1 /*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 * Authors: Alex Deucher
23 */
24
25 #include <linux/delay.h>
26 #include <linux/firmware.h>
27 #include <linux/module.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32 #include "vi.h"
33 #include "vid.h"
34
35 #include "oss/oss_3_0_d.h"
36 #include "oss/oss_3_0_sh_mask.h"
37
38 #include "gmc/gmc_8_1_d.h"
39 #include "gmc/gmc_8_1_sh_mask.h"
40
41 #include "gca/gfx_8_0_d.h"
42 #include "gca/gfx_8_0_enum.h"
43 #include "gca/gfx_8_0_sh_mask.h"
44
45 #include "bif/bif_5_0_d.h"
46 #include "bif/bif_5_0_sh_mask.h"
47
48 #include "tonga_sdma_pkt_open.h"
49
50 #include "ivsrcid/ivsrcid_vislands30.h"
51
52 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev);
53 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev);
54 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev);
55 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev);
56
57 MODULE_FIRMWARE("amdgpu/tonga_sdma.bin");
58 MODULE_FIRMWARE("amdgpu/tonga_sdma1.bin");
59 MODULE_FIRMWARE("amdgpu/carrizo_sdma.bin");
60 MODULE_FIRMWARE("amdgpu/carrizo_sdma1.bin");
61 MODULE_FIRMWARE("amdgpu/fiji_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/fiji_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/stoney_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/polaris10_sdma.bin");
65 MODULE_FIRMWARE("amdgpu/polaris10_sdma1.bin");
66 MODULE_FIRMWARE("amdgpu/polaris11_sdma.bin");
67 MODULE_FIRMWARE("amdgpu/polaris11_sdma1.bin");
68 MODULE_FIRMWARE("amdgpu/polaris12_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/polaris12_sdma1.bin");
70 MODULE_FIRMWARE("amdgpu/vegam_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/vegam_sdma1.bin");
72
73
74 static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
75 {
76 SDMA0_REGISTER_OFFSET,
77 SDMA1_REGISTER_OFFSET
78 };
79
80 static const u32 golden_settings_tonga_a11[] =
81 {
82 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
83 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
84 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
85 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
86 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
87 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
88 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
89 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
90 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
91 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
92 };
93
94 static const u32 tonga_mgcg_cgcg_init[] =
95 {
96 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
97 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
98 };
99
100 static const u32 golden_settings_fiji_a10[] =
101 {
102 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
103 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
104 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
105 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
106 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
107 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
108 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
109 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
110 };
111
112 static const u32 fiji_mgcg_cgcg_init[] =
113 {
114 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
115 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
116 };
117
118 static const u32 golden_settings_polaris11_a11[] =
119 {
120 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
121 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
122 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
123 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
124 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
125 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
126 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
127 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
128 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
129 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
130 };
131
132 static const u32 golden_settings_polaris10_a11[] =
133 {
134 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
135 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
136 mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100,
137 mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
138 mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
139 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
140 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
141 mmSDMA1_GFX_IB_CNTL, 0x800f0111, 0x00000100,
142 mmSDMA1_RLC0_IB_CNTL, 0x800f0111, 0x00000100,
143 mmSDMA1_RLC1_IB_CNTL, 0x800f0111, 0x00000100,
144 };
145
146 static const u32 cz_golden_settings_a11[] =
147 {
148 mmSDMA0_CHICKEN_BITS, 0xfc910007, 0x00810007,
149 mmSDMA0_CLK_CTRL, 0xff000fff, 0x00000000,
150 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
151 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
152 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
153 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
154 mmSDMA1_CHICKEN_BITS, 0xfc910007, 0x00810007,
155 mmSDMA1_CLK_CTRL, 0xff000fff, 0x00000000,
156 mmSDMA1_GFX_IB_CNTL, 0x00000100, 0x00000100,
157 mmSDMA1_POWER_CNTL, 0x00000800, 0x0003c800,
158 mmSDMA1_RLC0_IB_CNTL, 0x00000100, 0x00000100,
159 mmSDMA1_RLC1_IB_CNTL, 0x00000100, 0x00000100,
160 };
161
162 static const u32 cz_mgcg_cgcg_init[] =
163 {
164 mmSDMA0_CLK_CTRL, 0xff000ff0, 0x00000100,
165 mmSDMA1_CLK_CTRL, 0xff000ff0, 0x00000100
166 };
167
168 static const u32 stoney_golden_settings_a11[] =
169 {
170 mmSDMA0_GFX_IB_CNTL, 0x00000100, 0x00000100,
171 mmSDMA0_POWER_CNTL, 0x00000800, 0x0003c800,
172 mmSDMA0_RLC0_IB_CNTL, 0x00000100, 0x00000100,
173 mmSDMA0_RLC1_IB_CNTL, 0x00000100, 0x00000100,
174 };
175
176 static const u32 stoney_mgcg_cgcg_init[] =
177 {
178 mmSDMA0_CLK_CTRL, 0xffffffff, 0x00000100,
179 };
180
181 /*
182 * sDMA - System DMA
183 * Starting with CIK, the GPU has new asynchronous
184 * DMA engines. These engines are used for compute
185 * and gfx. There are two DMA engines (SDMA0, SDMA1)
186 * and each one supports 1 ring buffer used for gfx
187 * and 2 queues used for compute.
188 *
189 * The programming model is very similar to the CP
190 * (ring buffer, IBs, etc.), but sDMA has it's own
191 * packet format that is different from the PM4 format
192 * used by the CP. sDMA supports copying data, writing
193 * embedded data, solid fills, and a number of other
194 * things. It also has support for tiling/detiling of
195 * buffers.
196 */
197
sdma_v3_0_init_golden_registers(struct amdgpu_device * adev)198 static void sdma_v3_0_init_golden_registers(struct amdgpu_device *adev)
199 {
200 switch (adev->asic_type) {
201 case CHIP_FIJI:
202 amdgpu_device_program_register_sequence(adev,
203 fiji_mgcg_cgcg_init,
204 ARRAY_SIZE(fiji_mgcg_cgcg_init));
205 amdgpu_device_program_register_sequence(adev,
206 golden_settings_fiji_a10,
207 ARRAY_SIZE(golden_settings_fiji_a10));
208 break;
209 case CHIP_TONGA:
210 amdgpu_device_program_register_sequence(adev,
211 tonga_mgcg_cgcg_init,
212 ARRAY_SIZE(tonga_mgcg_cgcg_init));
213 amdgpu_device_program_register_sequence(adev,
214 golden_settings_tonga_a11,
215 ARRAY_SIZE(golden_settings_tonga_a11));
216 break;
217 case CHIP_POLARIS11:
218 case CHIP_POLARIS12:
219 case CHIP_VEGAM:
220 amdgpu_device_program_register_sequence(adev,
221 golden_settings_polaris11_a11,
222 ARRAY_SIZE(golden_settings_polaris11_a11));
223 break;
224 case CHIP_POLARIS10:
225 amdgpu_device_program_register_sequence(adev,
226 golden_settings_polaris10_a11,
227 ARRAY_SIZE(golden_settings_polaris10_a11));
228 break;
229 case CHIP_CARRIZO:
230 amdgpu_device_program_register_sequence(adev,
231 cz_mgcg_cgcg_init,
232 ARRAY_SIZE(cz_mgcg_cgcg_init));
233 amdgpu_device_program_register_sequence(adev,
234 cz_golden_settings_a11,
235 ARRAY_SIZE(cz_golden_settings_a11));
236 break;
237 case CHIP_STONEY:
238 amdgpu_device_program_register_sequence(adev,
239 stoney_mgcg_cgcg_init,
240 ARRAY_SIZE(stoney_mgcg_cgcg_init));
241 amdgpu_device_program_register_sequence(adev,
242 stoney_golden_settings_a11,
243 ARRAY_SIZE(stoney_golden_settings_a11));
244 break;
245 default:
246 break;
247 }
248 }
249
sdma_v3_0_free_microcode(struct amdgpu_device * adev)250 static void sdma_v3_0_free_microcode(struct amdgpu_device *adev)
251 {
252 int i;
253 for (i = 0; i < adev->sdma.num_instances; i++) {
254 release_firmware(adev->sdma.instance[i].fw);
255 adev->sdma.instance[i].fw = NULL;
256 }
257 }
258
259 /**
260 * sdma_v3_0_init_microcode - load ucode images from disk
261 *
262 * @adev: amdgpu_device pointer
263 *
264 * Use the firmware interface to load the ucode images into
265 * the driver (not loaded into hw).
