1 #ifndef _HFI1_SDMA_H
2 #define _HFI1_SDMA_H
3 /*
4 * Copyright(c) 2015, 2016 Intel Corporation.
5 *
6 * This file is provided under a dual BSD/GPLv2 license. When using or
7 * redistributing this file, you may do so under either license.
8 *
9 * GPL LICENSE SUMMARY
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of version 2 of the GNU General Public License as
13 * published by the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * BSD LICENSE
21 *
22 * Redistribution and use in source and binary forms, with or without
23 * modification, are permitted provided that the following conditions
24 * are met:
25 *
26 * - Redistributions of source code must retain the above copyright
27 * notice, this list of conditions and the following disclaimer.
28 * - Redistributions in binary form must reproduce the above copyright
29 * notice, this list of conditions and the following disclaimer in
30 * the documentation and/or other materials provided with the
31 * distribution.
32 * - Neither the name of Intel Corporation nor the names of its
33 * contributors may be used to endorse or promote products derived
34 * from this software without specific prior written permission.
35 *
36 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
37 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
38 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
39 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
40 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
41 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
42 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
43 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
44 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
46 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
47 *
48 */
49
50 #include <linux/types.h>
51 #include <linux/list.h>
52 #include <asm/byteorder.h>
53 #include <linux/workqueue.h>
54 #include <linux/rculist.h>
55
56 #include "hfi.h"
57 #include "verbs.h"
58 #include "sdma_txreq.h"
59
60 /* Hardware limit */
61 #define MAX_DESC 64
62 /* Hardware limit for SDMA packet size */
63 #define MAX_SDMA_PKT_SIZE ((16 * 1024) - 1)
64
65 #define SDMA_TXREQ_S_OK 0
66 #define SDMA_TXREQ_S_SENDERROR 1
67 #define SDMA_TXREQ_S_ABORTED 2
68 #define SDMA_TXREQ_S_SHUTDOWN 3
69
70 /* flags bits */
71 #define SDMA_TXREQ_F_URGENT 0x0001
72 #define SDMA_TXREQ_F_AHG_COPY 0x0002
73 #define SDMA_TXREQ_F_USE_AHG 0x0004
74
75 #define SDMA_MAP_NONE 0
76 #define SDMA_MAP_SINGLE 1
77 #define SDMA_MAP_PAGE 2
78
79 #define SDMA_AHG_VALUE_MASK 0xffff
80 #define SDMA_AHG_VALUE_SHIFT 0
81 #define SDMA_AHG_INDEX_MASK 0xf
82 #define SDMA_AHG_INDEX_SHIFT 16
83 #define SDMA_AHG_FIELD_LEN_MASK 0xf
84 #define SDMA_AHG_FIELD_LEN_SHIFT 20
85 #define SDMA_AHG_FIELD_START_MASK 0x1f
86 #define SDMA_AHG_FIELD_START_SHIFT 24
87 #define SDMA_AHG_UPDATE_ENABLE_MASK 0x1
88 #define SDMA_AHG_UPDATE_ENABLE_SHIFT 31
89
90 /* AHG modes */
91
92 /*
93 * Be aware the ordering and values
94 * for SDMA_AHG_APPLY_UPDATE[123]
95 * are assumed in generating a skip
96 * count in submit_tx() in sdma.c
97 */
98 #define SDMA_AHG_NO_AHG 0
99 #define SDMA_AHG_COPY 1
100 #define SDMA_AHG_APPLY_UPDATE1 2
101 #define SDMA_AHG_APPLY_UPDATE2 3
102 #define SDMA_AHG_APPLY_UPDATE3 4
103
104 /*
105 * Bits defined in the send DMA descriptor.
106 */
107 #define SDMA_DESC0_FIRST_DESC_FLAG BIT_ULL(63)
108 #define SDMA_DESC0_LAST_DESC_FLAG BIT_ULL(62)
109 #define SDMA_DESC0_BYTE_COUNT_SHIFT 48
110 #define SDMA_DESC0_BYTE_COUNT_WIDTH 14
111 #define SDMA_DESC0_BYTE_COUNT_MASK \
112 ((1ULL << SDMA_DESC0_BYTE_COUNT_WIDTH) - 1)
113 #define SDMA_DESC0_BYTE_COUNT_SMASK \
114 (SDMA_DESC0_BYTE_COUNT_MASK << SDMA_DESC0_BYTE_COUNT_SHIFT)
115 #define SDMA_DESC0_PHY_ADDR_SHIFT 0
116 #define SDMA_DESC0_PHY_ADDR_WIDTH 48
117 #define SDMA_DESC0_PHY_ADDR_MASK \
118 ((1ULL << SDMA_DESC0_PHY_ADDR_WIDTH) - 1)
119 #define SDMA_DESC0_PHY_ADDR_SMASK \
120 (SDMA_DESC0_PHY_ADDR_MASK << SDMA_DESC0_PHY_ADDR_SHIFT)
121
122 #define SDMA_DESC1_HEADER_UPDATE1_SHIFT 32
123 #define SDMA_DESC1_HEADER_UPDATE1_WIDTH 32
124 #define SDMA_DESC1_HEADER_UPDATE1_MASK \
125 ((1ULL << SDMA_DESC1_HEADER_UPDATE1_WIDTH) - 1)
126 #define SDMA_DESC1_HEADER_UPDATE1_SMASK \
