1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 #include <linux/acpi.h>
5 #include <linux/delay.h>
6 #include <linux/mod_devicetable.h>
7 #include <linux/pm_runtime.h>
8 #include <linux/soundwire/sdw_registers.h>
9 #include <linux/soundwire/sdw.h>
10 #include <linux/soundwire/sdw_type.h>
11 #include "bus.h"
12 #include "irq.h"
13 #include "sysfs_local.h"
14
15 static DEFINE_IDA(sdw_bus_ida);
16
sdw_get_id(struct sdw_bus * bus)17 static int sdw_get_id(struct sdw_bus *bus)
18 {
19 int rc = ida_alloc(&sdw_bus_ida, GFP_KERNEL);
20
21 if (rc < 0)
22 return rc;
23
24 bus->id = rc;
25 return 0;
26 }
27
28 /**
29 * sdw_bus_master_add() - add a bus Master instance
30 * @bus: bus instance
31 * @parent: parent device
32 * @fwnode: firmware node handle
33 *
34 * Initializes the bus instance, read properties and create child
35 * devices.
36 */
sdw_bus_master_add(struct sdw_bus * bus,struct device * parent,struct fwnode_handle * fwnode)37 int sdw_bus_master_add(struct sdw_bus *bus, struct device *parent,
38 struct fwnode_handle *fwnode)
39 {
40 struct sdw_master_prop *prop = NULL;
41 int ret;
42
43 if (!parent) {
44 pr_err("SoundWire parent device is not set\n");
45 return -ENODEV;
46 }
47
48 ret = sdw_get_id(bus);
49 if (ret < 0) {
50 dev_err(parent, "Failed to get bus id\n");
51 return ret;
52 }
53
54 ret = sdw_master_device_add(bus, parent, fwnode);
55 if (ret < 0) {
56 dev_err(parent, "Failed to add master device at link %d\n",
57 bus->link_id);
58 return ret;
59 }
60
61 if (!bus->ops) {
62 dev_err(bus->dev, "SoundWire Bus ops are not set\n");
63 return -EINVAL;
64 }
65
66 if (!bus->compute_params) {
67 dev_err(bus->dev,
68 "Bandwidth allocation not configured, compute_params no set\n");
69 return -EINVAL;
70 }
71
72 /*
73 * Give each bus_lock and msg_lock a unique key so that lockdep won't
74 * trigger a deadlock warning when the locks of several buses are
75 * grabbed during configuration of a multi-bus stream.
76 */
77 lockdep_register_key(&bus->msg_lock_key);
78 __mutex_init(&bus->msg_lock, "msg_lock", &bus->msg_lock_key);
79
80 lockdep_register_key(&bus->bus_lock_key);
81 __mutex_init(&bus->bus_lock, "bus_lock", &bus->bus_lock_key);
82
83 INIT_LIST_HEAD(&bus->slaves);
84 INIT_LIST_HEAD(&bus->m_rt_list);
85
86 /*
87 * Initialize multi_link flag
88 */
89 bus->multi_link = false;
90 if (bus->ops->read_prop) {
91 ret = bus->ops->read_prop(bus);
92 if (ret < 0) {
93 dev_err(bus->dev,
94 "Bus read properties failed:%d\n", ret);
95 return ret;
96 }
97 }
98
99 sdw_bus_debugfs_init(bus);
100
101 /*
102 * Device numbers in SoundWire are 0 through 15. Enumeration device
103 * number (0), Broadcast device number (15), Group numbers (12 and
104 * 13) and Master device number (14) are not used for assignment so
105 * mask these and other higher bits.
106 */
107
108 /* Set higher order bits */
109 *bus->assigned = ~GENMASK(SDW_BROADCAST_DEV_NUM, SDW_ENUM_DEV_NUM);
110
111 /* Set enumuration device number and broadcast device number */
112 set_bit(SDW_ENUM_DEV_NUM, bus->assigned);
113 set_bit(SDW_BROADCAST_DEV_NUM, bus->assigned);
114
115 /* Set group device numbers and master device number */
116 set_bit(SDW_GROUP12_DEV_NUM, bus->assigned);
117 set_bit(SDW_GROUP13_DEV_NUM, bus->assigned);
118 set_bit(SDW_MASTER_DEV_NUM, bus->assigned);
119
120 /*
121 * SDW is an enumerable bus, but devices can be powered off. So,
122 * they won't be able to report as present.
123 *
124 * Create Slave devices based on Slaves described in
125 * the respective firmware (ACPI/DT)
126 */
127 if (IS_ENABLED(CONFIG_ACPI) && ACPI_HANDLE(bus->dev))
128 ret = sdw_acpi_find_slaves(bus);
129 else if (IS_ENABLED(CONFIG_OF) && bus->dev->of_node)
130 ret = sdw_of_find_slaves(bus);
131 else
132 ret = -ENOTSUPP; /* No ACPI/DT so error out */
133
134 if (ret < 0) {
135 dev_err(bus->dev, "Finding slaves failed:%d\n", ret);
136 return ret;
137 }
138
139 /*
140 * Initialize clock values based on Master properties. The max
141 * frequency is read from max_clk_freq property. Current assumption
142 * is that the bus will start at highest clock frequency when
143 * powered on.
144 *
145 * Default active bank will be 0 as out of reset the Slaves have
146 * to start with bank 0 (Table 40 of Spec)
147 */
148 prop = &bus->prop;
149 bus->params.max_dr_freq = prop->max_clk_freq * SDW_DOUBLE_RATE_FACTOR;
150 bus->params.curr_dr_freq = bus->params.max_dr_freq;
151 bus->params.curr_bank = SDW_BANK0;
152 bus->params.next_bank = SDW_BANK1;
153
154 ret = sdw_irq_create(bus, fwnode);
155 if (ret)
156 return ret;
157
158 return 0;
159 }
160 EXPORT_SYMBOL(sdw_bus_master_add);
161
sdw_delete_slave(struct device * dev,void * data)162 static int sdw_delete_slave(struct device *dev, void *data)
163 {
164 struct sdw_slave *slave = dev_to_sdw_dev(dev);
165 struct sdw_bus *bus = slave->bus;
166
167 pm_runtime_disable(dev);
168
169 sdw_slave_debugfs_exit(slave);
170
171 mutex_lock(&bus->bus_lock);
172
173 if (slave->dev_num) { /* clear dev_num if assigned */
174 clear_bit(slave->dev_num, bus->assigned);
175 if (bus->ops && bus->ops->put_device_num)
176 bus->ops->put_device_num(bus, slave);
177 }
178 list_del_init(&slave->node);
179 mutex_unlock(&bus->bus_lock);
180
181 device_unregister(dev);
182 return 0;
183 }
184
185 /**
186 * sdw_bus_master_delete() - delete the bus master instance
187 * @bus: bus to be deleted
188 *
189 * Remove the instance, delete the child devices.
190 */
sdw_bus_master_delete(struct sdw_bus * bus)191 void sdw_bus_master_delete(struct sdw_bus *bus)
192 {
193 device_for_each_child(bus->dev, NULL, sdw_delete_slave);
194
195 sdw_irq_delete(bus);
196
197 sdw_master_device_del(bus);
198
199 sdw_bus_debugfs_exit(bus);
200 lockdep_unregister_key(&bus->bus_lock_key);
201 lockdep_unregister_key(&bus->msg_lock_key);
202 ida_free(&sdw_bus_ida, bus->id);
203 }
204 EXPORT_SYMBOL(sdw_bus_master_delete);
205
206 /*
207 * SDW IO Calls
208 */
209
find_response_code(enum sdw_command_response resp)210 static inline int find_response_code(enum sdw_command_response resp)
211 {
212 switch (resp) {
213 case SDW_CMD_OK:
214 return 0;
215
216 case SDW_CMD_IGNORED:
217 return -ENODATA;
218
219 case SDW_CMD_TIMEOUT:
220 return -ETIMEDOUT;
221
222 default:
223 return -EIO;
224 }
225 }
226
do_transfer(struct sdw_bus * bus,struct sdw_msg * msg)227 static inline int do_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
228 {
229 int retry = bus->prop.err_threshold;
230 enum sdw_command_response resp;
231 int ret = 0, i;
232
233 for (i = 0; i <= retry; i++) {
234 resp = bus->ops->xfer_msg(bus, msg);
235 ret = find_response_code(resp);
236
237 /* if cmd is ok or ignored return */
238 if (ret == 0 || ret == -ENODATA)
239 return ret;
240 }
241
242 return ret;
243 }
244
do_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)245 static inline int do_transfer_defer(struct sdw_bus *bus,
246 struct sdw_msg *msg)
247 {
248 struct sdw_defer *defer = &bus->defer_msg;
249 int retry = bus->prop.err_threshold;
250 enum sdw_command_response resp;
251 int ret = 0, i;
252
253 defer->msg = msg;
254 defer->length = msg->len;
255 init_completion(&defer->complete);
256
257 for (i = 0; i <= retry; i++) {
258 resp = bus->ops->xfer_msg_defer(bus);
259 ret = find_response_code(resp);
260 /* if cmd is ok or ignored return */
261 if (ret == 0 || ret == -ENODATA)
262 return ret;
263 }
264
265 return ret;
266 }
267
sdw_transfer_unlocked(struct sdw_bus * bus,struct sdw_msg * msg)268 static int sdw_transfer_unlocked(struct sdw_bus *bus, struct sdw_msg *msg)
269 {
270 int ret;
271
272 ret = do_transfer(bus, msg);
273 if (ret != 0 && ret != -ENODATA)
274 dev_err(bus->dev, "trf on Slave %d failed:%d %s addr %x count %d\n",
275 msg->dev_num, ret,
276 (msg->flags & SDW_MSG_FLAG_WRITE) ? "write" : "read",
277 msg->addr, msg->len);
278
279 return ret;
280 }
281
282 /**
283 * sdw_transfer() - Synchronous transfer message to a SDW Slave device
284 * @bus: SDW bus
285 * @msg: SDW message to be xfered
286 */
sdw_transfer(struct sdw_bus * bus,struct sdw_msg * msg)287 int sdw_transfer(struct sdw_bus *bus, struct sdw_msg *msg)
288 {
289 int ret;
290
291 mutex_lock(&bus->msg_lock);
292
293 ret = sdw_transfer_unlocked(bus, msg);
294
295 mutex_unlock(&bus->msg_lock);
296
297 return ret;
298 }
299
300 /**
301 * sdw_show_ping_status() - Direct report of PING status, to be used by Peripheral drivers
302 * @bus: SDW bus
303 * @sync_delay: Delay before reading status
304 */
sdw_show_ping_status(struct sdw_bus * bus,bool sync_delay)305 void sdw_show_ping_status(struct sdw_bus *bus, bool sync_delay)
306 {
307 u32 status;
308
309 if (!bus->ops->read_ping_status)
310 return;
311
312 /*
313 * wait for peripheral to sync if desired. 10-15ms should be more than
314 * enough in most cases.
