1 /*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
41 */
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
48 #include <linux/in.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
56
57 #include "flask.h"
58 #include "avc.h"
59 #include "avc_ss.h"
60 #include "security.h"
61 #include "context.h"
62 #include "policydb.h"
63 #include "sidtab.h"
64 #include "services.h"
65 #include "conditional.h"
66 #include "mls.h"
67 #include "objsec.h"
68 #include "netlabel.h"
69 #include "xfrm.h"
70 #include "ebitmap.h"
71 #include "audit.h"
72
73 /* Policy capability names */
74 char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
75 "network_peer_controls",
76 "open_perms",
77 "extended_socket_class",
78 "always_check_network",
79 "cgroup_seclabel",
80 "nnp_nosuid_transition"
81 };
82
83 static struct selinux_ss selinux_ss;
84
selinux_ss_init(struct selinux_ss ** ss)85 void selinux_ss_init(struct selinux_ss **ss)
86 {
87 rwlock_init(&selinux_ss.policy_rwlock);
88 mutex_init(&selinux_ss.status_lock);
89 *ss = &selinux_ss;
90 }
91
92 /* Forward declaration. */
93 static int context_struct_to_string(struct policydb *policydb,
94 struct context *context,
95 char **scontext,
96 u32 *scontext_len);
97
98 static void context_struct_compute_av(struct policydb *policydb,
99 struct context *scontext,
100 struct context *tcontext,
101 u16 tclass,
102 struct av_decision *avd,
103 struct extended_perms *xperms);
104
selinux_set_mapping(struct policydb * pol,struct security_class_mapping * map,struct selinux_map * out_map)105 static int selinux_set_mapping(struct policydb *pol,
106 struct security_class_mapping *map,
107 struct selinux_map *out_map)
108 {
109 u16 i, j;
110 unsigned k;
111 bool print_unknown_handle = false;
112
113 /* Find number of classes in the input mapping */
114 if (!map)
115 return -EINVAL;
116 i = 0;
117 while (map[i].name)
118 i++;
119
120 /* Allocate space for the class records, plus one for class zero */
121 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
122 if (!out_map->mapping)
123 return -ENOMEM;
124
125 /* Store the raw class and permission values */
126 j = 0;
127 while (map[j].name) {
128 struct security_class_mapping *p_in = map + (j++);
129 struct selinux_mapping *p_out = out_map->mapping + j;
130
131 /* An empty class string skips ahead */
132 if (!strcmp(p_in->name, "")) {
133 p_out->num_perms = 0;
134 continue;
135 }
136
137 p_out->value = string_to_security_class(pol, p_in->name);
138 if (!p_out->value) {
139 pr_info("SELinux: Class %s not defined in policy.\n",
140 p_in->name);
141 if (pol->reject_unknown)
142 goto err;
143 p_out->num_perms = 0;
144 print_unknown_handle = true;
145 continue;
146 }
147
148 k = 0;
149 while (p_in->perms[k]) {
150 /* An empty permission string skips ahead */
151 if (!*p_in->perms[k]) {
152 k++;
153 continue;
154 }
155 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
156 p_in->perms[k]);
157 if (!p_out->perms[k]) {
158 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
159 p_in->perms[k], p_in->name);
160 if (pol->reject_unknown)
161 goto err;
162 print_unknown_handle = true;
163 }
164
165 k++;
166 }
167 p_out->num_perms = k;
168 }
169
170 if (print_unknown_handle)
171 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
172 pol->allow_unknown ? "allowed" : "denied");
173
174 out_map->size = i;
175 return 0;
176 err:
177 kfree(out_map->mapping);
178 out_map->mapping = NULL;
179 return -EINVAL;
180 }
181
182 /*
183 * Get real, policy values from mapped values
184 */
185
unmap_class(struct selinux_map * map,u16 tclass)186 static u16 unmap_class(struct selinux_map *map, u16 tclass)
187 {
188 if (tclass < map->size)
189 return map->mapping[tclass].value;
190
191 return tclass;
192 }
193
194 /*
195 * Get kernel value for class from its policy value
196 */
map_class(struct selinux_map * map,u16 pol_value)197 static u16 map_class(struct selinux_map *map, u16 pol_value)
198 {
199 u16 i;
200
201 for (i = 1; i < map->size; i++) {
202 if (map->mapping[i].value == pol_value)
203 return i;
204 }
205
206 return SECCLASS_NULL;
207 }
208
map_decision(struct selinux_map * map,u16 tclass,struct av_decision * avd,int allow_unknown)209 static void map_decision(struct selinux_map *map,
210 u16 tclass, struct av_decision *avd,
211 int allow_unknown)
212 {
213 if (tclass < map->size) {
214 struct selinux_mapping *mapping = &map->mapping[tclass];
215 unsigned int i, n = mapping->num_perms;
216 u32 result;
217
218 for (i = 0, result = 0; i < n; i++) {
219 if (avd->allowed & mapping->perms[i])
220 result |= 1<<i;
221 if (allow_unknown && !mapping->perms[i])
222 result |= 1<<i;
223 }
224 avd->allowed = result;
225
226 for (i = 0, result = 0; i < n; i++)
227 if (avd->auditallow & mapping->perms[i])
228 result |= 1<<i;
229 avd->auditallow = result;
230
231 for (i = 0, result = 0; i < n; i++) {
232 if (avd->auditdeny & mapping->perms[i])
233 result |= 1<<i;
234 if (!allow_unknown && !mapping->perms[i])
235 result |= 1<<i;
236 }
237 /*
238 * In case the kernel has a bug and requests a permission
239 * between num_perms and the maximum permission number, we
240 * should audit that denial
241 */
242 for (; i < (sizeof(u32)*8); i++)
243 result |= 1<<i;
244 avd->auditdeny = result;
245 }
246 }
247
security_mls_enabled(struct selinux_state * state)248 int security_mls_enabled(struct selinux_state *state)
249 {
250 struct policydb *p = &state->ss->policydb;
251
252 return p->mls_enabled;
253 }
254
255 /*
256 * Return the boolean value of a constraint expression
257 * when it is applied to the specified source and target
258 * security contexts.
259 *
260 * xcontext is a special beast... It is used by the validatetrans rules
261 * only. For these rules, scontext is the context before the transition,
262 * tcontext is the context after the transition, and xcontext is the context
263 * of the process performing the transition. All other callers of
264 * constraint_expr_eval should pass in NULL for xcontext.
265 */
constraint_expr_eval(struct policydb * policydb,struct context * scontext,struct context * tcontext,struct context * xcontext,struct constraint_expr * cexpr)266 static int constraint_expr_eval(struct policydb *policydb,
267 struct context *scontext,
268 struct context *tcontext,
269 struct context *xcontext,
270 struct constraint_expr *cexpr)
271 {
272 u32 val1, val2;
273 struct context *c;
274 struct role_datum *r1, *r2;
275 struct mls_level *l1, *l2;
276 struct constraint_expr *e;
277 int s[CEXPR_MAXDEPTH];
278 int sp = -1;
279
280 for (e = cexpr; e; e = e->next) {
281 switch (e->expr_type) {
282 case CEXPR_NOT:
283 BUG_ON(sp < 0);
284 s[sp] = !s[sp];
285 break;
286 case CEXPR_AND:
287 BUG_ON(sp < 1);
288 sp--;
289 s[sp] &= s[sp + 1];
290 break;
291 case CEXPR_OR:
292 BUG_ON(sp < 1);
293 sp--;
294 s[sp] |= s[sp + 1];
295 break;
296 case CEXPR_ATTR:
297 if (sp == (CEXPR_MAXDEPTH - 1))
298 return 0;
299 switch (e->attr) {
300 case CEXPR_USER:
301 val1 = scontext->user;
302 val2 = tcontext->user;
303 break;
304 case CEXPR_TYPE:
305 val1 = scontext->type;
306 val2 = tcontext->type;
307 break;
308 case CEXPR_ROLE:
309 val1 = scontext->role;
310 val2 = tcontext->role;
311 r1 = policydb->role_val_to_struct[val1 - 1];
312 r2 = policydb->role_val_to_struct[val2 - 1];
313 switch (e->op) {
314 case CEXPR_DOM:
315 s[++sp] = ebitmap_get_bit(&r1->dominates,
316 val2 - 1);
317 continue;
318 case CEXPR_DOMBY:
319 s[++sp] = ebitmap_get_bit(&r2->dominates,
320 val1 - 1);
321 continue;
322 case CEXPR_INCOMP:
323 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
324 val2 - 1) &&
325 !ebitmap_get_bit(&r2->dominates,
326 val1 - 1));
327 continue;
328 default:
329 break;
330 }
331 break;
332 case CEXPR_L1L2:
333 l1 = &(scontext->range.level[0]);
334 l2 = &(tcontext->range.level[0]);
335 goto mls_ops;
336 case CEXPR_L1H2:
337 l1 = &(scontext->range.level[0]);
338 l2 = &(tcontext->range.level[1]);
339 goto mls_ops;
340 case CEXPR_H1L2:
341 l1 = &(scontext->range.level[1]);
342 l2 = &(tcontext->range.level[0]);
343 goto mls_ops;
344 case CEXPR_H1H2:
345 l1 = &(scontext->range.level[1]);
346 l2 = &(tcontext->range.level[1]);
347 goto mls_ops;
348 case CEXPR_L1H1:
349 l1 = &(scontext->range.level[0]);
350 l2 = &(scontext->range.level[1]);
351 goto mls_ops;
352 case CEXPR_L2H2:
353 l1 = &(tcontext->range.level[0]);
354 l2 = &(tcontext->range.level[1]);
355 goto mls_ops;
356 mls_ops:
357 switch (e->op) {
358 case CEXPR_EQ:
359 s[++sp] = mls_level_eq(l1, l2);
360 continue;
361 case CEXPR_NEQ:
362 s[++sp] = !mls_level_eq(l1, l2);
363 continue;
364 case CEXPR_DOM:
365 s[++sp] = mls_level_dom(l1, l2);
366 continue;
367 case CEXPR_DOMBY:
368 s[++sp] = mls_level_dom(l2, l1);
369 continue;
370 case CEXPR_INCOMP:
371 s[++sp] = mls_level_incomp(l2, l1);
372 continue;
373 default:
374 BUG();
375 return 0;
376 }
377 break;
378 default:
379 BUG();
380 return 0;
381 }
382
383 switch (e->op) {
384 case CEXPR_EQ:
385 s[++sp] = (val1 == val2);
386 break;
387 case CEXPR_NEQ:
388 s[++sp] = (val1 != val2);
389 break;
390 default:
391 BUG();
392 return 0;
393 }
394 break;
395 case CEXPR_NAMES:
396 if (sp == (CEXPR_MAXDEPTH-1))
397 return 0;
398 c = scontext;
399 if (e->attr & CEXPR_TARGET)
400 c = tcontext;
401 else if (e->attr & CEXPR_XTARGET) {
402 c = xcontext;
403 if (!c) {
404 BUG();
405 return 0;
406 }
407 }
408 if (e->attr & CEXPR_USER)
409 val1 = c->user;
410 else if (e->attr & CEXPR_ROLE)
411 val1 = c->role;
412 else if (e->attr & CEXPR_TYPE)
413 val1 = c->type;
414 else {
415 BUG();
416 return 0;
417 }
418
419 switch (e->op) {
420 case CEXPR_EQ:
421 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
422 break;
423 case CEXPR_NEQ:
424 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
425 break;
426 default:
427 BUG();
428 return 0;
429 }
430 break;
431 default:
432 BUG();
433 return 0;
434 }
435 }
436
437 BUG_ON(sp != 0);
438 return s[0];
439 }
440
441 /*
442 * security_dump_masked_av - dumps masked permissions during
443 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
444 */
dump_masked_av_helper(void * k,void * d,void * args)445 static int dump_masked_av_helper(void *k, void *d, void *args)
446 {
447 struct perm_datum *pdatum = d;
448 char **permission_names = args;
449
450 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
451
452 permission_names[pdatum->value - 1] = (char *)k;
453
454 return 0;
455 }
456
security_dump_masked_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,u32 permissions,const char * reason)457 static void security_dump_masked_av(struct policydb *policydb,
458 struct context *scontext,
459 struct context *tcontext,
460 u16 tclass,
461 u32 permissions,
462 const char *reason)
463 {
464 struct common_datum *common_dat;
465 struct class_datum *tclass_dat;
466 struct audit_buffer *ab;
467 char *tclass_name;
468 char *scontext_name = NULL;
469 char *tcontext_name = NULL;
470 char *permission_names[32];
471 int index;
472 u32 length;
473 bool need_comma = false;
474
475 if (!permissions)
476 return;
477
478 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
479 tclass_dat = policydb->class_val_to_struct[tclass - 1];
480 common_dat = tclass_dat->comdatum;
481
482 /* init permission_names */
483 if (common_dat &&
484 hashtab_map(common_dat->permissions.table,
485 dump_masked_av_helper, permission_names) < 0)
486 goto out;
487
488 if (hashtab_map(tclass_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 /* get scontext/tcontext in text form */
493 if (context_struct_to_string(policydb, scontext,
494 &scontext_name, &length) < 0)
495 goto out;
496
497 if (context_struct_to_string(policydb, tcontext,
498 &tcontext_name, &length) < 0)
499 goto out;
500
501 /* audit a message */
502 ab = audit_log_start(audit_context(),
503 GFP_ATOMIC, AUDIT_SELINUX_ERR);
504 if (!ab)
505 goto out;
506
507 audit_log_format(ab, "op=security_compute_av reason=%s "
508 "scontext=%s tcontext=%s tclass=%s perms=",
509 reason, scontext_name, tcontext_name, tclass_name);
510
511 for (index = 0; index < 32; index++) {
512 u32 mask = (1 << index);
513
514 if ((mask & permissions) == 0)
515 continue;
516
517 audit_log_format(ab, "%s%s",
518 need_comma ? "," : "",
519 permission_names[index]
520 ? permission_names[index] : "????");
521 need_comma = true;
522 }
523 audit_log_end(ab);
524 out:
525 /* release scontext/tcontext */
526 kfree(tcontext_name);
527 kfree(scontext_name);
528
529 return;
530 }
531
532 /*
533 * security_boundary_permission - drops violated permissions
534 * on boundary constraint.
