1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001-2003 Intel Corp.
7 * Copyright (c) 2001-2002 Nokia, Inc.
8 * Copyright (c) 2001 La Monte H.P. Yarroll
9 *
10 * This file is part of the SCTP kernel implementation
11 *
12 * These functions interface with the sockets layer to implement the
13 * SCTP Extensions for the Sockets API.
14 *
15 * Note that the descriptions from the specification are USER level
16 * functions--this file is the functions which populate the struct proto
17 * for SCTP which is the BOTTOM of the sockets interface.
18 *
19 * Please send any bug reports or fixes you make to the
20 * email address(es):
21 * lksctp developers <linux-sctp@vger.kernel.org>
22 *
23 * Written or modified by:
24 * La Monte H.P. Yarroll <piggy@acm.org>
25 * Narasimha Budihal <narsi@refcode.org>
26 * Karl Knutson <karl@athena.chicago.il.us>
27 * Jon Grimm <jgrimm@us.ibm.com>
28 * Xingang Guo <xingang.guo@intel.com>
29 * Daisy Chang <daisyc@us.ibm.com>
30 * Sridhar Samudrala <samudrala@us.ibm.com>
31 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
32 * Ardelle Fan <ardelle.fan@intel.com>
33 * Ryan Layer <rmlayer@us.ibm.com>
34 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
35 * Kevin Gao <kevin.gao@intel.com>
36 */
37
38 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
39
40 #include <crypto/hash.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
43 #include <linux/wait.h>
44 #include <linux/time.h>
45 #include <linux/sched/signal.h>
46 #include <linux/ip.h>
47 #include <linux/capability.h>
48 #include <linux/fcntl.h>
49 #include <linux/poll.h>
50 #include <linux/init.h>
51 #include <linux/slab.h>
52 #include <linux/file.h>
53 #include <linux/compat.h>
54 #include <linux/rhashtable.h>
55
56 #include <net/ip.h>
57 #include <net/icmp.h>
58 #include <net/route.h>
59 #include <net/ipv6.h>
60 #include <net/inet_common.h>
61 #include <net/busy_poll.h>
62
63 #include <linux/socket.h> /* for sa_family_t */
64 #include <linux/export.h>
65 #include <net/sock.h>
66 #include <net/sctp/sctp.h>
67 #include <net/sctp/sm.h>
68 #include <net/sctp/stream_sched.h>
69
70 /* Forward declarations for internal helper functions. */
71 static bool sctp_writeable(struct sock *sk);
72 static void sctp_wfree(struct sk_buff *skb);
73 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
74 size_t msg_len);
75 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p);
76 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
77 static int sctp_wait_for_accept(struct sock *sk, long timeo);
78 static void sctp_wait_for_close(struct sock *sk, long timeo);
79 static void sctp_destruct_sock(struct sock *sk);
80 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
81 union sctp_addr *addr, int len);
82 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
83 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
84 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
85 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
86 static int sctp_send_asconf(struct sctp_association *asoc,
87 struct sctp_chunk *chunk);
88 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
89 static int sctp_autobind(struct sock *sk);
90 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
91 struct sctp_association *assoc,
92 enum sctp_socket_type type);
93
94 static unsigned long sctp_memory_pressure;
95 static atomic_long_t sctp_memory_allocated;
96 struct percpu_counter sctp_sockets_allocated;
97
sctp_enter_memory_pressure(struct sock * sk)98 static void sctp_enter_memory_pressure(struct sock *sk)
99 {
100 sctp_memory_pressure = 1;
101 }
102
103
104 /* Get the sndbuf space available at the time on the association. */
sctp_wspace(struct sctp_association * asoc)105 static inline int sctp_wspace(struct sctp_association *asoc)
106 {
107 struct sock *sk = asoc->base.sk;
108
109 return asoc->ep->sndbuf_policy ? sk->sk_sndbuf - asoc->sndbuf_used
110 : sk_stream_wspace(sk);
111 }
112
113 /* Increment the used sndbuf space count of the corresponding association by
114 * the size of the outgoing data chunk.
115 * Also, set the skb destructor for sndbuf accounting later.
116 *
117 * Since it is always 1-1 between chunk and skb, and also a new skb is always
118 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
119 * destructor in the data chunk skb for the purpose of the sndbuf space
120 * tracking.
121 */
sctp_set_owner_w(struct sctp_chunk * chunk)122 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
123 {
124 struct sctp_association *asoc = chunk->asoc;
125 struct sock *sk = asoc->base.sk;
126
127 /* The sndbuf space is tracked per association. */
128 sctp_association_hold(asoc);
129
130 if (chunk->shkey)
131 sctp_auth_shkey_hold(chunk->shkey);
132
133 skb_set_owner_w(chunk->skb, sk);
134
135 chunk->skb->destructor = sctp_wfree;
136 /* Save the chunk pointer in skb for sctp_wfree to use later. */
137 skb_shinfo(chunk->skb)->destructor_arg = chunk;
138
139 refcount_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
140 asoc->sndbuf_used += chunk->skb->truesize + sizeof(struct sctp_chunk);
141 sk->sk_wmem_queued += chunk->skb->truesize + sizeof(struct sctp_chunk);
142 sk_mem_charge(sk, chunk->skb->truesize);
143 }
144
sctp_clear_owner_w(struct sctp_chunk * chunk)145 static void sctp_clear_owner_w(struct sctp_chunk *chunk)
146 {
147 skb_orphan(chunk->skb);
148 }
149
150 #define traverse_and_process() \
151 do { \
152 msg = chunk->msg; \
153 if (msg == prev_msg) \
154 continue; \
155 list_for_each_entry(c, &msg->chunks, frag_list) { \
156 if ((clear && asoc->base.sk == c->skb->sk) || \
157 (!clear && asoc->base.sk != c->skb->sk)) \
158 cb(c); \
159 } \
160 prev_msg = msg; \
161 } while (0)
162
sctp_for_each_tx_datachunk(struct sctp_association * asoc,bool clear,void (* cb)(struct sctp_chunk *))163 static void sctp_for_each_tx_datachunk(struct sctp_association *asoc,
164 bool clear,
165 void (*cb)(struct sctp_chunk *))
166
167 {
168 struct sctp_datamsg *msg, *prev_msg = NULL;
169 struct sctp_outq *q = &asoc->outqueue;
170 struct sctp_chunk *chunk, *c;
171 struct sctp_transport *t;
172
173 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports)
174 list_for_each_entry(chunk, &t->transmitted, transmitted_list)
175 traverse_and_process();
176
177 list_for_each_entry(chunk, &q->retransmit, transmitted_list)
178 traverse_and_process();
179
180 list_for_each_entry(chunk, &q->sacked, transmitted_list)
181 traverse_and_process();
182
183 list_for_each_entry(chunk, &q->abandoned, transmitted_list)
184 traverse_and_process();
185
186 list_for_each_entry(chunk, &q->out_chunk_list, list)
187 traverse_and_process();
188 }
189
sctp_for_each_rx_skb(struct sctp_association * asoc,struct sock * sk,void (* cb)(struct sk_buff *,struct sock *))190 static void sctp_for_each_rx_skb(struct sctp_association *asoc, struct sock *sk,
191 void (*cb)(struct sk_buff *, struct sock *))
192
193 {
194 struct sk_buff *skb, *tmp;
195
196 sctp_skb_for_each(skb, &asoc->ulpq.lobby, tmp)
197 cb(skb, sk);
198
199 sctp_skb_for_each(skb, &asoc->ulpq.reasm, tmp)
200 cb(skb, sk);
201
202 sctp_skb_for_each(skb, &asoc->ulpq.reasm_uo, tmp)
203 cb(skb, sk);
204 }
205
206 /* Verify that this is a valid address. */
sctp_verify_addr(struct sock * sk,union sctp_addr * addr,int len)207 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
208 int len)
209 {
210 struct sctp_af *af;
211
212 /* Verify basic sockaddr. */
213 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
214 if (!af)
215 return -EINVAL;
216
217 /* Is this a valid SCTP address? */
218 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
219 return -EINVAL;
220
221 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
222 return -EINVAL;
223
224 return 0;
225 }
226
227 /* Look up the association by its id. If this is not a UDP-style
228 * socket, the ID field is always ignored.
229 */
sctp_id2assoc(struct sock * sk,sctp_assoc_t id)230 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
231 {
232 struct sctp_association *asoc = NULL;
233
234 /* If this is not a UDP-style socket, assoc id should be ignored. */
235 if (!sctp_style(sk, UDP)) {
236 /* Return NULL if the socket state is not ESTABLISHED. It
237 * could be a TCP-style listening socket or a socket which
238 * hasn't yet called connect() to establish an association.
239 */
240 if (!sctp_sstate(sk, ESTABLISHED) && !sctp_sstate(sk, CLOSING))
241 return NULL;
242
243 /* Get the first and the only association from the list. */
244 if (!list_empty(&sctp_sk(sk)->ep->asocs))
245 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
246 struct sctp_association, asocs);
247 return asoc;
248 }
249
250 /* Otherwise this is a UDP-style socket. */
251 if (id <= SCTP_ALL_ASSOC)
252 return NULL;
253
254 spin_lock_bh(&sctp_assocs_id_lock);
255 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
256 if (asoc && (asoc->base.sk != sk || asoc->base.dead))
257 asoc = NULL;
258 spin_unlock_bh(&sctp_assocs_id_lock);
259
260 return asoc;
261 }
262
263 /* Look up the transport from an address and an assoc id. If both address and
264 * id are specified, the associations matching the address and the id should be
265 * the same.
266 */
sctp_addr_id2transport(struct sock * sk,struct sockaddr_storage * addr,sctp_assoc_t id)267 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
268 struct sockaddr_storage *addr,
269 sctp_assoc_t id)
270 {
271 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
272 struct sctp_af *af = sctp_get_af_specific(addr->ss_family);
273 union sctp_addr *laddr = (union sctp_addr *)addr;
274 struct sctp_transport *transport;
275
276 if (!af || sctp_verify_addr(sk, laddr, af->sockaddr_len))
277 return NULL;
278
279 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
280 laddr,
281 &transport);
282
283 if (!addr_asoc)
284 return NULL;
285
286 id_asoc = sctp_id2assoc(sk, id);
287 if (id_asoc && (id_asoc != addr_asoc))
288 return NULL;
289
290 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
291 (union sctp_addr *)addr);
292
293 return transport;
294 }
295
296 /* API 3.1.2 bind() - UDP Style Syntax
297 * The syntax of bind() is,
298 *
299 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
300 *
301 * sd - the socket descriptor returned by socket().
302 * addr - the address structure (struct sockaddr_in or struct
303 * sockaddr_in6 [RFC 2553]),
304 * addr_len - the size of the address structure.
305 */
sctp_bind(struct sock * sk,struct sockaddr * addr,int addr_len)306 static int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
307 {
308 int retval = 0;
309
310 lock_sock(sk);
311
312 pr_debug("%s: sk:%p, addr:%p, addr_len:%d\n", __func__, sk,
313 addr, addr_len);
314
315 /* Disallow binding twice. */
316 if (!sctp_sk(sk)->ep->base.bind_addr.port)
317 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
318 addr_len);
319 else
320 retval = -EINVAL;
321
322 release_sock(sk);
323
324 return retval;
325 }
326
327 static int sctp_get_port_local(struct sock *, union sctp_addr *);
328
329 /* Verify this is a valid sockaddr. */
sctp_sockaddr_af(struct sctp_sock * opt,union sctp_addr * addr,int len)330 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
331 union sctp_addr *addr, int len)
332 {
333 struct sctp_af *af;
334
335 /* Check minimum size. */
336 if (len < sizeof (struct sockaddr))
337 return NULL;
338
339 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
340 return NULL;
341
342 if (addr->sa.sa_family == AF_INET6) {
343 if (len < SIN6_LEN_RFC2133)
344 return NULL;
345 /* V4 mapped address are really of AF_INET family */
346 if (ipv6_addr_v4mapped(&addr->v6.sin6_addr) &&
347 !opt->pf->af_supported(AF_INET, opt))
348 return NULL;
349 }
350
351 /* If we get this far, af is valid. */
352 af = sctp_get_af_specific(addr->sa.sa_family);
353
354 if (len < af->sockaddr_len)
355 return NULL;
356
357 return af;
358 }
359
sctp_auto_asconf_init(struct sctp_sock * sp)360 static void sctp_auto_asconf_init(struct sctp_sock *sp)
361 {
362 struct net *net = sock_net(&sp->inet.sk);
363
364 if (net->sctp.default_auto_asconf) {
365 spin_lock(&net->sctp.addr_wq_lock);
366 list_add_tail(&sp->auto_asconf_list, &net->sctp.auto_asconf_splist);
367 spin_unlock(&net->sctp.addr_wq_lock);
368 sp->do_auto_asconf = 1;
369 }
370 }
371
372 /* Bind a local address either to an endpoint or to an association. */
sctp_do_bind(struct sock * sk,union sctp_addr * addr,int len)373 static int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
374 {
375 struct net *net = sock_net(sk);
376 struct sctp_sock *sp = sctp_sk(sk);
377 struct sctp_endpoint *ep = sp->ep;
378 struct sctp_bind_addr *bp = &ep->base.bind_addr;
379 struct sctp_af *af;
380 unsigned short snum;
381 int ret = 0;
382
383 /* Common sockaddr verification. */
384 af = sctp_sockaddr_af(sp, addr, len);
385 if (!af) {
386 pr_debug("%s: sk:%p, newaddr:%p, len:%d EINVAL\n",
387 __func__, sk, addr, len);
388 return -EINVAL;
389 }
390
391 snum = ntohs(addr->v4.sin_port);
392
393 pr_debug("%s: sk:%p, new addr:%pISc, port:%d, new port:%d, len:%d\n",
394 __func__, sk, &addr->sa, bp->port, snum, len);
395
396 /* PF specific bind() address verification. */
397 if (!sp->pf->bind_verify(sp, addr))
398 return -EADDRNOTAVAIL;
399
400 /* We must either be unbound, or bind to the same port.
401 * It's OK to allow 0 ports if we are already bound.
402 * We'll just inhert an already bound port in this case
403 */
404 if (bp->port) {
405 if (!snum)
406 snum = bp->port;
407 else if (snum != bp->port) {
408 pr_debug("%s: new port %d doesn't match existing port "
409 "%d\n", __func__, snum, bp->port);
410 return -EINVAL;
411 }
412 }
413
414 if (snum && inet_port_requires_bind_service(net, snum) &&
415 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
416 return -EACCES;
417
418 /* See if the address matches any of the addresses we may have
419 * already bound before checking against other endpoints.
420 */
421 if (sctp_bind_addr_match(bp, addr, sp))
422 return -EINVAL;
423
424 /* Make sure we are allowed to bind here.
425 * The function sctp_get_port_local() does duplicate address
426 * detection.
427 */
428 addr->v4.sin_port = htons(snum);
429 if (sctp_get_port_local(sk, addr))
430 return -EADDRINUSE;
431
432 /* Refresh ephemeral port. */
433 if (!bp->port) {
434 bp->port = inet_sk(sk)->inet_num;
435 sctp_auto_asconf_init(sp);
436 }
437
438 /* Add the address to the bind address list.
439 * Use GFP_ATOMIC since BHs will be disabled.
440 */
441 ret = sctp_add_bind_addr(bp, addr, af->sockaddr_len,
442 SCTP_ADDR_SRC, GFP_ATOMIC);
443
444 if (ret) {
445 sctp_put_port(sk);
446 return ret;
447 }
448 /* Copy back into socket for getsockname() use. */
449 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
450 sp->pf->to_sk_saddr(addr, sk);
451
452 return ret;
453 }
454
455 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
456 *
457 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
458 * at any one time. If a sender, after sending an ASCONF chunk, decides
459 * it needs to transfer another ASCONF Chunk, it MUST wait until the
460 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
461 * subsequent ASCONF. Note this restriction binds each side, so at any
462 * time two ASCONF may be in-transit on any given association (one sent
463 * from each endpoint).
464 */
sctp_send_asconf(struct sctp_association * asoc,struct sctp_chunk * chunk)465 static int sctp_send_asconf(struct sctp_association *asoc,
466 struct sctp_chunk *chunk)
467 {
468 int retval = 0;
469
470 /* If there is an outstanding ASCONF chunk, queue it for later
471 * transmission.
472 */
473 if (asoc->addip_last_asconf) {
474 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
475 goto out;
476 }
477
478 /* Hold the chunk until an ASCONF_ACK is received. */
479 sctp_chunk_hold(chunk);
480 retval = sctp_primitive_ASCONF(asoc->base.net, asoc, chunk);
481 if (retval)
482 sctp_chunk_free(chunk);
483 else
484 asoc->addip_last_asconf = chunk;
485
486 out:
487 return retval;
488 }
489
490 /* Add a list of addresses as bind addresses to local endpoint or
491 * association.
492 *
493 * Basically run through each address specified in the addrs/addrcnt
494 * array/length pair, determine if it is IPv6 or IPv4 and call
495 * sctp_do_bind() on it.
496 *
497 * If any of them fails, then the operation will be reversed and the
498 * ones that were added will be removed.
499 *
500 * Only sctp_setsockopt_bindx() is supposed to call this function.
501 */
sctp_bindx_add(struct sock * sk,struct sockaddr * addrs,int addrcnt)502 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
503 {
504 int cnt;
505 int retval = 0;
506 void *addr_buf;
507 struct sockaddr *sa_addr;
508 struct sctp_af *af;
509
510 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n", __func__, sk,
511 addrs, addrcnt);
512
513 addr_buf = addrs;
514 for (cnt = 0; cnt < addrcnt; cnt++) {
515 /* The list may contain either IPv4 or IPv6 address;
516 * determine the address length for walking thru the list.
517 */
518 sa_addr = addr_buf;
519 af = sctp_get_af_specific(sa_addr->sa_family);
520 if (!af) {
521 retval = -EINVAL;
522 goto err_bindx_add;
523 }
524
525 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
526 af->sockaddr_len);
527
528 addr_buf += af->sockaddr_len;
529
530 err_bindx_add:
531 if (retval < 0) {
532 /* Failed. Cleanup the ones that have been added */
533 if (cnt > 0)
534 sctp_bindx_rem(sk, addrs, cnt);
535 return retval;
536 }
537 }
538
539 return retval;
540 }
541
542 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
543 * associations that are part of the endpoint indicating that a list of local
544 * addresses are added to the endpoint.
545 *
546 * If any of the addresses is already in the bind address list of the
547 * association, we do not send the chunk for that association. But it will not
548 * affect other associations.
549 *
550 * Only sctp_setsockopt_bindx() is supposed to call this function.
551 */
sctp_send_asconf_add_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)552 static int sctp_send_asconf_add_ip(struct sock *sk,
553 struct sockaddr *addrs,
554 int addrcnt)
555 {
556 struct sctp_sock *sp;
557 struct sctp_endpoint *ep;
558 struct sctp_association *asoc;
559 struct sctp_bind_addr *bp;
560 struct sctp_chunk *chunk;
561 struct sctp_sockaddr_entry *laddr;
562 union sctp_addr *addr;
563 union sctp_addr saveaddr;
564 void *addr_buf;
565 struct sctp_af *af;
566 struct list_head *p;
567 int i;
568 int retval = 0;
569
570 sp = sctp_sk(sk);
571 ep = sp->ep;
572
573 if (!ep->asconf_enable)
574 return retval;
575
576 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
577 __func__, sk, addrs, addrcnt);
578
579 list_for_each_entry(asoc, &ep->asocs, asocs) {
580 if (!asoc->peer.asconf_capable)
581 continue;
582
583 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
584 continue;
585
586 if (!sctp_state(asoc, ESTABLISHED))
587 continue;
588
589 /* Check if any address in the packed array of addresses is
590 * in the bind address list of the association. If so,
591 * do not send the asconf chunk to its peer, but continue with
592 * other associations.
593 */
594 addr_buf = addrs;
595 for (i = 0; i < addrcnt; i++) {
596 addr = addr_buf;
597 af = sctp_get_af_specific(addr->v4.sin_family);
598 if (!af) {
599 retval = -EINVAL;
600 goto out;
601 }
602
603 if (sctp_assoc_lookup_laddr(asoc, addr))
604 break;
605
606 addr_buf += af->sockaddr_len;
607 }
608 if (i < addrcnt)
609 continue;
610
611 /* Use the first valid address in bind addr list of
612 * association as Address Parameter of ASCONF CHUNK.
613 */
614 bp = &asoc->base.bind_addr;
615 p = bp->address_list.next;
616 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
617 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
618 addrcnt, SCTP_PARAM_ADD_IP);
619 if (!chunk) {
620 retval = -ENOMEM;
621 goto out;
622 }
623
624 /* Add the new addresses to the bind address list with
625 * use_as_src set to 0.
626 */
627 addr_buf = addrs;
628 for (i = 0; i < addrcnt; i++) {
629 addr = addr_buf;
630 af = sctp_get_af_specific(addr->v4.sin_family);
631 memcpy(&saveaddr, addr, af->sockaddr_len);
632 retval = sctp_add_bind_addr(bp, &saveaddr,
633 sizeof(saveaddr),
634 SCTP_ADDR_NEW, GFP_ATOMIC);
635 addr_buf += af->sockaddr_len;
636 }
637 if (asoc->src_out_of_asoc_ok) {
638 struct sctp_transport *trans;
639
640 list_for_each_entry(trans,
641 &asoc->peer.transport_addr_list, transports) {
642 trans->cwnd = min(4*asoc->pathmtu, max_t(__u32,
643 2*asoc->pathmtu, 4380));
644 trans->ssthresh = asoc->peer.i.a_rwnd;
645 trans->rto = asoc->rto_initial;
646 sctp_max_rto(asoc, trans);
647 trans->rtt = trans->srtt = trans->rttvar = 0;
648 /* Clear the source and route cache */
649 sctp_transport_route(trans, NULL,
650 sctp_sk(asoc->base.sk));
651 }
652 }
653 retval = sctp_send_asconf(asoc, chunk);
654 }
655
656 out:
657 return retval;
658 }
659
660 /* Remove a list of addresses from bind addresses list. Do not remove the
661 * last address.
662 *
663 * Basically run through each address specified in the addrs/addrcnt
664 * array/length pair, determine if it is IPv6 or IPv4 and call
665 * sctp_del_bind() on it.
666 *
667 * If any of them fails, then the operation will be reversed and the
668 * ones that were removed will be added back.
669 *
670 * At least one address has to be left; if only one address is
671 * available, the operation will return -EBUSY.
672 *
673 * Only sctp_setsockopt_bindx() is supposed to call this function.
674 */
sctp_bindx_rem(struct sock * sk,struct sockaddr * addrs,int addrcnt)675 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
676 {
677 struct sctp_sock *sp = sctp_sk(sk);
678 struct sctp_endpoint *ep = sp->ep;
679 int cnt;
680 struct sctp_bind_addr *bp = &ep->base.bind_addr;
681 int retval = 0;
682 void *addr_buf;
683 union sctp_addr *sa_addr;
684 struct sctp_af *af;
685
686 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
687 __func__, sk, addrs, addrcnt);
688
689 addr_buf = addrs;
690 for (cnt = 0; cnt < addrcnt; cnt++) {
691 /* If the bind address list is empty or if there is only one
692 * bind address, there is nothing more to be removed (we need
693 * at least one address here).
694 */
695 if (list_empty(&bp->address_list) ||
696 (sctp_list_single_entry(&bp->address_list))) {
697 retval = -EBUSY;
698 goto err_bindx_rem;
699 }
700
701 sa_addr = addr_buf;
702 af = sctp_get_af_specific(sa_addr->sa.sa_family);
703 if (!af) {
704 retval = -EINVAL;
705 goto err_bindx_rem;
706 }
707
708 if (!af->addr_valid(sa_addr, sp, NULL)) {
709 retval = -EADDRNOTAVAIL;
710 goto err_bindx_rem;
711 }
712
713 if (sa_addr->v4.sin_port &&
714 sa_addr->v4.sin_port != htons(bp->port)) {
715 retval = -EINVAL;
716 goto err_bindx_rem;
717 }
718
719 if (!sa_addr->v4.sin_port)
720 sa_addr->v4.sin_port = htons(bp->port);
721
722 /* FIXME - There is probably a need to check if sk->sk_saddr and
723 * sk->sk_rcv_addr are currently set to one of the addresses to
724 * be removed. This is something which needs to be looked into
725 * when we are fixing the outstanding issues with multi-homing
726 * socket routing and failover schemes. Refer to comments in
727 * sctp_do_bind(). -daisy
728 */
729 retval = sctp_del_bind_addr(bp, sa_addr);
730
731 addr_buf += af->sockaddr_len;
732 err_bindx_rem:
733 if (retval < 0) {
734 /* Failed. Add the ones that has been removed back */
735 if (cnt > 0)
736 sctp_bindx_add(sk, addrs, cnt);
737 return retval;
738 }
739 }
740
741 return retval;
742 }
743
744 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
745 * the associations that are part of the endpoint indicating that a list of
746 * local addresses are removed from the endpoint.
747 *
748 * If any of the addresses is already in the bind address list of the
749 * association, we do not send the chunk for that association. But it will not
750 * affect other associations.
751 *
752 * Only sctp_setsockopt_bindx() is supposed to call this function.
753 */
sctp_send_asconf_del_ip(struct sock * sk,struct sockaddr * addrs,int addrcnt)754 static int sctp_send_asconf_del_ip(struct sock *sk,
755 struct sockaddr *addrs,
756 int addrcnt)
757 {
758 struct sctp_sock *sp;
759 struct sctp_endpoint *ep;
760 struct sctp_association *asoc;
761 struct sctp_transport *transport;
762 struct sctp_bind_addr *bp;
763 struct sctp_chunk *chunk;
764 union sctp_addr *laddr;
765 void *addr_buf;
766 struct sctp_af *af;
767 struct sctp_sockaddr_entry *saddr;
768 int i;
769 int retval = 0;
770 int stored = 0;
771
772 chunk = NULL;
773 sp = sctp_sk(sk);
774 ep = sp->ep;
775
776 if (!ep->asconf_enable)
777 return retval;
778
779 pr_debug("%s: sk:%p, addrs:%p, addrcnt:%d\n",
780 __func__, sk, addrs, addrcnt);
781
782 list_for_each_entry(asoc, &ep->asocs, asocs) {
783
784 if (!asoc->peer.asconf_capable)
785 continue;
786
787 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
788 continue;
789
790 if (!sctp_state(asoc, ESTABLISHED))
791 continue;
792
793 /* Check if any address in the packed array of addresses is
794 * not present in the bind address list of the association.
795 * If so, do not send the asconf chunk to its peer, but
796 * continue with other associations.
797 */
798 addr_buf = addrs;
799 for (i = 0; i < addrcnt; i++) {
800 laddr = addr_buf;
801 af = sctp_get_af_specific(laddr->v4.sin_family);
802 if (!af) {
803 retval = -EINVAL;
804 goto out;
805 }
806
807 if (!sctp_assoc_lookup_laddr(asoc, laddr))
808 break;
809
810 addr_buf += af->sockaddr_len;
811 }
812 if (i < addrcnt)
813 continue;
814
815 /* Find one address in the association's bind address list
816 * that is not in the packed array of addresses. This is to
817 * make sure that we do not delete all the addresses in the
818 * association.
819 */
820 bp = &asoc->base.bind_addr;
821 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
822 addrcnt, sp);
823 if ((laddr == NULL) && (addrcnt == 1)) {
824 if (asoc->asconf_addr_del_pending)
825 continue;
826 asoc->asconf_addr_del_pending =
827 kzalloc(sizeof(union sctp_addr), GFP_ATOMIC);
828 if (asoc->asconf_addr_del_pending == NULL) {
829 retval = -ENOMEM;
830 goto out;
831 }
832 asoc->asconf_addr_del_pending->sa.sa_family =
833 addrs->sa_family;
834 asoc->asconf_addr_del_pending->v4.sin_port =
835 htons(bp->port);
836 if (addrs->sa_family == AF_INET) {
837 struct sockaddr_in *sin;
838
839 sin = (struct sockaddr_in *)addrs;
840 asoc->asconf_addr_del_pending->v4.sin_addr.s_addr = sin->sin_addr.s_addr;
841 } else if (addrs->sa_family == AF_INET6) {
842 struct sockaddr_in6 *sin6;
843
844 sin6 = (struct sockaddr_in6 *)addrs;
845 asoc->asconf_addr_del_pending->v6.sin6_addr = sin6->sin6_addr;
846 }
847
848 pr_debug("%s: keep the last address asoc:%p %pISc at %p\n",
849 __func__, asoc, &asoc->asconf_addr_del_pending->sa,
850 asoc->asconf_addr_del_pending);
851
852 asoc->src_out_of_asoc_ok = 1;
853 stored = 1;
854 goto skip_mkasconf;
855 }
856
857 if (laddr == NULL)
858 return -EINVAL;
859
860 /* We do not need RCU protection throughout this loop
861 * because this is done under a socket lock from the
862 * setsockopt call.
863 */
864 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
865 SCTP_PARAM_DEL_IP);
866 if (!chunk) {
867 retval = -ENOMEM;
868 goto out;
869 }
870
871 skip_mkasconf:
872 /* Reset use_as_src flag for the addresses in the bind address
873 * list that are to be deleted.
874 */
875 addr_buf = addrs;
876 for (i = 0; i < addrcnt; i++) {
877 laddr = addr_buf;
878 af = sctp_get_af_specific(laddr->v4.sin_family);
879 list_for_each_entry(saddr, &bp->address_list, list) {
880 if (sctp_cmp_addr_exact(&saddr->a, laddr))
881 saddr->state = SCTP_ADDR_DEL;
882 }
883 addr_buf += af->sockaddr_len;
884 }
885
886 /* Update the route and saddr entries for all the transports
887 * as some of the addresses in the bind address list are
888 * about to be deleted and cannot be used as source addresses.
889 */
890 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
891 transports) {
892 sctp_transport_route(transport, NULL,
893 sctp_sk(asoc->base.sk));
894 }
895
896 if (stored)
897 /* We don't need to transmit ASCONF */
898 continue;
899 retval = sctp_send_asconf(asoc, chunk);
900 }
901 out:
902 return retval;
903 }
904
905 /* set addr events to assocs in the endpoint. ep and addr_wq must be locked */
sctp_asconf_mgmt(struct sctp_sock * sp,struct sctp_sockaddr_entry * addrw)906 int sctp_asconf_mgmt(struct sctp_sock *sp, struct sctp_sockaddr_entry *addrw)
907 {
908 struct sock *sk = sctp_opt2sk(sp);
909 union sctp_addr *addr;
910 struct sctp_af *af;
911
912 /* It is safe to write port space in caller. */
913 addr = &addrw->a;
914 addr->v4.sin_port = htons(sp->ep->base.bind_addr.port);
915 af = sctp_get_af_specific(addr->sa.sa_family);
916 if (!af)
917 return -EINVAL;
918 if (sctp_verify_addr(sk, addr, af->sockaddr_len))
919 return -EINVAL;
920
921 if (addrw->state == SCTP_ADDR_NEW)
922 return sctp_send_asconf_add_ip(sk, (struct sockaddr *)addr, 1);
923 else
924 return sctp_send_asconf_del_ip(sk, (struct sockaddr *)addr, 1);
925 }
926
927 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
928 *
929 * API 8.1
930 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
931 * int flags);
932 *
933 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
934 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
935 * or IPv6 addresses.
936 *
937 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
938 * Section 3.1.2 for this usage.
939 *
940 * addrs is a pointer to an array of one or more socket addresses. Each
941 * address is contained in its appropriate structure (i.e. struct
942 * sockaddr_in or struct sockaddr_in6) the family of the address type
943 * must be used to distinguish the address length (note that this
944 * representation is termed a "packed array" of addresses). The caller
945 * specifies the number of addresses in the array with addrcnt.
946 *
947 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
948 * -1, and sets errno to the appropriate error code.
949 *
950 * For SCTP, the port given in each socket address must be the same, or
951 * sctp_bindx() will fail, setting errno to EINVAL.
952 *
953 * The flags parameter is formed from the bitwise OR of zero or more of
954 * the following currently defined flags:
955 *
956 * SCTP_BINDX_ADD_ADDR
957 *
958 * SCTP_BINDX_REM_ADDR
959 *
960 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
961 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
962 * addresses from the association. The two flags are mutually exclusive;
963 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
964 * not remove all addresses from an association; sctp_bindx() will
965 * reject such an attempt with EINVAL.
966 *
967 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
968 * additional addresses with an endpoint after calling bind(). Or use
969 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
970 * socket is associated with so that no new association accepted will be
971 * associated with those addresses. If the endpoint supports dynamic
972 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
973 * endpoint to send the appropriate message to the peer to change the
974 * peers address lists.
975 *
976 * Adding and removing addresses from a connected association is
977 * optional functionality. Implementations that do not support this
978 * functionality should return EOPNOTSUPP.
979 *
980 * Basically do nothing but copying the addresses from user to kernel
981 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
982 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
983 * from userspace.
984 *
985 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
986 * it.
987 *
988 * sk The sk of the socket
989 * addrs The pointer to the addresses
990 * addrssize Size of the addrs buffer
991 * op Operation to perform (add or remove, see the flags of
992 * sctp_bindx)
993 *
994 * Returns 0 if ok, <0 errno code on error.
995 */
sctp_setsockopt_bindx(struct sock * sk,struct sockaddr * addrs,int addrs_size,int op)996 static int sctp_setsockopt_bindx(struct sock *sk, struct sockaddr *addrs,
997 int addrs_size, int op)
998 {
999 int err;
1000 int addrcnt = 0;
1001 int walk_size = 0;
1002 struct sockaddr *sa_addr;
1003 void *addr_buf = addrs;
1004 struct sctp_af *af;
1005
1006 pr_debug("%s: sk:%p addrs:%p addrs_size:%d opt:%d\n",
1007 __func__, sk, addr_buf, addrs_size, op);
1008
1009 if (unlikely(addrs_size <= 0))
1010 return -EINVAL;
1011
1012 /* Walk through the addrs buffer and count the number of addresses. */
1013 while (walk_size < addrs_size) {
1014 if (walk_size + sizeof(sa_family_t) > addrs_size)
1015 return -EINVAL;
1016
1017 sa_addr = addr_buf;
1018 af = sctp_get_af_specific(sa_addr->sa_family);
1019
1020 /* If the address family is not supported or if this address
1021 * causes the address buffer to overflow return EINVAL.
1022 */
1023 if (!af || (walk_size + af->sockaddr_len) > addrs_size)
1024 return -EINVAL;
1025 addrcnt++;
1026 addr_buf += af->sockaddr_len;
1027 walk_size += af->sockaddr_len;
1028 }
1029
1030 /* Do the work. */
1031 switch (op) {
1032 case SCTP_BINDX_ADD_ADDR:
1033 /* Allow security module to validate bindx addresses. */
1034 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_BINDX_ADD,
1035 addrs, addrs_size);
1036 if (err)
1037 return err;
1038 err = sctp_bindx_add(sk, addrs, addrcnt);
1039 if (err)
1040 return err;
1041 return sctp_send_asconf_add_ip(sk, addrs, addrcnt);
1042 case SCTP_BINDX_REM_ADDR:
1043 err = sctp_bindx_rem(sk, addrs, addrcnt);
1044 if (err)
1045 return err;
1046 return sctp_send_asconf_del_ip(sk, addrs, addrcnt);
1047
1048 default:
1049 return -EINVAL;
1050 }
1051 }
1052
sctp_bind_add(struct sock * sk,struct sockaddr * addrs,int addrlen)1053 static int sctp_bind_add(struct sock *sk, struct sockaddr *addrs,
1054 int addrlen)
1055 {
1056 int err;
1057
1058 lock_sock(sk);
1059 err = sctp_setsockopt_bindx(sk, addrs, addrlen, SCTP_BINDX_ADD_ADDR);
1060 release_sock(sk);
1061 return err;
1062 }
1063
sctp_connect_new_asoc(struct sctp_endpoint * ep,const union sctp_addr * daddr,const struct sctp_initmsg * init,struct sctp_transport ** tp)1064 static int sctp_connect_new_asoc(struct sctp_endpoint *ep,
1065 const union sctp_addr *daddr,
1066 const struct sctp_initmsg *init,
1067 struct sctp_transport **tp)
1068 {
1069 struct sctp_association *asoc;
1070 struct sock *sk = ep->base.sk;
1071 struct net *net = sock_net(sk);
1072 enum sctp_scope scope;
1073 int err;
1074
1075 if (sctp_endpoint_is_peeled_off(ep, daddr))
1076 return -EADDRNOTAVAIL;
1077
1078 if (!ep->base.bind_addr.port) {
1079 if (sctp_autobind(sk))
1080 return -EAGAIN;
1081 } else {
1082 if (inet_port_requires_bind_service(net, ep->base.bind_addr.port) &&
1083 !ns_capable(net->user_ns, CAP_NET_BIND_SERVICE))
1084 return -EACCES;
1085 }
1086
1087 scope = sctp_scope(daddr);
1088 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1089 if (!asoc)
1090 return -ENOMEM;
1091
1092 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1093 if (err < 0)
1094 goto free;
1095
1096 *tp = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1097 if (!*tp) {
1098 err = -ENOMEM;
1099 goto free;
1100 }
1101
1102 if (!init)
1103 return 0;
1104
1105 if (init->sinit_num_ostreams) {
1106 __u16 outcnt = init->sinit_num_ostreams;
1107
1108 asoc->c.sinit_num_ostreams = outcnt;
1109 /* outcnt has been changed, need to re-init stream */
1110 err = sctp_stream_init(&asoc->stream, outcnt, 0, GFP_KERNEL);
1111 if (err)
1112 goto free;
1113 }
1114
1115 if (init->sinit_max_instreams)
1116 asoc->c.sinit_max_instreams = init->sinit_max_instreams;
1117
1118 if (init->sinit_max_attempts)
1119 asoc->max_init_attempts = init->sinit_max_attempts;
1120
1121 if (init->sinit_max_init_timeo)
1122 asoc->max_init_timeo =
1123 msecs_to_jiffies(init->sinit_max_init_timeo);
1124
1125 return 0;
1126 free:
1127 sctp_association_free(asoc);
1128 return err;
1129 }
1130
sctp_connect_add_peer(struct sctp_association * asoc,union sctp_addr * daddr,int addr_len)1131 static int sctp_connect_add_peer(struct sctp_association *asoc,
1132 union sctp_addr *daddr, int addr_len)
1133 {
1134 struct sctp_endpoint *ep = asoc->ep;
1135 struct sctp_association *old;
1136 struct sctp_transport *t;
1137 int err;
1138
1139 err = sctp_verify_addr(ep->base.sk, daddr, addr_len);
1140 if (err)
1141 return err;
1142
1143 old = sctp_endpoint_lookup_assoc(ep, daddr, &t);
1144 if (old && old != asoc)
1145 return old->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1146 : -EALREADY;
1147
1148 if (sctp_endpoint_is_peeled_off(ep, daddr))
1149 return -EADDRNOTAVAIL;
1150
1151 t = sctp_assoc_add_peer(asoc, daddr, GFP_KERNEL, SCTP_UNKNOWN);
1152 if (!t)
1153 return -ENOMEM;
1154
1155 return 0;
1156 }
1157
1158 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
1159 *
1160 * Common routine for handling connect() and sctp_connectx().
1161 * Connect will come in with just a single address.
1162 */
__sctp_connect(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,int flags,sctp_assoc_t * assoc_id)1163 static int __sctp_connect(struct sock *sk, struct sockaddr *kaddrs,
1164 int addrs_size, int flags, sctp_assoc_t *assoc_id)
1165 {
1166 struct sctp_sock *sp = sctp_sk(sk);
1167 struct sctp_endpoint *ep = sp->ep;
1168 struct sctp_transport *transport;
1169 struct sctp_association *asoc;
1170 void *addr_buf = kaddrs;
1171 union sctp_addr *daddr;
1172 struct sctp_af *af;
1173 int walk_size, err;
1174 long timeo;
1175
1176 if (sctp_sstate(sk, ESTABLISHED) || sctp_sstate(sk, CLOSING) ||
1177 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)))
1178 return -EISCONN;
1179
1180 daddr = addr_buf;
1181 af = sctp_get_af_specific(daddr->sa.sa_family);
1182 if (!af || af->sockaddr_len > addrs_size)
1183 return -EINVAL;
1184
1185 err = sctp_verify_addr(sk, daddr, af->sockaddr_len);
1186 if (err)
1187 return err;
1188
1189 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1190 if (asoc)
1191 return asoc->state >= SCTP_STATE_ESTABLISHED ? -EISCONN
1192 : -EALREADY;
1193
1194 err = sctp_connect_new_asoc(ep, daddr, NULL, &transport);
1195 if (err)
1196 return err;
1197 asoc = transport->asoc;
1198
1199 addr_buf += af->sockaddr_len;
1200 walk_size = af->sockaddr_len;
1201 while (walk_size < addrs_size) {
1202 err = -EINVAL;
1203 if (walk_size + sizeof(sa_family_t) > addrs_size)
1204 goto out_free;
1205
1206 daddr = addr_buf;
1207 af = sctp_get_af_specific(daddr->sa.sa_family);
1208 if (!af || af->sockaddr_len + walk_size > addrs_size)
1209 goto out_free;
1210
1211 if (asoc->peer.port != ntohs(daddr->v4.sin_port))
1212 goto out_free;
1213
1214 err = sctp_connect_add_peer(asoc, daddr, af->sockaddr_len);
1215 if (err)
1216 goto out_free;
1217
1218 addr_buf += af->sockaddr_len;
1219 walk_size += af->sockaddr_len;
1220 }
1221
1222 /* In case the user of sctp_connectx() wants an association
1223 * id back, assign one now.
1224 */
1225 if (assoc_id) {
1226 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1227 if (err < 0)
1228 goto out_free;
1229 }
1230
1231 err = sctp_primitive_ASSOCIATE(sock_net(sk), asoc, NULL);
1232 if (err < 0)
1233 goto out_free;
1234
1235 /* Initialize sk's dport and daddr for getpeername() */
1236 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1237 sp->pf->to_sk_daddr(daddr, sk);
1238 sk->sk_err = 0;
1239
1240 if (assoc_id)
1241 *assoc_id = asoc->assoc_id;
1242
1243 timeo = sock_sndtimeo(sk, flags & O_NONBLOCK);
1244 return sctp_wait_for_connect(asoc, &timeo);
1245
1246 out_free:
1247 pr_debug("%s: took out_free path with asoc:%p kaddrs:%p err:%d\n",
1248 __func__, asoc, kaddrs, err);
1249 sctp_association_free(asoc);
1250 return err;
1251 }
1252
1253 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1254 *
1255 * API 8.9
1256 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1257 * sctp_assoc_t *asoc);
1258 *
1259 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1260 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1261 * or IPv6 addresses.
1262 *
1263 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1264 * Section 3.1.2 for this usage.
1265 *
1266 * addrs is a pointer to an array of one or more socket addresses. Each
1267 * address is contained in its appropriate structure (i.e. struct
1268 * sockaddr_in or struct sockaddr_in6) the family of the address type
1269 * must be used to distengish the address length (note that this
1270 * representation is termed a "packed array" of addresses). The caller
1271 * specifies the number of addresses in the array with addrcnt.
1272 *
1273 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1274 * the association id of the new association. On failure, sctp_connectx()
1275 * returns -1, and sets errno to the appropriate error code. The assoc_id
1276 * is not touched by the kernel.
1277 *
1278 * For SCTP, the port given in each socket address must be the same, or
1279 * sctp_connectx() will fail, setting errno to EINVAL.
1280 *
1281 * An application can use sctp_connectx to initiate an association with
1282 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1283 * allows a caller to specify multiple addresses at which a peer can be
1284 * reached. The way the SCTP stack uses the list of addresses to set up
1285 * the association is implementation dependent. This function only
1286 * specifies that the stack will try to make use of all the addresses in
1287 * the list when needed.
