1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/sched.h>
8 #include <linux/mm.h>
9 #include <linux/interrupt.h>
10 #include <linux/seq_file.h>
11 #include <linux/debugfs.h>
12 #include <linux/pfn.h>
13 #include <linux/percpu.h>
14 #include <linux/gfp.h>
15 #include <linux/pci.h>
16 #include <linux/vmalloc.h>
17 
18 #include <asm/e820/api.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <linux/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 #include <asm/set_memory.h>
28 
29 /*
30  * The current flushing context - we pass it instead of 5 arguments:
31  */
32 struct cpa_data {
33 	unsigned long	*vaddr;
34 	pgd_t		*pgd;
35 	pgprot_t	mask_set;
36 	pgprot_t	mask_clr;
37 	unsigned long	numpages;
38 	int		flags;
39 	unsigned long	pfn;
40 	unsigned	force_split : 1;
41 	int		curpage;
42 	struct page	**pages;
43 };
44 
45 /*
46  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
47  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
48  * entries change the page attribute in parallel to some other cpu
49  * splitting a large page entry along with changing the attribute.
50  */
51 static DEFINE_SPINLOCK(cpa_lock);
52 
53 #define CPA_FLUSHTLB 1
54 #define CPA_ARRAY 2
55 #define CPA_PAGES_ARRAY 4
56 #define CPA_NO_CHECK_ALIAS 8 /* Do not search for aliases */
57 
58 #ifdef CONFIG_PROC_FS
59 static unsigned long direct_pages_count[PG_LEVEL_NUM];
60 
update_page_count(int level,unsigned long pages)61 void update_page_count(int level, unsigned long pages)
62 {
63 	/* Protect against CPA */
64 	spin_lock(&pgd_lock);
65 	direct_pages_count[level] += pages;
66 	spin_unlock(&pgd_lock);
67 }
68 
split_page_count(int level)69 static void split_page_count(int level)
70 {
71 	if (direct_pages_count[level] == 0)
72 		return;
73 
74 	direct_pages_count[level]--;
75 	direct_pages_count[level - 1] += PTRS_PER_PTE;
76 }
77 
arch_report_meminfo(struct seq_file * m)78 void arch_report_meminfo(struct seq_file *m)
79 {
80 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
81 			direct_pages_count[PG_LEVEL_4K] << 2);
82 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
83 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
84 			direct_pages_count[PG_LEVEL_2M] << 11);
85 #else
86 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
87 			direct_pages_count[PG_LEVEL_2M] << 12);
88 #endif
89 	if (direct_gbpages)
90 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
91 			direct_pages_count[PG_LEVEL_1G] << 20);
92 }
93 #else
split_page_count(int level)94 static inline void split_page_count(int level) { }
95 #endif
96 
97 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)98 within(unsigned long addr, unsigned long start, unsigned long end)
99 {
100 	return addr >= start && addr < end;
101 }
102 
103 static inline int
within_inclusive(unsigned long addr,unsigned long start,unsigned long end)104 within_inclusive(unsigned long addr, unsigned long start, unsigned long end)
105 {
106 	return addr >= start && addr <= end;
107 }
108 
109 #ifdef CONFIG_X86_64
110 
highmap_start_pfn(void)111 static inline unsigned long highmap_start_pfn(void)
112 {
113 	return __pa_symbol(_text) >> PAGE_SHIFT;
114 }
115 
highmap_end_pfn(void)116 static inline unsigned long highmap_end_pfn(void)
117 {
118 	/* Do not reference physical address outside the kernel. */
119 	return __pa_symbol(roundup(_brk_end, PMD_SIZE) - 1) >> PAGE_SHIFT;
120 }
121 
__cpa_pfn_in_highmap(unsigned long pfn)122 static bool __cpa_pfn_in_highmap(unsigned long pfn)
123 {
124 	/*
125 	 * Kernel text has an alias mapping at a high address, known
126 	 * here as "highmap".
127 	 */
128 	return within_inclusive(pfn, highmap_start_pfn(), highmap_end_pfn());
129 }
130 
131 #else
132 
__cpa_pfn_in_highmap(unsigned long pfn)133 static bool __cpa_pfn_in_highmap(unsigned long pfn)
134 {
135 	/* There is no highmap on 32-bit */
136 	return false;
137 }
138 
139 #endif
140 
141 /*
142  * Flushing functions
143  */
144 
145 /**
146  * clflush_cache_range - flush a cache range with clflush
147  * @vaddr:	virtual start address
148  * @size:	number of bytes to flush
149  *
150  * clflushopt is an unordered instruction which needs fencing with mfence or
151  * sfence to avoid ordering issues.
152  */
clflush_cache_range(void * vaddr,unsigned int size)153 void clflush_cache_range(void *vaddr, unsigned int size)
154 {
155 	const unsigned long clflush_size = boot_cpu_data.x86_clflush_size;
156 	void *p = (void *)((unsigned long)vaddr & ~(clflush_size - 1));
157 	void *vend = vaddr + size;
158 
159 	if (p >= vend)
160 		return;
161 
162 	mb();
163 
164 	for (; p < vend; p += clflush_size)
165 		clflushopt(p);
166 
167 	mb();
168 }
169 EXPORT_SYMBOL_GPL(clflush_cache_range);
170 
arch_invalidate_pmem(void * addr,size_t size)171 void arch_invalidate_pmem(void *addr, size_t size)
172 {
173 	clflush_cache_range(addr, size);
174 }
175 EXPORT_SYMBOL_GPL(arch_invalidate_pmem);
176 
__cpa_flush_all(void * arg)177 static void __cpa_flush_all(void *arg)
178 {
179 	unsigned long cache = (unsigned long)arg;
180 
181 	/*
182 	 * Flush all to work around Errata in early athlons regarding
183 	 * large page flushing.
184 	 */
185 	__flush_tlb_all();
186 
187 	if (cache && boot_cpu_data.x86 >= 4)
188 		wbinvd();
189 }
190 
cpa_flush_all(unsigned long cache)191 static void cpa_flush_all(unsigned long cache)
192 {
193 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
194 
195 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
196 }
197 
__cpa_flush_range(void * arg)198 static void __cpa_flush_range(void *arg)
199 {
200 	/*
201 	 * We could optimize that further and do individual per page
202 	 * tlb invalidates for a low number of pages. Caveat: we must
203 	 * flush the high aliases on 64bit as well.
204 	 */
205 	__flush_tlb_all();
206 }
207 
cpa_flush_range(unsigned long start,int numpages,int cache)208 static void cpa_flush_range(unsigned long start, int numpages, int cache)
209 {
210 	unsigned int i, level;
211 	unsigned long addr;
212 
213 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
214 	WARN_ON(PAGE_ALIGN(start) != start);
215 
216 	on_each_cpu(__cpa_flush_range, NULL, 1);
217 
218 	if (!cache)
219 		return;
220 
221 	/*
222 	 * We only need to flush on one CPU,
223 	 * clflush is a MESI-coherent instruction that
224 	 * will cause all other CPUs to flush the same
225 	 * cachelines:
226 	 */
227 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
228 		pte_t *pte = lookup_address(addr, &level);
229 
230 		/*
231 		 * Only flush present addresses:
232 		 */
233 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
234 			clflush_cache_range((void *) addr, PAGE_SIZE);
235 	}
236 }
237 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)238 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
239 			    int in_flags, struct page **pages)
240 {
241 	unsigned int i, level;
242 #ifdef CONFIG_PREEMPT
243 	/*
244 	 * Avoid wbinvd() because it causes latencies on all CPUs,
245 	 * regardless of any CPU isolation that may be in effect.
246 	 *
247 	 * This should be extended for CAT enabled systems independent of
248 	 * PREEMPT because wbinvd() does not respect the CAT partitions and
249 	 * this is exposed to unpriviledged users through the graphics
250 	 * subsystem.
251 	 */
252 	unsigned long do_wbinvd = 0;
253 #else
254 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
255 #endif
256 
257 	BUG_ON(irqs_disabled() && !early_boot_irqs_disabled);
258 
259 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
260 
261 	if (!cache || do_wbinvd)
262 		return;
263 
264 	/*
265 	 * We only need to flush on one CPU,
266 	 * clflush is a MESI-coherent instruction that
267 	 * will cause all other CPUs to flush the same
268 	 * cachelines:
269 	 */
270 	for (i = 0; i < numpages; i++) {
271 		unsigned long addr;
272 		pte_t *pte;
273 
274 		if (in_flags & CPA_PAGES_ARRAY)
275 			addr = (unsigned long)page_address(pages[i]);
276 		else
277 			addr = start[i];
278 
279 		pte = lookup_address(addr, &level);
280 
281 		/*
282 		 * Only flush present addresses:
283 		 */
284 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
285 			clflush_cache_range((void *)addr, PAGE_SIZE);
286 	}
287 }
288 
289 /*
290  * Certain areas of memory on x86 require very specific protection flags,
291  * for example the BIOS area or kernel text. Callers don't always get this
292  * right (again, ioremap() on BIOS memory is not uncommon) so this function
293  * checks and fixes these known static required protection bits.