535 */
type_attribute_bounds_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd)536 static void type_attribute_bounds_av(struct policydb *policydb,
537 struct context *scontext,
538 struct context *tcontext,
539 u16 tclass,
540 struct av_decision *avd)
541 {
542 struct context lo_scontext;
543 struct context lo_tcontext, *tcontextp = tcontext;
544 struct av_decision lo_avd;
545 struct type_datum *source;
546 struct type_datum *target;
547 u32 masked = 0;
548
549 source = flex_array_get_ptr(policydb->type_val_to_struct_array,
550 scontext->type - 1);
551 BUG_ON(!source);
552
553 if (!source->bounds)
554 return;
555
556 target = flex_array_get_ptr(policydb->type_val_to_struct_array,
557 tcontext->type - 1);
558 BUG_ON(!target);
559
560 memset(&lo_avd, 0, sizeof(lo_avd));
561
562 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
563 lo_scontext.type = source->bounds;
564
565 if (target->bounds) {
566 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
567 lo_tcontext.type = target->bounds;
568 tcontextp = &lo_tcontext;
569 }
570
571 context_struct_compute_av(policydb, &lo_scontext,
572 tcontextp,
573 tclass,
574 &lo_avd,
575 NULL);
576
577 masked = ~lo_avd.allowed & avd->allowed;
578
579 if (likely(!masked))
580 return; /* no masked permission */
581
582 /* mask violated permissions */
583 avd->allowed &= ~masked;
584
585 /* audit masked permissions */
586 security_dump_masked_av(policydb, scontext, tcontext,
587 tclass, masked, "bounds");
588 }
589
590 /*
591 * flag which drivers have permissions
592 * only looking for ioctl based extended permssions
593 */
services_compute_xperms_drivers(struct extended_perms * xperms,struct avtab_node * node)594 void services_compute_xperms_drivers(
595 struct extended_perms *xperms,
596 struct avtab_node *node)
597 {
598 unsigned int i;
599
600 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
601 /* if one or more driver has all permissions allowed */
602 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
603 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
604 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
605 /* if allowing permissions within a driver */
606 security_xperm_set(xperms->drivers.p,
607 node->datum.u.xperms->driver);
608 }
609
610 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
611 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
612 xperms->len = 1;
613 }
614
615 /*
616 * Compute access vectors and extended permissions based on a context
617 * structure pair for the permissions in a particular class.
618 */
context_struct_compute_av(struct policydb * policydb,struct context * scontext,struct context * tcontext,u16 tclass,struct av_decision * avd,struct extended_perms * xperms)619 static void context_struct_compute_av(struct policydb *policydb,
620 struct context *scontext,
621 struct context *tcontext,
622 u16 tclass,
623 struct av_decision *avd,
624 struct extended_perms *xperms)
625 {
626 struct constraint_node *constraint;
627 struct role_allow *ra;
628 struct avtab_key avkey;
629 struct avtab_node *node;
630 struct class_datum *tclass_datum;
631 struct ebitmap *sattr, *tattr;
632 struct ebitmap_node *snode, *tnode;
633 unsigned int i, j;
634
635 avd->allowed = 0;
636 avd->auditallow = 0;
637 avd->auditdeny = 0xffffffff;
638 if (xperms) {
639 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
640 xperms->len = 0;
641 }
642
643 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
644 if (printk_ratelimit())
645 pr_warn("SELinux: Invalid class %hu\n", tclass);
646 return;
647 }
648
649 tclass_datum = policydb->class_val_to_struct[tclass - 1];
650
651 /*
652 * If a specific type enforcement rule was defined for
653 * this permission check, then use it.
654 */
655 avkey.target_class = tclass;
656 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
657 sattr = flex_array_get(policydb->type_attr_map_array,
658 scontext->type - 1);
659 BUG_ON(!sattr);
660 tattr = flex_array_get(policydb->type_attr_map_array,
661 tcontext->type - 1);
662 BUG_ON(!tattr);
663 ebitmap_for_each_positive_bit(sattr, snode, i) {
664 ebitmap_for_each_positive_bit(tattr, tnode, j) {
665 avkey.source_type = i + 1;
666 avkey.target_type = j + 1;
667 for (node = avtab_search_node(&policydb->te_avtab,
668 &avkey);
669 node;
670 node = avtab_search_node_next(node, avkey.specified)) {
671 if (node->key.specified == AVTAB_ALLOWED)
672 avd->allowed |= node->datum.u.data;
673 else if (node->key.specified == AVTAB_AUDITALLOW)
674 avd->auditallow |= node->datum.u.data;
675 else if (node->key.specified == AVTAB_AUDITDENY)
676 avd->auditdeny &= node->datum.u.data;
677 else if (xperms && (node->key.specified & AVTAB_XPERMS))
678 services_compute_xperms_drivers(xperms, node);
679 }
680
681 /* Check conditional av table for additional permissions */
682 cond_compute_av(&policydb->te_cond_avtab, &avkey,
683 avd, xperms);
684
685 }
686 }
687
688 /*
689 * Remove any permissions prohibited by a constraint (this includes
690 * the MLS policy).
691 */
692 constraint = tclass_datum->constraints;
693 while (constraint) {
694 if ((constraint->permissions & (avd->allowed)) &&
695 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
696 constraint->expr)) {
697 avd->allowed &= ~(constraint->permissions);
698 }
699 constraint = constraint->next;
700 }
701
702 /*
703 * If checking process transition permission and the
704 * role is changing, then check the (current_role, new_role)
705 * pair.
706 */
707 if (tclass == policydb->process_class &&
708 (avd->allowed & policydb->process_trans_perms) &&
709 scontext->role != tcontext->role) {
710 for (ra = policydb->role_allow; ra; ra = ra->next) {
711 if (scontext->role == ra->role &&
712 tcontext->role == ra->new_role)
713 break;
714 }
715 if (!ra)
716 avd->allowed &= ~policydb->process_trans_perms;
717 }
718
719 /*
720 * If the given source and target types have boundary
721 * constraint, lazy checks have to mask any violated
722 * permission and notice it to userspace via audit.
723 */
724 type_attribute_bounds_av(policydb, scontext, tcontext,
725 tclass, avd);
726 }
727
security_validtrans_handle_fail(struct selinux_state * state,struct context * ocontext,struct context * ncontext,struct context * tcontext,u16 tclass)728 static int security_validtrans_handle_fail(struct selinux_state *state,
729 struct context *ocontext,
730 struct context *ncontext,
731 struct context *tcontext,
732 u16 tclass)
733 {
734 struct policydb *p = &state->ss->policydb;
735 char *o = NULL, *n = NULL, *t = NULL;
736 u32 olen, nlen, tlen;
737
738 if (context_struct_to_string(p, ocontext, &o, &olen))
739 goto out;
740 if (context_struct_to_string(p, ncontext, &n, &nlen))
741 goto out;
742 if (context_struct_to_string(p, tcontext, &t, &tlen))
743 goto out;
744 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
745 "op=security_validate_transition seresult=denied"
746 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
747 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
748 out:
749 kfree(o);
750 kfree(n);
751 kfree(t);
752
753 if (!enforcing_enabled(state))
754 return 0;
755 return -EPERM;
756 }
757
security_compute_validatetrans(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass,bool user)758 static int security_compute_validatetrans(struct selinux_state *state,
759 u32 oldsid, u32 newsid, u32 tasksid,
760 u16 orig_tclass, bool user)
761 {
762 struct policydb *policydb;
763 struct sidtab *sidtab;
764 struct context *ocontext;
765 struct context *ncontext;
766 struct context *tcontext;
767 struct class_datum *tclass_datum;
768 struct constraint_node *constraint;
769 u16 tclass;
770 int rc = 0;
771
772
773 if (!state->initialized)
774 return 0;
775
776 read_lock(&state->ss->policy_rwlock);
777
778 policydb = &state->ss->policydb;
779 sidtab = &state->ss->sidtab;
780
781 if (!user)
782 tclass = unmap_class(&state->ss->map, orig_tclass);
783 else
784 tclass = orig_tclass;
785
786 if (!tclass || tclass > policydb->p_classes.nprim) {
787 rc = -EINVAL;
788 goto out;
789 }
790 tclass_datum = policydb->class_val_to_struct[tclass - 1];
791
792 ocontext = sidtab_search(sidtab, oldsid);
793 if (!ocontext) {
794 pr_err("SELinux: %s: unrecognized SID %d\n",
795 __func__, oldsid);
796 rc = -EINVAL;
797 goto out;
798 }
799
800 ncontext = sidtab_search(sidtab, newsid);
801 if (!ncontext) {
802 pr_err("SELinux: %s: unrecognized SID %d\n",
803 __func__, newsid);
804 rc = -EINVAL;
805 goto out;
806 }
807
808 tcontext = sidtab_search(sidtab, tasksid);
809 if (!tcontext) {
810 pr_err("SELinux: %s: unrecognized SID %d\n",
811 __func__, tasksid);
812 rc = -EINVAL;
813 goto out;
814 }
815
816 constraint = tclass_datum->validatetrans;
817 while (constraint) {
818 if (!constraint_expr_eval(policydb, ocontext, ncontext,
819 tcontext, constraint->expr)) {
820 if (user)
821 rc = -EPERM;
822 else
823 rc = security_validtrans_handle_fail(state,
824 ocontext,
825 ncontext,
826 tcontext,
827 tclass);
828 goto out;
829 }
830 constraint = constraint->next;
831 }
832
833 out:
834 read_unlock(&state->ss->policy_rwlock);
835 return rc;
836 }
837
security_validate_transition_user(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 tclass)838 int security_validate_transition_user(struct selinux_state *state,
839 u32 oldsid, u32 newsid, u32 tasksid,
840 u16 tclass)
841 {
842 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
843 tclass, true);
844 }
845
security_validate_transition(struct selinux_state * state,u32 oldsid,u32 newsid,u32 tasksid,u16 orig_tclass)846 int security_validate_transition(struct selinux_state *state,
847 u32 oldsid, u32 newsid, u32 tasksid,
848 u16 orig_tclass)
849 {
850 return security_compute_validatetrans(state, oldsid, newsid, tasksid,
851 orig_tclass, false);
852 }
853
854 /*
855 * security_bounded_transition - check whether the given
856 * transition is directed to bounded, or not.
857 * It returns 0, if @newsid is bounded by @oldsid.
858 * Otherwise, it returns error code.
859 *
860 * @oldsid : current security identifier
861 * @newsid : destinated security identifier
862 */
security_bounded_transition(struct selinux_state * state,u32 old_sid,u32 new_sid)863 int security_bounded_transition(struct selinux_state *state,
864 u32 old_sid, u32 new_sid)
865 {
866 struct policydb *policydb;
867 struct sidtab *sidtab;
868 struct context *old_context, *new_context;
869 struct type_datum *type;
870 int index;
871 int rc;
872
873 if (!state->initialized)
874 return 0;
875
876 read_lock(&state->ss->policy_rwlock);
877
878 policydb = &state->ss->policydb;
879 sidtab = &state->ss->sidtab;
880
881 rc = -EINVAL;
882 old_context = sidtab_search(sidtab, old_sid);
883 if (!old_context) {
884 pr_err("SELinux: %s: unrecognized SID %u\n",
885 __func__, old_sid);
886 goto out;
887 }
888
889 rc = -EINVAL;
890 new_context = sidtab_search(sidtab, new_sid);
891 if (!new_context) {
892 pr_err("SELinux: %s: unrecognized SID %u\n",
893 __func__, new_sid);
894 goto out;
895 }
896
897 rc = 0;
898 /* type/domain unchanged */
899 if (old_context->type == new_context->type)
900 goto out;
901
902 index = new_context->type;
903 while (true) {
904 type = flex_array_get_ptr(policydb->type_val_to_struct_array,
905 index - 1);
906 BUG_ON(!type);
907
908 /* not bounded anymore */
909 rc = -EPERM;
910 if (!type->bounds)
911 break;
912
913 /* @newsid is bounded by @oldsid */
914 rc = 0;
915 if (type->bounds == old_context->type)
916 break;
917
918 index = type->bounds;
919 }
920
921 if (rc) {
922 char *old_name = NULL;
923 char *new_name = NULL;
924 u32 length;
925
926 if (!context_struct_to_string(policydb, old_context,
927 &old_name, &length) &&
928 !context_struct_to_string(policydb, new_context,
929 &new_name, &length)) {
930 audit_log(audit_context(),
931 GFP_ATOMIC, AUDIT_SELINUX_ERR,
932 "op=security_bounded_transition "
933 "seresult=denied "
934 "oldcontext=%s newcontext=%s",
935 old_name, new_name);
936 }
937 kfree(new_name);
938 kfree(old_name);
939 }
940 out:
941 read_unlock(&state->ss->policy_rwlock);
942
943 return rc;
944 }
945
avd_init(struct selinux_state * state,struct av_decision * avd)946 static void avd_init(struct selinux_state *state, struct av_decision *avd)
947 {
948 avd->allowed = 0;
949 avd->auditallow = 0;
950 avd->auditdeny = 0xffffffff;
951 avd->seqno = state->ss->latest_granting;
952 avd->flags = 0;
953 }
954
services_compute_xperms_decision(struct extended_perms_decision * xpermd,struct avtab_node * node)955 void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
956 struct avtab_node *node)
957 {
958 unsigned int i;
959
960 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
961 if (xpermd->driver != node->datum.u.xperms->driver)
962 return;
963 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
964 if (!security_xperm_test(node->datum.u.xperms->perms.p,
965 xpermd->driver))
966 return;
967 } else {
968 BUG();
969 }
970
971 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
972 xpermd->used |= XPERMS_ALLOWED;
973 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
974 memset(xpermd->allowed->p, 0xff,
975 sizeof(xpermd->allowed->p));
976 }
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
978 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
979 xpermd->allowed->p[i] |=
980 node->datum.u.xperms->perms.p[i];
981 }
982 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
983 xpermd->used |= XPERMS_AUDITALLOW;
984 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
985 memset(xpermd->auditallow->p, 0xff,
986 sizeof(xpermd->auditallow->p));
987 }
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
989 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
990 xpermd->auditallow->p[i] |=
991 node->datum.u.xperms->perms.p[i];
992 }
993 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
994 xpermd->used |= XPERMS_DONTAUDIT;
995 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
996 memset(xpermd->dontaudit->p, 0xff,
997 sizeof(xpermd->dontaudit->p));
998 }
999 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1000 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1001 xpermd->dontaudit->p[i] |=
1002 node->datum.u.xperms->perms.p[i];
1003 }
1004 } else {
1005 BUG();
1006 }
1007 }
1008
security_compute_xperms_decision(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u8 driver,struct extended_perms_decision * xpermd)1009 void security_compute_xperms_decision(struct selinux_state *state,
1010 u32 ssid,
1011 u32 tsid,
1012 u16 orig_tclass,
1013 u8 driver,
1014 struct extended_perms_decision *xpermd)
1015 {
1016 struct policydb *policydb;
1017 struct sidtab *sidtab;
1018 u16 tclass;
1019 struct context *scontext, *tcontext;
1020 struct avtab_key avkey;
1021 struct avtab_node *node;
1022 struct ebitmap *sattr, *tattr;
1023 struct ebitmap_node *snode, *tnode;
1024 unsigned int i, j;
1025
1026 xpermd->driver = driver;
1027 xpermd->used = 0;
1028 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1029 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1030 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1031
1032 read_lock(&state->ss->policy_rwlock);
1033 if (!state->initialized)
1034 goto allow;
1035
1036 policydb = &state->ss->policydb;
1037 sidtab = &state->ss->sidtab;
1038
1039 scontext = sidtab_search(sidtab, ssid);
1040 if (!scontext) {
1041 pr_err("SELinux: %s: unrecognized SID %d\n",
1042 __func__, ssid);
1043 goto out;
1044 }
1045
1046 tcontext = sidtab_search(sidtab, tsid);
1047 if (!tcontext) {
1048 pr_err("SELinux: %s: unrecognized SID %d\n",
1049 __func__, tsid);
1050 goto out;
1051 }
1052
1053 tclass = unmap_class(&state->ss->map, orig_tclass);
1054 if (unlikely(orig_tclass && !tclass)) {
1055 if (policydb->allow_unknown)
1056 goto allow;
1057 goto out;
1058 }
1059
1060
1061 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1063 goto out;
1064 }
1065
1066 avkey.target_class = tclass;
1067 avkey.specified = AVTAB_XPERMS;
1068 sattr = flex_array_get(policydb->type_attr_map_array,
1069 scontext->type - 1);
1070 BUG_ON(!sattr);
1071 tattr = flex_array_get(policydb->type_attr_map_array,
1072 tcontext->type - 1);
1073 BUG_ON(!tattr);
1074 ebitmap_for_each_positive_bit(sattr, snode, i) {
1075 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1076 avkey.source_type = i + 1;
1077 avkey.target_type = j + 1;
1078 for (node = avtab_search_node(&policydb->te_avtab,
1079 &avkey);
1080 node;
1081 node = avtab_search_node_next(node, avkey.specified))
1082 services_compute_xperms_decision(xpermd, node);
1083
1084 cond_compute_xperms(&policydb->te_cond_avtab,
1085 &avkey, xpermd);
1086 }
1087 }
1088 out:
1089 read_unlock(&state->ss->policy_rwlock);
1090 return;
1091 allow:
1092 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1093 goto out;
1094 }
1095
1096 /**
1097 * security_compute_av - Compute access vector decisions.