266 * Returns 0 on success, error on failure.
267 */
sdma_v3_0_init_microcode(struct amdgpu_device * adev)268 static int sdma_v3_0_init_microcode(struct amdgpu_device *adev)
269 {
270 const char *chip_name;
271 char fw_name[30];
272 int err = 0, i;
273 struct amdgpu_firmware_info *info = NULL;
274 const struct common_firmware_header *header = NULL;
275 const struct sdma_firmware_header_v1_0 *hdr;
276
277 DRM_DEBUG("\n");
278
279 switch (adev->asic_type) {
280 case CHIP_TONGA:
281 chip_name = "tonga";
282 break;
283 case CHIP_FIJI:
284 chip_name = "fiji";
285 break;
286 case CHIP_POLARIS10:
287 chip_name = "polaris10";
288 break;
289 case CHIP_POLARIS11:
290 chip_name = "polaris11";
291 break;
292 case CHIP_POLARIS12:
293 chip_name = "polaris12";
294 break;
295 case CHIP_VEGAM:
296 chip_name = "vegam";
297 break;
298 case CHIP_CARRIZO:
299 chip_name = "carrizo";
300 break;
301 case CHIP_STONEY:
302 chip_name = "stoney";
303 break;
304 default: BUG();
305 }
306
307 for (i = 0; i < adev->sdma.num_instances; i++) {
308 if (i == 0)
309 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
310 else
311 snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma1.bin", chip_name);
312 err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
313 if (err)
314 goto out;
315 err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
316 if (err)
317 goto out;
318 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
319 adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
320 adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
321 if (adev->sdma.instance[i].feature_version >= 20)
322 adev->sdma.instance[i].burst_nop = true;
323
324 info = &adev->firmware.ucode[AMDGPU_UCODE_ID_SDMA0 + i];
325 info->ucode_id = AMDGPU_UCODE_ID_SDMA0 + i;
326 info->fw = adev->sdma.instance[i].fw;
327 header = (const struct common_firmware_header *)info->fw->data;
328 adev->firmware.fw_size +=
329 ALIGN(le32_to_cpu(header->ucode_size_bytes), PAGE_SIZE);
330
331 }
332 out:
333 if (err) {
334 pr_err("sdma_v3_0: Failed to load firmware \"%s\"\n", fw_name);
335 for (i = 0; i < adev->sdma.num_instances; i++) {
336 release_firmware(adev->sdma.instance[i].fw);
337 adev->sdma.instance[i].fw = NULL;
338 }
339 }
340 return err;
341 }
342
343 /**
344 * sdma_v3_0_ring_get_rptr - get the current read pointer
345 *
346 * @ring: amdgpu ring pointer
347 *
348 * Get the current rptr from the hardware (VI+).
349 */
sdma_v3_0_ring_get_rptr(struct amdgpu_ring * ring)350 static uint64_t sdma_v3_0_ring_get_rptr(struct amdgpu_ring *ring)
351 {
352 /* XXX check if swapping is necessary on BE */
353 return *ring->rptr_cpu_addr >> 2;
354 }
355
356 /**
357 * sdma_v3_0_ring_get_wptr - get the current write pointer
358 *
359 * @ring: amdgpu ring pointer
360 *
361 * Get the current wptr from the hardware (VI+).
362 */
sdma_v3_0_ring_get_wptr(struct amdgpu_ring * ring)363 static uint64_t sdma_v3_0_ring_get_wptr(struct amdgpu_ring *ring)
364 {
365 struct amdgpu_device *adev = ring->adev;
366 u32 wptr;
367
368 if (ring->use_doorbell || ring->use_pollmem) {
369 /* XXX check if swapping is necessary on BE */
370 wptr = *ring->wptr_cpu_addr >> 2;
371 } else {
372 wptr = RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me]) >> 2;
373 }
374
375 return wptr;
376 }
377
378 /**
379 * sdma_v3_0_ring_set_wptr - commit the write pointer
380 *
381 * @ring: amdgpu ring pointer
382 *
383 * Write the wptr back to the hardware (VI+).
384 */
sdma_v3_0_ring_set_wptr(struct amdgpu_ring * ring)385 static void sdma_v3_0_ring_set_wptr(struct amdgpu_ring *ring)
386 {
387 struct amdgpu_device *adev = ring->adev;
388
389 if (ring->use_doorbell) {
390 u32 *wb = (u32 *)ring->wptr_cpu_addr;
391 /* XXX check if swapping is necessary on BE */
392 WRITE_ONCE(*wb, ring->wptr << 2);
393 WDOORBELL32(ring->doorbell_index, ring->wptr << 2);
394 } else if (ring->use_pollmem) {
395 u32 *wb = (u32 *)ring->wptr_cpu_addr;
396
397 WRITE_ONCE(*wb, ring->wptr << 2);
398 } else {
399 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[ring->me], ring->wptr << 2);
400 }
401 }
402
sdma_v3_0_ring_insert_nop(struct amdgpu_ring * ring,uint32_t count)403 static void sdma_v3_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
404 {
405 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
406 int i;
407
408 for (i = 0; i < count; i++)
409 if (sdma && sdma->burst_nop && (i == 0))
410 amdgpu_ring_write(ring, ring->funcs->nop |
411 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
412 else
413 amdgpu_ring_write(ring, ring->funcs->nop);
414 }
415
416 /**
417 * sdma_v3_0_ring_emit_ib - Schedule an IB on the DMA engine
418 *
419 * @ring: amdgpu ring pointer
420 * @job: job to retrieve vmid from
421 * @ib: IB object to schedule
422 * @flags: unused
423 *
424 * Schedule an IB in the DMA ring (VI).
425 */
sdma_v3_0_ring_emit_ib(struct amdgpu_ring * ring,struct amdgpu_job * job,struct amdgpu_ib * ib,uint32_t flags)426 static void sdma_v3_0_ring_emit_ib(struct amdgpu_ring *ring,
427 struct amdgpu_job *job,
428 struct amdgpu_ib *ib,
429 uint32_t flags)
430 {
431 unsigned vmid = AMDGPU_JOB_GET_VMID(job);
432
433 /* IB packet must end on a 8 DW boundary */
434 sdma_v3_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
435
436 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
437 SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
438 /* base must be 32 byte aligned */
439 amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
440 amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
441 amdgpu_ring_write(ring, ib->length_dw);
442 amdgpu_ring_write(ring, 0);
443 amdgpu_ring_write(ring, 0);
444
445 }
446
447 /**
448 * sdma_v3_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
449 *
450 * @ring: amdgpu ring pointer
451 *
452 * Emit an hdp flush packet on the requested DMA ring.