294  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)295 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
296 				   unsigned long pfn)
297 {
298 	pgprot_t forbidden = __pgprot(0);
299 
300 	/*
301 	 * The BIOS area between 640k and 1Mb needs to be executable for
302 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
303 	 */
304 #ifdef CONFIG_PCI_BIOS
305 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
306 		pgprot_val(forbidden) |= _PAGE_NX;
307 #endif
308 
309 	/*
310 	 * The kernel text needs to be executable for obvious reasons
311 	 * Does not cover __inittext since that is gone later on. On
312 	 * 64bit we do not enforce !NX on the low mapping
313 	 */
314 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
315 		pgprot_val(forbidden) |= _PAGE_NX;
316 
317 	/*
318 	 * The .rodata section needs to be read-only. Using the pfn
319 	 * catches all aliases.  This also includes __ro_after_init,
320 	 * so do not enforce until kernel_set_to_readonly is true.
321 	 */
322 	if (kernel_set_to_readonly &&
323 	    within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
324 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
325 		pgprot_val(forbidden) |= _PAGE_RW;
326 
327 #if defined(CONFIG_X86_64)
328 	/*
329 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
330 	 * kernel text mappings for the large page aligned text, rodata sections
331 	 * will be always read-only. For the kernel identity mappings covering
332 	 * the holes caused by this alignment can be anything that user asks.
333 	 *
334 	 * This will preserve the large page mappings for kernel text/data
335 	 * at no extra cost.
336 	 */
337 	if (kernel_set_to_readonly &&
338 	    within(address, (unsigned long)_text,
339 		   (unsigned long)__end_rodata_hpage_align)) {
340 		unsigned int level;
341 
342 		/*
343 		 * Don't enforce the !RW mapping for the kernel text mapping,
344 		 * if the current mapping is already using small page mapping.
345 		 * No need to work hard to preserve large page mappings in this
346 		 * case.
347 		 *
348 		 * This also fixes the Linux Xen paravirt guest boot failure
349 		 * (because of unexpected read-only mappings for kernel identity
350 		 * mappings). In this paravirt guest case, the kernel text
351 		 * mapping and the kernel identity mapping share the same
352 		 * page-table pages. Thus we can't really use different
353 		 * protections for the kernel text and identity mappings. Also,
354 		 * these shared mappings are made of small page mappings.
355 		 * Thus this don't enforce !RW mapping for small page kernel
356 		 * text mapping logic will help Linux Xen parvirt guest boot
357 		 * as well.
358 		 */
359 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
360 			pgprot_val(forbidden) |= _PAGE_RW;
361 	}
362 #endif
363 
364 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
365 
366 	return prot;
367 }
368 
369 /*
370  * Lookup the page table entry for a virtual address in a specific pgd.
371  * Return a pointer to the entry and the level of the mapping.
372  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)373 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
374 			     unsigned int *level)
375 {
376 	p4d_t *p4d;
377 	pud_t *pud;
378 	pmd_t *pmd;
379 
380 	*level = PG_LEVEL_NONE;
381 
382 	if (pgd_none(*pgd))
383 		return NULL;
384 
385 	p4d = p4d_offset(pgd, address);
386 	if (p4d_none(*p4d))
387 		return NULL;
388 
389 	*level = PG_LEVEL_512G;
390 	if (p4d_large(*p4d) || !p4d_present(*p4d))
391 		return (pte_t *)p4d;
392 
393 	pud = pud_offset(p4d, address);
394 	if (pud_none(*pud))
395 		return NULL;
396 
397 	*level = PG_LEVEL_1G;
398 	if (pud_large(*pud) || !pud_present(*pud))
399 		return (pte_t *)pud;
400 
401 	pmd = pmd_offset(pud, address);
402 	if (pmd_none(*pmd))
403 		return NULL;
404 
405 	*level = PG_LEVEL_2M;
406 	if (pmd_large(*pmd) || !pmd_present(*pmd))
407 		return (pte_t *)pmd;
408 
409 	*level = PG_LEVEL_4K;
410 
411 	return pte_offset_kernel(pmd, address);
412 }
413 
414 /*
415  * Lookup the page table entry for a virtual address. Return a pointer
416  * to the entry and the level of the mapping.
417  *
418  * Note: We return pud and pmd either when the entry is marked large
419  * or when the present bit is not set. Otherwise we would return a
420  * pointer to a nonexisting mapping.
421  */
lookup_address(unsigned long address,unsigned int * level)422 pte_t *lookup_address(unsigned long address, unsigned int *level)
423 {
424         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
425 }
426 EXPORT_SYMBOL_GPL(lookup_address);
427 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)428 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
429 				  unsigned int *level)
430 {
431         if (cpa->pgd)
432 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
433 					       address, level);
434 
435         return lookup_address(address, level);
436 }
437 
438 /*
439  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
440  * or NULL if not present.
441  */
lookup_pmd_address(unsigned long address)442 pmd_t *lookup_pmd_address(unsigned long address)
443 {
444 	pgd_t *pgd;
445 	p4d_t *p4d;
446 	pud_t *pud;
447 
448 	pgd = pgd_offset_k(address);
449 	if (pgd_none(*pgd))
450 		return NULL;
451 
452 	p4d = p4d_offset(pgd, address);
453 	if (p4d_none(*p4d) || p4d_large(*p4d) || !p4d_present(*p4d))
454 		return NULL;
455 
456 	pud = pud_offset(p4d, address);
457 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
458 		return NULL;
459 
460 	return pmd_offset(pud, address);
461 }
462 
463 /*
464  * This is necessary because __pa() does not work on some
465  * kinds of memory, like vmalloc() or the alloc_remap()
466  * areas on 32-bit NUMA systems.  The percpu areas can
467  * end up in this kind of memory, for instance.
468  *
469  * This could be optimized, but it is only intended to be
470  * used at inititalization time, and keeping it
471  * unoptimized should increase the testing coverage for
472  * the more obscure platforms.
473  */
slow_virt_to_phys(void * __virt_addr)474 phys_addr_t slow_virt_to_phys(void *__virt_addr)
475 {
476 	unsigned long virt_addr = (unsigned long)__virt_addr;
477 	phys_addr_t phys_addr;
478 	unsigned long offset;
479 	enum pg_level level;
480 	pte_t *pte;
481 
482 	pte = lookup_address(virt_addr, &level);
483 	BUG_ON(!pte);
484 
485 	/*
486 	 * pXX_pfn() returns unsigned long, which must be cast to phys_addr_t
487 	 * before being left-shifted PAGE_SHIFT bits -- this trick is to
488 	 * make 32-PAE kernel work correctly.
489 	 */
490 	switch (level) {
491 	case PG_LEVEL_1G:
492 		phys_addr = (phys_addr_t)pud_pfn(*(pud_t *)pte) << PAGE_SHIFT;
493 		offset = virt_addr & ~PUD_PAGE_MASK;
494 		break;
495 	case PG_LEVEL_2M:
496 		phys_addr = (phys_addr_t)pmd_pfn(*(pmd_t *)pte) << PAGE_SHIFT;
497 		offset = virt_addr & ~PMD_PAGE_MASK;
498 		break;
499 	default:
500 		phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
501 		offset = virt_addr & ~PAGE_MASK;
502 	}
503 
504 	return (phys_addr_t)(phys_addr | offset);
505 }
506 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
507 
508 /*
509  * Set the new pmd in all the pgds we know about:
510  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)511 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
512 {
513 	/* change init_mm */
514 	set_pte_atomic(kpte, pte);
515 #ifdef CONFIG_X86_32
516 	if (!SHARED_KERNEL_PMD) {
517 		struct page *page;
518 
519 		list_for_each_entry(page, &pgd_list, lru) {
520 			pgd_t *pgd;
521 			p4d_t *p4d;
522 			pud_t *pud;
523 			pmd_t *pmd;
524 
525 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
526 			p4d = p4d_offset(pgd, address);
527 			pud = pud_offset(p4d, address);
528 			pmd = pmd_offset(pud, address);
529 			set_pte_atomic((pte_t *)pmd, pte);
530 		}
531 	}
532 #endif
533 }
534 
pgprot_clear_protnone_bits(pgprot_t prot)535 static pgprot_t pgprot_clear_protnone_bits(pgprot_t prot)
536 {
537 	/*
538 	 * _PAGE_GLOBAL means "global page" for present PTEs.
539 	 * But, it is also used to indicate _PAGE_PROTNONE
540 	 * for non-present PTEs.
541 	 *
542 	 * This ensures that a _PAGE_GLOBAL PTE going from
543 	 * present to non-present is not confused as
544 	 * _PAGE_PROTNONE.