315 */
316 if (sync_delay)
317 usleep_range(10000, 15000);
318
319 mutex_lock(&bus->msg_lock);
320
321 status = bus->ops->read_ping_status(bus);
322
323 mutex_unlock(&bus->msg_lock);
324
325 if (!status)
326 dev_warn(bus->dev, "%s: no peripherals attached\n", __func__);
327 else
328 dev_dbg(bus->dev, "PING status: %#x\n", status);
329 }
330 EXPORT_SYMBOL(sdw_show_ping_status);
331
332 /**
333 * sdw_transfer_defer() - Asynchronously transfer message to a SDW Slave device
334 * @bus: SDW bus
335 * @msg: SDW message to be xfered
336 *
337 * Caller needs to hold the msg_lock lock while calling this
338 */
sdw_transfer_defer(struct sdw_bus * bus,struct sdw_msg * msg)339 int sdw_transfer_defer(struct sdw_bus *bus, struct sdw_msg *msg)
340 {
341 int ret;
342
343 if (!bus->ops->xfer_msg_defer)
344 return -ENOTSUPP;
345
346 ret = do_transfer_defer(bus, msg);
347 if (ret != 0 && ret != -ENODATA)
348 dev_err(bus->dev, "Defer trf on Slave %d failed:%d\n",
349 msg->dev_num, ret);
350
351 return ret;
352 }
353
sdw_fill_msg(struct sdw_msg * msg,struct sdw_slave * slave,u32 addr,size_t count,u16 dev_num,u8 flags,u8 * buf)354 int sdw_fill_msg(struct sdw_msg *msg, struct sdw_slave *slave,
355 u32 addr, size_t count, u16 dev_num, u8 flags, u8 *buf)
356 {
357 memset(msg, 0, sizeof(*msg));
358 msg->addr = addr; /* addr is 16 bit and truncated here */
359 msg->len = count;
360 msg->dev_num = dev_num;
361 msg->flags = flags;
362 msg->buf = buf;
363
364 if (addr < SDW_REG_NO_PAGE) /* no paging area */
365 return 0;
366
367 if (addr >= SDW_REG_MAX) { /* illegal addr */
368 pr_err("SDW: Invalid address %x passed\n", addr);
369 return -EINVAL;
370 }
371
372 if (addr < SDW_REG_OPTIONAL_PAGE) { /* 32k but no page */
373 if (slave && !slave->prop.paging_support)
374 return 0;
375 /* no need for else as that will fall-through to paging */
376 }
377
378 /* paging mandatory */
379 if (dev_num == SDW_ENUM_DEV_NUM || dev_num == SDW_BROADCAST_DEV_NUM) {
380 pr_err("SDW: Invalid device for paging :%d\n", dev_num);
381 return -EINVAL;
382 }
383
384 if (!slave) {
385 pr_err("SDW: No slave for paging addr\n");
386 return -EINVAL;
387 }
388
389 if (!slave->prop.paging_support) {
390 dev_err(&slave->dev,
391 "address %x needs paging but no support\n", addr);
392 return -EINVAL;
393 }
394
395 msg->addr_page1 = FIELD_GET(SDW_SCP_ADDRPAGE1_MASK, addr);
396 msg->addr_page2 = FIELD_GET(SDW_SCP_ADDRPAGE2_MASK, addr);
397 msg->addr |= BIT(15);
398 msg->page = true;
399
400 return 0;
401 }
402
403 /*
404 * Read/Write IO functions.
405 */
406
sdw_ntransfer_no_pm(struct sdw_slave * slave,u32 addr,u8 flags,size_t count,u8 * val)407 static int sdw_ntransfer_no_pm(struct sdw_slave *slave, u32 addr, u8 flags,
408 size_t count, u8 *val)
409 {
410 struct sdw_msg msg;
411 size_t size;
412 int ret;
413
414 while (count) {
415 // Only handle bytes up to next page boundary
416 size = min_t(size_t, count, (SDW_REGADDR + 1) - (addr & SDW_REGADDR));
417
418 ret = sdw_fill_msg(&msg, slave, addr, size, slave->dev_num, flags, val);
419 if (ret < 0)
420 return ret;
421
422 ret = sdw_transfer(slave->bus, &msg);
423 if (ret < 0 && !slave->is_mockup_device)
424 return ret;
425
426 addr += size;
427 val += size;
428 count -= size;
429 }
430
431 return 0;
432 }
433
434 /**
435 * sdw_nread_no_pm() - Read "n" contiguous SDW Slave registers with no PM
436 * @slave: SDW Slave
437 * @addr: Register address
438 * @count: length
439 * @val: Buffer for values to be read
440 *
441 * Note that if the message crosses a page boundary each page will be
442 * transferred under a separate invocation of the msg_lock.
443 */
sdw_nread_no_pm(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)444 int sdw_nread_no_pm(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
445 {
446 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_READ, count, val);
447 }
448 EXPORT_SYMBOL(sdw_nread_no_pm);
449
450 /**
451 * sdw_nwrite_no_pm() - Write "n" contiguous SDW Slave registers with no PM
452 * @slave: SDW Slave
453 * @addr: Register address
454 * @count: length
455 * @val: Buffer for values to be written
456 *
457 * Note that if the message crosses a page boundary each page will be
458 * transferred under a separate invocation of the msg_lock.
459 */
sdw_nwrite_no_pm(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)460 int sdw_nwrite_no_pm(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
461 {
462 return sdw_ntransfer_no_pm(slave, addr, SDW_MSG_FLAG_WRITE, count, (u8 *)val);
463 }
464 EXPORT_SYMBOL(sdw_nwrite_no_pm);
465
466 /**
467 * sdw_write_no_pm() - Write a SDW Slave register with no PM
468 * @slave: SDW Slave
469 * @addr: Register address
470 * @value: Register value
471 */
sdw_write_no_pm(struct sdw_slave * slave,u32 addr,u8 value)472 int sdw_write_no_pm(struct sdw_slave *slave, u32 addr, u8 value)
473 {
474 return sdw_nwrite_no_pm(slave, addr, 1, &value);
475 }
476 EXPORT_SYMBOL(sdw_write_no_pm);
477
478 static int
sdw_bread_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr)479 sdw_bread_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr)
480 {
481 struct sdw_msg msg;
482 u8 buf;
483 int ret;
484
485 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
486 SDW_MSG_FLAG_READ, &buf);
487 if (ret < 0)
488 return ret;
489
490 ret = sdw_transfer(bus, &msg);
491 if (ret < 0)
492 return ret;
493
494 return buf;
495 }
496
497 static int
sdw_bwrite_no_pm(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)498 sdw_bwrite_no_pm(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
499 {
500 struct sdw_msg msg;
501 int ret;
502
503 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
504 SDW_MSG_FLAG_WRITE, &value);
505 if (ret < 0)
506 return ret;
507
508 return sdw_transfer(bus, &msg);
509 }
510
sdw_bread_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr)511 int sdw_bread_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr)
512 {
513 struct sdw_msg msg;
514 u8 buf;
515 int ret;
516
517 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
518 SDW_MSG_FLAG_READ, &buf);
519 if (ret < 0)
520 return ret;
521
522 ret = sdw_transfer_unlocked(bus, &msg);
523 if (ret < 0)
524 return ret;
525
526 return buf;
527 }
528 EXPORT_SYMBOL(sdw_bread_no_pm_unlocked);
529
sdw_bwrite_no_pm_unlocked(struct sdw_bus * bus,u16 dev_num,u32 addr,u8 value)530 int sdw_bwrite_no_pm_unlocked(struct sdw_bus *bus, u16 dev_num, u32 addr, u8 value)
531 {
532 struct sdw_msg msg;
533 int ret;
534
535 ret = sdw_fill_msg(&msg, NULL, addr, 1, dev_num,
536 SDW_MSG_FLAG_WRITE, &value);
537 if (ret < 0)
538 return ret;
539
540 return sdw_transfer_unlocked(bus, &msg);
541 }
542 EXPORT_SYMBOL(sdw_bwrite_no_pm_unlocked);
543
544 /**
545 * sdw_read_no_pm() - Read a SDW Slave register with no PM
546 * @slave: SDW Slave
547 * @addr: Register address
548 */
sdw_read_no_pm(struct sdw_slave * slave,u32 addr)549 int sdw_read_no_pm(struct sdw_slave *slave, u32 addr)
550 {
551 u8 buf;
552 int ret;
553
554 ret = sdw_nread_no_pm(slave, addr, 1, &buf);
555 if (ret < 0)
556 return ret;
557 else
558 return buf;
559 }
560 EXPORT_SYMBOL(sdw_read_no_pm);
561
sdw_update_no_pm(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)562 int sdw_update_no_pm(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
563 {
564 int tmp;
565
566 tmp = sdw_read_no_pm(slave, addr);
567 if (tmp < 0)
568 return tmp;
569
570 tmp = (tmp & ~mask) | val;
571 return sdw_write_no_pm(slave, addr, tmp);
572 }
573 EXPORT_SYMBOL(sdw_update_no_pm);
574
575 /* Read-Modify-Write Slave register */
sdw_update(struct sdw_slave * slave,u32 addr,u8 mask,u8 val)576 int sdw_update(struct sdw_slave *slave, u32 addr, u8 mask, u8 val)
577 {
578 int tmp;
579
580 tmp = sdw_read(slave, addr);
581 if (tmp < 0)
582 return tmp;
583
584 tmp = (tmp & ~mask) | val;
585 return sdw_write(slave, addr, tmp);
586 }
587 EXPORT_SYMBOL(sdw_update);
588
589 /**
590 * sdw_nread() - Read "n" contiguous SDW Slave registers
591 * @slave: SDW Slave
592 * @addr: Register address
593 * @count: length
594 * @val: Buffer for values to be read
595 *
596 * This version of the function will take a PM reference to the slave
597 * device.
