
133 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
134 #endif
135 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
136 	PG_young,
137 	PG_idle,
138 #endif
139 #ifdef CONFIG_64BIT
140 	PG_arch_2,
141 #endif
142 	__NR_PAGEFLAGS,
143 
144 	/* Filesystems */
145 	PG_checked = PG_owner_priv_1,
146 
147 	/* SwapBacked */
148 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
149 
150 	/* Two page bits are conscripted by FS-Cache to maintain local caching
151 	 * state.  These bits are set on pages belonging to the netfs's inodes
152 	 * when those inodes are being locally cached.
153 	 */
154 	PG_fscache = PG_private_2,	/* page backed by cache */
155 
156 	/* XEN */
157 	/* Pinned in Xen as a read-only pagetable page. */
158 	PG_pinned = PG_owner_priv_1,
159 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
160 	PG_savepinned = PG_dirty,
161 	/* Has a grant mapping of another (foreign) domain's page. */
162 	PG_foreign = PG_owner_priv_1,
163 	/* Remapped by swiotlb-xen. */
164 	PG_xen_remapped = PG_owner_priv_1,
165 
166 	/* SLOB */
167 	PG_slob_free = PG_private,
168 
169 	/* Compound pages. Stored in first tail page's flags */
170 	PG_double_map = PG_workingset,
171 
172 	/* non-lru isolated movable page */
173 	PG_isolated = PG_reclaim,
174 
175 	/* Only valid for buddy pages. Used to track pages that are reported */
176 	PG_reported = PG_uptodate,
177 };
178 
179 #ifndef __GENERATING_BOUNDS_H
180 
181 struct page;	/* forward declaration */
182 
compound_head(struct page * page)183 static inline struct page *compound_head(struct page *page)
184 {
185 	unsigned long head = READ_ONCE(page->compound_head);
186 
187 	if (unlikely(head & 1))
188 		return (struct page *) (head - 1);
189 	return page;
190 }
191 
PageTail(struct page * page)192 static __always_inline int PageTail(struct page *page)
193 {
194 	return READ_ONCE(page->compound_head) & 1;
195 }
196 
PageCompound(struct page * page)197 static __always_inline int PageCompound(struct page *page)
198 {
199 	return test_bit(PG_head, &page->flags) || PageTail(page);
200 }
201 
202 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)203 static inline int PagePoisoned(const struct page *page)
204 {
205 	return page->flags == PAGE_POISON_PATTERN;
206 }
207 
208 #ifdef CONFIG_DEBUG_VM
209 void page_init_poison(struct page *page, size_t size);
210 #else
page_init_poison(struct page * page,size_t size)211 static inline void page_init_poison(struct page *page, size_t size)
212 {
213 }
214 #endif
215 
216 /*
217  * Page flags policies wrt compound pages
218  *
219  * PF_POISONED_CHECK
220  *     check if this struct page poisoned/uninitialized
221  *
222  * PF_ANY:
223  *     the page flag is relevant for small, head and tail pages.
224  *
225  * PF_HEAD:
226  *     for compound page all operations related to the page flag applied to
227  *     head page.
228  *
229  * PF_ONLY_HEAD:
230  *     for compound page, callers only ever operate on the head page.
231  *
232  * PF_NO_TAIL:
233  *     modifications of the page flag must be done on small or head pages,
234  *     checks can be done on tail pages too.
235  *
236  * PF_NO_COMPOUND:
237  *     the page flag is not relevant for compound pages.
238  *
239  * PF_SECOND:
240  *     the page flag is stored in the first tail page.