545 	 */
546 	if (!(pgprot_val(prot) & _PAGE_PRESENT))
547 		pgprot_val(prot) &= ~_PAGE_GLOBAL;
548 
549 	return prot;
550 }
551 
552 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)553 try_preserve_large_page(pte_t *kpte, unsigned long address,
554 			struct cpa_data *cpa)
555 {
556 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn, old_pfn;
557 	pte_t new_pte, old_pte, *tmp;
558 	pgprot_t old_prot, new_prot, req_prot;
559 	int i, do_split = 1;
560 	enum pg_level level;
561 
562 	if (cpa->force_split)
563 		return 1;
564 
565 	spin_lock(&pgd_lock);
566 	/*
567 	 * Check for races, another CPU might have split this page
568 	 * up already:
569 	 */
570 	tmp = _lookup_address_cpa(cpa, address, &level);
571 	if (tmp != kpte)
572 		goto out_unlock;
573 
574 	switch (level) {
575 	case PG_LEVEL_2M:
576 		old_prot = pmd_pgprot(*(pmd_t *)kpte);
577 		old_pfn = pmd_pfn(*(pmd_t *)kpte);
578 		break;
579 	case PG_LEVEL_1G:
580 		old_prot = pud_pgprot(*(pud_t *)kpte);
581 		old_pfn = pud_pfn(*(pud_t *)kpte);
582 		break;
583 	default:
584 		do_split = -EINVAL;
585 		goto out_unlock;
586 	}
587 
588 	psize = page_level_size(level);
589 	pmask = page_level_mask(level);
590 
591 	/*
592 	 * Calculate the number of pages, which fit into this large
593 	 * page starting at address:
594 	 */
595 	nextpage_addr = (address + psize) & pmask;
596 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
597 	if (numpages < cpa->numpages)
598 		cpa->numpages = numpages;
599 
600 	/*
601 	 * We are safe now. Check whether the new pgprot is the same:
602 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
603 	 * up accordingly.
604 	 */
605 	old_pte = *kpte;
606 	/* Clear PSE (aka _PAGE_PAT) and move PAT bit to correct position */
607 	req_prot = pgprot_large_2_4k(old_prot);
608 
609 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
610 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
611 
612 	/*
613 	 * req_prot is in format of 4k pages. It must be converted to large
614 	 * page format: the caching mode includes the PAT bit located at
615 	 * different bit positions in the two formats.
616 	 */
617 	req_prot = pgprot_4k_2_large(req_prot);
618 	req_prot = pgprot_clear_protnone_bits(req_prot);
619 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
620 		pgprot_val(req_prot) |= _PAGE_PSE;
621 
622 	/*
623 	 * old_pfn points to the large page base pfn. So we need
624 	 * to add the offset of the virtual address:
625 	 */
626 	pfn = old_pfn + ((address & (psize - 1)) >> PAGE_SHIFT);
627 	cpa->pfn = pfn;
628 
629 	new_prot = static_protections(req_prot, address, pfn);
630 
631 	/*
632 	 * We need to check the full range, whether
633 	 * static_protection() requires a different pgprot for one of
634 	 * the pages in the range we try to preserve:
635 	 */
636 	addr = address & pmask;
637 	pfn = old_pfn;
638 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
639 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
640 
641 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
642 			goto out_unlock;
643 	}
644 
645 	/*
646 	 * If there are no changes, return. maxpages has been updated
647 	 * above:
648 	 */
649 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
650 		do_split = 0;
651 		goto out_unlock;
652 	}
653 
654 	/*
655 	 * We need to change the attributes. Check, whether we can
656 	 * change the large page in one go. We request a split, when
657 	 * the address is not aligned and the number of pages is
658 	 * smaller than the number of pages in the large page. Note
659 	 * that we limited the number of possible pages already to
660 	 * the number of pages in the large page.
661 	 */
662 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
663 		/*
664 		 * The address is aligned and the number of pages
665 		 * covers the full page.
666 		 */
667 		new_pte = pfn_pte(old_pfn, new_prot);
668 		__set_pmd_pte(kpte, address, new_pte);
669 		cpa->flags |= CPA_FLUSHTLB;
670 		do_split = 0;
671 	}
672 
673 out_unlock:
674 	spin_unlock(&pgd_lock);
675 
676 	return do_split;
677 }
678 
679 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)680 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
681 		   struct page *base)
682 {
683 	pte_t *pbase = (pte_t *)page_address(base);
684 	unsigned long ref_pfn, pfn, pfninc = 1;
685 	unsigned int i, level;
686 	pte_t *tmp;
687 	pgprot_t ref_prot;
688 
689 	spin_lock(&pgd_lock);
690 	/*
691 	 * Check for races, another CPU might have split this page
692 	 * up for us already:
693 	 */
694 	tmp = _lookup_address_cpa(cpa, address, &level);
695 	if (tmp != kpte) {
696 		spin_unlock(&pgd_lock);
697 		return 1;
698 	}
699 
700 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
701 
702 	switch (level) {
703 	case PG_LEVEL_2M:
704 		ref_prot = pmd_pgprot(*(pmd_t *)kpte);
705 		/*
706 		 * Clear PSE (aka _PAGE_PAT) and move
707 		 * PAT bit to correct position.
708 		 */
709 		ref_prot = pgprot_large_2_4k(ref_prot);
710 
711 		ref_pfn = pmd_pfn(*(pmd_t *)kpte);
712 		break;
713 
714 	case PG_LEVEL_1G:
715 		ref_prot = pud_pgprot(*(pud_t *)kpte);
716 		ref_pfn = pud_pfn(*(pud_t *)kpte);
717 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
718 
719 		/*
720 		 * Clear the PSE flags if the PRESENT flag is not set
721 		 * otherwise pmd_present/pmd_huge will return true
722 		 * even on a non present pmd.
723 		 */
724 		if (!(pgprot_val(ref_prot) & _PAGE_PRESENT))
725 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
726 		break;
727 
728 	default:
729 		spin_unlock(&pgd_lock);
730 		return 1;
731 	}
732 
733 	ref_prot = pgprot_clear_protnone_bits(ref_prot);
734 
735 	/*
736 	 * Get the target pfn from the original entry:
737 	 */
738 	pfn = ref_pfn;
739 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
740 		set_pte(&pbase[i], pfn_pte(pfn, ref_prot));
741 
742 	if (virt_addr_valid(address)) {
743 		unsigned long pfn = PFN_DOWN(__pa(address));
744 
745 		if (pfn_range_is_mapped(pfn, pfn + 1))
746 			split_page_count(level);
747 	}
748 
749 	/*
750 	 * Install the new, split up pagetable.
751 	 *
752 	 * We use the standard kernel pagetable protections for the new
753 	 * pagetable protections, the actual ptes set above control the
754 	 * primary protection behavior:
755 	 */
756 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
757 
758 	/*
759 	 * Intel Atom errata AAH41 workaround.
760 	 *
761 	 * The real fix should be in hw or in a microcode update, but
762 	 * we also probabilistically try to reduce the window of having
763 	 * a large TLB mixed with 4K TLBs while instruction fetches are
764 	 * going on.
765 	 */
766 	__flush_tlb_all();
767 	spin_unlock(&pgd_lock);
768 
769 	return 0;
770 }
771 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)772 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
773 			    unsigned long address)
774 {
775 	struct page *base;
776 
777 	if (!debug_pagealloc_enabled())
778 		spin_unlock(&cpa_lock);
779 	base = alloc_pages(GFP_KERNEL, 0);
780 	if (!debug_pagealloc_enabled())
781 		spin_lock(&cpa_lock);
782 	if (!base)
783 		return -ENOMEM;
784 
785 	if (__split_large_page(cpa, kpte, address, base))
786 		__free_page(base);
787 
788 	return 0;
789 }
790 
try_to_free_pte_page(pte_t * pte)791 static bool try_to_free_pte_page(pte_t *pte)
792 {
793 	int i;
794 
795 	for (i = 0; i < PTRS_PER_PTE; i++)
796 		if (!pte_none(pte[i]))
797 			return false;
798 
799 	free_page((unsigned long)pte);
800 	return true;
801 }
802 
try_to_free_pmd_page(pmd_t * pmd)803 static bool try_to_free_pmd_page(pmd_t *pmd)
804 {
805 	int i;
806 
807 	for (i = 0; i < PTRS_PER_PMD; i++)
808 		if (!pmd_none(pmd[i]))
809 			return false;
810 
811 	free_page((unsigned long)pmd);
812 	return true;
813 }
814 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)815 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
816 {
817 	pte_t *pte = pte_offset_kernel(pmd, start);
818 
819 	while (start < end) {
820 		set_pte(pte, __pte(0));
821 
822 		start += PAGE_SIZE;
823 		pte++;
824 	}
825 
826 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
827 		pmd_clear(pmd);
828 		return true;
829 	}
830 	return false;
831 }
832 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)833 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
834 			      unsigned long start, unsigned long end)
835 {
836 	if (unmap_pte_range(pmd, start, end))
837 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
838 			pud_clear(pud);
839 }
840 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)841 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
842 {
843 	pmd_t *pmd = pmd_offset(pud, start);
844 
845 	/*
846 	 * Not on a 2MB page boundary?