598 * Note that if the message crosses a page boundary each page will be
599 * transferred under a separate invocation of the msg_lock.
600 */
sdw_nread(struct sdw_slave * slave,u32 addr,size_t count,u8 * val)601 int sdw_nread(struct sdw_slave *slave, u32 addr, size_t count, u8 *val)
602 {
603 int ret;
604
605 ret = pm_runtime_get_sync(&slave->dev);
606 if (ret < 0 && ret != -EACCES) {
607 pm_runtime_put_noidle(&slave->dev);
608 return ret;
609 }
610
611 ret = sdw_nread_no_pm(slave, addr, count, val);
612
613 pm_runtime_mark_last_busy(&slave->dev);
614 pm_runtime_put(&slave->dev);
615
616 return ret;
617 }
618 EXPORT_SYMBOL(sdw_nread);
619
620 /**
621 * sdw_nwrite() - Write "n" contiguous SDW Slave registers
622 * @slave: SDW Slave
623 * @addr: Register address
624 * @count: length
625 * @val: Buffer for values to be written
626 *
627 * This version of the function will take a PM reference to the slave
628 * device.
629 * Note that if the message crosses a page boundary each page will be
630 * transferred under a separate invocation of the msg_lock.
631 */
sdw_nwrite(struct sdw_slave * slave,u32 addr,size_t count,const u8 * val)632 int sdw_nwrite(struct sdw_slave *slave, u32 addr, size_t count, const u8 *val)
633 {
634 int ret;
635
636 ret = pm_runtime_get_sync(&slave->dev);
637 if (ret < 0 && ret != -EACCES) {
638 pm_runtime_put_noidle(&slave->dev);
639 return ret;
640 }
641
642 ret = sdw_nwrite_no_pm(slave, addr, count, val);
643
644 pm_runtime_mark_last_busy(&slave->dev);
645 pm_runtime_put(&slave->dev);
646
647 return ret;
648 }
649 EXPORT_SYMBOL(sdw_nwrite);
650
651 /**
652 * sdw_read() - Read a SDW Slave register
653 * @slave: SDW Slave
654 * @addr: Register address
655 *
656 * This version of the function will take a PM reference to the slave
657 * device.
658 */
sdw_read(struct sdw_slave * slave,u32 addr)659 int sdw_read(struct sdw_slave *slave, u32 addr)
660 {
661 u8 buf;
662 int ret;
663
664 ret = sdw_nread(slave, addr, 1, &buf);
665 if (ret < 0)
666 return ret;
667
668 return buf;
669 }
670 EXPORT_SYMBOL(sdw_read);
671
672 /**
673 * sdw_write() - Write a SDW Slave register
674 * @slave: SDW Slave
675 * @addr: Register address
676 * @value: Register value
677 *
678 * This version of the function will take a PM reference to the slave
679 * device.
680 */
sdw_write(struct sdw_slave * slave,u32 addr,u8 value)681 int sdw_write(struct sdw_slave *slave, u32 addr, u8 value)
682 {
683 return sdw_nwrite(slave, addr, 1, &value);
684 }
685 EXPORT_SYMBOL(sdw_write);
686
687 /*
688 * SDW alert handling
689 */
690
691 /* called with bus_lock held */
sdw_get_slave(struct sdw_bus * bus,int i)692 static struct sdw_slave *sdw_get_slave(struct sdw_bus *bus, int i)
693 {
694 struct sdw_slave *slave;
695
696 list_for_each_entry(slave, &bus->slaves, node) {
697 if (slave->dev_num == i)
698 return slave;
699 }
700
701 return NULL;
702 }
703
sdw_compare_devid(struct sdw_slave * slave,struct sdw_slave_id id)704 int sdw_compare_devid(struct sdw_slave *slave, struct sdw_slave_id id)
705 {
706 if (slave->id.mfg_id != id.mfg_id ||
707 slave->id.part_id != id.part_id ||
708 slave->id.class_id != id.class_id ||
709 (slave->id.unique_id != SDW_IGNORED_UNIQUE_ID &&
710 slave->id.unique_id != id.unique_id))
711 return -ENODEV;
712
713 return 0;
714 }
715 EXPORT_SYMBOL(sdw_compare_devid);
716
717 /* called with bus_lock held */
sdw_get_device_num(struct sdw_slave * slave)718 static int sdw_get_device_num(struct sdw_slave *slave)
719 {
720 struct sdw_bus *bus = slave->bus;
721 int bit;
722
723 if (bus->ops && bus->ops->get_device_num) {
724 bit = bus->ops->get_device_num(bus, slave);
725 if (bit < 0)
726 goto err;
727 } else {
728 bit = find_first_zero_bit(bus->assigned, SDW_MAX_DEVICES);
729 if (bit == SDW_MAX_DEVICES) {
730 bit = -ENODEV;
731 goto err;
732 }
733 }
734
735 /*
736 * Do not update dev_num in Slave data structure here,
737 * Update once program dev_num is successful
738 */
739 set_bit(bit, bus->assigned);
740
741 err:
742 return bit;
743 }
744
sdw_assign_device_num(struct sdw_slave * slave)745 static int sdw_assign_device_num(struct sdw_slave *slave)
746 {
747 struct sdw_bus *bus = slave->bus;
748 int ret, dev_num;
749 bool new_device = false;
750
751 /* check first if device number is assigned, if so reuse that */
752 if (!slave->dev_num) {
753 if (!slave->dev_num_sticky) {
754 mutex_lock(&slave->bus->bus_lock);
755 dev_num = sdw_get_device_num(slave);
756 mutex_unlock(&slave->bus->bus_lock);
757 if (dev_num < 0) {
758 dev_err(bus->dev, "Get dev_num failed: %d\n",
759 dev_num);
760 return dev_num;
761 }
762 slave->dev_num = dev_num;
763 slave->dev_num_sticky = dev_num;
764 new_device = true;
765 } else {
766 slave->dev_num = slave->dev_num_sticky;
767 }
768 }
769
770 if (!new_device)
771 dev_dbg(bus->dev,
772 "Slave already registered, reusing dev_num:%d\n",
773 slave->dev_num);
774
775 /* Clear the slave->dev_num to transfer message on device 0 */
776 dev_num = slave->dev_num;
777 slave->dev_num = 0;
778
779 ret = sdw_write_no_pm(slave, SDW_SCP_DEVNUMBER, dev_num);
780 if (ret < 0) {
781 dev_err(bus->dev, "Program device_num %d failed: %d\n",
782 dev_num, ret);
783 return ret;
784 }
785
786 /* After xfer of msg, restore dev_num */
787 slave->dev_num = slave->dev_num_sticky;
788
789 if (bus->ops && bus->ops->new_peripheral_assigned)
790 bus->ops->new_peripheral_assigned(bus, slave, dev_num);
791
792 return 0;
793 }
794
sdw_extract_slave_id(struct sdw_bus * bus,u64 addr,struct sdw_slave_id * id)795 void sdw_extract_slave_id(struct sdw_bus *bus,
796 u64 addr, struct sdw_slave_id *id)
797 {
798 dev_dbg(bus->dev, "SDW Slave Addr: %llx\n", addr);
799
800 id->sdw_version = SDW_VERSION(addr);
801 id->unique_id = SDW_UNIQUE_ID(addr);
802 id->mfg_id = SDW_MFG_ID(addr);
803 id->part_id = SDW_PART_ID(addr);
804 id->class_id = SDW_CLASS_ID(addr);
805
806 dev_dbg(bus->dev,
807 "SDW Slave class_id 0x%02x, mfg_id 0x%04x, part_id 0x%04x, unique_id 0x%x, version 0x%x\n",
808 id->class_id, id->mfg_id, id->part_id, id->unique_id, id->sdw_version);
809 }
810 EXPORT_SYMBOL(sdw_extract_slave_id);
811
sdw_program_device_num(struct sdw_bus * bus,bool * programmed)812 static int sdw_program_device_num(struct sdw_bus *bus, bool *programmed)
813 {
814 u8 buf[SDW_NUM_DEV_ID_REGISTERS] = {0};
815 struct sdw_slave *slave, *_s;
816 struct sdw_slave_id id;
817 struct sdw_msg msg;
818 bool found;
819 int count = 0, ret;
820 u64 addr;
821
822 *programmed = false;
823
824 /* No Slave, so use raw xfer api */
825 ret = sdw_fill_msg(&msg, NULL, SDW_SCP_DEVID_0,
826 SDW_NUM_DEV_ID_REGISTERS, 0, SDW_MSG_FLAG_READ, buf);
827 if (ret < 0)
828 return ret;
829
830 do {
831 ret = sdw_transfer(bus, &msg);
832 if (ret == -ENODATA) { /* end of device id reads */
833 dev_dbg(bus->dev, "No more devices to enumerate\n");
834 ret = 0;
835 break;
836 }
837 if (ret < 0) {
838 dev_err(bus->dev, "DEVID read fail:%d\n", ret);
839 break;
840 }
841
842 /*
843 * Construct the addr and extract. Cast the higher shift
844 * bits to avoid truncation due to size limit.