1098 * @ssid: source security identifier
1099 * @tsid: target security identifier
1100 * @tclass: target security class
1101 * @avd: access vector decisions
1102 * @xperms: extended permissions
1103 *
1104 * Compute a set of access vector decisions based on the
1105 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1106 */
security_compute_av(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,struct av_decision * avd,struct extended_perms * xperms)1107 void security_compute_av(struct selinux_state *state,
1108 u32 ssid,
1109 u32 tsid,
1110 u16 orig_tclass,
1111 struct av_decision *avd,
1112 struct extended_perms *xperms)
1113 {
1114 struct policydb *policydb;
1115 struct sidtab *sidtab;
1116 u16 tclass;
1117 struct context *scontext = NULL, *tcontext = NULL;
1118
1119 read_lock(&state->ss->policy_rwlock);
1120 avd_init(state, avd);
1121 xperms->len = 0;
1122 if (!state->initialized)
1123 goto allow;
1124
1125 policydb = &state->ss->policydb;
1126 sidtab = &state->ss->sidtab;
1127
1128 scontext = sidtab_search(sidtab, ssid);
1129 if (!scontext) {
1130 pr_err("SELinux: %s: unrecognized SID %d\n",
1131 __func__, ssid);
1132 goto out;
1133 }
1134
1135 /* permissive domain? */
1136 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1137 avd->flags |= AVD_FLAGS_PERMISSIVE;
1138
1139 tcontext = sidtab_search(sidtab, tsid);
1140 if (!tcontext) {
1141 pr_err("SELinux: %s: unrecognized SID %d\n",
1142 __func__, tsid);
1143 goto out;
1144 }
1145
1146 tclass = unmap_class(&state->ss->map, orig_tclass);
1147 if (unlikely(orig_tclass && !tclass)) {
1148 if (policydb->allow_unknown)
1149 goto allow;
1150 goto out;
1151 }
1152 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1153 xperms);
1154 map_decision(&state->ss->map, orig_tclass, avd,
1155 policydb->allow_unknown);
1156 out:
1157 read_unlock(&state->ss->policy_rwlock);
1158 return;
1159 allow:
1160 avd->allowed = 0xffffffff;
1161 goto out;
1162 }
1163
security_compute_av_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,struct av_decision * avd)1164 void security_compute_av_user(struct selinux_state *state,
1165 u32 ssid,
1166 u32 tsid,
1167 u16 tclass,
1168 struct av_decision *avd)
1169 {
1170 struct policydb *policydb;
1171 struct sidtab *sidtab;
1172 struct context *scontext = NULL, *tcontext = NULL;
1173
1174 read_lock(&state->ss->policy_rwlock);
1175 avd_init(state, avd);
1176 if (!state->initialized)
1177 goto allow;
1178
1179 policydb = &state->ss->policydb;
1180 sidtab = &state->ss->sidtab;
1181
1182 scontext = sidtab_search(sidtab, ssid);
1183 if (!scontext) {
1184 pr_err("SELinux: %s: unrecognized SID %d\n",
1185 __func__, ssid);
1186 goto out;
1187 }
1188
1189 /* permissive domain? */
1190 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1191 avd->flags |= AVD_FLAGS_PERMISSIVE;
1192
1193 tcontext = sidtab_search(sidtab, tsid);
1194 if (!tcontext) {
1195 pr_err("SELinux: %s: unrecognized SID %d\n",
1196 __func__, tsid);
1197 goto out;
1198 }
1199
1200 if (unlikely(!tclass)) {
1201 if (policydb->allow_unknown)
1202 goto allow;
1203 goto out;
1204 }
1205
1206 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1207 NULL);
1208 out:
1209 read_unlock(&state->ss->policy_rwlock);
1210 return;
1211 allow:
1212 avd->allowed = 0xffffffff;
1213 goto out;
1214 }
1215
1216 /*
1217 * Write the security context string representation of
1218 * the context structure `context' into a dynamically
1219 * allocated string of the correct size. Set `*scontext'
1220 * to point to this string and set `*scontext_len' to
1221 * the length of the string.
1222 */
context_struct_to_string(struct policydb * p,struct context * context,char ** scontext,u32 * scontext_len)1223 static int context_struct_to_string(struct policydb *p,
1224 struct context *context,
1225 char **scontext, u32 *scontext_len)
1226 {
1227 char *scontextp;
1228
1229 if (scontext)
1230 *scontext = NULL;
1231 *scontext_len = 0;
1232
1233 if (context->len) {
1234 *scontext_len = context->len;
1235 if (scontext) {
1236 *scontext = kstrdup(context->str, GFP_ATOMIC);
1237 if (!(*scontext))
1238 return -ENOMEM;
1239 }
1240 return 0;
1241 }
1242
1243 /* Compute the size of the context. */
1244 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1245 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1246 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1247 *scontext_len += mls_compute_context_len(p, context);
1248
1249 if (!scontext)
1250 return 0;
1251
1252 /* Allocate space for the context; caller must free this space. */
1253 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1254 if (!scontextp)
1255 return -ENOMEM;
1256 *scontext = scontextp;
1257
1258 /*
1259 * Copy the user name, role name and type name into the context.
1260 */
1261 scontextp += sprintf(scontextp, "%s:%s:%s",
1262 sym_name(p, SYM_USERS, context->user - 1),
1263 sym_name(p, SYM_ROLES, context->role - 1),
1264 sym_name(p, SYM_TYPES, context->type - 1));
1265
1266 mls_sid_to_context(p, context, &scontextp);
1267
1268 *scontextp = 0;
1269
1270 return 0;
1271 }
1272
1273 #include "initial_sid_to_string.h"
1274
security_get_initial_sid_context(u32 sid)1275 const char *security_get_initial_sid_context(u32 sid)
1276 {
1277 if (unlikely(sid > SECINITSID_NUM))
1278 return NULL;
1279 return initial_sid_to_string[sid];
1280 }
1281
security_sid_to_context_core(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len,int force)1282 static int security_sid_to_context_core(struct selinux_state *state,
1283 u32 sid, char **scontext,
1284 u32 *scontext_len, int force)
1285 {
1286 struct policydb *policydb;
1287 struct sidtab *sidtab;
1288 struct context *context;
1289 int rc = 0;
1290
1291 if (scontext)
1292 *scontext = NULL;
1293 *scontext_len = 0;
1294
1295 if (!state->initialized) {
1296 if (sid <= SECINITSID_NUM) {
1297 char *scontextp;
1298
1299 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1300 if (!scontext)
1301 goto out;
1302 scontextp = kmemdup(initial_sid_to_string[sid],
1303 *scontext_len, GFP_ATOMIC);
1304 if (!scontextp) {
1305 rc = -ENOMEM;
1306 goto out;
1307 }
1308 *scontext = scontextp;
1309 goto out;
1310 }
1311 pr_err("SELinux: %s: called before initial "
1312 "load_policy on unknown SID %d\n", __func__, sid);
1313 rc = -EINVAL;
1314 goto out;
1315 }
1316 read_lock(&state->ss->policy_rwlock);
1317 policydb = &state->ss->policydb;
1318 sidtab = &state->ss->sidtab;
1319 if (force)
1320 context = sidtab_search_force(sidtab, sid);
1321 else
1322 context = sidtab_search(sidtab, sid);
1323 if (!context) {
1324 pr_err("SELinux: %s: unrecognized SID %d\n",
1325 __func__, sid);
1326 rc = -EINVAL;
1327 goto out_unlock;
1328 }
1329 rc = context_struct_to_string(policydb, context, scontext,
1330 scontext_len);
1331 out_unlock:
1332 read_unlock(&state->ss->policy_rwlock);
1333 out:
1334 return rc;
1335
1336 }
1337
1338 /**
1339 * security_sid_to_context - Obtain a context for a given SID.
1340 * @sid: security identifier, SID
1341 * @scontext: security context
1342 * @scontext_len: length in bytes
1343 *
1344 * Write the string representation of the context associated with @sid
1345 * into a dynamically allocated string of the correct size. Set @scontext
1346 * to point to this string and set @scontext_len to the length of the string.
1347 */
security_sid_to_context(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1348 int security_sid_to_context(struct selinux_state *state,
1349 u32 sid, char **scontext, u32 *scontext_len)
1350 {
1351 return security_sid_to_context_core(state, sid, scontext,
1352 scontext_len, 0);
1353 }
1354
security_sid_to_context_force(struct selinux_state * state,u32 sid,char ** scontext,u32 * scontext_len)1355 int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1356 char **scontext, u32 *scontext_len)
1357 {
1358 return security_sid_to_context_core(state, sid, scontext,
1359 scontext_len, 1);
1360 }
1361
1362 /*
1363 * Caveat: Mutates scontext.
1364 */
string_to_context_struct(struct policydb * pol,struct sidtab * sidtabp,char * scontext,u32 scontext_len,struct context * ctx,u32 def_sid)1365 static int string_to_context_struct(struct policydb *pol,
1366 struct sidtab *sidtabp,
1367 char *scontext,
1368 u32 scontext_len,
1369 struct context *ctx,
1370 u32 def_sid)
1371 {
1372 struct role_datum *role;
1373 struct type_datum *typdatum;
1374 struct user_datum *usrdatum;
1375 char *scontextp, *p, oldc;
1376 int rc = 0;
1377
1378 context_init(ctx);
1379
1380 /* Parse the security context. */
1381
1382 rc = -EINVAL;
1383 scontextp = (char *) scontext;
1384
1385 /* Extract the user. */
1386 p = scontextp;
1387 while (*p && *p != ':')
1388 p++;
1389
1390 if (*p == 0)
1391 goto out;
1392
1393 *p++ = 0;
1394
1395 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1396 if (!usrdatum)
1397 goto out;
1398
1399 ctx->user = usrdatum->value;
1400
1401 /* Extract role. */
1402 scontextp = p;
1403 while (*p && *p != ':')
1404 p++;
1405
1406 if (*p == 0)
1407 goto out;
1408
1409 *p++ = 0;
1410
1411 role = hashtab_search(pol->p_roles.table, scontextp);
1412 if (!role)
1413 goto out;
1414 ctx->role = role->value;
1415
1416 /* Extract type. */
1417 scontextp = p;
1418 while (*p && *p != ':')
1419 p++;
1420 oldc = *p;
1421 *p++ = 0;
1422
1423 typdatum = hashtab_search(pol->p_types.table, scontextp);
1424 if (!typdatum || typdatum->attribute)
1425 goto out;
1426
1427 ctx->type = typdatum->value;
1428
1429 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1430 if (rc)
1431 goto out;
1432
1433 rc = -EINVAL;
1434 if ((p - scontext) < scontext_len)
1435 goto out;
1436
1437 /* Check the validity of the new context. */
1438 if (!policydb_context_isvalid(pol, ctx))
1439 goto out;
1440 rc = 0;
1441 out:
1442 if (rc)
1443 context_destroy(ctx);
1444 return rc;
1445 }
1446
security_context_to_sid_core(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags,int force)1447 static int security_context_to_sid_core(struct selinux_state *state,
1448 const char *scontext, u32 scontext_len,
1449 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1450 int force)
1451 {
1452 struct policydb *policydb;
1453 struct sidtab *sidtab;
1454 char *scontext2, *str = NULL;
1455 struct context context;
1456 int rc = 0;
1457
1458 /* An empty security context is never valid. */
1459 if (!scontext_len)
1460 return -EINVAL;
1461
1462 /* Copy the string to allow changes and ensure a NUL terminator */
1463 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1464 if (!scontext2)
1465 return -ENOMEM;
1466
1467 if (!state->initialized) {
1468 int i;
1469
1470 for (i = 1; i < SECINITSID_NUM; i++) {
1471 if (!strcmp(initial_sid_to_string[i], scontext2)) {
1472 *sid = i;
1473 goto out;
1474 }
1475 }
1476 *sid = SECINITSID_KERNEL;
1477 goto out;
1478 }
1479 *sid = SECSID_NULL;
1480
1481 if (force) {
1482 /* Save another copy for storing in uninterpreted form */
1483 rc = -ENOMEM;
1484 str = kstrdup(scontext2, gfp_flags);
1485 if (!str)
1486 goto out;
1487 }
1488 read_lock(&state->ss->policy_rwlock);
1489 policydb = &state->ss->policydb;
1490 sidtab = &state->ss->sidtab;
1491 rc = string_to_context_struct(policydb, sidtab, scontext2,
1492 scontext_len, &context, def_sid);
1493 if (rc == -EINVAL && force) {
1494 context.str = str;
1495 context.len = strlen(str) + 1;
1496 str = NULL;
1497 } else if (rc)
1498 goto out_unlock;
1499 rc = sidtab_context_to_sid(sidtab, &context, sid);
1500 context_destroy(&context);
1501 out_unlock:
1502 read_unlock(&state->ss->policy_rwlock);
1503 out:
1504 kfree(scontext2);
1505 kfree(str);
1506 return rc;
1507 }
1508
1509 /**
1510 * security_context_to_sid - Obtain a SID for a given security context.