241  */
242 #define PF_POISONED_CHECK(page) ({					\
243 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
244 		page; })
245 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
246 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
247 #define PF_ONLY_HEAD(page, enforce) ({					\
248 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
249 		PF_POISONED_CHECK(page); })
250 #define PF_NO_TAIL(page, enforce) ({					\
251 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
252 		PF_POISONED_CHECK(compound_head(page)); })
253 #define PF_NO_COMPOUND(page, enforce) ({				\
254 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
255 		PF_POISONED_CHECK(page); })
256 #define PF_SECOND(page, enforce) ({					\
257 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
258 		PF_POISONED_CHECK(&page[1]); })
259 
260 /*
261  * Macros to create function definitions for page flags
262  */
263 #define TESTPAGEFLAG(uname, lname, policy)				\
264 static __always_inline int Page##uname(struct page *page)		\
265 	{ return test_bit(PG_##lname, &policy(page, 0)->flags); }
266 
267 #define SETPAGEFLAG(uname, lname, policy)				\
268 static __always_inline void SetPage##uname(struct page *page)		\
269 	{ set_bit(PG_##lname, &policy(page, 1)->flags); }
270 
271 #define CLEARPAGEFLAG(uname, lname, policy)				\
272 static __always_inline void ClearPage##uname(struct page *page)		\
273 	{ clear_bit(PG_##lname, &policy(page, 1)->flags); }
274 
275 #define __SETPAGEFLAG(uname, lname, policy)				\
276 static __always_inline void __SetPage##uname(struct page *page)		\
277 	{ __set_bit(PG_##lname, &policy(page, 1)->flags); }
278 
279 #define __CLEARPAGEFLAG(uname, lname, policy)				\
280 static __always_inline void __ClearPage##uname(struct page *page)	\
281 	{ __clear_bit(PG_##lname, &policy(page, 1)->flags); }
282 
283 #define TESTSETFLAG(uname, lname, policy)				\
284 static __always_inline int TestSetPage##uname(struct page *page)	\
285 	{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
286 
287 #define TESTCLEARFLAG(uname, lname, policy)				\
288 static __always_inline int TestClearPage##uname(struct page *page)	\
289 	{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
290 
291 #define PAGEFLAG(uname, lname, policy)					\
292 	TESTPAGEFLAG(uname, lname, policy)				\
293 	SETPAGEFLAG(uname, lname, policy)				\
294 	CLEARPAGEFLAG(uname, lname, policy)
295 
296 #define __PAGEFLAG(uname, lname, policy)				\
297 	TESTPAGEFLAG(uname, lname, policy)				\
298 	__SETPAGEFLAG(uname, lname, policy)				\
299 	__CLEARPAGEFLAG(uname, lname, policy)
300 
301 #define TESTSCFLAG(uname, lname, policy)				\
302 	TESTSETFLAG(uname, lname, policy)				\
303 	TESTCLEARFLAG(uname, lname, policy)
304 
305 #define TESTPAGEFLAG_FALSE(uname)					\
306 static inline int Page##uname(const struct page *page) { return 0; }
307 
308 #define SETPAGEFLAG_NOOP(uname)						\
309 static inline void SetPage##uname(struct page *page) {  }
310 
311 #define CLEARPAGEFLAG_NOOP(uname)					\
312 static inline void ClearPage##uname(struct page *page) {  }
313 
314 #define __CLEARPAGEFLAG_NOOP(uname)					\
315 static inline void __ClearPage##uname(struct page *page) {  }
316 
317 #define TESTSETFLAG_FALSE(uname)					\
318 static inline int TestSetPage##uname(struct page *page) { return 0; }
319 
320 #define TESTCLEARFLAG_FALSE(uname)					\
321 static inline int TestClearPage##uname(struct page *page) { return 0; }
322 
323 #define PAGEFLAG_FALSE(uname) TESTPAGEFLAG_FALSE(uname)			\
324 	SETPAGEFLAG_NOOP(uname) CLEARPAGEFLAG_NOOP(uname)
325 
326 #define TESTSCFLAG_FALSE(uname)						\
327 	TESTSETFLAG_FALSE(uname) TESTCLEARFLAG_FALSE(uname)
328 
329 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
330 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
331 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
332 PAGEFLAG(Referenced, referenced, PF_HEAD)
333 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
334 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
335 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
336 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
337 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
338 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
339 	TESTCLEARFLAG(Active, active, PF_HEAD)
340 PAGEFLAG(Workingset, workingset, PF_HEAD)
341 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
342 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
343 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
344 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
345 
346 /* Xen */
347 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
348 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
349 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
350 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)351 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
352 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
353 
354 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
355 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
356 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
357 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
358 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
359 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
360 
361 /*
362  * Private page markings that may be used by the filesystem that owns the page
363  * for its own purposes.
364  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
365  */
366 PAGEFLAG(Private, private, PF_ANY) __SETPAGEFLAG(Private, private, PF_ANY)
367 	__CLEARPAGEFLAG(Private, private, PF_ANY)
368 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
369 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
370 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
371 
372 /*
373  * Only test-and-set exist for PG_writeback.  The unconditional operators are
374  * risky: they bypass page accounting.