845 */
846 addr = buf[5] | (buf[4] << 8) | (buf[3] << 16) |
847 ((u64)buf[2] << 24) | ((u64)buf[1] << 32) |
848 ((u64)buf[0] << 40);
849
850 sdw_extract_slave_id(bus, addr, &id);
851
852 found = false;
853 /* Now compare with entries */
854 list_for_each_entry_safe(slave, _s, &bus->slaves, node) {
855 if (sdw_compare_devid(slave, id) == 0) {
856 found = true;
857
858 /*
859 * To prevent skipping state-machine stages don't
860 * program a device until we've seen it UNATTACH.
861 * Must return here because no other device on #0
862 * can be detected until this one has been
863 * assigned a device ID.
864 */
865 if (slave->status != SDW_SLAVE_UNATTACHED)
866 return 0;
867
868 /*
869 * Assign a new dev_num to this Slave and
870 * not mark it present. It will be marked
871 * present after it reports ATTACHED on new
872 * dev_num
873 */
874 ret = sdw_assign_device_num(slave);
875 if (ret < 0) {
876 dev_err(bus->dev,
877 "Assign dev_num failed:%d\n",
878 ret);
879 return ret;
880 }
881
882 *programmed = true;
883
884 break;
885 }
886 }
887
888 if (!found) {
889 /* TODO: Park this device in Group 13 */
890
891 /*
892 * add Slave device even if there is no platform
893 * firmware description. There will be no driver probe
894 * but the user/integration will be able to see the
895 * device, enumeration status and device number in sysfs
896 */
897 sdw_slave_add(bus, &id, NULL);
898
899 dev_err(bus->dev, "Slave Entry not found\n");
900 }
901
902 count++;
903
904 /*
905 * Check till error out or retry (count) exhausts.
906 * Device can drop off and rejoin during enumeration
907 * so count till twice the bound.
908 */
909
910 } while (ret == 0 && count < (SDW_MAX_DEVICES * 2));
911
912 return ret;
913 }
914
sdw_modify_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)915 static void sdw_modify_slave_status(struct sdw_slave *slave,
916 enum sdw_slave_status status)
917 {
918 struct sdw_bus *bus = slave->bus;
919
920 mutex_lock(&bus->bus_lock);
921
922 dev_vdbg(bus->dev,
923 "changing status slave %d status %d new status %d\n",
924 slave->dev_num, slave->status, status);
925
926 if (status == SDW_SLAVE_UNATTACHED) {
927 dev_dbg(&slave->dev,
928 "initializing enumeration and init completion for Slave %d\n",
929 slave->dev_num);
930
931 reinit_completion(&slave->enumeration_complete);
932 reinit_completion(&slave->initialization_complete);
933
934 } else if ((status == SDW_SLAVE_ATTACHED) &&
935 (slave->status == SDW_SLAVE_UNATTACHED)) {
936 dev_dbg(&slave->dev,
937 "signaling enumeration completion for Slave %d\n",
938 slave->dev_num);
939
940 complete_all(&slave->enumeration_complete);
941 }
942 slave->status = status;
943 mutex_unlock(&bus->bus_lock);
944 }
945
sdw_slave_clk_stop_callback(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,enum sdw_clk_stop_type type)946 static int sdw_slave_clk_stop_callback(struct sdw_slave *slave,
947 enum sdw_clk_stop_mode mode,
948 enum sdw_clk_stop_type type)
949 {
950 int ret = 0;
951
952 mutex_lock(&slave->sdw_dev_lock);
953
954 if (slave->probed) {
955 struct device *dev = &slave->dev;
956 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
957
958 if (drv->ops && drv->ops->clk_stop)
959 ret = drv->ops->clk_stop(slave, mode, type);
960 }
961
962 mutex_unlock(&slave->sdw_dev_lock);
963
964 return ret;
965 }
966
sdw_slave_clk_stop_prepare(struct sdw_slave * slave,enum sdw_clk_stop_mode mode,bool prepare)967 static int sdw_slave_clk_stop_prepare(struct sdw_slave *slave,
968 enum sdw_clk_stop_mode mode,
969 bool prepare)
970 {
971 bool wake_en;
972 u32 val = 0;
973 int ret;
974
975 wake_en = slave->prop.wake_capable;
976
977 if (prepare) {
978 val = SDW_SCP_SYSTEMCTRL_CLK_STP_PREP;
979
980 if (mode == SDW_CLK_STOP_MODE1)
981 val |= SDW_SCP_SYSTEMCTRL_CLK_STP_MODE1;
982
983 if (wake_en)
984 val |= SDW_SCP_SYSTEMCTRL_WAKE_UP_EN;
985 } else {
986 ret = sdw_read_no_pm(slave, SDW_SCP_SYSTEMCTRL);
987 if (ret < 0) {
988 if (ret != -ENODATA)
989 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL read failed:%d\n", ret);
990 return ret;
991 }
992 val = ret;
993 val &= ~(SDW_SCP_SYSTEMCTRL_CLK_STP_PREP);
994 }
995
996 ret = sdw_write_no_pm(slave, SDW_SCP_SYSTEMCTRL, val);
997
998 if (ret < 0 && ret != -ENODATA)
999 dev_err(&slave->dev, "SDW_SCP_SYSTEMCTRL write failed:%d\n", ret);
1000
1001 return ret;
1002 }
1003
sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus * bus,u16 dev_num)1004 static int sdw_bus_wait_for_clk_prep_deprep(struct sdw_bus *bus, u16 dev_num)
1005 {
1006 int retry = bus->clk_stop_timeout;
1007 int val;
1008
1009 do {
1010 val = sdw_bread_no_pm(bus, dev_num, SDW_SCP_STAT);
1011 if (val < 0) {
1012 if (val != -ENODATA)
1013 dev_err(bus->dev, "SDW_SCP_STAT bread failed:%d\n", val);
1014 return val;
1015 }
1016 val &= SDW_SCP_STAT_CLK_STP_NF;
1017 if (!val) {
1018 dev_dbg(bus->dev, "clock stop prep/de-prep done slave:%d\n",
1019 dev_num);
1020 return 0;
1021 }
1022
1023 usleep_range(1000, 1500);
1024 retry--;
1025 } while (retry);
1026
1027 dev_err(bus->dev, "clock stop prep/de-prep failed slave:%d\n",
1028 dev_num);
1029
1030 return -ETIMEDOUT;
1031 }
1032
1033 /**
1034 * sdw_bus_prep_clk_stop: prepare Slave(s) for clock stop
1035 *
1036 * @bus: SDW bus instance
1037 *
1038 * Query Slave for clock stop mode and prepare for that mode.
1039 */
sdw_bus_prep_clk_stop(struct sdw_bus * bus)1040 int sdw_bus_prep_clk_stop(struct sdw_bus *bus)
1041 {
1042 bool simple_clk_stop = true;
1043 struct sdw_slave *slave;
1044 bool is_slave = false;
1045 int ret = 0;
1046
1047 /*
1048 * In order to save on transition time, prepare
1049 * each Slave and then wait for all Slave(s) to be
1050 * prepared for clock stop.