127 (SDMA_DESC1_HEADER_UPDATE1_MASK << SDMA_DESC1_HEADER_UPDATE1_SHIFT)
128 #define SDMA_DESC1_HEADER_MODE_SHIFT 13
129 #define SDMA_DESC1_HEADER_MODE_WIDTH 3
130 #define SDMA_DESC1_HEADER_MODE_MASK \
131 ((1ULL << SDMA_DESC1_HEADER_MODE_WIDTH) - 1)
132 #define SDMA_DESC1_HEADER_MODE_SMASK \
133 (SDMA_DESC1_HEADER_MODE_MASK << SDMA_DESC1_HEADER_MODE_SHIFT)
134 #define SDMA_DESC1_HEADER_INDEX_SHIFT 8
135 #define SDMA_DESC1_HEADER_INDEX_WIDTH 5
136 #define SDMA_DESC1_HEADER_INDEX_MASK \
137 ((1ULL << SDMA_DESC1_HEADER_INDEX_WIDTH) - 1)
138 #define SDMA_DESC1_HEADER_INDEX_SMASK \
139 (SDMA_DESC1_HEADER_INDEX_MASK << SDMA_DESC1_HEADER_INDEX_SHIFT)
140 #define SDMA_DESC1_HEADER_DWS_SHIFT 4
141 #define SDMA_DESC1_HEADER_DWS_WIDTH 4
142 #define SDMA_DESC1_HEADER_DWS_MASK \
143 ((1ULL << SDMA_DESC1_HEADER_DWS_WIDTH) - 1)
144 #define SDMA_DESC1_HEADER_DWS_SMASK \
145 (SDMA_DESC1_HEADER_DWS_MASK << SDMA_DESC1_HEADER_DWS_SHIFT)
146 #define SDMA_DESC1_GENERATION_SHIFT 2
147 #define SDMA_DESC1_GENERATION_WIDTH 2
148 #define SDMA_DESC1_GENERATION_MASK \
149 ((1ULL << SDMA_DESC1_GENERATION_WIDTH) - 1)
150 #define SDMA_DESC1_GENERATION_SMASK \
151 (SDMA_DESC1_GENERATION_MASK << SDMA_DESC1_GENERATION_SHIFT)
152 #define SDMA_DESC1_INT_REQ_FLAG BIT_ULL(1)
153 #define SDMA_DESC1_HEAD_TO_HOST_FLAG BIT_ULL(0)
154
155 enum sdma_states {
156 sdma_state_s00_hw_down,
157 sdma_state_s10_hw_start_up_halt_wait,
158 sdma_state_s15_hw_start_up_clean_wait,
159 sdma_state_s20_idle,
160 sdma_state_s30_sw_clean_up_wait,
161 sdma_state_s40_hw_clean_up_wait,
162 sdma_state_s50_hw_halt_wait,
163 sdma_state_s60_idle_halt_wait,
164 sdma_state_s80_hw_freeze,
165 sdma_state_s82_freeze_sw_clean,
166 sdma_state_s99_running,
167 };
168
169 enum sdma_events {
170 sdma_event_e00_go_hw_down,
171 sdma_event_e10_go_hw_start,
172 sdma_event_e15_hw_halt_done,
173 sdma_event_e25_hw_clean_up_done,
174 sdma_event_e30_go_running,
175 sdma_event_e40_sw_cleaned,
176 sdma_event_e50_hw_cleaned,
177 sdma_event_e60_hw_halted,
178 sdma_event_e70_go_idle,
179 sdma_event_e80_hw_freeze,
180 sdma_event_e81_hw_frozen,
181 sdma_event_e82_hw_unfreeze,
182 sdma_event_e85_link_down,
183 sdma_event_e90_sw_halted,
184 };
185
186 struct sdma_set_state_action {
187 unsigned op_enable:1;
188 unsigned op_intenable:1;
189 unsigned op_halt:1;
190 unsigned op_cleanup:1;
191 unsigned go_s99_running_tofalse:1;
192 unsigned go_s99_running_totrue:1;
193 };
194
195 struct sdma_state {
196 struct kref kref;
197 struct completion comp;
198 enum sdma_states current_state;
199 unsigned current_op;
200 unsigned go_s99_running;
201 /* debugging/development */
202 enum sdma_states previous_state;
203 unsigned previous_op;
204 enum sdma_events last_event;
205 };
206
207 /**
208 * DOC: sdma exported routines
209 *
210 * These sdma routines fit into three categories:
211 * - The SDMA API for building and submitting packets
212 * to the ring
213 *
214 * - Initialization and tear down routines to buildup
215 * and tear down SDMA
216 *
217 * - ISR entrances to handle interrupts, state changes
218 * and errors
219 */
220
221 /**
222 * DOC: sdma PSM/verbs API
223 *
224 * The sdma API is designed to be used by both PSM
225 * and verbs to supply packets to the SDMA ring.
226 *
227 * The usage of the API is as follows:
228 *
229 * Embed a struct iowait in the QP or
230 * PQ. The iowait should be initialized with a
231 * call to iowait_init().
232 *
233 * The user of the API should create an allocation method
234 * for their version of the txreq. slabs, pre-allocated lists,
235 * and dma pools can be used. Once the user's overload of
236 * the sdma_txreq has been allocated, the sdma_txreq member
237 * must be initialized with sdma_txinit() or sdma_txinit_ahg().
238 *
239 * The txreq must be declared with the sdma_txreq first.
240 *
241 * The tx request, once initialized, is manipulated with calls to
242 * sdma_txadd_daddr(), sdma_txadd_page(), or sdma_txadd_kvaddr()
243 * for each disjoint memory location. It is the user's responsibility
244 * to understand the packet boundaries and page boundaries to do the
245 * appropriate number of sdma_txadd_* calls.. The user
246 * must be prepared to deal with failures from these routines due to
247 * either memory allocation or dma_mapping failures.