847 	 */
848 	if (start & (PMD_SIZE - 1)) {
849 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
850 		unsigned long pre_end = min_t(unsigned long, end, next_page);
851 
852 		__unmap_pmd_range(pud, pmd, start, pre_end);
853 
854 		start = pre_end;
855 		pmd++;
856 	}
857 
858 	/*
859 	 * Try to unmap in 2M chunks.
860 	 */
861 	while (end - start >= PMD_SIZE) {
862 		if (pmd_large(*pmd))
863 			pmd_clear(pmd);
864 		else
865 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
866 
867 		start += PMD_SIZE;
868 		pmd++;
869 	}
870 
871 	/*
872 	 * 4K leftovers?
873 	 */
874 	if (start < end)
875 		return __unmap_pmd_range(pud, pmd, start, end);
876 
877 	/*
878 	 * Try again to free the PMD page if haven't succeeded above.
879 	 */
880 	if (!pud_none(*pud))
881 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
882 			pud_clear(pud);
883 }
884 
unmap_pud_range(p4d_t * p4d,unsigned long start,unsigned long end)885 static void unmap_pud_range(p4d_t *p4d, unsigned long start, unsigned long end)
886 {
887 	pud_t *pud = pud_offset(p4d, start);
888 
889 	/*
890 	 * Not on a GB page boundary?
891 	 */
892 	if (start & (PUD_SIZE - 1)) {
893 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
894 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
895 
896 		unmap_pmd_range(pud, start, pre_end);
897 
898 		start = pre_end;
899 		pud++;
900 	}
901 
902 	/*
903 	 * Try to unmap in 1G chunks?
904 	 */
905 	while (end - start >= PUD_SIZE) {
906 
907 		if (pud_large(*pud))
908 			pud_clear(pud);
909 		else
910 			unmap_pmd_range(pud, start, start + PUD_SIZE);
911 
912 		start += PUD_SIZE;
913 		pud++;
914 	}
915 
916 	/*
917 	 * 2M leftovers?
918 	 */
919 	if (start < end)
920 		unmap_pmd_range(pud, start, end);
921 
922 	/*
923 	 * No need to try to free the PUD page because we'll free it in
924 	 * populate_pgd's error path
925 	 */
926 }
927 
alloc_pte_page(pmd_t * pmd)928 static int alloc_pte_page(pmd_t *pmd)
929 {
930 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
931 	if (!pte)
932 		return -1;
933 
934 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
935 	return 0;
936 }
937 
alloc_pmd_page(pud_t * pud)938 static int alloc_pmd_page(pud_t *pud)
939 {
940 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
941 	if (!pmd)
942 		return -1;
943 
944 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
945 	return 0;
946 }
947 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)948 static void populate_pte(struct cpa_data *cpa,
949 			 unsigned long start, unsigned long end,
950 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
951 {
952 	pte_t *pte;
953 
954 	pte = pte_offset_kernel(pmd, start);
955 
956 	pgprot = pgprot_clear_protnone_bits(pgprot);
957 
958 	while (num_pages-- && start < end) {
959 		set_pte(pte, pfn_pte(cpa->pfn, pgprot));
960 
961 		start	 += PAGE_SIZE;
962 		cpa->pfn++;
963 		pte++;
964 	}
965 }
966 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)967 static long populate_pmd(struct cpa_data *cpa,
968 			 unsigned long start, unsigned long end,
969 			 unsigned num_pages, pud_t *pud, pgprot_t pgprot)
970 {
971 	long cur_pages = 0;
972 	pmd_t *pmd;
973 	pgprot_t pmd_pgprot;
974 
975 	/*
976 	 * Not on a 2M boundary?
977 	 */
978 	if (start & (PMD_SIZE - 1)) {
979 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
980 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
981 
982 		pre_end   = min_t(unsigned long, pre_end, next_page);
983 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
984 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
985 
986 		/*
987 		 * Need a PTE page?
988 		 */
989 		pmd = pmd_offset(pud, start);
990 		if (pmd_none(*pmd))
991 			if (alloc_pte_page(pmd))
992 				return -1;
993 
994 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
995 
996 		start = pre_end;
997 	}
998 
999 	/*
1000 	 * We mapped them all?
1001 	 */
1002 	if (num_pages == cur_pages)
1003 		return cur_pages;
1004 
1005 	pmd_pgprot = pgprot_4k_2_large(pgprot);
1006 
1007 	while (end - start >= PMD_SIZE) {
1008 
1009 		/*
1010 		 * We cannot use a 1G page so allocate a PMD page if needed.
1011 		 */
1012 		if (pud_none(*pud))
1013 			if (alloc_pmd_page(pud))
1014 				return -1;
1015 
1016 		pmd = pmd_offset(pud, start);
1017 
1018 		set_pmd(pmd, pmd_mkhuge(pfn_pmd(cpa->pfn,
1019 					canon_pgprot(pmd_pgprot))));
1020 
1021 		start	  += PMD_SIZE;
1022 		cpa->pfn  += PMD_SIZE >> PAGE_SHIFT;
1023 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
1024 	}
1025 
1026 	/*
1027 	 * Map trailing 4K pages.
1028 	 */
1029 	if (start < end) {
1030 		pmd = pmd_offset(pud, start);
1031 		if (pmd_none(*pmd))
1032 			if (alloc_pte_page(pmd))
1033 				return -1;
1034 
1035 		populate_pte(cpa, start, end, num_pages - cur_pages,
1036 			     pmd, pgprot);
1037 	}
1038 	return num_pages;
1039 }
1040 
populate_pud(struct cpa_data * cpa,unsigned long start,p4d_t * p4d,pgprot_t pgprot)1041 static int populate_pud(struct cpa_data *cpa, unsigned long start, p4d_t *p4d,
1042 			pgprot_t pgprot)
1043 {
1044 	pud_t *pud;
1045 	unsigned long end;
1046 	long cur_pages = 0;
1047 	pgprot_t pud_pgprot;
1048 
1049 	end = start + (cpa->numpages << PAGE_SHIFT);
1050 
1051 	/*
1052 	 * Not on a Gb page boundary? => map everything up to it with
1053 	 * smaller pages.
1054 	 */
1055 	if (start & (PUD_SIZE - 1)) {
1056 		unsigned long pre_end;
1057 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
1058 
1059 		pre_end   = min_t(unsigned long, end, next_page);
1060 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
1061 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
1062 
1063 		pud = pud_offset(p4d, start);
1064 
1065 		/*
1066 		 * Need a PMD page?
1067 		 */
1068 		if (pud_none(*pud))
1069 			if (alloc_pmd_page(pud))
1070 				return -1;
1071 
1072 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1073 					 pud, pgprot);
1074 		if (cur_pages < 0)
1075 			return cur_pages;
1076 
1077 		start = pre_end;
1078 	}
1079 
1080 	/* We mapped them all? */
1081 	if (cpa->numpages == cur_pages)
1082 		return cur_pages;
1083 
1084 	pud = pud_offset(p4d, start);
1085 	pud_pgprot = pgprot_4k_2_large(pgprot);
1086 
1087 	/*
1088 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1089 	 */
1090 	while (boot_cpu_has(X86_FEATURE_GBPAGES) && end - start >= PUD_SIZE) {
1091 		set_pud(pud, pud_mkhuge(pfn_pud(cpa->pfn,
1092 				   canon_pgprot(pud_pgprot))));
1093 
1094 		start	  += PUD_SIZE;
1095 		cpa->pfn  += PUD_SIZE >> PAGE_SHIFT;
1096 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1097 		pud++;
1098 	}
1099 
1100 	/* Map trailing leftover */
1101 	if (start < end) {
1102 		long tmp;
1103 
1104 		pud = pud_offset(p4d, start);
1105 		if (pud_none(*pud))
1106 			if (alloc_pmd_page(pud))
1107 				return -1;
1108 
1109 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1110 				   pud, pgprot);
1111 		if (tmp < 0)
1112 			return cur_pages;
1113 
1114 		cur_pages += tmp;
1115 	}
1116 	return cur_pages;
1117 }
1118 
1119 /*
1120  * Restrictions for kernel page table do not necessarily apply when mapping in
1121  * an alternate PGD.
1122  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1123 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1124 {
1125 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1126 	pud_t *pud = NULL;	/* shut up gcc */
1127 	p4d_t *p4d;
1128 	pgd_t *pgd_entry;
1129 	long ret;
1130 
1131 	pgd_entry = cpa->pgd + pgd_index(addr);
1132 
1133 	if (pgd_none(*pgd_entry)) {
1134 		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
1135 		if (!p4d)
1136 			return -1;
1137 
1138 		set_pgd(pgd_entry, __pgd(__pa(p4d) | _KERNPG_TABLE));
1139 	}
1140 
1141 	/*
1142 	 * Allocate a PUD page and hand it down for mapping.