1288 *
1289 * Note that the list of addresses passed in is only used for setting up
1290 * the association. It does not necessarily equal the set of addresses
1291 * the peer uses for the resulting association. If the caller wants to
1292 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1293 * retrieve them after the association has been set up.
1294 *
1295 * Basically do nothing but copying the addresses from user to kernel
1296 * land and invoking either sctp_connectx(). This is used for tunneling
1297 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1298 *
1299 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1300 * it.
1301 *
1302 * sk The sk of the socket
1303 * addrs The pointer to the addresses
1304 * addrssize Size of the addrs buffer
1305 *
1306 * Returns >=0 if ok, <0 errno code on error.
1307 */
__sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size,sctp_assoc_t * assoc_id)1308 static int __sctp_setsockopt_connectx(struct sock *sk, struct sockaddr *kaddrs,
1309 int addrs_size, sctp_assoc_t *assoc_id)
1310 {
1311 int err = 0, flags = 0;
1312
1313 pr_debug("%s: sk:%p addrs:%p addrs_size:%d\n",
1314 __func__, sk, kaddrs, addrs_size);
1315
1316 /* make sure the 1st addr's sa_family is accessible later */
1317 if (unlikely(addrs_size < sizeof(sa_family_t)))
1318 return -EINVAL;
1319
1320 /* Allow security module to validate connectx addresses. */
1321 err = security_sctp_bind_connect(sk, SCTP_SOCKOPT_CONNECTX,
1322 (struct sockaddr *)kaddrs,
1323 addrs_size);
1324 if (err)
1325 return err;
1326
1327 /* in-kernel sockets don't generally have a file allocated to them
1328 * if all they do is call sock_create_kern().
1329 */
1330 if (sk->sk_socket->file)
1331 flags = sk->sk_socket->file->f_flags;
1332
1333 return __sctp_connect(sk, kaddrs, addrs_size, flags, assoc_id);
1334 }
1335
1336 /*
1337 * This is an older interface. It's kept for backward compatibility
1338 * to the option that doesn't provide association id.
1339 */
sctp_setsockopt_connectx_old(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1340 static int sctp_setsockopt_connectx_old(struct sock *sk,
1341 struct sockaddr *kaddrs,
1342 int addrs_size)
1343 {
1344 return __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, NULL);
1345 }
1346
1347 /*
1348 * New interface for the API. The since the API is done with a socket
1349 * option, to make it simple we feed back the association id is as a return
1350 * indication to the call. Error is always negative and association id is
1351 * always positive.
1352 */
sctp_setsockopt_connectx(struct sock * sk,struct sockaddr * kaddrs,int addrs_size)1353 static int sctp_setsockopt_connectx(struct sock *sk,
1354 struct sockaddr *kaddrs,
1355 int addrs_size)
1356 {
1357 sctp_assoc_t assoc_id = 0;
1358 int err = 0;
1359
1360 err = __sctp_setsockopt_connectx(sk, kaddrs, addrs_size, &assoc_id);
1361
1362 if (err)
1363 return err;
1364 else
1365 return assoc_id;
1366 }
1367
1368 /*
1369 * New (hopefully final) interface for the API.
1370 * We use the sctp_getaddrs_old structure so that use-space library
1371 * can avoid any unnecessary allocations. The only different part
1372 * is that we store the actual length of the address buffer into the
1373 * addrs_num structure member. That way we can re-use the existing
1374 * code.
1375 */
1376 #ifdef CONFIG_COMPAT
1377 struct compat_sctp_getaddrs_old {
1378 sctp_assoc_t assoc_id;
1379 s32 addr_num;
1380 compat_uptr_t addrs; /* struct sockaddr * */
1381 };
1382 #endif
1383
sctp_getsockopt_connectx3(struct sock * sk,int len,char __user * optval,int __user * optlen)1384 static int sctp_getsockopt_connectx3(struct sock *sk, int len,
1385 char __user *optval,
1386 int __user *optlen)
1387 {
1388 struct sctp_getaddrs_old param;
1389 sctp_assoc_t assoc_id = 0;
1390 struct sockaddr *kaddrs;
1391 int err = 0;
1392
1393 #ifdef CONFIG_COMPAT
1394 if (in_compat_syscall()) {
1395 struct compat_sctp_getaddrs_old param32;
1396
1397 if (len < sizeof(param32))
1398 return -EINVAL;
1399 if (copy_from_user(¶m32, optval, sizeof(param32)))
1400 return -EFAULT;
1401
1402 param.assoc_id = param32.assoc_id;
1403 param.addr_num = param32.addr_num;
1404 param.addrs = compat_ptr(param32.addrs);
1405 } else
1406 #endif
1407 {
1408 if (len < sizeof(param))
1409 return -EINVAL;
1410 if (copy_from_user(¶m, optval, sizeof(param)))
1411 return -EFAULT;
1412 }
1413
1414 kaddrs = memdup_user(param.addrs, param.addr_num);
1415 if (IS_ERR(kaddrs))
1416 return PTR_ERR(kaddrs);
1417
1418 err = __sctp_setsockopt_connectx(sk, kaddrs, param.addr_num, &assoc_id);
1419 kfree(kaddrs);
1420 if (err == 0 || err == -EINPROGRESS) {
1421 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1422 return -EFAULT;
1423 if (put_user(sizeof(assoc_id), optlen))
1424 return -EFAULT;
1425 }
1426
1427 return err;
1428 }
1429
1430 /* API 3.1.4 close() - UDP Style Syntax
1431 * Applications use close() to perform graceful shutdown (as described in
1432 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1433 * by a UDP-style socket.
1434 *
1435 * The syntax is
1436 *
1437 * ret = close(int sd);
1438 *
1439 * sd - the socket descriptor of the associations to be closed.
1440 *
1441 * To gracefully shutdown a specific association represented by the
1442 * UDP-style socket, an application should use the sendmsg() call,
1443 * passing no user data, but including the appropriate flag in the
1444 * ancillary data (see Section xxxx).
1445 *
1446 * If sd in the close() call is a branched-off socket representing only
1447 * one association, the shutdown is performed on that association only.
1448 *
1449 * 4.1.6 close() - TCP Style Syntax
1450 *
1451 * Applications use close() to gracefully close down an association.
1452 *
1453 * The syntax is:
1454 *
1455 * int close(int sd);
1456 *
1457 * sd - the socket descriptor of the association to be closed.
1458 *
1459 * After an application calls close() on a socket descriptor, no further
1460 * socket operations will succeed on that descriptor.
1461 *
1462 * API 7.1.4 SO_LINGER
1463 *
1464 * An application using the TCP-style socket can use this option to
1465 * perform the SCTP ABORT primitive. The linger option structure is:
1466 *
1467 * struct linger {
1468 * int l_onoff; // option on/off
1469 * int l_linger; // linger time
1470 * };
1471 *
1472 * To enable the option, set l_onoff to 1. If the l_linger value is set
1473 * to 0, calling close() is the same as the ABORT primitive. If the
1474 * value is set to a negative value, the setsockopt() call will return
1475 * an error. If the value is set to a positive value linger_time, the
1476 * close() can be blocked for at most linger_time ms. If the graceful
1477 * shutdown phase does not finish during this period, close() will
1478 * return but the graceful shutdown phase continues in the system.
1479 */
sctp_close(struct sock * sk,long timeout)1480 static void sctp_close(struct sock *sk, long timeout)
1481 {
1482 struct net *net = sock_net(sk);
1483 struct sctp_endpoint *ep;
1484 struct sctp_association *asoc;
1485 struct list_head *pos, *temp;
1486 unsigned int data_was_unread;
1487
1488 pr_debug("%s: sk:%p, timeout:%ld\n", __func__, sk, timeout);
1489
1490 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
1491 sk->sk_shutdown = SHUTDOWN_MASK;
1492 inet_sk_set_state(sk, SCTP_SS_CLOSING);
1493
1494 ep = sctp_sk(sk)->ep;
1495
1496 /* Clean up any skbs sitting on the receive queue. */
1497 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1498 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1499
1500 /* Walk all associations on an endpoint. */
1501 list_for_each_safe(pos, temp, &ep->asocs) {
1502 asoc = list_entry(pos, struct sctp_association, asocs);
1503
1504 if (sctp_style(sk, TCP)) {
1505 /* A closed association can still be in the list if
1506 * it belongs to a TCP-style listening socket that is
1507 * not yet accepted. If so, free it. If not, send an
1508 * ABORT or SHUTDOWN based on the linger options.
1509 */
1510 if (sctp_state(asoc, CLOSED)) {
1511 sctp_association_free(asoc);
1512 continue;
1513 }
1514 }
1515
1516 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1517 !skb_queue_empty(&asoc->ulpq.reasm) ||
1518 !skb_queue_empty(&asoc->ulpq.reasm_uo) ||
1519 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1520 struct sctp_chunk *chunk;
1521
1522 chunk = sctp_make_abort_user(asoc, NULL, 0);
1523 sctp_primitive_ABORT(net, asoc, chunk);
1524 } else
1525 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1526 }
1527
1528 /* On a TCP-style socket, block for at most linger_time if set. */
1529 if (sctp_style(sk, TCP) && timeout)
1530 sctp_wait_for_close(sk, timeout);
1531
1532 /* This will run the backlog queue. */
1533 release_sock(sk);
1534
1535 /* Supposedly, no process has access to the socket, but
1536 * the net layers still may.
1537 * Also, sctp_destroy_sock() needs to be called with addr_wq_lock
1538 * held and that should be grabbed before socket lock.
1539 */
1540 spin_lock_bh(&net->sctp.addr_wq_lock);
1541 bh_lock_sock_nested(sk);
1542
1543 /* Hold the sock, since sk_common_release() will put sock_put()
1544 * and we have just a little more cleanup.
1545 */
1546 sock_hold(sk);
1547 sk_common_release(sk);
1548
1549 bh_unlock_sock(sk);
1550 spin_unlock_bh(&net->sctp.addr_wq_lock);
1551
1552 sock_put(sk);
1553
1554 SCTP_DBG_OBJCNT_DEC(sock);
1555 }
1556
1557 /* Handle EPIPE error. */
sctp_error(struct sock * sk,int flags,int err)1558 static int sctp_error(struct sock *sk, int flags, int err)
1559 {
1560 if (err == -EPIPE)
1561 err = sock_error(sk) ? : -EPIPE;
1562 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1563 send_sig(SIGPIPE, current, 0);
1564 return err;
1565 }
1566
1567 /* API 3.1.3 sendmsg() - UDP Style Syntax
1568 *
1569 * An application uses sendmsg() and recvmsg() calls to transmit data to
1570 * and receive data from its peer.
1571 *
1572 * ssize_t sendmsg(int socket, const struct msghdr *message,
1573 * int flags);
1574 *
1575 * socket - the socket descriptor of the endpoint.
1576 * message - pointer to the msghdr structure which contains a single
1577 * user message and possibly some ancillary data.
1578 *
1579 * See Section 5 for complete description of the data
1580 * structures.
1581 *
1582 * flags - flags sent or received with the user message, see Section
1583 * 5 for complete description of the flags.
1584 *
1585 * Note: This function could use a rewrite especially when explicit
1586 * connect support comes in.
1587 */
1588 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1589
1590 static int sctp_msghdr_parse(const struct msghdr *msg,
1591 struct sctp_cmsgs *cmsgs);
1592
sctp_sendmsg_parse(struct sock * sk,struct sctp_cmsgs * cmsgs,struct sctp_sndrcvinfo * srinfo,const struct msghdr * msg,size_t msg_len)1593 static int sctp_sendmsg_parse(struct sock *sk, struct sctp_cmsgs *cmsgs,
1594 struct sctp_sndrcvinfo *srinfo,
1595 const struct msghdr *msg, size_t msg_len)
1596 {
1597 __u16 sflags;
1598 int err;
1599
1600 if (sctp_sstate(sk, LISTENING) && sctp_style(sk, TCP))
1601 return -EPIPE;
1602
1603 if (msg_len > sk->sk_sndbuf)
1604 return -EMSGSIZE;
1605
1606 memset(cmsgs, 0, sizeof(*cmsgs));
1607 err = sctp_msghdr_parse(msg, cmsgs);
1608 if (err) {
1609 pr_debug("%s: msghdr parse err:%x\n", __func__, err);
1610 return err;
1611 }
1612
1613 memset(srinfo, 0, sizeof(*srinfo));
1614 if (cmsgs->srinfo) {
1615 srinfo->sinfo_stream = cmsgs->srinfo->sinfo_stream;
1616 srinfo->sinfo_flags = cmsgs->srinfo->sinfo_flags;
1617 srinfo->sinfo_ppid = cmsgs->srinfo->sinfo_ppid;
1618 srinfo->sinfo_context = cmsgs->srinfo->sinfo_context;
1619 srinfo->sinfo_assoc_id = cmsgs->srinfo->sinfo_assoc_id;
1620 srinfo->sinfo_timetolive = cmsgs->srinfo->sinfo_timetolive;
1621 }
1622
1623 if (cmsgs->sinfo) {
1624 srinfo->sinfo_stream = cmsgs->sinfo->snd_sid;
1625 srinfo->sinfo_flags = cmsgs->sinfo->snd_flags;
1626 srinfo->sinfo_ppid = cmsgs->sinfo->snd_ppid;
1627 srinfo->sinfo_context = cmsgs->sinfo->snd_context;
1628 srinfo->sinfo_assoc_id = cmsgs->sinfo->snd_assoc_id;
1629 }
1630
1631 if (cmsgs->prinfo) {
1632 srinfo->sinfo_timetolive = cmsgs->prinfo->pr_value;
1633 SCTP_PR_SET_POLICY(srinfo->sinfo_flags,
1634 cmsgs->prinfo->pr_policy);
1635 }
1636
1637 sflags = srinfo->sinfo_flags;
1638 if (!sflags && msg_len)
1639 return 0;
1640
1641 if (sctp_style(sk, TCP) && (sflags & (SCTP_EOF | SCTP_ABORT)))
1642 return -EINVAL;
1643
1644 if (((sflags & SCTP_EOF) && msg_len > 0) ||
1645 (!(sflags & (SCTP_EOF | SCTP_ABORT)) && msg_len == 0))
1646 return -EINVAL;
1647
1648 if ((sflags & SCTP_ADDR_OVER) && !msg->msg_name)
1649 return -EINVAL;
1650
1651 return 0;
1652 }
1653
sctp_sendmsg_new_asoc(struct sock * sk,__u16 sflags,struct sctp_cmsgs * cmsgs,union sctp_addr * daddr,struct sctp_transport ** tp)1654 static int sctp_sendmsg_new_asoc(struct sock *sk, __u16 sflags,
1655 struct sctp_cmsgs *cmsgs,
1656 union sctp_addr *daddr,
1657 struct sctp_transport **tp)
1658 {
1659 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1660 struct sctp_association *asoc;
1661 struct cmsghdr *cmsg;
1662 __be32 flowinfo = 0;
1663 struct sctp_af *af;
1664 int err;
1665
1666 *tp = NULL;
1667
1668 if (sflags & (SCTP_EOF | SCTP_ABORT))
1669 return -EINVAL;
1670
1671 if (sctp_style(sk, TCP) && (sctp_sstate(sk, ESTABLISHED) ||
1672 sctp_sstate(sk, CLOSING)))
1673 return -EADDRNOTAVAIL;
1674
1675 /* Label connection socket for first association 1-to-many
1676 * style for client sequence socket()->sendmsg(). This
1677 * needs to be done before sctp_assoc_add_peer() as that will
1678 * set up the initial packet that needs to account for any
1679 * security ip options (CIPSO/CALIPSO) added to the packet.
1680 */
1681 af = sctp_get_af_specific(daddr->sa.sa_family);
1682 if (!af)
1683 return -EINVAL;
1684 err = security_sctp_bind_connect(sk, SCTP_SENDMSG_CONNECT,
1685 (struct sockaddr *)daddr,
1686 af->sockaddr_len);
1687 if (err < 0)
1688 return err;
1689
1690 err = sctp_connect_new_asoc(ep, daddr, cmsgs->init, tp);
1691 if (err)
1692 return err;
1693 asoc = (*tp)->asoc;
1694
1695 if (!cmsgs->addrs_msg)
1696 return 0;
1697
1698 if (daddr->sa.sa_family == AF_INET6)
1699 flowinfo = daddr->v6.sin6_flowinfo;
1700
1701 /* sendv addr list parse */
1702 for_each_cmsghdr(cmsg, cmsgs->addrs_msg) {
1703 union sctp_addr _daddr;
1704 int dlen;
1705
1706 if (cmsg->cmsg_level != IPPROTO_SCTP ||
1707 (cmsg->cmsg_type != SCTP_DSTADDRV4 &&
1708 cmsg->cmsg_type != SCTP_DSTADDRV6))
1709 continue;
1710
1711 daddr = &_daddr;
1712 memset(daddr, 0, sizeof(*daddr));
1713 dlen = cmsg->cmsg_len - sizeof(struct cmsghdr);
1714 if (cmsg->cmsg_type == SCTP_DSTADDRV4) {
1715 if (dlen < sizeof(struct in_addr)) {
1716 err = -EINVAL;
1717 goto free;
1718 }
1719
1720 dlen = sizeof(struct in_addr);
1721 daddr->v4.sin_family = AF_INET;
1722 daddr->v4.sin_port = htons(asoc->peer.port);
1723 memcpy(&daddr->v4.sin_addr, CMSG_DATA(cmsg), dlen);
1724 } else {
1725 if (dlen < sizeof(struct in6_addr)) {
1726 err = -EINVAL;
1727 goto free;
1728 }
1729
1730 dlen = sizeof(struct in6_addr);
1731 daddr->v6.sin6_flowinfo = flowinfo;
1732 daddr->v6.sin6_family = AF_INET6;
1733 daddr->v6.sin6_port = htons(asoc->peer.port);
1734 memcpy(&daddr->v6.sin6_addr, CMSG_DATA(cmsg), dlen);
1735 }
1736
1737 err = sctp_connect_add_peer(asoc, daddr, sizeof(*daddr));
1738 if (err)
1739 goto free;
1740 }
1741
1742 return 0;
1743
1744 free:
1745 sctp_association_free(asoc);
1746 return err;
1747 }
1748
sctp_sendmsg_check_sflags(struct sctp_association * asoc,__u16 sflags,struct msghdr * msg,size_t msg_len)1749 static int sctp_sendmsg_check_sflags(struct sctp_association *asoc,
1750 __u16 sflags, struct msghdr *msg,
1751 size_t msg_len)
1752 {
1753 struct sock *sk = asoc->base.sk;
1754 struct net *net = sock_net(sk);
1755
1756 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP))
1757 return -EPIPE;
1758
1759 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP) &&
1760 !sctp_state(asoc, ESTABLISHED))
1761 return 0;
1762
1763 if (sflags & SCTP_EOF) {
1764 pr_debug("%s: shutting down association:%p\n", __func__, asoc);
1765 sctp_primitive_SHUTDOWN(net, asoc, NULL);
1766
1767 return 0;
1768 }
1769
1770 if (sflags & SCTP_ABORT) {
1771 struct sctp_chunk *chunk;
1772
1773 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1774 if (!chunk)
1775 return -ENOMEM;
1776
1777 pr_debug("%s: aborting association:%p\n", __func__, asoc);
1778 sctp_primitive_ABORT(net, asoc, chunk);
1779 iov_iter_revert(&msg->msg_iter, msg_len);
1780
1781 return 0;
1782 }
1783
1784 return 1;
1785 }
1786
sctp_sendmsg_to_asoc(struct sctp_association * asoc,struct msghdr * msg,size_t msg_len,struct sctp_transport * transport,struct sctp_sndrcvinfo * sinfo)1787 static int sctp_sendmsg_to_asoc(struct sctp_association *asoc,
1788 struct msghdr *msg, size_t msg_len,
1789 struct sctp_transport *transport,
1790 struct sctp_sndrcvinfo *sinfo)
1791 {
1792 struct sock *sk = asoc->base.sk;
1793 struct sctp_sock *sp = sctp_sk(sk);
1794 struct net *net = sock_net(sk);
1795 struct sctp_datamsg *datamsg;
1796 bool wait_connect = false;
1797 struct sctp_chunk *chunk;
1798 long timeo;
1799 int err;
1800
1801 if (sinfo->sinfo_stream >= asoc->stream.outcnt) {
1802 err = -EINVAL;
1803 goto err;
1804 }
1805
1806 if (unlikely(!SCTP_SO(&asoc->stream, sinfo->sinfo_stream)->ext)) {
1807 err = sctp_stream_init_ext(&asoc->stream, sinfo->sinfo_stream);
1808 if (err)
1809 goto err;
1810 }
1811
1812 if (sp->disable_fragments && msg_len > asoc->frag_point) {
1813 err = -EMSGSIZE;
1814 goto err;
1815 }
1816
1817 if (asoc->pmtu_pending) {
1818 if (sp->param_flags & SPP_PMTUD_ENABLE)
1819 sctp_assoc_sync_pmtu(asoc);
1820 asoc->pmtu_pending = 0;
1821 }
1822
1823 if (sctp_wspace(asoc) < (int)msg_len)
1824 sctp_prsctp_prune(asoc, sinfo, msg_len - sctp_wspace(asoc));
1825
1826 if (sk_under_memory_pressure(sk))
1827 sk_mem_reclaim(sk);
1828
1829 if (sctp_wspace(asoc) <= 0 || !sk_wmem_schedule(sk, msg_len)) {
1830 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1831 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1832 if (err)
1833 goto err;
1834 }
1835
1836 if (sctp_state(asoc, CLOSED)) {
1837 err = sctp_primitive_ASSOCIATE(net, asoc, NULL);
1838 if (err)
1839 goto err;
1840
1841 if (asoc->ep->intl_enable) {
1842 timeo = sock_sndtimeo(sk, 0);
1843 err = sctp_wait_for_connect(asoc, &timeo);
1844 if (err) {
1845 err = -ESRCH;
1846 goto err;
1847 }
1848 } else {
1849 wait_connect = true;
1850 }
1851
1852 pr_debug("%s: we associated primitively\n", __func__);
1853 }
1854
1855 datamsg = sctp_datamsg_from_user(asoc, sinfo, &msg->msg_iter);
1856 if (IS_ERR(datamsg)) {
1857 err = PTR_ERR(datamsg);
1858 goto err;
1859 }
1860
1861 asoc->force_delay = !!(msg->msg_flags & MSG_MORE);
1862
1863 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1864 sctp_chunk_hold(chunk);
1865 sctp_set_owner_w(chunk);
1866 chunk->transport = transport;
1867 }
1868
1869 err = sctp_primitive_SEND(net, asoc, datamsg);
1870 if (err) {
1871 sctp_datamsg_free(datamsg);
1872 goto err;
1873 }
1874
1875 pr_debug("%s: we sent primitively\n", __func__);
1876
1877 sctp_datamsg_put(datamsg);
1878
1879 if (unlikely(wait_connect)) {
1880 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1881 sctp_wait_for_connect(asoc, &timeo);
1882 }
1883
1884 err = msg_len;
1885
1886 err:
1887 return err;
1888 }
1889
sctp_sendmsg_get_daddr(struct sock * sk,const struct msghdr * msg,struct sctp_cmsgs * cmsgs)1890 static union sctp_addr *sctp_sendmsg_get_daddr(struct sock *sk,
1891 const struct msghdr *msg,
1892 struct sctp_cmsgs *cmsgs)
1893 {
1894 union sctp_addr *daddr = NULL;
1895 int err;
1896
1897 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1898 int len = msg->msg_namelen;
1899
1900 if (len > sizeof(*daddr))
1901 len = sizeof(*daddr);
1902
1903 daddr = (union sctp_addr *)msg->msg_name;
1904
1905 err = sctp_verify_addr(sk, daddr, len);
1906 if (err)
1907 return ERR_PTR(err);
1908 }
1909
1910 return daddr;
1911 }
1912
sctp_sendmsg_update_sinfo(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct sctp_cmsgs * cmsgs)1913 static void sctp_sendmsg_update_sinfo(struct sctp_association *asoc,
1914 struct sctp_sndrcvinfo *sinfo,
1915 struct sctp_cmsgs *cmsgs)
1916 {
1917 if (!cmsgs->srinfo && !cmsgs->sinfo) {
1918 sinfo->sinfo_stream = asoc->default_stream;
1919 sinfo->sinfo_ppid = asoc->default_ppid;
1920 sinfo->sinfo_context = asoc->default_context;
1921 sinfo->sinfo_assoc_id = sctp_assoc2id(asoc);
1922
1923 if (!cmsgs->prinfo)
1924 sinfo->sinfo_flags = asoc->default_flags;
1925 }
1926
1927 if (!cmsgs->srinfo && !cmsgs->prinfo)
1928 sinfo->sinfo_timetolive = asoc->default_timetolive;
1929
1930 if (cmsgs->authinfo) {
1931 /* Reuse sinfo_tsn to indicate that authinfo was set and
1932 * sinfo_ssn to save the keyid on tx path.
1933 */
1934 sinfo->sinfo_tsn = 1;
1935 sinfo->sinfo_ssn = cmsgs->authinfo->auth_keynumber;
1936 }
1937 }
1938
sctp_sendmsg(struct sock * sk,struct msghdr * msg,size_t msg_len)1939 static int sctp_sendmsg(struct sock *sk, struct msghdr *msg, size_t msg_len)
1940 {
1941 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
1942 struct sctp_transport *transport = NULL;
1943 struct sctp_sndrcvinfo _sinfo, *sinfo;
1944 struct sctp_association *asoc, *tmp;
1945 struct sctp_cmsgs cmsgs;
1946 union sctp_addr *daddr;
1947 bool new = false;
1948 __u16 sflags;
1949 int err;
1950
1951 /* Parse and get snd_info */
1952 err = sctp_sendmsg_parse(sk, &cmsgs, &_sinfo, msg, msg_len);
1953 if (err)
1954 goto out;
1955
1956 sinfo = &_sinfo;
1957 sflags = sinfo->sinfo_flags;
1958
1959 /* Get daddr from msg */
1960 daddr = sctp_sendmsg_get_daddr(sk, msg, &cmsgs);
1961 if (IS_ERR(daddr)) {
1962 err = PTR_ERR(daddr);
1963 goto out;
1964 }
1965
1966 lock_sock(sk);
1967
1968 /* SCTP_SENDALL process */
1969 if ((sflags & SCTP_SENDALL) && sctp_style(sk, UDP)) {
1970 list_for_each_entry_safe(asoc, tmp, &ep->asocs, asocs) {
1971 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1972 msg_len);
1973 if (err == 0)
1974 continue;
1975 if (err < 0)
1976 goto out_unlock;
1977
1978 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
1979
1980 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len,
1981 NULL, sinfo);
1982 if (err < 0)
1983 goto out_unlock;
1984
1985 iov_iter_revert(&msg->msg_iter, err);
1986 }
1987
1988 goto out_unlock;
1989 }
1990
1991 /* Get and check or create asoc */
1992 if (daddr) {
1993 asoc = sctp_endpoint_lookup_assoc(ep, daddr, &transport);
1994 if (asoc) {
1995 err = sctp_sendmsg_check_sflags(asoc, sflags, msg,
1996 msg_len);
1997 if (err <= 0)
1998 goto out_unlock;
1999 } else {
2000 err = sctp_sendmsg_new_asoc(sk, sflags, &cmsgs, daddr,
2001 &transport);
2002 if (err)
2003 goto out_unlock;
2004
2005 asoc = transport->asoc;
2006 new = true;
2007 }
2008
2009 if (!sctp_style(sk, TCP) && !(sflags & SCTP_ADDR_OVER))
2010 transport = NULL;
2011 } else {
2012 asoc = sctp_id2assoc(sk, sinfo->sinfo_assoc_id);
2013 if (!asoc) {
2014 err = -EPIPE;
2015 goto out_unlock;
2016 }
2017
2018 err = sctp_sendmsg_check_sflags(asoc, sflags, msg, msg_len);
2019 if (err <= 0)
2020 goto out_unlock;
2021 }
2022
2023 /* Update snd_info with the asoc */
2024 sctp_sendmsg_update_sinfo(asoc, sinfo, &cmsgs);
2025
2026 /* Send msg to the asoc */
2027 err = sctp_sendmsg_to_asoc(asoc, msg, msg_len, transport, sinfo);
2028 if (err < 0 && err != -ESRCH && new)
2029 sctp_association_free(asoc);
2030
2031 out_unlock:
2032 release_sock(sk);
2033 out:
2034 return sctp_error(sk, msg->msg_flags, err);
2035 }
2036
2037 /* This is an extended version of skb_pull() that removes the data from the
2038 * start of a skb even when data is spread across the list of skb's in the
2039 * frag_list. len specifies the total amount of data that needs to be removed.
2040 * when 'len' bytes could be removed from the skb, it returns 0.
2041 * If 'len' exceeds the total skb length, it returns the no. of bytes that
2042 * could not be removed.
2043 */
sctp_skb_pull(struct sk_buff * skb,int len)2044 static int sctp_skb_pull(struct sk_buff *skb, int len)
2045 {
2046 struct sk_buff *list;
2047 int skb_len = skb_headlen(skb);
2048 int rlen;
2049
2050 if (len <= skb_len) {
2051 __skb_pull(skb, len);
2052 return 0;
2053 }
2054 len -= skb_len;
2055 __skb_pull(skb, skb_len);
2056
2057 skb_walk_frags(skb, list) {
2058 rlen = sctp_skb_pull(list, len);
2059 skb->len -= (len-rlen);
2060 skb->data_len -= (len-rlen);
2061
2062 if (!rlen)
2063 return 0;
2064
2065 len = rlen;
2066 }
2067
2068 return len;
2069 }
2070
2071 /* API 3.1.3 recvmsg() - UDP Style Syntax
2072 *
2073 * ssize_t recvmsg(int socket, struct msghdr *message,
2074 * int flags);
2075 *
2076 * socket - the socket descriptor of the endpoint.
2077 * message - pointer to the msghdr structure which contains a single
2078 * user message and possibly some ancillary data.
2079 *
2080 * See Section 5 for complete description of the data
2081 * structures.
2082 *
2083 * flags - flags sent or received with the user message, see Section
2084 * 5 for complete description of the flags.
2085 */
sctp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)2086 static int sctp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
2087 int noblock, int flags, int *addr_len)
2088 {
2089 struct sctp_ulpevent *event = NULL;
2090 struct sctp_sock *sp = sctp_sk(sk);
2091 struct sk_buff *skb, *head_skb;
2092 int copied;
2093 int err = 0;
2094 int skb_len;
2095
2096 pr_debug("%s: sk:%p, msghdr:%p, len:%zd, noblock:%d, flags:0x%x, "
2097 "addr_len:%p)\n", __func__, sk, msg, len, noblock, flags,
2098 addr_len);
2099
2100 lock_sock(sk);
2101
2102 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED) &&
2103 !sctp_sstate(sk, CLOSING) && !sctp_sstate(sk, CLOSED)) {
2104 err = -ENOTCONN;
2105 goto out;
2106 }
2107
2108 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
2109 if (!skb)
2110 goto out;
2111
2112 /* Get the total length of the skb including any skb's in the
2113 * frag_list.
2114 */
2115 skb_len = skb->len;
2116
2117 copied = skb_len;
2118 if (copied > len)
2119 copied = len;
2120
2121 err = skb_copy_datagram_msg(skb, 0, msg, copied);
2122
2123 event = sctp_skb2event(skb);
2124
2125 if (err)
2126 goto out_free;
2127
2128 if (event->chunk && event->chunk->head_skb)
2129 head_skb = event->chunk->head_skb;
2130 else
2131 head_skb = skb;
2132 sock_recv_ts_and_drops(msg, sk, head_skb);
2133 if (sctp_ulpevent_is_notification(event)) {
2134 msg->msg_flags |= MSG_NOTIFICATION;
2135 sp->pf->event_msgname(event, msg->msg_name, addr_len);
2136 } else {
2137 sp->pf->skb_msgname(head_skb, msg->msg_name, addr_len);
2138 }
2139
2140 /* Check if we allow SCTP_NXTINFO. */
2141 if (sp->recvnxtinfo)
2142 sctp_ulpevent_read_nxtinfo(event, msg, sk);
2143 /* Check if we allow SCTP_RCVINFO. */
2144 if (sp->recvrcvinfo)
2145 sctp_ulpevent_read_rcvinfo(event, msg);
2146 /* Check if we allow SCTP_SNDRCVINFO. */
2147 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_DATA_IO_EVENT))
2148 sctp_ulpevent_read_sndrcvinfo(event, msg);
2149
2150 err = copied;
2151
2152 /* If skb's length exceeds the user's buffer, update the skb and
2153 * push it back to the receive_queue so that the next call to
2154 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2155 */
2156 if (skb_len > copied) {
2157 msg->msg_flags &= ~MSG_EOR;
2158 if (flags & MSG_PEEK)
2159 goto out_free;
2160 sctp_skb_pull(skb, copied);
2161 skb_queue_head(&sk->sk_receive_queue, skb);
2162
2163 /* When only partial message is copied to the user, increase
2164 * rwnd by that amount. If all the data in the skb is read,
2165 * rwnd is updated when the event is freed.
2166 */
2167 if (!sctp_ulpevent_is_notification(event))
2168 sctp_assoc_rwnd_increase(event->asoc, copied);
2169 goto out;
2170 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2171 (event->msg_flags & MSG_EOR))
2172 msg->msg_flags |= MSG_EOR;
2173 else
2174 msg->msg_flags &= ~MSG_EOR;
2175
2176 out_free:
2177 if (flags & MSG_PEEK) {
2178 /* Release the skb reference acquired after peeking the skb in
2179 * sctp_skb_recv_datagram().
2180 */
2181 kfree_skb(skb);
2182 } else {
2183 /* Free the event which includes releasing the reference to
2184 * the owner of the skb, freeing the skb and updating the
2185 * rwnd.
2186 */
2187 sctp_ulpevent_free(event);
2188 }
2189 out:
2190 release_sock(sk);
2191 return err;
2192 }
2193
2194 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2195 *
2196 * This option is a on/off flag. If enabled no SCTP message
2197 * fragmentation will be performed. Instead if a message being sent
2198 * exceeds the current PMTU size, the message will NOT be sent and
2199 * instead a error will be indicated to the user.
2200 */
sctp_setsockopt_disable_fragments(struct sock * sk,int * val,unsigned int optlen)2201 static int sctp_setsockopt_disable_fragments(struct sock *sk, int *val,
2202 unsigned int optlen)
2203 {
2204 if (optlen < sizeof(int))
2205 return -EINVAL;
2206 sctp_sk(sk)->disable_fragments = (*val == 0) ? 0 : 1;
2207 return 0;
2208 }
2209
sctp_setsockopt_events(struct sock * sk,__u8 * sn_type,unsigned int optlen)2210 static int sctp_setsockopt_events(struct sock *sk, __u8 *sn_type,
2211 unsigned int optlen)
2212 {
2213 struct sctp_sock *sp = sctp_sk(sk);
2214 struct sctp_association *asoc;
2215 int i;
2216
2217 if (optlen > sizeof(struct sctp_event_subscribe))
2218 return -EINVAL;
2219
2220 for (i = 0; i < optlen; i++)
2221 sctp_ulpevent_type_set(&sp->subscribe, SCTP_SN_TYPE_BASE + i,
2222 sn_type[i]);
2223
2224 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2225 asoc->subscribe = sctp_sk(sk)->subscribe;
2226
2227 /* At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2228 * if there is no data to be sent or retransmit, the stack will
2229 * immediately send up this notification.
2230 */
2231 if (sctp_ulpevent_type_enabled(sp->subscribe, SCTP_SENDER_DRY_EVENT)) {
2232 struct sctp_ulpevent *event;
2233
2234 asoc = sctp_id2assoc(sk, 0);
2235 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2236 event = sctp_ulpevent_make_sender_dry_event(asoc,
2237 GFP_USER | __GFP_NOWARN);
2238 if (!event)
2239 return -ENOMEM;
2240
2241 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
2248 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2249 *
2250 * This socket option is applicable to the UDP-style socket only. When
2251 * set it will cause associations that are idle for more than the
2252 * specified number of seconds to automatically close. An association
2253 * being idle is defined an association that has NOT sent or received
2254 * user data. The special value of '0' indicates that no automatic
2255 * close of any associations should be performed. The option expects an
2256 * integer defining the number of seconds of idle time before an
2257 * association is closed.
2258 */
sctp_setsockopt_autoclose(struct sock * sk,u32 * optval,unsigned int optlen)2259 static int sctp_setsockopt_autoclose(struct sock *sk, u32 *optval,
2260 unsigned int optlen)
2261 {
2262 struct sctp_sock *sp = sctp_sk(sk);
2263 struct net *net = sock_net(sk);
2264
2265 /* Applicable to UDP-style socket only */
2266 if (sctp_style(sk, TCP))
2267 return -EOPNOTSUPP;
2268 if (optlen != sizeof(int))
2269 return -EINVAL;
2270
2271 sp->autoclose = *optval;
2272 if (sp->autoclose > net->sctp.max_autoclose)
2273 sp->autoclose = net->sctp.max_autoclose;
2274
2275 return 0;
2276 }
2277
2278 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2279 *
2280 * Applications can enable or disable heartbeats for any peer address of
2281 * an association, modify an address's heartbeat interval, force a
2282 * heartbeat to be sent immediately, and adjust the address's maximum
2283 * number of retransmissions sent before an address is considered
2284 * unreachable. The following structure is used to access and modify an
2285 * address's parameters:
2286 *
2287 * struct sctp_paddrparams {
2288 * sctp_assoc_t spp_assoc_id;
2289 * struct sockaddr_storage spp_address;
2290 * uint32_t spp_hbinterval;
2291 * uint16_t spp_pathmaxrxt;
2292 * uint32_t spp_pathmtu;
2293 * uint32_t spp_sackdelay;
2294 * uint32_t spp_flags;
2295 * uint32_t spp_ipv6_flowlabel;
2296 * uint8_t spp_dscp;
2297 * };
2298 *
2299 * spp_assoc_id - (one-to-many style socket) This is filled in the
2300 * application, and identifies the association for
2301 * this query.
2302 * spp_address - This specifies which address is of interest.
2303 * spp_hbinterval - This contains the value of the heartbeat interval,
2304 * in milliseconds. If a value of zero
2305 * is present in this field then no changes are to
2306 * be made to this parameter.
2307 * spp_pathmaxrxt - This contains the maximum number of
2308 * retransmissions before this address shall be
2309 * considered unreachable. If a value of zero
2310 * is present in this field then no changes are to
2311 * be made to this parameter.
2312 * spp_pathmtu - When Path MTU discovery is disabled the value
2313 * specified here will be the "fixed" path mtu.
2314 * Note that if the spp_address field is empty
2315 * then all associations on this address will
2316 * have this fixed path mtu set upon them.
2317 *
2318 * spp_sackdelay - When delayed sack is enabled, this value specifies
2319 * the number of milliseconds that sacks will be delayed
2320 * for. This value will apply to all addresses of an
2321 * association if the spp_address field is empty. Note
2322 * also, that if delayed sack is enabled and this
2323 * value is set to 0, no change is made to the last
2324 * recorded delayed sack timer value.
2325 *
2326 * spp_flags - These flags are used to control various features
2327 * on an association. The flag field may contain
2328 * zero or more of the following options.
2329 *
2330 * SPP_HB_ENABLE - Enable heartbeats on the
2331 * specified address. Note that if the address
2332 * field is empty all addresses for the association
2333 * have heartbeats enabled upon them.
2334 *
2335 * SPP_HB_DISABLE - Disable heartbeats on the
2336 * speicifed address. Note that if the address
2337 * field is empty all addresses for the association
2338 * will have their heartbeats disabled. Note also
2339 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2340 * mutually exclusive, only one of these two should
2341 * be specified. Enabling both fields will have
2342 * undetermined results.
2343 *
2344 * SPP_HB_DEMAND - Request a user initiated heartbeat
2345 * to be made immediately.
2346 *
2347 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2348 * heartbeat delayis to be set to the value of 0
2349 * milliseconds.
2350 *
2351 * SPP_PMTUD_ENABLE - This field will enable PMTU
2352 * discovery upon the specified address. Note that
2353 * if the address feild is empty then all addresses
2354 * on the association are effected.
2355 *
2356 * SPP_PMTUD_DISABLE - This field will disable PMTU
2357 * discovery upon the specified address. Note that
2358 * if the address feild is empty then all addresses
2359 * on the association are effected. Not also that
2360 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2361 * exclusive. Enabling both will have undetermined
2362 * results.
2363 *
2364 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2365 * on delayed sack. The time specified in spp_sackdelay
2366 * is used to specify the sack delay for this address. Note
2367 * that if spp_address is empty then all addresses will
2368 * enable delayed sack and take on the sack delay
2369 * value specified in spp_sackdelay.
2370 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2371 * off delayed sack. If the spp_address field is blank then
2372 * delayed sack is disabled for the entire association. Note
2373 * also that this field is mutually exclusive to
2374 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2375 * results.
2376 *
2377 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
2378 * setting of the IPV6 flow label value. The value is
2379 * contained in the spp_ipv6_flowlabel field.
2380 * Upon retrieval, this flag will be set to indicate that
2381 * the spp_ipv6_flowlabel field has a valid value returned.
2382 * If a specific destination address is set (in the
2383 * spp_address field), then the value returned is that of
2384 * the address. If just an association is specified (and
2385 * no address), then the association's default flow label
2386 * is returned. If neither an association nor a destination
2387 * is specified, then the socket's default flow label is
2388 * returned. For non-IPv6 sockets, this flag will be left
2389 * cleared.
2390 *
2391 * SPP_DSCP: Setting this flag enables the setting of the
2392 * Differentiated Services Code Point (DSCP) value
2393 * associated with either the association or a specific
2394 * address. The value is obtained in the spp_dscp field.
2395 * Upon retrieval, this flag will be set to indicate that
2396 * the spp_dscp field has a valid value returned. If a
2397 * specific destination address is set when called (in the
2398 * spp_address field), then that specific destination
2399 * address's DSCP value is returned. If just an association
2400 * is specified, then the association's default DSCP is
2401 * returned. If neither an association nor a destination is
2402 * specified, then the socket's default DSCP is returned.
2403 *
2404 * spp_ipv6_flowlabel
2405 * - This field is used in conjunction with the
2406 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
2407 * The 20 least significant bits are used for the flow
2408 * label. This setting has precedence over any IPv6-layer
2409 * setting.
2410 *
2411 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
2412 * and contains the DSCP. The 6 most significant bits are
2413 * used for the DSCP. This setting has precedence over any
2414 * IPv4- or IPv6- layer setting.
2415 */
sctp_apply_peer_addr_params(struct sctp_paddrparams * params,struct sctp_transport * trans,struct sctp_association * asoc,struct sctp_sock * sp,int hb_change,int pmtud_change,int sackdelay_change)2416 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2417 struct sctp_transport *trans,
2418 struct sctp_association *asoc,
2419 struct sctp_sock *sp,
2420 int hb_change,
2421 int pmtud_change,
2422 int sackdelay_change)
2423 {
2424 int error;
2425
2426 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2427 error = sctp_primitive_REQUESTHEARTBEAT(trans->asoc->base.net,
2428 trans->asoc, trans);
2429 if (error)
2430 return error;
2431 }
2432
2433 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2434 * this field is ignored. Note also that a value of zero indicates
2435 * the current setting should be left unchanged.
2436 */
2437 if (params->spp_flags & SPP_HB_ENABLE) {
2438
2439 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2440 * set. This lets us use 0 value when this flag
2441 * is set.