1511 * @scontext: security context
1512 * @scontext_len: length in bytes
1513 * @sid: security identifier, SID
1514 * @gfp: context for the allocation
1515 *
1516 * Obtains a SID associated with the security context that
1517 * has the string representation specified by @scontext.
1518 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1519 * memory is available, or 0 on success.
1520 */
security_context_to_sid(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,gfp_t gfp)1521 int security_context_to_sid(struct selinux_state *state,
1522 const char *scontext, u32 scontext_len, u32 *sid,
1523 gfp_t gfp)
1524 {
1525 return security_context_to_sid_core(state, scontext, scontext_len,
1526 sid, SECSID_NULL, gfp, 0);
1527 }
1528
security_context_str_to_sid(struct selinux_state * state,const char * scontext,u32 * sid,gfp_t gfp)1529 int security_context_str_to_sid(struct selinux_state *state,
1530 const char *scontext, u32 *sid, gfp_t gfp)
1531 {
1532 return security_context_to_sid(state, scontext, strlen(scontext),
1533 sid, gfp);
1534 }
1535
1536 /**
1537 * security_context_to_sid_default - Obtain a SID for a given security context,
1538 * falling back to specified default if needed.
1539 *
1540 * @scontext: security context
1541 * @scontext_len: length in bytes
1542 * @sid: security identifier, SID
1543 * @def_sid: default SID to assign on error
1544 *
1545 * Obtains a SID associated with the security context that
1546 * has the string representation specified by @scontext.
1547 * The default SID is passed to the MLS layer to be used to allow
1548 * kernel labeling of the MLS field if the MLS field is not present
1549 * (for upgrading to MLS without full relabel).
1550 * Implicitly forces adding of the context even if it cannot be mapped yet.
1551 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1552 * memory is available, or 0 on success.
1553 */
security_context_to_sid_default(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid,u32 def_sid,gfp_t gfp_flags)1554 int security_context_to_sid_default(struct selinux_state *state,
1555 const char *scontext, u32 scontext_len,
1556 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1557 {
1558 return security_context_to_sid_core(state, scontext, scontext_len,
1559 sid, def_sid, gfp_flags, 1);
1560 }
1561
security_context_to_sid_force(struct selinux_state * state,const char * scontext,u32 scontext_len,u32 * sid)1562 int security_context_to_sid_force(struct selinux_state *state,
1563 const char *scontext, u32 scontext_len,
1564 u32 *sid)
1565 {
1566 return security_context_to_sid_core(state, scontext, scontext_len,
1567 sid, SECSID_NULL, GFP_KERNEL, 1);
1568 }
1569
compute_sid_handle_invalid_context(struct selinux_state * state,struct context * scontext,struct context * tcontext,u16 tclass,struct context * newcontext)1570 static int compute_sid_handle_invalid_context(
1571 struct selinux_state *state,
1572 struct context *scontext,
1573 struct context *tcontext,
1574 u16 tclass,
1575 struct context *newcontext)
1576 {
1577 struct policydb *policydb = &state->ss->policydb;
1578 char *s = NULL, *t = NULL, *n = NULL;
1579 u32 slen, tlen, nlen;
1580
1581 if (context_struct_to_string(policydb, scontext, &s, &slen))
1582 goto out;
1583 if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1584 goto out;
1585 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1586 goto out;
1587 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
1588 "op=security_compute_sid invalid_context=%s"
1589 " scontext=%s"
1590 " tcontext=%s"
1591 " tclass=%s",
1592 n, s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1593 out:
1594 kfree(s);
1595 kfree(t);
1596 kfree(n);
1597 if (!enforcing_enabled(state))
1598 return 0;
1599 return -EACCES;
1600 }
1601
filename_compute_type(struct policydb * policydb,struct context * newcontext,u32 stype,u32 ttype,u16 tclass,const char * objname)1602 static void filename_compute_type(struct policydb *policydb,
1603 struct context *newcontext,
1604 u32 stype, u32 ttype, u16 tclass,
1605 const char *objname)
1606 {
1607 struct filename_trans ft;
1608 struct filename_trans_datum *otype;
1609
1610 /*
1611 * Most filename trans rules are going to live in specific directories
1612 * like /dev or /var/run. This bitmap will quickly skip rule searches
1613 * if the ttype does not contain any rules.
1614 */
1615 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1616 return;
1617
1618 ft.stype = stype;
1619 ft.ttype = ttype;
1620 ft.tclass = tclass;
1621 ft.name = objname;
1622
1623 otype = hashtab_search(policydb->filename_trans, &ft);
1624 if (otype)
1625 newcontext->type = otype->otype;
1626 }
1627
security_compute_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 orig_tclass,u32 specified,const char * objname,u32 * out_sid,bool kern)1628 static int security_compute_sid(struct selinux_state *state,
1629 u32 ssid,
1630 u32 tsid,
1631 u16 orig_tclass,
1632 u32 specified,
1633 const char *objname,
1634 u32 *out_sid,
1635 bool kern)
1636 {
1637 struct policydb *policydb;
1638 struct sidtab *sidtab;
1639 struct class_datum *cladatum = NULL;
1640 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1641 struct role_trans *roletr = NULL;
1642 struct avtab_key avkey;
1643 struct avtab_datum *avdatum;
1644 struct avtab_node *node;
1645 u16 tclass;
1646 int rc = 0;
1647 bool sock;
1648
1649 if (!state->initialized) {
1650 switch (orig_tclass) {
1651 case SECCLASS_PROCESS: /* kernel value */
1652 *out_sid = ssid;
1653 break;
1654 default:
1655 *out_sid = tsid;
1656 break;
1657 }
1658 goto out;
1659 }
1660
1661 context_init(&newcontext);
1662
1663 read_lock(&state->ss->policy_rwlock);
1664
1665 if (kern) {
1666 tclass = unmap_class(&state->ss->map, orig_tclass);
1667 sock = security_is_socket_class(orig_tclass);
1668 } else {
1669 tclass = orig_tclass;
1670 sock = security_is_socket_class(map_class(&state->ss->map,
1671 tclass));
1672 }
1673
1674 policydb = &state->ss->policydb;
1675 sidtab = &state->ss->sidtab;
1676
1677 scontext = sidtab_search(sidtab, ssid);
1678 if (!scontext) {
1679 pr_err("SELinux: %s: unrecognized SID %d\n",
1680 __func__, ssid);
1681 rc = -EINVAL;
1682 goto out_unlock;
1683 }
1684 tcontext = sidtab_search(sidtab, tsid);
1685 if (!tcontext) {
1686 pr_err("SELinux: %s: unrecognized SID %d\n",
1687 __func__, tsid);
1688 rc = -EINVAL;
1689 goto out_unlock;
1690 }
1691
1692 if (tclass && tclass <= policydb->p_classes.nprim)
1693 cladatum = policydb->class_val_to_struct[tclass - 1];
1694
1695 /* Set the user identity. */
1696 switch (specified) {
1697 case AVTAB_TRANSITION:
1698 case AVTAB_CHANGE:
1699 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1700 newcontext.user = tcontext->user;
1701 } else {
1702 /* notice this gets both DEFAULT_SOURCE and unset */
1703 /* Use the process user identity. */
1704 newcontext.user = scontext->user;
1705 }
1706 break;
1707 case AVTAB_MEMBER:
1708 /* Use the related object owner. */
1709 newcontext.user = tcontext->user;
1710 break;
1711 }
1712
1713 /* Set the role to default values. */
1714 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1715 newcontext.role = scontext->role;
1716 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1717 newcontext.role = tcontext->role;
1718 } else {
1719 if ((tclass == policydb->process_class) || (sock == true))
1720 newcontext.role = scontext->role;
1721 else
1722 newcontext.role = OBJECT_R_VAL;
1723 }
1724
1725 /* Set the type to default values. */
1726 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1727 newcontext.type = scontext->type;
1728 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1729 newcontext.type = tcontext->type;
1730 } else {
1731 if ((tclass == policydb->process_class) || (sock == true)) {
1732 /* Use the type of process. */
1733 newcontext.type = scontext->type;
1734 } else {
1735 /* Use the type of the related object. */
1736 newcontext.type = tcontext->type;
1737 }
1738 }
1739
1740 /* Look for a type transition/member/change rule. */
1741 avkey.source_type = scontext->type;
1742 avkey.target_type = tcontext->type;
1743 avkey.target_class = tclass;
1744 avkey.specified = specified;
1745 avdatum = avtab_search(&policydb->te_avtab, &avkey);
1746
1747 /* If no permanent rule, also check for enabled conditional rules */
1748 if (!avdatum) {
1749 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1750 for (; node; node = avtab_search_node_next(node, specified)) {
1751 if (node->key.specified & AVTAB_ENABLED) {
1752 avdatum = &node->datum;
1753 break;
1754 }
1755 }
1756 }
1757
1758 if (avdatum) {
1759 /* Use the type from the type transition/member/change rule. */
1760 newcontext.type = avdatum->u.data;
1761 }
1762
1763 /* if we have a objname this is a file trans check so check those rules */
1764 if (objname)
1765 filename_compute_type(policydb, &newcontext, scontext->type,
1766 tcontext->type, tclass, objname);
1767
1768 /* Check for class-specific changes. */
1769 if (specified & AVTAB_TRANSITION) {
1770 /* Look for a role transition rule. */
1771 for (roletr = policydb->role_tr; roletr;
1772 roletr = roletr->next) {
1773 if ((roletr->role == scontext->role) &&
1774 (roletr->type == tcontext->type) &&
1775 (roletr->tclass == tclass)) {
1776 /* Use the role transition rule. */
1777 newcontext.role = roletr->new_role;
1778 break;
1779 }
1780 }
1781 }
1782
1783 /* Set the MLS attributes.
1784 This is done last because it may allocate memory. */
1785 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1786 &newcontext, sock);
1787 if (rc)
1788 goto out_unlock;
1789
1790 /* Check the validity of the context. */
1791 if (!policydb_context_isvalid(policydb, &newcontext)) {
1792 rc = compute_sid_handle_invalid_context(state, scontext,
1793 tcontext,
1794 tclass,
1795 &newcontext);
1796 if (rc)
1797 goto out_unlock;
1798 }
1799 /* Obtain the sid for the context. */
1800 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1801 out_unlock:
1802 read_unlock(&state->ss->policy_rwlock);
1803 context_destroy(&newcontext);
1804 out:
1805 return rc;
1806 }
1807
1808 /**
1809 * security_transition_sid - Compute the SID for a new subject/object.
1810 * @ssid: source security identifier
1811 * @tsid: target security identifier
1812 * @tclass: target security class
1813 * @out_sid: security identifier for new subject/object
1814 *
1815 * Compute a SID to use for labeling a new subject or object in the
1816 * class @tclass based on a SID pair (@ssid, @tsid).
1817 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1818 * if insufficient memory is available, or %0 if the new SID was
1819 * computed successfully.
1820 */
security_transition_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const struct qstr * qstr,u32 * out_sid)1821 int security_transition_sid(struct selinux_state *state,
1822 u32 ssid, u32 tsid, u16 tclass,
1823 const struct qstr *qstr, u32 *out_sid)
1824 {
1825 return security_compute_sid(state, ssid, tsid, tclass,
1826 AVTAB_TRANSITION,
1827 qstr ? qstr->name : NULL, out_sid, true);
1828 }
1829
security_transition_sid_user(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,const char * objname,u32 * out_sid)1830 int security_transition_sid_user(struct selinux_state *state,
1831 u32 ssid, u32 tsid, u16 tclass,
1832 const char *objname, u32 *out_sid)
1833 {
1834 return security_compute_sid(state, ssid, tsid, tclass,
1835 AVTAB_TRANSITION,
1836 objname, out_sid, false);
1837 }
1838
1839 /**
1840 * security_member_sid - Compute the SID for member selection.
1841 * @ssid: source security identifier
1842 * @tsid: target security identifier
1843 * @tclass: target security class
1844 * @out_sid: security identifier for selected member
1845 *
1846 * Compute a SID to use when selecting a member of a polyinstantiated
1847 * object of class @tclass based on a SID pair (@ssid, @tsid).
1848 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1849 * if insufficient memory is available, or %0 if the SID was
1850 * computed successfully.
1851 */
security_member_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1852 int security_member_sid(struct selinux_state *state,
1853 u32 ssid,
1854 u32 tsid,
1855 u16 tclass,
1856 u32 *out_sid)
1857 {
1858 return security_compute_sid(state, ssid, tsid, tclass,
1859 AVTAB_MEMBER, NULL,
1860 out_sid, false);
1861 }
1862
1863 /**
1864 * security_change_sid - Compute the SID for object relabeling.
1865 * @ssid: source security identifier
1866 * @tsid: target security identifier
1867 * @tclass: target security class
1868 * @out_sid: security identifier for selected member
1869 *
1870 * Compute a SID to use for relabeling an object of class @tclass
1871 * based on a SID pair (@ssid, @tsid).
1872 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1873 * if insufficient memory is available, or %0 if the SID was
1874 * computed successfully.