1143 	 */
1144 	p4d = p4d_offset(pgd_entry, addr);
1145 	if (p4d_none(*p4d)) {
1146 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
1147 		if (!pud)
1148 			return -1;
1149 
1150 		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
1151 	}
1152 
1153 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1154 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1155 
1156 	ret = populate_pud(cpa, addr, p4d, pgprot);
1157 	if (ret < 0) {
1158 		/*
1159 		 * Leave the PUD page in place in case some other CPU or thread
1160 		 * already found it, but remove any useless entries we just
1161 		 * added to it.
1162 		 */
1163 		unmap_pud_range(p4d, addr,
1164 				addr + (cpa->numpages << PAGE_SHIFT));
1165 		return ret;
1166 	}
1167 
1168 	cpa->numpages = ret;
1169 	return 0;
1170 }
1171 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1172 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1173 			       int primary)
1174 {
1175 	if (cpa->pgd) {
1176 		/*
1177 		 * Right now, we only execute this code path when mapping
1178 		 * the EFI virtual memory map regions, no other users
1179 		 * provide a ->pgd value. This may change in the future.
1180 		 */
1181 		return populate_pgd(cpa, vaddr);
1182 	}
1183 
1184 	/*
1185 	 * Ignore all non primary paths.
1186 	 */
1187 	if (!primary) {
1188 		cpa->numpages = 1;
1189 		return 0;
1190 	}
1191 
1192 	/*
1193 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1194 	 * to have holes.
1195 	 * Also set numpages to '1' indicating that we processed cpa req for
1196 	 * one virtual address page and its pfn. TBD: numpages can be set based
1197 	 * on the initial value and the level returned by lookup_address().
1198 	 */
1199 	if (within(vaddr, PAGE_OFFSET,
1200 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1201 		cpa->numpages = 1;
1202 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1203 		return 0;
1204 
1205 	} else if (__cpa_pfn_in_highmap(cpa->pfn)) {
1206 		/* Faults in the highmap are OK, so do not warn: */
1207 		return -EFAULT;
1208 	} else {
1209 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1210 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1211 			*cpa->vaddr);
1212 
1213 		return -EFAULT;
1214 	}
1215 }
1216 
__change_page_attr(struct cpa_data * cpa,int primary)1217 static int __change_page_attr(struct cpa_data *cpa, int primary)
1218 {
1219 	unsigned long address;
1220 	int do_split, err;
1221 	unsigned int level;
1222 	pte_t *kpte, old_pte;
1223 
1224 	if (cpa->flags & CPA_PAGES_ARRAY) {
1225 		struct page *page = cpa->pages[cpa->curpage];
1226 		if (unlikely(PageHighMem(page)))
1227 			return 0;
1228 		address = (unsigned long)page_address(page);
1229 	} else if (cpa->flags & CPA_ARRAY)
1230 		address = cpa->vaddr[cpa->curpage];
1231 	else
1232 		address = *cpa->vaddr;
1233 repeat:
1234 	kpte = _lookup_address_cpa(cpa, address, &level);
1235 	if (!kpte)
1236 		return __cpa_process_fault(cpa, address, primary);
1237 
1238 	old_pte = *kpte;
1239 	if (pte_none(old_pte))
1240 		return __cpa_process_fault(cpa, address, primary);
1241 
1242 	if (level == PG_LEVEL_4K) {
1243 		pte_t new_pte;
1244 		pgprot_t new_prot = pte_pgprot(old_pte);
1245 		unsigned long pfn = pte_pfn(old_pte);
1246 
1247 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1248 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1249 
1250 		new_prot = static_protections(new_prot, address, pfn);
1251 
1252 		new_prot = pgprot_clear_protnone_bits(new_prot);
1253 
1254 		/*
1255 		 * We need to keep the pfn from the existing PTE,
1256 		 * after all we're only going to change it's attributes
1257 		 * not the memory it points to
1258 		 */
1259 		new_pte = pfn_pte(pfn, new_prot);
1260 		cpa->pfn = pfn;
1261 		/*
1262 		 * Do we really change anything ?
1263 		 */
1264 		if (pte_val(old_pte) != pte_val(new_pte)) {
1265 			set_pte_atomic(kpte, new_pte);
1266 			cpa->flags |= CPA_FLUSHTLB;
1267 		}
1268 		cpa->numpages = 1;
1269 		return 0;
1270 	}
1271 
1272 	/*
1273 	 * Check, whether we can keep the large page intact
1274 	 * and just change the pte:
1275 	 */
1276 	do_split = try_preserve_large_page(kpte, address, cpa);
1277 	/*
1278 	 * When the range fits into the existing large page,
1279 	 * return. cp->numpages and cpa->tlbflush have been updated in
1280 	 * try_large_page:
1281 	 */
1282 	if (do_split <= 0)
1283 		return do_split;
1284 
1285 	/*
1286 	 * We have to split the large page:
1287 	 */
1288 	err = split_large_page(cpa, kpte, address);
1289 	if (!err) {
1290 		/*
1291 	 	 * Do a global flush tlb after splitting the large page
1292 	 	 * and before we do the actual change page attribute in the PTE.
1293 	 	 *
1294 	 	 * With out this, we violate the TLB application note, that says
1295 	 	 * "The TLBs may contain both ordinary and large-page
1296 		 *  translations for a 4-KByte range of linear addresses. This
1297 		 *  may occur if software modifies the paging structures so that
1298 		 *  the page size used for the address range changes. If the two
1299 		 *  translations differ with respect to page frame or attributes
1300 		 *  (e.g., permissions), processor behavior is undefined and may
1301 		 *  be implementation-specific."
1302 	 	 *
1303 	 	 * We do this global tlb flush inside the cpa_lock, so that we
1304 		 * don't allow any other cpu, with stale tlb entries change the
1305 		 * page attribute in parallel, that also falls into the
1306 		 * just split large page entry.
1307 	 	 */
1308 		flush_tlb_all();
1309 		goto repeat;
1310 	}
1311 
1312 	return err;
1313 }
1314 
1315 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1316 
cpa_process_alias(struct cpa_data * cpa)1317 static int cpa_process_alias(struct cpa_data *cpa)
1318 {
1319 	struct cpa_data alias_cpa;
1320 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1321 	unsigned long vaddr;
1322 	int ret;
1323 
1324 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1325 		return 0;
1326 
1327 	/*
1328 	 * No need to redo, when the primary call touched the direct
1329 	 * mapping already:
1330 	 */
1331 	if (cpa->flags & CPA_PAGES_ARRAY) {
1332 		struct page *page = cpa->pages[cpa->curpage];
1333 		if (unlikely(PageHighMem(page)))
1334 			return 0;
1335 		vaddr = (unsigned long)page_address(page);
1336 	} else if (cpa->flags & CPA_ARRAY)
1337 		vaddr = cpa->vaddr[cpa->curpage];
1338 	else
1339 		vaddr = *cpa->vaddr;
1340 
1341 	if (!(within(vaddr, PAGE_OFFSET,
1342 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1343 
1344 		alias_cpa = *cpa;
1345 		alias_cpa.vaddr = &laddr;
1346 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1347 
1348 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1349 		if (ret)
1350 			return ret;
1351 	}
1352 
1353 #ifdef CONFIG_X86_64
1354 	/*
1355 	 * If the primary call didn't touch the high mapping already
1356 	 * and the physical address is inside the kernel map, we need
1357 	 * to touch the high mapped kernel as well:
1358 	 */
1359 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1360 	    __cpa_pfn_in_highmap(cpa->pfn)) {
1361 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1362 					       __START_KERNEL_map - phys_base;
1363 		alias_cpa = *cpa;
1364 		alias_cpa.vaddr = &temp_cpa_vaddr;
1365 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1366 
1367 		/*
1368 		 * The high mapping range is imprecise, so ignore the
1369 		 * return value.
1370 		 */
1371 		__change_page_attr_set_clr(&alias_cpa, 0);
1372 	}
1373 #endif
1374 
1375 	return 0;
1376 }
1377 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1378 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1379 {
1380 	unsigned long numpages = cpa->numpages;
1381 	int ret;
1382 
1383 	while (numpages) {
1384 		/*
1385 		 * Store the remaining nr of pages for the large page
1386 		 * preservation check.
1387 		 */
1388 		cpa->numpages = numpages;
1389 		/* for array changes, we can't use large page */
1390 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1391 			cpa->numpages = 1;
1392 
1393 		if (!debug_pagealloc_enabled())
1394 			spin_lock(&cpa_lock);
1395 		ret = __change_page_attr(cpa, checkalias);
1396 		if (!debug_pagealloc_enabled())
1397 			spin_unlock(&cpa_lock);
1398 		if (ret)
1399 			return ret;
1400 
1401 		if (checkalias) {
1402 			ret = cpa_process_alias(cpa);
1403 			if (ret)
1404 				return ret;
1405 		}
1406 
1407 		/*
1408 		 * Adjust the number of pages with the result of the
1409 		 * CPA operation. Either a large page has been
1410 		 * preserved or a single page update happened.