2442 */
2443 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2444 params->spp_hbinterval = 0;
2445
2446 if (params->spp_hbinterval ||
2447 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2448 if (trans) {
2449 trans->hbinterval =
2450 msecs_to_jiffies(params->spp_hbinterval);
2451 } else if (asoc) {
2452 asoc->hbinterval =
2453 msecs_to_jiffies(params->spp_hbinterval);
2454 } else {
2455 sp->hbinterval = params->spp_hbinterval;
2456 }
2457 }
2458 }
2459
2460 if (hb_change) {
2461 if (trans) {
2462 trans->param_flags =
2463 (trans->param_flags & ~SPP_HB) | hb_change;
2464 } else if (asoc) {
2465 asoc->param_flags =
2466 (asoc->param_flags & ~SPP_HB) | hb_change;
2467 } else {
2468 sp->param_flags =
2469 (sp->param_flags & ~SPP_HB) | hb_change;
2470 }
2471 }
2472
2473 /* When Path MTU discovery is disabled the value specified here will
2474 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2475 * include the flag SPP_PMTUD_DISABLE for this field to have any
2476 * effect).
2477 */
2478 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2479 if (trans) {
2480 trans->pathmtu = params->spp_pathmtu;
2481 sctp_assoc_sync_pmtu(asoc);
2482 } else if (asoc) {
2483 sctp_assoc_set_pmtu(asoc, params->spp_pathmtu);
2484 } else {
2485 sp->pathmtu = params->spp_pathmtu;
2486 }
2487 }
2488
2489 if (pmtud_change) {
2490 if (trans) {
2491 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2492 (params->spp_flags & SPP_PMTUD_ENABLE);
2493 trans->param_flags =
2494 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2495 if (update) {
2496 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2497 sctp_assoc_sync_pmtu(asoc);
2498 }
2499 sctp_transport_pl_reset(trans);
2500 } else if (asoc) {
2501 asoc->param_flags =
2502 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2503 } else {
2504 sp->param_flags =
2505 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2506 }
2507 }
2508
2509 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2510 * value of this field is ignored. Note also that a value of zero
2511 * indicates the current setting should be left unchanged.
2512 */
2513 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2514 if (trans) {
2515 trans->sackdelay =
2516 msecs_to_jiffies(params->spp_sackdelay);
2517 } else if (asoc) {
2518 asoc->sackdelay =
2519 msecs_to_jiffies(params->spp_sackdelay);
2520 } else {
2521 sp->sackdelay = params->spp_sackdelay;
2522 }
2523 }
2524
2525 if (sackdelay_change) {
2526 if (trans) {
2527 trans->param_flags =
2528 (trans->param_flags & ~SPP_SACKDELAY) |
2529 sackdelay_change;
2530 } else if (asoc) {
2531 asoc->param_flags =
2532 (asoc->param_flags & ~SPP_SACKDELAY) |
2533 sackdelay_change;
2534 } else {
2535 sp->param_flags =
2536 (sp->param_flags & ~SPP_SACKDELAY) |
2537 sackdelay_change;
2538 }
2539 }
2540
2541 /* Note that a value of zero indicates the current setting should be
2542 left unchanged.
2543 */
2544 if (params->spp_pathmaxrxt) {
2545 if (trans) {
2546 trans->pathmaxrxt = params->spp_pathmaxrxt;
2547 } else if (asoc) {
2548 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2549 } else {
2550 sp->pathmaxrxt = params->spp_pathmaxrxt;
2551 }
2552 }
2553
2554 if (params->spp_flags & SPP_IPV6_FLOWLABEL) {
2555 if (trans) {
2556 if (trans->ipaddr.sa.sa_family == AF_INET6) {
2557 trans->flowlabel = params->spp_ipv6_flowlabel &
2558 SCTP_FLOWLABEL_VAL_MASK;
2559 trans->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2560 }
2561 } else if (asoc) {
2562 struct sctp_transport *t;
2563
2564 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2565 transports) {
2566 if (t->ipaddr.sa.sa_family != AF_INET6)
2567 continue;
2568 t->flowlabel = params->spp_ipv6_flowlabel &
2569 SCTP_FLOWLABEL_VAL_MASK;
2570 t->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2571 }
2572 asoc->flowlabel = params->spp_ipv6_flowlabel &
2573 SCTP_FLOWLABEL_VAL_MASK;
2574 asoc->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2575 } else if (sctp_opt2sk(sp)->sk_family == AF_INET6) {
2576 sp->flowlabel = params->spp_ipv6_flowlabel &
2577 SCTP_FLOWLABEL_VAL_MASK;
2578 sp->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
2579 }
2580 }
2581
2582 if (params->spp_flags & SPP_DSCP) {
2583 if (trans) {
2584 trans->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2585 trans->dscp |= SCTP_DSCP_SET_MASK;
2586 } else if (asoc) {
2587 struct sctp_transport *t;
2588
2589 list_for_each_entry(t, &asoc->peer.transport_addr_list,
2590 transports) {
2591 t->dscp = params->spp_dscp &
2592 SCTP_DSCP_VAL_MASK;
2593 t->dscp |= SCTP_DSCP_SET_MASK;
2594 }
2595 asoc->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2596 asoc->dscp |= SCTP_DSCP_SET_MASK;
2597 } else {
2598 sp->dscp = params->spp_dscp & SCTP_DSCP_VAL_MASK;
2599 sp->dscp |= SCTP_DSCP_SET_MASK;
2600 }
2601 }
2602
2603 return 0;
2604 }
2605
sctp_setsockopt_peer_addr_params(struct sock * sk,struct sctp_paddrparams * params,unsigned int optlen)2606 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2607 struct sctp_paddrparams *params,
2608 unsigned int optlen)
2609 {
2610 struct sctp_transport *trans = NULL;
2611 struct sctp_association *asoc = NULL;
2612 struct sctp_sock *sp = sctp_sk(sk);
2613 int error;
2614 int hb_change, pmtud_change, sackdelay_change;
2615
2616 if (optlen == ALIGN(offsetof(struct sctp_paddrparams,
2617 spp_ipv6_flowlabel), 4)) {
2618 if (params->spp_flags & (SPP_DSCP | SPP_IPV6_FLOWLABEL))
2619 return -EINVAL;
2620 } else if (optlen != sizeof(*params)) {
2621 return -EINVAL;
2622 }
2623
2624 /* Validate flags and value parameters. */
2625 hb_change = params->spp_flags & SPP_HB;
2626 pmtud_change = params->spp_flags & SPP_PMTUD;
2627 sackdelay_change = params->spp_flags & SPP_SACKDELAY;
2628
2629 if (hb_change == SPP_HB ||
2630 pmtud_change == SPP_PMTUD ||
2631 sackdelay_change == SPP_SACKDELAY ||
2632 params->spp_sackdelay > 500 ||
2633 (params->spp_pathmtu &&
2634 params->spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2635 return -EINVAL;
2636
2637 /* If an address other than INADDR_ANY is specified, and
2638 * no transport is found, then the request is invalid.
2639 */
2640 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spp_address)) {
2641 trans = sctp_addr_id2transport(sk, ¶ms->spp_address,
2642 params->spp_assoc_id);
2643 if (!trans)
2644 return -EINVAL;
2645 }
2646
2647 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
2648 * socket is a one to many style socket, and an association
2649 * was not found, then the id was invalid.
2650 */
2651 asoc = sctp_id2assoc(sk, params->spp_assoc_id);
2652 if (!asoc && params->spp_assoc_id != SCTP_FUTURE_ASSOC &&
2653 sctp_style(sk, UDP))
2654 return -EINVAL;
2655
2656 /* Heartbeat demand can only be sent on a transport or
2657 * association, but not a socket.
2658 */
2659 if (params->spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2660 return -EINVAL;
2661
2662 /* Process parameters. */
2663 error = sctp_apply_peer_addr_params(params, trans, asoc, sp,
2664 hb_change, pmtud_change,
2665 sackdelay_change);
2666
2667 if (error)
2668 return error;
2669
2670 /* If changes are for association, also apply parameters to each
2671 * transport.
2672 */
2673 if (!trans && asoc) {
2674 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2675 transports) {
2676 sctp_apply_peer_addr_params(params, trans, asoc, sp,
2677 hb_change, pmtud_change,
2678 sackdelay_change);
2679 }
2680 }
2681
2682 return 0;
2683 }
2684
sctp_spp_sackdelay_enable(__u32 param_flags)2685 static inline __u32 sctp_spp_sackdelay_enable(__u32 param_flags)
2686 {
2687 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_ENABLE;
2688 }
2689
sctp_spp_sackdelay_disable(__u32 param_flags)2690 static inline __u32 sctp_spp_sackdelay_disable(__u32 param_flags)
2691 {
2692 return (param_flags & ~SPP_SACKDELAY) | SPP_SACKDELAY_DISABLE;
2693 }
2694
sctp_apply_asoc_delayed_ack(struct sctp_sack_info * params,struct sctp_association * asoc)2695 static void sctp_apply_asoc_delayed_ack(struct sctp_sack_info *params,
2696 struct sctp_association *asoc)
2697 {
2698 struct sctp_transport *trans;
2699
2700 if (params->sack_delay) {
2701 asoc->sackdelay = msecs_to_jiffies(params->sack_delay);
2702 asoc->param_flags =
2703 sctp_spp_sackdelay_enable(asoc->param_flags);
2704 }
2705 if (params->sack_freq == 1) {
2706 asoc->param_flags =
2707 sctp_spp_sackdelay_disable(asoc->param_flags);
2708 } else if (params->sack_freq > 1) {
2709 asoc->sackfreq = params->sack_freq;
2710 asoc->param_flags =
2711 sctp_spp_sackdelay_enable(asoc->param_flags);
2712 }
2713
2714 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2715 transports) {
2716 if (params->sack_delay) {
2717 trans->sackdelay = msecs_to_jiffies(params->sack_delay);
2718 trans->param_flags =
2719 sctp_spp_sackdelay_enable(trans->param_flags);
2720 }
2721 if (params->sack_freq == 1) {
2722 trans->param_flags =
2723 sctp_spp_sackdelay_disable(trans->param_flags);
2724 } else if (params->sack_freq > 1) {
2725 trans->sackfreq = params->sack_freq;
2726 trans->param_flags =
2727 sctp_spp_sackdelay_enable(trans->param_flags);
2728 }
2729 }
2730 }
2731
2732 /*
2733 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2734 *
2735 * This option will effect the way delayed acks are performed. This
2736 * option allows you to get or set the delayed ack time, in
2737 * milliseconds. It also allows changing the delayed ack frequency.
2738 * Changing the frequency to 1 disables the delayed sack algorithm. If
2739 * the assoc_id is 0, then this sets or gets the endpoints default
2740 * values. If the assoc_id field is non-zero, then the set or get
2741 * effects the specified association for the one to many model (the
2742 * assoc_id field is ignored by the one to one model). Note that if
2743 * sack_delay or sack_freq are 0 when setting this option, then the
2744 * current values will remain unchanged.
2745 *
2746 * struct sctp_sack_info {
2747 * sctp_assoc_t sack_assoc_id;
2748 * uint32_t sack_delay;
2749 * uint32_t sack_freq;
2750 * };
2751 *
2752 * sack_assoc_id - This parameter, indicates which association the user
2753 * is performing an action upon. Note that if this field's value is
2754 * zero then the endpoints default value is changed (effecting future
2755 * associations only).
2756 *
2757 * sack_delay - This parameter contains the number of milliseconds that
2758 * the user is requesting the delayed ACK timer be set to. Note that
2759 * this value is defined in the standard to be between 200 and 500
2760 * milliseconds.
2761 *
2762 * sack_freq - This parameter contains the number of packets that must
2763 * be received before a sack is sent without waiting for the delay
2764 * timer to expire. The default value for this is 2, setting this
2765 * value to 1 will disable the delayed sack algorithm.
2766 */
__sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params)2767 static int __sctp_setsockopt_delayed_ack(struct sock *sk,
2768 struct sctp_sack_info *params)
2769 {
2770 struct sctp_sock *sp = sctp_sk(sk);
2771 struct sctp_association *asoc;
2772
2773 /* Validate value parameter. */
2774 if (params->sack_delay > 500)
2775 return -EINVAL;
2776
2777 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
2778 * socket is a one to many style socket, and an association
2779 * was not found, then the id was invalid.
2780 */
2781 asoc = sctp_id2assoc(sk, params->sack_assoc_id);
2782 if (!asoc && params->sack_assoc_id > SCTP_ALL_ASSOC &&
2783 sctp_style(sk, UDP))
2784 return -EINVAL;
2785
2786 if (asoc) {
2787 sctp_apply_asoc_delayed_ack(params, asoc);
2788
2789 return 0;
2790 }
2791
2792 if (sctp_style(sk, TCP))
2793 params->sack_assoc_id = SCTP_FUTURE_ASSOC;
2794
2795 if (params->sack_assoc_id == SCTP_FUTURE_ASSOC ||
2796 params->sack_assoc_id == SCTP_ALL_ASSOC) {
2797 if (params->sack_delay) {
2798 sp->sackdelay = params->sack_delay;
2799 sp->param_flags =
2800 sctp_spp_sackdelay_enable(sp->param_flags);
2801 }
2802 if (params->sack_freq == 1) {
2803 sp->param_flags =
2804 sctp_spp_sackdelay_disable(sp->param_flags);
2805 } else if (params->sack_freq > 1) {
2806 sp->sackfreq = params->sack_freq;
2807 sp->param_flags =
2808 sctp_spp_sackdelay_enable(sp->param_flags);
2809 }
2810 }
2811
2812 if (params->sack_assoc_id == SCTP_CURRENT_ASSOC ||
2813 params->sack_assoc_id == SCTP_ALL_ASSOC)
2814 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
2815 sctp_apply_asoc_delayed_ack(params, asoc);
2816
2817 return 0;
2818 }
2819
sctp_setsockopt_delayed_ack(struct sock * sk,struct sctp_sack_info * params,unsigned int optlen)2820 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2821 struct sctp_sack_info *params,
2822 unsigned int optlen)
2823 {
2824 if (optlen == sizeof(struct sctp_assoc_value)) {
2825 struct sctp_assoc_value *v = (struct sctp_assoc_value *)params;
2826 struct sctp_sack_info p;
2827
2828 pr_warn_ratelimited(DEPRECATED
2829 "%s (pid %d) "
2830 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
2831 "Use struct sctp_sack_info instead\n",
2832 current->comm, task_pid_nr(current));
2833
2834 p.sack_assoc_id = v->assoc_id;
2835 p.sack_delay = v->assoc_value;
2836 p.sack_freq = v->assoc_value ? 0 : 1;
2837 return __sctp_setsockopt_delayed_ack(sk, &p);
2838 }
2839
2840 if (optlen != sizeof(struct sctp_sack_info))
2841 return -EINVAL;
2842 if (params->sack_delay == 0 && params->sack_freq == 0)
2843 return 0;
2844 return __sctp_setsockopt_delayed_ack(sk, params);
2845 }
2846
2847 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2848 *
2849 * Applications can specify protocol parameters for the default association
2850 * initialization. The option name argument to setsockopt() and getsockopt()
2851 * is SCTP_INITMSG.
2852 *
2853 * Setting initialization parameters is effective only on an unconnected
2854 * socket (for UDP-style sockets only future associations are effected
2855 * by the change). With TCP-style sockets, this option is inherited by
2856 * sockets derived from a listener socket.
2857 */
sctp_setsockopt_initmsg(struct sock * sk,struct sctp_initmsg * sinit,unsigned int optlen)2858 static int sctp_setsockopt_initmsg(struct sock *sk, struct sctp_initmsg *sinit,
2859 unsigned int optlen)
2860 {
2861 struct sctp_sock *sp = sctp_sk(sk);
2862
2863 if (optlen != sizeof(struct sctp_initmsg))
2864 return -EINVAL;
2865
2866 if (sinit->sinit_num_ostreams)
2867 sp->initmsg.sinit_num_ostreams = sinit->sinit_num_ostreams;
2868 if (sinit->sinit_max_instreams)
2869 sp->initmsg.sinit_max_instreams = sinit->sinit_max_instreams;
2870 if (sinit->sinit_max_attempts)
2871 sp->initmsg.sinit_max_attempts = sinit->sinit_max_attempts;
2872 if (sinit->sinit_max_init_timeo)
2873 sp->initmsg.sinit_max_init_timeo = sinit->sinit_max_init_timeo;
2874
2875 return 0;
2876 }
2877
2878 /*
2879 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2880 *
2881 * Applications that wish to use the sendto() system call may wish to
2882 * specify a default set of parameters that would normally be supplied
2883 * through the inclusion of ancillary data. This socket option allows
2884 * such an application to set the default sctp_sndrcvinfo structure.
2885 * The application that wishes to use this socket option simply passes
2886 * in to this call the sctp_sndrcvinfo structure defined in Section
2887 * 5.2.2) The input parameters accepted by this call include
2888 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2889 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2890 * to this call if the caller is using the UDP model.
2891 */
sctp_setsockopt_default_send_param(struct sock * sk,struct sctp_sndrcvinfo * info,unsigned int optlen)2892 static int sctp_setsockopt_default_send_param(struct sock *sk,
2893 struct sctp_sndrcvinfo *info,
2894 unsigned int optlen)
2895 {
2896 struct sctp_sock *sp = sctp_sk(sk);
2897 struct sctp_association *asoc;
2898
2899 if (optlen != sizeof(*info))
2900 return -EINVAL;
2901 if (info->sinfo_flags &
2902 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2903 SCTP_ABORT | SCTP_EOF))
2904 return -EINVAL;
2905
2906 asoc = sctp_id2assoc(sk, info->sinfo_assoc_id);
2907 if (!asoc && info->sinfo_assoc_id > SCTP_ALL_ASSOC &&
2908 sctp_style(sk, UDP))
2909 return -EINVAL;
2910
2911 if (asoc) {
2912 asoc->default_stream = info->sinfo_stream;
2913 asoc->default_flags = info->sinfo_flags;
2914 asoc->default_ppid = info->sinfo_ppid;
2915 asoc->default_context = info->sinfo_context;
2916 asoc->default_timetolive = info->sinfo_timetolive;
2917
2918 return 0;
2919 }
2920
2921 if (sctp_style(sk, TCP))
2922 info->sinfo_assoc_id = SCTP_FUTURE_ASSOC;
2923
2924 if (info->sinfo_assoc_id == SCTP_FUTURE_ASSOC ||
2925 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2926 sp->default_stream = info->sinfo_stream;
2927 sp->default_flags = info->sinfo_flags;
2928 sp->default_ppid = info->sinfo_ppid;
2929 sp->default_context = info->sinfo_context;
2930 sp->default_timetolive = info->sinfo_timetolive;
2931 }
2932
2933 if (info->sinfo_assoc_id == SCTP_CURRENT_ASSOC ||
2934 info->sinfo_assoc_id == SCTP_ALL_ASSOC) {
2935 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2936 asoc->default_stream = info->sinfo_stream;
2937 asoc->default_flags = info->sinfo_flags;
2938 asoc->default_ppid = info->sinfo_ppid;
2939 asoc->default_context = info->sinfo_context;
2940 asoc->default_timetolive = info->sinfo_timetolive;
2941 }
2942 }
2943
2944 return 0;
2945 }
2946
2947 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
2948 * (SCTP_DEFAULT_SNDINFO)
2949 */
sctp_setsockopt_default_sndinfo(struct sock * sk,struct sctp_sndinfo * info,unsigned int optlen)2950 static int sctp_setsockopt_default_sndinfo(struct sock *sk,
2951 struct sctp_sndinfo *info,
2952 unsigned int optlen)
2953 {
2954 struct sctp_sock *sp = sctp_sk(sk);
2955 struct sctp_association *asoc;
2956
2957 if (optlen != sizeof(*info))
2958 return -EINVAL;
2959 if (info->snd_flags &
2960 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
2961 SCTP_ABORT | SCTP_EOF))
2962 return -EINVAL;
2963
2964 asoc = sctp_id2assoc(sk, info->snd_assoc_id);
2965 if (!asoc && info->snd_assoc_id > SCTP_ALL_ASSOC &&
2966 sctp_style(sk, UDP))
2967 return -EINVAL;
2968
2969 if (asoc) {
2970 asoc->default_stream = info->snd_sid;
2971 asoc->default_flags = info->snd_flags;
2972 asoc->default_ppid = info->snd_ppid;
2973 asoc->default_context = info->snd_context;
2974
2975 return 0;
2976 }
2977
2978 if (sctp_style(sk, TCP))
2979 info->snd_assoc_id = SCTP_FUTURE_ASSOC;
2980
2981 if (info->snd_assoc_id == SCTP_FUTURE_ASSOC ||
2982 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2983 sp->default_stream = info->snd_sid;
2984 sp->default_flags = info->snd_flags;
2985 sp->default_ppid = info->snd_ppid;
2986 sp->default_context = info->snd_context;
2987 }
2988
2989 if (info->snd_assoc_id == SCTP_CURRENT_ASSOC ||
2990 info->snd_assoc_id == SCTP_ALL_ASSOC) {
2991 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
2992 asoc->default_stream = info->snd_sid;
2993 asoc->default_flags = info->snd_flags;
2994 asoc->default_ppid = info->snd_ppid;
2995 asoc->default_context = info->snd_context;
2996 }
2997 }
2998
2999 return 0;
3000 }
3001
3002 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
3003 *
3004 * Requests that the local SCTP stack use the enclosed peer address as
3005 * the association primary. The enclosed address must be one of the
3006 * association peer's addresses.
3007 */
sctp_setsockopt_primary_addr(struct sock * sk,struct sctp_prim * prim,unsigned int optlen)3008 static int sctp_setsockopt_primary_addr(struct sock *sk, struct sctp_prim *prim,
3009 unsigned int optlen)
3010 {
3011 struct sctp_transport *trans;
3012 struct sctp_af *af;
3013 int err;
3014
3015 if (optlen != sizeof(struct sctp_prim))
3016 return -EINVAL;
3017
3018 /* Allow security module to validate address but need address len. */
3019 af = sctp_get_af_specific(prim->ssp_addr.ss_family);
3020 if (!af)
3021 return -EINVAL;
3022
3023 err = security_sctp_bind_connect(sk, SCTP_PRIMARY_ADDR,
3024 (struct sockaddr *)&prim->ssp_addr,
3025 af->sockaddr_len);
3026 if (err)
3027 return err;
3028
3029 trans = sctp_addr_id2transport(sk, &prim->ssp_addr, prim->ssp_assoc_id);
3030 if (!trans)
3031 return -EINVAL;
3032
3033 sctp_assoc_set_primary(trans->asoc, trans);
3034
3035 return 0;
3036 }
3037
3038 /*
3039 * 7.1.5 SCTP_NODELAY
3040 *
3041 * Turn on/off any Nagle-like algorithm. This means that packets are
3042 * generally sent as soon as possible and no unnecessary delays are
3043 * introduced, at the cost of more packets in the network. Expects an
3044 * integer boolean flag.
3045 */
sctp_setsockopt_nodelay(struct sock * sk,int * val,unsigned int optlen)3046 static int sctp_setsockopt_nodelay(struct sock *sk, int *val,
3047 unsigned int optlen)
3048 {
3049 if (optlen < sizeof(int))
3050 return -EINVAL;
3051 sctp_sk(sk)->nodelay = (*val == 0) ? 0 : 1;
3052 return 0;
3053 }
3054
3055 /*
3056 *
3057 * 7.1.1 SCTP_RTOINFO
3058 *
3059 * The protocol parameters used to initialize and bound retransmission
3060 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
3061 * and modify these parameters.
3062 * All parameters are time values, in milliseconds. A value of 0, when
3063 * modifying the parameters, indicates that the current value should not
3064 * be changed.
3065 *
3066 */
sctp_setsockopt_rtoinfo(struct sock * sk,struct sctp_rtoinfo * rtoinfo,unsigned int optlen)3067 static int sctp_setsockopt_rtoinfo(struct sock *sk,
3068 struct sctp_rtoinfo *rtoinfo,
3069 unsigned int optlen)
3070 {
3071 struct sctp_association *asoc;
3072 unsigned long rto_min, rto_max;
3073 struct sctp_sock *sp = sctp_sk(sk);
3074
3075 if (optlen != sizeof (struct sctp_rtoinfo))
3076 return -EINVAL;
3077
3078 asoc = sctp_id2assoc(sk, rtoinfo->srto_assoc_id);
3079
3080 /* Set the values to the specific association */
3081 if (!asoc && rtoinfo->srto_assoc_id != SCTP_FUTURE_ASSOC &&
3082 sctp_style(sk, UDP))
3083 return -EINVAL;
3084
3085 rto_max = rtoinfo->srto_max;
3086 rto_min = rtoinfo->srto_min;
3087
3088 if (rto_max)
3089 rto_max = asoc ? msecs_to_jiffies(rto_max) : rto_max;
3090 else
3091 rto_max = asoc ? asoc->rto_max : sp->rtoinfo.srto_max;
3092
3093 if (rto_min)
3094 rto_min = asoc ? msecs_to_jiffies(rto_min) : rto_min;
3095 else
3096 rto_min = asoc ? asoc->rto_min : sp->rtoinfo.srto_min;
3097
3098 if (rto_min > rto_max)
3099 return -EINVAL;
3100
3101 if (asoc) {
3102 if (rtoinfo->srto_initial != 0)
3103 asoc->rto_initial =
3104 msecs_to_jiffies(rtoinfo->srto_initial);
3105 asoc->rto_max = rto_max;
3106 asoc->rto_min = rto_min;
3107 } else {
3108 /* If there is no association or the association-id = 0
3109 * set the values to the endpoint.
3110 */
3111 if (rtoinfo->srto_initial != 0)
3112 sp->rtoinfo.srto_initial = rtoinfo->srto_initial;
3113 sp->rtoinfo.srto_max = rto_max;
3114 sp->rtoinfo.srto_min = rto_min;
3115 }
3116
3117 return 0;
3118 }
3119
3120 /*
3121 *
3122 * 7.1.2 SCTP_ASSOCINFO
3123 *
3124 * This option is used to tune the maximum retransmission attempts
3125 * of the association.
3126 * Returns an error if the new association retransmission value is
3127 * greater than the sum of the retransmission value of the peer.
3128 * See [SCTP] for more information.
3129 *
3130 */
sctp_setsockopt_associnfo(struct sock * sk,struct sctp_assocparams * assocparams,unsigned int optlen)3131 static int sctp_setsockopt_associnfo(struct sock *sk,
3132 struct sctp_assocparams *assocparams,
3133 unsigned int optlen)
3134 {
3135
3136 struct sctp_association *asoc;
3137
3138 if (optlen != sizeof(struct sctp_assocparams))
3139 return -EINVAL;
3140
3141 asoc = sctp_id2assoc(sk, assocparams->sasoc_assoc_id);
3142
3143 if (!asoc && assocparams->sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
3144 sctp_style(sk, UDP))
3145 return -EINVAL;
3146
3147 /* Set the values to the specific association */
3148 if (asoc) {
3149 if (assocparams->sasoc_asocmaxrxt != 0) {
3150 __u32 path_sum = 0;
3151 int paths = 0;
3152 struct sctp_transport *peer_addr;
3153
3154 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
3155 transports) {
3156 path_sum += peer_addr->pathmaxrxt;
3157 paths++;
3158 }
3159
3160 /* Only validate asocmaxrxt if we have more than
3161 * one path/transport. We do this because path
3162 * retransmissions are only counted when we have more
3163 * then one path.
3164 */
3165 if (paths > 1 &&
3166 assocparams->sasoc_asocmaxrxt > path_sum)
3167 return -EINVAL;
3168
3169 asoc->max_retrans = assocparams->sasoc_asocmaxrxt;
3170 }
3171
3172 if (assocparams->sasoc_cookie_life != 0)
3173 asoc->cookie_life =
3174 ms_to_ktime(assocparams->sasoc_cookie_life);
3175 } else {
3176 /* Set the values to the endpoint */
3177 struct sctp_sock *sp = sctp_sk(sk);
3178
3179 if (assocparams->sasoc_asocmaxrxt != 0)
3180 sp->assocparams.sasoc_asocmaxrxt =
3181 assocparams->sasoc_asocmaxrxt;
3182 if (assocparams->sasoc_cookie_life != 0)
3183 sp->assocparams.sasoc_cookie_life =
3184 assocparams->sasoc_cookie_life;
3185 }
3186 return 0;
3187 }
3188
3189 /*
3190 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
3191 *
3192 * This socket option is a boolean flag which turns on or off mapped V4
3193 * addresses. If this option is turned on and the socket is type
3194 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
3195 * If this option is turned off, then no mapping will be done of V4
3196 * addresses and a user will receive both PF_INET6 and PF_INET type
3197 * addresses on the socket.
3198 */
sctp_setsockopt_mappedv4(struct sock * sk,int * val,unsigned int optlen)3199 static int sctp_setsockopt_mappedv4(struct sock *sk, int *val,
3200 unsigned int optlen)
3201 {
3202 struct sctp_sock *sp = sctp_sk(sk);
3203
3204 if (optlen < sizeof(int))
3205 return -EINVAL;
3206 if (*val)
3207 sp->v4mapped = 1;
3208 else
3209 sp->v4mapped = 0;
3210
3211 return 0;
3212 }
3213
3214 /*
3215 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
3216 * This option will get or set the maximum size to put in any outgoing
3217 * SCTP DATA chunk. If a message is larger than this size it will be
3218 * fragmented by SCTP into the specified size. Note that the underlying
3219 * SCTP implementation may fragment into smaller sized chunks when the
3220 * PMTU of the underlying association is smaller than the value set by
3221 * the user. The default value for this option is '0' which indicates
3222 * the user is NOT limiting fragmentation and only the PMTU will effect
3223 * SCTP's choice of DATA chunk size. Note also that values set larger
3224 * than the maximum size of an IP datagram will effectively let SCTP
3225 * control fragmentation (i.e. the same as setting this option to 0).
3226 *
3227 * The following structure is used to access and modify this parameter:
3228 *
3229 * struct sctp_assoc_value {
3230 * sctp_assoc_t assoc_id;
3231 * uint32_t assoc_value;
3232 * };
3233 *
3234 * assoc_id: This parameter is ignored for one-to-one style sockets.
3235 * For one-to-many style sockets this parameter indicates which
3236 * association the user is performing an action upon. Note that if
3237 * this field's value is zero then the endpoints default value is
3238 * changed (effecting future associations only).
3239 * assoc_value: This parameter specifies the maximum size in bytes.
3240 */
sctp_setsockopt_maxseg(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3241 static int sctp_setsockopt_maxseg(struct sock *sk,
3242 struct sctp_assoc_value *params,
3243 unsigned int optlen)
3244 {
3245 struct sctp_sock *sp = sctp_sk(sk);
3246 struct sctp_association *asoc;
3247 sctp_assoc_t assoc_id;
3248 int val;
3249
3250 if (optlen == sizeof(int)) {
3251 pr_warn_ratelimited(DEPRECATED
3252 "%s (pid %d) "
3253 "Use of int in maxseg socket option.\n"
3254 "Use struct sctp_assoc_value instead\n",
3255 current->comm, task_pid_nr(current));
3256 assoc_id = SCTP_FUTURE_ASSOC;
3257 val = *(int *)params;
3258 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3259 assoc_id = params->assoc_id;
3260 val = params->assoc_value;
3261 } else {
3262 return -EINVAL;
3263 }
3264
3265 asoc = sctp_id2assoc(sk, assoc_id);
3266 if (!asoc && assoc_id != SCTP_FUTURE_ASSOC &&
3267 sctp_style(sk, UDP))
3268 return -EINVAL;
3269
3270 if (val) {
3271 int min_len, max_len;
3272 __u16 datasize = asoc ? sctp_datachk_len(&asoc->stream) :
3273 sizeof(struct sctp_data_chunk);
3274
3275 min_len = sctp_min_frag_point(sp, datasize);
3276 max_len = SCTP_MAX_CHUNK_LEN - datasize;
3277
3278 if (val < min_len || val > max_len)
3279 return -EINVAL;
3280 }
3281
3282 if (asoc) {
3283 asoc->user_frag = val;
3284 sctp_assoc_update_frag_point(asoc);
3285 } else {
3286 sp->user_frag = val;
3287 }
3288
3289 return 0;
3290 }
3291
3292
3293 /*
3294 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
3295 *
3296 * Requests that the peer mark the enclosed address as the association
3297 * primary. The enclosed address must be one of the association's
3298 * locally bound addresses. The following structure is used to make a
3299 * set primary request:
3300 */
sctp_setsockopt_peer_primary_addr(struct sock * sk,struct sctp_setpeerprim * prim,unsigned int optlen)3301 static int sctp_setsockopt_peer_primary_addr(struct sock *sk,
3302 struct sctp_setpeerprim *prim,
3303 unsigned int optlen)
3304 {
3305 struct sctp_sock *sp;
3306 struct sctp_association *asoc = NULL;
3307 struct sctp_chunk *chunk;
3308 struct sctp_af *af;
3309 int err;
3310
3311 sp = sctp_sk(sk);
3312
3313 if (!sp->ep->asconf_enable)
3314 return -EPERM;
3315
3316 if (optlen != sizeof(struct sctp_setpeerprim))
3317 return -EINVAL;
3318
3319 asoc = sctp_id2assoc(sk, prim->sspp_assoc_id);
3320 if (!asoc)
3321 return -EINVAL;
3322
3323 if (!asoc->peer.asconf_capable)
3324 return -EPERM;
3325
3326 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
3327 return -EPERM;
3328
3329 if (!sctp_state(asoc, ESTABLISHED))
3330 return -ENOTCONN;
3331
3332 af = sctp_get_af_specific(prim->sspp_addr.ss_family);
3333 if (!af)
3334 return -EINVAL;
3335
3336 if (!af->addr_valid((union sctp_addr *)&prim->sspp_addr, sp, NULL))
3337 return -EADDRNOTAVAIL;
3338
3339 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim->sspp_addr))
3340 return -EADDRNOTAVAIL;
3341
3342 /* Allow security module to validate address. */
3343 err = security_sctp_bind_connect(sk, SCTP_SET_PEER_PRIMARY_ADDR,
3344 (struct sockaddr *)&prim->sspp_addr,
3345 af->sockaddr_len);
3346 if (err)
3347 return err;
3348
3349 /* Create an ASCONF chunk with SET_PRIMARY parameter */
3350 chunk = sctp_make_asconf_set_prim(asoc,
3351 (union sctp_addr *)&prim->sspp_addr);
3352 if (!chunk)
3353 return -ENOMEM;
3354
3355 err = sctp_send_asconf(asoc, chunk);
3356
3357 pr_debug("%s: we set peer primary addr primitively\n", __func__);
3358
3359 return err;
3360 }
3361
sctp_setsockopt_adaptation_layer(struct sock * sk,struct sctp_setadaptation * adapt,unsigned int optlen)3362 static int sctp_setsockopt_adaptation_layer(struct sock *sk,
3363 struct sctp_setadaptation *adapt,
3364 unsigned int optlen)
3365 {
3366 if (optlen != sizeof(struct sctp_setadaptation))
3367 return -EINVAL;
3368
3369 sctp_sk(sk)->adaptation_ind = adapt->ssb_adaptation_ind;
3370
3371 return 0;
3372 }
3373
3374 /*
3375 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3376 *
3377 * The context field in the sctp_sndrcvinfo structure is normally only
3378 * used when a failed message is retrieved holding the value that was
3379 * sent down on the actual send call. This option allows the setting of
3380 * a default context on an association basis that will be received on
3381 * reading messages from the peer. This is especially helpful in the
3382 * one-2-many model for an application to keep some reference to an
3383 * internal state machine that is processing messages on the
3384 * association. Note that the setting of this value only effects
3385 * received messages from the peer and does not effect the value that is
3386 * saved with outbound messages.
3387 */
sctp_setsockopt_context(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3388 static int sctp_setsockopt_context(struct sock *sk,
3389 struct sctp_assoc_value *params,
3390 unsigned int optlen)
3391 {
3392 struct sctp_sock *sp = sctp_sk(sk);
3393 struct sctp_association *asoc;
3394
3395 if (optlen != sizeof(struct sctp_assoc_value))
3396 return -EINVAL;
3397
3398 asoc = sctp_id2assoc(sk, params->assoc_id);
3399 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
3400 sctp_style(sk, UDP))
3401 return -EINVAL;
3402
3403 if (asoc) {
3404 asoc->default_rcv_context = params->assoc_value;
3405
3406 return 0;
3407 }
3408
3409 if (sctp_style(sk, TCP))
3410 params->assoc_id = SCTP_FUTURE_ASSOC;
3411
3412 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
3413 params->assoc_id == SCTP_ALL_ASSOC)
3414 sp->default_rcv_context = params->assoc_value;
3415
3416 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
3417 params->assoc_id == SCTP_ALL_ASSOC)
3418 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3419 asoc->default_rcv_context = params->assoc_value;
3420
3421 return 0;
3422 }
3423
3424 /*
3425 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3426 *
3427 * This options will at a minimum specify if the implementation is doing
3428 * fragmented interleave. Fragmented interleave, for a one to many
3429 * socket, is when subsequent calls to receive a message may return
3430 * parts of messages from different associations. Some implementations
3431 * may allow you to turn this value on or off. If so, when turned off,
3432 * no fragment interleave will occur (which will cause a head of line
3433 * blocking amongst multiple associations sharing the same one to many
3434 * socket). When this option is turned on, then each receive call may
3435 * come from a different association (thus the user must receive data
3436 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3437 * association each receive belongs to.
3438 *
3439 * This option takes a boolean value. A non-zero value indicates that
3440 * fragmented interleave is on. A value of zero indicates that
3441 * fragmented interleave is off.
3442 *
3443 * Note that it is important that an implementation that allows this
3444 * option to be turned on, have it off by default. Otherwise an unaware
3445 * application using the one to many model may become confused and act
3446 * incorrectly.
3447 */
sctp_setsockopt_fragment_interleave(struct sock * sk,int * val,unsigned int optlen)3448 static int sctp_setsockopt_fragment_interleave(struct sock *sk, int *val,
3449 unsigned int optlen)
3450 {
3451 if (optlen != sizeof(int))
3452 return -EINVAL;
3453
3454 sctp_sk(sk)->frag_interleave = !!*val;
3455
3456 if (!sctp_sk(sk)->frag_interleave)
3457 sctp_sk(sk)->ep->intl_enable = 0;
3458
3459 return 0;
3460 }
3461
3462 /*
3463 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3464 * (SCTP_PARTIAL_DELIVERY_POINT)
3465 *
3466 * This option will set or get the SCTP partial delivery point. This
3467 * point is the size of a message where the partial delivery API will be
3468 * invoked to help free up rwnd space for the peer. Setting this to a
3469 * lower value will cause partial deliveries to happen more often. The
3470 * calls argument is an integer that sets or gets the partial delivery
3471 * point. Note also that the call will fail if the user attempts to set
3472 * this value larger than the socket receive buffer size.
3473 *
3474 * Note that any single message having a length smaller than or equal to
3475 * the SCTP partial delivery point will be delivered in one single read
3476 * call as long as the user provided buffer is large enough to hold the
3477 * message.
3478 */
sctp_setsockopt_partial_delivery_point(struct sock * sk,u32 * val,unsigned int optlen)3479 static int sctp_setsockopt_partial_delivery_point(struct sock *sk, u32 *val,
3480 unsigned int optlen)
3481 {
3482 if (optlen != sizeof(u32))
3483 return -EINVAL;
3484
3485 /* Note: We double the receive buffer from what the user sets
3486 * it to be, also initial rwnd is based on rcvbuf/2.
3487 */
3488 if (*val > (sk->sk_rcvbuf >> 1))
3489 return -EINVAL;
3490
3491 sctp_sk(sk)->pd_point = *val;
3492
3493 return 0; /* is this the right error code? */
3494 }
3495
3496 /*
3497 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3498 *
3499 * This option will allow a user to change the maximum burst of packets
3500 * that can be emitted by this association. Note that the default value
3501 * is 4, and some implementations may restrict this setting so that it
3502 * can only be lowered.
3503 *
3504 * NOTE: This text doesn't seem right. Do this on a socket basis with
3505 * future associations inheriting the socket value.
3506 */
sctp_setsockopt_maxburst(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3507 static int sctp_setsockopt_maxburst(struct sock *sk,
3508 struct sctp_assoc_value *params,
3509 unsigned int optlen)
3510 {
3511 struct sctp_sock *sp = sctp_sk(sk);
3512 struct sctp_association *asoc;
3513 sctp_assoc_t assoc_id;
3514 u32 assoc_value;
3515
3516 if (optlen == sizeof(int)) {
3517 pr_warn_ratelimited(DEPRECATED
3518 "%s (pid %d) "
3519 "Use of int in max_burst socket option deprecated.\n"
3520 "Use struct sctp_assoc_value instead\n",
3521 current->comm, task_pid_nr(current));
3522 assoc_id = SCTP_FUTURE_ASSOC;
3523 assoc_value = *((int *)params);
3524 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3525 assoc_id = params->assoc_id;
3526 assoc_value = params->assoc_value;
3527 } else
3528 return -EINVAL;
3529
3530 asoc = sctp_id2assoc(sk, assoc_id);
3531 if (!asoc && assoc_id > SCTP_ALL_ASSOC && sctp_style(sk, UDP))
3532 return -EINVAL;
3533
3534 if (asoc) {
3535 asoc->max_burst = assoc_value;
3536
3537 return 0;
3538 }
3539
3540 if (sctp_style(sk, TCP))
3541 assoc_id = SCTP_FUTURE_ASSOC;
3542
3543 if (assoc_id == SCTP_FUTURE_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3544 sp->max_burst = assoc_value;
3545
3546 if (assoc_id == SCTP_CURRENT_ASSOC || assoc_id == SCTP_ALL_ASSOC)
3547 list_for_each_entry(asoc, &sp->ep->asocs, asocs)
3548 asoc->max_burst = assoc_value;
3549
3550 return 0;
3551 }
3552
3553 /*
3554 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3555 *
3556 * This set option adds a chunk type that the user is requesting to be
3557 * received only in an authenticated way. Changes to the list of chunks
3558 * will only effect future associations on the socket.
3559 */
sctp_setsockopt_auth_chunk(struct sock * sk,struct sctp_authchunk * val,unsigned int optlen)3560 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3561 struct sctp_authchunk *val,
3562 unsigned int optlen)
3563 {
3564 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3565
3566 if (!ep->auth_enable)
3567 return -EACCES;
3568
3569 if (optlen != sizeof(struct sctp_authchunk))
3570 return -EINVAL;
3571
3572 switch (val->sauth_chunk) {
3573 case SCTP_CID_INIT:
3574 case SCTP_CID_INIT_ACK:
3575 case SCTP_CID_SHUTDOWN_COMPLETE:
3576 case SCTP_CID_AUTH:
3577 return -EINVAL;
3578 }
3579
3580 /* add this chunk id to the endpoint */
3581 return sctp_auth_ep_add_chunkid(ep, val->sauth_chunk);
3582 }
3583
3584 /*
3585 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3586 *
3587 * This option gets or sets the list of HMAC algorithms that the local
3588 * endpoint requires the peer to use.
3589 */
sctp_setsockopt_hmac_ident(struct sock * sk,struct sctp_hmacalgo * hmacs,unsigned int optlen)3590 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3591 struct sctp_hmacalgo *hmacs,
3592 unsigned int optlen)
3593 {
3594 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3595 u32 idents;
3596
3597 if (!ep->auth_enable)
3598 return -EACCES;
3599
3600 if (optlen < sizeof(struct sctp_hmacalgo))
3601 return -EINVAL;
3602 optlen = min_t(unsigned int, optlen, sizeof(struct sctp_hmacalgo) +
3603 SCTP_AUTH_NUM_HMACS * sizeof(u16));
3604
3605 idents = hmacs->shmac_num_idents;
3606 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3607 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo)))
3608 return -EINVAL;
3609
3610 return sctp_auth_ep_set_hmacs(ep, hmacs);
3611 }
3612
3613 /*
3614 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3615 *
3616 * This option will set a shared secret key which is used to build an
3617 * association shared key.