1051 * If one of the Slave devices has lost sync and
1052 * replies with Command Ignored/-ENODATA, we continue
1053 * the loop
1054 */
1055 list_for_each_entry(slave, &bus->slaves, node) {
1056 if (!slave->dev_num)
1057 continue;
1058
1059 if (slave->status != SDW_SLAVE_ATTACHED &&
1060 slave->status != SDW_SLAVE_ALERT)
1061 continue;
1062
1063 /* Identify if Slave(s) are available on Bus */
1064 is_slave = true;
1065
1066 ret = sdw_slave_clk_stop_callback(slave,
1067 SDW_CLK_STOP_MODE0,
1068 SDW_CLK_PRE_PREPARE);
1069 if (ret < 0 && ret != -ENODATA) {
1070 dev_err(&slave->dev, "clock stop pre-prepare cb failed:%d\n", ret);
1071 return ret;
1072 }
1073
1074 /* Only prepare a Slave device if needed */
1075 if (!slave->prop.simple_clk_stop_capable) {
1076 simple_clk_stop = false;
1077
1078 ret = sdw_slave_clk_stop_prepare(slave,
1079 SDW_CLK_STOP_MODE0,
1080 true);
1081 if (ret < 0 && ret != -ENODATA) {
1082 dev_err(&slave->dev, "clock stop prepare failed:%d\n", ret);
1083 return ret;
1084 }
1085 }
1086 }
1087
1088 /* Skip remaining clock stop preparation if no Slave is attached */
1089 if (!is_slave)
1090 return 0;
1091
1092 /*
1093 * Don't wait for all Slaves to be ready if they follow the simple
1094 * state machine
1095 */
1096 if (!simple_clk_stop) {
1097 ret = sdw_bus_wait_for_clk_prep_deprep(bus,
1098 SDW_BROADCAST_DEV_NUM);
1099 /*
1100 * if there are no Slave devices present and the reply is
1101 * Command_Ignored/-ENODATA, we don't need to continue with the
1102 * flow and can just return here. The error code is not modified
1103 * and its handling left as an exercise for the caller.
1104 */
1105 if (ret < 0)
1106 return ret;
1107 }
1108
1109 /* Inform slaves that prep is done */
1110 list_for_each_entry(slave, &bus->slaves, node) {
1111 if (!slave->dev_num)
1112 continue;
1113
1114 if (slave->status != SDW_SLAVE_ATTACHED &&
1115 slave->status != SDW_SLAVE_ALERT)
1116 continue;
1117
1118 ret = sdw_slave_clk_stop_callback(slave,
1119 SDW_CLK_STOP_MODE0,
1120 SDW_CLK_POST_PREPARE);
1121
1122 if (ret < 0 && ret != -ENODATA) {
1123 dev_err(&slave->dev, "clock stop post-prepare cb failed:%d\n", ret);
1124 return ret;
1125 }
1126 }
1127
1128 return 0;
1129 }
1130 EXPORT_SYMBOL(sdw_bus_prep_clk_stop);
1131
1132 /**
1133 * sdw_bus_clk_stop: stop bus clock
1134 *
1135 * @bus: SDW bus instance
1136 *
1137 * After preparing the Slaves for clock stop, stop the clock by broadcasting
1138 * write to SCP_CTRL register.
1139 */
sdw_bus_clk_stop(struct sdw_bus * bus)1140 int sdw_bus_clk_stop(struct sdw_bus *bus)
1141 {
1142 int ret;
1143
1144 /*
1145 * broadcast clock stop now, attached Slaves will ACK this,
1146 * unattached will ignore
1147 */
1148 ret = sdw_bwrite_no_pm(bus, SDW_BROADCAST_DEV_NUM,
1149 SDW_SCP_CTRL, SDW_SCP_CTRL_CLK_STP_NOW);
1150 if (ret < 0) {
1151 if (ret != -ENODATA)
1152 dev_err(bus->dev, "ClockStopNow Broadcast msg failed %d\n", ret);
1153 return ret;
1154 }
1155
1156 return 0;
1157 }
1158 EXPORT_SYMBOL(sdw_bus_clk_stop);
1159
1160 /**
1161 * sdw_bus_exit_clk_stop: Exit clock stop mode
1162 *
1163 * @bus: SDW bus instance
1164 *
1165 * This De-prepares the Slaves by exiting Clock Stop Mode 0. For the Slaves
1166 * exiting Clock Stop Mode 1, they will be de-prepared after they enumerate
1167 * back.
1168 */
sdw_bus_exit_clk_stop(struct sdw_bus * bus)1169 int sdw_bus_exit_clk_stop(struct sdw_bus *bus)
1170 {
1171 bool simple_clk_stop = true;
1172 struct sdw_slave *slave;
1173 bool is_slave = false;
1174 int ret;
1175
1176 /*
1177 * In order to save on transition time, de-prepare
1178 * each Slave and then wait for all Slave(s) to be
1179 * de-prepared after clock resume.
1180 */
1181 list_for_each_entry(slave, &bus->slaves, node) {
1182 if (!slave->dev_num)
1183 continue;
1184
1185 if (slave->status != SDW_SLAVE_ATTACHED &&
1186 slave->status != SDW_SLAVE_ALERT)
1187 continue;
1188
1189 /* Identify if Slave(s) are available on Bus */
1190 is_slave = true;
1191
1192 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1193 SDW_CLK_PRE_DEPREPARE);
1194 if (ret < 0)
1195 dev_warn(&slave->dev, "clock stop pre-deprepare cb failed:%d\n", ret);
1196
1197 /* Only de-prepare a Slave device if needed */
1198 if (!slave->prop.simple_clk_stop_capable) {
1199 simple_clk_stop = false;
1200
1201 ret = sdw_slave_clk_stop_prepare(slave, SDW_CLK_STOP_MODE0,
1202 false);
1203
1204 if (ret < 0)
1205 dev_warn(&slave->dev, "clock stop deprepare failed:%d\n", ret);
1206 }
1207 }
1208
1209 /* Skip remaining clock stop de-preparation if no Slave is attached */
1210 if (!is_slave)
1211 return 0;
1212
1213 /*
1214 * Don't wait for all Slaves to be ready if they follow the simple
1215 * state machine
1216 */
1217 if (!simple_clk_stop) {
1218 ret = sdw_bus_wait_for_clk_prep_deprep(bus, SDW_BROADCAST_DEV_NUM);
1219 if (ret < 0)
1220 dev_warn(bus->dev, "clock stop deprepare wait failed:%d\n", ret);
1221 }
1222
1223 list_for_each_entry(slave, &bus->slaves, node) {
1224 if (!slave->dev_num)
1225 continue;
1226
1227 if (slave->status != SDW_SLAVE_ATTACHED &&
1228 slave->status != SDW_SLAVE_ALERT)
1229 continue;
1230
1231 ret = sdw_slave_clk_stop_callback(slave, SDW_CLK_STOP_MODE0,
1232 SDW_CLK_POST_DEPREPARE);
1233 if (ret < 0)
1234 dev_warn(&slave->dev, "clock stop post-deprepare cb failed:%d\n", ret);
1235 }
1236
1237 return 0;
1238 }
1239 EXPORT_SYMBOL(sdw_bus_exit_clk_stop);
1240
sdw_configure_dpn_intr(struct sdw_slave * slave,int port,bool enable,int mask)1241 int sdw_configure_dpn_intr(struct sdw_slave *slave,
1242 int port, bool enable, int mask)
1243 {
1244 u32 addr;
1245 int ret;
1246 u8 val = 0;
1247
1248 if (slave->bus->params.s_data_mode != SDW_PORT_DATA_MODE_NORMAL) {
1249 dev_dbg(&slave->dev, "TEST FAIL interrupt %s\n",
1250 enable ? "on" : "off");
1251 mask |= SDW_DPN_INT_TEST_FAIL;
1252 }
1253
1254 addr = SDW_DPN_INTMASK(port);
1255
1256 /* Set/Clear port ready interrupt mask */
1257 if (enable) {
1258 val |= mask;
1259 val |= SDW_DPN_INT_PORT_READY;
1260 } else {
1261 val &= ~(mask);
1262 val &= ~SDW_DPN_INT_PORT_READY;
1263 }
1264
1265 ret = sdw_update_no_pm(slave, addr, (mask | SDW_DPN_INT_PORT_READY), val);
1266 if (ret < 0)
1267 dev_err(&slave->dev,
1268 "SDW_DPN_INTMASK write failed:%d\n", val);
1269
1270 return ret;
1271 }
1272
sdw_slave_set_frequency(struct sdw_slave * slave)1273 static int sdw_slave_set_frequency(struct sdw_slave *slave)
1274 {
1275 u32 mclk_freq = slave->bus->prop.mclk_freq;
1276 u32 curr_freq = slave->bus->params.curr_dr_freq >> 1;
1277 unsigned int scale;
1278 u8 scale_index;
1279 u8 base;
1280 int ret;
1281
1282 /*
1283 * frequency base and scale registers are required for SDCA
1284 * devices. They may also be used for 1.2+/non-SDCA devices.
1285 * Driver can set the property, we will need a DisCo property
1286 * to discover this case from platform firmware.
1287 */
1288 if (!slave->id.class_id && !slave->prop.clock_reg_supported)
1289 return 0;
1290
1291 if (!mclk_freq) {
1292 dev_err(&slave->dev,
1293 "no bus MCLK, cannot set SDW_SCP_BUS_CLOCK_BASE\n");
1294 return -EINVAL;
1295 }
1296
1297 /*
1298 * map base frequency using Table 89 of SoundWire 1.2 spec.
