1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2020 Invensense, Inc.
4  */
5 
6 #include <linux/errno.h>
7 #include <linux/kernel.h>
8 #include <linux/math64.h>
9 #include <linux/module.h>
10 
11 #include <linux/iio/common/inv_sensors_timestamp.h>
12 
13 /* compute jitter, min and max following jitter in per mille */
14 #define INV_SENSORS_TIMESTAMP_JITTER(_val, _jitter)		\
15 	(div_s64((_val) * (_jitter), 1000))
16 #define INV_SENSORS_TIMESTAMP_MIN(_val, _jitter)		\
17 	(((_val) * (1000 - (_jitter))) / 1000)
18 #define INV_SENSORS_TIMESTAMP_MAX(_val, _jitter)		\
19 	(((_val) * (1000 + (_jitter))) / 1000)
20 
21 /* Add a new value inside an accumulator and update the estimate value */
inv_update_acc(struct inv_sensors_timestamp_acc * acc,uint32_t val)22 static void inv_update_acc(struct inv_sensors_timestamp_acc *acc, uint32_t val)
23 {
24 	uint64_t sum = 0;
25 	size_t i;
26 
27 	acc->values[acc->idx++] = val;
28 	if (acc->idx >= ARRAY_SIZE(acc->values))
29 		acc->idx = 0;
30 
31 	/* compute the mean of all stored values, use 0 as empty slot */
32 	for (i = 0; i < ARRAY_SIZE(acc->values); ++i) {
33 		if (acc->values[i] == 0)
34 			break;
35 		sum += acc->values[i];
36 	}
37 
38 	acc->val = div_u64(sum, i);
39 }
40 
inv_sensors_timestamp_init(struct inv_sensors_timestamp * ts,const struct inv_sensors_timestamp_chip * chip)41 void inv_sensors_timestamp_init(struct inv_sensors_timestamp *ts,
42 				const struct inv_sensors_timestamp_chip *chip)
43 {
44 	memset(ts, 0, sizeof(*ts));
45 
46 	/* save chip parameters and compute min and max clock period */
47 	ts->chip = *chip;
48 	ts->min_period = INV_SENSORS_TIMESTAMP_MIN(chip->clock_period, chip->jitter);
49 	ts->max_period = INV_SENSORS_TIMESTAMP_MAX(chip->clock_period, chip->jitter);
50 
51 	/* current multiplier and period values after reset */
52 	ts->mult = chip->init_period / chip->clock_period;
53 	ts->period = chip->init_period;
54 
55 	/* use theoretical value for chip period */
56 	inv_update_acc(&ts->chip_period, chip->clock_period);
57 }
58 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_init, IIO_INV_SENSORS_TIMESTAMP);
59 
inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp * ts,uint32_t period,bool fifo)60 int inv_sensors_timestamp_update_odr(struct inv_sensors_timestamp *ts,
61 				     uint32_t period, bool fifo)
62 {
63 	/* when FIFO is on, prevent odr change if one is already pending */
64 	if (fifo && ts->new_mult != 0)
65 		return -EAGAIN;
66 
67 	ts->new_mult = period / ts->chip.clock_period;
68 
69 	return 0;
70 }
71 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_update_odr, IIO_INV_SENSORS_TIMESTAMP);
72 
inv_validate_period(struct inv_sensors_timestamp * ts,uint32_t period,uint32_t mult)73 static bool inv_validate_period(struct inv_sensors_timestamp *ts, uint32_t period, uint32_t mult)
74 {
75 	uint32_t period_min, period_max;
76 
77 	/* check that period is acceptable */
78 	period_min = ts->min_period * mult;
79 	period_max = ts->max_period * mult;
80 	if (period > period_min && period < period_max)
81 		return true;
82 	else
83 		return false;
84 }
85 
inv_update_chip_period(struct inv_sensors_timestamp * ts,uint32_t mult,uint32_t period)86 static bool inv_update_chip_period(struct inv_sensors_timestamp *ts,
87 				    uint32_t mult, uint32_t period)
88 {
89 	uint32_t new_chip_period;
90 
91 	if (!inv_validate_period(ts, period, mult))
92 		return false;
93 
94 	/* update chip internal period estimation */
95 	new_chip_period = period / mult;
96 	inv_update_acc(&ts->chip_period, new_chip_period);
