1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Driver for the Hisilicon SEC units found on Hip06 Hip07
4 *
5 * Copyright (c) 2016-2017 Hisilicon Limited.
6 */
7 #include <linux/acpi.h>
8 #include <linux/atomic.h>
9 #include <linux/delay.h>
10 #include <linux/dma-direction.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmapool.h>
13 #include <linux/io.h>
14 #include <linux/iommu.h>
15 #include <linux/interrupt.h>
16 #include <linux/irq.h>
17 #include <linux/irqreturn.h>
18 #include <linux/mm.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23
24 #include "sec_drv.h"
25
26 #define SEC_QUEUE_AR_FROCE_ALLOC 0
27 #define SEC_QUEUE_AR_FROCE_NOALLOC 1
28 #define SEC_QUEUE_AR_FROCE_DIS 2
29
30 #define SEC_QUEUE_AW_FROCE_ALLOC 0
31 #define SEC_QUEUE_AW_FROCE_NOALLOC 1
32 #define SEC_QUEUE_AW_FROCE_DIS 2
33
34 /* SEC_ALGSUB registers */
35 #define SEC_ALGSUB_CLK_EN_REG 0x03b8
36 #define SEC_ALGSUB_CLK_DIS_REG 0x03bc
37 #define SEC_ALGSUB_CLK_ST_REG 0x535c
38 #define SEC_ALGSUB_RST_REQ_REG 0x0aa8
39 #define SEC_ALGSUB_RST_DREQ_REG 0x0aac
40 #define SEC_ALGSUB_RST_ST_REG 0x5a54
41 #define SEC_ALGSUB_RST_ST_IS_RST BIT(0)
42
43 #define SEC_ALGSUB_BUILD_RST_REQ_REG 0x0ab8
44 #define SEC_ALGSUB_BUILD_RST_DREQ_REG 0x0abc
45 #define SEC_ALGSUB_BUILD_RST_ST_REG 0x5a5c
46 #define SEC_ALGSUB_BUILD_RST_ST_IS_RST BIT(0)
47
48 #define SEC_SAA_BASE 0x00001000UL
49
50 /* SEC_SAA registers */
51 #define SEC_SAA_CTRL_REG(x) ((x) * SEC_SAA_ADDR_SIZE)
52 #define SEC_SAA_CTRL_GET_QM_EN BIT(0)
53
54 #define SEC_ST_INTMSK1_REG 0x0200
55 #define SEC_ST_RINT1_REG 0x0400
56 #define SEC_ST_INTSTS1_REG 0x0600
57 #define SEC_BD_MNG_STAT_REG 0x0800
58 #define SEC_PARSING_STAT_REG 0x0804
59 #define SEC_LOAD_TIME_OUT_CNT_REG 0x0808
60 #define SEC_CORE_WORK_TIME_OUT_CNT_REG 0x080c
61 #define SEC_BACK_TIME_OUT_CNT_REG 0x0810
62 #define SEC_BD1_PARSING_RD_TIME_OUT_CNT_REG 0x0814
63 #define SEC_BD1_PARSING_WR_TIME_OUT_CNT_REG 0x0818
64 #define SEC_BD2_PARSING_RD_TIME_OUT_CNT_REG 0x081c
65 #define SEC_BD2_PARSING_WR_TIME_OUT_CNT_REG 0x0820
66 #define SEC_SAA_ACC_REG 0x083c
67 #define SEC_BD_NUM_CNT_IN_SEC_REG 0x0858
68 #define SEC_LOAD_WORK_TIME_CNT_REG 0x0860
69 #define SEC_CORE_WORK_WORK_TIME_CNT_REG 0x0864
70 #define SEC_BACK_WORK_TIME_CNT_REG 0x0868
71 #define SEC_SAA_IDLE_TIME_CNT_REG 0x086c
72 #define SEC_SAA_CLK_CNT_REG 0x0870
73
74 /* SEC_COMMON registers */
75 #define SEC_CLK_EN_REG 0x0000
76 #define SEC_CTRL_REG 0x0004
77
78 #define SEC_COMMON_CNT_CLR_CE_REG 0x0008
79 #define SEC_COMMON_CNT_CLR_CE_CLEAR BIT(0)
80 #define SEC_COMMON_CNT_CLR_CE_SNAP_EN BIT(1)
81
82 #define SEC_SECURE_CTRL_REG 0x000c
83 #define SEC_AXI_CACHE_CFG_REG 0x0010
84 #define SEC_AXI_QOS_CFG_REG 0x0014
85 #define SEC_IPV4_MASK_TABLE_REG 0x0020
86 #define SEC_IPV6_MASK_TABLE_X_REG(x) (0x0024 + (x) * 4)
87 #define SEC_FSM_MAX_CNT_REG 0x0064
88
89 #define SEC_CTRL2_REG 0x0068
90 #define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M GENMASK(3, 0)
91 #define SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S 0
92 #define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M GENMASK(6, 4)
93 #define SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S 4
94 #define SEC_CTRL2_CLK_GATE_EN BIT(7)
95 #define SEC_CTRL2_ENDIAN_BD BIT(8)
96 #define SEC_CTRL2_ENDIAN_BD_TYPE BIT(9)
97
98 #define SEC_CNT_PRECISION_CFG_REG 0x006c
99 #define SEC_DEBUG_BD_CFG_REG 0x0070
100 #define SEC_DEBUG_BD_CFG_WB_NORMAL BIT(0)
101 #define SEC_DEBUG_BD_CFG_WB_EN BIT(1)
102
103 #define SEC_Q_SIGHT_SEL 0x0074
104 #define SEC_Q_SIGHT_HIS_CLR 0x0078
105 #define SEC_Q_VMID_CFG_REG(q) (0x0100 + (q) * 4)
106 #define SEC_Q_WEIGHT_CFG_REG(q) (0x200 + (q) * 4)
107 #define SEC_STAT_CLR_REG 0x0a00
108 #define SEC_SAA_IDLE_CNT_CLR_REG 0x0a04
109 #define SEC_QM_CPL_Q_IDBUF_DFX_CFG_REG 0x0b00
110 #define SEC_QM_CPL_Q_IDBUF_DFX_RESULT_REG 0x0b04
111 #define SEC_QM_BD_DFX_CFG_REG 0x0b08
112 #define SEC_QM_BD_DFX_RESULT_REG 0x0b0c
113 #define SEC_QM_BDID_DFX_RESULT_REG 0x0b10
114 #define SEC_QM_BD_DFIFO_STATUS_REG 0x0b14
115 #define SEC_QM_BD_DFX_CFG2_REG 0x0b1c
116 #define SEC_QM_BD_DFX_RESULT2_REG 0x0b20
117 #define SEC_QM_BD_IDFIFO_STATUS_REG 0x0b18
118 #define SEC_QM_BD_DFIFO_STATUS2_REG 0x0b28
119 #define SEC_QM_BD_IDFIFO_STATUS2_REG 0x0b2c
120
121 #define SEC_HASH_IPV4_MASK 0xfff00000
122 #define SEC_MAX_SAA_NUM 0xa
123 #define SEC_SAA_ADDR_SIZE 0x1000
124
125 #define SEC_Q_INIT_REG 0x0
126 #define SEC_Q_INIT_WO_STAT_CLEAR 0x2
127 #define SEC_Q_INIT_AND_STAT_CLEAR 0x3
128
129 #define SEC_Q_CFG_REG 0x8
130 #define SEC_Q_CFG_REORDER BIT(0)
131
132 #define SEC_Q_PROC_NUM_CFG_REG 0x10
133 #define SEC_QUEUE_ENB_REG 0x18
134
135 #define SEC_Q_DEPTH_CFG_REG 0x50
136 #define SEC_Q_DEPTH_CFG_DEPTH_M GENMASK(11, 0)
137 #define SEC_Q_DEPTH_CFG_DEPTH_S 0
138
139 #define SEC_Q_BASE_HADDR_REG 0x54
140 #define SEC_Q_BASE_LADDR_REG 0x58
141 #define SEC_Q_WR_PTR_REG 0x5c
142 #define SEC_Q_OUTORDER_BASE_HADDR_REG 0x60
143 #define SEC_Q_OUTORDER_BASE_LADDR_REG 0x64
144 #define SEC_Q_OUTORDER_RD_PTR_REG 0x68
145 #define SEC_Q_OT_TH_REG 0x6c
146
147 #define SEC_Q_ARUSER_CFG_REG 0x70
148 #define SEC_Q_ARUSER_CFG_FA BIT(0)
149 #define SEC_Q_ARUSER_CFG_FNA BIT(1)