453 */
sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring * ring)454 static void sdma_v3_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
455 {
456 u32 ref_and_mask = 0;
457
458 if (ring->me == 0)
459 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA0, 1);
460 else
461 ref_and_mask = REG_SET_FIELD(ref_and_mask, GPU_HDP_FLUSH_DONE, SDMA1, 1);
462
463 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
464 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(1) |
465 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
466 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
467 amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
468 amdgpu_ring_write(ring, ref_and_mask); /* reference */
469 amdgpu_ring_write(ring, ref_and_mask); /* mask */
470 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
471 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
472 }
473
474 /**
475 * sdma_v3_0_ring_emit_fence - emit a fence on the DMA ring
476 *
477 * @ring: amdgpu ring pointer
478 * @addr: address
479 * @seq: sequence number
480 * @flags: fence related flags
481 *
482 * Add a DMA fence packet to the ring to write
483 * the fence seq number and DMA trap packet to generate
484 * an interrupt if needed (VI).
485 */
sdma_v3_0_ring_emit_fence(struct amdgpu_ring * ring,u64 addr,u64 seq,unsigned flags)486 static void sdma_v3_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
487 unsigned flags)
488 {
489 bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
490 /* write the fence */
491 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
492 amdgpu_ring_write(ring, lower_32_bits(addr));
493 amdgpu_ring_write(ring, upper_32_bits(addr));
494 amdgpu_ring_write(ring, lower_32_bits(seq));
495
496 /* optionally write high bits as well */
497 if (write64bit) {
498 addr += 4;
499 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
500 amdgpu_ring_write(ring, lower_32_bits(addr));
501 amdgpu_ring_write(ring, upper_32_bits(addr));
502 amdgpu_ring_write(ring, upper_32_bits(seq));
503 }
504
505 /* generate an interrupt */
506 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
507 amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
508 }
509
510 /**
511 * sdma_v3_0_gfx_stop - stop the gfx async dma engines
512 *
513 * @adev: amdgpu_device pointer
514 *
515 * Stop the gfx async dma ring buffers (VI).
516 */
sdma_v3_0_gfx_stop(struct amdgpu_device * adev)517 static void sdma_v3_0_gfx_stop(struct amdgpu_device *adev)
518 {
519 u32 rb_cntl, ib_cntl;
520 int i;
521
522 amdgpu_sdma_unset_buffer_funcs_helper(adev);
523
524 for (i = 0; i < adev->sdma.num_instances; i++) {
525 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
526 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
527 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
528 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
529 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
530 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
531 }
532 }
533
534 /**
535 * sdma_v3_0_rlc_stop - stop the compute async dma engines
536 *
537 * @adev: amdgpu_device pointer
538 *
539 * Stop the compute async dma queues (VI).
540 */
sdma_v3_0_rlc_stop(struct amdgpu_device * adev)541 static void sdma_v3_0_rlc_stop(struct amdgpu_device *adev)
542 {
543 /* XXX todo */
544 }
545
546 /**
547 * sdma_v3_0_ctx_switch_enable - stop the async dma engines context switch
548 *
549 * @adev: amdgpu_device pointer
550 * @enable: enable/disable the DMA MEs context switch.
551 *
552 * Halt or unhalt the async dma engines context switch (VI).
553 */
sdma_v3_0_ctx_switch_enable(struct amdgpu_device * adev,bool enable)554 static void sdma_v3_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
555 {
556 u32 f32_cntl, phase_quantum = 0;
557 int i;
558
559 if (amdgpu_sdma_phase_quantum) {
560 unsigned value = amdgpu_sdma_phase_quantum;
561 unsigned unit = 0;
562
563 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
564 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
565 value = (value + 1) >> 1;
566 unit++;
567 }
568 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
569 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
570 value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
571 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
572 unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
573 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
574 WARN_ONCE(1,
575 "clamping sdma_phase_quantum to %uK clock cycles\n",
576 value << unit);
577 }
578 phase_quantum =
579 value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
580 unit << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
581 }
582
583 for (i = 0; i < adev->sdma.num_instances; i++) {
584 f32_cntl = RREG32(mmSDMA0_CNTL + sdma_offsets[i]);
585 if (enable) {
586 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
587 AUTO_CTXSW_ENABLE, 1);
588 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
589 ATC_L1_ENABLE, 1);
590 if (amdgpu_sdma_phase_quantum) {
591 WREG32(mmSDMA0_PHASE0_QUANTUM + sdma_offsets[i],
592 phase_quantum);
593 WREG32(mmSDMA0_PHASE1_QUANTUM + sdma_offsets[i],
594 phase_quantum);
595 }
596 } else {
597 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
598 AUTO_CTXSW_ENABLE, 0);
599 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
600 ATC_L1_ENABLE, 1);
601 }
602
603 WREG32(mmSDMA0_CNTL + sdma_offsets[i], f32_cntl);
604 }
605 }
606
607 /**
608 * sdma_v3_0_enable - stop the async dma engines
609 *
610 * @adev: amdgpu_device pointer
611 * @enable: enable/disable the DMA MEs.
612 *
613 * Halt or unhalt the async dma engines (VI).
614 */
sdma_v3_0_enable(struct amdgpu_device * adev,bool enable)615 static void sdma_v3_0_enable(struct amdgpu_device *adev, bool enable)
616 {
617 u32 f32_cntl;
618 int i;
619
620 if (!enable) {
621 sdma_v3_0_gfx_stop(adev);
622 sdma_v3_0_rlc_stop(adev);
623 }
624
625 for (i = 0; i < adev->sdma.num_instances; i++) {
626 f32_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
627 if (enable)
628 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 0);
629 else
630 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, 1);
631 WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], f32_cntl);
632 }
633 }
634
635 /**
636 * sdma_v3_0_gfx_resume - setup and start the async dma engines
637 *
638 * @adev: amdgpu_device pointer
639 *
640 * Set up the gfx DMA ring buffers and enable them (VI).
641 * Returns 0 for success, error for failure.