3618 */
sctp_setsockopt_auth_key(struct sock * sk,struct sctp_authkey * authkey,unsigned int optlen)3619 static int sctp_setsockopt_auth_key(struct sock *sk,
3620 struct sctp_authkey *authkey,
3621 unsigned int optlen)
3622 {
3623 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3624 struct sctp_association *asoc;
3625 int ret = -EINVAL;
3626
3627 if (optlen <= sizeof(struct sctp_authkey))
3628 return -EINVAL;
3629 /* authkey->sca_keylength is u16, so optlen can't be bigger than
3630 * this.
3631 */
3632 optlen = min_t(unsigned int, optlen, USHRT_MAX + sizeof(*authkey));
3633
3634 if (authkey->sca_keylength > optlen - sizeof(*authkey))
3635 goto out;
3636
3637 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3638 if (!asoc && authkey->sca_assoc_id > SCTP_ALL_ASSOC &&
3639 sctp_style(sk, UDP))
3640 goto out;
3641
3642 if (asoc) {
3643 ret = sctp_auth_set_key(ep, asoc, authkey);
3644 goto out;
3645 }
3646
3647 if (sctp_style(sk, TCP))
3648 authkey->sca_assoc_id = SCTP_FUTURE_ASSOC;
3649
3650 if (authkey->sca_assoc_id == SCTP_FUTURE_ASSOC ||
3651 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3652 ret = sctp_auth_set_key(ep, asoc, authkey);
3653 if (ret)
3654 goto out;
3655 }
3656
3657 ret = 0;
3658
3659 if (authkey->sca_assoc_id == SCTP_CURRENT_ASSOC ||
3660 authkey->sca_assoc_id == SCTP_ALL_ASSOC) {
3661 list_for_each_entry(asoc, &ep->asocs, asocs) {
3662 int res = sctp_auth_set_key(ep, asoc, authkey);
3663
3664 if (res && !ret)
3665 ret = res;
3666 }
3667 }
3668
3669 out:
3670 memzero_explicit(authkey, optlen);
3671 return ret;
3672 }
3673
3674 /*
3675 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3676 *
3677 * This option will get or set the active shared key to be used to build
3678 * the association shared key.
3679 */
sctp_setsockopt_active_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3680 static int sctp_setsockopt_active_key(struct sock *sk,
3681 struct sctp_authkeyid *val,
3682 unsigned int optlen)
3683 {
3684 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3685 struct sctp_association *asoc;
3686 int ret = 0;
3687
3688 if (optlen != sizeof(struct sctp_authkeyid))
3689 return -EINVAL;
3690
3691 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3692 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3693 sctp_style(sk, UDP))
3694 return -EINVAL;
3695
3696 if (asoc)
3697 return sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3698
3699 if (sctp_style(sk, TCP))
3700 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3701
3702 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3703 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3704 ret = sctp_auth_set_active_key(ep, asoc, val->scact_keynumber);
3705 if (ret)
3706 return ret;
3707 }
3708
3709 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3710 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3711 list_for_each_entry(asoc, &ep->asocs, asocs) {
3712 int res = sctp_auth_set_active_key(ep, asoc,
3713 val->scact_keynumber);
3714
3715 if (res && !ret)
3716 ret = res;
3717 }
3718 }
3719
3720 return ret;
3721 }
3722
3723 /*
3724 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3725 *
3726 * This set option will delete a shared secret key from use.
3727 */
sctp_setsockopt_del_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3728 static int sctp_setsockopt_del_key(struct sock *sk,
3729 struct sctp_authkeyid *val,
3730 unsigned int optlen)
3731 {
3732 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3733 struct sctp_association *asoc;
3734 int ret = 0;
3735
3736 if (optlen != sizeof(struct sctp_authkeyid))
3737 return -EINVAL;
3738
3739 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3740 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3741 sctp_style(sk, UDP))
3742 return -EINVAL;
3743
3744 if (asoc)
3745 return sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3746
3747 if (sctp_style(sk, TCP))
3748 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3749
3750 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3751 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3752 ret = sctp_auth_del_key_id(ep, asoc, val->scact_keynumber);
3753 if (ret)
3754 return ret;
3755 }
3756
3757 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3758 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3759 list_for_each_entry(asoc, &ep->asocs, asocs) {
3760 int res = sctp_auth_del_key_id(ep, asoc,
3761 val->scact_keynumber);
3762
3763 if (res && !ret)
3764 ret = res;
3765 }
3766 }
3767
3768 return ret;
3769 }
3770
3771 /*
3772 * 8.3.4 Deactivate a Shared Key (SCTP_AUTH_DEACTIVATE_KEY)
3773 *
3774 * This set option will deactivate a shared secret key.
3775 */
sctp_setsockopt_deactivate_key(struct sock * sk,struct sctp_authkeyid * val,unsigned int optlen)3776 static int sctp_setsockopt_deactivate_key(struct sock *sk,
3777 struct sctp_authkeyid *val,
3778 unsigned int optlen)
3779 {
3780 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
3781 struct sctp_association *asoc;
3782 int ret = 0;
3783
3784 if (optlen != sizeof(struct sctp_authkeyid))
3785 return -EINVAL;
3786
3787 asoc = sctp_id2assoc(sk, val->scact_assoc_id);
3788 if (!asoc && val->scact_assoc_id > SCTP_ALL_ASSOC &&
3789 sctp_style(sk, UDP))
3790 return -EINVAL;
3791
3792 if (asoc)
3793 return sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3794
3795 if (sctp_style(sk, TCP))
3796 val->scact_assoc_id = SCTP_FUTURE_ASSOC;
3797
3798 if (val->scact_assoc_id == SCTP_FUTURE_ASSOC ||
3799 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3800 ret = sctp_auth_deact_key_id(ep, asoc, val->scact_keynumber);
3801 if (ret)
3802 return ret;
3803 }
3804
3805 if (val->scact_assoc_id == SCTP_CURRENT_ASSOC ||
3806 val->scact_assoc_id == SCTP_ALL_ASSOC) {
3807 list_for_each_entry(asoc, &ep->asocs, asocs) {
3808 int res = sctp_auth_deact_key_id(ep, asoc,
3809 val->scact_keynumber);
3810
3811 if (res && !ret)
3812 ret = res;
3813 }
3814 }
3815
3816 return ret;
3817 }
3818
3819 /*
3820 * 8.1.23 SCTP_AUTO_ASCONF
3821 *
3822 * This option will enable or disable the use of the automatic generation of
3823 * ASCONF chunks to add and delete addresses to an existing association. Note
3824 * that this option has two caveats namely: a) it only affects sockets that
3825 * are bound to all addresses available to the SCTP stack, and b) the system
3826 * administrator may have an overriding control that turns the ASCONF feature
3827 * off no matter what setting the socket option may have.
3828 * This option expects an integer boolean flag, where a non-zero value turns on
3829 * the option, and a zero value turns off the option.
3830 * Note. In this implementation, socket operation overrides default parameter
3831 * being set by sysctl as well as FreeBSD implementation
3832 */
sctp_setsockopt_auto_asconf(struct sock * sk,int * val,unsigned int optlen)3833 static int sctp_setsockopt_auto_asconf(struct sock *sk, int *val,
3834 unsigned int optlen)
3835 {
3836 struct sctp_sock *sp = sctp_sk(sk);
3837
3838 if (optlen < sizeof(int))
3839 return -EINVAL;
3840 if (!sctp_is_ep_boundall(sk) && *val)
3841 return -EINVAL;
3842 if ((*val && sp->do_auto_asconf) || (!*val && !sp->do_auto_asconf))
3843 return 0;
3844
3845 spin_lock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3846 if (*val == 0 && sp->do_auto_asconf) {
3847 list_del(&sp->auto_asconf_list);
3848 sp->do_auto_asconf = 0;
3849 } else if (*val && !sp->do_auto_asconf) {
3850 list_add_tail(&sp->auto_asconf_list,
3851 &sock_net(sk)->sctp.auto_asconf_splist);
3852 sp->do_auto_asconf = 1;
3853 }
3854 spin_unlock_bh(&sock_net(sk)->sctp.addr_wq_lock);
3855 return 0;
3856 }
3857
3858 /*
3859 * SCTP_PEER_ADDR_THLDS
3860 *
3861 * This option allows us to alter the partially failed threshold for one or all
3862 * transports in an association. See Section 6.1 of:
3863 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
3864 */
sctp_setsockopt_paddr_thresholds(struct sock * sk,struct sctp_paddrthlds_v2 * val,unsigned int optlen,bool v2)3865 static int sctp_setsockopt_paddr_thresholds(struct sock *sk,
3866 struct sctp_paddrthlds_v2 *val,
3867 unsigned int optlen, bool v2)
3868 {
3869 struct sctp_transport *trans;
3870 struct sctp_association *asoc;
3871 int len;
3872
3873 len = v2 ? sizeof(*val) : sizeof(struct sctp_paddrthlds);
3874 if (optlen < len)
3875 return -EINVAL;
3876
3877 if (v2 && val->spt_pathpfthld > val->spt_pathcpthld)
3878 return -EINVAL;
3879
3880 if (!sctp_is_any(sk, (const union sctp_addr *)&val->spt_address)) {
3881 trans = sctp_addr_id2transport(sk, &val->spt_address,
3882 val->spt_assoc_id);
3883 if (!trans)
3884 return -ENOENT;
3885
3886 if (val->spt_pathmaxrxt)
3887 trans->pathmaxrxt = val->spt_pathmaxrxt;
3888 if (v2)
3889 trans->ps_retrans = val->spt_pathcpthld;
3890 trans->pf_retrans = val->spt_pathpfthld;
3891
3892 return 0;
3893 }
3894
3895 asoc = sctp_id2assoc(sk, val->spt_assoc_id);
3896 if (!asoc && val->spt_assoc_id != SCTP_FUTURE_ASSOC &&
3897 sctp_style(sk, UDP))
3898 return -EINVAL;
3899
3900 if (asoc) {
3901 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
3902 transports) {
3903 if (val->spt_pathmaxrxt)
3904 trans->pathmaxrxt = val->spt_pathmaxrxt;
3905 if (v2)
3906 trans->ps_retrans = val->spt_pathcpthld;
3907 trans->pf_retrans = val->spt_pathpfthld;
3908 }
3909
3910 if (val->spt_pathmaxrxt)
3911 asoc->pathmaxrxt = val->spt_pathmaxrxt;
3912 if (v2)
3913 asoc->ps_retrans = val->spt_pathcpthld;
3914 asoc->pf_retrans = val->spt_pathpfthld;
3915 } else {
3916 struct sctp_sock *sp = sctp_sk(sk);
3917
3918 if (val->spt_pathmaxrxt)
3919 sp->pathmaxrxt = val->spt_pathmaxrxt;
3920 if (v2)
3921 sp->ps_retrans = val->spt_pathcpthld;
3922 sp->pf_retrans = val->spt_pathpfthld;
3923 }
3924
3925 return 0;
3926 }
3927
sctp_setsockopt_recvrcvinfo(struct sock * sk,int * val,unsigned int optlen)3928 static int sctp_setsockopt_recvrcvinfo(struct sock *sk, int *val,
3929 unsigned int optlen)
3930 {
3931 if (optlen < sizeof(int))
3932 return -EINVAL;
3933
3934 sctp_sk(sk)->recvrcvinfo = (*val == 0) ? 0 : 1;
3935
3936 return 0;
3937 }
3938
sctp_setsockopt_recvnxtinfo(struct sock * sk,int * val,unsigned int optlen)3939 static int sctp_setsockopt_recvnxtinfo(struct sock *sk, int *val,
3940 unsigned int optlen)
3941 {
3942 if (optlen < sizeof(int))
3943 return -EINVAL;
3944
3945 sctp_sk(sk)->recvnxtinfo = (*val == 0) ? 0 : 1;
3946
3947 return 0;
3948 }
3949
sctp_setsockopt_pr_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)3950 static int sctp_setsockopt_pr_supported(struct sock *sk,
3951 struct sctp_assoc_value *params,
3952 unsigned int optlen)
3953 {
3954 struct sctp_association *asoc;
3955
3956 if (optlen != sizeof(*params))
3957 return -EINVAL;
3958
3959 asoc = sctp_id2assoc(sk, params->assoc_id);
3960 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
3961 sctp_style(sk, UDP))
3962 return -EINVAL;
3963
3964 sctp_sk(sk)->ep->prsctp_enable = !!params->assoc_value;
3965
3966 return 0;
3967 }
3968
sctp_setsockopt_default_prinfo(struct sock * sk,struct sctp_default_prinfo * info,unsigned int optlen)3969 static int sctp_setsockopt_default_prinfo(struct sock *sk,
3970 struct sctp_default_prinfo *info,
3971 unsigned int optlen)
3972 {
3973 struct sctp_sock *sp = sctp_sk(sk);
3974 struct sctp_association *asoc;
3975 int retval = -EINVAL;
3976
3977 if (optlen != sizeof(*info))
3978 goto out;
3979
3980 if (info->pr_policy & ~SCTP_PR_SCTP_MASK)
3981 goto out;
3982
3983 if (info->pr_policy == SCTP_PR_SCTP_NONE)
3984 info->pr_value = 0;
3985
3986 asoc = sctp_id2assoc(sk, info->pr_assoc_id);
3987 if (!asoc && info->pr_assoc_id > SCTP_ALL_ASSOC &&
3988 sctp_style(sk, UDP))
3989 goto out;
3990
3991 retval = 0;
3992
3993 if (asoc) {
3994 SCTP_PR_SET_POLICY(asoc->default_flags, info->pr_policy);
3995 asoc->default_timetolive = info->pr_value;
3996 goto out;
3997 }
3998
3999 if (sctp_style(sk, TCP))
4000 info->pr_assoc_id = SCTP_FUTURE_ASSOC;
4001
4002 if (info->pr_assoc_id == SCTP_FUTURE_ASSOC ||
4003 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4004 SCTP_PR_SET_POLICY(sp->default_flags, info->pr_policy);
4005 sp->default_timetolive = info->pr_value;
4006 }
4007
4008 if (info->pr_assoc_id == SCTP_CURRENT_ASSOC ||
4009 info->pr_assoc_id == SCTP_ALL_ASSOC) {
4010 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4011 SCTP_PR_SET_POLICY(asoc->default_flags,
4012 info->pr_policy);
4013 asoc->default_timetolive = info->pr_value;
4014 }
4015 }
4016
4017 out:
4018 return retval;
4019 }
4020
sctp_setsockopt_reconfig_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4021 static int sctp_setsockopt_reconfig_supported(struct sock *sk,
4022 struct sctp_assoc_value *params,
4023 unsigned int optlen)
4024 {
4025 struct sctp_association *asoc;
4026 int retval = -EINVAL;
4027
4028 if (optlen != sizeof(*params))
4029 goto out;
4030
4031 asoc = sctp_id2assoc(sk, params->assoc_id);
4032 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4033 sctp_style(sk, UDP))
4034 goto out;
4035
4036 sctp_sk(sk)->ep->reconf_enable = !!params->assoc_value;
4037
4038 retval = 0;
4039
4040 out:
4041 return retval;
4042 }
4043
sctp_setsockopt_enable_strreset(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4044 static int sctp_setsockopt_enable_strreset(struct sock *sk,
4045 struct sctp_assoc_value *params,
4046 unsigned int optlen)
4047 {
4048 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
4049 struct sctp_association *asoc;
4050 int retval = -EINVAL;
4051
4052 if (optlen != sizeof(*params))
4053 goto out;
4054
4055 if (params->assoc_value & (~SCTP_ENABLE_STRRESET_MASK))
4056 goto out;
4057
4058 asoc = sctp_id2assoc(sk, params->assoc_id);
4059 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4060 sctp_style(sk, UDP))
4061 goto out;
4062
4063 retval = 0;
4064
4065 if (asoc) {
4066 asoc->strreset_enable = params->assoc_value;
4067 goto out;
4068 }
4069
4070 if (sctp_style(sk, TCP))
4071 params->assoc_id = SCTP_FUTURE_ASSOC;
4072
4073 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4074 params->assoc_id == SCTP_ALL_ASSOC)
4075 ep->strreset_enable = params->assoc_value;
4076
4077 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4078 params->assoc_id == SCTP_ALL_ASSOC)
4079 list_for_each_entry(asoc, &ep->asocs, asocs)
4080 asoc->strreset_enable = params->assoc_value;
4081
4082 out:
4083 return retval;
4084 }
4085
sctp_setsockopt_reset_streams(struct sock * sk,struct sctp_reset_streams * params,unsigned int optlen)4086 static int sctp_setsockopt_reset_streams(struct sock *sk,
4087 struct sctp_reset_streams *params,
4088 unsigned int optlen)
4089 {
4090 struct sctp_association *asoc;
4091
4092 if (optlen < sizeof(*params))
4093 return -EINVAL;
4094 /* srs_number_streams is u16, so optlen can't be bigger than this. */
4095 optlen = min_t(unsigned int, optlen, USHRT_MAX +
4096 sizeof(__u16) * sizeof(*params));
4097
4098 if (params->srs_number_streams * sizeof(__u16) >
4099 optlen - sizeof(*params))
4100 return -EINVAL;
4101
4102 asoc = sctp_id2assoc(sk, params->srs_assoc_id);
4103 if (!asoc)
4104 return -EINVAL;
4105
4106 return sctp_send_reset_streams(asoc, params);
4107 }
4108
sctp_setsockopt_reset_assoc(struct sock * sk,sctp_assoc_t * associd,unsigned int optlen)4109 static int sctp_setsockopt_reset_assoc(struct sock *sk, sctp_assoc_t *associd,
4110 unsigned int optlen)
4111 {
4112 struct sctp_association *asoc;
4113
4114 if (optlen != sizeof(*associd))
4115 return -EINVAL;
4116
4117 asoc = sctp_id2assoc(sk, *associd);
4118 if (!asoc)
4119 return -EINVAL;
4120
4121 return sctp_send_reset_assoc(asoc);
4122 }
4123
sctp_setsockopt_add_streams(struct sock * sk,struct sctp_add_streams * params,unsigned int optlen)4124 static int sctp_setsockopt_add_streams(struct sock *sk,
4125 struct sctp_add_streams *params,
4126 unsigned int optlen)
4127 {
4128 struct sctp_association *asoc;
4129
4130 if (optlen != sizeof(*params))
4131 return -EINVAL;
4132
4133 asoc = sctp_id2assoc(sk, params->sas_assoc_id);
4134 if (!asoc)
4135 return -EINVAL;
4136
4137 return sctp_send_add_streams(asoc, params);
4138 }
4139
sctp_setsockopt_scheduler(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4140 static int sctp_setsockopt_scheduler(struct sock *sk,
4141 struct sctp_assoc_value *params,
4142 unsigned int optlen)
4143 {
4144 struct sctp_sock *sp = sctp_sk(sk);
4145 struct sctp_association *asoc;
4146 int retval = 0;
4147
4148 if (optlen < sizeof(*params))
4149 return -EINVAL;
4150
4151 if (params->assoc_value > SCTP_SS_MAX)
4152 return -EINVAL;
4153
4154 asoc = sctp_id2assoc(sk, params->assoc_id);
4155 if (!asoc && params->assoc_id > SCTP_ALL_ASSOC &&
4156 sctp_style(sk, UDP))
4157 return -EINVAL;
4158
4159 if (asoc)
4160 return sctp_sched_set_sched(asoc, params->assoc_value);
4161
4162 if (sctp_style(sk, TCP))
4163 params->assoc_id = SCTP_FUTURE_ASSOC;
4164
4165 if (params->assoc_id == SCTP_FUTURE_ASSOC ||
4166 params->assoc_id == SCTP_ALL_ASSOC)
4167 sp->default_ss = params->assoc_value;
4168
4169 if (params->assoc_id == SCTP_CURRENT_ASSOC ||
4170 params->assoc_id == SCTP_ALL_ASSOC) {
4171 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4172 int ret = sctp_sched_set_sched(asoc,
4173 params->assoc_value);
4174
4175 if (ret && !retval)
4176 retval = ret;
4177 }
4178 }
4179
4180 return retval;
4181 }
4182
sctp_setsockopt_scheduler_value(struct sock * sk,struct sctp_stream_value * params,unsigned int optlen)4183 static int sctp_setsockopt_scheduler_value(struct sock *sk,
4184 struct sctp_stream_value *params,
4185 unsigned int optlen)
4186 {
4187 struct sctp_association *asoc;
4188 int retval = -EINVAL;
4189
4190 if (optlen < sizeof(*params))
4191 goto out;
4192
4193 asoc = sctp_id2assoc(sk, params->assoc_id);
4194 if (!asoc && params->assoc_id != SCTP_CURRENT_ASSOC &&
4195 sctp_style(sk, UDP))
4196 goto out;
4197
4198 if (asoc) {
4199 retval = sctp_sched_set_value(asoc, params->stream_id,
4200 params->stream_value, GFP_KERNEL);
4201 goto out;
4202 }
4203
4204 retval = 0;
4205
4206 list_for_each_entry(asoc, &sctp_sk(sk)->ep->asocs, asocs) {
4207 int ret = sctp_sched_set_value(asoc, params->stream_id,
4208 params->stream_value,
4209 GFP_KERNEL);
4210 if (ret && !retval) /* try to return the 1st error. */
4211 retval = ret;
4212 }
4213
4214 out:
4215 return retval;
4216 }
4217
sctp_setsockopt_interleaving_supported(struct sock * sk,struct sctp_assoc_value * p,unsigned int optlen)4218 static int sctp_setsockopt_interleaving_supported(struct sock *sk,
4219 struct sctp_assoc_value *p,
4220 unsigned int optlen)
4221 {
4222 struct sctp_sock *sp = sctp_sk(sk);
4223 struct sctp_association *asoc;
4224
4225 if (optlen < sizeof(*p))
4226 return -EINVAL;
4227
4228 asoc = sctp_id2assoc(sk, p->assoc_id);
4229 if (!asoc && p->assoc_id != SCTP_FUTURE_ASSOC && sctp_style(sk, UDP))
4230 return -EINVAL;
4231
4232 if (!sock_net(sk)->sctp.intl_enable || !sp->frag_interleave) {
4233 return -EPERM;
4234 }
4235
4236 sp->ep->intl_enable = !!p->assoc_value;
4237 return 0;
4238 }
4239
sctp_setsockopt_reuse_port(struct sock * sk,int * val,unsigned int optlen)4240 static int sctp_setsockopt_reuse_port(struct sock *sk, int *val,
4241 unsigned int optlen)
4242 {
4243 if (!sctp_style(sk, TCP))
4244 return -EOPNOTSUPP;
4245
4246 if (sctp_sk(sk)->ep->base.bind_addr.port)
4247 return -EFAULT;
4248
4249 if (optlen < sizeof(int))
4250 return -EINVAL;
4251
4252 sctp_sk(sk)->reuse = !!*val;
4253
4254 return 0;
4255 }
4256
sctp_assoc_ulpevent_type_set(struct sctp_event * param,struct sctp_association * asoc)4257 static int sctp_assoc_ulpevent_type_set(struct sctp_event *param,
4258 struct sctp_association *asoc)
4259 {
4260 struct sctp_ulpevent *event;
4261
4262 sctp_ulpevent_type_set(&asoc->subscribe, param->se_type, param->se_on);
4263
4264 if (param->se_type == SCTP_SENDER_DRY_EVENT && param->se_on) {
4265 if (sctp_outq_is_empty(&asoc->outqueue)) {
4266 event = sctp_ulpevent_make_sender_dry_event(asoc,
4267 GFP_USER | __GFP_NOWARN);
4268 if (!event)
4269 return -ENOMEM;
4270
4271 asoc->stream.si->enqueue_event(&asoc->ulpq, event);
4272 }
4273 }
4274
4275 return 0;
4276 }
4277
sctp_setsockopt_event(struct sock * sk,struct sctp_event * param,unsigned int optlen)4278 static int sctp_setsockopt_event(struct sock *sk, struct sctp_event *param,
4279 unsigned int optlen)
4280 {
4281 struct sctp_sock *sp = sctp_sk(sk);
4282 struct sctp_association *asoc;
4283 int retval = 0;
4284
4285 if (optlen < sizeof(*param))
4286 return -EINVAL;
4287
4288 if (param->se_type < SCTP_SN_TYPE_BASE ||
4289 param->se_type > SCTP_SN_TYPE_MAX)
4290 return -EINVAL;
4291
4292 asoc = sctp_id2assoc(sk, param->se_assoc_id);
4293 if (!asoc && param->se_assoc_id > SCTP_ALL_ASSOC &&
4294 sctp_style(sk, UDP))
4295 return -EINVAL;
4296
4297 if (asoc)
4298 return sctp_assoc_ulpevent_type_set(param, asoc);
4299
4300 if (sctp_style(sk, TCP))
4301 param->se_assoc_id = SCTP_FUTURE_ASSOC;
4302
4303 if (param->se_assoc_id == SCTP_FUTURE_ASSOC ||
4304 param->se_assoc_id == SCTP_ALL_ASSOC)
4305 sctp_ulpevent_type_set(&sp->subscribe,
4306 param->se_type, param->se_on);
4307
4308 if (param->se_assoc_id == SCTP_CURRENT_ASSOC ||
4309 param->se_assoc_id == SCTP_ALL_ASSOC) {
4310 list_for_each_entry(asoc, &sp->ep->asocs, asocs) {
4311 int ret = sctp_assoc_ulpevent_type_set(param, asoc);
4312
4313 if (ret && !retval)
4314 retval = ret;
4315 }
4316 }
4317
4318 return retval;
4319 }
4320
sctp_setsockopt_asconf_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4321 static int sctp_setsockopt_asconf_supported(struct sock *sk,
4322 struct sctp_assoc_value *params,
4323 unsigned int optlen)
4324 {
4325 struct sctp_association *asoc;
4326 struct sctp_endpoint *ep;
4327 int retval = -EINVAL;
4328
4329 if (optlen != sizeof(*params))
4330 goto out;
4331
4332 asoc = sctp_id2assoc(sk, params->assoc_id);
4333 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4334 sctp_style(sk, UDP))
4335 goto out;
4336
4337 ep = sctp_sk(sk)->ep;
4338 ep->asconf_enable = !!params->assoc_value;
4339
4340 if (ep->asconf_enable && ep->auth_enable) {
4341 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4342 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4343 }
4344
4345 retval = 0;
4346
4347 out:
4348 return retval;
4349 }
4350
sctp_setsockopt_auth_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4351 static int sctp_setsockopt_auth_supported(struct sock *sk,
4352 struct sctp_assoc_value *params,
4353 unsigned int optlen)
4354 {
4355 struct sctp_association *asoc;
4356 struct sctp_endpoint *ep;
4357 int retval = -EINVAL;
4358
4359 if (optlen != sizeof(*params))
4360 goto out;
4361
4362 asoc = sctp_id2assoc(sk, params->assoc_id);
4363 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4364 sctp_style(sk, UDP))
4365 goto out;
4366
4367 ep = sctp_sk(sk)->ep;
4368 if (params->assoc_value) {
4369 retval = sctp_auth_init(ep, GFP_KERNEL);
4370 if (retval)
4371 goto out;
4372 if (ep->asconf_enable) {
4373 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF);
4374 sctp_auth_ep_add_chunkid(ep, SCTP_CID_ASCONF_ACK);
4375 }
4376 }
4377
4378 ep->auth_enable = !!params->assoc_value;
4379 retval = 0;
4380
4381 out:
4382 return retval;
4383 }
4384
sctp_setsockopt_ecn_supported(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4385 static int sctp_setsockopt_ecn_supported(struct sock *sk,
4386 struct sctp_assoc_value *params,
4387 unsigned int optlen)
4388 {
4389 struct sctp_association *asoc;
4390 int retval = -EINVAL;
4391
4392 if (optlen != sizeof(*params))
4393 goto out;
4394
4395 asoc = sctp_id2assoc(sk, params->assoc_id);
4396 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4397 sctp_style(sk, UDP))
4398 goto out;
4399
4400 sctp_sk(sk)->ep->ecn_enable = !!params->assoc_value;
4401 retval = 0;
4402
4403 out:
4404 return retval;
4405 }
4406
sctp_setsockopt_pf_expose(struct sock * sk,struct sctp_assoc_value * params,unsigned int optlen)4407 static int sctp_setsockopt_pf_expose(struct sock *sk,
4408 struct sctp_assoc_value *params,
4409 unsigned int optlen)
4410 {
4411 struct sctp_association *asoc;
4412 int retval = -EINVAL;
4413
4414 if (optlen != sizeof(*params))
4415 goto out;
4416
4417 if (params->assoc_value > SCTP_PF_EXPOSE_MAX)
4418 goto out;
4419
4420 asoc = sctp_id2assoc(sk, params->assoc_id);
4421 if (!asoc && params->assoc_id != SCTP_FUTURE_ASSOC &&
4422 sctp_style(sk, UDP))
4423 goto out;
4424
4425 if (asoc)
4426 asoc->pf_expose = params->assoc_value;
4427 else
4428 sctp_sk(sk)->pf_expose = params->assoc_value;
4429 retval = 0;
4430
4431 out:
4432 return retval;
4433 }
4434
sctp_setsockopt_encap_port(struct sock * sk,struct sctp_udpencaps * encap,unsigned int optlen)4435 static int sctp_setsockopt_encap_port(struct sock *sk,
4436 struct sctp_udpencaps *encap,
4437 unsigned int optlen)
4438 {
4439 struct sctp_association *asoc;
4440 struct sctp_transport *t;
4441 __be16 encap_port;
4442
4443 if (optlen != sizeof(*encap))
4444 return -EINVAL;
4445
4446 /* If an address other than INADDR_ANY is specified, and
4447 * no transport is found, then the request is invalid.
4448 */
4449 encap_port = (__force __be16)encap->sue_port;
4450 if (!sctp_is_any(sk, (union sctp_addr *)&encap->sue_address)) {
4451 t = sctp_addr_id2transport(sk, &encap->sue_address,
4452 encap->sue_assoc_id);
4453 if (!t)
4454 return -EINVAL;
4455
4456 t->encap_port = encap_port;
4457 return 0;
4458 }
4459
4460 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4461 * socket is a one to many style socket, and an association
4462 * was not found, then the id was invalid.
4463 */
4464 asoc = sctp_id2assoc(sk, encap->sue_assoc_id);
4465 if (!asoc && encap->sue_assoc_id != SCTP_FUTURE_ASSOC &&
4466 sctp_style(sk, UDP))
4467 return -EINVAL;
4468
4469 /* If changes are for association, also apply encap_port to
4470 * each transport.
4471 */
4472 if (asoc) {
4473 list_for_each_entry(t, &asoc->peer.transport_addr_list,
4474 transports)
4475 t->encap_port = encap_port;
4476
4477 asoc->encap_port = encap_port;
4478 return 0;
4479 }
4480
4481 sctp_sk(sk)->encap_port = encap_port;
4482 return 0;
4483 }
4484
sctp_setsockopt_probe_interval(struct sock * sk,struct sctp_probeinterval * params,unsigned int optlen)4485 static int sctp_setsockopt_probe_interval(struct sock *sk,
4486 struct sctp_probeinterval *params,
4487 unsigned int optlen)
4488 {
4489 struct sctp_association *asoc;
4490 struct sctp_transport *t;
4491 __u32 probe_interval;
4492
4493 if (optlen != sizeof(*params))
4494 return -EINVAL;
4495
4496 probe_interval = params->spi_interval;
4497 if (probe_interval && probe_interval < SCTP_PROBE_TIMER_MIN)
4498 return -EINVAL;
4499
4500 /* If an address other than INADDR_ANY is specified, and
4501 * no transport is found, then the request is invalid.
4502 */
4503 if (!sctp_is_any(sk, (union sctp_addr *)¶ms->spi_address)) {
4504 t = sctp_addr_id2transport(sk, ¶ms->spi_address,
4505 params->spi_assoc_id);
4506 if (!t)
4507 return -EINVAL;
4508
4509 t->probe_interval = msecs_to_jiffies(probe_interval);
4510 sctp_transport_pl_reset(t);
4511 return 0;
4512 }
4513
4514 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
4515 * socket is a one to many style socket, and an association
4516 * was not found, then the id was invalid.
4517 */
4518 asoc = sctp_id2assoc(sk, params->spi_assoc_id);
4519 if (!asoc && params->spi_assoc_id != SCTP_FUTURE_ASSOC &&
4520 sctp_style(sk, UDP))
4521 return -EINVAL;
4522
4523 /* If changes are for association, also apply probe_interval to
4524 * each transport.
4525 */
4526 if (asoc) {
4527 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
4528 t->probe_interval = msecs_to_jiffies(probe_interval);
4529 sctp_transport_pl_reset(t);
4530 }
4531
4532 asoc->probe_interval = msecs_to_jiffies(probe_interval);
4533 return 0;
4534 }
4535
4536 sctp_sk(sk)->probe_interval = probe_interval;
4537 return 0;
4538 }
4539
4540 /* API 6.2 setsockopt(), getsockopt()
4541 *
4542 * Applications use setsockopt() and getsockopt() to set or retrieve
4543 * socket options. Socket options are used to change the default
4544 * behavior of sockets calls. They are described in Section 7.
4545 *
4546 * The syntax is:
4547 *
4548 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
4549 * int __user *optlen);
4550 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
4551 * int optlen);
4552 *
4553 * sd - the socket descript.
4554 * level - set to IPPROTO_SCTP for all SCTP options.
4555 * optname - the option name.
4556 * optval - the buffer to store the value of the option.
4557 * optlen - the size of the buffer.
4558 */
sctp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)4559 static int sctp_setsockopt(struct sock *sk, int level, int optname,
4560 sockptr_t optval, unsigned int optlen)
4561 {
4562 void *kopt = NULL;
4563 int retval = 0;
4564
4565 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
4566
4567 /* I can hardly begin to describe how wrong this is. This is
4568 * so broken as to be worse than useless. The API draft
4569 * REALLY is NOT helpful here... I am not convinced that the
4570 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
4571 * are at all well-founded.
4572 */
4573 if (level != SOL_SCTP) {
4574 struct sctp_af *af = sctp_sk(sk)->pf->af;
4575
4576 return af->setsockopt(sk, level, optname, optval, optlen);
4577 }
4578
4579 if (optlen > 0) {
4580 /* Trim it to the biggest size sctp sockopt may need if necessary */
4581 optlen = min_t(unsigned int, optlen,
4582 PAGE_ALIGN(USHRT_MAX +
4583 sizeof(__u16) * sizeof(struct sctp_reset_streams)));
4584 kopt = memdup_sockptr(optval, optlen);
4585 if (IS_ERR(kopt))
4586 return PTR_ERR(kopt);
4587 }
4588
4589 lock_sock(sk);
4590
4591 switch (optname) {
4592 case SCTP_SOCKOPT_BINDX_ADD:
4593 /* 'optlen' is the size of the addresses buffer. */
4594 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4595 SCTP_BINDX_ADD_ADDR);
4596 break;
4597
4598 case SCTP_SOCKOPT_BINDX_REM:
4599 /* 'optlen' is the size of the addresses buffer. */
4600 retval = sctp_setsockopt_bindx(sk, kopt, optlen,
4601 SCTP_BINDX_REM_ADDR);
4602 break;
4603
4604 case SCTP_SOCKOPT_CONNECTX_OLD:
4605 /* 'optlen' is the size of the addresses buffer. */
4606 retval = sctp_setsockopt_connectx_old(sk, kopt, optlen);
4607 break;
4608
4609 case SCTP_SOCKOPT_CONNECTX:
4610 /* 'optlen' is the size of the addresses buffer. */
4611 retval = sctp_setsockopt_connectx(sk, kopt, optlen);
4612 break;
4613
4614 case SCTP_DISABLE_FRAGMENTS:
4615 retval = sctp_setsockopt_disable_fragments(sk, kopt, optlen);
4616 break;
4617
4618 case SCTP_EVENTS:
4619 retval = sctp_setsockopt_events(sk, kopt, optlen);
4620 break;
4621
4622 case SCTP_AUTOCLOSE:
4623 retval = sctp_setsockopt_autoclose(sk, kopt, optlen);
4624 break;
4625
4626 case SCTP_PEER_ADDR_PARAMS:
4627 retval = sctp_setsockopt_peer_addr_params(sk, kopt, optlen);
4628 break;
4629
4630 case SCTP_DELAYED_SACK:
4631 retval = sctp_setsockopt_delayed_ack(sk, kopt, optlen);
4632 break;
4633 case SCTP_PARTIAL_DELIVERY_POINT:
4634 retval = sctp_setsockopt_partial_delivery_point(sk, kopt, optlen);
4635 break;
4636
4637 case SCTP_INITMSG:
4638 retval = sctp_setsockopt_initmsg(sk, kopt, optlen);
4639 break;
4640 case SCTP_DEFAULT_SEND_PARAM:
4641 retval = sctp_setsockopt_default_send_param(sk, kopt, optlen);
4642 break;
4643 case SCTP_DEFAULT_SNDINFO:
4644 retval = sctp_setsockopt_default_sndinfo(sk, kopt, optlen);
4645 break;
4646 case SCTP_PRIMARY_ADDR:
4647 retval = sctp_setsockopt_primary_addr(sk, kopt, optlen);
4648 break;
4649 case SCTP_SET_PEER_PRIMARY_ADDR:
4650 retval = sctp_setsockopt_peer_primary_addr(sk, kopt, optlen);
4651 break;
4652 case SCTP_NODELAY:
4653 retval = sctp_setsockopt_nodelay(sk, kopt, optlen);
4654 break;
4655 case SCTP_RTOINFO:
4656 retval = sctp_setsockopt_rtoinfo(sk, kopt, optlen);
4657 break;
4658 case SCTP_ASSOCINFO:
4659 retval = sctp_setsockopt_associnfo(sk, kopt, optlen);
4660 break;
4661 case SCTP_I_WANT_MAPPED_V4_ADDR:
4662 retval = sctp_setsockopt_mappedv4(sk, kopt, optlen);
4663 break;
4664 case SCTP_MAXSEG:
4665 retval = sctp_setsockopt_maxseg(sk, kopt, optlen);
4666 break;
4667 case SCTP_ADAPTATION_LAYER:
4668 retval = sctp_setsockopt_adaptation_layer(sk, kopt, optlen);
4669 break;
4670 case SCTP_CONTEXT:
4671 retval = sctp_setsockopt_context(sk, kopt, optlen);
4672 break;
4673 case SCTP_FRAGMENT_INTERLEAVE:
4674 retval = sctp_setsockopt_fragment_interleave(sk, kopt, optlen);
4675 break;
4676 case SCTP_MAX_BURST:
4677 retval = sctp_setsockopt_maxburst(sk, kopt, optlen);
4678 break;
4679 case SCTP_AUTH_CHUNK:
4680 retval = sctp_setsockopt_auth_chunk(sk, kopt, optlen);
4681 break;
4682 case SCTP_HMAC_IDENT:
4683 retval = sctp_setsockopt_hmac_ident(sk, kopt, optlen);
4684 break;
4685 case SCTP_AUTH_KEY:
4686 retval = sctp_setsockopt_auth_key(sk, kopt, optlen);
4687 break;
4688 case SCTP_AUTH_ACTIVE_KEY:
4689 retval = sctp_setsockopt_active_key(sk, kopt, optlen);
4690 break;
4691 case SCTP_AUTH_DELETE_KEY:
4692 retval = sctp_setsockopt_del_key(sk, kopt, optlen);
4693 break;
4694 case SCTP_AUTH_DEACTIVATE_KEY:
4695 retval = sctp_setsockopt_deactivate_key(sk, kopt, optlen);
4696 break;
4697 case SCTP_AUTO_ASCONF:
4698 retval = sctp_setsockopt_auto_asconf(sk, kopt, optlen);
4699 break;
4700 case SCTP_PEER_ADDR_THLDS:
4701 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4702 false);
4703 break;
4704 case SCTP_PEER_ADDR_THLDS_V2:
4705 retval = sctp_setsockopt_paddr_thresholds(sk, kopt, optlen,
4706 true);
4707 break;
4708 case SCTP_RECVRCVINFO:
4709 retval = sctp_setsockopt_recvrcvinfo(sk, kopt, optlen);
4710 break;
4711 case SCTP_RECVNXTINFO:
4712 retval = sctp_setsockopt_recvnxtinfo(sk, kopt, optlen);
4713 break;
4714 case SCTP_PR_SUPPORTED:
4715 retval = sctp_setsockopt_pr_supported(sk, kopt, optlen);
4716 break;
4717 case SCTP_DEFAULT_PRINFO:
4718 retval = sctp_setsockopt_default_prinfo(sk, kopt, optlen);
4719 break;
4720 case SCTP_RECONFIG_SUPPORTED:
4721 retval = sctp_setsockopt_reconfig_supported(sk, kopt, optlen);
4722 break;
4723 case SCTP_ENABLE_STREAM_RESET:
4724 retval = sctp_setsockopt_enable_strreset(sk, kopt, optlen);
4725 break;
4726 case SCTP_RESET_STREAMS:
4727 retval = sctp_setsockopt_reset_streams(sk, kopt, optlen);
4728 break;
4729 case SCTP_RESET_ASSOC:
4730 retval = sctp_setsockopt_reset_assoc(sk, kopt, optlen);
4731 break;
4732 case SCTP_ADD_STREAMS:
4733 retval = sctp_setsockopt_add_streams(sk, kopt, optlen);
4734 break;
4735 case SCTP_STREAM_SCHEDULER:
4736 retval = sctp_setsockopt_scheduler(sk, kopt, optlen);
4737 break;
4738 case SCTP_STREAM_SCHEDULER_VALUE:
4739 retval = sctp_setsockopt_scheduler_value(sk, kopt, optlen);
4740 break;
4741 case SCTP_INTERLEAVING_SUPPORTED:
4742 retval = sctp_setsockopt_interleaving_supported(sk, kopt,
4743 optlen);
4744 break;
4745 case SCTP_REUSE_PORT:
4746 retval = sctp_setsockopt_reuse_port(sk, kopt, optlen);
4747 break;
4748 case SCTP_EVENT:
4749 retval = sctp_setsockopt_event(sk, kopt, optlen);
4750 break;
4751 case SCTP_ASCONF_SUPPORTED:
4752 retval = sctp_setsockopt_asconf_supported(sk, kopt, optlen);
4753 break;
4754 case SCTP_AUTH_SUPPORTED:
4755 retval = sctp_setsockopt_auth_supported(sk, kopt, optlen);
4756 break;
4757 case SCTP_ECN_SUPPORTED:
4758 retval = sctp_setsockopt_ecn_supported(sk, kopt, optlen);
4759 break;
4760 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
4761 retval = sctp_setsockopt_pf_expose(sk, kopt, optlen);
4762 break;
4763 case SCTP_REMOTE_UDP_ENCAPS_PORT:
4764 retval = sctp_setsockopt_encap_port(sk, kopt, optlen);
4765 break;
4766 case SCTP_PLPMTUD_PROBE_INTERVAL:
4767 retval = sctp_setsockopt_probe_interval(sk, kopt, optlen);
4768 break;
4769 default:
4770 retval = -ENOPROTOOPT;
4771 break;
4772 }
4773
4774 release_sock(sk);
4775 kfree(kopt);
4776 return retval;
4777 }
4778
4779 /* API 3.1.6 connect() - UDP Style Syntax
4780 *
4781 * An application may use the connect() call in the UDP model to initiate an
4782 * association without sending data.
4783 *
4784 * The syntax is:
4785 *
4786 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
4787 *
4788 * sd: the socket descriptor to have a new association added to.
4789 *
4790 * nam: the address structure (either struct sockaddr_in or struct
4791 * sockaddr_in6 defined in RFC2553 [7]).
4792 *
4793 * len: the size of the address.