1875 */
security_change_sid(struct selinux_state * state,u32 ssid,u32 tsid,u16 tclass,u32 * out_sid)1876 int security_change_sid(struct selinux_state *state,
1877 u32 ssid,
1878 u32 tsid,
1879 u16 tclass,
1880 u32 *out_sid)
1881 {
1882 return security_compute_sid(state,
1883 ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1884 out_sid, false);
1885 }
1886
1887 /* Clone the SID into the new SID table. */
clone_sid(u32 sid,struct context * context,void * arg)1888 static int clone_sid(u32 sid,
1889 struct context *context,
1890 void *arg)
1891 {
1892 struct sidtab *s = arg;
1893
1894 if (sid > SECINITSID_NUM)
1895 return sidtab_insert(s, sid, context);
1896 else
1897 return 0;
1898 }
1899
convert_context_handle_invalid_context(struct selinux_state * state,struct context * context)1900 static inline int convert_context_handle_invalid_context(
1901 struct selinux_state *state,
1902 struct context *context)
1903 {
1904 struct policydb *policydb = &state->ss->policydb;
1905 char *s;
1906 u32 len;
1907
1908 if (enforcing_enabled(state))
1909 return -EINVAL;
1910
1911 if (!context_struct_to_string(policydb, context, &s, &len)) {
1912 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1913 s);
1914 kfree(s);
1915 }
1916 return 0;
1917 }
1918
1919 struct convert_context_args {
1920 struct selinux_state *state;
1921 struct policydb *oldp;
1922 struct policydb *newp;
1923 };
1924
1925 /*
1926 * Convert the values in the security context
1927 * structure `c' from the values specified
1928 * in the policy `p->oldp' to the values specified
1929 * in the policy `p->newp'. Verify that the
1930 * context is valid under the new policy.
1931 */
convert_context(u32 key,struct context * c,void * p)1932 static int convert_context(u32 key,
1933 struct context *c,
1934 void *p)
1935 {
1936 struct convert_context_args *args;
1937 struct context oldc;
1938 struct ocontext *oc;
1939 struct mls_range *range;
1940 struct role_datum *role;
1941 struct type_datum *typdatum;
1942 struct user_datum *usrdatum;
1943 char *s;
1944 u32 len;
1945 int rc = 0;
1946
1947 if (key <= SECINITSID_NUM)
1948 goto out;
1949
1950 args = p;
1951
1952 if (c->str) {
1953 struct context ctx;
1954
1955 rc = -ENOMEM;
1956 s = kstrdup(c->str, GFP_KERNEL);
1957 if (!s)
1958 goto out;
1959
1960 rc = string_to_context_struct(args->newp, NULL, s,
1961 c->len, &ctx, SECSID_NULL);
1962 kfree(s);
1963 if (!rc) {
1964 pr_info("SELinux: Context %s became valid (mapped).\n",
1965 c->str);
1966 /* Replace string with mapped representation. */
1967 kfree(c->str);
1968 memcpy(c, &ctx, sizeof(*c));
1969 goto out;
1970 } else if (rc == -EINVAL) {
1971 /* Retain string representation for later mapping. */
1972 rc = 0;
1973 goto out;
1974 } else {
1975 /* Other error condition, e.g. ENOMEM. */
1976 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
1977 c->str, -rc);
1978 goto out;
1979 }
1980 }
1981
1982 rc = context_cpy(&oldc, c);
1983 if (rc)
1984 goto out;
1985
1986 /* Convert the user. */
1987 rc = -EINVAL;
1988 usrdatum = hashtab_search(args->newp->p_users.table,
1989 sym_name(args->oldp, SYM_USERS, c->user - 1));
1990 if (!usrdatum)
1991 goto bad;
1992 c->user = usrdatum->value;
1993
1994 /* Convert the role. */
1995 rc = -EINVAL;
1996 role = hashtab_search(args->newp->p_roles.table,
1997 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1998 if (!role)
1999 goto bad;
2000 c->role = role->value;
2001
2002 /* Convert the type. */
2003 rc = -EINVAL;
2004 typdatum = hashtab_search(args->newp->p_types.table,
2005 sym_name(args->oldp, SYM_TYPES, c->type - 1));
2006 if (!typdatum)
2007 goto bad;
2008 c->type = typdatum->value;
2009
2010 /* Convert the MLS fields if dealing with MLS policies */
2011 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2012 rc = mls_convert_context(args->oldp, args->newp, c);
2013 if (rc)
2014 goto bad;
2015 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
2016 /*
2017 * Switching between MLS and non-MLS policy:
2018 * free any storage used by the MLS fields in the
2019 * context for all existing entries in the sidtab.
2020 */
2021 mls_context_destroy(c);
2022 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2023 /*
2024 * Switching between non-MLS and MLS policy:
2025 * ensure that the MLS fields of the context for all
2026 * existing entries in the sidtab are filled in with a
2027 * suitable default value, likely taken from one of the
2028 * initial SIDs.
2029 */
2030 oc = args->newp->ocontexts[OCON_ISID];
2031 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2032 oc = oc->next;
2033 rc = -EINVAL;
2034 if (!oc) {
2035 pr_err("SELinux: unable to look up"
2036 " the initial SIDs list\n");
2037 goto bad;
2038 }
2039 range = &oc->context[0].range;
2040 rc = mls_range_set(c, range);
2041 if (rc)
2042 goto bad;
2043 }
2044
2045 /* Check the validity of the new context. */
2046 if (!policydb_context_isvalid(args->newp, c)) {
2047 rc = convert_context_handle_invalid_context(args->state,
2048 &oldc);
2049 if (rc)
2050 goto bad;
2051 }
2052
2053 context_destroy(&oldc);
2054
2055 rc = 0;
2056 out:
2057 return rc;
2058 bad:
2059 /* Map old representation to string and save it. */
2060 rc = context_struct_to_string(args->oldp, &oldc, &s, &len);
2061 if (rc)
2062 return rc;
2063 context_destroy(&oldc);
2064 context_destroy(c);
2065 c->str = s;
2066 c->len = len;
2067 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2068 c->str);
2069 rc = 0;
2070 goto out;
2071 }
2072
security_load_policycaps(struct selinux_state * state)2073 static void security_load_policycaps(struct selinux_state *state)
2074 {
2075 struct policydb *p = &state->ss->policydb;
2076 unsigned int i;
2077 struct ebitmap_node *node;
2078
2079 for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2080 state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2081
2082 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2083 pr_info("SELinux: policy capability %s=%d\n",
2084 selinux_policycap_names[i],
2085 ebitmap_get_bit(&p->policycaps, i));
2086
2087 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2088 if (i >= ARRAY_SIZE(selinux_policycap_names))
2089 pr_info("SELinux: unknown policy capability %u\n",
2090 i);
2091 }
2092 }
2093
2094 static int security_preserve_bools(struct selinux_state *state,
2095 struct policydb *newpolicydb);
2096
2097 /**
2098 * security_load_policy - Load a security policy configuration.
2099 * @data: binary policy data
2100 * @len: length of data in bytes
2101 *
2102 * Load a new set of security policy configuration data,
2103 * validate it and convert the SID table as necessary.
2104 * This function will flush the access vector cache after
2105 * loading the new policy.
2106 */
security_load_policy(struct selinux_state * state,void * data,size_t len)2107 int security_load_policy(struct selinux_state *state, void *data, size_t len)
2108 {
2109 struct policydb *policydb;
2110 struct sidtab *sidtab;
2111 struct policydb *oldpolicydb, *newpolicydb;
2112 struct sidtab oldsidtab, newsidtab;
2113 struct selinux_mapping *oldmapping;
2114 struct selinux_map newmap;
2115 struct convert_context_args args;
2116 u32 seqno;
2117 int rc = 0;
2118 struct policy_file file = { data, len }, *fp = &file;
2119
2120 oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2121 if (!oldpolicydb) {
2122 rc = -ENOMEM;
2123 goto out;
2124 }
2125 newpolicydb = oldpolicydb + 1;
2126
2127 policydb = &state->ss->policydb;
2128 sidtab = &state->ss->sidtab;
2129
2130 if (!state->initialized) {
2131 rc = policydb_read(policydb, fp);
2132 if (rc)
2133 goto out;
2134
2135 policydb->len = len;
2136 rc = selinux_set_mapping(policydb, secclass_map,
2137 &state->ss->map);
2138 if (rc) {
2139 policydb_destroy(policydb);
2140 goto out;
2141 }
2142
2143 rc = policydb_load_isids(policydb, sidtab);
2144 if (rc) {
2145 policydb_destroy(policydb);
2146 goto out;
2147 }
2148
2149 security_load_policycaps(state);
2150 state->initialized = 1;
2151 seqno = ++state->ss->latest_granting;
2152 selinux_complete_init();
2153 avc_ss_reset(state->avc, seqno);
2154 selnl_notify_policyload(seqno);
2155 selinux_status_update_policyload(state, seqno);
2156 selinux_netlbl_cache_invalidate();
2157 selinux_xfrm_notify_policyload();
2158 goto out;
2159 }
2160
2161 #if 0
2162 sidtab_hash_eval(sidtab, "sids");
2163 #endif
2164
2165 rc = policydb_read(newpolicydb, fp);
2166 if (rc)
2167 goto out;
2168
2169 newpolicydb->len = len;
2170 /* If switching between different policy types, log MLS status */
2171 if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2172 pr_info("SELinux: Disabling MLS support...\n");
2173 else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2174 pr_info("SELinux: Enabling MLS support...\n");
2175
2176 rc = policydb_load_isids(newpolicydb, &newsidtab);
2177 if (rc) {
2178 pr_err("SELinux: unable to load the initial SIDs\n");
2179 policydb_destroy(newpolicydb);
2180 goto out;
2181 }
2182
2183 rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2184 if (rc)
2185 goto err;
2186
2187 rc = security_preserve_bools(state, newpolicydb);
2188 if (rc) {
2189 pr_err("SELinux: unable to preserve booleans\n");
2190 goto err;
2191 }
2192
2193 /* Clone the SID table. */
2194 sidtab_shutdown(sidtab);
2195
2196 rc = sidtab_map(sidtab, clone_sid, &newsidtab);
2197 if (rc)
2198 goto err;
2199
2200 /*
2201 * Convert the internal representations of contexts
2202 * in the new SID table.
2203 */
2204 args.state = state;
2205 args.oldp = policydb;
2206 args.newp = newpolicydb;
2207 rc = sidtab_map(&newsidtab, convert_context, &args);
2208 if (rc) {
2209 pr_err("SELinux: unable to convert the internal"
2210 " representation of contexts in the new SID"
2211 " table\n");
2212 goto err;
2213 }
2214
2215 /* Save the old policydb and SID table to free later. */
2216 memcpy(oldpolicydb, policydb, sizeof(*policydb));
2217 sidtab_set(&oldsidtab, sidtab);
2218
2219 /* Install the new policydb and SID table. */
2220 write_lock_irq(&state->ss->policy_rwlock);
2221 memcpy(policydb, newpolicydb, sizeof(*policydb));
2222 sidtab_set(sidtab, &newsidtab);
2223 security_load_policycaps(state);
2224 oldmapping = state->ss->map.mapping;
2225 state->ss->map.mapping = newmap.mapping;
2226 state->ss->map.size = newmap.size;
2227 seqno = ++state->ss->latest_granting;
2228 write_unlock_irq(&state->ss->policy_rwlock);
2229
2230 /* Free the old policydb and SID table. */
2231 policydb_destroy(oldpolicydb);
2232 sidtab_destroy(&oldsidtab);
2233 kfree(oldmapping);
2234
2235 avc_ss_reset(state->avc, seqno);
2236 selnl_notify_policyload(seqno);
2237 selinux_status_update_policyload(state, seqno);
2238 selinux_netlbl_cache_invalidate();
2239 selinux_xfrm_notify_policyload();
2240
2241 rc = 0;
2242 goto out;
2243
2244 err:
2245 kfree(newmap.mapping);
2246 sidtab_destroy(&newsidtab);
2247 policydb_destroy(newpolicydb);
2248
2249 out:
2250 kfree(oldpolicydb);
2251 return rc;
2252 }
2253
security_policydb_len(struct selinux_state * state)2254 size_t security_policydb_len(struct selinux_state *state)
2255 {
2256 struct policydb *p = &state->ss->policydb;
2257 size_t len;
2258
2259 read_lock(&state->ss->policy_rwlock);
2260 len = p->len;
2261 read_unlock(&state->ss->policy_rwlock);
2262
2263 return len;
2264 }
2265
2266 /**
2267 * security_port_sid - Obtain the SID for a port.
2268 * @protocol: protocol number
2269 * @port: port number
2270 * @out_sid: security identifier
2271 */
security_port_sid(struct selinux_state * state,u8 protocol,u16 port,u32 * out_sid)2272 int security_port_sid(struct selinux_state *state,
2273 u8 protocol, u16 port, u32 *out_sid)
2274 {
2275 struct policydb *policydb;
2276 struct sidtab *sidtab;
2277 struct ocontext *c;
2278 int rc = 0;
2279
2280 read_lock(&state->ss->policy_rwlock);
2281
2282 policydb = &state->ss->policydb;
2283 sidtab = &state->ss->sidtab;
2284
2285 c = policydb->ocontexts[OCON_PORT];
2286 while (c) {
2287 if (c->u.port.protocol == protocol &&
2288 c->u.port.low_port <= port &&
2289 c->u.port.high_port >= port)
2290 break;
2291 c = c->next;
2292 }
2293
2294 if (c) {
2295 if (!c->sid[0]) {
2296 rc = sidtab_context_to_sid(sidtab,
2297 &c->context[0],
2298 &c->sid[0]);
2299 if (rc)
2300 goto out;
2301 }
2302 *out_sid = c->sid[0];
2303 } else {
2304 *out_sid = SECINITSID_PORT;
2305 }
2306
2307 out:
2308 read_unlock(&state->ss->policy_rwlock);
2309 return rc;
2310 }
2311
2312 /**
2313 * security_pkey_sid - Obtain the SID for a pkey.