642 */
sdma_v3_0_gfx_resume(struct amdgpu_device * adev)643 static int sdma_v3_0_gfx_resume(struct amdgpu_device *adev)
644 {
645 struct amdgpu_ring *ring;
646 u32 rb_cntl, ib_cntl, wptr_poll_cntl;
647 u32 rb_bufsz;
648 u32 doorbell;
649 u64 wptr_gpu_addr;
650 int i, j, r;
651
652 for (i = 0; i < adev->sdma.num_instances; i++) {
653 ring = &adev->sdma.instance[i].ring;
654 amdgpu_ring_clear_ring(ring);
655
656 mutex_lock(&adev->srbm_mutex);
657 for (j = 0; j < 16; j++) {
658 vi_srbm_select(adev, 0, 0, 0, j);
659 /* SDMA GFX */
660 WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
661 WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
662 }
663 vi_srbm_select(adev, 0, 0, 0, 0);
664 mutex_unlock(&adev->srbm_mutex);
665
666 WREG32(mmSDMA0_TILING_CONFIG + sdma_offsets[i],
667 adev->gfx.config.gb_addr_config & 0x70);
668
669 WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
670
671 /* Set ring buffer size in dwords */
672 rb_bufsz = order_base_2(ring->ring_size / 4);
673 rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
674 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
675 #ifdef __BIG_ENDIAN
676 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
677 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
678 RPTR_WRITEBACK_SWAP_ENABLE, 1);
679 #endif
680 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
681
682 /* Initialize the ring buffer's read and write pointers */
683 ring->wptr = 0;
684 WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
685 sdma_v3_0_ring_set_wptr(ring);
686 WREG32(mmSDMA0_GFX_IB_RPTR + sdma_offsets[i], 0);
687 WREG32(mmSDMA0_GFX_IB_OFFSET + sdma_offsets[i], 0);
688
689 /* set the wb address whether it's enabled or not */
690 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
691 upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
692 WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
693 lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
694
695 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RPTR_WRITEBACK_ENABLE, 1);
696
697 WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
698 WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
699
700 doorbell = RREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i]);
701
702 if (ring->use_doorbell) {
703 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL,
704 OFFSET, ring->doorbell_index);
705 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 1);
706 } else {
707 doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE, 0);
708 }
709 WREG32(mmSDMA0_GFX_DOORBELL + sdma_offsets[i], doorbell);
710
711 /* setup the wptr shadow polling */
712 wptr_gpu_addr = ring->wptr_gpu_addr;
713
714 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO + sdma_offsets[i],
715 lower_32_bits(wptr_gpu_addr));
716 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI + sdma_offsets[i],
717 upper_32_bits(wptr_gpu_addr));
718 wptr_poll_cntl = RREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i]);
719 if (ring->use_pollmem) {
720 /*wptr polling is not enogh fast, directly clean the wptr register */
721 WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
722 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
723 SDMA0_GFX_RB_WPTR_POLL_CNTL,
724 ENABLE, 1);
725 } else {
726 wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
727 SDMA0_GFX_RB_WPTR_POLL_CNTL,
728 ENABLE, 0);
729 }
730 WREG32(mmSDMA0_GFX_RB_WPTR_POLL_CNTL + sdma_offsets[i], wptr_poll_cntl);
731
732 /* enable DMA RB */
733 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
734 WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
735
736 ib_cntl = RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]);
737 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
738 #ifdef __BIG_ENDIAN
739 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
740 #endif
741 /* enable DMA IBs */
742 WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
743
744 ring->sched.ready = true;
745 }
746
747 /* unhalt the MEs */
748 sdma_v3_0_enable(adev, true);
749 /* enable sdma ring preemption */
750 sdma_v3_0_ctx_switch_enable(adev, true);
751
752 for (i = 0; i < adev->sdma.num_instances; i++) {
753 ring = &adev->sdma.instance[i].ring;
754 r = amdgpu_ring_test_helper(ring);
755 if (r)
756 return r;
757
758 if (adev->mman.buffer_funcs_ring == ring)
759 amdgpu_ttm_set_buffer_funcs_status(adev, true);
760 }
761
762 return 0;
763 }
764
765 /**
766 * sdma_v3_0_rlc_resume - setup and start the async dma engines
767 *
768 * @adev: amdgpu_device pointer
769 *
770 * Set up the compute DMA queues and enable them (VI).
771 * Returns 0 for success, error for failure.
772 */
sdma_v3_0_rlc_resume(struct amdgpu_device * adev)773 static int sdma_v3_0_rlc_resume(struct amdgpu_device *adev)
774 {
775 /* XXX todo */
776 return 0;
777 }
778
779 /**
780 * sdma_v3_0_start - setup and start the async dma engines
781 *
782 * @adev: amdgpu_device pointer
783 *
784 * Set up the DMA engines and enable them (VI).
785 * Returns 0 for success, error for failure.
786 */
sdma_v3_0_start(struct amdgpu_device * adev)787 static int sdma_v3_0_start(struct amdgpu_device *adev)
788 {
789 int r;
790
791 /* disable sdma engine before programing it */
792 sdma_v3_0_ctx_switch_enable(adev, false);
793 sdma_v3_0_enable(adev, false);
794
795 /* start the gfx rings and rlc compute queues */
796 r = sdma_v3_0_gfx_resume(adev);
797 if (r)
798 return r;
799 r = sdma_v3_0_rlc_resume(adev);
800 if (r)
801 return r;
802
803 return 0;
804 }
805
806 /**
807 * sdma_v3_0_ring_test_ring - simple async dma engine test
808 *
809 * @ring: amdgpu_ring structure holding ring information
810 *
811 * Test the DMA engine by writing using it to write an
812 * value to memory. (VI).
813 * Returns 0 for success, error for failure.
814 */
sdma_v3_0_ring_test_ring(struct amdgpu_ring * ring)815 static int sdma_v3_0_ring_test_ring(struct amdgpu_ring *ring)
816 {
817 struct amdgpu_device *adev = ring->adev;
818 unsigned i;
819 unsigned index;
820 int r;
821 u32 tmp;
822 u64 gpu_addr;
823
824 r = amdgpu_device_wb_get(adev, &index);
825 if (r)
826 return r;
827
828 gpu_addr = adev->wb.gpu_addr + (index * 4);
829 tmp = 0xCAFEDEAD;
830 adev->wb.wb[index] = cpu_to_le32(tmp);
831
832 r = amdgpu_ring_alloc(ring, 5);
833 if (r)
834 goto error_free_wb;
835
836 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
837 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
838 amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
839 amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
840 amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1));
841 amdgpu_ring_write(ring, 0xDEADBEEF);
842 amdgpu_ring_commit(ring);
843
844 for (i = 0; i < adev->usec_timeout; i++) {
845 tmp = le32_to_cpu(adev->wb.wb[index]);
846 if (tmp == 0xDEADBEEF)
847 break;
848 udelay(1);
849 }
850
851 if (i >= adev->usec_timeout)
852 r = -ETIMEDOUT;
853
854 error_free_wb:
855 amdgpu_device_wb_free(adev, index);
856 return r;
857 }
858
859 /**
860 * sdma_v3_0_ring_test_ib - test an IB on the DMA engine
861 *
862 * @ring: amdgpu_ring structure holding ring information
863 * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
864 *
865 * Test a simple IB in the DMA ring (VI).
866 * Returns 0 on success, error on failure.
867 */
sdma_v3_0_ring_test_ib(struct amdgpu_ring * ring,long timeout)868 static int sdma_v3_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
869 {
870 struct amdgpu_device *adev = ring->adev;
871 struct amdgpu_ib ib;
872 struct dma_fence *f = NULL;
873 unsigned index;
874 u32 tmp = 0;
875 u64 gpu_addr;
876 long r;
877
878 r = amdgpu_device_wb_get(adev, &index);
879 if (r)
880 return r;
881
882 gpu_addr = adev->wb.gpu_addr + (index * 4);
883 tmp = 0xCAFEDEAD;
884 adev->wb.wb[index] = cpu_to_le32(tmp);
885 memset(&ib, 0, sizeof(ib));
886 r = amdgpu_ib_get(adev, NULL, 256,
887 AMDGPU_IB_POOL_DIRECT, &ib);
888 if (r)
889 goto err0;
890
891 ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
892 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
893 ib.ptr[1] = lower_32_bits(gpu_addr);
894 ib.ptr[2] = upper_32_bits(gpu_addr);
895 ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(1);
896 ib.ptr[4] = 0xDEADBEEF;
897 ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
898 ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
899 ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
900 ib.length_dw = 8;
901
902 r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
903 if (r)
904 goto err1;
905
906 r = dma_fence_wait_timeout(f, false, timeout);
907 if (r == 0) {
908 r = -ETIMEDOUT;
909 goto err1;
910 } else if (r < 0) {
911 goto err1;
912 }
913 tmp = le32_to_cpu(adev->wb.wb[index]);
914 if (tmp == 0xDEADBEEF)
915 r = 0;
916 else
917 r = -EINVAL;
918 err1:
919 amdgpu_ib_free(adev, &ib, NULL);
920 dma_fence_put(f);
921 err0:
922 amdgpu_device_wb_free(adev, index);
923 return r;
924 }
925
926 /**
927 * sdma_v3_0_vm_copy_pte - update PTEs by copying them from the GART
928 *
929 * @ib: indirect buffer to fill with commands
930 * @pe: addr of the page entry
931 * @src: src addr to copy from
932 * @count: number of page entries to update
933 *
934 * Update PTEs by copying them from the GART using sDMA (CIK).