248 *
249 * The mapping specifics for each memory location are recorded
250 * in the tx. Memory locations added with sdma_txadd_page()
251 * and sdma_txadd_kvaddr() are automatically mapped when added
252 * to the tx and nmapped as part of the progress processing in the
253 * SDMA interrupt handling.
254 *
255 * sdma_txadd_daddr() is used to add an dma_addr_t memory to the
256 * tx. An example of a use case would be a pre-allocated
257 * set of headers allocated via dma_pool_alloc() or
258 * dma_alloc_coherent(). For these memory locations, it
259 * is the responsibility of the user to handle that unmapping.
260 * (This would usually be at an unload or job termination.)
261 *
262 * The routine sdma_send_txreq() is used to submit
263 * a tx to the ring after the appropriate number of
264 * sdma_txadd_* have been done.
265 *
266 * If it is desired to send a burst of sdma_txreqs, sdma_send_txlist()
267 * can be used to submit a list of packets.
268 *
269 * The user is free to use the link overhead in the struct sdma_txreq as
270 * long as the tx isn't in flight.
271 *
272 * The extreme degenerate case of the number of descriptors
273 * exceeding the ring size is automatically handled as
274 * memory locations are added. An overflow of the descriptor
275 * array that is part of the sdma_txreq is also automatically
276 * handled.
277 *
278 */
279
280 /**
281 * DOC: Infrastructure calls
282 *
283 * sdma_init() is used to initialize data structures and
284 * CSRs for the desired number of SDMA engines.
285 *
286 * sdma_start() is used to kick the SDMA engines initialized
287 * with sdma_init(). Interrupts must be enabled at this
288 * point since aspects of the state machine are interrupt
289 * driven.
290 *
291 * sdma_engine_error() and sdma_engine_interrupt() are
292 * entrances for interrupts.
293 *
294 * sdma_map_init() is for the management of the mapping
295 * table when the number of vls is changed.
296 *
297 */
298
299 /*
300 * struct hw_sdma_desc - raw 128 bit SDMA descriptor
301 *
302 * This is the raw descriptor in the SDMA ring
303 */
304 struct hw_sdma_desc {
305 /* private: don't use directly */
306 __le64 qw[2];
307 };
308
309 /**
310 * struct sdma_engine - Data pertaining to each SDMA engine.
311 * @dd: a back-pointer to the device data
312 * @ppd: per port back-pointer
313 * @imask: mask for irq manipulation
314 * @idle_mask: mask for determining if an interrupt is due to sdma_idle
315 *
316 * This structure has the state for each sdma_engine.
317 *
318 * Accessing to non public fields are not supported
319 * since the private members are subject to change.
320 */
321 struct sdma_engine {
322 /* read mostly */
323 struct hfi1_devdata *dd;
324 struct hfi1_pportdata *ppd;
325 /* private: */
326 void __iomem *tail_csr;
327 u64 imask; /* clear interrupt mask */
328 u64 idle_mask;
329 u64 progress_mask;
330 u64 int_mask;
331 /* private: */
332 volatile __le64 *head_dma; /* DMA'ed by chip */
333 /* private: */
334 dma_addr_t head_phys;
335 /* private: */
336 struct hw_sdma_desc *descq;
337 /* private: */
338 unsigned descq_full_count;
339 struct sdma_txreq **tx_ring;
340 /* private: */
341 dma_addr_t descq_phys;
342 /* private */
343 u32 sdma_mask;
344 /* private */
345 struct sdma_state state;
346 /* private */
347 int cpu;
348 /* private: */
349 u8 sdma_shift;
350 /* private: */
351 u8 this_idx; /* zero relative engine */
352 /* protect changes to senddmactrl shadow */
353 spinlock_t senddmactrl_lock;
354 /* private: */
355 u64 p_senddmactrl; /* shadow per-engine SendDmaCtrl */
356
357 /* read/write using tail_lock */
358 spinlock_t tail_lock ____cacheline_aligned_in_smp;
359 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
360 /* private: */
361 u64 tail_sn;
362 #endif
363 /* private: */
364 u32 descq_tail;
365 /* private: */
366 unsigned long ahg_bits;
367 /* private: */
368 u16 desc_avail;
369 /* private: */
370 u16 tx_tail;
371 /* private: */
372 u16 descq_cnt;
373
374 /* read/write using head_lock */
375 /* private: */
376 seqlock_t head_lock ____cacheline_aligned_in_smp;
377 #ifdef CONFIG_HFI1_DEBUG_SDMA_ORDER
378 /* private: */
379 u64 head_sn;
380 #endif
381 /* private: */
382 u32 descq_head;
383 /* private: */
384 u16 tx_head;
385 /* private: */
386 u64 last_status;
387 /* private */
388 u64 err_cnt;
389 /* private */
390 u64 sdma_int_cnt;
391 u64 idle_int_cnt;
392 u64 progress_int_cnt;
393
394 /* private: */
395 struct list_head dmawait;
396
397 /* CONFIG SDMA for now, just blindly duplicate */
398 /* private: */
399 struct tasklet_struct sdma_hw_clean_up_task
400 ____cacheline_aligned_in_smp;
401
402 /* private: */
403 struct tasklet_struct sdma_sw_clean_up_task
404 ____cacheline_aligned_in_smp;
405 /* private: */
406 struct work_struct err_halt_worker;
407 /* private */
408 struct timer_list err_progress_check_timer;
409 u32 progress_check_head;
410 /* private: */
411 struct work_struct flush_worker;
412 /* protect flush list */
413 spinlock_t flushlist_lock;
414 /* private: */
415 struct list_head flushlist;
416 struct cpumask cpu_mask;
417 struct kobject kobj;
418 };
419
420 int sdma_init(struct hfi1_devdata *dd, u8 port);
421 void sdma_start(struct hfi1_devdata *dd);
422 void sdma_exit(struct hfi1_devdata *dd);
423 void sdma_clean(struct hfi1_devdata *dd, size_t num_engines);
424 void sdma_all_running(struct hfi1_devdata *dd);
425 void sdma_all_idle(struct hfi1_devdata *dd);
426 void sdma_freeze_notify(struct hfi1_devdata *dd, int go_idle);
427 void sdma_freeze(struct hfi1_devdata *dd);
428 void sdma_unfreeze(struct hfi1_devdata *dd);
429 void sdma_wait(struct hfi1_devdata *dd);
430
431 /**
432 * sdma_empty() - idle engine test
433 * @engine: sdma engine
434 *
435 * Currently used by verbs as a latency optimization.