375  */
376 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
377 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
378 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
379 
380 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
381 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
382 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
383 PAGEFLAG(Readahead, reclaim, PF_NO_COMPOUND)
384 	TESTCLEARFLAG(Readahead, reclaim, PF_NO_COMPOUND)
385 
386 #ifdef CONFIG_HIGHMEM
387 /*
388  * Must use a macro here due to header dependency issues. page_zone() is not
389  * available at this point.
390  */
391 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
392 #else
393 PAGEFLAG_FALSE(HighMem)
394 #endif
395 
396 #ifdef CONFIG_SWAP
397 static __always_inline int PageSwapCache(struct page *page)
398 {
399 #ifdef CONFIG_THP_SWAP
400 	page = compound_head(page);
401 #endif
402 	return PageSwapBacked(page) && test_bit(PG_swapcache, &page->flags);
403 
404 }
405 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
406 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
407 #else
408 PAGEFLAG_FALSE(SwapCache)
409 #endif
410 
411 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
412 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
413 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
414 
415 #ifdef CONFIG_MMU
416 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
417 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
418 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
419 #else
420 PAGEFLAG_FALSE(Mlocked) __CLEARPAGEFLAG_NOOP(Mlocked)
421 	TESTSCFLAG_FALSE(Mlocked)
422 #endif
423 
424 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
425 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
426 #else
427 PAGEFLAG_FALSE(Uncached)
428 #endif
429 
430 #ifdef CONFIG_MEMORY_FAILURE
431 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
432 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
433 #define __PG_HWPOISON (1UL << PG_hwpoison)
434 extern bool take_page_off_buddy(struct page *page);
435 #else
436 PAGEFLAG_FALSE(HWPoison)
437 #define __PG_HWPOISON 0
438 #endif
439 
440 #if defined(CONFIG_IDLE_PAGE_TRACKING) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)441 TESTPAGEFLAG(Young, young, PF_ANY)
442 SETPAGEFLAG(Young, young, PF_ANY)
443 TESTCLEARFLAG(Young, young, PF_ANY)
444 PAGEFLAG(Idle, idle, PF_ANY)
445 #endif
446 
447 /*
448  * PageReported() is used to track reported free pages within the Buddy
449  * allocator. We can use the non-atomic version of the test and set
450  * operations as both should be shielded with the zone lock to prevent
451  * any possible races on the setting or clearing of the bit.
452  */
453 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
454 
455 /*
456  * On an anonymous page mapped into a user virtual memory area,
457  * page->mapping points to its anon_vma, not to a struct address_space;
458  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
459  *
460  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
461  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
462  * bit; and then page->mapping points, not to an anon_vma, but to a private
463  * structure which KSM associates with that merged page.  See ksm.h.
464  *
465  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
466  * page and then page->mapping points a struct address_space.
467  *
468  * Please note that, confusingly, "page_mapping" refers to the inode
469  * address_space which maps the page from disk; whereas "page_mapped"
470  * refers to user virtual address space into which the page is mapped.
471  */
472 #define PAGE_MAPPING_ANON	0x1
473 #define PAGE_MAPPING_MOVABLE	0x2
474 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
475 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
476 
477 static __always_inline int PageMappingFlags(struct page *page)
478 {
479 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
480 }
481 
PageAnon(struct page * page)482 static __always_inline int PageAnon(struct page *page)
483 {
484 	page = compound_head(page);
485 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
486 }
487 
__PageMovable(struct page * page)488 static __always_inline int __PageMovable(struct page *page)
489 {
490 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
491 				PAGE_MAPPING_MOVABLE;
492 }
493 
494 #ifdef CONFIG_KSM
495 /*
496  * A KSM page is one of those write-protected "shared pages" or "merged pages"
497  * which KSM maps into multiple mms, wherever identical anonymous page content
498  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
499  * anon_vma, but to that page's node of the stable tree.
500  */
PageKsm(struct page * page)501 static __always_inline int PageKsm(struct page *page)
502 {
503 	page = compound_head(page);
504 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
505 				PAGE_MAPPING_KSM;
506 }
507 #else
508 TESTPAGEFLAG_FALSE(Ksm)
509 #endif
510 
511 u64 stable_page_flags(struct page *page);
512 
PageUptodate(struct page * page)513 static inline int PageUptodate(struct page *page)
514 {
515 	int ret;
516 	page = compound_head(page);
517 	ret = test_bit(PG_uptodate, &(page)->flags);
518 	/*
519 	 * Must ensure that the data we read out of the page is loaded
520 	 * _after_ we've loaded page->flags to check for PageUptodate.