935 */
sdma_v3_0_vm_copy_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t src,unsigned count)936 static void sdma_v3_0_vm_copy_pte(struct amdgpu_ib *ib,
937 uint64_t pe, uint64_t src,
938 unsigned count)
939 {
940 unsigned bytes = count * 8;
941
942 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
943 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
944 ib->ptr[ib->length_dw++] = bytes;
945 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
946 ib->ptr[ib->length_dw++] = lower_32_bits(src);
947 ib->ptr[ib->length_dw++] = upper_32_bits(src);
948 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
949 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
950 }
951
952 /**
953 * sdma_v3_0_vm_write_pte - update PTEs by writing them manually
954 *
955 * @ib: indirect buffer to fill with commands
956 * @pe: addr of the page entry
957 * @value: dst addr to write into pe
958 * @count: number of page entries to update
959 * @incr: increase next addr by incr bytes
960 *
961 * Update PTEs by writing them manually using sDMA (CIK).
962 */
sdma_v3_0_vm_write_pte(struct amdgpu_ib * ib,uint64_t pe,uint64_t value,unsigned count,uint32_t incr)963 static void sdma_v3_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
964 uint64_t value, unsigned count,
965 uint32_t incr)
966 {
967 unsigned ndw = count * 2;
968
969 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
970 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
971 ib->ptr[ib->length_dw++] = lower_32_bits(pe);
972 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
973 ib->ptr[ib->length_dw++] = ndw;
974 for (; ndw > 0; ndw -= 2) {
975 ib->ptr[ib->length_dw++] = lower_32_bits(value);
976 ib->ptr[ib->length_dw++] = upper_32_bits(value);
977 value += incr;
978 }
979 }
980
981 /**
982 * sdma_v3_0_vm_set_pte_pde - update the page tables using sDMA
983 *
984 * @ib: indirect buffer to fill with commands
985 * @pe: addr of the page entry
986 * @addr: dst addr to write into pe
987 * @count: number of page entries to update
988 * @incr: increase next addr by incr bytes
989 * @flags: access flags
990 *
991 * Update the page tables using sDMA (CIK).
992 */
sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib * ib,uint64_t pe,uint64_t addr,unsigned count,uint32_t incr,uint64_t flags)993 static void sdma_v3_0_vm_set_pte_pde(struct amdgpu_ib *ib, uint64_t pe,
994 uint64_t addr, unsigned count,
995 uint32_t incr, uint64_t flags)
996 {
997 /* for physically contiguous pages (vram) */
998 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_GEN_PTEPDE);
999 ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1000 ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1001 ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1002 ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1003 ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1004 ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1005 ib->ptr[ib->length_dw++] = incr; /* increment size */
1006 ib->ptr[ib->length_dw++] = 0;
1007 ib->ptr[ib->length_dw++] = count; /* number of entries */
1008 }
1009
1010 /**
1011 * sdma_v3_0_ring_pad_ib - pad the IB to the required number of dw
1012 *
1013 * @ring: amdgpu_ring structure holding ring information
1014 * @ib: indirect buffer to fill with padding
1015 *
1016 */
sdma_v3_0_ring_pad_ib(struct amdgpu_ring * ring,struct amdgpu_ib * ib)1017 static void sdma_v3_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1018 {
1019 struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1020 u32 pad_count;
1021 int i;
1022
1023 pad_count = (-ib->length_dw) & 7;
1024 for (i = 0; i < pad_count; i++)
1025 if (sdma && sdma->burst_nop && (i == 0))
1026 ib->ptr[ib->length_dw++] =
1027 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1028 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1029 else
1030 ib->ptr[ib->length_dw++] =
1031 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1032 }
1033
1034 /**
1035 * sdma_v3_0_ring_emit_pipeline_sync - sync the pipeline
1036 *
1037 * @ring: amdgpu_ring pointer
1038 *
1039 * Make sure all previous operations are completed (CIK).
1040 */
sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring * ring)1041 static void sdma_v3_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1042 {
1043 uint32_t seq = ring->fence_drv.sync_seq;
1044 uint64_t addr = ring->fence_drv.gpu_addr;
1045
1046 /* wait for idle */
1047 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1048 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1049 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3) | /* equal */
1050 SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(1));
1051 amdgpu_ring_write(ring, addr & 0xfffffffc);
1052 amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
1053 amdgpu_ring_write(ring, seq); /* reference */
1054 amdgpu_ring_write(ring, 0xffffffff); /* mask */
1055 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1056 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(4)); /* retry count, poll interval */
1057 }
1058
1059 /**
1060 * sdma_v3_0_ring_emit_vm_flush - cik vm flush using sDMA
1061 *
1062 * @ring: amdgpu_ring pointer
1063 * @vmid: vmid number to use
1064 * @pd_addr: address
1065 *
1066 * Update the page table base and flush the VM TLB
1067 * using sDMA (VI).