1299 * The order of the tests just follows the specification, this
1300 * is not a selection between possible values or a search for
1301 * the best value but just a mapping. Only one case per platform
1302 * is relevant.
1303 * Some BIOS have inconsistent values for mclk_freq but a
1304 * correct root so we force the mclk_freq to avoid variations.
1305 */
1306 if (!(19200000 % mclk_freq)) {
1307 mclk_freq = 19200000;
1308 base = SDW_SCP_BASE_CLOCK_19200000_HZ;
1309 } else if (!(24000000 % mclk_freq)) {
1310 mclk_freq = 24000000;
1311 base = SDW_SCP_BASE_CLOCK_24000000_HZ;
1312 } else if (!(24576000 % mclk_freq)) {
1313 mclk_freq = 24576000;
1314 base = SDW_SCP_BASE_CLOCK_24576000_HZ;
1315 } else if (!(22579200 % mclk_freq)) {
1316 mclk_freq = 22579200;
1317 base = SDW_SCP_BASE_CLOCK_22579200_HZ;
1318 } else if (!(32000000 % mclk_freq)) {
1319 mclk_freq = 32000000;
1320 base = SDW_SCP_BASE_CLOCK_32000000_HZ;
1321 } else {
1322 dev_err(&slave->dev,
1323 "Unsupported clock base, mclk %d\n",
1324 mclk_freq);
1325 return -EINVAL;
1326 }
1327
1328 if (mclk_freq % curr_freq) {
1329 dev_err(&slave->dev,
1330 "mclk %d is not multiple of bus curr_freq %d\n",
1331 mclk_freq, curr_freq);
1332 return -EINVAL;
1333 }
1334
1335 scale = mclk_freq / curr_freq;
1336
1337 /*
1338 * map scale to Table 90 of SoundWire 1.2 spec - and check
1339 * that the scale is a power of two and maximum 64
1340 */
1341 scale_index = ilog2(scale);
1342
1343 if (BIT(scale_index) != scale || scale_index > 6) {
1344 dev_err(&slave->dev,
1345 "No match found for scale %d, bus mclk %d curr_freq %d\n",
1346 scale, mclk_freq, curr_freq);
1347 return -EINVAL;
1348 }
1349 scale_index++;
1350
1351 ret = sdw_write_no_pm(slave, SDW_SCP_BUS_CLOCK_BASE, base);
1352 if (ret < 0) {
1353 dev_err(&slave->dev,
1354 "SDW_SCP_BUS_CLOCK_BASE write failed:%d\n", ret);
1355 return ret;
1356 }
1357
1358 /* initialize scale for both banks */
1359 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B0, scale_index);
1360 if (ret < 0) {
1361 dev_err(&slave->dev,
1362 "SDW_SCP_BUSCLOCK_SCALE_B0 write failed:%d\n", ret);
1363 return ret;
1364 }
1365 ret = sdw_write_no_pm(slave, SDW_SCP_BUSCLOCK_SCALE_B1, scale_index);
1366 if (ret < 0)
1367 dev_err(&slave->dev,
1368 "SDW_SCP_BUSCLOCK_SCALE_B1 write failed:%d\n", ret);
1369
1370 dev_dbg(&slave->dev,
1371 "Configured bus base %d, scale %d, mclk %d, curr_freq %d\n",
1372 base, scale_index, mclk_freq, curr_freq);
1373
1374 return ret;
1375 }
1376
sdw_initialize_slave(struct sdw_slave * slave)1377 static int sdw_initialize_slave(struct sdw_slave *slave)
1378 {
1379 struct sdw_slave_prop *prop = &slave->prop;
1380 int status;
1381 int ret;
1382 u8 val;
1383
1384 ret = sdw_slave_set_frequency(slave);
1385 if (ret < 0)
1386 return ret;
1387
1388 if (slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH) {
1389 /* Clear bus clash interrupt before enabling interrupt mask */
1390 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1391 if (status < 0) {
1392 dev_err(&slave->dev,
1393 "SDW_SCP_INT1 (BUS_CLASH) read failed:%d\n", status);
1394 return status;
1395 }
1396 if (status & SDW_SCP_INT1_BUS_CLASH) {
1397 dev_warn(&slave->dev, "Bus clash detected before INT mask is enabled\n");
1398 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_BUS_CLASH);
1399 if (ret < 0) {
1400 dev_err(&slave->dev,
1401 "SDW_SCP_INT1 (BUS_CLASH) write failed:%d\n", ret);
1402 return ret;
1403 }
1404 }
1405 }
1406 if ((slave->bus->prop.quirks & SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY) &&
1407 !(slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY)) {
1408 /* Clear parity interrupt before enabling interrupt mask */
1409 status = sdw_read_no_pm(slave, SDW_SCP_INT1);
1410 if (status < 0) {
1411 dev_err(&slave->dev,
1412 "SDW_SCP_INT1 (PARITY) read failed:%d\n", status);
1413 return status;
1414 }
1415 if (status & SDW_SCP_INT1_PARITY) {
1416 dev_warn(&slave->dev, "PARITY error detected before INT mask is enabled\n");
1417 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, SDW_SCP_INT1_PARITY);
1418 if (ret < 0) {
1419 dev_err(&slave->dev,
1420 "SDW_SCP_INT1 (PARITY) write failed:%d\n", ret);
1421 return ret;
1422 }
1423 }
1424 }
1425
1426 /*
1427 * Set SCP_INT1_MASK register, typically bus clash and
1428 * implementation-defined interrupt mask. The Parity detection
1429 * may not always be correct on startup so its use is
1430 * device-dependent, it might e.g. only be enabled in
1431 * steady-state after a couple of frames.
1432 */
1433 val = slave->prop.scp_int1_mask;
1434
1435 /* Enable SCP interrupts */
1436 ret = sdw_update_no_pm(slave, SDW_SCP_INTMASK1, val, val);
1437 if (ret < 0) {
1438 dev_err(&slave->dev,
1439 "SDW_SCP_INTMASK1 write failed:%d\n", ret);
1440 return ret;
1441 }
1442
1443 /* No need to continue if DP0 is not present */
1444 if (!slave->prop.dp0_prop)
1445 return 0;
1446
1447 /* Enable DP0 interrupts */
1448 val = prop->dp0_prop->imp_def_interrupts;
1449 val |= SDW_DP0_INT_PORT_READY | SDW_DP0_INT_BRA_FAILURE;
1450
1451 ret = sdw_update_no_pm(slave, SDW_DP0_INTMASK, val, val);
1452 if (ret < 0)
1453 dev_err(&slave->dev,
1454 "SDW_DP0_INTMASK read failed:%d\n", ret);
1455 return ret;
1456 }
1457
sdw_handle_dp0_interrupt(struct sdw_slave * slave,u8 * slave_status)1458 static int sdw_handle_dp0_interrupt(struct sdw_slave *slave, u8 *slave_status)
1459 {
1460 u8 clear, impl_int_mask;
1461 int status, status2, ret, count = 0;
1462
1463 status = sdw_read_no_pm(slave, SDW_DP0_INT);
1464 if (status < 0) {
1465 dev_err(&slave->dev,
1466 "SDW_DP0_INT read failed:%d\n", status);
1467 return status;
1468 }
1469
1470 do {
1471 clear = status & ~SDW_DP0_INTERRUPTS;
1472
1473 if (status & SDW_DP0_INT_TEST_FAIL) {
1474 dev_err(&slave->dev, "Test fail for port 0\n");
1475 clear |= SDW_DP0_INT_TEST_FAIL;
1476 }
1477
1478 /*
1479 * Assumption: PORT_READY interrupt will be received only for
1480 * ports implementing Channel Prepare state machine (CP_SM)
1481 */
1482
1483 if (status & SDW_DP0_INT_PORT_READY) {
1484 complete(&slave->port_ready[0]);
1485 clear |= SDW_DP0_INT_PORT_READY;
1486 }
1487
1488 if (status & SDW_DP0_INT_BRA_FAILURE) {
1489 dev_err(&slave->dev, "BRA failed\n");
1490 clear |= SDW_DP0_INT_BRA_FAILURE;
1491 }
1492
1493 impl_int_mask = SDW_DP0_INT_IMPDEF1 |
1494 SDW_DP0_INT_IMPDEF2 | SDW_DP0_INT_IMPDEF3;
1495
1496 if (status & impl_int_mask) {
1497 clear |= impl_int_mask;
1498 *slave_status = clear;
1499 }
1500
1501 /* clear the interrupts but don't touch reserved and SDCA_CASCADE fields */
1502 ret = sdw_write_no_pm(slave, SDW_DP0_INT, clear);
1503 if (ret < 0) {
1504 dev_err(&slave->dev,
1505 "SDW_DP0_INT write failed:%d\n", ret);
1506 return ret;
1507 }
1508
1509 /* Read DP0 interrupt again */
1510 status2 = sdw_read_no_pm(slave, SDW_DP0_INT);
1511 if (status2 < 0) {
1512 dev_err(&slave->dev,
1513 "SDW_DP0_INT read failed:%d\n", status2);
1514 return status2;
1515 }
1516 /* filter to limit loop to interrupts identified in the first status read */
1517 status &= status2;
1518
1519 count++;
1520
1521 /* we can get alerts while processing so keep retrying */
1522 } while ((status & SDW_DP0_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1523
1524 if (count == SDW_READ_INTR_CLEAR_RETRY)
1525 dev_warn(&slave->dev, "Reached MAX_RETRY on DP0 read\n");
1526
1527 return ret;
1528 }
1529
sdw_handle_port_interrupt(struct sdw_slave * slave,int port,u8 * slave_status)1530 static int sdw_handle_port_interrupt(struct sdw_slave *slave,
1531 int port, u8 *slave_status)
1532 {
1533 u8 clear, impl_int_mask;
1534 int status, status2, ret, count = 0;
1535 u32 addr;
1536
1537 if (port == 0)
1538 return sdw_handle_dp0_interrupt(slave, slave_status);
1539
1540 addr = SDW_DPN_INT(port);
1541 status = sdw_read_no_pm(slave, addr);
1542 if (status < 0) {
1543 dev_err(&slave->dev,
1544 "SDW_DPN_INT read failed:%d\n", status);
1545
1546 return status;
1547 }
1548
1549 do {
1550 clear = status & ~SDW_DPN_INTERRUPTS;
1551
1552 if (status & SDW_DPN_INT_TEST_FAIL) {
1553 dev_err(&slave->dev, "Test fail for port:%d\n", port);
1554 clear |= SDW_DPN_INT_TEST_FAIL;
1555 }
1556
1557 /*
1558 * Assumption: PORT_READY interrupt will be received only
1559 * for ports implementing CP_SM.