521 	 * We can skip the barrier if the page is not uptodate, because
522 	 * we wouldn't be reading anything from it.
523 	 *
524 	 * See SetPageUptodate() for the other side of the story.
525 	 */
526 	if (ret)
527 		smp_rmb();
528 
529 	return ret;
530 }
531 
__SetPageUptodate(struct page * page)532 static __always_inline void __SetPageUptodate(struct page *page)
533 {
534 	VM_BUG_ON_PAGE(PageTail(page), page);
535 	smp_wmb();
536 	__set_bit(PG_uptodate, &page->flags);
537 }
538 
SetPageUptodate(struct page * page)539 static __always_inline void SetPageUptodate(struct page *page)
540 {
541 	VM_BUG_ON_PAGE(PageTail(page), page);
542 	/*
543 	 * Memory barrier must be issued before setting the PG_uptodate bit,
544 	 * so that all previous stores issued in order to bring the page
545 	 * uptodate are actually visible before PageUptodate becomes true.
546 	 */
547 	smp_wmb();
548 	set_bit(PG_uptodate, &page->flags);
549 }
550 
551 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
552 
553 int test_clear_page_writeback(struct page *page);
554 int __test_set_page_writeback(struct page *page, bool keep_write);
555 
556 #define test_set_page_writeback(page)			\
557 	__test_set_page_writeback(page, false)
558 #define test_set_page_writeback_keepwrite(page)	\
559 	__test_set_page_writeback(page, true)
560 
set_page_writeback(struct page * page)561 static inline void set_page_writeback(struct page *page)
562 {
563 	test_set_page_writeback(page);
564 }
565 
set_page_writeback_keepwrite(struct page * page)566 static inline void set_page_writeback_keepwrite(struct page *page)
567 {
568 	test_set_page_writeback_keepwrite(page);
569 }
570 
__PAGEFLAG(Head,head,PF_ANY)571 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
572 
573 static __always_inline void set_compound_head(struct page *page, struct page *head)
574 {
575 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
576 }
577 
clear_compound_head(struct page * page)578 static __always_inline void clear_compound_head(struct page *page)
579 {
580 	WRITE_ONCE(page->compound_head, 0);
581 }
582 
583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)584 static inline void ClearPageCompound(struct page *page)
585 {
586 	BUG_ON(!PageHead(page));
587 	ClearPageHead(page);
588 }
589 #endif
590 
591 #define PG_head_mask ((1UL << PG_head))
592 
593 #ifdef CONFIG_HUGETLB_PAGE
594 int PageHuge(struct page *page);
595 int PageHeadHuge(struct page *page);
596 bool page_huge_active(struct page *page);
597 #else
598 TESTPAGEFLAG_FALSE(Huge)
TESTPAGEFLAG_FALSE(HeadHuge)599 TESTPAGEFLAG_FALSE(HeadHuge)
600 
601 static inline bool page_huge_active(struct page *page)
602 {
603 	return 0;
604 }
605 #endif
606 
607 
608 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
609 /*
610  * PageHuge() only returns true for hugetlbfs pages, but not for
611  * normal or transparent huge pages.
612  *
613  * PageTransHuge() returns true for both transparent huge and
614  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
615  * called only in the core VM paths where hugetlbfs pages can't exist.
616  */
PageTransHuge(struct page * page)617 static inline int PageTransHuge(struct page *page)
618 {
619 	VM_BUG_ON_PAGE(PageTail(page), page);
620 	return PageHead(page);
621 }
622 
623 /*
624  * PageTransCompound returns true for both transparent huge pages
625  * and hugetlbfs pages, so it should only be called when it's known
626  * that hugetlbfs pages aren't involved.
627  */
PageTransCompound(struct page * page)628 static inline int PageTransCompound(struct page *page)
629 {
630 	return PageCompound(page);
631 }
632 
633 /*
634  * PageTransCompoundMap is the same as PageTransCompound, but it also
635  * guarantees the primary MMU has the entire compound page mapped
636  * through pmd_trans_huge, which in turn guarantees the secondary MMUs
637  * can also map the entire compound page. This allows the secondary
638  * MMUs to call get_user_pages() only once for each compound page and
639  * to immediately map the entire compound page with a single secondary
640  * MMU fault. If there will be a pmd split later, the secondary MMUs
641  * will get an update through the MMU notifier invalidation through
642  * split_huge_pmd().