2314 * @subnet_prefix: Subnet Prefix
2315 * @pkey_num: pkey number
2316 * @out_sid: security identifier
2317 */
security_ib_pkey_sid(struct selinux_state * state,u64 subnet_prefix,u16 pkey_num,u32 * out_sid)2318 int security_ib_pkey_sid(struct selinux_state *state,
2319 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2320 {
2321 struct policydb *policydb;
2322 struct sidtab *sidtab;
2323 struct ocontext *c;
2324 int rc = 0;
2325
2326 read_lock(&state->ss->policy_rwlock);
2327
2328 policydb = &state->ss->policydb;
2329 sidtab = &state->ss->sidtab;
2330
2331 c = policydb->ocontexts[OCON_IBPKEY];
2332 while (c) {
2333 if (c->u.ibpkey.low_pkey <= pkey_num &&
2334 c->u.ibpkey.high_pkey >= pkey_num &&
2335 c->u.ibpkey.subnet_prefix == subnet_prefix)
2336 break;
2337
2338 c = c->next;
2339 }
2340
2341 if (c) {
2342 if (!c->sid[0]) {
2343 rc = sidtab_context_to_sid(sidtab,
2344 &c->context[0],
2345 &c->sid[0]);
2346 if (rc)
2347 goto out;
2348 }
2349 *out_sid = c->sid[0];
2350 } else
2351 *out_sid = SECINITSID_UNLABELED;
2352
2353 out:
2354 read_unlock(&state->ss->policy_rwlock);
2355 return rc;
2356 }
2357
2358 /**
2359 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2360 * @dev_name: device name
2361 * @port: port number
2362 * @out_sid: security identifier
2363 */
security_ib_endport_sid(struct selinux_state * state,const char * dev_name,u8 port_num,u32 * out_sid)2364 int security_ib_endport_sid(struct selinux_state *state,
2365 const char *dev_name, u8 port_num, u32 *out_sid)
2366 {
2367 struct policydb *policydb;
2368 struct sidtab *sidtab;
2369 struct ocontext *c;
2370 int rc = 0;
2371
2372 read_lock(&state->ss->policy_rwlock);
2373
2374 policydb = &state->ss->policydb;
2375 sidtab = &state->ss->sidtab;
2376
2377 c = policydb->ocontexts[OCON_IBENDPORT];
2378 while (c) {
2379 if (c->u.ibendport.port == port_num &&
2380 !strncmp(c->u.ibendport.dev_name,
2381 dev_name,
2382 IB_DEVICE_NAME_MAX))
2383 break;
2384
2385 c = c->next;
2386 }
2387
2388 if (c) {
2389 if (!c->sid[0]) {
2390 rc = sidtab_context_to_sid(sidtab,
2391 &c->context[0],
2392 &c->sid[0]);
2393 if (rc)
2394 goto out;
2395 }
2396 *out_sid = c->sid[0];
2397 } else
2398 *out_sid = SECINITSID_UNLABELED;
2399
2400 out:
2401 read_unlock(&state->ss->policy_rwlock);
2402 return rc;
2403 }
2404
2405 /**
2406 * security_netif_sid - Obtain the SID for a network interface.
2407 * @name: interface name
2408 * @if_sid: interface SID
2409 */
security_netif_sid(struct selinux_state * state,char * name,u32 * if_sid)2410 int security_netif_sid(struct selinux_state *state,
2411 char *name, u32 *if_sid)
2412 {
2413 struct policydb *policydb;
2414 struct sidtab *sidtab;
2415 int rc = 0;
2416 struct ocontext *c;
2417
2418 read_lock(&state->ss->policy_rwlock);
2419
2420 policydb = &state->ss->policydb;
2421 sidtab = &state->ss->sidtab;
2422
2423 c = policydb->ocontexts[OCON_NETIF];
2424 while (c) {
2425 if (strcmp(name, c->u.name) == 0)
2426 break;
2427 c = c->next;
2428 }
2429
2430 if (c) {
2431 if (!c->sid[0] || !c->sid[1]) {
2432 rc = sidtab_context_to_sid(sidtab,
2433 &c->context[0],
2434 &c->sid[0]);
2435 if (rc)
2436 goto out;
2437 rc = sidtab_context_to_sid(sidtab,
2438 &c->context[1],
2439 &c->sid[1]);
2440 if (rc)
2441 goto out;
2442 }
2443 *if_sid = c->sid[0];
2444 } else
2445 *if_sid = SECINITSID_NETIF;
2446
2447 out:
2448 read_unlock(&state->ss->policy_rwlock);
2449 return rc;
2450 }
2451
match_ipv6_addrmask(u32 * input,u32 * addr,u32 * mask)2452 static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2453 {
2454 int i, fail = 0;
2455
2456 for (i = 0; i < 4; i++)
2457 if (addr[i] != (input[i] & mask[i])) {
2458 fail = 1;
2459 break;
2460 }
2461
2462 return !fail;
2463 }
2464
2465 /**
2466 * security_node_sid - Obtain the SID for a node (host).
2467 * @domain: communication domain aka address family
2468 * @addrp: address
2469 * @addrlen: address length in bytes
2470 * @out_sid: security identifier
2471 */
security_node_sid(struct selinux_state * state,u16 domain,void * addrp,u32 addrlen,u32 * out_sid)2472 int security_node_sid(struct selinux_state *state,
2473 u16 domain,
2474 void *addrp,
2475 u32 addrlen,
2476 u32 *out_sid)
2477 {
2478 struct policydb *policydb;
2479 struct sidtab *sidtab;
2480 int rc;
2481 struct ocontext *c;
2482
2483 read_lock(&state->ss->policy_rwlock);
2484
2485 policydb = &state->ss->policydb;
2486 sidtab = &state->ss->sidtab;
2487
2488 switch (domain) {
2489 case AF_INET: {
2490 u32 addr;
2491
2492 rc = -EINVAL;
2493 if (addrlen != sizeof(u32))
2494 goto out;
2495
2496 addr = *((u32 *)addrp);
2497
2498 c = policydb->ocontexts[OCON_NODE];
2499 while (c) {
2500 if (c->u.node.addr == (addr & c->u.node.mask))
2501 break;
2502 c = c->next;
2503 }
2504 break;
2505 }
2506
2507 case AF_INET6:
2508 rc = -EINVAL;
2509 if (addrlen != sizeof(u64) * 2)
2510 goto out;
2511 c = policydb->ocontexts[OCON_NODE6];
2512 while (c) {
2513 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2514 c->u.node6.mask))
2515 break;
2516 c = c->next;
2517 }
2518 break;
2519
2520 default:
2521 rc = 0;
2522 *out_sid = SECINITSID_NODE;
2523 goto out;
2524 }
2525
2526 if (c) {
2527 if (!c->sid[0]) {
2528 rc = sidtab_context_to_sid(sidtab,
2529 &c->context[0],
2530 &c->sid[0]);
2531 if (rc)
2532 goto out;
2533 }
2534 *out_sid = c->sid[0];
2535 } else {
2536 *out_sid = SECINITSID_NODE;
2537 }
2538
2539 rc = 0;
2540 out:
2541 read_unlock(&state->ss->policy_rwlock);
2542 return rc;
2543 }
2544
2545 #define SIDS_NEL 25
2546
2547 /**
2548 * security_get_user_sids - Obtain reachable SIDs for a user.
2549 * @fromsid: starting SID
2550 * @username: username
2551 * @sids: array of reachable SIDs for user
2552 * @nel: number of elements in @sids
2553 *
2554 * Generate the set of SIDs for legal security contexts
2555 * for a given user that can be reached by @fromsid.
2556 * Set *@sids to point to a dynamically allocated
2557 * array containing the set of SIDs. Set *@nel to the
2558 * number of elements in the array.
2559 */
2560
security_get_user_sids(struct selinux_state * state,u32 fromsid,char * username,u32 ** sids,u32 * nel)2561 int security_get_user_sids(struct selinux_state *state,
2562 u32 fromsid,
2563 char *username,
2564 u32 **sids,
2565 u32 *nel)
2566 {
2567 struct policydb *policydb;
2568 struct sidtab *sidtab;
2569 struct context *fromcon, usercon;
2570 u32 *mysids = NULL, *mysids2, sid;
2571 u32 mynel = 0, maxnel = SIDS_NEL;
2572 struct user_datum *user;
2573 struct role_datum *role;
2574 struct ebitmap_node *rnode, *tnode;
2575 int rc = 0, i, j;
2576
2577 *sids = NULL;
2578 *nel = 0;
2579
2580 if (!state->initialized)
2581 goto out;
2582
2583 read_lock(&state->ss->policy_rwlock);
2584
2585 policydb = &state->ss->policydb;
2586 sidtab = &state->ss->sidtab;
2587
2588 context_init(&usercon);
2589
2590 rc = -EINVAL;
2591 fromcon = sidtab_search(sidtab, fromsid);
2592 if (!fromcon)
2593 goto out_unlock;
2594
2595 rc = -EINVAL;
2596 user = hashtab_search(policydb->p_users.table, username);
2597 if (!user)
2598 goto out_unlock;
2599
2600 usercon.user = user->value;
2601
2602 rc = -ENOMEM;
2603 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2604 if (!mysids)
2605 goto out_unlock;
2606
2607 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2608 role = policydb->role_val_to_struct[i];
2609 usercon.role = i + 1;
2610 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2611 usercon.type = j + 1;
2612
2613 if (mls_setup_user_range(policydb, fromcon, user,
2614 &usercon))
2615 continue;
2616
2617 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2618 if (rc)
2619 goto out_unlock;
2620 if (mynel < maxnel) {
2621 mysids[mynel++] = sid;
2622 } else {
2623 rc = -ENOMEM;
2624 maxnel += SIDS_NEL;
2625 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2626 if (!mysids2)
2627 goto out_unlock;
2628 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2629 kfree(mysids);
2630 mysids = mysids2;
2631 mysids[mynel++] = sid;
2632 }
2633 }
2634 }
2635 rc = 0;
2636 out_unlock:
2637 read_unlock(&state->ss->policy_rwlock);
2638 if (rc || !mynel) {
2639 kfree(mysids);
2640 goto out;
2641 }
2642
2643 rc = -ENOMEM;
2644 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2645 if (!mysids2) {
2646 kfree(mysids);
2647 goto out;
2648 }
2649 for (i = 0, j = 0; i < mynel; i++) {
2650 struct av_decision dummy_avd;
2651 rc = avc_has_perm_noaudit(state,
2652 fromsid, mysids[i],
2653 SECCLASS_PROCESS, /* kernel value */
2654 PROCESS__TRANSITION, AVC_STRICT,
2655 &dummy_avd);
2656 if (!rc)
2657 mysids2[j++] = mysids[i];
2658 cond_resched();
2659 }
2660 rc = 0;
2661 kfree(mysids);
2662 *sids = mysids2;
2663 *nel = j;
2664 out:
2665 return rc;
2666 }
2667
2668 /**
2669 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2670 * @fstype: filesystem type
2671 * @path: path from root of mount
2672 * @sclass: file security class
2673 * @sid: SID for path
2674 *
2675 * Obtain a SID to use for a file in a filesystem that
2676 * cannot support xattr or use a fixed labeling behavior like
2677 * transition SIDs or task SIDs.
2678 *
2679 * The caller must acquire the policy_rwlock before calling this function.
2680 */
__security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2681 static inline int __security_genfs_sid(struct selinux_state *state,
2682 const char *fstype,
2683 char *path,
2684 u16 orig_sclass,
2685 u32 *sid)
2686 {
2687 struct policydb *policydb = &state->ss->policydb;
2688 struct sidtab *sidtab = &state->ss->sidtab;
2689 int len;
2690 u16 sclass;
2691 struct genfs *genfs;
2692 struct ocontext *c;
2693 int rc, cmp = 0;
2694
2695 while (path[0] == '/' && path[1] == '/')
2696 path++;
2697
2698 sclass = unmap_class(&state->ss->map, orig_sclass);
2699 *sid = SECINITSID_UNLABELED;
2700
2701 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2702 cmp = strcmp(fstype, genfs->fstype);
2703 if (cmp <= 0)
2704 break;
2705 }
2706
2707 rc = -ENOENT;
2708 if (!genfs || cmp)
2709 goto out;
2710
2711 for (c = genfs->head; c; c = c->next) {
2712 len = strlen(c->u.name);
2713 if ((!c->v.sclass || sclass == c->v.sclass) &&
2714 (strncmp(c->u.name, path, len) == 0))
2715 break;
2716 }
2717
2718 rc = -ENOENT;
2719 if (!c)
2720 goto out;
2721
2722 if (!c->sid[0]) {
2723 rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2724 if (rc)
2725 goto out;
2726 }
2727
2728 *sid = c->sid[0];
2729 rc = 0;
2730 out:
2731 return rc;
2732 }
2733
2734 /**
2735 * security_genfs_sid - Obtain a SID for a file in a filesystem
2736 * @fstype: filesystem type
2737 * @path: path from root of mount
2738 * @sclass: file security class
2739 * @sid: SID for path
2740 *
2741 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2742 * it afterward.
2743 */
security_genfs_sid(struct selinux_state * state,const char * fstype,char * path,u16 orig_sclass,u32 * sid)2744 int security_genfs_sid(struct selinux_state *state,
2745 const char *fstype,
2746 char *path,
2747 u16 orig_sclass,
2748 u32 *sid)
2749 {
2750 int retval;
2751
2752 read_lock(&state->ss->policy_rwlock);
2753 retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2754 read_unlock(&state->ss->policy_rwlock);
2755 return retval;
2756 }
2757
2758 /**
2759 * security_fs_use - Determine how to handle labeling for a filesystem.