4794 */
sctp_connect(struct sock * sk,struct sockaddr * addr,int addr_len,int flags)4795 static int sctp_connect(struct sock *sk, struct sockaddr *addr,
4796 int addr_len, int flags)
4797 {
4798 struct sctp_af *af;
4799 int err = -EINVAL;
4800
4801 lock_sock(sk);
4802 pr_debug("%s: sk:%p, sockaddr:%p, addr_len:%d\n", __func__, sk,
4803 addr, addr_len);
4804
4805 /* Validate addr_len before calling common connect/connectx routine. */
4806 af = sctp_get_af_specific(addr->sa_family);
4807 if (af && addr_len >= af->sockaddr_len)
4808 err = __sctp_connect(sk, addr, af->sockaddr_len, flags, NULL);
4809
4810 release_sock(sk);
4811 return err;
4812 }
4813
sctp_inet_connect(struct socket * sock,struct sockaddr * uaddr,int addr_len,int flags)4814 int sctp_inet_connect(struct socket *sock, struct sockaddr *uaddr,
4815 int addr_len, int flags)
4816 {
4817 if (addr_len < sizeof(uaddr->sa_family))
4818 return -EINVAL;
4819
4820 if (uaddr->sa_family == AF_UNSPEC)
4821 return -EOPNOTSUPP;
4822
4823 return sctp_connect(sock->sk, uaddr, addr_len, flags);
4824 }
4825
4826 /* FIXME: Write comments. */
sctp_disconnect(struct sock * sk,int flags)4827 static int sctp_disconnect(struct sock *sk, int flags)
4828 {
4829 return -EOPNOTSUPP; /* STUB */
4830 }
4831
4832 /* 4.1.4 accept() - TCP Style Syntax
4833 *
4834 * Applications use accept() call to remove an established SCTP
4835 * association from the accept queue of the endpoint. A new socket
4836 * descriptor will be returned from accept() to represent the newly
4837 * formed association.
4838 */
sctp_accept(struct sock * sk,int flags,int * err,bool kern)4839 static struct sock *sctp_accept(struct sock *sk, int flags, int *err, bool kern)
4840 {
4841 struct sctp_sock *sp;
4842 struct sctp_endpoint *ep;
4843 struct sock *newsk = NULL;
4844 struct sctp_association *asoc;
4845 long timeo;
4846 int error = 0;
4847
4848 lock_sock(sk);
4849
4850 sp = sctp_sk(sk);
4851 ep = sp->ep;
4852
4853 if (!sctp_style(sk, TCP)) {
4854 error = -EOPNOTSUPP;
4855 goto out;
4856 }
4857
4858 if (!sctp_sstate(sk, LISTENING)) {
4859 error = -EINVAL;
4860 goto out;
4861 }
4862
4863 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
4864
4865 error = sctp_wait_for_accept(sk, timeo);
4866 if (error)
4867 goto out;
4868
4869 /* We treat the list of associations on the endpoint as the accept
4870 * queue and pick the first association on the list.
4871 */
4872 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
4873
4874 newsk = sp->pf->create_accept_sk(sk, asoc, kern);
4875 if (!newsk) {
4876 error = -ENOMEM;
4877 goto out;
4878 }
4879
4880 /* Populate the fields of the newsk from the oldsk and migrate the
4881 * asoc to the newsk.
4882 */
4883 error = sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
4884 if (error) {
4885 sk_common_release(newsk);
4886 newsk = NULL;
4887 }
4888
4889 out:
4890 release_sock(sk);
4891 *err = error;
4892 return newsk;
4893 }
4894
4895 /* The SCTP ioctl handler. */
sctp_ioctl(struct sock * sk,int cmd,unsigned long arg)4896 static int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
4897 {
4898 int rc = -ENOTCONN;
4899
4900 lock_sock(sk);
4901
4902 /*
4903 * SEQPACKET-style sockets in LISTENING state are valid, for
4904 * SCTP, so only discard TCP-style sockets in LISTENING state.
4905 */
4906 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
4907 goto out;
4908
4909 switch (cmd) {
4910 case SIOCINQ: {
4911 struct sk_buff *skb;
4912 unsigned int amount = 0;
4913
4914 skb = skb_peek(&sk->sk_receive_queue);
4915 if (skb != NULL) {
4916 /*
4917 * We will only return the amount of this packet since
4918 * that is all that will be read.
4919 */
4920 amount = skb->len;
4921 }
4922 rc = put_user(amount, (int __user *)arg);
4923 break;
4924 }
4925 default:
4926 rc = -ENOIOCTLCMD;
4927 break;
4928 }
4929 out:
4930 release_sock(sk);
4931 return rc;
4932 }
4933
4934 /* This is the function which gets called during socket creation to
4935 * initialized the SCTP-specific portion of the sock.
4936 * The sock structure should already be zero-filled memory.
4937 */
sctp_init_sock(struct sock * sk)4938 static int sctp_init_sock(struct sock *sk)
4939 {
4940 struct net *net = sock_net(sk);
4941 struct sctp_sock *sp;
4942
4943 pr_debug("%s: sk:%p\n", __func__, sk);
4944
4945 sp = sctp_sk(sk);
4946
4947 /* Initialize the SCTP per socket area. */
4948 switch (sk->sk_type) {
4949 case SOCK_SEQPACKET:
4950 sp->type = SCTP_SOCKET_UDP;
4951 break;
4952 case SOCK_STREAM:
4953 sp->type = SCTP_SOCKET_TCP;
4954 break;
4955 default:
4956 return -ESOCKTNOSUPPORT;
4957 }
4958
4959 sk->sk_gso_type = SKB_GSO_SCTP;
4960
4961 /* Initialize default send parameters. These parameters can be
4962 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
4963 */
4964 sp->default_stream = 0;
4965 sp->default_ppid = 0;
4966 sp->default_flags = 0;
4967 sp->default_context = 0;
4968 sp->default_timetolive = 0;
4969
4970 sp->default_rcv_context = 0;
4971 sp->max_burst = net->sctp.max_burst;
4972
4973 sp->sctp_hmac_alg = net->sctp.sctp_hmac_alg;
4974
4975 /* Initialize default setup parameters. These parameters
4976 * can be modified with the SCTP_INITMSG socket option or
4977 * overridden by the SCTP_INIT CMSG.
4978 */
4979 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
4980 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
4981 sp->initmsg.sinit_max_attempts = net->sctp.max_retrans_init;
4982 sp->initmsg.sinit_max_init_timeo = net->sctp.rto_max;
4983
4984 /* Initialize default RTO related parameters. These parameters can
4985 * be modified for with the SCTP_RTOINFO socket option.
4986 */
4987 sp->rtoinfo.srto_initial = net->sctp.rto_initial;
4988 sp->rtoinfo.srto_max = net->sctp.rto_max;
4989 sp->rtoinfo.srto_min = net->sctp.rto_min;
4990
4991 /* Initialize default association related parameters. These parameters
4992 * can be modified with the SCTP_ASSOCINFO socket option.
4993 */
4994 sp->assocparams.sasoc_asocmaxrxt = net->sctp.max_retrans_association;
4995 sp->assocparams.sasoc_number_peer_destinations = 0;
4996 sp->assocparams.sasoc_peer_rwnd = 0;
4997 sp->assocparams.sasoc_local_rwnd = 0;
4998 sp->assocparams.sasoc_cookie_life = net->sctp.valid_cookie_life;
4999
5000 /* Initialize default event subscriptions. By default, all the
5001 * options are off.
5002 */
5003 sp->subscribe = 0;
5004
5005 /* Default Peer Address Parameters. These defaults can
5006 * be modified via SCTP_PEER_ADDR_PARAMS
5007 */
5008 sp->hbinterval = net->sctp.hb_interval;
5009 sp->udp_port = htons(net->sctp.udp_port);
5010 sp->encap_port = htons(net->sctp.encap_port);
5011 sp->pathmaxrxt = net->sctp.max_retrans_path;
5012 sp->pf_retrans = net->sctp.pf_retrans;
5013 sp->ps_retrans = net->sctp.ps_retrans;
5014 sp->pf_expose = net->sctp.pf_expose;
5015 sp->pathmtu = 0; /* allow default discovery */
5016 sp->sackdelay = net->sctp.sack_timeout;
5017 sp->sackfreq = 2;
5018 sp->param_flags = SPP_HB_ENABLE |
5019 SPP_PMTUD_ENABLE |
5020 SPP_SACKDELAY_ENABLE;
5021 sp->default_ss = SCTP_SS_DEFAULT;
5022
5023 /* If enabled no SCTP message fragmentation will be performed.
5024 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
5025 */
5026 sp->disable_fragments = 0;
5027
5028 /* Enable Nagle algorithm by default. */
5029 sp->nodelay = 0;
5030
5031 sp->recvrcvinfo = 0;
5032 sp->recvnxtinfo = 0;
5033
5034 /* Enable by default. */
5035 sp->v4mapped = 1;
5036
5037 /* Auto-close idle associations after the configured
5038 * number of seconds. A value of 0 disables this
5039 * feature. Configure through the SCTP_AUTOCLOSE socket option,
5040 * for UDP-style sockets only.
5041 */
5042 sp->autoclose = 0;
5043
5044 /* User specified fragmentation limit. */
5045 sp->user_frag = 0;
5046
5047 sp->adaptation_ind = 0;
5048
5049 sp->pf = sctp_get_pf_specific(sk->sk_family);
5050
5051 /* Control variables for partial data delivery. */
5052 atomic_set(&sp->pd_mode, 0);
5053 skb_queue_head_init(&sp->pd_lobby);
5054 sp->frag_interleave = 0;
5055 sp->probe_interval = net->sctp.probe_interval;
5056
5057 /* Create a per socket endpoint structure. Even if we
5058 * change the data structure relationships, this may still
5059 * be useful for storing pre-connect address information.
5060 */
5061 sp->ep = sctp_endpoint_new(sk, GFP_KERNEL);
5062 if (!sp->ep)
5063 return -ENOMEM;
5064
5065 sp->hmac = NULL;
5066
5067 sk->sk_destruct = sctp_destruct_sock;
5068
5069 SCTP_DBG_OBJCNT_INC(sock);
5070
5071 local_bh_disable();
5072 sk_sockets_allocated_inc(sk);
5073 sock_prot_inuse_add(net, sk->sk_prot, 1);
5074
5075 local_bh_enable();
5076
5077 return 0;
5078 }
5079
5080 /* Cleanup any SCTP per socket resources. Must be called with
5081 * sock_net(sk)->sctp.addr_wq_lock held if sp->do_auto_asconf is true
5082 */
sctp_destroy_sock(struct sock * sk)5083 static void sctp_destroy_sock(struct sock *sk)
5084 {
5085 struct sctp_sock *sp;
5086
5087 pr_debug("%s: sk:%p\n", __func__, sk);
5088
5089 /* Release our hold on the endpoint. */
5090 sp = sctp_sk(sk);
5091 /* This could happen during socket init, thus we bail out
5092 * early, since the rest of the below is not setup either.
5093 */
5094 if (sp->ep == NULL)
5095 return;
5096
5097 if (sp->do_auto_asconf) {
5098 sp->do_auto_asconf = 0;
5099 list_del(&sp->auto_asconf_list);
5100 }
5101 sctp_endpoint_free(sp->ep);
5102 local_bh_disable();
5103 sk_sockets_allocated_dec(sk);
5104 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
5105 local_bh_enable();
5106 }
5107
5108 /* Triggered when there are no references on the socket anymore */
sctp_destruct_sock(struct sock * sk)5109 static void sctp_destruct_sock(struct sock *sk)
5110 {
5111 struct sctp_sock *sp = sctp_sk(sk);
5112
5113 /* Free up the HMAC transform. */
5114 crypto_free_shash(sp->hmac);
5115
5116 inet_sock_destruct(sk);
5117 }
5118
5119 /* API 4.1.7 shutdown() - TCP Style Syntax
5120 * int shutdown(int socket, int how);
5121 *
5122 * sd - the socket descriptor of the association to be closed.
5123 * how - Specifies the type of shutdown. The values are
5124 * as follows:
5125 * SHUT_RD
5126 * Disables further receive operations. No SCTP
5127 * protocol action is taken.
5128 * SHUT_WR
5129 * Disables further send operations, and initiates
5130 * the SCTP shutdown sequence.
5131 * SHUT_RDWR
5132 * Disables further send and receive operations
5133 * and initiates the SCTP shutdown sequence.
5134 */
sctp_shutdown(struct sock * sk,int how)5135 static void sctp_shutdown(struct sock *sk, int how)
5136 {
5137 struct net *net = sock_net(sk);
5138 struct sctp_endpoint *ep;
5139
5140 if (!sctp_style(sk, TCP))
5141 return;
5142
5143 ep = sctp_sk(sk)->ep;
5144 if (how & SEND_SHUTDOWN && !list_empty(&ep->asocs)) {
5145 struct sctp_association *asoc;
5146
5147 inet_sk_set_state(sk, SCTP_SS_CLOSING);
5148 asoc = list_entry(ep->asocs.next,
5149 struct sctp_association, asocs);
5150 sctp_primitive_SHUTDOWN(net, asoc, NULL);
5151 }
5152 }
5153
sctp_get_sctp_info(struct sock * sk,struct sctp_association * asoc,struct sctp_info * info)5154 int sctp_get_sctp_info(struct sock *sk, struct sctp_association *asoc,
5155 struct sctp_info *info)
5156 {
5157 struct sctp_transport *prim;
5158 struct list_head *pos;
5159 int mask;
5160
5161 memset(info, 0, sizeof(*info));
5162 if (!asoc) {
5163 struct sctp_sock *sp = sctp_sk(sk);
5164
5165 info->sctpi_s_autoclose = sp->autoclose;
5166 info->sctpi_s_adaptation_ind = sp->adaptation_ind;
5167 info->sctpi_s_pd_point = sp->pd_point;
5168 info->sctpi_s_nodelay = sp->nodelay;
5169 info->sctpi_s_disable_fragments = sp->disable_fragments;
5170 info->sctpi_s_v4mapped = sp->v4mapped;
5171 info->sctpi_s_frag_interleave = sp->frag_interleave;
5172 info->sctpi_s_type = sp->type;
5173
5174 return 0;
5175 }
5176
5177 info->sctpi_tag = asoc->c.my_vtag;
5178 info->sctpi_state = asoc->state;
5179 info->sctpi_rwnd = asoc->a_rwnd;
5180 info->sctpi_unackdata = asoc->unack_data;
5181 info->sctpi_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5182 info->sctpi_instrms = asoc->stream.incnt;
5183 info->sctpi_outstrms = asoc->stream.outcnt;
5184 list_for_each(pos, &asoc->base.inqueue.in_chunk_list)
5185 info->sctpi_inqueue++;
5186 list_for_each(pos, &asoc->outqueue.out_chunk_list)
5187 info->sctpi_outqueue++;
5188 info->sctpi_overall_error = asoc->overall_error_count;
5189 info->sctpi_max_burst = asoc->max_burst;
5190 info->sctpi_maxseg = asoc->frag_point;
5191 info->sctpi_peer_rwnd = asoc->peer.rwnd;
5192 info->sctpi_peer_tag = asoc->c.peer_vtag;
5193
5194 mask = asoc->peer.ecn_capable << 1;
5195 mask = (mask | asoc->peer.ipv4_address) << 1;
5196 mask = (mask | asoc->peer.ipv6_address) << 1;
5197 mask = (mask | asoc->peer.hostname_address) << 1;
5198 mask = (mask | asoc->peer.asconf_capable) << 1;
5199 mask = (mask | asoc->peer.prsctp_capable) << 1;
5200 mask = (mask | asoc->peer.auth_capable);
5201 info->sctpi_peer_capable = mask;
5202 mask = asoc->peer.sack_needed << 1;
5203 mask = (mask | asoc->peer.sack_generation) << 1;
5204 mask = (mask | asoc->peer.zero_window_announced);
5205 info->sctpi_peer_sack = mask;
5206
5207 info->sctpi_isacks = asoc->stats.isacks;
5208 info->sctpi_osacks = asoc->stats.osacks;
5209 info->sctpi_opackets = asoc->stats.opackets;
5210 info->sctpi_ipackets = asoc->stats.ipackets;
5211 info->sctpi_rtxchunks = asoc->stats.rtxchunks;
5212 info->sctpi_outofseqtsns = asoc->stats.outofseqtsns;
5213 info->sctpi_idupchunks = asoc->stats.idupchunks;
5214 info->sctpi_gapcnt = asoc->stats.gapcnt;
5215 info->sctpi_ouodchunks = asoc->stats.ouodchunks;
5216 info->sctpi_iuodchunks = asoc->stats.iuodchunks;
5217 info->sctpi_oodchunks = asoc->stats.oodchunks;
5218 info->sctpi_iodchunks = asoc->stats.iodchunks;
5219 info->sctpi_octrlchunks = asoc->stats.octrlchunks;
5220 info->sctpi_ictrlchunks = asoc->stats.ictrlchunks;
5221
5222 prim = asoc->peer.primary_path;
5223 memcpy(&info->sctpi_p_address, &prim->ipaddr, sizeof(prim->ipaddr));
5224 info->sctpi_p_state = prim->state;
5225 info->sctpi_p_cwnd = prim->cwnd;
5226 info->sctpi_p_srtt = prim->srtt;
5227 info->sctpi_p_rto = jiffies_to_msecs(prim->rto);
5228 info->sctpi_p_hbinterval = prim->hbinterval;
5229 info->sctpi_p_pathmaxrxt = prim->pathmaxrxt;
5230 info->sctpi_p_sackdelay = jiffies_to_msecs(prim->sackdelay);
5231 info->sctpi_p_ssthresh = prim->ssthresh;
5232 info->sctpi_p_partial_bytes_acked = prim->partial_bytes_acked;
5233 info->sctpi_p_flight_size = prim->flight_size;
5234 info->sctpi_p_error = prim->error_count;
5235
5236 return 0;
5237 }
5238 EXPORT_SYMBOL_GPL(sctp_get_sctp_info);
5239
5240 /* use callback to avoid exporting the core structure */
sctp_transport_walk_start(struct rhashtable_iter * iter)5241 void sctp_transport_walk_start(struct rhashtable_iter *iter) __acquires(RCU)
5242 {
5243 rhltable_walk_enter(&sctp_transport_hashtable, iter);
5244
5245 rhashtable_walk_start(iter);
5246 }
5247
sctp_transport_walk_stop(struct rhashtable_iter * iter)5248 void sctp_transport_walk_stop(struct rhashtable_iter *iter) __releases(RCU)
5249 {
5250 rhashtable_walk_stop(iter);
5251 rhashtable_walk_exit(iter);
5252 }
5253
sctp_transport_get_next(struct net * net,struct rhashtable_iter * iter)5254 struct sctp_transport *sctp_transport_get_next(struct net *net,
5255 struct rhashtable_iter *iter)
5256 {
5257 struct sctp_transport *t;
5258
5259 t = rhashtable_walk_next(iter);
5260 for (; t; t = rhashtable_walk_next(iter)) {
5261 if (IS_ERR(t)) {
5262 if (PTR_ERR(t) == -EAGAIN)
5263 continue;
5264 break;
5265 }
5266
5267 if (!sctp_transport_hold(t))
5268 continue;
5269
5270 if (net_eq(t->asoc->base.net, net) &&
5271 t->asoc->peer.primary_path == t)
5272 break;
5273
5274 sctp_transport_put(t);
5275 }
5276
5277 return t;
5278 }
5279
sctp_transport_get_idx(struct net * net,struct rhashtable_iter * iter,int pos)5280 struct sctp_transport *sctp_transport_get_idx(struct net *net,
5281 struct rhashtable_iter *iter,
5282 int pos)
5283 {
5284 struct sctp_transport *t;
5285
5286 if (!pos)
5287 return SEQ_START_TOKEN;
5288
5289 while ((t = sctp_transport_get_next(net, iter)) && !IS_ERR(t)) {
5290 if (!--pos)
5291 break;
5292 sctp_transport_put(t);
5293 }
5294
5295 return t;
5296 }
5297
sctp_for_each_endpoint(int (* cb)(struct sctp_endpoint *,void *),void * p)5298 int sctp_for_each_endpoint(int (*cb)(struct sctp_endpoint *, void *),
5299 void *p) {
5300 int err = 0;
5301 int hash = 0;
5302 struct sctp_ep_common *epb;
5303 struct sctp_hashbucket *head;
5304
5305 for (head = sctp_ep_hashtable; hash < sctp_ep_hashsize;
5306 hash++, head++) {
5307 read_lock_bh(&head->lock);
5308 sctp_for_each_hentry(epb, &head->chain) {
5309 err = cb(sctp_ep(epb), p);
5310 if (err)
5311 break;
5312 }
5313 read_unlock_bh(&head->lock);
5314 }
5315
5316 return err;
5317 }
5318 EXPORT_SYMBOL_GPL(sctp_for_each_endpoint);
5319
sctp_transport_lookup_process(int (* cb)(struct sctp_transport *,void *),struct net * net,const union sctp_addr * laddr,const union sctp_addr * paddr,void * p)5320 int sctp_transport_lookup_process(int (*cb)(struct sctp_transport *, void *),
5321 struct net *net,
5322 const union sctp_addr *laddr,
5323 const union sctp_addr *paddr, void *p)
5324 {
5325 struct sctp_transport *transport;
5326 int err;
5327
5328 rcu_read_lock();
5329 transport = sctp_addrs_lookup_transport(net, laddr, paddr);
5330 rcu_read_unlock();
5331 if (!transport)
5332 return -ENOENT;
5333
5334 err = cb(transport, p);
5335 sctp_transport_put(transport);
5336
5337 return err;
5338 }
5339 EXPORT_SYMBOL_GPL(sctp_transport_lookup_process);
5340
sctp_for_each_transport(int (* cb)(struct sctp_transport *,void *),int (* cb_done)(struct sctp_transport *,void *),struct net * net,int * pos,void * p)5341 int sctp_for_each_transport(int (*cb)(struct sctp_transport *, void *),
5342 int (*cb_done)(struct sctp_transport *, void *),
5343 struct net *net, int *pos, void *p) {
5344 struct rhashtable_iter hti;
5345 struct sctp_transport *tsp;
5346 int ret;
5347
5348 again:
5349 ret = 0;
5350 sctp_transport_walk_start(&hti);
5351
5352 tsp = sctp_transport_get_idx(net, &hti, *pos + 1);
5353 for (; !IS_ERR_OR_NULL(tsp); tsp = sctp_transport_get_next(net, &hti)) {
5354 ret = cb(tsp, p);
5355 if (ret)
5356 break;
5357 (*pos)++;
5358 sctp_transport_put(tsp);
5359 }
5360 sctp_transport_walk_stop(&hti);
5361
5362 if (ret) {
5363 if (cb_done && !cb_done(tsp, p)) {
5364 (*pos)++;
5365 sctp_transport_put(tsp);
5366 goto again;
5367 }
5368 sctp_transport_put(tsp);
5369 }
5370
5371 return ret;
5372 }
5373 EXPORT_SYMBOL_GPL(sctp_for_each_transport);
5374
5375 /* 7.2.1 Association Status (SCTP_STATUS)
5376
5377 * Applications can retrieve current status information about an
5378 * association, including association state, peer receiver window size,
5379 * number of unacked data chunks, and number of data chunks pending
5380 * receipt. This information is read-only.
5381 */
sctp_getsockopt_sctp_status(struct sock * sk,int len,char __user * optval,int __user * optlen)5382 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
5383 char __user *optval,
5384 int __user *optlen)
5385 {
5386 struct sctp_status status;
5387 struct sctp_association *asoc = NULL;
5388 struct sctp_transport *transport;
5389 sctp_assoc_t associd;
5390 int retval = 0;
5391
5392 if (len < sizeof(status)) {
5393 retval = -EINVAL;
5394 goto out;
5395 }
5396
5397 len = sizeof(status);
5398 if (copy_from_user(&status, optval, len)) {
5399 retval = -EFAULT;
5400 goto out;
5401 }
5402
5403 associd = status.sstat_assoc_id;
5404 asoc = sctp_id2assoc(sk, associd);
5405 if (!asoc) {
5406 retval = -EINVAL;
5407 goto out;
5408 }
5409
5410 transport = asoc->peer.primary_path;
5411
5412 status.sstat_assoc_id = sctp_assoc2id(asoc);
5413 status.sstat_state = sctp_assoc_to_state(asoc);
5414 status.sstat_rwnd = asoc->peer.rwnd;
5415 status.sstat_unackdata = asoc->unack_data;
5416
5417 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
5418 status.sstat_instrms = asoc->stream.incnt;
5419 status.sstat_outstrms = asoc->stream.outcnt;
5420 status.sstat_fragmentation_point = asoc->frag_point;
5421 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5422 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
5423 transport->af_specific->sockaddr_len);
5424 /* Map ipv4 address into v4-mapped-on-v6 address. */
5425 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sctp_sk(sk),
5426 (union sctp_addr *)&status.sstat_primary.spinfo_address);
5427 status.sstat_primary.spinfo_state = transport->state;
5428 status.sstat_primary.spinfo_cwnd = transport->cwnd;
5429 status.sstat_primary.spinfo_srtt = transport->srtt;
5430 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
5431 status.sstat_primary.spinfo_mtu = transport->pathmtu;
5432
5433 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
5434 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
5435
5436 if (put_user(len, optlen)) {
5437 retval = -EFAULT;
5438 goto out;
5439 }
5440
5441 pr_debug("%s: len:%d, state:%d, rwnd:%d, assoc_id:%d\n",
5442 __func__, len, status.sstat_state, status.sstat_rwnd,
5443 status.sstat_assoc_id);
5444
5445 if (copy_to_user(optval, &status, len)) {
5446 retval = -EFAULT;
5447 goto out;
5448 }
5449
5450 out:
5451 return retval;
5452 }
5453
5454
5455 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
5456 *
5457 * Applications can retrieve information about a specific peer address
5458 * of an association, including its reachability state, congestion
5459 * window, and retransmission timer values. This information is
5460 * read-only.
5461 */
sctp_getsockopt_peer_addr_info(struct sock * sk,int len,char __user * optval,int __user * optlen)5462 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
5463 char __user *optval,
5464 int __user *optlen)
5465 {
5466 struct sctp_paddrinfo pinfo;
5467 struct sctp_transport *transport;
5468 int retval = 0;
5469
5470 if (len < sizeof(pinfo)) {
5471 retval = -EINVAL;
5472 goto out;
5473 }
5474
5475 len = sizeof(pinfo);
5476 if (copy_from_user(&pinfo, optval, len)) {
5477 retval = -EFAULT;
5478 goto out;
5479 }
5480
5481 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
5482 pinfo.spinfo_assoc_id);
5483 if (!transport) {
5484 retval = -EINVAL;
5485 goto out;
5486 }
5487
5488 if (transport->state == SCTP_PF &&
5489 transport->asoc->pf_expose == SCTP_PF_EXPOSE_DISABLE) {
5490 retval = -EACCES;
5491 goto out;
5492 }
5493
5494 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
5495 pinfo.spinfo_state = transport->state;
5496 pinfo.spinfo_cwnd = transport->cwnd;
5497 pinfo.spinfo_srtt = transport->srtt;
5498 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
5499 pinfo.spinfo_mtu = transport->pathmtu;
5500
5501 if (pinfo.spinfo_state == SCTP_UNKNOWN)
5502 pinfo.spinfo_state = SCTP_ACTIVE;
5503
5504 if (put_user(len, optlen)) {
5505 retval = -EFAULT;
5506 goto out;
5507 }
5508
5509 if (copy_to_user(optval, &pinfo, len)) {
5510 retval = -EFAULT;
5511 goto out;
5512 }
5513
5514 out:
5515 return retval;
5516 }
5517
5518 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
5519 *
5520 * This option is a on/off flag. If enabled no SCTP message
5521 * fragmentation will be performed. Instead if a message being sent
5522 * exceeds the current PMTU size, the message will NOT be sent and
5523 * instead a error will be indicated to the user.
5524 */
sctp_getsockopt_disable_fragments(struct sock * sk,int len,char __user * optval,int __user * optlen)5525 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
5526 char __user *optval, int __user *optlen)
5527 {
5528 int val;
5529
5530 if (len < sizeof(int))
5531 return -EINVAL;
5532
5533 len = sizeof(int);
5534 val = (sctp_sk(sk)->disable_fragments == 1);
5535 if (put_user(len, optlen))
5536 return -EFAULT;
5537 if (copy_to_user(optval, &val, len))
5538 return -EFAULT;
5539 return 0;
5540 }
5541
5542 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
5543 *
5544 * This socket option is used to specify various notifications and
5545 * ancillary data the user wishes to receive.
5546 */
sctp_getsockopt_events(struct sock * sk,int len,char __user * optval,int __user * optlen)5547 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
5548 int __user *optlen)
5549 {
5550 struct sctp_event_subscribe subscribe;
5551 __u8 *sn_type = (__u8 *)&subscribe;
5552 int i;
5553
5554 if (len == 0)
5555 return -EINVAL;
5556 if (len > sizeof(struct sctp_event_subscribe))
5557 len = sizeof(struct sctp_event_subscribe);
5558 if (put_user(len, optlen))
5559 return -EFAULT;
5560
5561 for (i = 0; i < len; i++)
5562 sn_type[i] = sctp_ulpevent_type_enabled(sctp_sk(sk)->subscribe,
5563 SCTP_SN_TYPE_BASE + i);
5564
5565 if (copy_to_user(optval, &subscribe, len))
5566 return -EFAULT;
5567
5568 return 0;
5569 }
5570
5571 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
5572 *
5573 * This socket option is applicable to the UDP-style socket only. When
5574 * set it will cause associations that are idle for more than the
5575 * specified number of seconds to automatically close. An association
5576 * being idle is defined an association that has NOT sent or received
5577 * user data. The special value of '0' indicates that no automatic
5578 * close of any associations should be performed. The option expects an
5579 * integer defining the number of seconds of idle time before an
5580 * association is closed.
5581 */
sctp_getsockopt_autoclose(struct sock * sk,int len,char __user * optval,int __user * optlen)5582 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
5583 {
5584 /* Applicable to UDP-style socket only */
5585 if (sctp_style(sk, TCP))
5586 return -EOPNOTSUPP;
5587 if (len < sizeof(int))
5588 return -EINVAL;
5589 len = sizeof(int);
5590 if (put_user(len, optlen))
5591 return -EFAULT;
5592 if (put_user(sctp_sk(sk)->autoclose, (int __user *)optval))
5593 return -EFAULT;
5594 return 0;
5595 }
5596
5597 /* Helper routine to branch off an association to a new socket. */
sctp_do_peeloff(struct sock * sk,sctp_assoc_t id,struct socket ** sockp)5598 int sctp_do_peeloff(struct sock *sk, sctp_assoc_t id, struct socket **sockp)
5599 {
5600 struct sctp_association *asoc = sctp_id2assoc(sk, id);
5601 struct sctp_sock *sp = sctp_sk(sk);
5602 struct socket *sock;
5603 int err = 0;
5604
5605 /* Do not peel off from one netns to another one. */
5606 if (!net_eq(current->nsproxy->net_ns, sock_net(sk)))
5607 return -EINVAL;
5608
5609 if (!asoc)
5610 return -EINVAL;
5611
5612 /* An association cannot be branched off from an already peeled-off
5613 * socket, nor is this supported for tcp style sockets.
5614 */
5615 if (!sctp_style(sk, UDP))
5616 return -EINVAL;
5617
5618 /* Create a new socket. */
5619 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
5620 if (err < 0)
5621 return err;
5622
5623 sctp_copy_sock(sock->sk, sk, asoc);
5624
5625 /* Make peeled-off sockets more like 1-1 accepted sockets.
5626 * Set the daddr and initialize id to something more random and also
5627 * copy over any ip options.
5628 */
5629 sp->pf->to_sk_daddr(&asoc->peer.primary_addr, sk);
5630 sp->pf->copy_ip_options(sk, sock->sk);
5631
5632 /* Populate the fields of the newsk from the oldsk and migrate the
5633 * asoc to the newsk.
5634 */
5635 err = sctp_sock_migrate(sk, sock->sk, asoc,
5636 SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
5637 if (err) {
5638 sock_release(sock);
5639 sock = NULL;
5640 }
5641
5642 *sockp = sock;
5643
5644 return err;
5645 }
5646 EXPORT_SYMBOL(sctp_do_peeloff);
5647
sctp_getsockopt_peeloff_common(struct sock * sk,sctp_peeloff_arg_t * peeloff,struct file ** newfile,unsigned flags)5648 static int sctp_getsockopt_peeloff_common(struct sock *sk, sctp_peeloff_arg_t *peeloff,
5649 struct file **newfile, unsigned flags)
5650 {
5651 struct socket *newsock;
5652 int retval;
5653
5654 retval = sctp_do_peeloff(sk, peeloff->associd, &newsock);
5655 if (retval < 0)
5656 goto out;
5657
5658 /* Map the socket to an unused fd that can be returned to the user. */
5659 retval = get_unused_fd_flags(flags & SOCK_CLOEXEC);
5660 if (retval < 0) {
5661 sock_release(newsock);
5662 goto out;
5663 }
5664
5665 *newfile = sock_alloc_file(newsock, 0, NULL);
5666 if (IS_ERR(*newfile)) {
5667 put_unused_fd(retval);
5668 retval = PTR_ERR(*newfile);
5669 *newfile = NULL;
5670 return retval;
5671 }
5672
5673 pr_debug("%s: sk:%p, newsk:%p, sd:%d\n", __func__, sk, newsock->sk,
5674 retval);
5675
5676 peeloff->sd = retval;
5677
5678 if (flags & SOCK_NONBLOCK)
5679 (*newfile)->f_flags |= O_NONBLOCK;
5680 out:
5681 return retval;
5682 }
5683
sctp_getsockopt_peeloff(struct sock * sk,int len,char __user * optval,int __user * optlen)5684 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
5685 {
5686 sctp_peeloff_arg_t peeloff;
5687 struct file *newfile = NULL;
5688 int retval = 0;
5689
5690 if (len < sizeof(sctp_peeloff_arg_t))
5691 return -EINVAL;
5692 len = sizeof(sctp_peeloff_arg_t);
5693 if (copy_from_user(&peeloff, optval, len))
5694 return -EFAULT;
5695
5696 retval = sctp_getsockopt_peeloff_common(sk, &peeloff, &newfile, 0);
5697 if (retval < 0)
5698 goto out;
5699
5700 /* Return the fd mapped to the new socket. */
5701 if (put_user(len, optlen)) {
5702 fput(newfile);
5703 put_unused_fd(retval);
5704 return -EFAULT;
5705 }
5706
5707 if (copy_to_user(optval, &peeloff, len)) {
5708 fput(newfile);
5709 put_unused_fd(retval);
5710 return -EFAULT;
5711 }
5712 fd_install(retval, newfile);
5713 out:
5714 return retval;
5715 }
5716
sctp_getsockopt_peeloff_flags(struct sock * sk,int len,char __user * optval,int __user * optlen)5717 static int sctp_getsockopt_peeloff_flags(struct sock *sk, int len,
5718 char __user *optval, int __user *optlen)
5719 {
5720 sctp_peeloff_flags_arg_t peeloff;
5721 struct file *newfile = NULL;
5722 int retval = 0;
5723
5724 if (len < sizeof(sctp_peeloff_flags_arg_t))
5725 return -EINVAL;
5726 len = sizeof(sctp_peeloff_flags_arg_t);
5727 if (copy_from_user(&peeloff, optval, len))
5728 return -EFAULT;
5729
5730 retval = sctp_getsockopt_peeloff_common(sk, &peeloff.p_arg,
5731 &newfile, peeloff.flags);
5732 if (retval < 0)
5733 goto out;
5734
5735 /* Return the fd mapped to the new socket. */
5736 if (put_user(len, optlen)) {
5737 fput(newfile);
5738 put_unused_fd(retval);
5739 return -EFAULT;
5740 }
5741
5742 if (copy_to_user(optval, &peeloff, len)) {
5743 fput(newfile);
5744 put_unused_fd(retval);
5745 return -EFAULT;
5746 }
5747 fd_install(retval, newfile);
5748 out:
5749 return retval;
5750 }
5751
5752 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
5753 *
5754 * Applications can enable or disable heartbeats for any peer address of
5755 * an association, modify an address's heartbeat interval, force a
5756 * heartbeat to be sent immediately, and adjust the address's maximum
5757 * number of retransmissions sent before an address is considered
5758 * unreachable. The following structure is used to access and modify an
5759 * address's parameters:
5760 *
5761 * struct sctp_paddrparams {
5762 * sctp_assoc_t spp_assoc_id;
5763 * struct sockaddr_storage spp_address;
5764 * uint32_t spp_hbinterval;
5765 * uint16_t spp_pathmaxrxt;
5766 * uint32_t spp_pathmtu;
5767 * uint32_t spp_sackdelay;
5768 * uint32_t spp_flags;
5769 * };
5770 *
5771 * spp_assoc_id - (one-to-many style socket) This is filled in the
5772 * application, and identifies the association for
5773 * this query.
5774 * spp_address - This specifies which address is of interest.
5775 * spp_hbinterval - This contains the value of the heartbeat interval,
5776 * in milliseconds. If a value of zero
5777 * is present in this field then no changes are to
5778 * be made to this parameter.
5779 * spp_pathmaxrxt - This contains the maximum number of
5780 * retransmissions before this address shall be
5781 * considered unreachable. If a value of zero
5782 * is present in this field then no changes are to
5783 * be made to this parameter.
5784 * spp_pathmtu - When Path MTU discovery is disabled the value
5785 * specified here will be the "fixed" path mtu.
5786 * Note that if the spp_address field is empty
5787 * then all associations on this address will
5788 * have this fixed path mtu set upon them.
5789 *
5790 * spp_sackdelay - When delayed sack is enabled, this value specifies
5791 * the number of milliseconds that sacks will be delayed
5792 * for. This value will apply to all addresses of an
5793 * association if the spp_address field is empty. Note
5794 * also, that if delayed sack is enabled and this
5795 * value is set to 0, no change is made to the last
5796 * recorded delayed sack timer value.
5797 *
5798 * spp_flags - These flags are used to control various features
5799 * on an association. The flag field may contain
5800 * zero or more of the following options.
5801 *
5802 * SPP_HB_ENABLE - Enable heartbeats on the
5803 * specified address. Note that if the address
5804 * field is empty all addresses for the association
5805 * have heartbeats enabled upon them.
5806 *
5807 * SPP_HB_DISABLE - Disable heartbeats on the
5808 * speicifed address. Note that if the address
5809 * field is empty all addresses for the association
5810 * will have their heartbeats disabled. Note also
5811 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
5812 * mutually exclusive, only one of these two should
5813 * be specified. Enabling both fields will have
5814 * undetermined results.
5815 *
5816 * SPP_HB_DEMAND - Request a user initiated heartbeat
5817 * to be made immediately.
5818 *
5819 * SPP_PMTUD_ENABLE - This field will enable PMTU
5820 * discovery upon the specified address. Note that
5821 * if the address feild is empty then all addresses
5822 * on the association are effected.
5823 *
5824 * SPP_PMTUD_DISABLE - This field will disable PMTU
5825 * discovery upon the specified address. Note that
5826 * if the address feild is empty then all addresses
5827 * on the association are effected. Not also that
5828 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
5829 * exclusive. Enabling both will have undetermined
5830 * results.
5831 *
5832 * SPP_SACKDELAY_ENABLE - Setting this flag turns
5833 * on delayed sack. The time specified in spp_sackdelay
5834 * is used to specify the sack delay for this address. Note
5835 * that if spp_address is empty then all addresses will
5836 * enable delayed sack and take on the sack delay
5837 * value specified in spp_sackdelay.
5838 * SPP_SACKDELAY_DISABLE - Setting this flag turns
5839 * off delayed sack. If the spp_address field is blank then
5840 * delayed sack is disabled for the entire association. Note
5841 * also that this field is mutually exclusive to
5842 * SPP_SACKDELAY_ENABLE, setting both will have undefined
5843 * results.
5844 *
5845 * SPP_IPV6_FLOWLABEL: Setting this flag enables the
5846 * setting of the IPV6 flow label value. The value is
5847 * contained in the spp_ipv6_flowlabel field.
5848 * Upon retrieval, this flag will be set to indicate that
5849 * the spp_ipv6_flowlabel field has a valid value returned.
5850 * If a specific destination address is set (in the
5851 * spp_address field), then the value returned is that of
5852 * the address. If just an association is specified (and
5853 * no address), then the association's default flow label
5854 * is returned. If neither an association nor a destination
5855 * is specified, then the socket's default flow label is
5856 * returned. For non-IPv6 sockets, this flag will be left
5857 * cleared.
5858 *
5859 * SPP_DSCP: Setting this flag enables the setting of the
5860 * Differentiated Services Code Point (DSCP) value
5861 * associated with either the association or a specific
5862 * address. The value is obtained in the spp_dscp field.
5863 * Upon retrieval, this flag will be set to indicate that
5864 * the spp_dscp field has a valid value returned. If a
5865 * specific destination address is set when called (in the
5866 * spp_address field), then that specific destination
5867 * address's DSCP value is returned. If just an association
5868 * is specified, then the association's default DSCP is
5869 * returned. If neither an association nor a destination is
5870 * specified, then the socket's default DSCP is returned.
5871 *
5872 * spp_ipv6_flowlabel
5873 * - This field is used in conjunction with the
5874 * SPP_IPV6_FLOWLABEL flag and contains the IPv6 flow label.
5875 * The 20 least significant bits are used for the flow
5876 * label. This setting has precedence over any IPv6-layer
5877 * setting.
5878 *
5879 * spp_dscp - This field is used in conjunction with the SPP_DSCP flag
5880 * and contains the DSCP. The 6 most significant bits are
5881 * used for the DSCP. This setting has precedence over any
5882 * IPv4- or IPv6- layer setting.
5883 */
sctp_getsockopt_peer_addr_params(struct sock * sk,int len,char __user * optval,int __user * optlen)5884 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
5885 char __user *optval, int __user *optlen)
5886 {
5887 struct sctp_paddrparams params;
5888 struct sctp_transport *trans = NULL;
5889 struct sctp_association *asoc = NULL;
5890 struct sctp_sock *sp = sctp_sk(sk);
5891
5892 if (len >= sizeof(params))
5893 len = sizeof(params);
5894 else if (len >= ALIGN(offsetof(struct sctp_paddrparams,
5895 spp_ipv6_flowlabel), 4))
5896 len = ALIGN(offsetof(struct sctp_paddrparams,
5897 spp_ipv6_flowlabel), 4);
5898 else
5899 return -EINVAL;
5900
5901 if (copy_from_user(¶ms, optval, len))
5902 return -EFAULT;
5903
5904 /* If an address other than INADDR_ANY is specified, and
5905 * no transport is found, then the request is invalid.
5906 */
5907 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spp_address)) {
5908 trans = sctp_addr_id2transport(sk, ¶ms.spp_address,
5909 params.spp_assoc_id);
5910 if (!trans) {
5911 pr_debug("%s: failed no transport\n", __func__);
5912 return -EINVAL;
5913 }
5914 }
5915
5916 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
5917 * socket is a one to many style socket, and an association
5918 * was not found, then the id was invalid.