1560 */
1561 if (status & SDW_DPN_INT_PORT_READY) {
1562 complete(&slave->port_ready[port]);
1563 clear |= SDW_DPN_INT_PORT_READY;
1564 }
1565
1566 impl_int_mask = SDW_DPN_INT_IMPDEF1 |
1567 SDW_DPN_INT_IMPDEF2 | SDW_DPN_INT_IMPDEF3;
1568
1569 if (status & impl_int_mask) {
1570 clear |= impl_int_mask;
1571 *slave_status = clear;
1572 }
1573
1574 /* clear the interrupt but don't touch reserved fields */
1575 ret = sdw_write_no_pm(slave, addr, clear);
1576 if (ret < 0) {
1577 dev_err(&slave->dev,
1578 "SDW_DPN_INT write failed:%d\n", ret);
1579 return ret;
1580 }
1581
1582 /* Read DPN interrupt again */
1583 status2 = sdw_read_no_pm(slave, addr);
1584 if (status2 < 0) {
1585 dev_err(&slave->dev,
1586 "SDW_DPN_INT read failed:%d\n", status2);
1587 return status2;
1588 }
1589 /* filter to limit loop to interrupts identified in the first status read */
1590 status &= status2;
1591
1592 count++;
1593
1594 /* we can get alerts while processing so keep retrying */
1595 } while ((status & SDW_DPN_INTERRUPTS) && (count < SDW_READ_INTR_CLEAR_RETRY));
1596
1597 if (count == SDW_READ_INTR_CLEAR_RETRY)
1598 dev_warn(&slave->dev, "Reached MAX_RETRY on port read");
1599
1600 return ret;
1601 }
1602
sdw_handle_slave_alerts(struct sdw_slave * slave)1603 static int sdw_handle_slave_alerts(struct sdw_slave *slave)
1604 {
1605 struct sdw_slave_intr_status slave_intr;
1606 u8 clear = 0, bit, port_status[15] = {0};
1607 int port_num, stat, ret, count = 0;
1608 unsigned long port;
1609 bool slave_notify;
1610 u8 sdca_cascade = 0;
1611 u8 buf, buf2[2];
1612 bool parity_check;
1613 bool parity_quirk;
1614
1615 sdw_modify_slave_status(slave, SDW_SLAVE_ALERT);
1616
1617 ret = pm_runtime_get_sync(&slave->dev);
1618 if (ret < 0 && ret != -EACCES) {
1619 dev_err(&slave->dev, "Failed to resume device: %d\n", ret);
1620 pm_runtime_put_noidle(&slave->dev);
1621 return ret;
1622 }
1623
1624 /* Read Intstat 1, Intstat 2 and Intstat 3 registers */
1625 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1626 if (ret < 0) {
1627 dev_err(&slave->dev,
1628 "SDW_SCP_INT1 read failed:%d\n", ret);
1629 goto io_err;
1630 }
1631 buf = ret;
1632
1633 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1634 if (ret < 0) {
1635 dev_err(&slave->dev,
1636 "SDW_SCP_INT2/3 read failed:%d\n", ret);
1637 goto io_err;
1638 }
1639
1640 if (slave->id.class_id) {
1641 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1642 if (ret < 0) {
1643 dev_err(&slave->dev,
1644 "SDW_DP0_INT read failed:%d\n", ret);
1645 goto io_err;
1646 }
1647 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1648 }
1649
1650 do {
1651 slave_notify = false;
1652
1653 /*
1654 * Check parity, bus clash and Slave (impl defined)
1655 * interrupt
1656 */
1657 if (buf & SDW_SCP_INT1_PARITY) {
1658 parity_check = slave->prop.scp_int1_mask & SDW_SCP_INT1_PARITY;
1659 parity_quirk = !slave->first_interrupt_done &&
1660 (slave->prop.quirks & SDW_SLAVE_QUIRKS_INVALID_INITIAL_PARITY);
1661
1662 if (parity_check && !parity_quirk)
1663 dev_err(&slave->dev, "Parity error detected\n");
1664 clear |= SDW_SCP_INT1_PARITY;
1665 }
1666
1667 if (buf & SDW_SCP_INT1_BUS_CLASH) {
1668 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_BUS_CLASH)
1669 dev_err(&slave->dev, "Bus clash detected\n");
1670 clear |= SDW_SCP_INT1_BUS_CLASH;
1671 }
1672
1673 /*
1674 * When bus clash or parity errors are detected, such errors
1675 * are unlikely to be recoverable errors.
1676 * TODO: In such scenario, reset bus. Make this configurable
1677 * via sysfs property with bus reset being the default.
1678 */
1679
1680 if (buf & SDW_SCP_INT1_IMPL_DEF) {
1681 if (slave->prop.scp_int1_mask & SDW_SCP_INT1_IMPL_DEF) {
1682 dev_dbg(&slave->dev, "Slave impl defined interrupt\n");
1683 slave_notify = true;
1684 }
1685 clear |= SDW_SCP_INT1_IMPL_DEF;
1686 }
1687
1688 /* the SDCA interrupts are cleared in the codec driver .interrupt_callback() */
1689 if (sdca_cascade)
1690 slave_notify = true;
1691
1692 /* Check port 0 - 3 interrupts */
1693 port = buf & SDW_SCP_INT1_PORT0_3;
1694
1695 /* To get port number corresponding to bits, shift it */
1696 port = FIELD_GET(SDW_SCP_INT1_PORT0_3, port);
1697 for_each_set_bit(bit, &port, 8) {
1698 sdw_handle_port_interrupt(slave, bit,
1699 &port_status[bit]);
1700 }
1701
1702 /* Check if cascade 2 interrupt is present */
1703 if (buf & SDW_SCP_INT1_SCP2_CASCADE) {
1704 port = buf2[0] & SDW_SCP_INTSTAT2_PORT4_10;
1705 for_each_set_bit(bit, &port, 8) {
1706 /* scp2 ports start from 4 */
1707 port_num = bit + 4;
1708 sdw_handle_port_interrupt(slave,
1709 port_num,
1710 &port_status[port_num]);
1711 }
1712 }
1713
1714 /* now check last cascade */
1715 if (buf2[0] & SDW_SCP_INTSTAT2_SCP3_CASCADE) {
1716 port = buf2[1] & SDW_SCP_INTSTAT3_PORT11_14;
1717 for_each_set_bit(bit, &port, 8) {
1718 /* scp3 ports start from 11 */
1719 port_num = bit + 11;
1720 sdw_handle_port_interrupt(slave,
1721 port_num,
1722 &port_status[port_num]);
1723 }
1724 }
1725
1726 /* Update the Slave driver */
1727 if (slave_notify) {
1728 mutex_lock(&slave->sdw_dev_lock);
1729
1730 if (slave->probed) {
1731 struct device *dev = &slave->dev;
1732 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1733
1734 if (slave->prop.use_domain_irq && slave->irq)
1735 handle_nested_irq(slave->irq);
1736
1737 if (drv->ops && drv->ops->interrupt_callback) {
1738 slave_intr.sdca_cascade = sdca_cascade;
1739 slave_intr.control_port = clear;
1740 memcpy(slave_intr.port, &port_status,
1741 sizeof(slave_intr.port));
1742
1743 drv->ops->interrupt_callback(slave, &slave_intr);
1744 }
1745 }
1746
1747 mutex_unlock(&slave->sdw_dev_lock);
1748 }
1749
1750 /* Ack interrupt */
1751 ret = sdw_write_no_pm(slave, SDW_SCP_INT1, clear);
1752 if (ret < 0) {
1753 dev_err(&slave->dev,
1754 "SDW_SCP_INT1 write failed:%d\n", ret);
1755 goto io_err;
1756 }
1757
1758 /* at this point all initial interrupt sources were handled */
1759 slave->first_interrupt_done = true;
1760
1761 /*
1762 * Read status again to ensure no new interrupts arrived
1763 * while servicing interrupts.