1068 */
sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring * ring,unsigned vmid,uint64_t pd_addr)1069 static void sdma_v3_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1070 unsigned vmid, uint64_t pd_addr)
1071 {
1072 amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1073
1074 /* wait for flush */
1075 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
1076 SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(0) |
1077 SDMA_PKT_POLL_REGMEM_HEADER_FUNC(0)); /* always */
1078 amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
1079 amdgpu_ring_write(ring, 0);
1080 amdgpu_ring_write(ring, 0); /* reference */
1081 amdgpu_ring_write(ring, 0); /* mask */
1082 amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
1083 SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(10)); /* retry count, poll interval */
1084 }
1085
sdma_v3_0_ring_emit_wreg(struct amdgpu_ring * ring,uint32_t reg,uint32_t val)1086 static void sdma_v3_0_ring_emit_wreg(struct amdgpu_ring *ring,
1087 uint32_t reg, uint32_t val)
1088 {
1089 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1090 SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1091 amdgpu_ring_write(ring, reg);
1092 amdgpu_ring_write(ring, val);
1093 }
1094
sdma_v3_0_early_init(void * handle)1095 static int sdma_v3_0_early_init(void *handle)
1096 {
1097 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1098
1099 switch (adev->asic_type) {
1100 case CHIP_STONEY:
1101 adev->sdma.num_instances = 1;
1102 break;
1103 default:
1104 adev->sdma.num_instances = SDMA_MAX_INSTANCE;
1105 break;
1106 }
1107
1108 sdma_v3_0_set_ring_funcs(adev);
1109 sdma_v3_0_set_buffer_funcs(adev);
1110 sdma_v3_0_set_vm_pte_funcs(adev);
1111 sdma_v3_0_set_irq_funcs(adev);
1112
1113 return 0;
1114 }
1115
sdma_v3_0_sw_init(void * handle)1116 static int sdma_v3_0_sw_init(void *handle)
1117 {
1118 struct amdgpu_ring *ring;
1119 int r, i;
1120 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1121
1122 /* SDMA trap event */
1123 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_TRAP,
1124 &adev->sdma.trap_irq);
1125 if (r)
1126 return r;
1127
1128 /* SDMA Privileged inst */
1129 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, 241,
1130 &adev->sdma.illegal_inst_irq);
1131 if (r)
1132 return r;
1133
1134 /* SDMA Privileged inst */
1135 r = amdgpu_irq_add_id(adev, AMDGPU_IRQ_CLIENTID_LEGACY, VISLANDS30_IV_SRCID_SDMA_SRBM_WRITE,
1136 &adev->sdma.illegal_inst_irq);
1137 if (r)
1138 return r;
1139
1140 r = sdma_v3_0_init_microcode(adev);
1141 if (r) {
1142 DRM_ERROR("Failed to load sdma firmware!\n");
1143 return r;
1144 }
1145
1146 for (i = 0; i < adev->sdma.num_instances; i++) {
1147 ring = &adev->sdma.instance[i].ring;
1148 ring->ring_obj = NULL;
1149 if (!amdgpu_sriov_vf(adev)) {
1150 ring->use_doorbell = true;
1151 ring->doorbell_index = adev->doorbell_index.sdma_engine[i];
1152 } else {
1153 ring->use_pollmem = true;
1154 }
1155
1156 sprintf(ring->name, "sdma%d", i);
1157 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1158 (i == 0) ? AMDGPU_SDMA_IRQ_INSTANCE0 :
1159 AMDGPU_SDMA_IRQ_INSTANCE1,
1160 AMDGPU_RING_PRIO_DEFAULT, NULL);
1161 if (r)
1162 return r;
1163 }
1164
1165 return r;
1166 }
1167
sdma_v3_0_sw_fini(void * handle)1168 static int sdma_v3_0_sw_fini(void *handle)
1169 {
1170 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1171 int i;
1172
1173 for (i = 0; i < adev->sdma.num_instances; i++)
1174 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1175
1176 sdma_v3_0_free_microcode(adev);
1177 return 0;
1178 }
1179
sdma_v3_0_hw_init(void * handle)1180 static int sdma_v3_0_hw_init(void *handle)
1181 {
1182 int r;
1183 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1184
1185 sdma_v3_0_init_golden_registers(adev);
1186
1187 r = sdma_v3_0_start(adev);
1188 if (r)
1189 return r;
1190
1191 return r;
1192 }
1193
sdma_v3_0_hw_fini(void * handle)1194 static int sdma_v3_0_hw_fini(void *handle)
1195 {
1196 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1197
1198 sdma_v3_0_ctx_switch_enable(adev, false);
1199 sdma_v3_0_enable(adev, false);
1200
1201 return 0;
1202 }
1203
sdma_v3_0_suspend(void * handle)1204 static int sdma_v3_0_suspend(void *handle)
1205 {
1206 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1207
1208 return sdma_v3_0_hw_fini(adev);
1209 }
1210
sdma_v3_0_resume(void * handle)1211 static int sdma_v3_0_resume(void *handle)
1212 {
1213 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1214
1215 return sdma_v3_0_hw_init(adev);
1216 }
1217
sdma_v3_0_is_idle(void * handle)1218 static bool sdma_v3_0_is_idle(void *handle)
1219 {
1220 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1221 u32 tmp = RREG32(mmSRBM_STATUS2);
1222
1223 if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
1224 SRBM_STATUS2__SDMA1_BUSY_MASK))
1225 return false;
1226
1227 return true;
1228 }
1229
sdma_v3_0_wait_for_idle(void * handle)1230 static int sdma_v3_0_wait_for_idle(void *handle)
1231 {
1232 unsigned i;
1233 u32 tmp;
1234 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1235
1236 for (i = 0; i < adev->usec_timeout; i++) {
1237 tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
1238 SRBM_STATUS2__SDMA1_BUSY_MASK);
1239
1240 if (!tmp)
1241 return 0;
1242 udelay(1);
1243 }
1244 return -ETIMEDOUT;
1245 }
1246
sdma_v3_0_check_soft_reset(void * handle)1247 static bool sdma_v3_0_check_soft_reset(void *handle)
1248 {
1249 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1250 u32 srbm_soft_reset = 0;
1251 u32 tmp = RREG32(mmSRBM_STATUS2);
1252
1253 if ((tmp & SRBM_STATUS2__SDMA_BUSY_MASK) ||
1254 (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK)) {
1255 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
1256 srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
1257 }
1258
1259 if (srbm_soft_reset) {
1260 adev->sdma.srbm_soft_reset = srbm_soft_reset;
1261 return true;
1262 } else {
1263 adev->sdma.srbm_soft_reset = 0;
1264 return false;
1265 }
1266 }
1267
sdma_v3_0_pre_soft_reset(void * handle)1268 static int sdma_v3_0_pre_soft_reset(void *handle)
1269 {
1270 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1271 u32 srbm_soft_reset = 0;
1272
1273 if (!adev->sdma.srbm_soft_reset)
1274 return 0;
1275
1276 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1277
1278 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1279 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1280 sdma_v3_0_ctx_switch_enable(adev, false);
1281 sdma_v3_0_enable(adev, false);
1282 }
1283
1284 return 0;
1285 }
1286
sdma_v3_0_post_soft_reset(void * handle)1287 static int sdma_v3_0_post_soft_reset(void *handle)
1288 {
1289 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1290 u32 srbm_soft_reset = 0;
1291
1292 if (!adev->sdma.srbm_soft_reset)
1293 return 0;
1294
1295 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1296
1297 if (REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA) ||
1298 REG_GET_FIELD(srbm_soft_reset, SRBM_SOFT_RESET, SOFT_RESET_SDMA1)) {
1299 sdma_v3_0_gfx_resume(adev);
1300 sdma_v3_0_rlc_resume(adev);
1301 }
1302
1303 return 0;
1304 }
1305
sdma_v3_0_soft_reset(void * handle)1306 static int sdma_v3_0_soft_reset(void *handle)
1307 {
1308 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1309 u32 srbm_soft_reset = 0;
1310 u32 tmp;
1311
1312 if (!adev->sdma.srbm_soft_reset)