643  *
644  * Unlike PageTransCompound, this is safe to be called only while
645  * split_huge_pmd() cannot run from under us, like if protected by the
646  * MMU notifier, otherwise it may result in page->_mapcount check false
647  * positives.
648  *
649  * We have to treat page cache THP differently since every subpage of it
650  * would get _mapcount inc'ed once it is PMD mapped.  But, it may be PTE
651  * mapped in the current process so comparing subpage's _mapcount to
652  * compound_mapcount to filter out PTE mapped case.
653  */
PageTransCompoundMap(struct page * page)654 static inline int PageTransCompoundMap(struct page *page)
655 {
656 	struct page *head;
657 
658 	if (!PageTransCompound(page))
659 		return 0;
660 
661 	if (PageAnon(page))
662 		return atomic_read(&page->_mapcount) < 0;
663 
664 	head = compound_head(page);
665 	/* File THP is PMD mapped and not PTE mapped */
666 	return atomic_read(&page->_mapcount) ==
667 	       atomic_read(compound_mapcount_ptr(head));
668 }
669 
670 /*
671  * PageTransTail returns true for both transparent huge pages
672  * and hugetlbfs pages, so it should only be called when it's known
673  * that hugetlbfs pages aren't involved.
674  */
PageTransTail(struct page * page)675 static inline int PageTransTail(struct page *page)
676 {
677 	return PageTail(page);
678 }
679 
680 /*
681  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
682  * as PMDs.
683  *
684  * This is required for optimization of rmap operations for THP: we can postpone
685  * per small page mapcount accounting (and its overhead from atomic operations)
686  * until the first PMD split.
687  *
688  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
689  * by one. This reference will go away with last compound_mapcount.
690  *
691  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
692  */
PAGEFLAG(DoubleMap,double_map,PF_SECOND)693 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
694 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
695 #else
696 TESTPAGEFLAG_FALSE(TransHuge)
697 TESTPAGEFLAG_FALSE(TransCompound)
698 TESTPAGEFLAG_FALSE(TransCompoundMap)
699 TESTPAGEFLAG_FALSE(TransTail)
700 PAGEFLAG_FALSE(DoubleMap)
701 	TESTSCFLAG_FALSE(DoubleMap)
702 #endif
703 
704 /*
705  * For pages that are never mapped to userspace (and aren't PageSlab),
706  * page_type may be used.  Because it is initialised to -1, we invert the
707  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
708  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
709  * low bits so that an underflow or overflow of page_mapcount() won't be
710  * mistaken for a page type value.
711  */
712 
713 #define PAGE_TYPE_BASE	0xf0000000
714 /* Reserve		0x0000007f to catch underflows of page_mapcount */
715 #define PAGE_MAPCOUNT_RESERVE	-128
716 #define PG_buddy	0x00000080
717 #define PG_offline	0x00000100
718 #define PG_kmemcg	0x00000200
719 #define PG_table	0x00000400
720 #define PG_guard	0x00000800
721 
722 #define PageType(page, flag)						\
723 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
724 
725 static inline int page_has_type(struct page *page)
726 {
727 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
728 }
729 
730 #define PAGE_TYPE_OPS(uname, lname)					\
731 static __always_inline int Page##uname(struct page *page)		\
732 {									\
733 	return PageType(page, PG_##lname);				\
734 }									\
735 static __always_inline void __SetPage##uname(struct page *page)		\
736 {									\
737 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
738 	page->page_type &= ~PG_##lname;					\
739 }									\
740 static __always_inline void __ClearPage##uname(struct page *page)	\
741 {									\
742 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
743 	page->page_type |= PG_##lname;					\
744 }
745 
746 /*
747  * PageBuddy() indicates that the page is free and in the buddy system
748  * (see mm/page_alloc.c).
749  */
750 PAGE_TYPE_OPS(Buddy, buddy)
751 
752 /*
753  * PageOffline() indicates that the page is logically offline although the
754  * containing section is online. (e.g. inflated in a balloon driver or
755  * not onlined when onlining the section).
756  * The content of these pages is effectively stale. Such pages should not
757  * be touched (read/write/dump/save) except by their owner.