150 #define SEC_Q_ARUSER_CFG_RINVLD BIT(2)
151 #define SEC_Q_ARUSER_CFG_PKG BIT(3)
152
153 #define SEC_Q_AWUSER_CFG_REG 0x74
154 #define SEC_Q_AWUSER_CFG_FA BIT(0)
155 #define SEC_Q_AWUSER_CFG_FNA BIT(1)
156 #define SEC_Q_AWUSER_CFG_PKG BIT(2)
157
158 #define SEC_Q_ERR_BASE_HADDR_REG 0x7c
159 #define SEC_Q_ERR_BASE_LADDR_REG 0x80
160 #define SEC_Q_CFG_VF_NUM_REG 0x84
161 #define SEC_Q_SOFT_PROC_PTR_REG 0x88
162 #define SEC_Q_FAIL_INT_MSK_REG 0x300
163 #define SEC_Q_FLOW_INT_MKS_REG 0x304
164 #define SEC_Q_FAIL_RINT_REG 0x400
165 #define SEC_Q_FLOW_RINT_REG 0x404
166 #define SEC_Q_FAIL_INT_STATUS_REG 0x500
167 #define SEC_Q_FLOW_INT_STATUS_REG 0x504
168 #define SEC_Q_STATUS_REG 0x600
169 #define SEC_Q_RD_PTR_REG 0x604
170 #define SEC_Q_PRO_PTR_REG 0x608
171 #define SEC_Q_OUTORDER_WR_PTR_REG 0x60c
172 #define SEC_Q_OT_CNT_STATUS_REG 0x610
173 #define SEC_Q_INORDER_BD_NUM_ST_REG 0x650
174 #define SEC_Q_INORDER_GET_FLAG_ST_REG 0x654
175 #define SEC_Q_INORDER_ADD_FLAG_ST_REG 0x658
176 #define SEC_Q_INORDER_TASK_INT_NUM_LEFT_ST_REG 0x65c
177 #define SEC_Q_RD_DONE_PTR_REG 0x660
178 #define SEC_Q_CPL_Q_BD_NUM_ST_REG 0x700
179 #define SEC_Q_CPL_Q_PTR_ST_REG 0x704
180 #define SEC_Q_CPL_Q_H_ADDR_ST_REG 0x708
181 #define SEC_Q_CPL_Q_L_ADDR_ST_REG 0x70c
182 #define SEC_Q_CPL_TASK_INT_NUM_LEFT_ST_REG 0x710
183 #define SEC_Q_WRR_ID_CHECK_REG 0x714
184 #define SEC_Q_CPLQ_FULL_CHECK_REG 0x718
185 #define SEC_Q_SUCCESS_BD_CNT_REG 0x800
186 #define SEC_Q_FAIL_BD_CNT_REG 0x804
187 #define SEC_Q_GET_BD_CNT_REG 0x808
188 #define SEC_Q_IVLD_CNT_REG 0x80c
189 #define SEC_Q_BD_PROC_GET_CNT_REG 0x810
190 #define SEC_Q_BD_PROC_DONE_CNT_REG 0x814
191 #define SEC_Q_LAT_CLR_REG 0x850
192 #define SEC_Q_PKT_LAT_MAX_REG 0x854
193 #define SEC_Q_PKT_LAT_AVG_REG 0x858
194 #define SEC_Q_PKT_LAT_MIN_REG 0x85c
195 #define SEC_Q_ID_CLR_CFG_REG 0x900
196 #define SEC_Q_1ST_BD_ERR_ID_REG 0x904
197 #define SEC_Q_1ST_AUTH_FAIL_ID_REG 0x908
198 #define SEC_Q_1ST_RD_ERR_ID_REG 0x90c
199 #define SEC_Q_1ST_ECC2_ERR_ID_REG 0x910
200 #define SEC_Q_1ST_IVLD_ID_REG 0x914
201 #define SEC_Q_1ST_BD_WR_ERR_ID_REG 0x918
202 #define SEC_Q_1ST_ERR_BD_WR_ERR_ID_REG 0x91c
203 #define SEC_Q_1ST_BD_MAC_WR_ERR_ID_REG 0x920
204
205 struct sec_debug_bd_info {
206 #define SEC_DEBUG_BD_INFO_SOFT_ERR_CHECK_M GENMASK(22, 0)
207 u32 soft_err_check;
208 #define SEC_DEBUG_BD_INFO_HARD_ERR_CHECK_M GENMASK(9, 0)
209 u32 hard_err_check;
210 u32 icv_mac1st_word;
211 #define SEC_DEBUG_BD_INFO_GET_ID_M GENMASK(19, 0)
212 u32 sec_get_id;
213 /* W4---W15 */
214 u32 reserv_left[12];
215 };
216
217 struct sec_out_bd_info {
218 #define SEC_OUT_BD_INFO_Q_ID_M GENMASK(11, 0)
219 #define SEC_OUT_BD_INFO_ECC_2BIT_ERR BIT(14)
220 u16 data;
221 };
222
223 #define SEC_MAX_DEVICES 8
224 static struct sec_dev_info *sec_devices[SEC_MAX_DEVICES];
225 static DEFINE_MUTEX(sec_id_lock);
226
sec_queue_map_io(struct sec_queue * queue)227 static int sec_queue_map_io(struct sec_queue *queue)
228 {
229 struct device *dev = queue->dev_info->dev;
230 struct resource *res;
231
232 res = platform_get_resource(to_platform_device(dev),
233 IORESOURCE_MEM,
234 2 + queue->queue_id);
235 if (!res) {
236 dev_err(dev, "Failed to get queue %d memory resource\n",
237 queue->queue_id);
238 return -ENOMEM;
239 }
240 queue->regs = ioremap(res->start, resource_size(res));
241 if (!queue->regs)
242 return -ENOMEM;
243
244 return 0;
245 }
246
sec_queue_unmap_io(struct sec_queue * queue)247 static void sec_queue_unmap_io(struct sec_queue *queue)
248 {
249 iounmap(queue->regs);
250 }
251
sec_queue_ar_pkgattr(struct sec_queue * queue,u32 ar_pkg)252 static int sec_queue_ar_pkgattr(struct sec_queue *queue, u32 ar_pkg)
253 {
254 void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
255 u32 regval;
256
257 regval = readl_relaxed(addr);
258 if (ar_pkg)
259 regval |= SEC_Q_ARUSER_CFG_PKG;
260 else
261 regval &= ~SEC_Q_ARUSER_CFG_PKG;
262 writel_relaxed(regval, addr);
263
264 return 0;
265 }
266
sec_queue_aw_pkgattr(struct sec_queue * queue,u32 aw_pkg)267 static int sec_queue_aw_pkgattr(struct sec_queue *queue, u32 aw_pkg)
268 {
269 void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
270 u32 regval;
271
272 regval = readl_relaxed(addr);
273 regval |= SEC_Q_AWUSER_CFG_PKG;
274 writel_relaxed(regval, addr);
275
276 return 0;
277 }
278
sec_clk_en(struct sec_dev_info * info)279 static int sec_clk_en(struct sec_dev_info *info)
280 {
281 void __iomem *base = info->regs[SEC_COMMON];
282 u32 i = 0;
283
284 writel_relaxed(0x7, base + SEC_ALGSUB_CLK_EN_REG);
285 do {
286 usleep_range(1000, 10000);
287 if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0x7)
288 return 0;
289 i++;
290 } while (i < 10);
291 dev_err(info->dev, "sec clock enable fail!\n");
292
293 return -EIO;
294 }
295
sec_clk_dis(struct sec_dev_info * info)296 static int sec_clk_dis(struct sec_dev_info *info)
297 {
298 void __iomem *base = info->regs[SEC_COMMON];
299 u32 i = 0;
300
301 writel_relaxed(0x7, base + SEC_ALGSUB_CLK_DIS_REG);
302 do {
303 usleep_range(1000, 10000);
304 if ((readl_relaxed(base + SEC_ALGSUB_CLK_ST_REG) & 0x7) == 0)
305 return 0;
306 i++;
307 } while (i < 10);