5919 */
5920 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
5921 if (!asoc && params.spp_assoc_id != SCTP_FUTURE_ASSOC &&
5922 sctp_style(sk, UDP)) {
5923 pr_debug("%s: failed no association\n", __func__);
5924 return -EINVAL;
5925 }
5926
5927 if (trans) {
5928 /* Fetch transport values. */
5929 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
5930 params.spp_pathmtu = trans->pathmtu;
5931 params.spp_pathmaxrxt = trans->pathmaxrxt;
5932 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
5933
5934 /*draft-11 doesn't say what to return in spp_flags*/
5935 params.spp_flags = trans->param_flags;
5936 if (trans->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5937 params.spp_ipv6_flowlabel = trans->flowlabel &
5938 SCTP_FLOWLABEL_VAL_MASK;
5939 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5940 }
5941 if (trans->dscp & SCTP_DSCP_SET_MASK) {
5942 params.spp_dscp = trans->dscp & SCTP_DSCP_VAL_MASK;
5943 params.spp_flags |= SPP_DSCP;
5944 }
5945 } else if (asoc) {
5946 /* Fetch association values. */
5947 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
5948 params.spp_pathmtu = asoc->pathmtu;
5949 params.spp_pathmaxrxt = asoc->pathmaxrxt;
5950 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
5951
5952 /*draft-11 doesn't say what to return in spp_flags*/
5953 params.spp_flags = asoc->param_flags;
5954 if (asoc->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5955 params.spp_ipv6_flowlabel = asoc->flowlabel &
5956 SCTP_FLOWLABEL_VAL_MASK;
5957 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5958 }
5959 if (asoc->dscp & SCTP_DSCP_SET_MASK) {
5960 params.spp_dscp = asoc->dscp & SCTP_DSCP_VAL_MASK;
5961 params.spp_flags |= SPP_DSCP;
5962 }
5963 } else {
5964 /* Fetch socket values. */
5965 params.spp_hbinterval = sp->hbinterval;
5966 params.spp_pathmtu = sp->pathmtu;
5967 params.spp_sackdelay = sp->sackdelay;
5968 params.spp_pathmaxrxt = sp->pathmaxrxt;
5969
5970 /*draft-11 doesn't say what to return in spp_flags*/
5971 params.spp_flags = sp->param_flags;
5972 if (sp->flowlabel & SCTP_FLOWLABEL_SET_MASK) {
5973 params.spp_ipv6_flowlabel = sp->flowlabel &
5974 SCTP_FLOWLABEL_VAL_MASK;
5975 params.spp_flags |= SPP_IPV6_FLOWLABEL;
5976 }
5977 if (sp->dscp & SCTP_DSCP_SET_MASK) {
5978 params.spp_dscp = sp->dscp & SCTP_DSCP_VAL_MASK;
5979 params.spp_flags |= SPP_DSCP;
5980 }
5981 }
5982
5983 if (copy_to_user(optval, ¶ms, len))
5984 return -EFAULT;
5985
5986 if (put_user(len, optlen))
5987 return -EFAULT;
5988
5989 return 0;
5990 }
5991
5992 /*
5993 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
5994 *
5995 * This option will effect the way delayed acks are performed. This
5996 * option allows you to get or set the delayed ack time, in
5997 * milliseconds. It also allows changing the delayed ack frequency.
5998 * Changing the frequency to 1 disables the delayed sack algorithm. If
5999 * the assoc_id is 0, then this sets or gets the endpoints default
6000 * values. If the assoc_id field is non-zero, then the set or get
6001 * effects the specified association for the one to many model (the
6002 * assoc_id field is ignored by the one to one model). Note that if
6003 * sack_delay or sack_freq are 0 when setting this option, then the
6004 * current values will remain unchanged.
6005 *
6006 * struct sctp_sack_info {
6007 * sctp_assoc_t sack_assoc_id;
6008 * uint32_t sack_delay;
6009 * uint32_t sack_freq;
6010 * };
6011 *
6012 * sack_assoc_id - This parameter, indicates which association the user
6013 * is performing an action upon. Note that if this field's value is
6014 * zero then the endpoints default value is changed (effecting future
6015 * associations only).
6016 *
6017 * sack_delay - This parameter contains the number of milliseconds that
6018 * the user is requesting the delayed ACK timer be set to. Note that
6019 * this value is defined in the standard to be between 200 and 500
6020 * milliseconds.
6021 *
6022 * sack_freq - This parameter contains the number of packets that must
6023 * be received before a sack is sent without waiting for the delay
6024 * timer to expire. The default value for this is 2, setting this
6025 * value to 1 will disable the delayed sack algorithm.
6026 */
sctp_getsockopt_delayed_ack(struct sock * sk,int len,char __user * optval,int __user * optlen)6027 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
6028 char __user *optval,
6029 int __user *optlen)
6030 {
6031 struct sctp_sack_info params;
6032 struct sctp_association *asoc = NULL;
6033 struct sctp_sock *sp = sctp_sk(sk);
6034
6035 if (len >= sizeof(struct sctp_sack_info)) {
6036 len = sizeof(struct sctp_sack_info);
6037
6038 if (copy_from_user(¶ms, optval, len))
6039 return -EFAULT;
6040 } else if (len == sizeof(struct sctp_assoc_value)) {
6041 pr_warn_ratelimited(DEPRECATED
6042 "%s (pid %d) "
6043 "Use of struct sctp_assoc_value in delayed_ack socket option.\n"
6044 "Use struct sctp_sack_info instead\n",
6045 current->comm, task_pid_nr(current));
6046 if (copy_from_user(¶ms, optval, len))
6047 return -EFAULT;
6048 } else
6049 return -EINVAL;
6050
6051 /* Get association, if sack_assoc_id != SCTP_FUTURE_ASSOC and the
6052 * socket is a one to many style socket, and an association
6053 * was not found, then the id was invalid.
6054 */
6055 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
6056 if (!asoc && params.sack_assoc_id != SCTP_FUTURE_ASSOC &&
6057 sctp_style(sk, UDP))
6058 return -EINVAL;
6059
6060 if (asoc) {
6061 /* Fetch association values. */
6062 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
6063 params.sack_delay = jiffies_to_msecs(asoc->sackdelay);
6064 params.sack_freq = asoc->sackfreq;
6065
6066 } else {
6067 params.sack_delay = 0;
6068 params.sack_freq = 1;
6069 }
6070 } else {
6071 /* Fetch socket values. */
6072 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
6073 params.sack_delay = sp->sackdelay;
6074 params.sack_freq = sp->sackfreq;
6075 } else {
6076 params.sack_delay = 0;
6077 params.sack_freq = 1;
6078 }
6079 }
6080
6081 if (copy_to_user(optval, ¶ms, len))
6082 return -EFAULT;
6083
6084 if (put_user(len, optlen))
6085 return -EFAULT;
6086
6087 return 0;
6088 }
6089
6090 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
6091 *
6092 * Applications can specify protocol parameters for the default association
6093 * initialization. The option name argument to setsockopt() and getsockopt()
6094 * is SCTP_INITMSG.
6095 *
6096 * Setting initialization parameters is effective only on an unconnected
6097 * socket (for UDP-style sockets only future associations are effected
6098 * by the change). With TCP-style sockets, this option is inherited by
6099 * sockets derived from a listener socket.
6100 */
sctp_getsockopt_initmsg(struct sock * sk,int len,char __user * optval,int __user * optlen)6101 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
6102 {
6103 if (len < sizeof(struct sctp_initmsg))
6104 return -EINVAL;
6105 len = sizeof(struct sctp_initmsg);
6106 if (put_user(len, optlen))
6107 return -EFAULT;
6108 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
6109 return -EFAULT;
6110 return 0;
6111 }
6112
6113
sctp_getsockopt_peer_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6114 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
6115 char __user *optval, int __user *optlen)
6116 {
6117 struct sctp_association *asoc;
6118 int cnt = 0;
6119 struct sctp_getaddrs getaddrs;
6120 struct sctp_transport *from;
6121 void __user *to;
6122 union sctp_addr temp;
6123 struct sctp_sock *sp = sctp_sk(sk);
6124 int addrlen;
6125 size_t space_left;
6126 int bytes_copied;
6127
6128 if (len < sizeof(struct sctp_getaddrs))
6129 return -EINVAL;
6130
6131 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6132 return -EFAULT;
6133
6134 /* For UDP-style sockets, id specifies the association to query. */
6135 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6136 if (!asoc)
6137 return -EINVAL;
6138
6139 to = optval + offsetof(struct sctp_getaddrs, addrs);
6140 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6141
6142 list_for_each_entry(from, &asoc->peer.transport_addr_list,
6143 transports) {
6144 memcpy(&temp, &from->ipaddr, sizeof(temp));
6145 addrlen = sctp_get_pf_specific(sk->sk_family)
6146 ->addr_to_user(sp, &temp);
6147 if (space_left < addrlen)
6148 return -ENOMEM;
6149 if (copy_to_user(to, &temp, addrlen))
6150 return -EFAULT;
6151 to += addrlen;
6152 cnt++;
6153 space_left -= addrlen;
6154 }
6155
6156 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
6157 return -EFAULT;
6158 bytes_copied = ((char __user *)to) - optval;
6159 if (put_user(bytes_copied, optlen))
6160 return -EFAULT;
6161
6162 return 0;
6163 }
6164
sctp_copy_laddrs(struct sock * sk,__u16 port,void * to,size_t space_left,int * bytes_copied)6165 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
6166 size_t space_left, int *bytes_copied)
6167 {
6168 struct sctp_sockaddr_entry *addr;
6169 union sctp_addr temp;
6170 int cnt = 0;
6171 int addrlen;
6172 struct net *net = sock_net(sk);
6173
6174 rcu_read_lock();
6175 list_for_each_entry_rcu(addr, &net->sctp.local_addr_list, list) {
6176 if (!addr->valid)
6177 continue;
6178
6179 if ((PF_INET == sk->sk_family) &&
6180 (AF_INET6 == addr->a.sa.sa_family))
6181 continue;
6182 if ((PF_INET6 == sk->sk_family) &&
6183 inet_v6_ipv6only(sk) &&
6184 (AF_INET == addr->a.sa.sa_family))
6185 continue;
6186 memcpy(&temp, &addr->a, sizeof(temp));
6187 if (!temp.v4.sin_port)
6188 temp.v4.sin_port = htons(port);
6189
6190 addrlen = sctp_get_pf_specific(sk->sk_family)
6191 ->addr_to_user(sctp_sk(sk), &temp);
6192
6193 if (space_left < addrlen) {
6194 cnt = -ENOMEM;
6195 break;
6196 }
6197 memcpy(to, &temp, addrlen);
6198
6199 to += addrlen;
6200 cnt++;
6201 space_left -= addrlen;
6202 *bytes_copied += addrlen;
6203 }
6204 rcu_read_unlock();
6205
6206 return cnt;
6207 }
6208
6209
sctp_getsockopt_local_addrs(struct sock * sk,int len,char __user * optval,int __user * optlen)6210 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
6211 char __user *optval, int __user *optlen)
6212 {
6213 struct sctp_bind_addr *bp;
6214 struct sctp_association *asoc;
6215 int cnt = 0;
6216 struct sctp_getaddrs getaddrs;
6217 struct sctp_sockaddr_entry *addr;
6218 void __user *to;
6219 union sctp_addr temp;
6220 struct sctp_sock *sp = sctp_sk(sk);
6221 int addrlen;
6222 int err = 0;
6223 size_t space_left;
6224 int bytes_copied = 0;
6225 void *addrs;
6226 void *buf;
6227
6228 if (len < sizeof(struct sctp_getaddrs))
6229 return -EINVAL;
6230
6231 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
6232 return -EFAULT;
6233
6234 /*
6235 * For UDP-style sockets, id specifies the association to query.
6236 * If the id field is set to the value '0' then the locally bound
6237 * addresses are returned without regard to any particular
6238 * association.
6239 */
6240 if (0 == getaddrs.assoc_id) {
6241 bp = &sctp_sk(sk)->ep->base.bind_addr;
6242 } else {
6243 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
6244 if (!asoc)
6245 return -EINVAL;
6246 bp = &asoc->base.bind_addr;
6247 }
6248
6249 to = optval + offsetof(struct sctp_getaddrs, addrs);
6250 space_left = len - offsetof(struct sctp_getaddrs, addrs);
6251
6252 addrs = kmalloc(space_left, GFP_USER | __GFP_NOWARN);
6253 if (!addrs)
6254 return -ENOMEM;
6255
6256 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
6257 * addresses from the global local address list.
6258 */
6259 if (sctp_list_single_entry(&bp->address_list)) {
6260 addr = list_entry(bp->address_list.next,
6261 struct sctp_sockaddr_entry, list);
6262 if (sctp_is_any(sk, &addr->a)) {
6263 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
6264 space_left, &bytes_copied);
6265 if (cnt < 0) {
6266 err = cnt;
6267 goto out;
6268 }
6269 goto copy_getaddrs;
6270 }
6271 }
6272
6273 buf = addrs;
6274 /* Protection on the bound address list is not needed since
6275 * in the socket option context we hold a socket lock and
6276 * thus the bound address list can't change.
6277 */
6278 list_for_each_entry(addr, &bp->address_list, list) {
6279 memcpy(&temp, &addr->a, sizeof(temp));
6280 addrlen = sctp_get_pf_specific(sk->sk_family)
6281 ->addr_to_user(sp, &temp);
6282 if (space_left < addrlen) {
6283 err = -ENOMEM; /*fixme: right error?*/
6284 goto out;
6285 }
6286 memcpy(buf, &temp, addrlen);
6287 buf += addrlen;
6288 bytes_copied += addrlen;
6289 cnt++;
6290 space_left -= addrlen;
6291 }
6292
6293 copy_getaddrs:
6294 if (copy_to_user(to, addrs, bytes_copied)) {
6295 err = -EFAULT;
6296 goto out;
6297 }
6298 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
6299 err = -EFAULT;
6300 goto out;
6301 }
6302 /* XXX: We should have accounted for sizeof(struct sctp_getaddrs) too,
6303 * but we can't change it anymore.
6304 */
6305 if (put_user(bytes_copied, optlen))
6306 err = -EFAULT;
6307 out:
6308 kfree(addrs);
6309 return err;
6310 }
6311
6312 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
6313 *
6314 * Requests that the local SCTP stack use the enclosed peer address as
6315 * the association primary. The enclosed address must be one of the
6316 * association peer's addresses.
6317 */
sctp_getsockopt_primary_addr(struct sock * sk,int len,char __user * optval,int __user * optlen)6318 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
6319 char __user *optval, int __user *optlen)
6320 {
6321 struct sctp_prim prim;
6322 struct sctp_association *asoc;
6323 struct sctp_sock *sp = sctp_sk(sk);
6324
6325 if (len < sizeof(struct sctp_prim))
6326 return -EINVAL;
6327
6328 len = sizeof(struct sctp_prim);
6329
6330 if (copy_from_user(&prim, optval, len))
6331 return -EFAULT;
6332
6333 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
6334 if (!asoc)
6335 return -EINVAL;
6336
6337 if (!asoc->peer.primary_path)
6338 return -ENOTCONN;
6339
6340 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
6341 asoc->peer.primary_path->af_specific->sockaddr_len);
6342
6343 sctp_get_pf_specific(sk->sk_family)->addr_to_user(sp,
6344 (union sctp_addr *)&prim.ssp_addr);
6345
6346 if (put_user(len, optlen))
6347 return -EFAULT;
6348 if (copy_to_user(optval, &prim, len))
6349 return -EFAULT;
6350
6351 return 0;
6352 }
6353
6354 /*
6355 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
6356 *
6357 * Requests that the local endpoint set the specified Adaptation Layer
6358 * Indication parameter for all future INIT and INIT-ACK exchanges.
6359 */
sctp_getsockopt_adaptation_layer(struct sock * sk,int len,char __user * optval,int __user * optlen)6360 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
6361 char __user *optval, int __user *optlen)
6362 {
6363 struct sctp_setadaptation adaptation;
6364
6365 if (len < sizeof(struct sctp_setadaptation))
6366 return -EINVAL;
6367
6368 len = sizeof(struct sctp_setadaptation);
6369
6370 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
6371
6372 if (put_user(len, optlen))
6373 return -EFAULT;
6374 if (copy_to_user(optval, &adaptation, len))
6375 return -EFAULT;
6376
6377 return 0;
6378 }
6379
6380 /*
6381 *
6382 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
6383 *
6384 * Applications that wish to use the sendto() system call may wish to
6385 * specify a default set of parameters that would normally be supplied
6386 * through the inclusion of ancillary data. This socket option allows
6387 * such an application to set the default sctp_sndrcvinfo structure.
6388
6389
6390 * The application that wishes to use this socket option simply passes
6391 * in to this call the sctp_sndrcvinfo structure defined in Section
6392 * 5.2.2) The input parameters accepted by this call include
6393 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
6394 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
6395 * to this call if the caller is using the UDP model.
6396 *
6397 * For getsockopt, it get the default sctp_sndrcvinfo structure.
6398 */
sctp_getsockopt_default_send_param(struct sock * sk,int len,char __user * optval,int __user * optlen)6399 static int sctp_getsockopt_default_send_param(struct sock *sk,
6400 int len, char __user *optval,
6401 int __user *optlen)
6402 {
6403 struct sctp_sock *sp = sctp_sk(sk);
6404 struct sctp_association *asoc;
6405 struct sctp_sndrcvinfo info;
6406
6407 if (len < sizeof(info))
6408 return -EINVAL;
6409
6410 len = sizeof(info);
6411
6412 if (copy_from_user(&info, optval, len))
6413 return -EFAULT;
6414
6415 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
6416 if (!asoc && info.sinfo_assoc_id != SCTP_FUTURE_ASSOC &&
6417 sctp_style(sk, UDP))
6418 return -EINVAL;
6419
6420 if (asoc) {
6421 info.sinfo_stream = asoc->default_stream;
6422 info.sinfo_flags = asoc->default_flags;
6423 info.sinfo_ppid = asoc->default_ppid;
6424 info.sinfo_context = asoc->default_context;
6425 info.sinfo_timetolive = asoc->default_timetolive;
6426 } else {
6427 info.sinfo_stream = sp->default_stream;
6428 info.sinfo_flags = sp->default_flags;
6429 info.sinfo_ppid = sp->default_ppid;
6430 info.sinfo_context = sp->default_context;
6431 info.sinfo_timetolive = sp->default_timetolive;
6432 }
6433
6434 if (put_user(len, optlen))
6435 return -EFAULT;
6436 if (copy_to_user(optval, &info, len))
6437 return -EFAULT;
6438
6439 return 0;
6440 }
6441
6442 /* RFC6458, Section 8.1.31. Set/get Default Send Parameters
6443 * (SCTP_DEFAULT_SNDINFO)
6444 */
sctp_getsockopt_default_sndinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6445 static int sctp_getsockopt_default_sndinfo(struct sock *sk, int len,
6446 char __user *optval,
6447 int __user *optlen)
6448 {
6449 struct sctp_sock *sp = sctp_sk(sk);
6450 struct sctp_association *asoc;
6451 struct sctp_sndinfo info;
6452
6453 if (len < sizeof(info))
6454 return -EINVAL;
6455
6456 len = sizeof(info);
6457
6458 if (copy_from_user(&info, optval, len))
6459 return -EFAULT;
6460
6461 asoc = sctp_id2assoc(sk, info.snd_assoc_id);
6462 if (!asoc && info.snd_assoc_id != SCTP_FUTURE_ASSOC &&
6463 sctp_style(sk, UDP))
6464 return -EINVAL;
6465
6466 if (asoc) {
6467 info.snd_sid = asoc->default_stream;
6468 info.snd_flags = asoc->default_flags;
6469 info.snd_ppid = asoc->default_ppid;
6470 info.snd_context = asoc->default_context;
6471 } else {
6472 info.snd_sid = sp->default_stream;
6473 info.snd_flags = sp->default_flags;
6474 info.snd_ppid = sp->default_ppid;
6475 info.snd_context = sp->default_context;
6476 }
6477
6478 if (put_user(len, optlen))
6479 return -EFAULT;
6480 if (copy_to_user(optval, &info, len))
6481 return -EFAULT;
6482
6483 return 0;
6484 }
6485
6486 /*
6487 *
6488 * 7.1.5 SCTP_NODELAY
6489 *
6490 * Turn on/off any Nagle-like algorithm. This means that packets are
6491 * generally sent as soon as possible and no unnecessary delays are
6492 * introduced, at the cost of more packets in the network. Expects an
6493 * integer boolean flag.
6494 */
6495
sctp_getsockopt_nodelay(struct sock * sk,int len,char __user * optval,int __user * optlen)6496 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
6497 char __user *optval, int __user *optlen)
6498 {
6499 int val;
6500
6501 if (len < sizeof(int))
6502 return -EINVAL;
6503
6504 len = sizeof(int);
6505 val = (sctp_sk(sk)->nodelay == 1);
6506 if (put_user(len, optlen))
6507 return -EFAULT;
6508 if (copy_to_user(optval, &val, len))
6509 return -EFAULT;
6510 return 0;
6511 }
6512
6513 /*
6514 *
6515 * 7.1.1 SCTP_RTOINFO
6516 *
6517 * The protocol parameters used to initialize and bound retransmission
6518 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
6519 * and modify these parameters.
6520 * All parameters are time values, in milliseconds. A value of 0, when
6521 * modifying the parameters, indicates that the current value should not
6522 * be changed.
6523 *
6524 */
sctp_getsockopt_rtoinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6525 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
6526 char __user *optval,
6527 int __user *optlen) {
6528 struct sctp_rtoinfo rtoinfo;
6529 struct sctp_association *asoc;
6530
6531 if (len < sizeof (struct sctp_rtoinfo))
6532 return -EINVAL;
6533
6534 len = sizeof(struct sctp_rtoinfo);
6535
6536 if (copy_from_user(&rtoinfo, optval, len))
6537 return -EFAULT;
6538
6539 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
6540
6541 if (!asoc && rtoinfo.srto_assoc_id != SCTP_FUTURE_ASSOC &&
6542 sctp_style(sk, UDP))
6543 return -EINVAL;
6544
6545 /* Values corresponding to the specific association. */
6546 if (asoc) {
6547 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
6548 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
6549 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
6550 } else {
6551 /* Values corresponding to the endpoint. */
6552 struct sctp_sock *sp = sctp_sk(sk);
6553
6554 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
6555 rtoinfo.srto_max = sp->rtoinfo.srto_max;
6556 rtoinfo.srto_min = sp->rtoinfo.srto_min;
6557 }
6558
6559 if (put_user(len, optlen))
6560 return -EFAULT;
6561
6562 if (copy_to_user(optval, &rtoinfo, len))
6563 return -EFAULT;
6564
6565 return 0;
6566 }
6567
6568 /*
6569 *
6570 * 7.1.2 SCTP_ASSOCINFO
6571 *
6572 * This option is used to tune the maximum retransmission attempts
6573 * of the association.
6574 * Returns an error if the new association retransmission value is
6575 * greater than the sum of the retransmission value of the peer.
6576 * See [SCTP] for more information.
6577 *
6578 */
sctp_getsockopt_associnfo(struct sock * sk,int len,char __user * optval,int __user * optlen)6579 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
6580 char __user *optval,
6581 int __user *optlen)
6582 {
6583
6584 struct sctp_assocparams assocparams;
6585 struct sctp_association *asoc;
6586 struct list_head *pos;
6587 int cnt = 0;
6588
6589 if (len < sizeof (struct sctp_assocparams))
6590 return -EINVAL;
6591
6592 len = sizeof(struct sctp_assocparams);
6593
6594 if (copy_from_user(&assocparams, optval, len))
6595 return -EFAULT;
6596
6597 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
6598
6599 if (!asoc && assocparams.sasoc_assoc_id != SCTP_FUTURE_ASSOC &&
6600 sctp_style(sk, UDP))
6601 return -EINVAL;
6602
6603 /* Values correspoinding to the specific association */
6604 if (asoc) {
6605 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
6606 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
6607 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
6608 assocparams.sasoc_cookie_life = ktime_to_ms(asoc->cookie_life);
6609
6610 list_for_each(pos, &asoc->peer.transport_addr_list) {
6611 cnt++;
6612 }
6613
6614 assocparams.sasoc_number_peer_destinations = cnt;
6615 } else {
6616 /* Values corresponding to the endpoint */
6617 struct sctp_sock *sp = sctp_sk(sk);
6618
6619 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
6620 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
6621 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
6622 assocparams.sasoc_cookie_life =
6623 sp->assocparams.sasoc_cookie_life;
6624 assocparams.sasoc_number_peer_destinations =
6625 sp->assocparams.
6626 sasoc_number_peer_destinations;
6627 }
6628
6629 if (put_user(len, optlen))
6630 return -EFAULT;
6631
6632 if (copy_to_user(optval, &assocparams, len))
6633 return -EFAULT;
6634
6635 return 0;
6636 }
6637
6638 /*
6639 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
6640 *
6641 * This socket option is a boolean flag which turns on or off mapped V4
6642 * addresses. If this option is turned on and the socket is type
6643 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
6644 * If this option is turned off, then no mapping will be done of V4
6645 * addresses and a user will receive both PF_INET6 and PF_INET type
6646 * addresses on the socket.
6647 */
sctp_getsockopt_mappedv4(struct sock * sk,int len,char __user * optval,int __user * optlen)6648 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
6649 char __user *optval, int __user *optlen)
6650 {
6651 int val;
6652 struct sctp_sock *sp = sctp_sk(sk);
6653
6654 if (len < sizeof(int))
6655 return -EINVAL;
6656
6657 len = sizeof(int);
6658 val = sp->v4mapped;
6659 if (put_user(len, optlen))
6660 return -EFAULT;
6661 if (copy_to_user(optval, &val, len))
6662 return -EFAULT;
6663
6664 return 0;
6665 }
6666
6667 /*
6668 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
6669 * (chapter and verse is quoted at sctp_setsockopt_context())
6670 */
sctp_getsockopt_context(struct sock * sk,int len,char __user * optval,int __user * optlen)6671 static int sctp_getsockopt_context(struct sock *sk, int len,
6672 char __user *optval, int __user *optlen)
6673 {
6674 struct sctp_assoc_value params;
6675 struct sctp_association *asoc;
6676
6677 if (len < sizeof(struct sctp_assoc_value))
6678 return -EINVAL;
6679
6680 len = sizeof(struct sctp_assoc_value);
6681
6682 if (copy_from_user(¶ms, optval, len))
6683 return -EFAULT;
6684
6685 asoc = sctp_id2assoc(sk, params.assoc_id);
6686 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6687 sctp_style(sk, UDP))
6688 return -EINVAL;
6689
6690 params.assoc_value = asoc ? asoc->default_rcv_context
6691 : sctp_sk(sk)->default_rcv_context;
6692
6693 if (put_user(len, optlen))
6694 return -EFAULT;
6695 if (copy_to_user(optval, ¶ms, len))
6696 return -EFAULT;
6697
6698 return 0;
6699 }
6700
6701 /*
6702 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
6703 * This option will get or set the maximum size to put in any outgoing
6704 * SCTP DATA chunk. If a message is larger than this size it will be
6705 * fragmented by SCTP into the specified size. Note that the underlying
6706 * SCTP implementation may fragment into smaller sized chunks when the
6707 * PMTU of the underlying association is smaller than the value set by
6708 * the user. The default value for this option is '0' which indicates
6709 * the user is NOT limiting fragmentation and only the PMTU will effect
6710 * SCTP's choice of DATA chunk size. Note also that values set larger
6711 * than the maximum size of an IP datagram will effectively let SCTP
6712 * control fragmentation (i.e. the same as setting this option to 0).
6713 *
6714 * The following structure is used to access and modify this parameter:
6715 *
6716 * struct sctp_assoc_value {
6717 * sctp_assoc_t assoc_id;
6718 * uint32_t assoc_value;
6719 * };
6720 *
6721 * assoc_id: This parameter is ignored for one-to-one style sockets.
6722 * For one-to-many style sockets this parameter indicates which
6723 * association the user is performing an action upon. Note that if
6724 * this field's value is zero then the endpoints default value is
6725 * changed (effecting future associations only).
6726 * assoc_value: This parameter specifies the maximum size in bytes.
6727 */
sctp_getsockopt_maxseg(struct sock * sk,int len,char __user * optval,int __user * optlen)6728 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
6729 char __user *optval, int __user *optlen)
6730 {
6731 struct sctp_assoc_value params;
6732 struct sctp_association *asoc;
6733
6734 if (len == sizeof(int)) {
6735 pr_warn_ratelimited(DEPRECATED
6736 "%s (pid %d) "
6737 "Use of int in maxseg socket option.\n"
6738 "Use struct sctp_assoc_value instead\n",
6739 current->comm, task_pid_nr(current));
6740 params.assoc_id = SCTP_FUTURE_ASSOC;
6741 } else if (len >= sizeof(struct sctp_assoc_value)) {
6742 len = sizeof(struct sctp_assoc_value);
6743 if (copy_from_user(¶ms, optval, len))
6744 return -EFAULT;
6745 } else
6746 return -EINVAL;
6747
6748 asoc = sctp_id2assoc(sk, params.assoc_id);
6749 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6750 sctp_style(sk, UDP))
6751 return -EINVAL;
6752
6753 if (asoc)
6754 params.assoc_value = asoc->frag_point;
6755 else
6756 params.assoc_value = sctp_sk(sk)->user_frag;
6757
6758 if (put_user(len, optlen))
6759 return -EFAULT;
6760 if (len == sizeof(int)) {
6761 if (copy_to_user(optval, ¶ms.assoc_value, len))
6762 return -EFAULT;
6763 } else {
6764 if (copy_to_user(optval, ¶ms, len))
6765 return -EFAULT;
6766 }
6767
6768 return 0;
6769 }
6770
6771 /*
6772 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
6773 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
6774 */
sctp_getsockopt_fragment_interleave(struct sock * sk,int len,char __user * optval,int __user * optlen)6775 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
6776 char __user *optval, int __user *optlen)
6777 {
6778 int val;
6779
6780 if (len < sizeof(int))
6781 return -EINVAL;
6782
6783 len = sizeof(int);
6784
6785 val = sctp_sk(sk)->frag_interleave;
6786 if (put_user(len, optlen))
6787 return -EFAULT;
6788 if (copy_to_user(optval, &val, len))
6789 return -EFAULT;
6790
6791 return 0;
6792 }
6793
6794 /*
6795 * 7.1.25. Set or Get the sctp partial delivery point
6796 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
6797 */
sctp_getsockopt_partial_delivery_point(struct sock * sk,int len,char __user * optval,int __user * optlen)6798 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
6799 char __user *optval,
6800 int __user *optlen)
6801 {
6802 u32 val;
6803
6804 if (len < sizeof(u32))
6805 return -EINVAL;
6806
6807 len = sizeof(u32);
6808
6809 val = sctp_sk(sk)->pd_point;
6810 if (put_user(len, optlen))
6811 return -EFAULT;
6812 if (copy_to_user(optval, &val, len))
6813 return -EFAULT;
6814
6815 return 0;
6816 }
6817
6818 /*
6819 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
6820 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
6821 */
sctp_getsockopt_maxburst(struct sock * sk,int len,char __user * optval,int __user * optlen)6822 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
6823 char __user *optval,
6824 int __user *optlen)
6825 {
6826 struct sctp_assoc_value params;
6827 struct sctp_association *asoc;
6828
6829 if (len == sizeof(int)) {
6830 pr_warn_ratelimited(DEPRECATED
6831 "%s (pid %d) "
6832 "Use of int in max_burst socket option.\n"
6833 "Use struct sctp_assoc_value instead\n",
6834 current->comm, task_pid_nr(current));
6835 params.assoc_id = SCTP_FUTURE_ASSOC;
6836 } else if (len >= sizeof(struct sctp_assoc_value)) {
6837 len = sizeof(struct sctp_assoc_value);
6838 if (copy_from_user(¶ms, optval, len))
6839 return -EFAULT;
6840 } else
6841 return -EINVAL;
6842
6843 asoc = sctp_id2assoc(sk, params.assoc_id);
6844 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
6845 sctp_style(sk, UDP))
6846 return -EINVAL;
6847
6848 params.assoc_value = asoc ? asoc->max_burst : sctp_sk(sk)->max_burst;
6849
6850 if (len == sizeof(int)) {
6851 if (copy_to_user(optval, ¶ms.assoc_value, len))
6852 return -EFAULT;
6853 } else {
6854 if (copy_to_user(optval, ¶ms, len))
6855 return -EFAULT;
6856 }
6857
6858 return 0;
6859
6860 }
6861
sctp_getsockopt_hmac_ident(struct sock * sk,int len,char __user * optval,int __user * optlen)6862 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
6863 char __user *optval, int __user *optlen)
6864 {
6865 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6866 struct sctp_hmacalgo __user *p = (void __user *)optval;
6867 struct sctp_hmac_algo_param *hmacs;
6868 __u16 data_len = 0;
6869 u32 num_idents;
6870 int i;
6871
6872 if (!ep->auth_enable)
6873 return -EACCES;
6874
6875 hmacs = ep->auth_hmacs_list;
6876 data_len = ntohs(hmacs->param_hdr.length) -
6877 sizeof(struct sctp_paramhdr);
6878
6879 if (len < sizeof(struct sctp_hmacalgo) + data_len)
6880 return -EINVAL;
6881
6882 len = sizeof(struct sctp_hmacalgo) + data_len;
6883 num_idents = data_len / sizeof(u16);
6884
6885 if (put_user(len, optlen))
6886 return -EFAULT;
6887 if (put_user(num_idents, &p->shmac_num_idents))
6888 return -EFAULT;
6889 for (i = 0; i < num_idents; i++) {
6890 __u16 hmacid = ntohs(hmacs->hmac_ids[i]);
6891
6892 if (copy_to_user(&p->shmac_idents[i], &hmacid, sizeof(__u16)))
6893 return -EFAULT;
6894 }
6895 return 0;
6896 }
6897
sctp_getsockopt_active_key(struct sock * sk,int len,char __user * optval,int __user * optlen)6898 static int sctp_getsockopt_active_key(struct sock *sk, int len,
6899 char __user *optval, int __user *optlen)
6900 {
6901 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6902 struct sctp_authkeyid val;
6903 struct sctp_association *asoc;
6904
6905 if (len < sizeof(struct sctp_authkeyid))
6906 return -EINVAL;
6907
6908 len = sizeof(struct sctp_authkeyid);
6909 if (copy_from_user(&val, optval, len))
6910 return -EFAULT;
6911
6912 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
6913 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
6914 return -EINVAL;
6915
6916 if (asoc) {
6917 if (!asoc->peer.auth_capable)
6918 return -EACCES;
6919 val.scact_keynumber = asoc->active_key_id;
6920 } else {
6921 if (!ep->auth_enable)
6922 return -EACCES;
6923 val.scact_keynumber = ep->active_key_id;
6924 }
6925
6926 if (put_user(len, optlen))
6927 return -EFAULT;
6928 if (copy_to_user(optval, &val, len))
6929 return -EFAULT;
6930
6931 return 0;
6932 }
6933
sctp_getsockopt_peer_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6934 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
6935 char __user *optval, int __user *optlen)
6936 {
6937 struct sctp_authchunks __user *p = (void __user *)optval;
6938 struct sctp_authchunks val;
6939 struct sctp_association *asoc;
6940 struct sctp_chunks_param *ch;
6941 u32 num_chunks = 0;
6942 char __user *to;
6943
6944 if (len < sizeof(struct sctp_authchunks))
6945 return -EINVAL;
6946
6947 if (copy_from_user(&val, optval, sizeof(val)))
6948 return -EFAULT;
6949
6950 to = p->gauth_chunks;
6951 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6952 if (!asoc)
6953 return -EINVAL;
6954
6955 if (!asoc->peer.auth_capable)
6956 return -EACCES;
6957
6958 ch = asoc->peer.peer_chunks;
6959 if (!ch)
6960 goto num;
6961
6962 /* See if the user provided enough room for all the data */
6963 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
6964 if (len < num_chunks)
6965 return -EINVAL;
6966
6967 if (copy_to_user(to, ch->chunks, num_chunks))
6968 return -EFAULT;
6969 num:
6970 len = sizeof(struct sctp_authchunks) + num_chunks;
6971 if (put_user(len, optlen))
6972 return -EFAULT;
6973 if (put_user(num_chunks, &p->gauth_number_of_chunks))
6974 return -EFAULT;
6975 return 0;
6976 }
6977
sctp_getsockopt_local_auth_chunks(struct sock * sk,int len,char __user * optval,int __user * optlen)6978 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
6979 char __user *optval, int __user *optlen)
6980 {
6981 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
6982 struct sctp_authchunks __user *p = (void __user *)optval;
6983 struct sctp_authchunks val;
6984 struct sctp_association *asoc;
6985 struct sctp_chunks_param *ch;
6986 u32 num_chunks = 0;
6987 char __user *to;
6988
6989 if (len < sizeof(struct sctp_authchunks))
6990 return -EINVAL;
6991
6992 if (copy_from_user(&val, optval, sizeof(val)))
6993 return -EFAULT;
6994
6995 to = p->gauth_chunks;
6996 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
6997 if (!asoc && val.gauth_assoc_id != SCTP_FUTURE_ASSOC &&
6998 sctp_style(sk, UDP))
6999 return -EINVAL;
7000
7001 if (asoc) {
7002 if (!asoc->peer.auth_capable)
7003 return -EACCES;
7004 ch = (struct sctp_chunks_param *)asoc->c.auth_chunks;
7005 } else {
7006 if (!ep->auth_enable)
7007 return -EACCES;
7008 ch = ep->auth_chunk_list;
7009 }
7010 if (!ch)
7011 goto num;
7012
7013 num_chunks = ntohs(ch->param_hdr.length) - sizeof(struct sctp_paramhdr);
7014 if (len < sizeof(struct sctp_authchunks) + num_chunks)
7015 return -EINVAL;
7016
7017 if (copy_to_user(to, ch->chunks, num_chunks))
7018 return -EFAULT;
7019 num:
7020 len = sizeof(struct sctp_authchunks) + num_chunks;
7021 if (put_user(len, optlen))
7022 return -EFAULT;
7023 if (put_user(num_chunks, &p->gauth_number_of_chunks))
7024 return -EFAULT;
7025
7026 return 0;
7027 }
7028
7029 /*
7030 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
7031 * This option gets the current number of associations that are attached
7032 * to a one-to-many style socket. The option value is an uint32_t.
7033 */
sctp_getsockopt_assoc_number(struct sock * sk,int len,char __user * optval,int __user * optlen)7034 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
7035 char __user *optval, int __user *optlen)
7036 {
7037 struct sctp_sock *sp = sctp_sk(sk);
7038 struct sctp_association *asoc;
7039 u32 val = 0;
7040
7041 if (sctp_style(sk, TCP))
7042 return -EOPNOTSUPP;
7043
7044 if (len < sizeof(u32))
7045 return -EINVAL;
7046
7047 len = sizeof(u32);
7048
7049 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7050 val++;
7051 }
7052
7053 if (put_user(len, optlen))
7054 return -EFAULT;
7055 if (copy_to_user(optval, &val, len))
7056 return -EFAULT;
7057
7058 return 0;
7059 }
7060
7061 /*
7062 * 8.1.23 SCTP_AUTO_ASCONF
7063 * See the corresponding setsockopt entry as description
7064 */
sctp_getsockopt_auto_asconf(struct sock * sk,int len,char __user * optval,int __user * optlen)7065 static int sctp_getsockopt_auto_asconf(struct sock *sk, int len,
7066 char __user *optval, int __user *optlen)
7067 {
7068 int val = 0;
7069
7070 if (len < sizeof(int))
7071 return -EINVAL;
7072
7073 len = sizeof(int);
7074 if (sctp_sk(sk)->do_auto_asconf && sctp_is_ep_boundall(sk))
7075 val = 1;
7076 if (put_user(len, optlen))
7077 return -EFAULT;
7078 if (copy_to_user(optval, &val, len))
7079 return -EFAULT;
7080 return 0;
7081 }
7082
7083 /*
7084 * 8.2.6. Get the Current Identifiers of Associations
7085 * (SCTP_GET_ASSOC_ID_LIST)
7086 *
7087 * This option gets the current list of SCTP association identifiers of
7088 * the SCTP associations handled by a one-to-many style socket.