436 *
437 * Return:
438 * 1 - empty, 0 - non-empty
439 */
sdma_empty(struct sdma_engine * sde)440 static inline int sdma_empty(struct sdma_engine *sde)
441 {
442 return sde->descq_tail == sde->descq_head;
443 }
444
sdma_descq_freecnt(struct sdma_engine * sde)445 static inline u16 sdma_descq_freecnt(struct sdma_engine *sde)
446 {
447 return sde->descq_cnt -
448 (sde->descq_tail -
449 READ_ONCE(sde->descq_head)) - 1;
450 }
451
sdma_descq_inprocess(struct sdma_engine * sde)452 static inline u16 sdma_descq_inprocess(struct sdma_engine *sde)
453 {
454 return sde->descq_cnt - sdma_descq_freecnt(sde);
455 }
456
457 /*
458 * Either head_lock or tail lock required to see
459 * a steady state.
460 */
__sdma_running(struct sdma_engine * engine)461 static inline int __sdma_running(struct sdma_engine *engine)
462 {
463 return engine->state.current_state == sdma_state_s99_running;
464 }
465
466 /**
467 * sdma_running() - state suitability test
468 * @engine: sdma engine
469 *
470 * sdma_running probes the internal state to determine if it is suitable
471 * for submitting packets.
472 *
473 * Return:
474 * 1 - ok to submit, 0 - not ok to submit
475 *
476 */
sdma_running(struct sdma_engine * engine)477 static inline int sdma_running(struct sdma_engine *engine)
478 {
479 unsigned long flags;
480 int ret;
481
482 spin_lock_irqsave(&engine->tail_lock, flags);
483 ret = __sdma_running(engine);
484 spin_unlock_irqrestore(&engine->tail_lock, flags);
485 return ret;
486 }
487
488 void _sdma_txreq_ahgadd(
489 struct sdma_txreq *tx,
490 u8 num_ahg,
491 u8 ahg_entry,
492 u32 *ahg,
493 u8 ahg_hlen);
494
495 /**
496 * sdma_txinit_ahg() - initialize an sdma_txreq struct with AHG
497 * @tx: tx request to initialize
498 * @flags: flags to key last descriptor additions
499 * @tlen: total packet length (pbc + headers + data)
500 * @ahg_entry: ahg entry to use (0 - 31)
501 * @num_ahg: ahg descriptor for first descriptor (0 - 9)
502 * @ahg: array of AHG descriptors (up to 9 entries)
503 * @ahg_hlen: number of bytes from ASIC entry to use
504 * @cb: callback
505 *
506 * The allocation of the sdma_txreq and it enclosing structure is user
507 * dependent. This routine must be called to initialize the user independent
508 * fields.
509 *
510 * The currently supported flags are SDMA_TXREQ_F_URGENT,
511 * SDMA_TXREQ_F_AHG_COPY, and SDMA_TXREQ_F_USE_AHG.
512 *
513 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
514 * completion is desired as soon as possible.
515 *
516 * SDMA_TXREQ_F_AHG_COPY causes the header in the first descriptor to be
517 * copied to chip entry. SDMA_TXREQ_F_USE_AHG causes the code to add in
518 * the AHG descriptors into the first 1 to 3 descriptors.
519 *
520 * Completions of submitted requests can be gotten on selected
521 * txreqs by giving a completion routine callback to sdma_txinit() or
522 * sdma_txinit_ahg(). The environment in which the callback runs
523 * can be from an ISR, a tasklet, or a thread, so no sleeping
524 * kernel routines can be used. Aspects of the sdma ring may
525 * be locked so care should be taken with locking.
526 *
527 * The callback pointer can be NULL to avoid any callback for the packet
528 * being submitted. The callback will be provided this tx, a status, and a flag.
529 *
530 * The status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
531 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
532 *
533 * The flag, if the is the iowait had been used, indicates the iowait
534 * sdma_busy count has reached zero.
535 *
536 * user data portion of tlen should be precise. The sdma_txadd_* entrances
537 * will pad with a descriptor references 1 - 3 bytes when the number of bytes
538 * specified in tlen have been supplied to the sdma_txreq.
539 *
540 * ahg_hlen is used to determine the number of on-chip entry bytes to
541 * use as the header. This is for cases where the stored header is
542 * larger than the header to be used in a packet. This is typical
543 * for verbs where an RDMA_WRITE_FIRST is larger than the packet in
544 * and RDMA_WRITE_MIDDLE.