308 dev_err(info->dev, "sec clock disable fail!\n");
309
310 return -EIO;
311 }
312
sec_reset_whole_module(struct sec_dev_info * info)313 static int sec_reset_whole_module(struct sec_dev_info *info)
314 {
315 void __iomem *base = info->regs[SEC_COMMON];
316 bool is_reset, b_is_reset;
317 u32 i = 0;
318
319 writel_relaxed(1, base + SEC_ALGSUB_RST_REQ_REG);
320 writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_REQ_REG);
321 while (1) {
322 usleep_range(1000, 10000);
323 is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
324 SEC_ALGSUB_RST_ST_IS_RST;
325 b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
326 SEC_ALGSUB_BUILD_RST_ST_IS_RST;
327 if (is_reset && b_is_reset)
328 break;
329 i++;
330 if (i > 10) {
331 dev_err(info->dev, "Reset req failed\n");
332 return -EIO;
333 }
334 }
335
336 i = 0;
337 writel_relaxed(1, base + SEC_ALGSUB_RST_DREQ_REG);
338 writel_relaxed(1, base + SEC_ALGSUB_BUILD_RST_DREQ_REG);
339 while (1) {
340 usleep_range(1000, 10000);
341 is_reset = readl_relaxed(base + SEC_ALGSUB_RST_ST_REG) &
342 SEC_ALGSUB_RST_ST_IS_RST;
343 b_is_reset = readl_relaxed(base + SEC_ALGSUB_BUILD_RST_ST_REG) &
344 SEC_ALGSUB_BUILD_RST_ST_IS_RST;
345 if (!is_reset && !b_is_reset)
346 break;
347
348 i++;
349 if (i > 10) {
350 dev_err(info->dev, "Reset dreq failed\n");
351 return -EIO;
352 }
353 }
354
355 return 0;
356 }
357
sec_bd_endian_little(struct sec_dev_info * info)358 static void sec_bd_endian_little(struct sec_dev_info *info)
359 {
360 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
361 u32 regval;
362
363 regval = readl_relaxed(addr);
364 regval &= ~(SEC_CTRL2_ENDIAN_BD | SEC_CTRL2_ENDIAN_BD_TYPE);
365 writel_relaxed(regval, addr);
366 }
367
368 /*
369 * sec_cache_config - configure optimum cache placement
370 */
sec_cache_config(struct sec_dev_info * info)371 static void sec_cache_config(struct sec_dev_info *info)
372 {
373 struct iommu_domain *domain;
374 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL_REG;
375
376 domain = iommu_get_domain_for_dev(info->dev);
377
378 /* Check that translation is occurring */
379 if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
380 writel_relaxed(0x44cf9e, addr);
381 else
382 writel_relaxed(0x4cfd9, addr);
383 }
384
sec_data_axiwr_otsd_cfg(struct sec_dev_info * info,u32 cfg)385 static void sec_data_axiwr_otsd_cfg(struct sec_dev_info *info, u32 cfg)
386 {
387 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
388 u32 regval;
389
390 regval = readl_relaxed(addr);
391 regval &= ~SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
392 regval |= (cfg << SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_S) &
393 SEC_CTRL2_DATA_AXI_WR_OTSD_CFG_M;
394 writel_relaxed(regval, addr);
395 }
396
sec_data_axird_otsd_cfg(struct sec_dev_info * info,u32 cfg)397 static void sec_data_axird_otsd_cfg(struct sec_dev_info *info, u32 cfg)
398 {
399 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
400 u32 regval;
401
402 regval = readl_relaxed(addr);
403 regval &= ~SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
404 regval |= (cfg << SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_S) &
405 SEC_CTRL2_DATA_AXI_RD_OTSD_CFG_M;
406 writel_relaxed(regval, addr);
407 }
408
sec_clk_gate_en(struct sec_dev_info * info,bool clkgate)409 static void sec_clk_gate_en(struct sec_dev_info *info, bool clkgate)
410 {
411 void __iomem *addr = info->regs[SEC_SAA] + SEC_CTRL2_REG;
412 u32 regval;
413
414 regval = readl_relaxed(addr);
415 if (clkgate)
416 regval |= SEC_CTRL2_CLK_GATE_EN;
417 else
418 regval &= ~SEC_CTRL2_CLK_GATE_EN;
419 writel_relaxed(regval, addr);
420 }
421
sec_comm_cnt_cfg(struct sec_dev_info * info,bool clr_ce)422 static void sec_comm_cnt_cfg(struct sec_dev_info *info, bool clr_ce)
423 {
424 void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
425 u32 regval;
426
427 regval = readl_relaxed(addr);
428 if (clr_ce)
429 regval |= SEC_COMMON_CNT_CLR_CE_CLEAR;
430 else
431 regval &= ~SEC_COMMON_CNT_CLR_CE_CLEAR;
432 writel_relaxed(regval, addr);
433 }
434
sec_commsnap_en(struct sec_dev_info * info,bool snap_en)435 static void sec_commsnap_en(struct sec_dev_info *info, bool snap_en)
436 {
437 void __iomem *addr = info->regs[SEC_SAA] + SEC_COMMON_CNT_CLR_CE_REG;
438 u32 regval;
439
440 regval = readl_relaxed(addr);
441 if (snap_en)
442 regval |= SEC_COMMON_CNT_CLR_CE_SNAP_EN;
443 else
444 regval &= ~SEC_COMMON_CNT_CLR_CE_SNAP_EN;
445 writel_relaxed(regval, addr);
446 }
447
sec_ipv6_hashmask(struct sec_dev_info * info,u32 hash_mask[])448 static void sec_ipv6_hashmask(struct sec_dev_info *info, u32 hash_mask[])
449 {
450 void __iomem *base = info->regs[SEC_SAA];
451 int i;
452
453 for (i = 0; i < 10; i++)
454 writel_relaxed(hash_mask[0],
455 base + SEC_IPV6_MASK_TABLE_X_REG(i));
456 }
457
sec_ipv4_hashmask(struct sec_dev_info * info,u32 hash_mask)458 static int sec_ipv4_hashmask(struct sec_dev_info *info, u32 hash_mask)
459 {
460 if (hash_mask & SEC_HASH_IPV4_MASK) {
461 dev_err(info->dev, "Sec Ipv4 Hash Mask Input Error!\n ");
462 return -EINVAL;
463 }
464
465 writel_relaxed(hash_mask,
466 info->regs[SEC_SAA] + SEC_IPV4_MASK_TABLE_REG);
467
468 return 0;
469 }
470