1411 		 */
1412 		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1413 		numpages -= cpa->numpages;
1414 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1415 			cpa->curpage++;
1416 		else
1417 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1418 
1419 	}
1420 	return 0;
1421 }
1422 
1423 /*
1424  * Machine check recovery code needs to change cache mode of poisoned
1425  * pages to UC to avoid speculative access logging another error. But
1426  * passing the address of the 1:1 mapping to set_memory_uc() is a fine
1427  * way to encourage a speculative access. So we cheat and flip the top
1428  * bit of the address. This works fine for the code that updates the
1429  * page tables. But at the end of the process we need to flush the cache
1430  * and the non-canonical address causes a #GP fault when used by the
1431  * CLFLUSH instruction.
1432  *
1433  * But in the common case we already have a canonical address. This code
1434  * will fix the top bit if needed and is a no-op otherwise.
1435  */
make_addr_canonical_again(unsigned long addr)1436 static inline unsigned long make_addr_canonical_again(unsigned long addr)
1437 {
1438 #ifdef CONFIG_X86_64
1439 	return (long)(addr << 1) >> 1;
1440 #else
1441 	return addr;
1442 #endif
1443 }
1444 
1445 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1446 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1447 				    pgprot_t mask_set, pgprot_t mask_clr,
1448 				    int force_split, int in_flag,
1449 				    struct page **pages)
1450 {
1451 	struct cpa_data cpa;
1452 	int ret, cache, checkalias;
1453 	unsigned long baddr = 0;
1454 
1455 	memset(&cpa, 0, sizeof(cpa));
1456 
1457 	/*
1458 	 * Check, if we are requested to set a not supported
1459 	 * feature.  Clearing non-supported features is OK.
1460 	 */
1461 	mask_set = canon_pgprot(mask_set);
1462 
1463 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1464 		return 0;
1465 
1466 	/* Ensure we are PAGE_SIZE aligned */
1467 	if (in_flag & CPA_ARRAY) {
1468 		int i;
1469 		for (i = 0; i < numpages; i++) {
1470 			if (addr[i] & ~PAGE_MASK) {
1471 				addr[i] &= PAGE_MASK;
1472 				WARN_ON_ONCE(1);
1473 			}
1474 		}
1475 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1476 		/*
1477 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1478 		 * No need to cehck in that case
1479 		 */
1480 		if (*addr & ~PAGE_MASK) {
1481 			*addr &= PAGE_MASK;
1482 			/*
1483 			 * People should not be passing in unaligned addresses:
1484 			 */
1485 			WARN_ON_ONCE(1);
1486 		}
1487 		/*
1488 		 * Save address for cache flush. *addr is modified in the call
1489 		 * to __change_page_attr_set_clr() below.
1490 		 */
1491 		baddr = make_addr_canonical_again(*addr);
1492 	}
1493 
1494 	/* Must avoid aliasing mappings in the highmem code */
1495 	kmap_flush_unused();
1496 
1497 	vm_unmap_aliases();
1498 
1499 	cpa.vaddr = addr;
1500 	cpa.pages = pages;
1501 	cpa.numpages = numpages;
1502 	cpa.mask_set = mask_set;
1503 	cpa.mask_clr = mask_clr;
1504 	cpa.flags = 0;
1505 	cpa.curpage = 0;
1506 	cpa.force_split = force_split;
1507 
1508 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1509 		cpa.flags |= in_flag;
1510 
1511 	/* No alias checking for _NX bit modifications */
1512 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1513 	/* Has caller explicitly disabled alias checking? */
1514 	if (in_flag & CPA_NO_CHECK_ALIAS)
1515 		checkalias = 0;
1516 
1517 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1518 
1519 	/*
1520 	 * Check whether we really changed something:
1521 	 */
1522 	if (!(cpa.flags & CPA_FLUSHTLB))
1523 		goto out;
1524 
1525 	/*
1526 	 * No need to flush, when we did not set any of the caching
1527 	 * attributes:
1528 	 */
1529 	cache = !!pgprot2cachemode(mask_set);
1530 
1531 	/*
1532 	 * On success we use CLFLUSH, when the CPU supports it to
1533 	 * avoid the WBINVD. If the CPU does not support it and in the
1534 	 * error case we fall back to cpa_flush_all (which uses
1535 	 * WBINVD):
1536 	 */
1537 	if (!ret && boot_cpu_has(X86_FEATURE_CLFLUSH)) {
1538 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1539 			cpa_flush_array(addr, numpages, cache,
1540 					cpa.flags, pages);
1541 		} else
1542 			cpa_flush_range(baddr, numpages, cache);
1543 	} else
1544 		cpa_flush_all(cache);
1545 
1546 out:
1547 	return ret;
1548 }
1549 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1550 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1551 				       pgprot_t mask, int array)
1552 {
1553 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1554 		(array ? CPA_ARRAY : 0), NULL);
1555 }
1556 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1557 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1558 					 pgprot_t mask, int array)
1559 {
1560 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1561 		(array ? CPA_ARRAY : 0), NULL);
1562 }
1563 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1564 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1565 				       pgprot_t mask)
1566 {
1567 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1568 		CPA_PAGES_ARRAY, pages);
1569 }
1570 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1571 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1572 					 pgprot_t mask)
1573 {
1574 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1575 		CPA_PAGES_ARRAY, pages);
1576 }
1577 
_set_memory_uc(unsigned long addr,int numpages)1578 int _set_memory_uc(unsigned long addr, int numpages)
1579 {
1580 	/*
1581 	 * for now UC MINUS. see comments in ioremap_nocache()
1582 	 * If you really need strong UC use ioremap_uc(), but note
1583 	 * that you cannot override IO areas with set_memory_*() as
1584 	 * these helpers cannot work with IO memory.
1585 	 */
1586 	return change_page_attr_set(&addr, numpages,
1587 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1588 				    0);
1589 }
1590 
set_memory_uc(unsigned long addr,int numpages)1591 int set_memory_uc(unsigned long addr, int numpages)
1592 {
1593 	int ret;
1594 
1595 	/*
1596 	 * for now UC MINUS. see comments in ioremap_nocache()
1597 	 */
1598 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1599 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1600 	if (ret)
1601 		goto out_err;
1602 
1603 	ret = _set_memory_uc(addr, numpages);
1604 	if (ret)
1605 		goto out_free;
1606 
1607 	return 0;
1608 
1609 out_free:
1610 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1611 out_err:
1612 	return ret;
1613 }
1614 EXPORT_SYMBOL(set_memory_uc);
1615 
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1616 static int _set_memory_array(unsigned long *addr, int addrinarray,
1617 		enum page_cache_mode new_type)
1618 {
1619 	enum page_cache_mode set_type;
1620 	int i, j;
1621 	int ret;
1622 
1623 	for (i = 0; i < addrinarray; i++) {
1624 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1625 					new_type, NULL);
1626 		if (ret)
1627 			goto out_free;
1628 	}
1629 
1630 	/* If WC, set to UC- first and then WC */
1631 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1632 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1633 
1634 	ret = change_page_attr_set(addr, addrinarray,
1635 				   cachemode2pgprot(set_type), 1);
1636 
1637 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1638 		ret = change_page_attr_set_clr(addr, addrinarray,
1639 					       cachemode2pgprot(
1640 						_PAGE_CACHE_MODE_WC),
1641 					       __pgprot(_PAGE_CACHE_MASK),
1642 					       0, CPA_ARRAY, NULL);
1643 	if (ret)
1644 		goto out_free;
1645 
1646 	return 0;
1647 
1648 out_free:
1649 	for (j = 0; j < i; j++)
1650 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1651 
1652 	return ret;
1653 }
1654 
set_memory_array_uc(unsigned long * addr,int addrinarray)1655 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1656 {
1657 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1658 }
1659 EXPORT_SYMBOL(set_memory_array_uc);
1660 
set_memory_array_wc(unsigned long * addr,int addrinarray)1661 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1662 {
1663 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1664 }
1665 EXPORT_SYMBOL(set_memory_array_wc);
1666 
set_memory_array_wt(unsigned long * addr,int addrinarray)1667 int set_memory_array_wt(unsigned long *addr, int addrinarray)