545 *
546 */
sdma_txinit_ahg(struct sdma_txreq * tx,u16 flags,u16 tlen,u8 ahg_entry,u8 num_ahg,u32 * ahg,u8 ahg_hlen,void (* cb)(struct sdma_txreq *,int))547 static inline int sdma_txinit_ahg(
548 struct sdma_txreq *tx,
549 u16 flags,
550 u16 tlen,
551 u8 ahg_entry,
552 u8 num_ahg,
553 u32 *ahg,
554 u8 ahg_hlen,
555 void (*cb)(struct sdma_txreq *, int))
556 {
557 if (tlen == 0)
558 return -ENODATA;
559 if (tlen > MAX_SDMA_PKT_SIZE)
560 return -EMSGSIZE;
561 tx->desc_limit = ARRAY_SIZE(tx->descs);
562 tx->descp = &tx->descs[0];
563 INIT_LIST_HEAD(&tx->list);
564 tx->num_desc = 0;
565 tx->flags = flags;
566 tx->complete = cb;
567 tx->coalesce_buf = NULL;
568 tx->wait = NULL;
569 tx->packet_len = tlen;
570 tx->tlen = tx->packet_len;
571 tx->descs[0].qw[0] = SDMA_DESC0_FIRST_DESC_FLAG;
572 tx->descs[0].qw[1] = 0;
573 if (flags & SDMA_TXREQ_F_AHG_COPY)
574 tx->descs[0].qw[1] |=
575 (((u64)ahg_entry & SDMA_DESC1_HEADER_INDEX_MASK)
576 << SDMA_DESC1_HEADER_INDEX_SHIFT) |
577 (((u64)SDMA_AHG_COPY & SDMA_DESC1_HEADER_MODE_MASK)
578 << SDMA_DESC1_HEADER_MODE_SHIFT);
579 else if (flags & SDMA_TXREQ_F_USE_AHG && num_ahg)
580 _sdma_txreq_ahgadd(tx, num_ahg, ahg_entry, ahg, ahg_hlen);
581 return 0;
582 }
583
584 /**
585 * sdma_txinit() - initialize an sdma_txreq struct (no AHG)
586 * @tx: tx request to initialize
587 * @flags: flags to key last descriptor additions
588 * @tlen: total packet length (pbc + headers + data)
589 * @cb: callback pointer
590 *
591 * The allocation of the sdma_txreq and it enclosing structure is user
592 * dependent. This routine must be called to initialize the user
593 * independent fields.
594 *
595 * The currently supported flags is SDMA_TXREQ_F_URGENT.
596 *
597 * SDMA_TXREQ_F_URGENT is used for latency sensitive situations where the
598 * completion is desired as soon as possible.
599 *
600 * Completions of submitted requests can be gotten on selected
601 * txreqs by giving a completion routine callback to sdma_txinit() or
602 * sdma_txinit_ahg(). The environment in which the callback runs
603 * can be from an ISR, a tasklet, or a thread, so no sleeping
604 * kernel routines can be used. The head size of the sdma ring may
605 * be locked so care should be taken with locking.
606 *
607 * The callback pointer can be NULL to avoid any callback for the packet
608 * being submitted.
609 *
610 * The callback, if non-NULL, will be provided this tx and a status. The
611 * status will be one of SDMA_TXREQ_S_OK, SDMA_TXREQ_S_SENDERROR,
612 * SDMA_TXREQ_S_ABORTED, or SDMA_TXREQ_S_SHUTDOWN.
613 *
614 */
sdma_txinit(struct sdma_txreq * tx,u16 flags,u16 tlen,void (* cb)(struct sdma_txreq *,int))615 static inline int sdma_txinit(
616 struct sdma_txreq *tx,
617 u16 flags,
618 u16 tlen,
619 void (*cb)(struct sdma_txreq *, int))
620 {
621 return sdma_txinit_ahg(tx, flags, tlen, 0, 0, NULL, 0, cb);
622 }
623
624 /* helpers - don't use */
sdma_mapping_type(struct sdma_desc * d)625 static inline int sdma_mapping_type(struct sdma_desc *d)
626 {
627 return (d->qw[1] & SDMA_DESC1_GENERATION_SMASK)
628 >> SDMA_DESC1_GENERATION_SHIFT;
629 }
630
sdma_mapping_len(struct sdma_desc * d)631 static inline size_t sdma_mapping_len(struct sdma_desc *d)
632 {
633 return (d->qw[0] & SDMA_DESC0_BYTE_COUNT_SMASK)
634 >> SDMA_DESC0_BYTE_COUNT_SHIFT;
635 }
636
sdma_mapping_addr(struct sdma_desc * d)637 static inline dma_addr_t sdma_mapping_addr(struct sdma_desc *d)
638 {
639 return (d->qw[0] & SDMA_DESC0_PHY_ADDR_SMASK)
640 >> SDMA_DESC0_PHY_ADDR_SHIFT;
641 }
642
make_tx_sdma_desc(struct sdma_txreq * tx,int type,dma_addr_t addr,size_t len)643 static inline void make_tx_sdma_desc(
644 struct sdma_txreq *tx,
645 int type,
646 dma_addr_t addr,
647 size_t len)
648 {
649 struct sdma_desc *desc = &tx->descp[tx->num_desc];
650
651 if (!tx->num_desc) {
652 /* qw[0] zero; qw[1] first, ahg mode already in from init */
653 desc->qw[1] |= ((u64)type & SDMA_DESC1_GENERATION_MASK)
654 << SDMA_DESC1_GENERATION_SHIFT;
655 } else {
656 desc->qw[0] = 0;
657 desc->qw[1] = ((u64)type & SDMA_DESC1_GENERATION_MASK)
658 << SDMA_DESC1_GENERATION_SHIFT;
659 }
660 desc->qw[0] |= (((u64)addr & SDMA_DESC0_PHY_ADDR_MASK)
661 << SDMA_DESC0_PHY_ADDR_SHIFT) |
662 (((u64)len & SDMA_DESC0_BYTE_COUNT_MASK)
663 << SDMA_DESC0_BYTE_COUNT_SHIFT);
664 }
665
666 /* helper to extend txreq */