sec_set_dbg_bd_cfg(struct sec_dev_info * info,u32 cfg)471 static void sec_set_dbg_bd_cfg(struct sec_dev_info *info, u32 cfg)
472 {
473 void __iomem *addr = info->regs[SEC_SAA] + SEC_DEBUG_BD_CFG_REG;
474 u32 regval;
475
476 regval = readl_relaxed(addr);
477 /* Always disable write back of normal bd */
478 regval &= ~SEC_DEBUG_BD_CFG_WB_NORMAL;
479
480 if (cfg)
481 regval &= ~SEC_DEBUG_BD_CFG_WB_EN;
482 else
483 regval |= SEC_DEBUG_BD_CFG_WB_EN;
484
485 writel_relaxed(regval, addr);
486 }
487
sec_saa_getqm_en(struct sec_dev_info * info,u32 saa_indx,u32 en)488 static void sec_saa_getqm_en(struct sec_dev_info *info, u32 saa_indx, u32 en)
489 {
490 void __iomem *addr = info->regs[SEC_SAA] + SEC_SAA_BASE +
491 SEC_SAA_CTRL_REG(saa_indx);
492 u32 regval;
493
494 regval = readl_relaxed(addr);
495 if (en)
496 regval |= SEC_SAA_CTRL_GET_QM_EN;
497 else
498 regval &= ~SEC_SAA_CTRL_GET_QM_EN;
499 writel_relaxed(regval, addr);
500 }
501
sec_saa_int_mask(struct sec_dev_info * info,u32 saa_indx,u32 saa_int_mask)502 static void sec_saa_int_mask(struct sec_dev_info *info, u32 saa_indx,
503 u32 saa_int_mask)
504 {
505 writel_relaxed(saa_int_mask,
506 info->regs[SEC_SAA] + SEC_SAA_BASE + SEC_ST_INTMSK1_REG +
507 saa_indx * SEC_SAA_ADDR_SIZE);
508 }
509
sec_streamid(struct sec_dev_info * info,int i)510 static void sec_streamid(struct sec_dev_info *info, int i)
511 {
512 #define SEC_SID 0x600
513 #define SEC_VMID 0
514
515 writel_relaxed((SEC_VMID | ((SEC_SID & 0xffff) << 8)),
516 info->regs[SEC_SAA] + SEC_Q_VMID_CFG_REG(i));
517 }
518
sec_queue_ar_alloc(struct sec_queue * queue,u32 alloc)519 static void sec_queue_ar_alloc(struct sec_queue *queue, u32 alloc)
520 {
521 void __iomem *addr = queue->regs + SEC_Q_ARUSER_CFG_REG;
522 u32 regval;
523
524 regval = readl_relaxed(addr);
525 if (alloc == SEC_QUEUE_AR_FROCE_ALLOC) {
526 regval |= SEC_Q_ARUSER_CFG_FA;
527 regval &= ~SEC_Q_ARUSER_CFG_FNA;
528 } else {
529 regval &= ~SEC_Q_ARUSER_CFG_FA;
530 regval |= SEC_Q_ARUSER_CFG_FNA;
531 }
532
533 writel_relaxed(regval, addr);
534 }
535
sec_queue_aw_alloc(struct sec_queue * queue,u32 alloc)536 static void sec_queue_aw_alloc(struct sec_queue *queue, u32 alloc)
537 {
538 void __iomem *addr = queue->regs + SEC_Q_AWUSER_CFG_REG;
539 u32 regval;
540
541 regval = readl_relaxed(addr);
542 if (alloc == SEC_QUEUE_AW_FROCE_ALLOC) {
543 regval |= SEC_Q_AWUSER_CFG_FA;
544 regval &= ~SEC_Q_AWUSER_CFG_FNA;
545 } else {
546 regval &= ~SEC_Q_AWUSER_CFG_FA;
547 regval |= SEC_Q_AWUSER_CFG_FNA;
548 }
549
550 writel_relaxed(regval, addr);
551 }
552
sec_queue_reorder(struct sec_queue * queue,bool reorder)553 static void sec_queue_reorder(struct sec_queue *queue, bool reorder)
554 {
555 void __iomem *base = queue->regs;
556 u32 regval;
557
558 regval = readl_relaxed(base + SEC_Q_CFG_REG);
559 if (reorder)
560 regval |= SEC_Q_CFG_REORDER;
561 else
562 regval &= ~SEC_Q_CFG_REORDER;
563 writel_relaxed(regval, base + SEC_Q_CFG_REG);
564 }
565
sec_queue_depth(struct sec_queue * queue,u32 depth)566 static void sec_queue_depth(struct sec_queue *queue, u32 depth)
567 {
568 void __iomem *addr = queue->regs + SEC_Q_DEPTH_CFG_REG;
569 u32 regval;
570
571 regval = readl_relaxed(addr);
572 regval &= ~SEC_Q_DEPTH_CFG_DEPTH_M;
573 regval |= (depth << SEC_Q_DEPTH_CFG_DEPTH_S) & SEC_Q_DEPTH_CFG_DEPTH_M;
574
575 writel_relaxed(regval, addr);
576 }
577
sec_queue_cmdbase_addr(struct sec_queue * queue,u64 addr)578 static void sec_queue_cmdbase_addr(struct sec_queue *queue, u64 addr)
579 {
580 writel_relaxed(upper_32_bits(addr), queue->regs + SEC_Q_BASE_HADDR_REG);
581 writel_relaxed(lower_32_bits(addr), queue->regs + SEC_Q_BASE_LADDR_REG);
582 }
583
sec_queue_outorder_addr(struct sec_queue * queue,u64 addr)584 static void sec_queue_outorder_addr(struct sec_queue *queue, u64 addr)
585 {
586 writel_relaxed(upper_32_bits(addr),
587 queue->regs + SEC_Q_OUTORDER_BASE_HADDR_REG);
588 writel_relaxed(lower_32_bits(addr),
589 queue->regs + SEC_Q_OUTORDER_BASE_LADDR_REG);
590 }
591
sec_queue_errbase_addr(struct sec_queue * queue,u64 addr)592 static void sec_queue_errbase_addr(struct sec_queue *queue, u64 addr)
593 {
594 writel_relaxed(upper_32_bits(addr),
595 queue->regs + SEC_Q_ERR_BASE_HADDR_REG);
596 writel_relaxed(lower_32_bits(addr),
597 queue->regs + SEC_Q_ERR_BASE_LADDR_REG);
598 }
599
sec_queue_irq_disable(struct sec_queue * queue)600 static void sec_queue_irq_disable(struct sec_queue *queue)
601 {
602 writel_relaxed((u32)~0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
603 }
604
sec_queue_irq_enable(struct sec_queue * queue)605 static void sec_queue_irq_enable(struct sec_queue *queue)
606 {
607 writel_relaxed(0, queue->regs + SEC_Q_FLOW_INT_MKS_REG);
608 }
609
sec_queue_abn_irq_disable(struct sec_queue * queue)610 static void sec_queue_abn_irq_disable(struct sec_queue *queue)
611 {
612 writel_relaxed((u32)~0, queue->regs + SEC_Q_FAIL_INT_MSK_REG);
613 }
614
sec_queue_stop(struct sec_queue * queue)615 static void sec_queue_stop(struct sec_queue *queue)
616 {
617 disable_irq(queue->task_irq);
618 sec_queue_irq_disable(queue);
619 writel_relaxed(0x0, queue->regs + SEC_QUEUE_ENB_REG);
620 }
621