97 	ts->period = ts->mult * ts->chip_period.val;
98 
99 	return true;
100 }
101 
inv_align_timestamp_it(struct inv_sensors_timestamp * ts)102 static void inv_align_timestamp_it(struct inv_sensors_timestamp *ts)
103 {
104 	int64_t delta, jitter;
105 	int64_t adjust;
106 
107 	/* delta time between last sample and last interrupt */
108 	delta = ts->it.lo - ts->timestamp;
109 
110 	/* adjust timestamp while respecting jitter */
111 	jitter = INV_SENSORS_TIMESTAMP_JITTER((int64_t)ts->period, ts->chip.jitter);
112 	if (delta > jitter)
113 		adjust = jitter;
114 	else if (delta < -jitter)
115 		adjust = -jitter;
116 	else
117 		adjust = 0;
118 
119 	ts->timestamp += adjust;
120 }
121 
inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp * ts,uint32_t fifo_period,size_t fifo_nb,size_t sensor_nb,int64_t timestamp)122 void inv_sensors_timestamp_interrupt(struct inv_sensors_timestamp *ts,
123 				      uint32_t fifo_period, size_t fifo_nb,
124 				      size_t sensor_nb, int64_t timestamp)
125 {
126 	struct inv_sensors_timestamp_interval *it;
127 	int64_t delta, interval;
128 	const uint32_t fifo_mult = fifo_period / ts->chip.clock_period;
129 	uint32_t period = ts->period;
130 	bool valid = false;
131 
132 	if (fifo_nb == 0)
133 		return;
134 
135 	/* update interrupt timestamp and compute chip and sensor periods */
136 	it = &ts->it;
137 	it->lo = it->up;
138 	it->up = timestamp;
139 	delta = it->up - it->lo;
140 	if (it->lo != 0) {
141 		/* compute period: delta time divided by number of samples */
142 		period = div_s64(delta, fifo_nb);
143 		valid = inv_update_chip_period(ts, fifo_mult, period);
144 	}
145 
146 	/* no previous data, compute theoritical value from interrupt */
147 	if (ts->timestamp == 0) {
148 		/* elapsed time: sensor period * sensor samples number */
149 		interval = (int64_t)ts->period * (int64_t)sensor_nb;
150 		ts->timestamp = it->up - interval;
151 		return;
152 	}
153 
154 	/* if interrupt interval is valid, sync with interrupt timestamp */
155 	if (valid)
156 		inv_align_timestamp_it(ts);
157 }
158 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_interrupt, IIO_INV_SENSORS_TIMESTAMP);
159 
inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp * ts,uint32_t fifo_period,size_t fifo_nb,unsigned int fifo_no)160 void inv_sensors_timestamp_apply_odr(struct inv_sensors_timestamp *ts,
161 				     uint32_t fifo_period, size_t fifo_nb,
162 				     unsigned int fifo_no)
163 {
164 	int64_t interval;
165 	uint32_t fifo_mult;
166 
167 	if (ts->new_mult == 0)
168 		return;
169 
170 	/* update to new multiplier and update period */
171 	ts->mult = ts->new_mult;
172 	ts->new_mult = 0;
173 	ts->period = ts->mult * ts->chip_period.val;
174 
175 	/*
176 	 * After ODR change the time interval with the previous sample is
177 	 * undertermined (depends when the change occures). So we compute the
178 	 * timestamp from the current interrupt using the new FIFO period, the
179 	 * total number of samples and the current sample numero.
180 	 */
181 	if (ts->timestamp != 0) {
182 		/* compute measured fifo period */
183 		fifo_mult = fifo_period / ts->chip.clock_period;
184 		fifo_period = fifo_mult * ts->chip_period.val;
185 		/* computes time interval between interrupt and this sample */
186 		interval = (int64_t)(fifo_nb - fifo_no) * (int64_t)fifo_period;
187 		ts->timestamp = ts->it.up - interval;
188 	}
189 }
190 EXPORT_SYMBOL_NS_GPL(inv_sensors_timestamp_apply_odr, IIO_INV_SENSORS_TIMESTAMP);
191 
192 MODULE_AUTHOR("InvenSense, Inc.");
193 MODULE_DESCRIPTION("InvenSense sensors timestamp module");
194 MODULE_LICENSE("GPL");
195