667 int ext_coal_sdma_tx_descs(struct hfi1_devdata *dd, struct sdma_txreq *tx,
668 int type, void *kvaddr, struct page *page,
669 unsigned long offset, u16 len);
670 int _pad_sdma_tx_descs(struct hfi1_devdata *, struct sdma_txreq *);
671 void __sdma_txclean(struct hfi1_devdata *, struct sdma_txreq *);
672
sdma_txclean(struct hfi1_devdata * dd,struct sdma_txreq * tx)673 static inline void sdma_txclean(struct hfi1_devdata *dd, struct sdma_txreq *tx)
674 {
675 if (tx->num_desc)
676 __sdma_txclean(dd, tx);
677 }
678
679 /* helpers used by public routines */
_sdma_close_tx(struct hfi1_devdata * dd,struct sdma_txreq * tx)680 static inline void _sdma_close_tx(struct hfi1_devdata *dd,
681 struct sdma_txreq *tx)
682 {
683 tx->descp[tx->num_desc].qw[0] |=
684 SDMA_DESC0_LAST_DESC_FLAG;
685 tx->descp[tx->num_desc].qw[1] |=
686 dd->default_desc1;
687 if (tx->flags & SDMA_TXREQ_F_URGENT)
688 tx->descp[tx->num_desc].qw[1] |=
689 (SDMA_DESC1_HEAD_TO_HOST_FLAG |
690 SDMA_DESC1_INT_REQ_FLAG);
691 }
692
_sdma_txadd_daddr(struct hfi1_devdata * dd,int type,struct sdma_txreq * tx,dma_addr_t addr,u16 len)693 static inline int _sdma_txadd_daddr(
694 struct hfi1_devdata *dd,
695 int type,
696 struct sdma_txreq *tx,
697 dma_addr_t addr,
698 u16 len)
699 {
700 int rval = 0;
701
702 make_tx_sdma_desc(
703 tx,
704 type,
705 addr, len);
706 WARN_ON(len > tx->tlen);
707 tx->tlen -= len;
708 /* special cases for last */
709 if (!tx->tlen) {
710 if (tx->packet_len & (sizeof(u32) - 1)) {
711 rval = _pad_sdma_tx_descs(dd, tx);
712 if (rval)
713 return rval;
714 } else {
715 _sdma_close_tx(dd, tx);
716 }
717 }
718 tx->num_desc++;
719 return rval;
720 }
721
722 /**
723 * sdma_txadd_page() - add a page to the sdma_txreq
724 * @dd: the device to use for mapping
725 * @tx: tx request to which the page is added
726 * @page: page to map
727 * @offset: offset within the page
728 * @len: length in bytes
729 *
730 * This is used to add a page/offset/length descriptor.
731 *
732 * The mapping/unmapping of the page/offset/len is automatically handled.
733 *
734 * Return:
735 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't
736 * extend/coalesce descriptor array
737 */
sdma_txadd_page(struct hfi1_devdata * dd,struct sdma_txreq * tx,struct page * page,unsigned long offset,u16 len)738 static inline int sdma_txadd_page(
739 struct hfi1_devdata *dd,
740 struct sdma_txreq *tx,
741 struct page *page,
742 unsigned long offset,
743 u16 len)
744 {
745 dma_addr_t addr;
746 int rval;
747
748 if ((unlikely(tx->num_desc == tx->desc_limit))) {
749 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_PAGE,
750 NULL, page, offset, len);
751 if (rval <= 0)
752 return rval;
753 }
754
755 addr = dma_map_page(
756 &dd->pcidev->dev,
757 page,
758 offset,
759 len,
760 DMA_TO_DEVICE);
761
762 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
763 __sdma_txclean(dd, tx);
764 return -ENOSPC;
765 }
766
767 return _sdma_txadd_daddr(
768 dd, SDMA_MAP_PAGE, tx, addr, len);
769 }
770
771 /**
772 * sdma_txadd_daddr() - add a dma address to the sdma_txreq
773 * @dd: the device to use for mapping
774 * @tx: sdma_txreq to which the page is added
775 * @addr: dma address mapped by caller
776 * @len: length in bytes
777 *
778 * This is used to add a descriptor for memory that is already dma mapped.
779 *
780 * In this case, there is no unmapping as part of the progress processing for
781 * this memory location.
782 *
783 * Return:
784 * 0 - success, -ENOMEM - couldn't extend descriptor array
785 */
786
sdma_txadd_daddr(struct hfi1_devdata * dd,struct sdma_txreq * tx,dma_addr_t addr,u16 len)787 static inline int sdma_txadd_daddr(
788 struct hfi1_devdata *dd,
789 struct sdma_txreq *tx,
790 dma_addr_t addr,
791 u16 len)
792 {
793 int rval;
794
795 if ((unlikely(tx->num_desc == tx->desc_limit))) {
796 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_NONE,
797 NULL, NULL, 0, 0);
798 if (rval <= 0)
799 return rval;
800 }
801
802 return _sdma_txadd_daddr(dd, SDMA_MAP_NONE, tx, addr, len);
803 }
804
805 /**
806 * sdma_txadd_kvaddr() - add a kernel virtual address to sdma_txreq
807 * @dd: the device to use for mapping
808 * @tx: sdma_txreq to which the page is added
809 * @kvaddr: the kernel virtual address
810 * @len: length in bytes
811 *
812 * This is used to add a descriptor referenced by the indicated kvaddr and
813 * len.