sec_queue_start(struct sec_queue * queue)622 static void sec_queue_start(struct sec_queue *queue)
623 {
624 sec_queue_irq_enable(queue);
625 enable_irq(queue->task_irq);
626 queue->expected = 0;
627 writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
628 writel_relaxed(0x1, queue->regs + SEC_QUEUE_ENB_REG);
629 }
630
sec_alloc_queue(struct sec_dev_info * info)631 static struct sec_queue *sec_alloc_queue(struct sec_dev_info *info)
632 {
633 int i;
634
635 mutex_lock(&info->dev_lock);
636
637 /* Get the first idle queue in SEC device */
638 for (i = 0; i < SEC_Q_NUM; i++)
639 if (!info->queues[i].in_use) {
640 info->queues[i].in_use = true;
641 info->queues_in_use++;
642 mutex_unlock(&info->dev_lock);
643
644 return &info->queues[i];
645 }
646 mutex_unlock(&info->dev_lock);
647
648 return ERR_PTR(-ENODEV);
649 }
650
sec_queue_free(struct sec_queue * queue)651 static int sec_queue_free(struct sec_queue *queue)
652 {
653 struct sec_dev_info *info = queue->dev_info;
654
655 if (queue->queue_id >= SEC_Q_NUM) {
656 dev_err(info->dev, "No queue %d\n", queue->queue_id);
657 return -ENODEV;
658 }
659
660 if (!queue->in_use) {
661 dev_err(info->dev, "Queue %d is idle\n", queue->queue_id);
662 return -ENODEV;
663 }
664
665 mutex_lock(&info->dev_lock);
666 queue->in_use = false;
667 info->queues_in_use--;
668 mutex_unlock(&info->dev_lock);
669
670 return 0;
671 }
672
sec_isr_handle_th(int irq,void * q)673 static irqreturn_t sec_isr_handle_th(int irq, void *q)
674 {
675 sec_queue_irq_disable(q);
676 return IRQ_WAKE_THREAD;
677 }
678
sec_isr_handle(int irq,void * q)679 static irqreturn_t sec_isr_handle(int irq, void *q)
680 {
681 struct sec_queue *queue = q;
682 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
683 struct sec_queue_ring_cq *cq_ring = &queue->ring_cq;
684 struct sec_out_bd_info *outorder_msg;
685 struct sec_bd_info *msg;
686 u32 ooo_read, ooo_write;
687 void __iomem *base = queue->regs;
688 int q_id;
689
690 ooo_read = readl(base + SEC_Q_OUTORDER_RD_PTR_REG);
691 ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
692 outorder_msg = cq_ring->vaddr + ooo_read;
693 q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
694 msg = msg_ring->vaddr + q_id;
695
696 while ((ooo_write != ooo_read) && msg->w0 & SEC_BD_W0_DONE) {
697 /*
698 * Must be before callback otherwise blocks adding other chained
699 * elements
700 */
701 set_bit(q_id, queue->unprocessed);
702 if (q_id == queue->expected)
703 while (test_bit(queue->expected, queue->unprocessed)) {
704 clear_bit(queue->expected, queue->unprocessed);
705 msg = msg_ring->vaddr + queue->expected;
706 msg->w0 &= ~SEC_BD_W0_DONE;
707 msg_ring->callback(msg,
708 queue->shadow[queue->expected]);
709 queue->shadow[queue->expected] = NULL;
710 queue->expected = (queue->expected + 1) %
711 SEC_QUEUE_LEN;
712 atomic_dec(&msg_ring->used);
713 }
714
715 ooo_read = (ooo_read + 1) % SEC_QUEUE_LEN;
716 writel(ooo_read, base + SEC_Q_OUTORDER_RD_PTR_REG);
717 ooo_write = readl(base + SEC_Q_OUTORDER_WR_PTR_REG);
718 outorder_msg = cq_ring->vaddr + ooo_read;
719 q_id = outorder_msg->data & SEC_OUT_BD_INFO_Q_ID_M;
720 msg = msg_ring->vaddr + q_id;
721 }
722
723 sec_queue_irq_enable(queue);
724
725 return IRQ_HANDLED;
726 }
727
sec_queue_irq_init(struct sec_queue * queue)728 static int sec_queue_irq_init(struct sec_queue *queue)
729 {
730 struct sec_dev_info *info = queue->dev_info;
731 int irq = queue->task_irq;
732 int ret;
733
734 ret = request_threaded_irq(irq, sec_isr_handle_th, sec_isr_handle,
735 IRQF_TRIGGER_RISING, queue->name, queue);
736 if (ret) {
737 dev_err(info->dev, "request irq(%d) failed %d\n", irq, ret);
738 return ret;
739 }
740 disable_irq(irq);
741
742 return 0;
743 }
744
sec_queue_irq_uninit(struct sec_queue * queue)745 static int sec_queue_irq_uninit(struct sec_queue *queue)
746 {
747 free_irq(queue->task_irq, queue);
748
749 return 0;
750 }
751
sec_device_get(void)752 static struct sec_dev_info *sec_device_get(void)
753 {
754 struct sec_dev_info *sec_dev = NULL;
755 struct sec_dev_info *this_sec_dev;
756 int least_busy_n = SEC_Q_NUM + 1;
757 int i;
758
759 /* Find which one is least busy and use that first */
760 for (i = 0; i < SEC_MAX_DEVICES; i++) {
761 this_sec_dev = sec_devices[i];
762 if (this_sec_dev &&
763 this_sec_dev->queues_in_use < least_busy_n) {
764 least_busy_n = this_sec_dev->queues_in_use;
765 sec_dev = this_sec_dev;
766 }
767 }
768
769 return sec_dev;
770 }
771
sec_queue_alloc_start(struct sec_dev_info * info)772 static struct sec_queue *sec_queue_alloc_start(struct sec_dev_info *info)
773 {
774 struct sec_queue *queue;
775
776 queue = sec_alloc_queue(info);
777 if (IS_ERR(queue)) {
778 dev_err(info->dev, "alloc sec queue failed! %ld\n",
779 PTR_ERR(queue));
780 return queue;
781 }
782
783 sec_queue_start(queue);
784
785 return queue;
786 }
787
788 /**
789 * sec_queue_alloc_start_safe - get a hw queue from appropriate instance
790 *
791 * This function does extremely simplistic load balancing. It does not take into
792 * account NUMA locality of the accelerator, or which cpu has requested the
793 * queue. Future work may focus on optimizing this in order to improve full
794 * machine throughput.