758  *
759  * If a driver wants to allow to offline unmovable PageOffline() pages without
760  * putting them back to the buddy, it can do so via the memory notifier by
761  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
762  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
763  * pages (now with a reference count of zero) are treated like free pages,
764  * allowing the containing memory block to get offlined. A driver that
765  * relies on this feature is aware that re-onlining the memory block will
766  * require to re-set the pages PageOffline() and not giving them to the
767  * buddy via online_page_callback_t.
768  */
769 PAGE_TYPE_OPS(Offline, offline)
770 
771 /*
772  * If kmemcg is enabled, the buddy allocator will set PageKmemcg() on
773  * pages allocated with __GFP_ACCOUNT. It gets cleared on page free.
774  */
775 PAGE_TYPE_OPS(Kmemcg, kmemcg)
776 
777 /*
778  * Marks pages in use as page tables.
779  */
780 PAGE_TYPE_OPS(Table, table)
781 
782 /*
783  * Marks guardpages used with debug_pagealloc.
784  */
785 PAGE_TYPE_OPS(Guard, guard)
786 
787 extern bool is_free_buddy_page(struct page *page);
788 
789 __PAGEFLAG(Isolated, isolated, PF_ANY);
790 
791 /*
792  * If network-based swap is enabled, sl*b must keep track of whether pages
793  * were allocated from pfmemalloc reserves.
794  */
PageSlabPfmemalloc(struct page * page)795 static inline int PageSlabPfmemalloc(struct page *page)
796 {
797 	VM_BUG_ON_PAGE(!PageSlab(page), page);
798 	return PageActive(page);
799 }
800 
SetPageSlabPfmemalloc(struct page * page)801 static inline void SetPageSlabPfmemalloc(struct page *page)
802 {
803 	VM_BUG_ON_PAGE(!PageSlab(page), page);
804 	SetPageActive(page);
805 }
806 
__ClearPageSlabPfmemalloc(struct page * page)807 static inline void __ClearPageSlabPfmemalloc(struct page *page)
808 {
809 	VM_BUG_ON_PAGE(!PageSlab(page), page);
810 	__ClearPageActive(page);
811 }
812 
ClearPageSlabPfmemalloc(struct page * page)813 static inline void ClearPageSlabPfmemalloc(struct page *page)
814 {
815 	VM_BUG_ON_PAGE(!PageSlab(page), page);
816 	ClearPageActive(page);
817 }
818 
819 #ifdef CONFIG_MMU
820 #define __PG_MLOCKED		(1UL << PG_mlocked)
821 #else
822 #define __PG_MLOCKED		0
823 #endif
824 
825 /*
826  * Flags checked when a page is freed.  Pages being freed should not have
827  * these flags set.  It they are, there is a problem.
828  */
829 #define PAGE_FLAGS_CHECK_AT_FREE				\
830 	(1UL << PG_lru		| 1UL << PG_locked	|	\
831 	 1UL << PG_private	| 1UL << PG_private_2	|	\
832 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
833 	 1UL << PG_slab		| 1UL << PG_active 	|	\
834 	 1UL << PG_unevictable	| __PG_MLOCKED)
835 
836 /*
837  * Flags checked when a page is prepped for return by the page allocator.
838  * Pages being prepped should not have these flags set.  It they are set,
839  * there has been a kernel bug or struct page corruption.
840  *
841  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
842  * alloc-free cycle to prevent from reusing the page.
843  */
844 #define PAGE_FLAGS_CHECK_AT_PREP	\
845 	(((1UL << NR_PAGEFLAGS) - 1) & ~__PG_HWPOISON)
846 
847 #define PAGE_FLAGS_PRIVATE				\
848 	(1UL << PG_private | 1UL << PG_private_2)
849 /**
850  * page_has_private - Determine if page has private stuff
851  * @page: The page to be checked
852  *
853  * Determine if a page has private stuff, indicating that release routines
854  * should be invoked upon it.
855  */
page_has_private(struct page * page)856 static inline int page_has_private(struct page *page)
857 {
858 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
859 }
860 
861 #undef PF_ANY
862 #undef PF_HEAD
863 #undef PF_ONLY_HEAD
864 #undef PF_NO_TAIL
865 #undef PF_NO_COMPOUND
866 #undef PF_SECOND
867 #endif /* !__GENERATING_BOUNDS_H */
868 
869 #endif	/* PAGE_FLAGS_H */
870