7089 */
sctp_getsockopt_assoc_ids(struct sock * sk,int len,char __user * optval,int __user * optlen)7090 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
7091 char __user *optval, int __user *optlen)
7092 {
7093 struct sctp_sock *sp = sctp_sk(sk);
7094 struct sctp_association *asoc;
7095 struct sctp_assoc_ids *ids;
7096 u32 num = 0;
7097
7098 if (sctp_style(sk, TCP))
7099 return -EOPNOTSUPP;
7100
7101 if (len < sizeof(struct sctp_assoc_ids))
7102 return -EINVAL;
7103
7104 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7105 num++;
7106 }
7107
7108 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
7109 return -EINVAL;
7110
7111 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
7112
7113 ids = kmalloc(len, GFP_USER | __GFP_NOWARN);
7114 if (unlikely(!ids))
7115 return -ENOMEM;
7116
7117 ids->gaids_number_of_ids = num;
7118 num = 0;
7119 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
7120 ids->gaids_assoc_id[num++] = asoc->assoc_id;
7121 }
7122
7123 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
7124 kfree(ids);
7125 return -EFAULT;
7126 }
7127
7128 kfree(ids);
7129 return 0;
7130 }
7131
7132 /*
7133 * SCTP_PEER_ADDR_THLDS
7134 *
7135 * This option allows us to fetch the partially failed threshold for one or all
7136 * transports in an association. See Section 6.1 of:
7137 * http://www.ietf.org/id/draft-nishida-tsvwg-sctp-failover-05.txt
7138 */
sctp_getsockopt_paddr_thresholds(struct sock * sk,char __user * optval,int len,int __user * optlen,bool v2)7139 static int sctp_getsockopt_paddr_thresholds(struct sock *sk,
7140 char __user *optval, int len,
7141 int __user *optlen, bool v2)
7142 {
7143 struct sctp_paddrthlds_v2 val;
7144 struct sctp_transport *trans;
7145 struct sctp_association *asoc;
7146 int min;
7147
7148 min = v2 ? sizeof(val) : sizeof(struct sctp_paddrthlds);
7149 if (len < min)
7150 return -EINVAL;
7151 len = min;
7152 if (copy_from_user(&val, optval, len))
7153 return -EFAULT;
7154
7155 if (!sctp_is_any(sk, (const union sctp_addr *)&val.spt_address)) {
7156 trans = sctp_addr_id2transport(sk, &val.spt_address,
7157 val.spt_assoc_id);
7158 if (!trans)
7159 return -ENOENT;
7160
7161 val.spt_pathmaxrxt = trans->pathmaxrxt;
7162 val.spt_pathpfthld = trans->pf_retrans;
7163 val.spt_pathcpthld = trans->ps_retrans;
7164
7165 goto out;
7166 }
7167
7168 asoc = sctp_id2assoc(sk, val.spt_assoc_id);
7169 if (!asoc && val.spt_assoc_id != SCTP_FUTURE_ASSOC &&
7170 sctp_style(sk, UDP))
7171 return -EINVAL;
7172
7173 if (asoc) {
7174 val.spt_pathpfthld = asoc->pf_retrans;
7175 val.spt_pathmaxrxt = asoc->pathmaxrxt;
7176 val.spt_pathcpthld = asoc->ps_retrans;
7177 } else {
7178 struct sctp_sock *sp = sctp_sk(sk);
7179
7180 val.spt_pathpfthld = sp->pf_retrans;
7181 val.spt_pathmaxrxt = sp->pathmaxrxt;
7182 val.spt_pathcpthld = sp->ps_retrans;
7183 }
7184
7185 out:
7186 if (put_user(len, optlen) || copy_to_user(optval, &val, len))
7187 return -EFAULT;
7188
7189 return 0;
7190 }
7191
7192 /*
7193 * SCTP_GET_ASSOC_STATS
7194 *
7195 * This option retrieves local per endpoint statistics. It is modeled
7196 * after OpenSolaris' implementation
7197 */
sctp_getsockopt_assoc_stats(struct sock * sk,int len,char __user * optval,int __user * optlen)7198 static int sctp_getsockopt_assoc_stats(struct sock *sk, int len,
7199 char __user *optval,
7200 int __user *optlen)
7201 {
7202 struct sctp_assoc_stats sas;
7203 struct sctp_association *asoc = NULL;
7204
7205 /* User must provide at least the assoc id */
7206 if (len < sizeof(sctp_assoc_t))
7207 return -EINVAL;
7208
7209 /* Allow the struct to grow and fill in as much as possible */
7210 len = min_t(size_t, len, sizeof(sas));
7211
7212 if (copy_from_user(&sas, optval, len))
7213 return -EFAULT;
7214
7215 asoc = sctp_id2assoc(sk, sas.sas_assoc_id);
7216 if (!asoc)
7217 return -EINVAL;
7218
7219 sas.sas_rtxchunks = asoc->stats.rtxchunks;
7220 sas.sas_gapcnt = asoc->stats.gapcnt;
7221 sas.sas_outofseqtsns = asoc->stats.outofseqtsns;
7222 sas.sas_osacks = asoc->stats.osacks;
7223 sas.sas_isacks = asoc->stats.isacks;
7224 sas.sas_octrlchunks = asoc->stats.octrlchunks;
7225 sas.sas_ictrlchunks = asoc->stats.ictrlchunks;
7226 sas.sas_oodchunks = asoc->stats.oodchunks;
7227 sas.sas_iodchunks = asoc->stats.iodchunks;
7228 sas.sas_ouodchunks = asoc->stats.ouodchunks;
7229 sas.sas_iuodchunks = asoc->stats.iuodchunks;
7230 sas.sas_idupchunks = asoc->stats.idupchunks;
7231 sas.sas_opackets = asoc->stats.opackets;
7232 sas.sas_ipackets = asoc->stats.ipackets;
7233
7234 /* New high max rto observed, will return 0 if not a single
7235 * RTO update took place. obs_rto_ipaddr will be bogus
7236 * in such a case
7237 */
7238 sas.sas_maxrto = asoc->stats.max_obs_rto;
7239 memcpy(&sas.sas_obs_rto_ipaddr, &asoc->stats.obs_rto_ipaddr,
7240 sizeof(struct sockaddr_storage));
7241
7242 /* Mark beginning of a new observation period */
7243 asoc->stats.max_obs_rto = asoc->rto_min;
7244
7245 if (put_user(len, optlen))
7246 return -EFAULT;
7247
7248 pr_debug("%s: len:%d, assoc_id:%d\n", __func__, len, sas.sas_assoc_id);
7249
7250 if (copy_to_user(optval, &sas, len))
7251 return -EFAULT;
7252
7253 return 0;
7254 }
7255
sctp_getsockopt_recvrcvinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7256 static int sctp_getsockopt_recvrcvinfo(struct sock *sk, int len,
7257 char __user *optval,
7258 int __user *optlen)
7259 {
7260 int val = 0;
7261
7262 if (len < sizeof(int))
7263 return -EINVAL;
7264
7265 len = sizeof(int);
7266 if (sctp_sk(sk)->recvrcvinfo)
7267 val = 1;
7268 if (put_user(len, optlen))
7269 return -EFAULT;
7270 if (copy_to_user(optval, &val, len))
7271 return -EFAULT;
7272
7273 return 0;
7274 }
7275
sctp_getsockopt_recvnxtinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7276 static int sctp_getsockopt_recvnxtinfo(struct sock *sk, int len,
7277 char __user *optval,
7278 int __user *optlen)
7279 {
7280 int val = 0;
7281
7282 if (len < sizeof(int))
7283 return -EINVAL;
7284
7285 len = sizeof(int);
7286 if (sctp_sk(sk)->recvnxtinfo)
7287 val = 1;
7288 if (put_user(len, optlen))
7289 return -EFAULT;
7290 if (copy_to_user(optval, &val, len))
7291 return -EFAULT;
7292
7293 return 0;
7294 }
7295
sctp_getsockopt_pr_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7296 static int sctp_getsockopt_pr_supported(struct sock *sk, int len,
7297 char __user *optval,
7298 int __user *optlen)
7299 {
7300 struct sctp_assoc_value params;
7301 struct sctp_association *asoc;
7302 int retval = -EFAULT;
7303
7304 if (len < sizeof(params)) {
7305 retval = -EINVAL;
7306 goto out;
7307 }
7308
7309 len = sizeof(params);
7310 if (copy_from_user(¶ms, optval, len))
7311 goto out;
7312
7313 asoc = sctp_id2assoc(sk, params.assoc_id);
7314 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7315 sctp_style(sk, UDP)) {
7316 retval = -EINVAL;
7317 goto out;
7318 }
7319
7320 params.assoc_value = asoc ? asoc->peer.prsctp_capable
7321 : sctp_sk(sk)->ep->prsctp_enable;
7322
7323 if (put_user(len, optlen))
7324 goto out;
7325
7326 if (copy_to_user(optval, ¶ms, len))
7327 goto out;
7328
7329 retval = 0;
7330
7331 out:
7332 return retval;
7333 }
7334
sctp_getsockopt_default_prinfo(struct sock * sk,int len,char __user * optval,int __user * optlen)7335 static int sctp_getsockopt_default_prinfo(struct sock *sk, int len,
7336 char __user *optval,
7337 int __user *optlen)
7338 {
7339 struct sctp_default_prinfo info;
7340 struct sctp_association *asoc;
7341 int retval = -EFAULT;
7342
7343 if (len < sizeof(info)) {
7344 retval = -EINVAL;
7345 goto out;
7346 }
7347
7348 len = sizeof(info);
7349 if (copy_from_user(&info, optval, len))
7350 goto out;
7351
7352 asoc = sctp_id2assoc(sk, info.pr_assoc_id);
7353 if (!asoc && info.pr_assoc_id != SCTP_FUTURE_ASSOC &&
7354 sctp_style(sk, UDP)) {
7355 retval = -EINVAL;
7356 goto out;
7357 }
7358
7359 if (asoc) {
7360 info.pr_policy = SCTP_PR_POLICY(asoc->default_flags);
7361 info.pr_value = asoc->default_timetolive;
7362 } else {
7363 struct sctp_sock *sp = sctp_sk(sk);
7364
7365 info.pr_policy = SCTP_PR_POLICY(sp->default_flags);
7366 info.pr_value = sp->default_timetolive;
7367 }
7368
7369 if (put_user(len, optlen))
7370 goto out;
7371
7372 if (copy_to_user(optval, &info, len))
7373 goto out;
7374
7375 retval = 0;
7376
7377 out:
7378 return retval;
7379 }
7380
sctp_getsockopt_pr_assocstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7381 static int sctp_getsockopt_pr_assocstatus(struct sock *sk, int len,
7382 char __user *optval,
7383 int __user *optlen)
7384 {
7385 struct sctp_prstatus params;
7386 struct sctp_association *asoc;
7387 int policy;
7388 int retval = -EINVAL;
7389
7390 if (len < sizeof(params))
7391 goto out;
7392
7393 len = sizeof(params);
7394 if (copy_from_user(¶ms, optval, len)) {
7395 retval = -EFAULT;
7396 goto out;
7397 }
7398
7399 policy = params.sprstat_policy;
7400 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7401 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7402 goto out;
7403
7404 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7405 if (!asoc)
7406 goto out;
7407
7408 if (policy == SCTP_PR_SCTP_ALL) {
7409 params.sprstat_abandoned_unsent = 0;
7410 params.sprstat_abandoned_sent = 0;
7411 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7412 params.sprstat_abandoned_unsent +=
7413 asoc->abandoned_unsent[policy];
7414 params.sprstat_abandoned_sent +=
7415 asoc->abandoned_sent[policy];
7416 }
7417 } else {
7418 params.sprstat_abandoned_unsent =
7419 asoc->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7420 params.sprstat_abandoned_sent =
7421 asoc->abandoned_sent[__SCTP_PR_INDEX(policy)];
7422 }
7423
7424 if (put_user(len, optlen)) {
7425 retval = -EFAULT;
7426 goto out;
7427 }
7428
7429 if (copy_to_user(optval, ¶ms, len)) {
7430 retval = -EFAULT;
7431 goto out;
7432 }
7433
7434 retval = 0;
7435
7436 out:
7437 return retval;
7438 }
7439
sctp_getsockopt_pr_streamstatus(struct sock * sk,int len,char __user * optval,int __user * optlen)7440 static int sctp_getsockopt_pr_streamstatus(struct sock *sk, int len,
7441 char __user *optval,
7442 int __user *optlen)
7443 {
7444 struct sctp_stream_out_ext *streamoute;
7445 struct sctp_association *asoc;
7446 struct sctp_prstatus params;
7447 int retval = -EINVAL;
7448 int policy;
7449
7450 if (len < sizeof(params))
7451 goto out;
7452
7453 len = sizeof(params);
7454 if (copy_from_user(¶ms, optval, len)) {
7455 retval = -EFAULT;
7456 goto out;
7457 }
7458
7459 policy = params.sprstat_policy;
7460 if (!policy || (policy & ~(SCTP_PR_SCTP_MASK | SCTP_PR_SCTP_ALL)) ||
7461 ((policy & SCTP_PR_SCTP_ALL) && (policy & SCTP_PR_SCTP_MASK)))
7462 goto out;
7463
7464 asoc = sctp_id2assoc(sk, params.sprstat_assoc_id);
7465 if (!asoc || params.sprstat_sid >= asoc->stream.outcnt)
7466 goto out;
7467
7468 streamoute = SCTP_SO(&asoc->stream, params.sprstat_sid)->ext;
7469 if (!streamoute) {
7470 /* Not allocated yet, means all stats are 0 */
7471 params.sprstat_abandoned_unsent = 0;
7472 params.sprstat_abandoned_sent = 0;
7473 retval = 0;
7474 goto out;
7475 }
7476
7477 if (policy == SCTP_PR_SCTP_ALL) {
7478 params.sprstat_abandoned_unsent = 0;
7479 params.sprstat_abandoned_sent = 0;
7480 for (policy = 0; policy <= SCTP_PR_INDEX(MAX); policy++) {
7481 params.sprstat_abandoned_unsent +=
7482 streamoute->abandoned_unsent[policy];
7483 params.sprstat_abandoned_sent +=
7484 streamoute->abandoned_sent[policy];
7485 }
7486 } else {
7487 params.sprstat_abandoned_unsent =
7488 streamoute->abandoned_unsent[__SCTP_PR_INDEX(policy)];
7489 params.sprstat_abandoned_sent =
7490 streamoute->abandoned_sent[__SCTP_PR_INDEX(policy)];
7491 }
7492
7493 if (put_user(len, optlen) || copy_to_user(optval, ¶ms, len)) {
7494 retval = -EFAULT;
7495 goto out;
7496 }
7497
7498 retval = 0;
7499
7500 out:
7501 return retval;
7502 }
7503
sctp_getsockopt_reconfig_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7504 static int sctp_getsockopt_reconfig_supported(struct sock *sk, int len,
7505 char __user *optval,
7506 int __user *optlen)
7507 {
7508 struct sctp_assoc_value params;
7509 struct sctp_association *asoc;
7510 int retval = -EFAULT;
7511
7512 if (len < sizeof(params)) {
7513 retval = -EINVAL;
7514 goto out;
7515 }
7516
7517 len = sizeof(params);
7518 if (copy_from_user(¶ms, optval, len))
7519 goto out;
7520
7521 asoc = sctp_id2assoc(sk, params.assoc_id);
7522 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7523 sctp_style(sk, UDP)) {
7524 retval = -EINVAL;
7525 goto out;
7526 }
7527
7528 params.assoc_value = asoc ? asoc->peer.reconf_capable
7529 : sctp_sk(sk)->ep->reconf_enable;
7530
7531 if (put_user(len, optlen))
7532 goto out;
7533
7534 if (copy_to_user(optval, ¶ms, len))
7535 goto out;
7536
7537 retval = 0;
7538
7539 out:
7540 return retval;
7541 }
7542
sctp_getsockopt_enable_strreset(struct sock * sk,int len,char __user * optval,int __user * optlen)7543 static int sctp_getsockopt_enable_strreset(struct sock *sk, int len,
7544 char __user *optval,
7545 int __user *optlen)
7546 {
7547 struct sctp_assoc_value params;
7548 struct sctp_association *asoc;
7549 int retval = -EFAULT;
7550
7551 if (len < sizeof(params)) {
7552 retval = -EINVAL;
7553 goto out;
7554 }
7555
7556 len = sizeof(params);
7557 if (copy_from_user(¶ms, optval, len))
7558 goto out;
7559
7560 asoc = sctp_id2assoc(sk, params.assoc_id);
7561 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7562 sctp_style(sk, UDP)) {
7563 retval = -EINVAL;
7564 goto out;
7565 }
7566
7567 params.assoc_value = asoc ? asoc->strreset_enable
7568 : sctp_sk(sk)->ep->strreset_enable;
7569
7570 if (put_user(len, optlen))
7571 goto out;
7572
7573 if (copy_to_user(optval, ¶ms, len))
7574 goto out;
7575
7576 retval = 0;
7577
7578 out:
7579 return retval;
7580 }
7581
sctp_getsockopt_scheduler(struct sock * sk,int len,char __user * optval,int __user * optlen)7582 static int sctp_getsockopt_scheduler(struct sock *sk, int len,
7583 char __user *optval,
7584 int __user *optlen)
7585 {
7586 struct sctp_assoc_value params;
7587 struct sctp_association *asoc;
7588 int retval = -EFAULT;
7589
7590 if (len < sizeof(params)) {
7591 retval = -EINVAL;
7592 goto out;
7593 }
7594
7595 len = sizeof(params);
7596 if (copy_from_user(¶ms, optval, len))
7597 goto out;
7598
7599 asoc = sctp_id2assoc(sk, params.assoc_id);
7600 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7601 sctp_style(sk, UDP)) {
7602 retval = -EINVAL;
7603 goto out;
7604 }
7605
7606 params.assoc_value = asoc ? sctp_sched_get_sched(asoc)
7607 : sctp_sk(sk)->default_ss;
7608
7609 if (put_user(len, optlen))
7610 goto out;
7611
7612 if (copy_to_user(optval, ¶ms, len))
7613 goto out;
7614
7615 retval = 0;
7616
7617 out:
7618 return retval;
7619 }
7620
sctp_getsockopt_scheduler_value(struct sock * sk,int len,char __user * optval,int __user * optlen)7621 static int sctp_getsockopt_scheduler_value(struct sock *sk, int len,
7622 char __user *optval,
7623 int __user *optlen)
7624 {
7625 struct sctp_stream_value params;
7626 struct sctp_association *asoc;
7627 int retval = -EFAULT;
7628
7629 if (len < sizeof(params)) {
7630 retval = -EINVAL;
7631 goto out;
7632 }
7633
7634 len = sizeof(params);
7635 if (copy_from_user(¶ms, optval, len))
7636 goto out;
7637
7638 asoc = sctp_id2assoc(sk, params.assoc_id);
7639 if (!asoc) {
7640 retval = -EINVAL;
7641 goto out;
7642 }
7643
7644 retval = sctp_sched_get_value(asoc, params.stream_id,
7645 ¶ms.stream_value);
7646 if (retval)
7647 goto out;
7648
7649 if (put_user(len, optlen)) {
7650 retval = -EFAULT;
7651 goto out;
7652 }
7653
7654 if (copy_to_user(optval, ¶ms, len)) {
7655 retval = -EFAULT;
7656 goto out;
7657 }
7658
7659 out:
7660 return retval;
7661 }
7662
sctp_getsockopt_interleaving_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7663 static int sctp_getsockopt_interleaving_supported(struct sock *sk, int len,
7664 char __user *optval,
7665 int __user *optlen)
7666 {
7667 struct sctp_assoc_value params;
7668 struct sctp_association *asoc;
7669 int retval = -EFAULT;
7670
7671 if (len < sizeof(params)) {
7672 retval = -EINVAL;
7673 goto out;
7674 }
7675
7676 len = sizeof(params);
7677 if (copy_from_user(¶ms, optval, len))
7678 goto out;
7679
7680 asoc = sctp_id2assoc(sk, params.assoc_id);
7681 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7682 sctp_style(sk, UDP)) {
7683 retval = -EINVAL;
7684 goto out;
7685 }
7686
7687 params.assoc_value = asoc ? asoc->peer.intl_capable
7688 : sctp_sk(sk)->ep->intl_enable;
7689
7690 if (put_user(len, optlen))
7691 goto out;
7692
7693 if (copy_to_user(optval, ¶ms, len))
7694 goto out;
7695
7696 retval = 0;
7697
7698 out:
7699 return retval;
7700 }
7701
sctp_getsockopt_reuse_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7702 static int sctp_getsockopt_reuse_port(struct sock *sk, int len,
7703 char __user *optval,
7704 int __user *optlen)
7705 {
7706 int val;
7707
7708 if (len < sizeof(int))
7709 return -EINVAL;
7710
7711 len = sizeof(int);
7712 val = sctp_sk(sk)->reuse;
7713 if (put_user(len, optlen))
7714 return -EFAULT;
7715
7716 if (copy_to_user(optval, &val, len))
7717 return -EFAULT;
7718
7719 return 0;
7720 }
7721
sctp_getsockopt_event(struct sock * sk,int len,char __user * optval,int __user * optlen)7722 static int sctp_getsockopt_event(struct sock *sk, int len, char __user *optval,
7723 int __user *optlen)
7724 {
7725 struct sctp_association *asoc;
7726 struct sctp_event param;
7727 __u16 subscribe;
7728
7729 if (len < sizeof(param))
7730 return -EINVAL;
7731
7732 len = sizeof(param);
7733 if (copy_from_user(¶m, optval, len))
7734 return -EFAULT;
7735
7736 if (param.se_type < SCTP_SN_TYPE_BASE ||
7737 param.se_type > SCTP_SN_TYPE_MAX)
7738 return -EINVAL;
7739
7740 asoc = sctp_id2assoc(sk, param.se_assoc_id);
7741 if (!asoc && param.se_assoc_id != SCTP_FUTURE_ASSOC &&
7742 sctp_style(sk, UDP))
7743 return -EINVAL;
7744
7745 subscribe = asoc ? asoc->subscribe : sctp_sk(sk)->subscribe;
7746 param.se_on = sctp_ulpevent_type_enabled(subscribe, param.se_type);
7747
7748 if (put_user(len, optlen))
7749 return -EFAULT;
7750
7751 if (copy_to_user(optval, ¶m, len))
7752 return -EFAULT;
7753
7754 return 0;
7755 }
7756
sctp_getsockopt_asconf_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7757 static int sctp_getsockopt_asconf_supported(struct sock *sk, int len,
7758 char __user *optval,
7759 int __user *optlen)
7760 {
7761 struct sctp_assoc_value params;
7762 struct sctp_association *asoc;
7763 int retval = -EFAULT;
7764
7765 if (len < sizeof(params)) {
7766 retval = -EINVAL;
7767 goto out;
7768 }
7769
7770 len = sizeof(params);
7771 if (copy_from_user(¶ms, optval, len))
7772 goto out;
7773
7774 asoc = sctp_id2assoc(sk, params.assoc_id);
7775 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7776 sctp_style(sk, UDP)) {
7777 retval = -EINVAL;
7778 goto out;
7779 }
7780
7781 params.assoc_value = asoc ? asoc->peer.asconf_capable
7782 : sctp_sk(sk)->ep->asconf_enable;
7783
7784 if (put_user(len, optlen))
7785 goto out;
7786
7787 if (copy_to_user(optval, ¶ms, len))
7788 goto out;
7789
7790 retval = 0;
7791
7792 out:
7793 return retval;
7794 }
7795
sctp_getsockopt_auth_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7796 static int sctp_getsockopt_auth_supported(struct sock *sk, int len,
7797 char __user *optval,
7798 int __user *optlen)
7799 {
7800 struct sctp_assoc_value params;
7801 struct sctp_association *asoc;
7802 int retval = -EFAULT;
7803
7804 if (len < sizeof(params)) {
7805 retval = -EINVAL;
7806 goto out;
7807 }
7808
7809 len = sizeof(params);
7810 if (copy_from_user(¶ms, optval, len))
7811 goto out;
7812
7813 asoc = sctp_id2assoc(sk, params.assoc_id);
7814 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7815 sctp_style(sk, UDP)) {
7816 retval = -EINVAL;
7817 goto out;
7818 }
7819
7820 params.assoc_value = asoc ? asoc->peer.auth_capable
7821 : sctp_sk(sk)->ep->auth_enable;
7822
7823 if (put_user(len, optlen))
7824 goto out;
7825
7826 if (copy_to_user(optval, ¶ms, len))
7827 goto out;
7828
7829 retval = 0;
7830
7831 out:
7832 return retval;
7833 }
7834
sctp_getsockopt_ecn_supported(struct sock * sk,int len,char __user * optval,int __user * optlen)7835 static int sctp_getsockopt_ecn_supported(struct sock *sk, int len,
7836 char __user *optval,
7837 int __user *optlen)
7838 {
7839 struct sctp_assoc_value params;
7840 struct sctp_association *asoc;
7841 int retval = -EFAULT;
7842
7843 if (len < sizeof(params)) {
7844 retval = -EINVAL;
7845 goto out;
7846 }
7847
7848 len = sizeof(params);
7849 if (copy_from_user(¶ms, optval, len))
7850 goto out;
7851
7852 asoc = sctp_id2assoc(sk, params.assoc_id);
7853 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7854 sctp_style(sk, UDP)) {
7855 retval = -EINVAL;
7856 goto out;
7857 }
7858
7859 params.assoc_value = asoc ? asoc->peer.ecn_capable
7860 : sctp_sk(sk)->ep->ecn_enable;
7861
7862 if (put_user(len, optlen))
7863 goto out;
7864
7865 if (copy_to_user(optval, ¶ms, len))
7866 goto out;
7867
7868 retval = 0;
7869
7870 out:
7871 return retval;
7872 }
7873
sctp_getsockopt_pf_expose(struct sock * sk,int len,char __user * optval,int __user * optlen)7874 static int sctp_getsockopt_pf_expose(struct sock *sk, int len,
7875 char __user *optval,
7876 int __user *optlen)
7877 {
7878 struct sctp_assoc_value params;
7879 struct sctp_association *asoc;
7880 int retval = -EFAULT;
7881
7882 if (len < sizeof(params)) {
7883 retval = -EINVAL;
7884 goto out;
7885 }
7886
7887 len = sizeof(params);
7888 if (copy_from_user(¶ms, optval, len))
7889 goto out;
7890
7891 asoc = sctp_id2assoc(sk, params.assoc_id);
7892 if (!asoc && params.assoc_id != SCTP_FUTURE_ASSOC &&
7893 sctp_style(sk, UDP)) {
7894 retval = -EINVAL;
7895 goto out;
7896 }
7897
7898 params.assoc_value = asoc ? asoc->pf_expose
7899 : sctp_sk(sk)->pf_expose;
7900
7901 if (put_user(len, optlen))
7902 goto out;
7903
7904 if (copy_to_user(optval, ¶ms, len))
7905 goto out;
7906
7907 retval = 0;
7908
7909 out:
7910 return retval;
7911 }
7912
sctp_getsockopt_encap_port(struct sock * sk,int len,char __user * optval,int __user * optlen)7913 static int sctp_getsockopt_encap_port(struct sock *sk, int len,
7914 char __user *optval, int __user *optlen)
7915 {
7916 struct sctp_association *asoc;
7917 struct sctp_udpencaps encap;
7918 struct sctp_transport *t;
7919 __be16 encap_port;
7920
7921 if (len < sizeof(encap))
7922 return -EINVAL;
7923
7924 len = sizeof(encap);
7925 if (copy_from_user(&encap, optval, len))
7926 return -EFAULT;
7927
7928 /* If an address other than INADDR_ANY is specified, and
7929 * no transport is found, then the request is invalid.
7930 */
7931 if (!sctp_is_any(sk, (union sctp_addr *)&encap.sue_address)) {
7932 t = sctp_addr_id2transport(sk, &encap.sue_address,
7933 encap.sue_assoc_id);
7934 if (!t) {
7935 pr_debug("%s: failed no transport\n", __func__);
7936 return -EINVAL;
7937 }
7938
7939 encap_port = t->encap_port;
7940 goto out;
7941 }
7942
7943 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
7944 * socket is a one to many style socket, and an association
7945 * was not found, then the id was invalid.
7946 */
7947 asoc = sctp_id2assoc(sk, encap.sue_assoc_id);
7948 if (!asoc && encap.sue_assoc_id != SCTP_FUTURE_ASSOC &&
7949 sctp_style(sk, UDP)) {
7950 pr_debug("%s: failed no association\n", __func__);
7951 return -EINVAL;
7952 }
7953
7954 if (asoc) {
7955 encap_port = asoc->encap_port;
7956 goto out;
7957 }
7958
7959 encap_port = sctp_sk(sk)->encap_port;
7960
7961 out:
7962 encap.sue_port = (__force uint16_t)encap_port;
7963 if (copy_to_user(optval, &encap, len))
7964 return -EFAULT;
7965
7966 if (put_user(len, optlen))
7967 return -EFAULT;
7968
7969 return 0;
7970 }
7971
sctp_getsockopt_probe_interval(struct sock * sk,int len,char __user * optval,int __user * optlen)7972 static int sctp_getsockopt_probe_interval(struct sock *sk, int len,
7973 char __user *optval,
7974 int __user *optlen)
7975 {
7976 struct sctp_probeinterval params;
7977 struct sctp_association *asoc;
7978 struct sctp_transport *t;
7979 __u32 probe_interval;
7980
7981 if (len < sizeof(params))
7982 return -EINVAL;
7983
7984 len = sizeof(params);
7985 if (copy_from_user(¶ms, optval, len))
7986 return -EFAULT;
7987
7988 /* If an address other than INADDR_ANY is specified, and
7989 * no transport is found, then the request is invalid.
7990 */
7991 if (!sctp_is_any(sk, (union sctp_addr *)¶ms.spi_address)) {
7992 t = sctp_addr_id2transport(sk, ¶ms.spi_address,
7993 params.spi_assoc_id);
7994 if (!t) {
7995 pr_debug("%s: failed no transport\n", __func__);
7996 return -EINVAL;
7997 }
7998
7999 probe_interval = jiffies_to_msecs(t->probe_interval);
8000 goto out;
8001 }
8002
8003 /* Get association, if assoc_id != SCTP_FUTURE_ASSOC and the
8004 * socket is a one to many style socket, and an association
8005 * was not found, then the id was invalid.
8006 */
8007 asoc = sctp_id2assoc(sk, params.spi_assoc_id);
8008 if (!asoc && params.spi_assoc_id != SCTP_FUTURE_ASSOC &&
8009 sctp_style(sk, UDP)) {
8010 pr_debug("%s: failed no association\n", __func__);
8011 return -EINVAL;
8012 }
8013
8014 if (asoc) {
8015 probe_interval = jiffies_to_msecs(asoc->probe_interval);
8016 goto out;
8017 }
8018
8019 probe_interval = sctp_sk(sk)->probe_interval;
8020
8021 out:
8022 params.spi_interval = probe_interval;
8023 if (copy_to_user(optval, ¶ms, len))
8024 return -EFAULT;
8025
8026 if (put_user(len, optlen))
8027 return -EFAULT;
8028
8029 return 0;
8030 }
8031
sctp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)8032 static int sctp_getsockopt(struct sock *sk, int level, int optname,
8033 char __user *optval, int __user *optlen)
8034 {
8035 int retval = 0;
8036 int len;
8037
8038 pr_debug("%s: sk:%p, optname:%d\n", __func__, sk, optname);
8039
8040 /* I can hardly begin to describe how wrong this is. This is
8041 * so broken as to be worse than useless. The API draft
8042 * REALLY is NOT helpful here... I am not convinced that the
8043 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
8044 * are at all well-founded.
8045 */
8046 if (level != SOL_SCTP) {
8047 struct sctp_af *af = sctp_sk(sk)->pf->af;
8048
8049 retval = af->getsockopt(sk, level, optname, optval, optlen);
8050 return retval;
8051 }
8052
8053 if (get_user(len, optlen))
8054 return -EFAULT;
8055
8056 if (len < 0)
8057 return -EINVAL;
8058
8059 lock_sock(sk);
8060
8061 switch (optname) {
8062 case SCTP_STATUS:
8063 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
8064 break;
8065 case SCTP_DISABLE_FRAGMENTS:
8066 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
8067 optlen);
8068 break;
8069 case SCTP_EVENTS:
8070 retval = sctp_getsockopt_events(sk, len, optval, optlen);
8071 break;
8072 case SCTP_AUTOCLOSE:
8073 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
8074 break;
8075 case SCTP_SOCKOPT_PEELOFF:
8076 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
8077 break;
8078 case SCTP_SOCKOPT_PEELOFF_FLAGS:
8079 retval = sctp_getsockopt_peeloff_flags(sk, len, optval, optlen);
8080 break;
8081 case SCTP_PEER_ADDR_PARAMS:
8082 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
8083 optlen);
8084 break;
8085 case SCTP_DELAYED_SACK:
8086 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
8087 optlen);
8088 break;
8089 case SCTP_INITMSG:
8090 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
8091 break;
8092 case SCTP_GET_PEER_ADDRS:
8093 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
8094 optlen);
8095 break;
8096 case SCTP_GET_LOCAL_ADDRS:
8097 retval = sctp_getsockopt_local_addrs(sk, len, optval,
8098 optlen);
8099 break;
8100 case SCTP_SOCKOPT_CONNECTX3:
8101 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
8102 break;
8103 case SCTP_DEFAULT_SEND_PARAM:
8104 retval = sctp_getsockopt_default_send_param(sk, len,
8105 optval, optlen);
8106 break;
8107 case SCTP_DEFAULT_SNDINFO:
8108 retval = sctp_getsockopt_default_sndinfo(sk, len,
8109 optval, optlen);
8110 break;
8111 case SCTP_PRIMARY_ADDR:
8112 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
8113 break;
8114 case SCTP_NODELAY:
8115 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
8116 break;
8117 case SCTP_RTOINFO:
8118 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
8119 break;
8120 case SCTP_ASSOCINFO:
8121 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
8122 break;
8123 case SCTP_I_WANT_MAPPED_V4_ADDR:
8124 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
8125 break;
8126 case SCTP_MAXSEG:
8127 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
8128 break;
8129 case SCTP_GET_PEER_ADDR_INFO:
8130 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
8131 optlen);
8132 break;
8133 case SCTP_ADAPTATION_LAYER:
8134 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
8135 optlen);
8136 break;
8137 case SCTP_CONTEXT:
8138 retval = sctp_getsockopt_context(sk, len, optval, optlen);
8139 break;
8140 case SCTP_FRAGMENT_INTERLEAVE:
8141 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
8142 optlen);
8143 break;
8144 case SCTP_PARTIAL_DELIVERY_POINT:
8145 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
8146 optlen);
8147 break;
8148 case SCTP_MAX_BURST:
8149 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
8150 break;
8151 case SCTP_AUTH_KEY:
8152 case SCTP_AUTH_CHUNK:
8153 case SCTP_AUTH_DELETE_KEY:
8154 case SCTP_AUTH_DEACTIVATE_KEY:
8155 retval = -EOPNOTSUPP;
8156 break;
8157 case SCTP_HMAC_IDENT:
8158 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
8159 break;
8160 case SCTP_AUTH_ACTIVE_KEY:
8161 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
8162 break;
8163 case SCTP_PEER_AUTH_CHUNKS:
8164 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
8165 optlen);
8166 break;
8167 case SCTP_LOCAL_AUTH_CHUNKS:
8168 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
8169 optlen);
8170 break;
8171 case SCTP_GET_ASSOC_NUMBER:
8172 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
8173 break;
8174 case SCTP_GET_ASSOC_ID_LIST:
8175 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
8176 break;
8177 case SCTP_AUTO_ASCONF:
8178 retval = sctp_getsockopt_auto_asconf(sk, len, optval, optlen);
8179 break;
8180 case SCTP_PEER_ADDR_THLDS:
8181 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8182 optlen, false);
8183 break;
8184 case SCTP_PEER_ADDR_THLDS_V2:
8185 retval = sctp_getsockopt_paddr_thresholds(sk, optval, len,
8186 optlen, true);
8187 break;
8188 case SCTP_GET_ASSOC_STATS:
8189 retval = sctp_getsockopt_assoc_stats(sk, len, optval, optlen);
8190 break;
8191 case SCTP_RECVRCVINFO:
8192 retval = sctp_getsockopt_recvrcvinfo(sk, len, optval, optlen);
8193 break;
8194 case SCTP_RECVNXTINFO:
8195 retval = sctp_getsockopt_recvnxtinfo(sk, len, optval, optlen);
8196 break;
8197 case SCTP_PR_SUPPORTED:
8198 retval = sctp_getsockopt_pr_supported(sk, len, optval, optlen);
8199 break;
8200 case SCTP_DEFAULT_PRINFO:
8201 retval = sctp_getsockopt_default_prinfo(sk, len, optval,
8202 optlen);
8203 break;
8204 case SCTP_PR_ASSOC_STATUS:
8205 retval = sctp_getsockopt_pr_assocstatus(sk, len, optval,
8206 optlen);
8207 break;
8208 case SCTP_PR_STREAM_STATUS:
8209 retval = sctp_getsockopt_pr_streamstatus(sk, len, optval,
8210 optlen);
8211 break;
8212 case SCTP_RECONFIG_SUPPORTED:
8213 retval = sctp_getsockopt_reconfig_supported(sk, len, optval,
8214 optlen);
8215 break;
8216 case SCTP_ENABLE_STREAM_RESET:
8217 retval = sctp_getsockopt_enable_strreset(sk, len, optval,
8218 optlen);
8219 break;
8220 case SCTP_STREAM_SCHEDULER:
8221 retval = sctp_getsockopt_scheduler(sk, len, optval,
8222 optlen);
8223 break;
8224 case SCTP_STREAM_SCHEDULER_VALUE:
8225 retval = sctp_getsockopt_scheduler_value(sk, len, optval,
8226 optlen);
8227 break;
8228 case SCTP_INTERLEAVING_SUPPORTED:
8229 retval = sctp_getsockopt_interleaving_supported(sk, len, optval,
8230 optlen);
8231 break;
8232 case SCTP_REUSE_PORT:
8233 retval = sctp_getsockopt_reuse_port(sk, len, optval, optlen);
8234 break;
8235 case SCTP_EVENT:
8236 retval = sctp_getsockopt_event(sk, len, optval, optlen);
8237 break;
8238 case SCTP_ASCONF_SUPPORTED:
8239 retval = sctp_getsockopt_asconf_supported(sk, len, optval,
8240 optlen);
8241 break;
8242 case SCTP_AUTH_SUPPORTED:
8243 retval = sctp_getsockopt_auth_supported(sk, len, optval,
8244 optlen);
8245 break;
8246 case SCTP_ECN_SUPPORTED:
8247 retval = sctp_getsockopt_ecn_supported(sk, len, optval, optlen);
8248 break;
8249 case SCTP_EXPOSE_POTENTIALLY_FAILED_STATE:
8250 retval = sctp_getsockopt_pf_expose(sk, len, optval, optlen);
8251 break;
8252 case SCTP_REMOTE_UDP_ENCAPS_PORT:
8253 retval = sctp_getsockopt_encap_port(sk, len, optval, optlen);
8254 break;
8255 case SCTP_PLPMTUD_PROBE_INTERVAL:
8256 retval = sctp_getsockopt_probe_interval(sk, len, optval, optlen);
8257 break;
8258 default:
8259 retval = -ENOPROTOOPT;
8260 break;
8261 }
8262
8263 release_sock(sk);
8264 return retval;
8265 }
8266
sctp_hash(struct sock * sk)8267 static int sctp_hash(struct sock *sk)
8268 {
8269 /* STUB */
8270 return 0;
8271 }
8272
sctp_unhash(struct sock * sk)8273 static void sctp_unhash(struct sock *sk)
8274 {
8275 /* STUB */
8276 }
8277
8278 /* Check if port is acceptable. Possibly find first available port.
8279 *
8280 * The port hash table (contained in the 'global' SCTP protocol storage
8281 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
8282 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
8283 * list (the list number is the port number hashed out, so as you
8284 * would expect from a hash function, all the ports in a given list have
8285 * such a number that hashes out to the same list number; you were
8286 * expecting that, right?); so each list has a set of ports, with a
8287 * link to the socket (struct sock) that uses it, the port number and
8288 * a fastreuse flag (FIXME: NPI ipg).
8289 */
8290 static struct sctp_bind_bucket *sctp_bucket_create(
8291 struct sctp_bind_hashbucket *head, struct net *, unsigned short snum);
8292
sctp_get_port_local(struct sock * sk,union sctp_addr * addr)8293 static int sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
8294 {
8295 struct sctp_sock *sp = sctp_sk(sk);
8296 bool reuse = (sk->sk_reuse || sp->reuse);
8297 struct sctp_bind_hashbucket *head; /* hash list */
8298 struct net *net = sock_net(sk);
8299 kuid_t uid = sock_i_uid(sk);
8300 struct sctp_bind_bucket *pp;
8301 unsigned short snum;
8302 int ret;
8303
8304 snum = ntohs(addr->v4.sin_port);
8305
8306 pr_debug("%s: begins, snum:%d\n", __func__, snum);
8307
8308 if (snum == 0) {
8309 /* Search for an available port. */
8310 int low, high, remaining, index;
8311 unsigned int rover;
8312
8313 inet_get_local_port_range(net, &low, &high);
8314 remaining = (high - low) + 1;
8315 rover = prandom_u32() % remaining + low;
8316
8317 do {
8318 rover++;
8319 if ((rover < low) || (rover > high))
8320 rover = low;
8321 if (inet_is_local_reserved_port(net, rover))
8322 continue;
8323 index = sctp_phashfn(net, rover);
8324 head = &sctp_port_hashtable[index];
8325 spin_lock_bh(&head->lock);
8326 sctp_for_each_hentry(pp, &head->chain)
8327 if ((pp->port == rover) &&
8328 net_eq(net, pp->net))
8329 goto next;
8330 break;
8331 next:
8332 spin_unlock_bh(&head->lock);
8333 cond_resched();
8334 } while (--remaining > 0);
8335
8336 /* Exhausted local port range during search? */
8337 ret = 1;
8338 if (remaining <= 0)
8339 return ret;
8340
8341 /* OK, here is the one we will use. HEAD (the port
8342 * hash table list entry) is non-NULL and we hold it's
8343 * mutex.
8344 */
8345 snum = rover;
8346 } else {
8347 /* We are given an specific port number; we verify
8348 * that it is not being used. If it is used, we will
8349 * exahust the search in the hash list corresponding
8350 * to the port number (snum) - we detect that with the
8351 * port iterator, pp being NULL.
8352 */
8353 head = &sctp_port_hashtable[sctp_phashfn(net, snum)];
8354 spin_lock_bh(&head->lock);
8355 sctp_for_each_hentry(pp, &head->chain) {
8356 if ((pp->port == snum) && net_eq(pp->net, net))
8357 goto pp_found;
8358 }
8359 }
8360 pp = NULL;
8361 goto pp_not_found;
8362 pp_found:
8363 if (!hlist_empty(&pp->owner)) {
8364 /* We had a port hash table hit - there is an
8365 * available port (pp != NULL) and it is being
8366 * used by other socket (pp->owner not empty); that other
8367 * socket is going to be sk2.
8368 */
8369 struct sock *sk2;
8370
8371 pr_debug("%s: found a possible match\n", __func__);
8372
8373 if ((pp->fastreuse && reuse &&
8374 sk->sk_state != SCTP_SS_LISTENING) ||
8375 (pp->fastreuseport && sk->sk_reuseport &&
8376 uid_eq(pp->fastuid, uid)))
8377 goto success;
8378
8379 /* Run through the list of sockets bound to the port
8380 * (pp->port) [via the pointers bind_next and
8381 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
8382 * we get the endpoint they describe and run through
8383 * the endpoint's list of IP (v4 or v6) addresses,
8384 * comparing each of the addresses with the address of
8385 * the socket sk. If we find a match, then that means
8386 * that this port/socket (sk) combination are already
8387 * in an endpoint.
8388 */
8389 sk_for_each_bound(sk2, &pp->owner) {
8390 struct sctp_sock *sp2 = sctp_sk(sk2);
8391 struct sctp_endpoint *ep2 = sp2->ep;
8392
8393 if (sk == sk2 ||
8394 (reuse && (sk2->sk_reuse || sp2->reuse) &&
8395 sk2->sk_state != SCTP_SS_LISTENING) ||
8396 (sk->sk_reuseport && sk2->sk_reuseport &&
8397 uid_eq(uid, sock_i_uid(sk2))))
8398 continue;
8399
8400 if (sctp_bind_addr_conflict(&ep2->base.bind_addr,
8401 addr, sp2, sp)) {
8402 ret = 1;
8403 goto fail_unlock;
8404 }
8405 }
8406
8407 pr_debug("%s: found a match\n", __func__);
8408 }
8409 pp_not_found:
8410 /* If there was a hash table miss, create a new port. */
8411 ret = 1;
8412 if (!pp && !(pp = sctp_bucket_create(head, net, snum)))
8413 goto fail_unlock;
8414
8415 /* In either case (hit or miss), make sure fastreuse is 1 only
8416 * if sk->sk_reuse is too (that is, if the caller requested
8417 * SO_REUSEADDR on this socket -sk-).
8418 */
8419 if (hlist_empty(&pp->owner)) {
8420 if (reuse && sk->sk_state != SCTP_SS_LISTENING)
8421 pp->fastreuse = 1;
8422 else
8423 pp->fastreuse = 0;
8424
8425 if (sk->sk_reuseport) {
8426 pp->fastreuseport = 1;
8427 pp->fastuid = uid;
8428 } else {
8429 pp->fastreuseport = 0;
8430 }
8431 } else {
8432 if (pp->fastreuse &&
8433 (!reuse || sk->sk_state == SCTP_SS_LISTENING))
8434 pp->fastreuse = 0;
8435
8436 if (pp->fastreuseport &&
8437 (!sk->sk_reuseport || !uid_eq(pp->fastuid, uid)))
8438 pp->fastreuseport = 0;
8439 }
8440
8441 /* We are set, so fill up all the data in the hash table
8442 * entry, tie the socket list information with the rest of the
8443 * sockets FIXME: Blurry, NPI (ipg).
8444 */
8445 success:
8446 if (!sp->bind_hash) {
8447 inet_sk(sk)->inet_num = snum;
8448 sk_add_bind_node(sk, &pp->owner);
8449 sp->bind_hash = pp;
8450 }
8451 ret = 0;
8452
8453 fail_unlock:
8454 spin_unlock_bh(&head->lock);
8455 return ret;
8456 }
8457
8458 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
8459 * port is requested.
8460 */
sctp_get_port(struct sock * sk,unsigned short snum)8461 static int sctp_get_port(struct sock *sk, unsigned short snum)
8462 {
8463 union sctp_addr addr;
8464 struct sctp_af *af = sctp_sk(sk)->pf->af;
8465
8466 /* Set up a dummy address struct from the sk. */
8467 af->from_sk(&addr, sk);
8468 addr.v4.sin_port = htons(snum);
8469
8470 /* Note: sk->sk_num gets filled in if ephemeral port request. */
8471 return sctp_get_port_local(sk, &addr);
8472 }
8473
8474 /*
8475 * Move a socket to LISTENING state.
8476 */
sctp_listen_start(struct sock * sk,int backlog)8477 static int sctp_listen_start(struct sock *sk, int backlog)
8478 {
8479 struct sctp_sock *sp = sctp_sk(sk);
8480 struct sctp_endpoint *ep = sp->ep;
8481 struct crypto_shash *tfm = NULL;
8482 char alg[32];
8483
8484 /* Allocate HMAC for generating cookie. */
8485 if (!sp->hmac && sp->sctp_hmac_alg) {
8486 sprintf(alg, "hmac(%s)", sp->sctp_hmac_alg);
8487 tfm = crypto_alloc_shash(alg, 0, 0);
8488 if (IS_ERR(tfm)) {
8489 net_info_ratelimited("failed to load transform for %s: %ld\n",
8490 sp->sctp_hmac_alg, PTR_ERR(tfm));
8491 return -ENOSYS;
8492 }
8493 sctp_sk(sk)->hmac = tfm;
8494 }
8495
8496 /*
8497 * If a bind() or sctp_bindx() is not called prior to a listen()
8498 * call that allows new associations to be accepted, the system
8499 * picks an ephemeral port and will choose an address set equivalent
8500 * to binding with a wildcard address.