795 */
sec_queue_alloc_start_safe(void)796 struct sec_queue *sec_queue_alloc_start_safe(void)
797 {
798 struct sec_dev_info *info;
799 struct sec_queue *queue = ERR_PTR(-ENODEV);
800
801 mutex_lock(&sec_id_lock);
802 info = sec_device_get();
803 if (!info)
804 goto unlock;
805
806 queue = sec_queue_alloc_start(info);
807
808 unlock:
809 mutex_unlock(&sec_id_lock);
810
811 return queue;
812 }
813
814 /**
815 * sec_queue_stop_release() - free up a hw queue for reuse
816 * @queue: The queue we are done with.
817 *
818 * This will stop the current queue, terminanting any transactions
819 * that are inflight an return it to the pool of available hw queuess
820 */
sec_queue_stop_release(struct sec_queue * queue)821 int sec_queue_stop_release(struct sec_queue *queue)
822 {
823 struct device *dev = queue->dev_info->dev;
824 int ret;
825
826 sec_queue_stop(queue);
827
828 ret = sec_queue_free(queue);
829 if (ret)
830 dev_err(dev, "Releasing queue failed %d\n", ret);
831
832 return ret;
833 }
834
835 /**
836 * sec_queue_empty() - Is this hardware queue currently empty.
837 *
838 * We need to know if we have an empty queue for some of the chaining modes
839 * as if it is not empty we may need to hold the message in a software queue
840 * until the hw queue is drained.
841 */
sec_queue_empty(struct sec_queue * queue)842 bool sec_queue_empty(struct sec_queue *queue)
843 {
844 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
845
846 return !atomic_read(&msg_ring->used);
847 }
848
849 /**
850 * sec_queue_send() - queue up a single operation in the hw queue
851 * @queue: The queue in which to put the message
852 * @msg: The message
853 * @ctx: Context to be put in the shadow array and passed back to cb on result.
854 *
855 * This function will return -EAGAIN if the queue is currently full.
856 */
sec_queue_send(struct sec_queue * queue,struct sec_bd_info * msg,void * ctx)857 int sec_queue_send(struct sec_queue *queue, struct sec_bd_info *msg, void *ctx)
858 {
859 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
860 void __iomem *base = queue->regs;
861 u32 write, read;
862
863 mutex_lock(&msg_ring->lock);
864 read = readl(base + SEC_Q_RD_PTR_REG);
865 write = readl(base + SEC_Q_WR_PTR_REG);
866 if (write == read && atomic_read(&msg_ring->used) == SEC_QUEUE_LEN) {
867 mutex_unlock(&msg_ring->lock);
868 return -EAGAIN;
869 }
870 memcpy(msg_ring->vaddr + write, msg, sizeof(*msg));
871 queue->shadow[write] = ctx;
872 write = (write + 1) % SEC_QUEUE_LEN;
873
874 /* Ensure content updated before queue advance */
875 wmb();
876 writel(write, base + SEC_Q_WR_PTR_REG);
877
878 atomic_inc(&msg_ring->used);
879 mutex_unlock(&msg_ring->lock);
880
881 return 0;
882 }
883
sec_queue_can_enqueue(struct sec_queue * queue,int num)884 bool sec_queue_can_enqueue(struct sec_queue *queue, int num)
885 {
886 struct sec_queue_ring_cmd *msg_ring = &queue->ring_cmd;
887
888 return SEC_QUEUE_LEN - atomic_read(&msg_ring->used) >= num;
889 }
890
sec_queue_hw_init(struct sec_queue * queue)891 static void sec_queue_hw_init(struct sec_queue *queue)
892 {
893 sec_queue_ar_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
894 sec_queue_aw_alloc(queue, SEC_QUEUE_AR_FROCE_NOALLOC);
895 sec_queue_ar_pkgattr(queue, 1);
896 sec_queue_aw_pkgattr(queue, 1);
897
898 /* Enable out of order queue */
899 sec_queue_reorder(queue, true);
900
901 /* Interrupt after a single complete element */
902 writel_relaxed(1, queue->regs + SEC_Q_PROC_NUM_CFG_REG);
903
904 sec_queue_depth(queue, SEC_QUEUE_LEN - 1);
905
906 sec_queue_cmdbase_addr(queue, queue->ring_cmd.paddr);
907
908 sec_queue_outorder_addr(queue, queue->ring_cq.paddr);
909
910 sec_queue_errbase_addr(queue, queue->ring_db.paddr);
911
912 writel_relaxed(0x100, queue->regs + SEC_Q_OT_TH_REG);
913
914 sec_queue_abn_irq_disable(queue);
915 sec_queue_irq_disable(queue);
916 writel_relaxed(SEC_Q_INIT_AND_STAT_CLEAR, queue->regs + SEC_Q_INIT_REG);
917 }
918
sec_hw_init(struct sec_dev_info * info)919 static int sec_hw_init(struct sec_dev_info *info)
920 {
921 struct iommu_domain *domain;
922 u32 sec_ipv4_mask = 0;
923 u32 sec_ipv6_mask[10] = {};
924 u32 i, ret;
925
926 domain = iommu_get_domain_for_dev(info->dev);
927
928 /*
929 * Enable all available processing unit clocks.
930 * Only the first cluster is usable with translations.