1764 */
1765 ret = sdw_read_no_pm(slave, SDW_SCP_INT1);
1766 if (ret < 0) {
1767 dev_err(&slave->dev,
1768 "SDW_SCP_INT1 recheck read failed:%d\n", ret);
1769 goto io_err;
1770 }
1771 buf = ret;
1772
1773 ret = sdw_nread_no_pm(slave, SDW_SCP_INTSTAT2, 2, buf2);
1774 if (ret < 0) {
1775 dev_err(&slave->dev,
1776 "SDW_SCP_INT2/3 recheck read failed:%d\n", ret);
1777 goto io_err;
1778 }
1779
1780 if (slave->id.class_id) {
1781 ret = sdw_read_no_pm(slave, SDW_DP0_INT);
1782 if (ret < 0) {
1783 dev_err(&slave->dev,
1784 "SDW_DP0_INT recheck read failed:%d\n", ret);
1785 goto io_err;
1786 }
1787 sdca_cascade = ret & SDW_DP0_SDCA_CASCADE;
1788 }
1789
1790 /*
1791 * Make sure no interrupts are pending
1792 */
1793 stat = buf || buf2[0] || buf2[1] || sdca_cascade;
1794
1795 /*
1796 * Exit loop if Slave is continuously in ALERT state even
1797 * after servicing the interrupt multiple times.
1798 */
1799 count++;
1800
1801 /* we can get alerts while processing so keep retrying */
1802 } while (stat != 0 && count < SDW_READ_INTR_CLEAR_RETRY);
1803
1804 if (count == SDW_READ_INTR_CLEAR_RETRY)
1805 dev_warn(&slave->dev, "Reached MAX_RETRY on alert read\n");
1806
1807 io_err:
1808 pm_runtime_mark_last_busy(&slave->dev);
1809 pm_runtime_put_autosuspend(&slave->dev);
1810
1811 return ret;
1812 }
1813
sdw_update_slave_status(struct sdw_slave * slave,enum sdw_slave_status status)1814 static int sdw_update_slave_status(struct sdw_slave *slave,
1815 enum sdw_slave_status status)
1816 {
1817 int ret = 0;
1818
1819 mutex_lock(&slave->sdw_dev_lock);
1820
1821 if (slave->probed) {
1822 struct device *dev = &slave->dev;
1823 struct sdw_driver *drv = drv_to_sdw_driver(dev->driver);
1824
1825 if (drv->ops && drv->ops->update_status)
1826 ret = drv->ops->update_status(slave, status);
1827 }
1828
1829 mutex_unlock(&slave->sdw_dev_lock);
1830
1831 return ret;
1832 }
1833
1834 /**
1835 * sdw_handle_slave_status() - Handle Slave status
1836 * @bus: SDW bus instance
1837 * @status: Status for all Slave(s)
1838 */
sdw_handle_slave_status(struct sdw_bus * bus,enum sdw_slave_status status[])1839 int sdw_handle_slave_status(struct sdw_bus *bus,
1840 enum sdw_slave_status status[])
1841 {
1842 enum sdw_slave_status prev_status;
1843 struct sdw_slave *slave;
1844 bool attached_initializing, id_programmed;
1845 int i, ret = 0;
1846
1847 /* first check if any Slaves fell off the bus */
1848 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1849 mutex_lock(&bus->bus_lock);
1850 if (test_bit(i, bus->assigned) == false) {
1851 mutex_unlock(&bus->bus_lock);
1852 continue;
1853 }
1854 mutex_unlock(&bus->bus_lock);
1855
1856 slave = sdw_get_slave(bus, i);
1857 if (!slave)
1858 continue;
1859
1860 if (status[i] == SDW_SLAVE_UNATTACHED &&
1861 slave->status != SDW_SLAVE_UNATTACHED) {
1862 dev_warn(&slave->dev, "Slave %d state check1: UNATTACHED, status was %d\n",
1863 i, slave->status);
1864 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1865
1866 /* Ensure driver knows that peripheral unattached */
1867 ret = sdw_update_slave_status(slave, status[i]);
1868 if (ret < 0)
1869 dev_warn(&slave->dev, "Update Slave status failed:%d\n", ret);
1870 }
1871 }
1872
1873 if (status[0] == SDW_SLAVE_ATTACHED) {
1874 dev_dbg(bus->dev, "Slave attached, programming device number\n");
1875
1876 /*
1877 * Programming a device number will have side effects,
1878 * so we deal with other devices at a later time.
1879 * This relies on those devices reporting ATTACHED, which will
1880 * trigger another call to this function. This will only
1881 * happen if at least one device ID was programmed.
1882 * Error returns from sdw_program_device_num() are currently
1883 * ignored because there's no useful recovery that can be done.
1884 * Returning the error here could result in the current status
1885 * of other devices not being handled, because if no device IDs
1886 * were programmed there's nothing to guarantee a status change
1887 * to trigger another call to this function.
1888 */
1889 sdw_program_device_num(bus, &id_programmed);
1890 if (id_programmed)
1891 return 0;
1892 }
1893
1894 /* Continue to check other slave statuses */
1895 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1896 mutex_lock(&bus->bus_lock);
1897 if (test_bit(i, bus->assigned) == false) {
1898 mutex_unlock(&bus->bus_lock);
1899 continue;
1900 }
1901 mutex_unlock(&bus->bus_lock);
1902
1903 slave = sdw_get_slave(bus, i);
1904 if (!slave)
1905 continue;
1906
1907 attached_initializing = false;
1908
1909 switch (status[i]) {
1910 case SDW_SLAVE_UNATTACHED:
1911 if (slave->status == SDW_SLAVE_UNATTACHED)
1912 break;
1913
1914 dev_warn(&slave->dev, "Slave %d state check2: UNATTACHED, status was %d\n",
1915 i, slave->status);
1916
1917 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
1918 break;
1919
1920 case SDW_SLAVE_ALERT:
1921 ret = sdw_handle_slave_alerts(slave);
1922 if (ret < 0)
1923 dev_err(&slave->dev,
1924 "Slave %d alert handling failed: %d\n",
1925 i, ret);
1926 break;
1927
1928 case SDW_SLAVE_ATTACHED:
1929 if (slave->status == SDW_SLAVE_ATTACHED)
1930 break;
1931
1932 prev_status = slave->status;
1933 sdw_modify_slave_status(slave, SDW_SLAVE_ATTACHED);
1934
1935 if (prev_status == SDW_SLAVE_ALERT)
1936 break;
1937
1938 attached_initializing = true;
1939
1940 ret = sdw_initialize_slave(slave);
1941 if (ret < 0)
1942 dev_err(&slave->dev,
1943 "Slave %d initialization failed: %d\n",
1944 i, ret);
1945
1946 break;
1947
1948 default:
1949 dev_err(&slave->dev, "Invalid slave %d status:%d\n",
1950 i, status[i]);
1951 break;
1952 }
1953
1954 ret = sdw_update_slave_status(slave, status[i]);
1955 if (ret < 0)
1956 dev_err(&slave->dev,
1957 "Update Slave status failed:%d\n", ret);
1958 if (attached_initializing) {
1959 dev_dbg(&slave->dev,
1960 "signaling initialization completion for Slave %d\n",
1961 slave->dev_num);
1962
1963 complete_all(&slave->initialization_complete);
1964
1965 /*
1966 * If the manager became pm_runtime active, the peripherals will be
1967 * restarted and attach, but their pm_runtime status may remain
1968 * suspended. If the 'update_slave_status' callback initiates
1969 * any sort of deferred processing, this processing would not be
1970 * cancelled on pm_runtime suspend.
1971 * To avoid such zombie states, we queue a request to resume.
1972 * This would be a no-op in case the peripheral was being resumed
1973 * by e.g. the ALSA/ASoC framework.
1974 */
1975 pm_request_resume(&slave->dev);
1976 }
1977 }
1978
1979 return ret;
1980 }
1981 EXPORT_SYMBOL(sdw_handle_slave_status);
1982
sdw_clear_slave_status(struct sdw_bus * bus,u32 request)1983 void sdw_clear_slave_status(struct sdw_bus *bus, u32 request)
1984 {
1985 struct sdw_slave *slave;
1986 int i;
1987
1988 /* Check all non-zero devices */
1989 for (i = 1; i <= SDW_MAX_DEVICES; i++) {
1990 mutex_lock(&bus->bus_lock);
1991 if (test_bit(i, bus->assigned) == false) {
1992 mutex_unlock(&bus->bus_lock);
1993 continue;
1994 }
1995 mutex_unlock(&bus->bus_lock);
1996
1997 slave = sdw_get_slave(bus, i);
1998 if (!slave)
1999 continue;
2000
2001 if (slave->status != SDW_SLAVE_UNATTACHED) {
2002 sdw_modify_slave_status(slave, SDW_SLAVE_UNATTACHED);
2003 slave->first_interrupt_done = false;
2004 sdw_update_slave_status(slave, SDW_SLAVE_UNATTACHED);
2005 }
2006
2007 /* keep track of request, used in pm_runtime resume */
2008 slave->unattach_request = request;
2009 }
2010 }
2011 EXPORT_SYMBOL(sdw_clear_slave_status);
2012