1313 return 0;
1314
1315 srbm_soft_reset = adev->sdma.srbm_soft_reset;
1316
1317 if (srbm_soft_reset) {
1318 tmp = RREG32(mmSRBM_SOFT_RESET);
1319 tmp |= srbm_soft_reset;
1320 dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
1321 WREG32(mmSRBM_SOFT_RESET, tmp);
1322 tmp = RREG32(mmSRBM_SOFT_RESET);
1323
1324 udelay(50);
1325
1326 tmp &= ~srbm_soft_reset;
1327 WREG32(mmSRBM_SOFT_RESET, tmp);
1328 tmp = RREG32(mmSRBM_SOFT_RESET);
1329
1330 /* Wait a little for things to settle down */
1331 udelay(50);
1332 }
1333
1334 return 0;
1335 }
1336
sdma_v3_0_set_trap_irq_state(struct amdgpu_device * adev,struct amdgpu_irq_src * source,unsigned type,enum amdgpu_interrupt_state state)1337 static int sdma_v3_0_set_trap_irq_state(struct amdgpu_device *adev,
1338 struct amdgpu_irq_src *source,
1339 unsigned type,
1340 enum amdgpu_interrupt_state state)
1341 {
1342 u32 sdma_cntl;
1343
1344 switch (type) {
1345 case AMDGPU_SDMA_IRQ_INSTANCE0:
1346 switch (state) {
1347 case AMDGPU_IRQ_STATE_DISABLE:
1348 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1349 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1350 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1351 break;
1352 case AMDGPU_IRQ_STATE_ENABLE:
1353 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
1354 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1355 WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
1356 break;
1357 default:
1358 break;
1359 }
1360 break;
1361 case AMDGPU_SDMA_IRQ_INSTANCE1:
1362 switch (state) {
1363 case AMDGPU_IRQ_STATE_DISABLE:
1364 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1365 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 0);
1366 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1367 break;
1368 case AMDGPU_IRQ_STATE_ENABLE:
1369 sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
1370 sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE, 1);
1371 WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
1372 break;
1373 default:
1374 break;
1375 }
1376 break;
1377 default:
1378 break;
1379 }
1380 return 0;
1381 }
1382
sdma_v3_0_process_trap_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1383 static int sdma_v3_0_process_trap_irq(struct amdgpu_device *adev,
1384 struct amdgpu_irq_src *source,
1385 struct amdgpu_iv_entry *entry)
1386 {
1387 u8 instance_id, queue_id;
1388
1389 instance_id = (entry->ring_id & 0x3) >> 0;
1390 queue_id = (entry->ring_id & 0xc) >> 2;
1391 DRM_DEBUG("IH: SDMA trap\n");
1392 switch (instance_id) {
1393 case 0:
1394 switch (queue_id) {
1395 case 0:
1396 amdgpu_fence_process(&adev->sdma.instance[0].ring);
1397 break;
1398 case 1:
1399 /* XXX compute */
1400 break;
1401 case 2:
1402 /* XXX compute */
1403 break;
1404 }
1405 break;
1406 case 1:
1407 switch (queue_id) {
1408 case 0:
1409 amdgpu_fence_process(&adev->sdma.instance[1].ring);
1410 break;
1411 case 1:
1412 /* XXX compute */
1413 break;
1414 case 2:
1415 /* XXX compute */
1416 break;
1417 }
1418 break;
1419 }
1420 return 0;
1421 }
1422
sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device * adev,struct amdgpu_irq_src * source,struct amdgpu_iv_entry * entry)1423 static int sdma_v3_0_process_illegal_inst_irq(struct amdgpu_device *adev,
1424 struct amdgpu_irq_src *source,
1425 struct amdgpu_iv_entry *entry)
1426 {
1427 u8 instance_id, queue_id;
1428
1429 DRM_ERROR("Illegal instruction in SDMA command stream\n");
1430 instance_id = (entry->ring_id & 0x3) >> 0;
1431 queue_id = (entry->ring_id & 0xc) >> 2;
1432
1433 if (instance_id <= 1 && queue_id == 0)
1434 drm_sched_fault(&adev->sdma.instance[instance_id].ring.sched);
1435 return 0;
1436 }
1437
sdma_v3_0_update_sdma_medium_grain_clock_gating(struct amdgpu_device * adev,bool enable)1438 static void sdma_v3_0_update_sdma_medium_grain_clock_gating(
1439 struct amdgpu_device *adev,
1440 bool enable)
1441 {
1442 uint32_t temp, data;
1443 int i;
1444
1445 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
1446 for (i = 0; i < adev->sdma.num_instances; i++) {
1447 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1448 data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1449 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1450 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1451 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1452 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1453 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1454 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1455 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
1456 if (data != temp)
1457 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1458 }
1459 } else {
1460 for (i = 0; i < adev->sdma.num_instances; i++) {
1461 temp = data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i]);
1462 data |= SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
1463 SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
1464 SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
1465 SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
1466 SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
1467 SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
1468 SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
1469 SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK;
1470
1471 if (data != temp)
1472 WREG32(mmSDMA0_CLK_CTRL + sdma_offsets[i], data);
1473 }
1474 }
1475 }
1476
sdma_v3_0_update_sdma_medium_grain_light_sleep(struct amdgpu_device * adev,bool enable)1477 static void sdma_v3_0_update_sdma_medium_grain_light_sleep(
1478 struct amdgpu_device *adev,
1479 bool enable)
1480 {
1481 uint32_t temp, data;
1482 int i;
1483
1484 if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
1485 for (i = 0; i < adev->sdma.num_instances; i++) {
1486 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1487 data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1488
1489 if (temp != data)
1490 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1491 }
1492 } else {
1493 for (i = 0; i < adev->sdma.num_instances; i++) {
1494 temp = data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i]);
1495 data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
1496
1497 if (temp != data)
1498 WREG32(mmSDMA0_POWER_CNTL + sdma_offsets[i], data);
1499 }
1500 }
1501 }
1502
sdma_v3_0_set_clockgating_state(void * handle,enum amd_clockgating_state state)1503 static int sdma_v3_0_set_clockgating_state(void *handle,
1504 enum amd_clockgating_state state)
1505 {
1506 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1507
1508 if (amdgpu_sriov_vf(adev))
1509 return 0;
1510
1511 switch (adev->asic_type) {
1512 case CHIP_FIJI:
1513 case CHIP_CARRIZO:
1514 case CHIP_STONEY:
1515 sdma_v3_0_update_sdma_medium_grain_clock_gating(adev,
1516 state == AMD_CG_STATE_GATE);
1517 sdma_v3_0_update_sdma_medium_grain_light_sleep(adev,
1518 state == AMD_CG_STATE_GATE);
1519 break;
1520 default:
1521 break;
1522 }
1523 return 0;
1524 }
1525
sdma_v3_0_set_powergating_state(void * handle,enum amd_powergating_state state)1526 static int sdma_v3_0_set_powergating_state(void *handle,
1527 enum amd_powergating_state state)
1528 {
1529 return 0;
1530 }
1531
sdma_v3_0_get_clockgating_state(void * handle,u64 * flags)1532 static void sdma_v3_0_get_clockgating_state(void *handle, u64 *flags)
1533 {
1534 struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1535 int data;