2760 * @sb: superblock in question
2761 */
security_fs_use(struct selinux_state * state,struct super_block * sb)2762 int security_fs_use(struct selinux_state *state, struct super_block *sb)
2763 {
2764 struct policydb *policydb;
2765 struct sidtab *sidtab;
2766 int rc = 0;
2767 struct ocontext *c;
2768 struct superblock_security_struct *sbsec = sb->s_security;
2769 const char *fstype = sb->s_type->name;
2770
2771 read_lock(&state->ss->policy_rwlock);
2772
2773 policydb = &state->ss->policydb;
2774 sidtab = &state->ss->sidtab;
2775
2776 c = policydb->ocontexts[OCON_FSUSE];
2777 while (c) {
2778 if (strcmp(fstype, c->u.name) == 0)
2779 break;
2780 c = c->next;
2781 }
2782
2783 if (c) {
2784 sbsec->behavior = c->v.behavior;
2785 if (!c->sid[0]) {
2786 rc = sidtab_context_to_sid(sidtab, &c->context[0],
2787 &c->sid[0]);
2788 if (rc)
2789 goto out;
2790 }
2791 sbsec->sid = c->sid[0];
2792 } else {
2793 rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2794 &sbsec->sid);
2795 if (rc) {
2796 sbsec->behavior = SECURITY_FS_USE_NONE;
2797 rc = 0;
2798 } else {
2799 sbsec->behavior = SECURITY_FS_USE_GENFS;
2800 }
2801 }
2802
2803 out:
2804 read_unlock(&state->ss->policy_rwlock);
2805 return rc;
2806 }
2807
security_get_bools(struct selinux_state * state,int * len,char *** names,int ** values)2808 int security_get_bools(struct selinux_state *state,
2809 int *len, char ***names, int **values)
2810 {
2811 struct policydb *policydb;
2812 int i, rc;
2813
2814 if (!state->initialized) {
2815 *len = 0;
2816 *names = NULL;
2817 *values = NULL;
2818 return 0;
2819 }
2820
2821 read_lock(&state->ss->policy_rwlock);
2822
2823 policydb = &state->ss->policydb;
2824
2825 *names = NULL;
2826 *values = NULL;
2827
2828 rc = 0;
2829 *len = policydb->p_bools.nprim;
2830 if (!*len)
2831 goto out;
2832
2833 rc = -ENOMEM;
2834 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2835 if (!*names)
2836 goto err;
2837
2838 rc = -ENOMEM;
2839 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2840 if (!*values)
2841 goto err;
2842
2843 for (i = 0; i < *len; i++) {
2844 (*values)[i] = policydb->bool_val_to_struct[i]->state;
2845
2846 rc = -ENOMEM;
2847 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2848 GFP_ATOMIC);
2849 if (!(*names)[i])
2850 goto err;
2851 }
2852 rc = 0;
2853 out:
2854 read_unlock(&state->ss->policy_rwlock);
2855 return rc;
2856 err:
2857 if (*names) {
2858 for (i = 0; i < *len; i++)
2859 kfree((*names)[i]);
2860 }
2861 kfree(*values);
2862 goto out;
2863 }
2864
2865
security_set_bools(struct selinux_state * state,int len,int * values)2866 int security_set_bools(struct selinux_state *state, int len, int *values)
2867 {
2868 struct policydb *policydb;
2869 int i, rc;
2870 int lenp, seqno = 0;
2871 struct cond_node *cur;
2872
2873 write_lock_irq(&state->ss->policy_rwlock);
2874
2875 policydb = &state->ss->policydb;
2876
2877 rc = -EFAULT;
2878 lenp = policydb->p_bools.nprim;
2879 if (len != lenp)
2880 goto out;
2881
2882 for (i = 0; i < len; i++) {
2883 if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2884 audit_log(audit_context(), GFP_ATOMIC,
2885 AUDIT_MAC_CONFIG_CHANGE,
2886 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2887 sym_name(policydb, SYM_BOOLS, i),
2888 !!values[i],
2889 policydb->bool_val_to_struct[i]->state,
2890 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2891 audit_get_sessionid(current));
2892 }
2893 if (values[i])
2894 policydb->bool_val_to_struct[i]->state = 1;
2895 else
2896 policydb->bool_val_to_struct[i]->state = 0;
2897 }
2898
2899 for (cur = policydb->cond_list; cur; cur = cur->next) {
2900 rc = evaluate_cond_node(policydb, cur);
2901 if (rc)
2902 goto out;
2903 }
2904
2905 seqno = ++state->ss->latest_granting;
2906 rc = 0;
2907 out:
2908 write_unlock_irq(&state->ss->policy_rwlock);
2909 if (!rc) {
2910 avc_ss_reset(state->avc, seqno);
2911 selnl_notify_policyload(seqno);
2912 selinux_status_update_policyload(state, seqno);
2913 selinux_xfrm_notify_policyload();
2914 }
2915 return rc;
2916 }
2917
security_get_bool_value(struct selinux_state * state,int index)2918 int security_get_bool_value(struct selinux_state *state,
2919 int index)
2920 {
2921 struct policydb *policydb;
2922 int rc;
2923 int len;
2924
2925 read_lock(&state->ss->policy_rwlock);
2926
2927 policydb = &state->ss->policydb;
2928
2929 rc = -EFAULT;
2930 len = policydb->p_bools.nprim;
2931 if (index >= len)
2932 goto out;
2933
2934 rc = policydb->bool_val_to_struct[index]->state;
2935 out:
2936 read_unlock(&state->ss->policy_rwlock);
2937 return rc;
2938 }
2939
security_preserve_bools(struct selinux_state * state,struct policydb * policydb)2940 static int security_preserve_bools(struct selinux_state *state,
2941 struct policydb *policydb)
2942 {
2943 int rc, nbools = 0, *bvalues = NULL, i;
2944 char **bnames = NULL;
2945 struct cond_bool_datum *booldatum;
2946 struct cond_node *cur;
2947
2948 rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2949 if (rc)
2950 goto out;
2951 for (i = 0; i < nbools; i++) {
2952 booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2953 if (booldatum)
2954 booldatum->state = bvalues[i];
2955 }
2956 for (cur = policydb->cond_list; cur; cur = cur->next) {
2957 rc = evaluate_cond_node(policydb, cur);
2958 if (rc)
2959 goto out;
2960 }
2961
2962 out:
2963 if (bnames) {
2964 for (i = 0; i < nbools; i++)
2965 kfree(bnames[i]);
2966 }
2967 kfree(bnames);
2968 kfree(bvalues);
2969 return rc;
2970 }
2971
2972 /*
2973 * security_sid_mls_copy() - computes a new sid based on the given
2974 * sid and the mls portion of mls_sid.
2975 */
security_sid_mls_copy(struct selinux_state * state,u32 sid,u32 mls_sid,u32 * new_sid)2976 int security_sid_mls_copy(struct selinux_state *state,
2977 u32 sid, u32 mls_sid, u32 *new_sid)
2978 {
2979 struct policydb *policydb = &state->ss->policydb;
2980 struct sidtab *sidtab = &state->ss->sidtab;
2981 struct context *context1;
2982 struct context *context2;
2983 struct context newcon;
2984 char *s;
2985 u32 len;
2986 int rc;
2987
2988 rc = 0;
2989 if (!state->initialized || !policydb->mls_enabled) {
2990 *new_sid = sid;
2991 goto out;
2992 }
2993
2994 context_init(&newcon);
2995
2996 read_lock(&state->ss->policy_rwlock);
2997
2998 rc = -EINVAL;
2999 context1 = sidtab_search(sidtab, sid);
3000 if (!context1) {
3001 pr_err("SELinux: %s: unrecognized SID %d\n",
3002 __func__, sid);
3003 goto out_unlock;
3004 }
3005
3006 rc = -EINVAL;
3007 context2 = sidtab_search(sidtab, mls_sid);
3008 if (!context2) {
3009 pr_err("SELinux: %s: unrecognized SID %d\n",
3010 __func__, mls_sid);
3011 goto out_unlock;
3012 }
3013
3014 newcon.user = context1->user;
3015 newcon.role = context1->role;
3016 newcon.type = context1->type;
3017 rc = mls_context_cpy(&newcon, context2);
3018 if (rc)
3019 goto out_unlock;
3020
3021 /* Check the validity of the new context. */
3022 if (!policydb_context_isvalid(policydb, &newcon)) {
3023 rc = convert_context_handle_invalid_context(state, &newcon);
3024 if (rc) {
3025 if (!context_struct_to_string(policydb, &newcon, &s,
3026 &len)) {
3027 audit_log(audit_context(),
3028 GFP_ATOMIC, AUDIT_SELINUX_ERR,
3029 "op=security_sid_mls_copy "
3030 "invalid_context=%s", s);
3031 kfree(s);
3032 }
3033 goto out_unlock;
3034 }
3035 }
3036
3037 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3038 out_unlock:
3039 read_unlock(&state->ss->policy_rwlock);
3040 context_destroy(&newcon);
3041 out:
3042 return rc;
3043 }
3044
3045 /**
3046 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3047 * @nlbl_sid: NetLabel SID
3048 * @nlbl_type: NetLabel labeling protocol type
3049 * @xfrm_sid: XFRM SID
3050 *
3051 * Description:
3052 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3053 * resolved into a single SID it is returned via @peer_sid and the function
3054 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3055 * returns a negative value. A table summarizing the behavior is below:
3056 *
3057 * | function return | @sid
3058 * ------------------------------+-----------------+-----------------
3059 * no peer labels | 0 | SECSID_NULL
3060 * single peer label | 0 | <peer_label>
3061 * multiple, consistent labels | 0 | <peer_label>
3062 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3063 *
3064 */
security_net_peersid_resolve(struct selinux_state * state,u32 nlbl_sid,u32 nlbl_type,u32 xfrm_sid,u32 * peer_sid)3065 int security_net_peersid_resolve(struct selinux_state *state,
3066 u32 nlbl_sid, u32 nlbl_type,
3067 u32 xfrm_sid,
3068 u32 *peer_sid)
3069 {
3070 struct policydb *policydb = &state->ss->policydb;
3071 struct sidtab *sidtab = &state->ss->sidtab;
3072 int rc;
3073 struct context *nlbl_ctx;
3074 struct context *xfrm_ctx;
3075
3076 *peer_sid = SECSID_NULL;
3077
3078 /* handle the common (which also happens to be the set of easy) cases
3079 * right away, these two if statements catch everything involving a
3080 * single or absent peer SID/label */
3081 if (xfrm_sid == SECSID_NULL) {
3082 *peer_sid = nlbl_sid;
3083 return 0;
3084 }
3085 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3086 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3087 * is present */
3088 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3089 *peer_sid = xfrm_sid;
3090 return 0;
3091 }
3092
3093 /*
3094 * We don't need to check initialized here since the only way both
3095 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3096 * security server was initialized and state->initialized was true.
3097 */
3098 if (!policydb->mls_enabled)
3099 return 0;
3100
3101 read_lock(&state->ss->policy_rwlock);
3102
3103 rc = -EINVAL;
3104 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3105 if (!nlbl_ctx) {
3106 pr_err("SELinux: %s: unrecognized SID %d\n",
3107 __func__, nlbl_sid);
3108 goto out;
3109 }
3110 rc = -EINVAL;
3111 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3112 if (!xfrm_ctx) {
3113 pr_err("SELinux: %s: unrecognized SID %d\n",
3114 __func__, xfrm_sid);
3115 goto out;
3116 }
3117 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3118 if (rc)
3119 goto out;
3120
3121 /* at present NetLabel SIDs/labels really only carry MLS
3122 * information so if the MLS portion of the NetLabel SID
3123 * matches the MLS portion of the labeled XFRM SID/label
3124 * then pass along the XFRM SID as it is the most
3125 * expressive */
3126 *peer_sid = xfrm_sid;
3127 out:
3128 read_unlock(&state->ss->policy_rwlock);
3129 return rc;
3130 }
3131
get_classes_callback(void * k,void * d,void * args)3132 static int get_classes_callback(void *k, void *d, void *args)
3133 {
3134 struct class_datum *datum = d;
3135 char *name = k, **classes = args;
3136 int value = datum->value - 1;
3137
3138 classes[value] = kstrdup(name, GFP_ATOMIC);
3139 if (!classes[value])
3140 return -ENOMEM;
3141
3142 return 0;
3143 }
3144
security_get_classes(struct selinux_state * state,char *** classes,int * nclasses)3145 int security_get_classes(struct selinux_state *state,
3146 char ***classes, int *nclasses)
3147 {
3148 struct policydb *policydb = &state->ss->policydb;
3149 int rc;
3150
3151 if (!state->initialized) {
3152 *nclasses = 0;
3153 *classes = NULL;
3154 return 0;
3155 }
3156
3157 read_lock(&state->ss->policy_rwlock);
3158
3159 rc = -ENOMEM;
3160 *nclasses = policydb->p_classes.nprim;
3161 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3162 if (!*classes)
3163 goto out;
3164
3165 rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3166 *classes);
3167 if (rc) {
3168 int i;
3169 for (i = 0; i < *nclasses; i++)
3170 kfree((*classes)[i]);
3171 kfree(*classes);
3172 }
3173
3174 out:
3175 read_unlock(&state->ss->policy_rwlock);
3176 return rc;
3177 }
3178
get_permissions_callback(void * k,void * d,void * args)3179 static int get_permissions_callback(void *k, void *d, void *args)
3180 {
3181 struct perm_datum *datum = d;
3182 char *name = k, **perms = args;
3183 int value = datum->value - 1;
3184
3185 perms[value] = kstrdup(name, GFP_ATOMIC);
3186 if (!perms[value])
3187 return -ENOMEM;
3188
3189 return 0;
3190 }
3191
security_get_permissions(struct selinux_state * state,char * class,char *** perms,int * nperms)3192 int security_get_permissions(struct selinux_state *state,
3193 char *class, char ***perms, int *nperms)
3194 {
3195 struct policydb *policydb = &state->ss->policydb;
3196 int rc, i;
3197 struct class_datum *match;
3198
3199 read_lock(&state->ss->policy_rwlock);
3200
3201 rc = -EINVAL;
3202 match = hashtab_search(policydb->p_classes.table, class);
3203 if (!match) {
3204 pr_err("SELinux: %s: unrecognized class %s\n",
3205 __func__, class);
3206 goto out;
3207 }
3208
3209 rc = -ENOMEM;
3210 *nperms = match->permissions.nprim;
3211 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3212 if (!*perms)
3213 goto out;
3214
3215 if (match->comdatum) {
3216 rc = hashtab_map(match->comdatum->permissions.table,
3217 get_permissions_callback, *perms);
3218 if (rc)
3219 goto err;
3220 }
3221
3222 rc = hashtab_map(match->permissions.table, get_permissions_callback,
3223 *perms);
3224 if (rc)
3225 goto err;
3226
3227 out:
3228 read_unlock(&state->ss->policy_rwlock);
3229 return rc;
3230
3231 err:
3232 read_unlock(&state->ss->policy_rwlock);
3233 for (i = 0; i < *nperms; i++)
3234 kfree((*perms)[i]);
3235 kfree(*perms);
3236 return rc;
3237 }
3238
security_get_reject_unknown(struct selinux_state * state)3239 int security_get_reject_unknown(struct selinux_state *state)
3240 {
3241 return state->ss->policydb.reject_unknown;
3242 }
3243
security_get_allow_unknown(struct selinux_state * state)3244 int security_get_allow_unknown(struct selinux_state *state)
3245 {
3246 return state->ss->policydb.allow_unknown;
3247 }
3248
3249 /**
3250 * security_policycap_supported - Check for a specific policy capability
3251 * @req_cap: capability
3252 *
3253 * Description:
3254 * This function queries the currently loaded policy to see if it supports the
3255 * capability specified by @req_cap. Returns true (1) if the capability is
3256 * supported, false (0) if it isn't supported.