8501 *
8502 * This is not currently spelled out in the SCTP sockets
8503 * extensions draft, but follows the practice as seen in TCP
8504 * sockets.
8505 *
8506 */
8507 inet_sk_set_state(sk, SCTP_SS_LISTENING);
8508 if (!ep->base.bind_addr.port) {
8509 if (sctp_autobind(sk))
8510 return -EAGAIN;
8511 } else {
8512 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
8513 inet_sk_set_state(sk, SCTP_SS_CLOSED);
8514 return -EADDRINUSE;
8515 }
8516 }
8517
8518 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8519 return sctp_hash_endpoint(ep);
8520 }
8521
8522 /*
8523 * 4.1.3 / 5.1.3 listen()
8524 *
8525 * By default, new associations are not accepted for UDP style sockets.
8526 * An application uses listen() to mark a socket as being able to
8527 * accept new associations.
8528 *
8529 * On TCP style sockets, applications use listen() to ready the SCTP
8530 * endpoint for accepting inbound associations.
8531 *
8532 * On both types of endpoints a backlog of '0' disables listening.
8533 *
8534 * Move a socket to LISTENING state.
8535 */
sctp_inet_listen(struct socket * sock,int backlog)8536 int sctp_inet_listen(struct socket *sock, int backlog)
8537 {
8538 struct sock *sk = sock->sk;
8539 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
8540 int err = -EINVAL;
8541
8542 if (unlikely(backlog < 0))
8543 return err;
8544
8545 lock_sock(sk);
8546
8547 /* Peeled-off sockets are not allowed to listen(). */
8548 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
8549 goto out;
8550
8551 if (sock->state != SS_UNCONNECTED)
8552 goto out;
8553
8554 if (!sctp_sstate(sk, LISTENING) && !sctp_sstate(sk, CLOSED))
8555 goto out;
8556
8557 /* If backlog is zero, disable listening. */
8558 if (!backlog) {
8559 if (sctp_sstate(sk, CLOSED))
8560 goto out;
8561
8562 err = 0;
8563 sctp_unhash_endpoint(ep);
8564 sk->sk_state = SCTP_SS_CLOSED;
8565 if (sk->sk_reuse || sctp_sk(sk)->reuse)
8566 sctp_sk(sk)->bind_hash->fastreuse = 1;
8567 goto out;
8568 }
8569
8570 /* If we are already listening, just update the backlog */
8571 if (sctp_sstate(sk, LISTENING))
8572 WRITE_ONCE(sk->sk_max_ack_backlog, backlog);
8573 else {
8574 err = sctp_listen_start(sk, backlog);
8575 if (err)
8576 goto out;
8577 }
8578
8579 err = 0;
8580 out:
8581 release_sock(sk);
8582 return err;
8583 }
8584
8585 /*
8586 * This function is done by modeling the current datagram_poll() and the
8587 * tcp_poll(). Note that, based on these implementations, we don't
8588 * lock the socket in this function, even though it seems that,
8589 * ideally, locking or some other mechanisms can be used to ensure
8590 * the integrity of the counters (sndbuf and wmem_alloc) used
8591 * in this place. We assume that we don't need locks either until proven
8592 * otherwise.
8593 *
8594 * Another thing to note is that we include the Async I/O support
8595 * here, again, by modeling the current TCP/UDP code. We don't have
8596 * a good way to test with it yet.
8597 */
sctp_poll(struct file * file,struct socket * sock,poll_table * wait)8598 __poll_t sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
8599 {
8600 struct sock *sk = sock->sk;
8601 struct sctp_sock *sp = sctp_sk(sk);
8602 __poll_t mask;
8603
8604 poll_wait(file, sk_sleep(sk), wait);
8605
8606 sock_rps_record_flow(sk);
8607
8608 /* A TCP-style listening socket becomes readable when the accept queue
8609 * is not empty.
8610 */
8611 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
8612 return (!list_empty(&sp->ep->asocs)) ?
8613 (EPOLLIN | EPOLLRDNORM) : 0;
8614
8615 mask = 0;
8616
8617 /* Is there any exceptional events? */
8618 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
8619 mask |= EPOLLERR |
8620 (sock_flag(sk, SOCK_SELECT_ERR_QUEUE) ? EPOLLPRI : 0);
8621 if (sk->sk_shutdown & RCV_SHUTDOWN)
8622 mask |= EPOLLRDHUP | EPOLLIN | EPOLLRDNORM;
8623 if (sk->sk_shutdown == SHUTDOWN_MASK)
8624 mask |= EPOLLHUP;
8625
8626 /* Is it readable? Reconsider this code with TCP-style support. */
8627 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
8628 mask |= EPOLLIN | EPOLLRDNORM;
8629
8630 /* The association is either gone or not ready. */
8631 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
8632 return mask;
8633
8634 /* Is it writable? */
8635 if (sctp_writeable(sk)) {
8636 mask |= EPOLLOUT | EPOLLWRNORM;
8637 } else {
8638 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
8639 /*
8640 * Since the socket is not locked, the buffer
8641 * might be made available after the writeable check and
8642 * before the bit is set. This could cause a lost I/O
8643 * signal. tcp_poll() has a race breaker for this race
8644 * condition. Based on their implementation, we put
8645 * in the following code to cover it as well.
8646 */
8647 if (sctp_writeable(sk))
8648 mask |= EPOLLOUT | EPOLLWRNORM;
8649 }
8650 return mask;
8651 }
8652
8653 /********************************************************************
8654 * 2nd Level Abstractions
8655 ********************************************************************/
8656
sctp_bucket_create(struct sctp_bind_hashbucket * head,struct net * net,unsigned short snum)8657 static struct sctp_bind_bucket *sctp_bucket_create(
8658 struct sctp_bind_hashbucket *head, struct net *net, unsigned short snum)
8659 {
8660 struct sctp_bind_bucket *pp;
8661
8662 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
8663 if (pp) {
8664 SCTP_DBG_OBJCNT_INC(bind_bucket);
8665 pp->port = snum;
8666 pp->fastreuse = 0;
8667 INIT_HLIST_HEAD(&pp->owner);
8668 pp->net = net;
8669 hlist_add_head(&pp->node, &head->chain);
8670 }
8671 return pp;
8672 }
8673
8674 /* Caller must hold hashbucket lock for this tb with local BH disabled */
sctp_bucket_destroy(struct sctp_bind_bucket * pp)8675 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
8676 {
8677 if (pp && hlist_empty(&pp->owner)) {
8678 __hlist_del(&pp->node);
8679 kmem_cache_free(sctp_bucket_cachep, pp);
8680 SCTP_DBG_OBJCNT_DEC(bind_bucket);
8681 }
8682 }
8683
8684 /* Release this socket's reference to a local port. */
__sctp_put_port(struct sock * sk)8685 static inline void __sctp_put_port(struct sock *sk)
8686 {
8687 struct sctp_bind_hashbucket *head =
8688 &sctp_port_hashtable[sctp_phashfn(sock_net(sk),
8689 inet_sk(sk)->inet_num)];
8690 struct sctp_bind_bucket *pp;
8691
8692 spin_lock(&head->lock);
8693 pp = sctp_sk(sk)->bind_hash;
8694 __sk_del_bind_node(sk);
8695 sctp_sk(sk)->bind_hash = NULL;
8696 inet_sk(sk)->inet_num = 0;
8697 sctp_bucket_destroy(pp);
8698 spin_unlock(&head->lock);
8699 }
8700
sctp_put_port(struct sock * sk)8701 void sctp_put_port(struct sock *sk)
8702 {
8703 local_bh_disable();
8704 __sctp_put_port(sk);
8705 local_bh_enable();
8706 }
8707
8708 /*
8709 * The system picks an ephemeral port and choose an address set equivalent
8710 * to binding with a wildcard address.
8711 * One of those addresses will be the primary address for the association.
8712 * This automatically enables the multihoming capability of SCTP.
8713 */
sctp_autobind(struct sock * sk)8714 static int sctp_autobind(struct sock *sk)
8715 {
8716 union sctp_addr autoaddr;
8717 struct sctp_af *af;
8718 __be16 port;
8719
8720 /* Initialize a local sockaddr structure to INADDR_ANY. */
8721 af = sctp_sk(sk)->pf->af;
8722
8723 port = htons(inet_sk(sk)->inet_num);
8724 af->inaddr_any(&autoaddr, port);
8725
8726 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
8727 }
8728
8729 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
8730 *
8731 * From RFC 2292
8732 * 4.2 The cmsghdr Structure *
8733 *
8734 * When ancillary data is sent or received, any number of ancillary data
8735 * objects can be specified by the msg_control and msg_controllen members of
8736 * the msghdr structure, because each object is preceded by
8737 * a cmsghdr structure defining the object's length (the cmsg_len member).
8738 * Historically Berkeley-derived implementations have passed only one object
8739 * at a time, but this API allows multiple objects to be
8740 * passed in a single call to sendmsg() or recvmsg(). The following example
8741 * shows two ancillary data objects in a control buffer.
8742 *
8743 * |<--------------------------- msg_controllen -------------------------->|
8744 * | |
8745 *
8746 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
8747 *
8748 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
8749 * | | |
8750 *
8751 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
8752 *
8753 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
8754 * | | | | |
8755 *
8756 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8757 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
8758 *
8759 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
8760 *
8761 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
8762 * ^
8763 * |
8764 *
8765 * msg_control
8766 * points here
8767 */
sctp_msghdr_parse(const struct msghdr * msg,struct sctp_cmsgs * cmsgs)8768 static int sctp_msghdr_parse(const struct msghdr *msg, struct sctp_cmsgs *cmsgs)
8769 {
8770 struct msghdr *my_msg = (struct msghdr *)msg;
8771 struct cmsghdr *cmsg;
8772
8773 for_each_cmsghdr(cmsg, my_msg) {
8774 if (!CMSG_OK(my_msg, cmsg))
8775 return -EINVAL;
8776
8777 /* Should we parse this header or ignore? */
8778 if (cmsg->cmsg_level != IPPROTO_SCTP)
8779 continue;
8780
8781 /* Strictly check lengths following example in SCM code. */
8782 switch (cmsg->cmsg_type) {
8783 case SCTP_INIT:
8784 /* SCTP Socket API Extension
8785 * 5.3.1 SCTP Initiation Structure (SCTP_INIT)
8786 *
8787 * This cmsghdr structure provides information for
8788 * initializing new SCTP associations with sendmsg().
8789 * The SCTP_INITMSG socket option uses this same data
8790 * structure. This structure is not used for
8791 * recvmsg().
8792 *
8793 * cmsg_level cmsg_type cmsg_data[]
8794 * ------------ ------------ ----------------------
8795 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
8796 */
8797 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_initmsg)))
8798 return -EINVAL;
8799
8800 cmsgs->init = CMSG_DATA(cmsg);
8801 break;
8802
8803 case SCTP_SNDRCV:
8804 /* SCTP Socket API Extension
8805 * 5.3.2 SCTP Header Information Structure(SCTP_SNDRCV)
8806 *
8807 * This cmsghdr structure specifies SCTP options for
8808 * sendmsg() and describes SCTP header information
8809 * about a received message through recvmsg().
8810 *
8811 * cmsg_level cmsg_type cmsg_data[]
8812 * ------------ ------------ ----------------------
8813 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
8814 */
8815 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
8816 return -EINVAL;
8817
8818 cmsgs->srinfo = CMSG_DATA(cmsg);
8819
8820 if (cmsgs->srinfo->sinfo_flags &
8821 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8822 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8823 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8824 return -EINVAL;
8825 break;
8826
8827 case SCTP_SNDINFO:
8828 /* SCTP Socket API Extension
8829 * 5.3.4 SCTP Send Information Structure (SCTP_SNDINFO)
8830 *
8831 * This cmsghdr structure specifies SCTP options for
8832 * sendmsg(). This structure and SCTP_RCVINFO replaces
8833 * SCTP_SNDRCV which has been deprecated.
8834 *
8835 * cmsg_level cmsg_type cmsg_data[]
8836 * ------------ ------------ ---------------------
8837 * IPPROTO_SCTP SCTP_SNDINFO struct sctp_sndinfo
8838 */
8839 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_sndinfo)))
8840 return -EINVAL;
8841
8842 cmsgs->sinfo = CMSG_DATA(cmsg);
8843
8844 if (cmsgs->sinfo->snd_flags &
8845 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
8846 SCTP_SACK_IMMEDIATELY | SCTP_SENDALL |
8847 SCTP_PR_SCTP_MASK | SCTP_ABORT | SCTP_EOF))
8848 return -EINVAL;
8849 break;
8850 case SCTP_PRINFO:
8851 /* SCTP Socket API Extension
8852 * 5.3.7 SCTP PR-SCTP Information Structure (SCTP_PRINFO)
8853 *
8854 * This cmsghdr structure specifies SCTP options for sendmsg().
8855 *
8856 * cmsg_level cmsg_type cmsg_data[]
8857 * ------------ ------------ ---------------------
8858 * IPPROTO_SCTP SCTP_PRINFO struct sctp_prinfo
8859 */
8860 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_prinfo)))
8861 return -EINVAL;
8862
8863 cmsgs->prinfo = CMSG_DATA(cmsg);
8864 if (cmsgs->prinfo->pr_policy & ~SCTP_PR_SCTP_MASK)
8865 return -EINVAL;
8866
8867 if (cmsgs->prinfo->pr_policy == SCTP_PR_SCTP_NONE)
8868 cmsgs->prinfo->pr_value = 0;
8869 break;
8870 case SCTP_AUTHINFO:
8871 /* SCTP Socket API Extension
8872 * 5.3.8 SCTP AUTH Information Structure (SCTP_AUTHINFO)
8873 *
8874 * This cmsghdr structure specifies SCTP options for sendmsg().
8875 *
8876 * cmsg_level cmsg_type cmsg_data[]
8877 * ------------ ------------ ---------------------
8878 * IPPROTO_SCTP SCTP_AUTHINFO struct sctp_authinfo
8879 */
8880 if (cmsg->cmsg_len != CMSG_LEN(sizeof(struct sctp_authinfo)))
8881 return -EINVAL;
8882
8883 cmsgs->authinfo = CMSG_DATA(cmsg);
8884 break;
8885 case SCTP_DSTADDRV4:
8886 case SCTP_DSTADDRV6:
8887 /* SCTP Socket API Extension
8888 * 5.3.9/10 SCTP Destination IPv4/6 Address Structure (SCTP_DSTADDRV4/6)
8889 *
8890 * This cmsghdr structure specifies SCTP options for sendmsg().
8891 *
8892 * cmsg_level cmsg_type cmsg_data[]
8893 * ------------ ------------ ---------------------
8894 * IPPROTO_SCTP SCTP_DSTADDRV4 struct in_addr
8895 * ------------ ------------ ---------------------
8896 * IPPROTO_SCTP SCTP_DSTADDRV6 struct in6_addr
8897 */
8898 cmsgs->addrs_msg = my_msg;
8899 break;
8900 default:
8901 return -EINVAL;
8902 }
8903 }
8904
8905 return 0;
8906 }
8907
8908 /*
8909 * Wait for a packet..
8910 * Note: This function is the same function as in core/datagram.c
8911 * with a few modifications to make lksctp work.
8912 */
sctp_wait_for_packet(struct sock * sk,int * err,long * timeo_p)8913 static int sctp_wait_for_packet(struct sock *sk, int *err, long *timeo_p)
8914 {
8915 int error;
8916 DEFINE_WAIT(wait);
8917
8918 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
8919
8920 /* Socket errors? */
8921 error = sock_error(sk);
8922 if (error)
8923 goto out;
8924
8925 if (!skb_queue_empty(&sk->sk_receive_queue))
8926 goto ready;
8927
8928 /* Socket shut down? */
8929 if (sk->sk_shutdown & RCV_SHUTDOWN)
8930 goto out;
8931
8932 /* Sequenced packets can come disconnected. If so we report the
8933 * problem.
8934 */
8935 error = -ENOTCONN;
8936
8937 /* Is there a good reason to think that we may receive some data? */
8938 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
8939 goto out;
8940
8941 /* Handle signals. */
8942 if (signal_pending(current))
8943 goto interrupted;
8944
8945 /* Let another process have a go. Since we are going to sleep
8946 * anyway. Note: This may cause odd behaviors if the message
8947 * does not fit in the user's buffer, but this seems to be the
8948 * only way to honor MSG_DONTWAIT realistically.
8949 */
8950 release_sock(sk);
8951 *timeo_p = schedule_timeout(*timeo_p);
8952 lock_sock(sk);
8953
8954 ready:
8955 finish_wait(sk_sleep(sk), &wait);
8956 return 0;
8957
8958 interrupted:
8959 error = sock_intr_errno(*timeo_p);
8960
8961 out:
8962 finish_wait(sk_sleep(sk), &wait);
8963 *err = error;
8964 return error;
8965 }
8966
8967 /* Receive a datagram.
8968 * Note: This is pretty much the same routine as in core/datagram.c
8969 * with a few changes to make lksctp work.
8970 */
sctp_skb_recv_datagram(struct sock * sk,int flags,int noblock,int * err)8971 struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
8972 int noblock, int *err)
8973 {
8974 int error;
8975 struct sk_buff *skb;
8976 long timeo;
8977
8978 timeo = sock_rcvtimeo(sk, noblock);
8979
8980 pr_debug("%s: timeo:%ld, max:%ld\n", __func__, timeo,
8981 MAX_SCHEDULE_TIMEOUT);
8982
8983 do {
8984 /* Again only user level code calls this function,
8985 * so nothing interrupt level
8986 * will suddenly eat the receive_queue.
8987 *
8988 * Look at current nfs client by the way...
8989 * However, this function was correct in any case. 8)
8990 */
8991 if (flags & MSG_PEEK) {
8992 skb = skb_peek(&sk->sk_receive_queue);
8993 if (skb)
8994 refcount_inc(&skb->users);
8995 } else {
8996 skb = __skb_dequeue(&sk->sk_receive_queue);
8997 }
8998
8999 if (skb)
9000 return skb;
9001
9002 /* Caller is allowed not to check sk->sk_err before calling. */
9003 error = sock_error(sk);
9004 if (error)
9005 goto no_packet;
9006
9007 if (sk->sk_shutdown & RCV_SHUTDOWN)
9008 break;
9009
9010 if (sk_can_busy_loop(sk)) {
9011 sk_busy_loop(sk, noblock);
9012
9013 if (!skb_queue_empty_lockless(&sk->sk_receive_queue))
9014 continue;
9015 }
9016
9017 /* User doesn't want to wait. */
9018 error = -EAGAIN;
9019 if (!timeo)
9020 goto no_packet;
9021 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
9022
9023 return NULL;
9024
9025 no_packet:
9026 *err = error;
9027 return NULL;
9028 }
9029
9030 /* If sndbuf has changed, wake up per association sndbuf waiters. */
__sctp_write_space(struct sctp_association * asoc)9031 static void __sctp_write_space(struct sctp_association *asoc)
9032 {
9033 struct sock *sk = asoc->base.sk;
9034
9035 if (sctp_wspace(asoc) <= 0)
9036 return;
9037
9038 if (waitqueue_active(&asoc->wait))
9039 wake_up_interruptible(&asoc->wait);
9040
9041 if (sctp_writeable(sk)) {
9042 struct socket_wq *wq;
9043
9044 rcu_read_lock();
9045 wq = rcu_dereference(sk->sk_wq);
9046 if (wq) {
9047 if (waitqueue_active(&wq->wait))
9048 wake_up_interruptible(&wq->wait);
9049
9050 /* Note that we try to include the Async I/O support
9051 * here by modeling from the current TCP/UDP code.
9052 * We have not tested with it yet.
9053 */
9054 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
9055 sock_wake_async(wq, SOCK_WAKE_SPACE, POLL_OUT);
9056 }
9057 rcu_read_unlock();
9058 }
9059 }
9060
sctp_wake_up_waiters(struct sock * sk,struct sctp_association * asoc)9061 static void sctp_wake_up_waiters(struct sock *sk,
9062 struct sctp_association *asoc)
9063 {
9064 struct sctp_association *tmp = asoc;
9065
9066 /* We do accounting for the sndbuf space per association,
9067 * so we only need to wake our own association.
9068 */
9069 if (asoc->ep->sndbuf_policy)
9070 return __sctp_write_space(asoc);
9071
9072 /* If association goes down and is just flushing its
9073 * outq, then just normally notify others.
9074 */
9075 if (asoc->base.dead)
9076 return sctp_write_space(sk);
9077
9078 /* Accounting for the sndbuf space is per socket, so we
9079 * need to wake up others, try to be fair and in case of
9080 * other associations, let them have a go first instead
9081 * of just doing a sctp_write_space() call.
9082 *
9083 * Note that we reach sctp_wake_up_waiters() only when
9084 * associations free up queued chunks, thus we are under
9085 * lock and the list of associations on a socket is
9086 * guaranteed not to change.
9087 */
9088 for (tmp = list_next_entry(tmp, asocs); 1;
9089 tmp = list_next_entry(tmp, asocs)) {
9090 /* Manually skip the head element. */
9091 if (&tmp->asocs == &((sctp_sk(sk))->ep->asocs))
9092 continue;
9093 /* Wake up association. */
9094 __sctp_write_space(tmp);
9095 /* We've reached the end. */
9096 if (tmp == asoc)
9097 break;
9098 }
9099 }
9100
9101 /* Do accounting for the sndbuf space.
9102 * Decrement the used sndbuf space of the corresponding association by the
9103 * data size which was just transmitted(freed).
9104 */
sctp_wfree(struct sk_buff * skb)9105 static void sctp_wfree(struct sk_buff *skb)
9106 {
9107 struct sctp_chunk *chunk = skb_shinfo(skb)->destructor_arg;
9108 struct sctp_association *asoc = chunk->asoc;
9109 struct sock *sk = asoc->base.sk;
9110
9111 sk_mem_uncharge(sk, skb->truesize);
9112 sk->sk_wmem_queued -= skb->truesize + sizeof(struct sctp_chunk);
9113 asoc->sndbuf_used -= skb->truesize + sizeof(struct sctp_chunk);
9114 WARN_ON(refcount_sub_and_test(sizeof(struct sctp_chunk),
9115 &sk->sk_wmem_alloc));
9116
9117 if (chunk->shkey) {
9118 struct sctp_shared_key *shkey = chunk->shkey;
9119
9120 /* refcnt == 2 and !list_empty mean after this release, it's
9121 * not being used anywhere, and it's time to notify userland
9122 * that this shkey can be freed if it's been deactivated.
9123 */
9124 if (shkey->deactivated && !list_empty(&shkey->key_list) &&
9125 refcount_read(&shkey->refcnt) == 2) {
9126 struct sctp_ulpevent *ev;
9127
9128 ev = sctp_ulpevent_make_authkey(asoc, shkey->key_id,
9129 SCTP_AUTH_FREE_KEY,
9130 GFP_KERNEL);
9131 if (ev)
9132 asoc->stream.si->enqueue_event(&asoc->ulpq, ev);
9133 }
9134 sctp_auth_shkey_release(chunk->shkey);
9135 }
9136
9137 sock_wfree(skb);
9138 sctp_wake_up_waiters(sk, asoc);
9139
9140 sctp_association_put(asoc);
9141 }
9142
9143 /* Do accounting for the receive space on the socket.
9144 * Accounting for the association is done in ulpevent.c
9145 * We set this as a destructor for the cloned data skbs so that
9146 * accounting is done at the correct time.
9147 */
sctp_sock_rfree(struct sk_buff * skb)9148 void sctp_sock_rfree(struct sk_buff *skb)
9149 {
9150 struct sock *sk = skb->sk;
9151 struct sctp_ulpevent *event = sctp_skb2event(skb);
9152
9153 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
9154
9155 /*
9156 * Mimic the behavior of sock_rfree
9157 */
9158 sk_mem_uncharge(sk, event->rmem_len);
9159 }
9160
9161
9162 /* Helper function to wait for space in the sndbuf. */
sctp_wait_for_sndbuf(struct sctp_association * asoc,long * timeo_p,size_t msg_len)9163 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
9164 size_t msg_len)
9165 {
9166 struct sock *sk = asoc->base.sk;
9167 long current_timeo = *timeo_p;
9168 DEFINE_WAIT(wait);
9169 int err = 0;
9170
9171 pr_debug("%s: asoc:%p, timeo:%ld, msg_len:%zu\n", __func__, asoc,
9172 *timeo_p, msg_len);
9173
9174 /* Increment the association's refcnt. */
9175 sctp_association_hold(asoc);
9176
9177 /* Wait on the association specific sndbuf space. */
9178 for (;;) {
9179 prepare_to_wait_exclusive(&asoc->wait, &wait,
9180 TASK_INTERRUPTIBLE);
9181 if (asoc->base.dead)
9182 goto do_dead;
9183 if (!*timeo_p)
9184 goto do_nonblock;
9185 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING)
9186 goto do_error;
9187 if (signal_pending(current))
9188 goto do_interrupted;
9189 if (sk_under_memory_pressure(sk))
9190 sk_mem_reclaim(sk);
9191 if ((int)msg_len <= sctp_wspace(asoc) &&
9192 sk_wmem_schedule(sk, msg_len))
9193 break;
9194
9195 /* Let another process have a go. Since we are going
9196 * to sleep anyway.
9197 */
9198 release_sock(sk);
9199 current_timeo = schedule_timeout(current_timeo);
9200 lock_sock(sk);
9201 if (sk != asoc->base.sk)
9202 goto do_error;
9203
9204 *timeo_p = current_timeo;
9205 }
9206
9207 out:
9208 finish_wait(&asoc->wait, &wait);
9209
9210 /* Release the association's refcnt. */
9211 sctp_association_put(asoc);
9212
9213 return err;
9214
9215 do_dead:
9216 err = -ESRCH;
9217 goto out;
9218
9219 do_error:
9220 err = -EPIPE;
9221 goto out;
9222
9223 do_interrupted:
9224 err = sock_intr_errno(*timeo_p);
9225 goto out;
9226
9227 do_nonblock:
9228 err = -EAGAIN;
9229 goto out;
9230 }
9231
sctp_data_ready(struct sock * sk)9232 void sctp_data_ready(struct sock *sk)
9233 {
9234 struct socket_wq *wq;
9235
9236 rcu_read_lock();
9237 wq = rcu_dereference(sk->sk_wq);
9238 if (skwq_has_sleeper(wq))
9239 wake_up_interruptible_sync_poll(&wq->wait, EPOLLIN |
9240 EPOLLRDNORM | EPOLLRDBAND);
9241 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
9242 rcu_read_unlock();
9243 }
9244
9245 /* If socket sndbuf has changed, wake up all per association waiters. */
sctp_write_space(struct sock * sk)9246 void sctp_write_space(struct sock *sk)
9247 {
9248 struct sctp_association *asoc;
9249
9250 /* Wake up the tasks in each wait queue. */
9251 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
9252 __sctp_write_space(asoc);
9253 }
9254 }
9255
9256 /* Is there any sndbuf space available on the socket?
9257 *
9258 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
9259 * associations on the same socket. For a UDP-style socket with
9260 * multiple associations, it is possible for it to be "unwriteable"
9261 * prematurely. I assume that this is acceptable because
9262 * a premature "unwriteable" is better than an accidental "writeable" which
9263 * would cause an unwanted block under certain circumstances. For the 1-1
9264 * UDP-style sockets or TCP-style sockets, this code should work.
9265 * - Daisy
9266 */
sctp_writeable(struct sock * sk)9267 static bool sctp_writeable(struct sock *sk)
9268 {
9269 return sk->sk_sndbuf > sk->sk_wmem_queued;
9270 }
9271
9272 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
9273 * returns immediately with EINPROGRESS.
9274 */
sctp_wait_for_connect(struct sctp_association * asoc,long * timeo_p)9275 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
9276 {
9277 struct sock *sk = asoc->base.sk;
9278 int err = 0;
9279 long current_timeo = *timeo_p;
9280 DEFINE_WAIT(wait);
9281
9282 pr_debug("%s: asoc:%p, timeo:%ld\n", __func__, asoc, *timeo_p);
9283
9284 /* Increment the association's refcnt. */
9285 sctp_association_hold(asoc);
9286
9287 for (;;) {
9288 prepare_to_wait_exclusive(&asoc->wait, &wait,
9289 TASK_INTERRUPTIBLE);
9290 if (!*timeo_p)
9291 goto do_nonblock;
9292 if (sk->sk_shutdown & RCV_SHUTDOWN)
9293 break;
9294 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
9295 asoc->base.dead)
9296 goto do_error;
9297 if (signal_pending(current))
9298 goto do_interrupted;
9299
9300 if (sctp_state(asoc, ESTABLISHED))
9301 break;
9302
9303 /* Let another process have a go. Since we are going
9304 * to sleep anyway.
9305 */
9306 release_sock(sk);
9307 current_timeo = schedule_timeout(current_timeo);
9308 lock_sock(sk);
9309
9310 *timeo_p = current_timeo;
9311 }
9312
9313 out:
9314 finish_wait(&asoc->wait, &wait);
9315
9316 /* Release the association's refcnt. */
9317 sctp_association_put(asoc);
9318
9319 return err;
9320
9321 do_error:
9322 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
9323 err = -ETIMEDOUT;
9324 else
9325 err = -ECONNREFUSED;
9326 goto out;
9327
9328 do_interrupted:
9329 err = sock_intr_errno(*timeo_p);
9330 goto out;
9331
9332 do_nonblock:
9333 err = -EINPROGRESS;
9334 goto out;
9335 }
9336
sctp_wait_for_accept(struct sock * sk,long timeo)9337 static int sctp_wait_for_accept(struct sock *sk, long timeo)
9338 {
9339 struct sctp_endpoint *ep;
9340 int err = 0;
9341 DEFINE_WAIT(wait);
9342
9343 ep = sctp_sk(sk)->ep;
9344
9345
9346 for (;;) {
9347 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
9348 TASK_INTERRUPTIBLE);
9349
9350 if (list_empty(&ep->asocs)) {
9351 release_sock(sk);
9352 timeo = schedule_timeout(timeo);
9353 lock_sock(sk);
9354 }
9355
9356 err = -EINVAL;
9357 if (!sctp_sstate(sk, LISTENING))
9358 break;
9359
9360 err = 0;
9361 if (!list_empty(&ep->asocs))
9362 break;
9363
9364 err = sock_intr_errno(timeo);
9365 if (signal_pending(current))
9366 break;
9367
9368 err = -EAGAIN;
9369 if (!timeo)
9370 break;
9371 }
9372
9373 finish_wait(sk_sleep(sk), &wait);
9374
9375 return err;
9376 }
9377
sctp_wait_for_close(struct sock * sk,long timeout)9378 static void sctp_wait_for_close(struct sock *sk, long timeout)
9379 {
9380 DEFINE_WAIT(wait);
9381
9382 do {
9383 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
9384 if (list_empty(&sctp_sk(sk)->ep->asocs))
9385 break;
9386 release_sock(sk);
9387 timeout = schedule_timeout(timeout);
9388 lock_sock(sk);
9389 } while (!signal_pending(current) && timeout);
9390
9391 finish_wait(sk_sleep(sk), &wait);
9392 }
9393
sctp_skb_set_owner_r_frag(struct sk_buff * skb,struct sock * sk)9394 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
9395 {
9396 struct sk_buff *frag;
9397
9398 if (!skb->data_len)
9399 goto done;
9400
9401 /* Don't forget the fragments. */
9402 skb_walk_frags(skb, frag)
9403 sctp_skb_set_owner_r_frag(frag, sk);
9404
9405 done:
9406 sctp_skb_set_owner_r(skb, sk);
9407 }
9408
sctp_copy_sock(struct sock * newsk,struct sock * sk,struct sctp_association * asoc)9409 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
9410 struct sctp_association *asoc)
9411 {
9412 struct inet_sock *inet = inet_sk(sk);
9413 struct inet_sock *newinet;
9414 struct sctp_sock *sp = sctp_sk(sk);
9415 struct sctp_endpoint *ep = sp->ep;
9416
9417 newsk->sk_type = sk->sk_type;
9418 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
9419 newsk->sk_flags = sk->sk_flags;
9420 newsk->sk_tsflags = sk->sk_tsflags;
9421 newsk->sk_no_check_tx = sk->sk_no_check_tx;
9422 newsk->sk_no_check_rx = sk->sk_no_check_rx;
9423 newsk->sk_reuse = sk->sk_reuse;
9424 sctp_sk(newsk)->reuse = sp->reuse;
9425
9426 newsk->sk_shutdown = sk->sk_shutdown;
9427 newsk->sk_destruct = sctp_destruct_sock;
9428 newsk->sk_family = sk->sk_family;
9429 newsk->sk_protocol = IPPROTO_SCTP;
9430 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
9431 newsk->sk_sndbuf = sk->sk_sndbuf;
9432 newsk->sk_rcvbuf = sk->sk_rcvbuf;
9433 newsk->sk_lingertime = sk->sk_lingertime;
9434 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
9435 newsk->sk_sndtimeo = sk->sk_sndtimeo;
9436 newsk->sk_rxhash = sk->sk_rxhash;
9437
9438 newinet = inet_sk(newsk);
9439
9440 /* Initialize sk's sport, dport, rcv_saddr and daddr for
9441 * getsockname() and getpeername()
9442 */
9443 newinet->inet_sport = inet->inet_sport;
9444 newinet->inet_saddr = inet->inet_saddr;
9445 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
9446 newinet->inet_dport = htons(asoc->peer.port);
9447 newinet->pmtudisc = inet->pmtudisc;
9448 newinet->inet_id = prandom_u32();
9449
9450 newinet->uc_ttl = inet->uc_ttl;
9451 newinet->mc_loop = 1;
9452 newinet->mc_ttl = 1;
9453 newinet->mc_index = 0;
9454 newinet->mc_list = NULL;
9455
9456 if (newsk->sk_flags & SK_FLAGS_TIMESTAMP)
9457 net_enable_timestamp();
9458
9459 /* Set newsk security attributes from original sk and connection
9460 * security attribute from ep.
9461 */
9462 security_sctp_sk_clone(ep, sk, newsk);
9463 }
9464
sctp_copy_descendant(struct sock * sk_to,const struct sock * sk_from)9465 static inline void sctp_copy_descendant(struct sock *sk_to,
9466 const struct sock *sk_from)
9467 {
9468 size_t ancestor_size = sizeof(struct inet_sock);
9469
9470 ancestor_size += sk_from->sk_prot->obj_size;
9471 ancestor_size -= offsetof(struct sctp_sock, pd_lobby);
9472 __inet_sk_copy_descendant(sk_to, sk_from, ancestor_size);
9473 }
9474
9475 /* Populate the fields of the newsk from the oldsk and migrate the assoc
9476 * and its messages to the newsk.
9477 */
sctp_sock_migrate(struct sock * oldsk,struct sock * newsk,struct sctp_association * assoc,enum sctp_socket_type type)9478 static int sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
9479 struct sctp_association *assoc,
9480 enum sctp_socket_type type)
9481 {
9482 struct sctp_sock *oldsp = sctp_sk(oldsk);
9483 struct sctp_sock *newsp = sctp_sk(newsk);
9484 struct sctp_bind_bucket *pp; /* hash list port iterator */
9485 struct sctp_endpoint *newep = newsp->ep;
9486 struct sk_buff *skb, *tmp;
9487 struct sctp_ulpevent *event;
9488 struct sctp_bind_hashbucket *head;
9489 int err;
9490
9491 /* Migrate socket buffer sizes and all the socket level options to the
9492 * new socket.
9493 */
9494 newsk->sk_sndbuf = oldsk->sk_sndbuf;
9495 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
9496 /* Brute force copy old sctp opt. */
9497 sctp_copy_descendant(newsk, oldsk);
9498
9499 /* Restore the ep value that was overwritten with the above structure
9500 * copy.
9501 */
9502 newsp->ep = newep;
9503 newsp->hmac = NULL;
9504
9505 /* Hook this new socket in to the bind_hash list. */
9506 head = &sctp_port_hashtable[sctp_phashfn(sock_net(oldsk),
9507 inet_sk(oldsk)->inet_num)];
9508 spin_lock_bh(&head->lock);
9509 pp = sctp_sk(oldsk)->bind_hash;
9510 sk_add_bind_node(newsk, &pp->owner);
9511 sctp_sk(newsk)->bind_hash = pp;
9512 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
9513 spin_unlock_bh(&head->lock);
9514
9515 /* Copy the bind_addr list from the original endpoint to the new
9516 * endpoint so that we can handle restarts properly
9517 */
9518 err = sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
9519 &oldsp->ep->base.bind_addr, GFP_KERNEL);
9520 if (err)
9521 return err;
9522
9523 /* New ep's auth_hmacs should be set if old ep's is set, in case
9524 * that net->sctp.auth_enable has been changed to 0 by users and
9525 * new ep's auth_hmacs couldn't be set in sctp_endpoint_init().
9526 */
9527 if (oldsp->ep->auth_hmacs) {
9528 err = sctp_auth_init_hmacs(newsp->ep, GFP_KERNEL);
9529 if (err)
9530 return err;
9531 }
9532
9533 sctp_auto_asconf_init(newsp);
9534
9535 /* Move any messages in the old socket's receive queue that are for the
9536 * peeled off association to the new socket's receive queue.
9537 */
9538 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
9539 event = sctp_skb2event(skb);
9540 if (event->asoc == assoc) {
9541 __skb_unlink(skb, &oldsk->sk_receive_queue);
9542 __skb_queue_tail(&newsk->sk_receive_queue, skb);
9543 sctp_skb_set_owner_r_frag(skb, newsk);
9544 }
9545 }
9546
9547 /* Clean up any messages pending delivery due to partial
9548 * delivery. Three cases:
9549 * 1) No partial deliver; no work.
9550 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
9551 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
9552 */
9553 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
9554
9555 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
9556 struct sk_buff_head *queue;
9557
9558 /* Decide which queue to move pd_lobby skbs to. */
9559 if (assoc->ulpq.pd_mode) {
9560 queue = &newsp->pd_lobby;
9561 } else
9562 queue = &newsk->sk_receive_queue;
9563
9564 /* Walk through the pd_lobby, looking for skbs that
9565 * need moved to the new socket.
9566 */
9567 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
9568 event = sctp_skb2event(skb);
9569 if (event->asoc == assoc) {
9570 __skb_unlink(skb, &oldsp->pd_lobby);
9571 __skb_queue_tail(queue, skb);
9572 sctp_skb_set_owner_r_frag(skb, newsk);
9573 }
9574 }
9575
9576 /* Clear up any skbs waiting for the partial
9577 * delivery to finish.
9578 */
9579 if (assoc->ulpq.pd_mode)
9580 sctp_clear_pd(oldsk, NULL);
9581
9582 }
9583
9584 sctp_for_each_rx_skb(assoc, newsk, sctp_skb_set_owner_r_frag);
9585
9586 /* Set the type of socket to indicate that it is peeled off from the
9587 * original UDP-style socket or created with the accept() call on a
9588 * TCP-style socket..
9589 */
9590 newsp->type = type;
9591
9592 /* Mark the new socket "in-use" by the user so that any packets
9593 * that may arrive on the association after we've moved it are
9594 * queued to the backlog. This prevents a potential race between
9595 * backlog processing on the old socket and new-packet processing
9596 * on the new socket.
9597 *
9598 * The caller has just allocated newsk so we can guarantee that other
9599 * paths won't try to lock it and then oldsk.
9600 */
9601 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
9602 sctp_for_each_tx_datachunk(assoc, true, sctp_clear_owner_w);
9603 sctp_assoc_migrate(assoc, newsk);
9604 sctp_for_each_tx_datachunk(assoc, false, sctp_set_owner_w);
9605
9606 /* If the association on the newsk is already closed before accept()
9607 * is called, set RCV_SHUTDOWN flag.
9608 */
9609 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP)) {
9610 inet_sk_set_state(newsk, SCTP_SS_CLOSED);
9611 newsk->sk_shutdown |= RCV_SHUTDOWN;
9612 } else {
9613 inet_sk_set_state(newsk, SCTP_SS_ESTABLISHED);
9614 }
9615
9616 release_sock(newsk);
9617
9618 return 0;
9619 }
9620
9621
9622 /* This proto struct describes the ULP interface for SCTP. */
9623 struct proto sctp_prot = {
9624 .name = "SCTP",
9625 .owner = THIS_MODULE,
9626 .close = sctp_close,
9627 .disconnect = sctp_disconnect,
9628 .accept = sctp_accept,
9629 .ioctl = sctp_ioctl,
9630 .init = sctp_init_sock,
9631 .destroy = sctp_destroy_sock,
9632 .shutdown = sctp_shutdown,
9633 .setsockopt = sctp_setsockopt,
9634 .getsockopt = sctp_getsockopt,
9635 .sendmsg = sctp_sendmsg,
9636 .recvmsg = sctp_recvmsg,
9637 .bind = sctp_bind,
9638 .bind_add = sctp_bind_add,
9639 .backlog_rcv = sctp_backlog_rcv,
9640 .hash = sctp_hash,
9641 .unhash = sctp_unhash,
9642 .no_autobind = true,
9643 .obj_size = sizeof(struct sctp_sock),
9644 .useroffset = offsetof(struct sctp_sock, subscribe),
9645 .usersize = offsetof(struct sctp_sock, initmsg) -
9646 offsetof(struct sctp_sock, subscribe) +
9647 sizeof_field(struct sctp_sock, initmsg),
9648 .sysctl_mem = sysctl_sctp_mem,
9649 .sysctl_rmem = sysctl_sctp_rmem,
9650 .sysctl_wmem = sysctl_sctp_wmem,
9651 .memory_pressure = &sctp_memory_pressure,
9652 .enter_memory_pressure = sctp_enter_memory_pressure,
9653 .memory_allocated = &sctp_memory_allocated,
9654 .sockets_allocated = &sctp_sockets_allocated,
9655 };
9656
9657 #if IS_ENABLED(CONFIG_IPV6)
9658
9659 #include <net/transp_v6.h>
sctp_v6_destroy_sock(struct sock * sk)9660 static void sctp_v6_destroy_sock(struct sock *sk)
9661 {
9662 sctp_destroy_sock(sk);
9663 inet6_destroy_sock(sk);
9664 }
9665
9666 struct proto sctpv6_prot = {
9667 .name = "SCTPv6",
9668 .owner = THIS_MODULE,
9669 .close = sctp_close,
9670 .disconnect = sctp_disconnect,
9671 .accept = sctp_accept,
9672 .ioctl = sctp_ioctl,
9673 .init = sctp_init_sock,
9674 .destroy = sctp_v6_destroy_sock,
9675 .shutdown = sctp_shutdown,
9676 .setsockopt = sctp_setsockopt,
9677 .getsockopt = sctp_getsockopt,
9678 .sendmsg = sctp_sendmsg,
9679 .recvmsg = sctp_recvmsg,
9680 .bind = sctp_bind,
9681 .bind_add = sctp_bind_add,
9682 .backlog_rcv = sctp_backlog_rcv,
9683 .hash = sctp_hash,
9684 .unhash = sctp_unhash,
9685 .no_autobind = true,
9686 .obj_size = sizeof(struct sctp6_sock),
9687 .useroffset = offsetof(struct sctp6_sock, sctp.subscribe),
9688 .usersize = offsetof(struct sctp6_sock, sctp.initmsg) -
9689 offsetof(struct sctp6_sock, sctp.subscribe) +
9690 sizeof_field(struct sctp6_sock, sctp.initmsg),
9691 .sysctl_mem = sysctl_sctp_mem,
9692 .sysctl_rmem = sysctl_sctp_rmem,
9693 .sysctl_wmem = sysctl_sctp_wmem,
9694 .memory_pressure = &sctp_memory_pressure,
9695 .enter_memory_pressure = sctp_enter_memory_pressure,
9696 .memory_allocated = &sctp_memory_allocated,
9697 .sockets_allocated = &sctp_sockets_allocated,
9698 };
9699 #endif /* IS_ENABLED(CONFIG_IPV6) */
9700