814 *
815 * The mapping/unmapping of the kvaddr and len is automatically handled.
816 *
817 * Return:
818 * 0 - success, -ENOSPC - mapping fail, -ENOMEM - couldn't extend/coalesce
819 * descriptor array
820 */
sdma_txadd_kvaddr(struct hfi1_devdata * dd,struct sdma_txreq * tx,void * kvaddr,u16 len)821 static inline int sdma_txadd_kvaddr(
822 struct hfi1_devdata *dd,
823 struct sdma_txreq *tx,
824 void *kvaddr,
825 u16 len)
826 {
827 dma_addr_t addr;
828 int rval;
829
830 if ((unlikely(tx->num_desc == tx->desc_limit))) {
831 rval = ext_coal_sdma_tx_descs(dd, tx, SDMA_MAP_SINGLE,
832 kvaddr, NULL, 0, len);
833 if (rval <= 0)
834 return rval;
835 }
836
837 addr = dma_map_single(
838 &dd->pcidev->dev,
839 kvaddr,
840 len,
841 DMA_TO_DEVICE);
842
843 if (unlikely(dma_mapping_error(&dd->pcidev->dev, addr))) {
844 __sdma_txclean(dd, tx);
845 return -ENOSPC;
846 }
847
848 return _sdma_txadd_daddr(
849 dd, SDMA_MAP_SINGLE, tx, addr, len);
850 }
851
852 struct iowait;
853
854 int sdma_send_txreq(struct sdma_engine *sde,
855 struct iowait *wait,
856 struct sdma_txreq *tx,
857 bool pkts_sent);
858 int sdma_send_txlist(struct sdma_engine *sde,
859 struct iowait *wait,
860 struct list_head *tx_list,
861 u32 *count);
862
863 int sdma_ahg_alloc(struct sdma_engine *sde);
864 void sdma_ahg_free(struct sdma_engine *sde, int ahg_index);
865
866 /**
867 * sdma_build_ahg - build ahg descriptor
868 * @data
869 * @dwindex
870 * @startbit
871 * @bits
872 *
873 * Build and return a 32 bit descriptor.
874 */
sdma_build_ahg_descriptor(u16 data,u8 dwindex,u8 startbit,u8 bits)875 static inline u32 sdma_build_ahg_descriptor(
876 u16 data,
877 u8 dwindex,
878 u8 startbit,
879 u8 bits)
880 {
881 return (u32)(1UL << SDMA_AHG_UPDATE_ENABLE_SHIFT |
882 ((startbit & SDMA_AHG_FIELD_START_MASK) <<
883 SDMA_AHG_FIELD_START_SHIFT) |
884 ((bits & SDMA_AHG_FIELD_LEN_MASK) <<
885 SDMA_AHG_FIELD_LEN_SHIFT) |
886 ((dwindex & SDMA_AHG_INDEX_MASK) <<
887 SDMA_AHG_INDEX_SHIFT) |
888 ((data & SDMA_AHG_VALUE_MASK) <<
889 SDMA_AHG_VALUE_SHIFT));
890 }
891
892 /**
893 * sdma_progress - use seq number of detect head progress
894 * @sde: sdma_engine to check
895 * @seq: base seq count
896 * @tx: txreq for which we need to check descriptor availability
897 *
898 * This is used in the appropriate spot in the sleep routine
899 * to check for potential ring progress. This routine gets the
900 * seqcount before queuing the iowait structure for progress.
901 *
902 * If the seqcount indicates that progress needs to be checked,
903 * re-submission is detected by checking whether the descriptor
904 * queue has enough descriptor for the txreq.
905 */
sdma_progress(struct sdma_engine * sde,unsigned seq,struct sdma_txreq * tx)906 static inline unsigned sdma_progress(struct sdma_engine *sde, unsigned seq,
907 struct sdma_txreq *tx)
908 {
909 if (read_seqretry(&sde->head_lock, seq)) {
910 sde->desc_avail = sdma_descq_freecnt(sde);
911 if (tx->num_desc > sde->desc_avail)
912 return 0;
913 return 1;
914 }
915 return 0;
916 }
917
918 /**
919 * sdma_iowait_schedule() - initialize wait structure
920 * @sde: sdma_engine to schedule
921 * @wait: wait struct to schedule
922 *
923 * This function initializes the iowait
924 * structure embedded in the QP or PQ.
925 *
926 */
sdma_iowait_schedule(struct sdma_engine * sde,struct iowait * wait)927 static inline void sdma_iowait_schedule(
928 struct sdma_engine *sde,
929 struct iowait *wait)
930 {
931 struct hfi1_pportdata *ppd = sde->dd->pport;
932
933 iowait_schedule(wait, ppd->hfi1_wq, sde->cpu);
934 }
935
936 /* for use by interrupt handling */
937 void sdma_engine_error(struct sdma_engine *sde, u64 status);
938 void sdma_engine_interrupt(struct sdma_engine *sde, u64 status);
939
940 /*
941 *
942 * The diagram below details the relationship of the mapping structures
943 *
944 * Since the mapping now allows for non-uniform engines per vl, the
945 * number of engines for a vl is either the vl_engines[vl] or
946 * a computation based on num_sdma/num_vls:
947 *
948 * For example:
949 * nactual = vl_engines ? vl_engines[vl] : num_sdma/num_vls
950 *
951 * n = roundup to next highest power of 2 using nactual
952 *
953 * In the case where there are num_sdma/num_vls doesn't divide
954 * evenly, the extras are added from the last vl downward.