1536
1537 if (amdgpu_sriov_vf(adev))
1538 *flags = 0;
1539
1540 /* AMD_CG_SUPPORT_SDMA_MGCG */
1541 data = RREG32(mmSDMA0_CLK_CTRL + sdma_offsets[0]);
1542 if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK))
1543 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
1544
1545 /* AMD_CG_SUPPORT_SDMA_LS */
1546 data = RREG32(mmSDMA0_POWER_CNTL + sdma_offsets[0]);
1547 if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
1548 *flags |= AMD_CG_SUPPORT_SDMA_LS;
1549 }
1550
1551 static const struct amd_ip_funcs sdma_v3_0_ip_funcs = {
1552 .name = "sdma_v3_0",
1553 .early_init = sdma_v3_0_early_init,
1554 .late_init = NULL,
1555 .sw_init = sdma_v3_0_sw_init,
1556 .sw_fini = sdma_v3_0_sw_fini,
1557 .hw_init = sdma_v3_0_hw_init,
1558 .hw_fini = sdma_v3_0_hw_fini,
1559 .suspend = sdma_v3_0_suspend,
1560 .resume = sdma_v3_0_resume,
1561 .is_idle = sdma_v3_0_is_idle,
1562 .wait_for_idle = sdma_v3_0_wait_for_idle,
1563 .check_soft_reset = sdma_v3_0_check_soft_reset,
1564 .pre_soft_reset = sdma_v3_0_pre_soft_reset,
1565 .post_soft_reset = sdma_v3_0_post_soft_reset,
1566 .soft_reset = sdma_v3_0_soft_reset,
1567 .set_clockgating_state = sdma_v3_0_set_clockgating_state,
1568 .set_powergating_state = sdma_v3_0_set_powergating_state,
1569 .get_clockgating_state = sdma_v3_0_get_clockgating_state,
1570 };
1571
1572 static const struct amdgpu_ring_funcs sdma_v3_0_ring_funcs = {
1573 .type = AMDGPU_RING_TYPE_SDMA,
1574 .align_mask = 0xf,
1575 .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
1576 .support_64bit_ptrs = false,
1577 .secure_submission_supported = true,
1578 .get_rptr = sdma_v3_0_ring_get_rptr,
1579 .get_wptr = sdma_v3_0_ring_get_wptr,
1580 .set_wptr = sdma_v3_0_ring_set_wptr,
1581 .emit_frame_size =
1582 6 + /* sdma_v3_0_ring_emit_hdp_flush */
1583 3 + /* hdp invalidate */
1584 6 + /* sdma_v3_0_ring_emit_pipeline_sync */
1585 VI_FLUSH_GPU_TLB_NUM_WREG * 3 + 6 + /* sdma_v3_0_ring_emit_vm_flush */
1586 10 + 10 + 10, /* sdma_v3_0_ring_emit_fence x3 for user fence, vm fence */
1587 .emit_ib_size = 7 + 6, /* sdma_v3_0_ring_emit_ib */
1588 .emit_ib = sdma_v3_0_ring_emit_ib,
1589 .emit_fence = sdma_v3_0_ring_emit_fence,
1590 .emit_pipeline_sync = sdma_v3_0_ring_emit_pipeline_sync,
1591 .emit_vm_flush = sdma_v3_0_ring_emit_vm_flush,
1592 .emit_hdp_flush = sdma_v3_0_ring_emit_hdp_flush,
1593 .test_ring = sdma_v3_0_ring_test_ring,
1594 .test_ib = sdma_v3_0_ring_test_ib,
1595 .insert_nop = sdma_v3_0_ring_insert_nop,
1596 .pad_ib = sdma_v3_0_ring_pad_ib,
1597 .emit_wreg = sdma_v3_0_ring_emit_wreg,
1598 };
1599
sdma_v3_0_set_ring_funcs(struct amdgpu_device * adev)1600 static void sdma_v3_0_set_ring_funcs(struct amdgpu_device *adev)
1601 {
1602 int i;
1603
1604 for (i = 0; i < adev->sdma.num_instances; i++) {
1605 adev->sdma.instance[i].ring.funcs = &sdma_v3_0_ring_funcs;
1606 adev->sdma.instance[i].ring.me = i;
1607 }
1608 }
1609
1610 static const struct amdgpu_irq_src_funcs sdma_v3_0_trap_irq_funcs = {
1611 .set = sdma_v3_0_set_trap_irq_state,
1612 .process = sdma_v3_0_process_trap_irq,
1613 };
1614
1615 static const struct amdgpu_irq_src_funcs sdma_v3_0_illegal_inst_irq_funcs = {
1616 .process = sdma_v3_0_process_illegal_inst_irq,
1617 };
1618
sdma_v3_0_set_irq_funcs(struct amdgpu_device * adev)1619 static void sdma_v3_0_set_irq_funcs(struct amdgpu_device *adev)
1620 {
1621 adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
1622 adev->sdma.trap_irq.funcs = &sdma_v3_0_trap_irq_funcs;
1623 adev->sdma.illegal_inst_irq.funcs = &sdma_v3_0_illegal_inst_irq_funcs;
1624 }
1625
1626 /**
1627 * sdma_v3_0_emit_copy_buffer - copy buffer using the sDMA engine
1628 *
1629 * @ib: indirect buffer to copy to
1630 * @src_offset: src GPU address
1631 * @dst_offset: dst GPU address
1632 * @byte_count: number of bytes to xfer
1633 * @tmz: unused
1634 *
1635 * Copy GPU buffers using the DMA engine (VI).
1636 * Used by the amdgpu ttm implementation to move pages if
1637 * registered as the asic copy callback.
1638 */
sdma_v3_0_emit_copy_buffer(struct amdgpu_ib * ib,uint64_t src_offset,uint64_t dst_offset,uint32_t byte_count,bool tmz)1639 static void sdma_v3_0_emit_copy_buffer(struct amdgpu_ib *ib,
1640 uint64_t src_offset,
1641 uint64_t dst_offset,
1642 uint32_t byte_count,
1643 bool tmz)
1644 {
1645 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1646 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1647 ib->ptr[ib->length_dw++] = byte_count;
1648 ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1649 ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
1650 ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
1651 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1652 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1653 }
1654
1655 /**
1656 * sdma_v3_0_emit_fill_buffer - fill buffer using the sDMA engine
1657 *
1658 * @ib: indirect buffer to copy to
1659 * @src_data: value to write to buffer
1660 * @dst_offset: dst GPU address
1661 * @byte_count: number of bytes to xfer
1662 *
1663 * Fill GPU buffers using the DMA engine (VI).
1664 */
sdma_v3_0_emit_fill_buffer(struct amdgpu_ib * ib,uint32_t src_data,uint64_t dst_offset,uint32_t byte_count)1665 static void sdma_v3_0_emit_fill_buffer(struct amdgpu_ib *ib,
1666 uint32_t src_data,
1667 uint64_t dst_offset,
1668 uint32_t byte_count)
1669 {
1670 ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
1671 ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
1672 ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
1673 ib->ptr[ib->length_dw++] = src_data;
1674 ib->ptr[ib->length_dw++] = byte_count;
1675 }
1676
1677 static const struct amdgpu_buffer_funcs sdma_v3_0_buffer_funcs = {
1678 .copy_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1679 .copy_num_dw = 7,
1680 .emit_copy_buffer = sdma_v3_0_emit_copy_buffer,
1681
1682 .fill_max_bytes = 0x3fffe0, /* not 0x3fffff due to HW limitation */
1683 .fill_num_dw = 5,
1684 .emit_fill_buffer = sdma_v3_0_emit_fill_buffer,
1685 };
1686
sdma_v3_0_set_buffer_funcs(struct amdgpu_device * adev)1687 static void sdma_v3_0_set_buffer_funcs(struct amdgpu_device *adev)
1688 {
1689 adev->mman.buffer_funcs = &sdma_v3_0_buffer_funcs;
1690 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
1691 }
1692
1693 static const struct amdgpu_vm_pte_funcs sdma_v3_0_vm_pte_funcs = {
1694 .copy_pte_num_dw = 7,
1695 .copy_pte = sdma_v3_0_vm_copy_pte,
1696
1697 .write_pte = sdma_v3_0_vm_write_pte,
1698 .set_pte_pde = sdma_v3_0_vm_set_pte_pde,
1699 };
1700
sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device * adev)1701 static void sdma_v3_0_set_vm_pte_funcs(struct amdgpu_device *adev)
1702 {
1703 unsigned i;
1704
1705 adev->vm_manager.vm_pte_funcs = &sdma_v3_0_vm_pte_funcs;
1706 for (i = 0; i < adev->sdma.num_instances; i++) {
1707 adev->vm_manager.vm_pte_scheds[i] =
1708 &adev->sdma.instance[i].ring.sched;
1709 }
1710 adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
1711 }
1712
1713 const struct amdgpu_ip_block_version sdma_v3_0_ip_block =
1714 {
1715 .type = AMD_IP_BLOCK_TYPE_SDMA,
1716 .major = 3,
1717 .minor = 0,
1718 .rev = 0,
1719 .funcs = &sdma_v3_0_ip_funcs,
1720 };
1721
1722 const struct amdgpu_ip_block_version sdma_v3_1_ip_block =
1723 {
1724 .type = AMD_IP_BLOCK_TYPE_SDMA,
1725 .major = 3,
1726 .minor = 1,
1727 .rev = 0,
1728 .funcs = &sdma_v3_0_ip_funcs,
1729 };
1730