1668 {
1669 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WT);
1670 }
1671 EXPORT_SYMBOL_GPL(set_memory_array_wt);
1672 
_set_memory_wc(unsigned long addr,int numpages)1673 int _set_memory_wc(unsigned long addr, int numpages)
1674 {
1675 	int ret;
1676 	unsigned long addr_copy = addr;
1677 
1678 	ret = change_page_attr_set(&addr, numpages,
1679 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1680 				   0);
1681 	if (!ret) {
1682 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1683 					       cachemode2pgprot(
1684 						_PAGE_CACHE_MODE_WC),
1685 					       __pgprot(_PAGE_CACHE_MASK),
1686 					       0, 0, NULL);
1687 	}
1688 	return ret;
1689 }
1690 
set_memory_wc(unsigned long addr,int numpages)1691 int set_memory_wc(unsigned long addr, int numpages)
1692 {
1693 	int ret;
1694 
1695 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1696 		_PAGE_CACHE_MODE_WC, NULL);
1697 	if (ret)
1698 		return ret;
1699 
1700 	ret = _set_memory_wc(addr, numpages);
1701 	if (ret)
1702 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1703 
1704 	return ret;
1705 }
1706 EXPORT_SYMBOL(set_memory_wc);
1707 
_set_memory_wt(unsigned long addr,int numpages)1708 int _set_memory_wt(unsigned long addr, int numpages)
1709 {
1710 	return change_page_attr_set(&addr, numpages,
1711 				    cachemode2pgprot(_PAGE_CACHE_MODE_WT), 0);
1712 }
1713 
set_memory_wt(unsigned long addr,int numpages)1714 int set_memory_wt(unsigned long addr, int numpages)
1715 {
1716 	int ret;
1717 
1718 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1719 			      _PAGE_CACHE_MODE_WT, NULL);
1720 	if (ret)
1721 		return ret;
1722 
1723 	ret = _set_memory_wt(addr, numpages);
1724 	if (ret)
1725 		free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1726 
1727 	return ret;
1728 }
1729 EXPORT_SYMBOL_GPL(set_memory_wt);
1730 
_set_memory_wb(unsigned long addr,int numpages)1731 int _set_memory_wb(unsigned long addr, int numpages)
1732 {
1733 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1734 	return change_page_attr_clear(&addr, numpages,
1735 				      __pgprot(_PAGE_CACHE_MASK), 0);
1736 }
1737 
set_memory_wb(unsigned long addr,int numpages)1738 int set_memory_wb(unsigned long addr, int numpages)
1739 {
1740 	int ret;
1741 
1742 	ret = _set_memory_wb(addr, numpages);
1743 	if (ret)
1744 		return ret;
1745 
1746 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1747 	return 0;
1748 }
1749 EXPORT_SYMBOL(set_memory_wb);
1750 
set_memory_array_wb(unsigned long * addr,int addrinarray)1751 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1752 {
1753 	int i;
1754 	int ret;
1755 
1756 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1757 	ret = change_page_attr_clear(addr, addrinarray,
1758 				      __pgprot(_PAGE_CACHE_MASK), 1);
1759 	if (ret)
1760 		return ret;
1761 
1762 	for (i = 0; i < addrinarray; i++)
1763 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1764 
1765 	return 0;
1766 }
1767 EXPORT_SYMBOL(set_memory_array_wb);
1768 
set_memory_x(unsigned long addr,int numpages)1769 int set_memory_x(unsigned long addr, int numpages)
1770 {
1771 	if (!(__supported_pte_mask & _PAGE_NX))
1772 		return 0;
1773 
1774 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1775 }
1776 EXPORT_SYMBOL(set_memory_x);
1777 
set_memory_nx(unsigned long addr,int numpages)1778 int set_memory_nx(unsigned long addr, int numpages)
1779 {
1780 	if (!(__supported_pte_mask & _PAGE_NX))
1781 		return 0;
1782 
1783 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1784 }
1785 EXPORT_SYMBOL(set_memory_nx);
1786 
set_memory_ro(unsigned long addr,int numpages)1787 int set_memory_ro(unsigned long addr, int numpages)
1788 {
1789 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1790 }
1791 
set_memory_rw(unsigned long addr,int numpages)1792 int set_memory_rw(unsigned long addr, int numpages)
1793 {
1794 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1795 }
1796 
set_memory_np(unsigned long addr,int numpages)1797 int set_memory_np(unsigned long addr, int numpages)
1798 {
1799 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1800 }
1801 
set_memory_np_noalias(unsigned long addr,int numpages)1802 int set_memory_np_noalias(unsigned long addr, int numpages)
1803 {
1804 	int cpa_flags = CPA_NO_CHECK_ALIAS;
1805 
1806 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1807 					__pgprot(_PAGE_PRESENT), 0,
1808 					cpa_flags, NULL);
1809 }
1810 
set_memory_4k(unsigned long addr,int numpages)1811 int set_memory_4k(unsigned long addr, int numpages)
1812 {
1813 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1814 					__pgprot(0), 1, 0, NULL);
1815 }
1816 
set_memory_nonglobal(unsigned long addr,int numpages)1817 int set_memory_nonglobal(unsigned long addr, int numpages)
1818 {
1819 	return change_page_attr_clear(&addr, numpages,
1820 				      __pgprot(_PAGE_GLOBAL), 0);
1821 }
1822 
set_memory_global(unsigned long addr,int numpages)1823 int set_memory_global(unsigned long addr, int numpages)
1824 {
1825 	return change_page_attr_set(&addr, numpages,
1826 				    __pgprot(_PAGE_GLOBAL), 0);
1827 }
1828 
__set_memory_enc_dec(unsigned long addr,int numpages,bool enc)1829 static int __set_memory_enc_dec(unsigned long addr, int numpages, bool enc)
1830 {
1831 	struct cpa_data cpa;
1832 	unsigned long start;
1833 	int ret;
1834 
1835 	/* Nothing to do if memory encryption is not active */
1836 	if (!mem_encrypt_active())
1837 		return 0;
1838 
1839 	/* Should not be working on unaligned addresses */
1840 	if (WARN_ONCE(addr & ~PAGE_MASK, "misaligned address: %#lx\n", addr))
1841 		addr &= PAGE_MASK;
1842 
1843 	start = addr;
1844 
1845 	memset(&cpa, 0, sizeof(cpa));
1846 	cpa.vaddr = &addr;
1847 	cpa.numpages = numpages;
1848 	cpa.mask_set = enc ? __pgprot(_PAGE_ENC) : __pgprot(0);
1849 	cpa.mask_clr = enc ? __pgprot(0) : __pgprot(_PAGE_ENC);
1850 	cpa.pgd = init_mm.pgd;
1851 
1852 	/* Must avoid aliasing mappings in the highmem code */
1853 	kmap_flush_unused();
1854 	vm_unmap_aliases();
1855 
1856 	/*
1857 	 * Before changing the encryption attribute, we need to flush caches.
1858 	 */
1859 	if (static_cpu_has(X86_FEATURE_CLFLUSH))
1860 		cpa_flush_range(start, numpages, 1);
1861 	else
1862 		cpa_flush_all(1);
1863 
1864 	ret = __change_page_attr_set_clr(&cpa, 1);
1865 
1866 	/*
1867 	 * After changing the encryption attribute, we need to flush TLBs
1868 	 * again in case any speculative TLB caching occurred (but no need
1869 	 * to flush caches again).  We could just use cpa_flush_all(), but
1870 	 * in case TLB flushing gets optimized in the cpa_flush_range()
1871 	 * path use the same logic as above.
1872 	 */
1873 	if (static_cpu_has(X86_FEATURE_CLFLUSH))
1874 		cpa_flush_range(start, numpages, 0);
1875 	else
1876 		cpa_flush_all(0);
1877 
1878 	return ret;
1879 }
1880 
set_memory_encrypted(unsigned long addr,int numpages)1881 int set_memory_encrypted(unsigned long addr, int numpages)
1882 {
1883 	return __set_memory_enc_dec(addr, numpages, true);
1884 }
1885 EXPORT_SYMBOL_GPL(set_memory_encrypted);
1886 
set_memory_decrypted(unsigned long addr,int numpages)1887 int set_memory_decrypted(unsigned long addr, int numpages)
1888 {
1889 	return __set_memory_enc_dec(addr, numpages, false);
1890 }
1891 EXPORT_SYMBOL_GPL(set_memory_decrypted);
1892 
set_pages_uc(struct page * page,int numpages)1893 int set_pages_uc(struct page *page, int numpages)
1894 {
1895 	unsigned long addr = (unsigned long)page_address(page);
1896 
1897 	return set_memory_uc(addr, numpages);
1898 }
1899 EXPORT_SYMBOL(set_pages_uc);
1900 
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1901 static int _set_pages_array(struct page **pages, int addrinarray,
1902 		enum page_cache_mode new_type)
1903 {
1904 	unsigned long start;
1905 	unsigned long end;
1906 	enum page_cache_mode set_type;
1907 	int i;
1908 	int free_idx;
1909 	int ret;
1910 
1911 	for (i = 0; i < addrinarray; i++) {
1912 		if (PageHighMem(pages[i]))
1913 			continue;
1914 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1915 		end = start + PAGE_SIZE;
1916 		if (reserve_memtype(start, end, new_type, NULL))
1917 			goto err_out;
1918 	}
1919 
1920 	/* If WC, set to UC- first and then WC */
1921 	set_type = (new_type == _PAGE_CACHE_MODE_WC) ?