955 *
956 * For the case where n > nactual, the engines are assigned
957 * in a round robin fashion wrapping back to the first engine
958 * for a particular vl.
959 *
960 * dd->sdma_map
961 * | sdma_map_elem[0]
962 * | +--------------------+
963 * v | mask |
964 * sdma_vl_map |--------------------|
965 * +--------------------------+ | sde[0] -> eng 1 |
966 * | list (RCU) | |--------------------|
967 * |--------------------------| ->| sde[1] -> eng 2 |
968 * | mask | --/ |--------------------|
969 * |--------------------------| -/ | * |
970 * | actual_vls (max 8) | -/ |--------------------|
971 * |--------------------------| --/ | sde[n-1] -> eng n |
972 * | vls (max 8) | -/ +--------------------+
973 * |--------------------------| --/
974 * | map[0] |-/
975 * |--------------------------| +---------------------+
976 * | map[1] |--- | mask |
977 * |--------------------------| \---- |---------------------|
978 * | * | \-- | sde[0] -> eng 1+n |
979 * | * | \---- |---------------------|
980 * | * | \->| sde[1] -> eng 2+n |
981 * |--------------------------| |---------------------|
982 * | map[vls - 1] |- | * |
983 * +--------------------------+ \- |---------------------|
984 * \- | sde[m-1] -> eng m+n |
985 * \ +---------------------+
986 * \-
987 * \
988 * \- +----------------------+
989 * \- | mask |
990 * \ |----------------------|
991 * \- | sde[0] -> eng 1+m+n |
992 * \- |----------------------|
993 * >| sde[1] -> eng 2+m+n |
994 * |----------------------|
995 * | * |
996 * |----------------------|
997 * | sde[o-1] -> eng o+m+n|
998 * +----------------------+
999 *
1000 */
1001
1002 /**
1003 * struct sdma_map_elem - mapping for a vl
1004 * @mask - selector mask
1005 * @sde - array of engines for this vl
1006 *
1007 * The mask is used to "mod" the selector
1008 * to produce index into the trailing
1009 * array of sdes.
1010 */
1011 struct sdma_map_elem {
1012 u32 mask;
1013 struct sdma_engine *sde[0];
1014 };
1015
1016 /**
1017 * struct sdma_map_el - mapping for a vl
1018 * @engine_to_vl - map of an engine to a vl
1019 * @list - rcu head for free callback
1020 * @mask - vl mask to "mod" the vl to produce an index to map array
1021 * @actual_vls - number of vls
1022 * @vls - number of vls rounded to next power of 2
1023 * @map - array of sdma_map_elem entries
1024 *
1025 * This is the parent mapping structure. The trailing
1026 * members of the struct point to sdma_map_elem entries, which
1027 * in turn point to an array of sde's for that vl.
1028 */
1029 struct sdma_vl_map {
1030 s8 engine_to_vl[TXE_NUM_SDMA_ENGINES];
1031 struct rcu_head list;
1032 u32 mask;
1033 u8 actual_vls;
1034 u8 vls;
1035 struct sdma_map_elem *map[0];
1036 };
1037
1038 int sdma_map_init(
1039 struct hfi1_devdata *dd,
1040 u8 port,
1041 u8 num_vls,
1042 u8 *vl_engines);
1043
1044 /* slow path */
1045 void _sdma_engine_progress_schedule(struct sdma_engine *sde);
1046
1047 /**
1048 * sdma_engine_progress_schedule() - schedule progress on engine
1049 * @sde: sdma_engine to schedule progress
1050 *
1051 * This is the fast path.
1052 *
1053 */
sdma_engine_progress_schedule(struct sdma_engine * sde)1054 static inline void sdma_engine_progress_schedule(
1055 struct sdma_engine *sde)
1056 {
1057 if (!sde || sdma_descq_inprocess(sde) < (sde->descq_cnt / 8))
1058 return;
1059 _sdma_engine_progress_schedule(sde);
1060 }
1061
1062 struct sdma_engine *sdma_select_engine_sc(
1063 struct hfi1_devdata *dd,
1064 u32 selector,
1065 u8 sc5);
1066
1067 struct sdma_engine *sdma_select_engine_vl(
1068 struct hfi1_devdata *dd,
1069 u32 selector,
1070 u8 vl);
1071
1072 struct sdma_engine *sdma_select_user_engine(struct hfi1_devdata *dd,
1073 u32 selector, u8 vl);
1074 ssize_t sdma_get_cpu_to_sde_map(struct sdma_engine *sde, char *buf);
1075 ssize_t sdma_set_cpu_to_sde_map(struct sdma_engine *sde, const char *buf,
1076 size_t count);
1077 int sdma_engine_get_vl(struct sdma_engine *sde);
1078 void sdma_seqfile_dump_sde(struct seq_file *s, struct sdma_engine *);
1079 void sdma_seqfile_dump_cpu_list(struct seq_file *s, struct hfi1_devdata *dd,
1080 unsigned long cpuid);
1081
1082 #ifdef CONFIG_SDMA_VERBOSITY
1083 void sdma_dumpstate(struct sdma_engine *);
1084 #endif
slashstrip(char * s)1085 static inline char *slashstrip(char *s)
1086 {
1087 char *r = s;
1088
1089 while (*s)
1090 if (*s++ == '/')
1091 r = s;
1092 return r;
1093 }
1094
1095 u16 sdma_get_descq_cnt(void);
1096
1097 extern uint mod_num_sdma;
1098
1099 void sdma_update_lmc(struct hfi1_devdata *dd, u64 mask, u32 lid);
1100
1101 #endif
1102