931 */
932 if (domain && (domain->type & __IOMMU_DOMAIN_PAGING))
933 info->num_saas = 5;
934
935 else
936 info->num_saas = 10;
937
938 writel_relaxed(GENMASK(info->num_saas - 1, 0),
939 info->regs[SEC_SAA] + SEC_CLK_EN_REG);
940
941 /* 32 bit little endian */
942 sec_bd_endian_little(info);
943
944 sec_cache_config(info);
945
946 /* Data axi port write and read outstanding config as per datasheet */
947 sec_data_axiwr_otsd_cfg(info, 0x7);
948 sec_data_axird_otsd_cfg(info, 0x7);
949
950 /* Enable clock gating */
951 sec_clk_gate_en(info, true);
952
953 /* Set CNT_CYC register not read clear */
954 sec_comm_cnt_cfg(info, false);
955
956 /* Enable CNT_CYC */
957 sec_commsnap_en(info, false);
958
959 writel_relaxed((u32)~0, info->regs[SEC_SAA] + SEC_FSM_MAX_CNT_REG);
960
961 ret = sec_ipv4_hashmask(info, sec_ipv4_mask);
962 if (ret) {
963 dev_err(info->dev, "Failed to set ipv4 hashmask %d\n", ret);
964 return -EIO;
965 }
966
967 sec_ipv6_hashmask(info, sec_ipv6_mask);
968
969 /* do not use debug bd */
970 sec_set_dbg_bd_cfg(info, 0);
971
972 if (domain && (domain->type & __IOMMU_DOMAIN_PAGING)) {
973 for (i = 0; i < SEC_Q_NUM; i++) {
974 sec_streamid(info, i);
975 /* Same QoS for all queues */
976 writel_relaxed(0x3f,
977 info->regs[SEC_SAA] +
978 SEC_Q_WEIGHT_CFG_REG(i));
979 }
980 }
981
982 for (i = 0; i < info->num_saas; i++) {
983 sec_saa_getqm_en(info, i, 1);
984 sec_saa_int_mask(info, i, 0);
985 }
986
987 return 0;
988 }
989
sec_hw_exit(struct sec_dev_info * info)990 static void sec_hw_exit(struct sec_dev_info *info)
991 {
992 int i;
993
994 for (i = 0; i < SEC_MAX_SAA_NUM; i++) {
995 sec_saa_int_mask(info, i, (u32)~0);
996 sec_saa_getqm_en(info, i, 0);
997 }
998 }
999
sec_queue_base_init(struct sec_dev_info * info,struct sec_queue * queue,int queue_id)1000 static void sec_queue_base_init(struct sec_dev_info *info,
1001 struct sec_queue *queue, int queue_id)
1002 {
1003 queue->dev_info = info;
1004 queue->queue_id = queue_id;
1005 snprintf(queue->name, sizeof(queue->name),
1006 "%s_%d", dev_name(info->dev), queue->queue_id);
1007 }
1008
sec_map_io(struct sec_dev_info * info,struct platform_device * pdev)1009 static int sec_map_io(struct sec_dev_info *info, struct platform_device *pdev)
1010 {
1011 struct resource *res;
1012 int i;
1013
1014 for (i = 0; i < SEC_NUM_ADDR_REGIONS; i++) {
1015 res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1016
1017 if (!res) {
1018 dev_err(info->dev, "Memory resource %d not found\n", i);
1019 return -EINVAL;
1020 }
1021
1022 info->regs[i] = devm_ioremap(info->dev, res->start,
1023 resource_size(res));
1024 if (!info->regs[i]) {
1025 dev_err(info->dev,
1026 "Memory resource %d could not be remapped\n",
1027 i);
1028 return -EINVAL;
1029 }
1030 }
1031
1032 return 0;
1033 }
1034
sec_base_init(struct sec_dev_info * info,struct platform_device * pdev)1035 static int sec_base_init(struct sec_dev_info *info,
1036 struct platform_device *pdev)
1037 {
1038 int ret;
1039
1040 ret = sec_map_io(info, pdev);
1041 if (ret)
1042 return ret;
1043
1044 ret = sec_clk_en(info);
1045 if (ret)
1046 return ret;
1047
1048 ret = sec_reset_whole_module(info);
1049 if (ret)
1050 goto sec_clk_disable;
1051
1052 ret = sec_hw_init(info);
1053 if (ret)
1054 goto sec_clk_disable;
1055
1056 return 0;
1057
1058 sec_clk_disable:
1059 sec_clk_dis(info);
1060
1061 return ret;
1062 }
1063
sec_base_exit(struct sec_dev_info * info)1064 static void sec_base_exit(struct sec_dev_info *info)
1065 {
1066 sec_hw_exit(info);
1067 sec_clk_dis(info);
1068 }
1069
1070 #define SEC_Q_CMD_SIZE \
1071 round_up(SEC_QUEUE_LEN * sizeof(struct sec_bd_info), PAGE_SIZE)
1072 #define SEC_Q_CQ_SIZE \
1073 round_up(SEC_QUEUE_LEN * sizeof(struct sec_out_bd_info), PAGE_SIZE)
1074 #define SEC_Q_DB_SIZE \
1075 round_up(SEC_QUEUE_LEN * sizeof(struct sec_debug_bd_info), PAGE_SIZE)
1076
sec_queue_res_cfg(struct sec_queue * queue)1077 static int sec_queue_res_cfg(struct sec_queue *queue)
1078 {
1079 struct device *dev = queue->dev_info->dev;
1080 struct sec_queue_ring_cmd *ring_cmd = &queue->ring_cmd;
1081 struct sec_queue_ring_cq *ring_cq = &queue->ring_cq;
1082 struct sec_queue_ring_db *ring_db = &queue->ring_db;
1083 int ret;
1084
1085 ring_cmd->vaddr = dma_alloc_coherent(dev, SEC_Q_CMD_SIZE,
1086 &ring_cmd->paddr, GFP_KERNEL);
1087 if (!ring_cmd->vaddr)
1088 return -ENOMEM;
1089
1090 atomic_set(&ring_cmd->used, 0);
1091 mutex_init(&ring_cmd->lock);
1092 ring_cmd->callback = sec_alg_callback;
1093
1094 ring_cq->vaddr = dma_alloc_coherent(dev, SEC_Q_CQ_SIZE,
1095 &ring_cq->paddr, GFP_KERNEL);
1096 if (!ring_cq->vaddr) {
1097 ret = -ENOMEM;
1098 goto err_free_ring_cmd;
1099 }
1100
1101 ring_db->vaddr = dma_alloc_coherent(dev, SEC_Q_DB_SIZE,
1102 &ring_db->paddr, GFP_KERNEL);
1103 if (!ring_db->vaddr) {
1104 ret = -ENOMEM;
1105 goto err_free_ring_cq;
1106 }
1107 queue->task_irq = platform_get_irq(to_platform_device(dev),
1108 queue->queue_id * 2 + 1);
1109 if (queue->task_irq <= 0) {
1110 ret = -EINVAL;
1111 goto err_free_ring_db;
1112 }
1113
1114 return 0;
1115
1116 err_free_ring_db:
1117 dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
1118 queue->ring_db.paddr);
1119 err_free_ring_cq:
1120 dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
1121 queue->ring_cq.paddr);
1122 err_free_ring_cmd:
1123 dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
1124 queue->ring_cmd.paddr);
1125
1126 return ret;
1127 }
1128
sec_queue_free_ring_pages(struct sec_queue * queue)1129 static void sec_queue_free_ring_pages(struct sec_queue *queue)
1130 {
1131 struct device *dev = queue->dev_info->dev;
1132
1133 dma_free_coherent(dev, SEC_Q_DB_SIZE, queue->ring_db.vaddr,
1134 queue->ring_db.paddr);
1135 dma_free_coherent(dev, SEC_Q_CQ_SIZE, queue->ring_cq.vaddr,
1136 queue->ring_cq.paddr);
1137 dma_free_coherent(dev, SEC_Q_CMD_SIZE, queue->ring_cmd.vaddr,
1138 queue->ring_cmd.paddr);
1139 }
1140
sec_queue_config(struct sec_dev_info * info,struct sec_queue * queue,int queue_id)1141 static int sec_queue_config(struct sec_dev_info *info, struct sec_queue *queue,
1142 int queue_id)
1143 {
1144 int ret;
1145
1146 sec_queue_base_init(info, queue, queue_id);
1147
1148 ret = sec_queue_res_cfg(queue);
1149 if (ret)
1150 return ret;
1151
1152 ret = sec_queue_map_io(queue);
1153 if (ret) {
1154 dev_err(info->dev, "Queue map failed %d\n", ret);
1155 sec_queue_free_ring_pages(queue);
1156 return ret;
1157 }
1158
1159 sec_queue_hw_init(queue);
1160
1161 return 0;
1162 }
1163
sec_queue_unconfig(struct sec_dev_info * info,struct sec_queue * queue)1164 static void sec_queue_unconfig(struct sec_dev_info *info,
1165 struct sec_queue *queue)
1166 {
1167 sec_queue_unmap_io(queue);
1168 sec_queue_free_ring_pages(queue);
1169 }
1170
sec_id_alloc(struct sec_dev_info * info)1171 static int sec_id_alloc(struct sec_dev_info *info)
1172 {
1173 int ret = 0;
1174 int i;
1175
1176 mutex_lock(&sec_id_lock);
1177
1178 for (i = 0; i < SEC_MAX_DEVICES; i++)
1179 if (!sec_devices[i])
1180 break;
1181 if (i == SEC_MAX_DEVICES) {
1182 ret = -ENOMEM;
1183 goto unlock;
1184 }
1185 info->sec_id = i;
1186 sec_devices[info->sec_id] = info;
1187
1188 unlock:
1189 mutex_unlock(&sec_id_lock);
1190
1191 return ret;
1192 }
1193
sec_id_free(struct sec_dev_info * info)1194 static void sec_id_free(struct sec_dev_info *info)
1195 {
1196 mutex_lock(&sec_id_lock);
1197 sec_devices[info->sec_id] = NULL;
1198 mutex_unlock(&sec_id_lock);
1199 }
1200
sec_probe(struct platform_device * pdev)1201 static int sec_probe(struct platform_device *pdev)
1202 {
1203 struct sec_dev_info *info;
1204 struct device *dev = &pdev->dev;
1205 int i, j;
1206 int ret;
1207
1208 ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
1209 if (ret) {
1210 dev_err(dev, "Failed to set 64 bit dma mask %d", ret);
1211 return -ENODEV;
1212 }
1213
1214 info = devm_kzalloc(dev, (sizeof(*info)), GFP_KERNEL);
1215 if (!info)
1216 return -ENOMEM;
1217
1218 info->dev = dev;
1219 mutex_init(&info->dev_lock);
1220
1221 info->hw_sgl_pool = dmam_pool_create("sgl", dev,
1222 sizeof(struct sec_hw_sgl), 64, 0);
1223 if (!info->hw_sgl_pool) {
1224 dev_err(dev, "Failed to create sec sgl dma pool\n");
1225 return -ENOMEM;
1226 }
1227
1228 ret = sec_base_init(info, pdev);
1229 if (ret) {
1230 dev_err(dev, "Base initialization fail! %d\n", ret);
1231 return ret;
1232 }
1233
1234 for (i = 0; i < SEC_Q_NUM; i++) {
1235 ret = sec_queue_config(info, &info->queues[i], i);
1236 if (ret)
1237 goto queues_unconfig;
1238
1239 ret = sec_queue_irq_init(&info->queues[i]);
1240 if (ret) {
1241 sec_queue_unconfig(info, &info->queues[i]);
1242 goto queues_unconfig;
1243 }
1244 }
1245
1246 ret = sec_algs_register();
1247 if (ret) {
1248 dev_err(dev, "Failed to register algorithms with crypto %d\n",
1249 ret);
1250 goto queues_unconfig;
1251 }
1252
1253 platform_set_drvdata(pdev, info);
1254
1255 ret = sec_id_alloc(info);
1256 if (ret)
1257 goto algs_unregister;
1258
1259 return 0;
1260
1261 algs_unregister:
1262 sec_algs_unregister();
1263 queues_unconfig:
1264 for (j = i - 1; j >= 0; j--) {
1265 sec_queue_irq_uninit(&info->queues[j]);
1266 sec_queue_unconfig(info, &info->queues[j]);
1267 }
1268 sec_base_exit(info);
1269
1270 return ret;
1271 }
1272
sec_remove(struct platform_device * pdev)1273 static int sec_remove(struct platform_device *pdev)
1274 {
1275 struct sec_dev_info *info = platform_get_drvdata(pdev);
1276 int i;
1277
1278 /* Unexpose as soon as possible, reuse during remove is fine */
1279 sec_id_free(info);
1280
1281 sec_algs_unregister();
1282
1283 for (i = 0; i < SEC_Q_NUM; i++) {
1284 sec_queue_irq_uninit(&info->queues[i]);
1285 sec_queue_unconfig(info, &info->queues[i]);
1286 }
1287
1288 sec_base_exit(info);
1289
1290 return 0;
1291 }
1292
1293 static const __maybe_unused struct of_device_id sec_match[] = {
1294 { .compatible = "hisilicon,hip06-sec" },
1295 { .compatible = "hisilicon,hip07-sec" },
1296 {}
1297 };
1298 MODULE_DEVICE_TABLE(of, sec_match);
1299
1300 static const __maybe_unused struct acpi_device_id sec_acpi_match[] = {
1301 { "HISI02C1", 0 },
1302 { }
1303 };
1304 MODULE_DEVICE_TABLE(acpi, sec_acpi_match);
1305
1306 static struct platform_driver sec_driver = {
1307 .probe = sec_probe,
1308 .remove = sec_remove,
1309 .driver = {
1310 .name = "hisi_sec_platform_driver",
1311 .of_match_table = sec_match,
1312 .acpi_match_table = ACPI_PTR(sec_acpi_match),
1313 },
1314 };
1315 module_platform_driver(sec_driver);
1316
1317 MODULE_LICENSE("GPL");
1318 MODULE_DESCRIPTION("Hisilicon Security Accelerators");
1319 MODULE_AUTHOR("Zaibo Xu <xuzaibo@huawei.com");
1320 MODULE_AUTHOR("Jonathan Cameron <jonathan.cameron@huawei.com>");
1321