1922 				_PAGE_CACHE_MODE_UC_MINUS : new_type;
1923 
1924 	ret = cpa_set_pages_array(pages, addrinarray,
1925 				  cachemode2pgprot(set_type));
1926 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1927 		ret = change_page_attr_set_clr(NULL, addrinarray,
1928 					       cachemode2pgprot(
1929 						_PAGE_CACHE_MODE_WC),
1930 					       __pgprot(_PAGE_CACHE_MASK),
1931 					       0, CPA_PAGES_ARRAY, pages);
1932 	if (ret)
1933 		goto err_out;
1934 	return 0; /* Success */
1935 err_out:
1936 	free_idx = i;
1937 	for (i = 0; i < free_idx; i++) {
1938 		if (PageHighMem(pages[i]))
1939 			continue;
1940 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1941 		end = start + PAGE_SIZE;
1942 		free_memtype(start, end);
1943 	}
1944 	return -EINVAL;
1945 }
1946 
set_pages_array_uc(struct page ** pages,int addrinarray)1947 int set_pages_array_uc(struct page **pages, int addrinarray)
1948 {
1949 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1950 }
1951 EXPORT_SYMBOL(set_pages_array_uc);
1952 
set_pages_array_wc(struct page ** pages,int addrinarray)1953 int set_pages_array_wc(struct page **pages, int addrinarray)
1954 {
1955 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1956 }
1957 EXPORT_SYMBOL(set_pages_array_wc);
1958 
set_pages_array_wt(struct page ** pages,int addrinarray)1959 int set_pages_array_wt(struct page **pages, int addrinarray)
1960 {
1961 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WT);
1962 }
1963 EXPORT_SYMBOL_GPL(set_pages_array_wt);
1964 
set_pages_wb(struct page * page,int numpages)1965 int set_pages_wb(struct page *page, int numpages)
1966 {
1967 	unsigned long addr = (unsigned long)page_address(page);
1968 
1969 	return set_memory_wb(addr, numpages);
1970 }
1971 EXPORT_SYMBOL(set_pages_wb);
1972 
set_pages_array_wb(struct page ** pages,int addrinarray)1973 int set_pages_array_wb(struct page **pages, int addrinarray)
1974 {
1975 	int retval;
1976 	unsigned long start;
1977 	unsigned long end;
1978 	int i;
1979 
1980 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1981 	retval = cpa_clear_pages_array(pages, addrinarray,
1982 			__pgprot(_PAGE_CACHE_MASK));
1983 	if (retval)
1984 		return retval;
1985 
1986 	for (i = 0; i < addrinarray; i++) {
1987 		if (PageHighMem(pages[i]))
1988 			continue;
1989 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1990 		end = start + PAGE_SIZE;
1991 		free_memtype(start, end);
1992 	}
1993 
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL(set_pages_array_wb);
1997 
set_pages_x(struct page * page,int numpages)1998 int set_pages_x(struct page *page, int numpages)
1999 {
2000 	unsigned long addr = (unsigned long)page_address(page);
2001 
2002 	return set_memory_x(addr, numpages);
2003 }
2004 EXPORT_SYMBOL(set_pages_x);
2005 
set_pages_nx(struct page * page,int numpages)2006 int set_pages_nx(struct page *page, int numpages)
2007 {
2008 	unsigned long addr = (unsigned long)page_address(page);
2009 
2010 	return set_memory_nx(addr, numpages);
2011 }
2012 EXPORT_SYMBOL(set_pages_nx);
2013 
set_pages_ro(struct page * page,int numpages)2014 int set_pages_ro(struct page *page, int numpages)
2015 {
2016 	unsigned long addr = (unsigned long)page_address(page);
2017 
2018 	return set_memory_ro(addr, numpages);
2019 }
2020 
set_pages_rw(struct page * page,int numpages)2021 int set_pages_rw(struct page *page, int numpages)
2022 {
2023 	unsigned long addr = (unsigned long)page_address(page);
2024 
2025 	return set_memory_rw(addr, numpages);
2026 }
2027 
2028 #ifdef CONFIG_DEBUG_PAGEALLOC
2029 
__set_pages_p(struct page * page,int numpages)2030 static int __set_pages_p(struct page *page, int numpages)
2031 {
2032 	unsigned long tempaddr = (unsigned long) page_address(page);
2033 	struct cpa_data cpa = { .vaddr = &tempaddr,
2034 				.pgd = NULL,
2035 				.numpages = numpages,
2036 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2037 				.mask_clr = __pgprot(0),
2038 				.flags = 0};
2039 
2040 	/*
2041 	 * No alias checking needed for setting present flag. otherwise,
2042 	 * we may need to break large pages for 64-bit kernel text
2043 	 * mappings (this adds to complexity if we want to do this from
2044 	 * atomic context especially). Let's keep it simple!
2045 	 */
2046 	return __change_page_attr_set_clr(&cpa, 0);
2047 }
2048 
__set_pages_np(struct page * page,int numpages)2049 static int __set_pages_np(struct page *page, int numpages)
2050 {
2051 	unsigned long tempaddr = (unsigned long) page_address(page);
2052 	struct cpa_data cpa = { .vaddr = &tempaddr,
2053 				.pgd = NULL,
2054 				.numpages = numpages,
2055 				.mask_set = __pgprot(0),
2056 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
2057 				.flags = 0};
2058 
2059 	/*
2060 	 * No alias checking needed for setting not present flag. otherwise,
2061 	 * we may need to break large pages for 64-bit kernel text
2062 	 * mappings (this adds to complexity if we want to do this from
2063 	 * atomic context especially). Let's keep it simple!
2064 	 */
2065 	return __change_page_attr_set_clr(&cpa, 0);
2066 }
2067 
__kernel_map_pages(struct page * page,int numpages,int enable)2068 void __kernel_map_pages(struct page *page, int numpages, int enable)
2069 {
2070 	if (PageHighMem(page))
2071 		return;
2072 	if (!enable) {
2073 		debug_check_no_locks_freed(page_address(page),
2074 					   numpages * PAGE_SIZE);
2075 	}
2076 
2077 	/*
2078 	 * The return value is ignored as the calls cannot fail.
2079 	 * Large pages for identity mappings are not used at boot time
2080 	 * and hence no memory allocations during large page split.
2081 	 */
2082 	if (enable)
2083 		__set_pages_p(page, numpages);
2084 	else
2085 		__set_pages_np(page, numpages);
2086 
2087 	/*
2088 	 * We should perform an IPI and flush all tlbs,
2089 	 * but that can deadlock->flush only current cpu:
2090 	 */
2091 	__flush_tlb_all();
2092 
2093 	arch_flush_lazy_mmu_mode();
2094 }
2095 
2096 #ifdef CONFIG_HIBERNATION
2097 
kernel_page_present(struct page * page)2098 bool kernel_page_present(struct page *page)
2099 {
2100 	unsigned int level;
2101 	pte_t *pte;
2102 
2103 	if (PageHighMem(page))
2104 		return false;
2105 
2106 	pte = lookup_address((unsigned long)page_address(page), &level);
2107 	return (pte_val(*pte) & _PAGE_PRESENT);
2108 }
2109 
2110 #endif /* CONFIG_HIBERNATION */
2111 
2112 #endif /* CONFIG_DEBUG_PAGEALLOC */
2113 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)2114 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
2115 			    unsigned numpages, unsigned long page_flags)
2116 {
2117 	int retval = -EINVAL;
2118 
2119 	struct cpa_data cpa = {
2120 		.vaddr = &address,
2121 		.pfn = pfn,
2122 		.pgd = pgd,
2123 		.numpages = numpages,
2124 		.mask_set = __pgprot(0),
2125 		.mask_clr = __pgprot(0),
2126 		.flags = 0,
2127 	};
2128 
2129 	if (!(__supported_pte_mask & _PAGE_NX))
2130 		goto out;
2131 
2132 	if (!(page_flags & _PAGE_NX))
2133 		cpa.mask_clr = __pgprot(_PAGE_NX);
2134 
2135 	if (!(page_flags & _PAGE_RW))
2136 		cpa.mask_clr = __pgprot(_PAGE_RW);
2137 
2138 	if (!(page_flags & _PAGE_ENC))
2139 		cpa.mask_clr = pgprot_encrypted(cpa.mask_clr);
2140 
2141 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
2142 
2143 	retval = __change_page_attr_set_clr(&cpa, 0);
2144 	__flush_tlb_all();
2145 
2146 out:
2147 	return retval;
2148 }
2149 
2150 /*
2151  * The testcases use internal knowledge of the implementation that shouldn't
2152  * be exposed to the rest of the kernel. Include these directly here.
2153  */
2154 #ifdef CONFIG_CPA_DEBUG
2155 #include "pageattr-test.c"
2156 #endif
2157