3257 *
3258 */
security_policycap_supported(struct selinux_state * state,unsigned int req_cap)3259 int security_policycap_supported(struct selinux_state *state,
3260 unsigned int req_cap)
3261 {
3262 struct policydb *policydb = &state->ss->policydb;
3263 int rc;
3264
3265 read_lock(&state->ss->policy_rwlock);
3266 rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3267 read_unlock(&state->ss->policy_rwlock);
3268
3269 return rc;
3270 }
3271
3272 struct selinux_audit_rule {
3273 u32 au_seqno;
3274 struct context au_ctxt;
3275 };
3276
selinux_audit_rule_free(void * vrule)3277 void selinux_audit_rule_free(void *vrule)
3278 {
3279 struct selinux_audit_rule *rule = vrule;
3280
3281 if (rule) {
3282 context_destroy(&rule->au_ctxt);
3283 kfree(rule);
3284 }
3285 }
3286
selinux_audit_rule_init(u32 field,u32 op,char * rulestr,void ** vrule)3287 int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3288 {
3289 struct selinux_state *state = &selinux_state;
3290 struct policydb *policydb = &state->ss->policydb;
3291 struct selinux_audit_rule *tmprule;
3292 struct role_datum *roledatum;
3293 struct type_datum *typedatum;
3294 struct user_datum *userdatum;
3295 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3296 int rc = 0;
3297
3298 *rule = NULL;
3299
3300 if (!state->initialized)
3301 return -EOPNOTSUPP;
3302
3303 switch (field) {
3304 case AUDIT_SUBJ_USER:
3305 case AUDIT_SUBJ_ROLE:
3306 case AUDIT_SUBJ_TYPE:
3307 case AUDIT_OBJ_USER:
3308 case AUDIT_OBJ_ROLE:
3309 case AUDIT_OBJ_TYPE:
3310 /* only 'equals' and 'not equals' fit user, role, and type */
3311 if (op != Audit_equal && op != Audit_not_equal)
3312 return -EINVAL;
3313 break;
3314 case AUDIT_SUBJ_SEN:
3315 case AUDIT_SUBJ_CLR:
3316 case AUDIT_OBJ_LEV_LOW:
3317 case AUDIT_OBJ_LEV_HIGH:
3318 /* we do not allow a range, indicated by the presence of '-' */
3319 if (strchr(rulestr, '-'))
3320 return -EINVAL;
3321 break;
3322 default:
3323 /* only the above fields are valid */
3324 return -EINVAL;
3325 }
3326
3327 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3328 if (!tmprule)
3329 return -ENOMEM;
3330
3331 context_init(&tmprule->au_ctxt);
3332
3333 read_lock(&state->ss->policy_rwlock);
3334
3335 tmprule->au_seqno = state->ss->latest_granting;
3336
3337 switch (field) {
3338 case AUDIT_SUBJ_USER:
3339 case AUDIT_OBJ_USER:
3340 rc = -EINVAL;
3341 userdatum = hashtab_search(policydb->p_users.table, rulestr);
3342 if (!userdatum)
3343 goto out;
3344 tmprule->au_ctxt.user = userdatum->value;
3345 break;
3346 case AUDIT_SUBJ_ROLE:
3347 case AUDIT_OBJ_ROLE:
3348 rc = -EINVAL;
3349 roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3350 if (!roledatum)
3351 goto out;
3352 tmprule->au_ctxt.role = roledatum->value;
3353 break;
3354 case AUDIT_SUBJ_TYPE:
3355 case AUDIT_OBJ_TYPE:
3356 rc = -EINVAL;
3357 typedatum = hashtab_search(policydb->p_types.table, rulestr);
3358 if (!typedatum)
3359 goto out;
3360 tmprule->au_ctxt.type = typedatum->value;
3361 break;
3362 case AUDIT_SUBJ_SEN:
3363 case AUDIT_SUBJ_CLR:
3364 case AUDIT_OBJ_LEV_LOW:
3365 case AUDIT_OBJ_LEV_HIGH:
3366 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3367 GFP_ATOMIC);
3368 if (rc)
3369 goto out;
3370 break;
3371 }
3372 rc = 0;
3373 out:
3374 read_unlock(&state->ss->policy_rwlock);
3375
3376 if (rc) {
3377 selinux_audit_rule_free(tmprule);
3378 tmprule = NULL;
3379 }
3380
3381 *rule = tmprule;
3382
3383 return rc;
3384 }
3385
3386 /* Check to see if the rule contains any selinux fields */
selinux_audit_rule_known(struct audit_krule * rule)3387 int selinux_audit_rule_known(struct audit_krule *rule)
3388 {
3389 int i;
3390
3391 for (i = 0; i < rule->field_count; i++) {
3392 struct audit_field *f = &rule->fields[i];
3393 switch (f->type) {
3394 case AUDIT_SUBJ_USER:
3395 case AUDIT_SUBJ_ROLE:
3396 case AUDIT_SUBJ_TYPE:
3397 case AUDIT_SUBJ_SEN:
3398 case AUDIT_SUBJ_CLR:
3399 case AUDIT_OBJ_USER:
3400 case AUDIT_OBJ_ROLE:
3401 case AUDIT_OBJ_TYPE:
3402 case AUDIT_OBJ_LEV_LOW:
3403 case AUDIT_OBJ_LEV_HIGH:
3404 return 1;
3405 }
3406 }
3407
3408 return 0;
3409 }
3410
selinux_audit_rule_match(u32 sid,u32 field,u32 op,void * vrule,struct audit_context * actx)3411 int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3412 struct audit_context *actx)
3413 {
3414 struct selinux_state *state = &selinux_state;
3415 struct context *ctxt;
3416 struct mls_level *level;
3417 struct selinux_audit_rule *rule = vrule;
3418 int match = 0;
3419
3420 if (unlikely(!rule)) {
3421 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3422 return -ENOENT;
3423 }
3424
3425 read_lock(&state->ss->policy_rwlock);
3426
3427 if (rule->au_seqno < state->ss->latest_granting) {
3428 match = -ESTALE;
3429 goto out;
3430 }
3431
3432 ctxt = sidtab_search(&state->ss->sidtab, sid);
3433 if (unlikely(!ctxt)) {
3434 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3435 sid);
3436 match = -ENOENT;
3437 goto out;
3438 }
3439
3440 /* a field/op pair that is not caught here will simply fall through
3441 without a match */
3442 switch (field) {
3443 case AUDIT_SUBJ_USER:
3444 case AUDIT_OBJ_USER:
3445 switch (op) {
3446 case Audit_equal:
3447 match = (ctxt->user == rule->au_ctxt.user);
3448 break;
3449 case Audit_not_equal:
3450 match = (ctxt->user != rule->au_ctxt.user);
3451 break;
3452 }
3453 break;
3454 case AUDIT_SUBJ_ROLE:
3455 case AUDIT_OBJ_ROLE:
3456 switch (op) {
3457 case Audit_equal:
3458 match = (ctxt->role == rule->au_ctxt.role);
3459 break;
3460 case Audit_not_equal:
3461 match = (ctxt->role != rule->au_ctxt.role);
3462 break;
3463 }
3464 break;
3465 case AUDIT_SUBJ_TYPE:
3466 case AUDIT_OBJ_TYPE:
3467 switch (op) {
3468 case Audit_equal:
3469 match = (ctxt->type == rule->au_ctxt.type);
3470 break;
3471 case Audit_not_equal:
3472 match = (ctxt->type != rule->au_ctxt.type);
3473 break;
3474 }
3475 break;
3476 case AUDIT_SUBJ_SEN:
3477 case AUDIT_SUBJ_CLR:
3478 case AUDIT_OBJ_LEV_LOW:
3479 case AUDIT_OBJ_LEV_HIGH:
3480 level = ((field == AUDIT_SUBJ_SEN ||
3481 field == AUDIT_OBJ_LEV_LOW) ?
3482 &ctxt->range.level[0] : &ctxt->range.level[1]);
3483 switch (op) {
3484 case Audit_equal:
3485 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3486 level);
3487 break;
3488 case Audit_not_equal:
3489 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3490 level);
3491 break;
3492 case Audit_lt:
3493 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3494 level) &&
3495 !mls_level_eq(&rule->au_ctxt.range.level[0],
3496 level));
3497 break;
3498 case Audit_le:
3499 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3500 level);
3501 break;
3502 case Audit_gt:
3503 match = (mls_level_dom(level,
3504 &rule->au_ctxt.range.level[0]) &&
3505 !mls_level_eq(level,
3506 &rule->au_ctxt.range.level[0]));
3507 break;
3508 case Audit_ge:
3509 match = mls_level_dom(level,
3510 &rule->au_ctxt.range.level[0]);
3511 break;
3512 }
3513 }
3514
3515 out:
3516 read_unlock(&state->ss->policy_rwlock);
3517 return match;
3518 }
3519
3520 static int (*aurule_callback)(void) = audit_update_lsm_rules;
3521
aurule_avc_callback(u32 event)3522 static int aurule_avc_callback(u32 event)
3523 {
3524 int err = 0;
3525
3526 if (event == AVC_CALLBACK_RESET && aurule_callback)
3527 err = aurule_callback();
3528 return err;
3529 }
3530
aurule_init(void)3531 static int __init aurule_init(void)
3532 {
3533 int err;
3534
3535 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3536 if (err)
3537 panic("avc_add_callback() failed, error %d\n", err);
3538
3539 return err;
3540 }
3541 __initcall(aurule_init);
3542
3543 #ifdef CONFIG_NETLABEL
3544 /**
3545 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3546 * @secattr: the NetLabel packet security attributes
3547 * @sid: the SELinux SID
3548 *
3549 * Description:
3550 * Attempt to cache the context in @ctx, which was derived from the packet in
3551 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3552 * already been initialized.
3553 *
3554 */
security_netlbl_cache_add(struct netlbl_lsm_secattr * secattr,u32 sid)3555 static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3556 u32 sid)
3557 {
3558 u32 *sid_cache;
3559
3560 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3561 if (sid_cache == NULL)
3562 return;
3563 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3564 if (secattr->cache == NULL) {
3565 kfree(sid_cache);
3566 return;
3567 }
3568
3569 *sid_cache = sid;
3570 secattr->cache->free = kfree;
3571 secattr->cache->data = sid_cache;
3572 secattr->flags |= NETLBL_SECATTR_CACHE;
3573 }
3574
3575 /**
3576 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3577 * @secattr: the NetLabel packet security attributes
3578 * @sid: the SELinux SID
3579 *
3580 * Description:
3581 * Convert the given NetLabel security attributes in @secattr into a
3582 * SELinux SID. If the @secattr field does not contain a full SELinux
3583 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3584 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3585 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3586 * conversion for future lookups. Returns zero on success, negative values on
3587 * failure.
3588 *
3589 */
security_netlbl_secattr_to_sid(struct selinux_state * state,struct netlbl_lsm_secattr * secattr,u32 * sid)3590 int security_netlbl_secattr_to_sid(struct selinux_state *state,
3591 struct netlbl_lsm_secattr *secattr,
3592 u32 *sid)
3593 {
3594 struct policydb *policydb = &state->ss->policydb;
3595 struct sidtab *sidtab = &state->ss->sidtab;
3596 int rc;
3597 struct context *ctx;
3598 struct context ctx_new;
3599
3600 if (!state->initialized) {
3601 *sid = SECSID_NULL;
3602 return 0;
3603 }
3604
3605 read_lock(&state->ss->policy_rwlock);
3606
3607 if (secattr->flags & NETLBL_SECATTR_CACHE)
3608 *sid = *(u32 *)secattr->cache->data;
3609 else if (secattr->flags & NETLBL_SECATTR_SECID)
3610 *sid = secattr->attr.secid;
3611 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3612 rc = -EIDRM;
3613 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3614 if (ctx == NULL)
3615 goto out;
3616
3617 context_init(&ctx_new);
3618 ctx_new.user = ctx->user;
3619 ctx_new.role = ctx->role;
3620 ctx_new.type = ctx->type;
3621 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3622 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3623 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3624 if (rc)
3625 goto out;
3626 }
3627 rc = -EIDRM;
3628 if (!mls_context_isvalid(policydb, &ctx_new))
3629 goto out_free;
3630
3631 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3632 if (rc)
3633 goto out_free;
3634
3635 security_netlbl_cache_add(secattr, *sid);
3636
3637 ebitmap_destroy(&ctx_new.range.level[0].cat);
3638 } else
3639 *sid = SECSID_NULL;
3640
3641 read_unlock(&state->ss->policy_rwlock);
3642 return 0;
3643 out_free:
3644 ebitmap_destroy(&ctx_new.range.level[0].cat);
3645 out:
3646 read_unlock(&state->ss->policy_rwlock);
3647 return rc;
3648 }
3649
3650 /**
3651 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3652 * @sid: the SELinux SID
3653 * @secattr: the NetLabel packet security attributes
3654 *
3655 * Description:
3656 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3657 * Returns zero on success, negative values on failure.
3658 *
3659 */
security_netlbl_sid_to_secattr(struct selinux_state * state,u32 sid,struct netlbl_lsm_secattr * secattr)3660 int security_netlbl_sid_to_secattr(struct selinux_state *state,
3661 u32 sid, struct netlbl_lsm_secattr *secattr)
3662 {
3663 struct policydb *policydb = &state->ss->policydb;
3664 int rc;
3665 struct context *ctx;
3666
3667 if (!state->initialized)
3668 return 0;
3669
3670 read_lock(&state->ss->policy_rwlock);
3671
3672 rc = -ENOENT;
3673 ctx = sidtab_search(&state->ss->sidtab, sid);
3674 if (ctx == NULL)
3675 goto out;
3676
3677 rc = -ENOMEM;
3678 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3679 GFP_ATOMIC);
3680 if (secattr->domain == NULL)
3681 goto out;
3682
3683 secattr->attr.secid = sid;
3684 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3685 mls_export_netlbl_lvl(policydb, ctx, secattr);
3686 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3687 out:
3688 read_unlock(&state->ss->policy_rwlock);
3689 return rc;
3690 }
3691 #endif /* CONFIG_NETLABEL */
3692
3693 /**
3694 * security_read_policy - read the policy.
3695 * @data: binary policy data
3696 * @len: length of data in bytes
3697 *
3698 */
security_read_policy(struct selinux_state * state,void ** data,size_t * len)3699 int security_read_policy(struct selinux_state *state,
3700 void **data, size_t *len)
3701 {
3702 struct policydb *policydb = &state->ss->policydb;
3703 int rc;
3704 struct policy_file fp;
3705
3706 if (!state->initialized)
3707 return -EINVAL;
3708
3709 *len = security_policydb_len(state);
3710
3711 *data = vmalloc_user(*len);
3712 if (!*data)
3713 return -ENOMEM;
3714
3715 fp.data = *data;
3716 fp.len = *len;
3717
3718 read_lock(&state->ss->policy_rwlock);
3719 rc = policydb_write(policydb, &fp);
3720 read_unlock(&state->ss->policy_rwlock);
3721
3722 if (rc)
3723 return rc;
3724
3725 *len = (unsigned long)fp.data - (unsigned long)*data;
3726 return 0;
3727
3728 }
3729