1 /* SCTP kernel implementation
2 * Copyright (c) 1999-2000 Cisco, Inc.
3 * Copyright (c) 1999-2001 Motorola, Inc.
4 * Copyright (c) 2001-2003 International Business Machines Corp.
5 * Copyright (c) 2001 Intel Corp.
6 * Copyright (c) 2001 La Monte H.P. Yarroll
7 *
8 * This file is part of the SCTP kernel implementation
9 *
10 * This module provides the abstraction for an SCTP tranport representing
11 * a remote transport address. For local transport addresses, we just use
12 * union sctp_addr.
13 *
14 * This SCTP implementation is free software;
15 * you can redistribute it and/or modify it under the terms of
16 * the GNU General Public License as published by
17 * the Free Software Foundation; either version 2, or (at your option)
18 * any later version.
19 *
20 * This SCTP implementation is distributed in the hope that it
21 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
22 * ************************
23 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
24 * See the GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with GNU CC; see the file COPYING. If not, see
28 * <http://www.gnu.org/licenses/>.
29 *
30 * Please send any bug reports or fixes you make to the
31 * email address(es):
32 * lksctp developers <linux-sctp@vger.kernel.org>
33 *
34 * Written or modified by:
35 * La Monte H.P. Yarroll <piggy@acm.org>
36 * Karl Knutson <karl@athena.chicago.il.us>
37 * Jon Grimm <jgrimm@us.ibm.com>
38 * Xingang Guo <xingang.guo@intel.com>
39 * Hui Huang <hui.huang@nokia.com>
40 * Sridhar Samudrala <sri@us.ibm.com>
41 * Ardelle Fan <ardelle.fan@intel.com>
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/slab.h>
47 #include <linux/types.h>
48 #include <linux/random.h>
49 #include <net/sctp/sctp.h>
50 #include <net/sctp/sm.h>
51
52 /* 1st Level Abstractions. */
53
54 /* Initialize a new transport from provided memory. */
sctp_transport_init(struct net * net,struct sctp_transport * peer,const union sctp_addr * addr,gfp_t gfp)55 static struct sctp_transport *sctp_transport_init(struct net *net,
56 struct sctp_transport *peer,
57 const union sctp_addr *addr,
58 gfp_t gfp)
59 {
60 /* Copy in the address. */
61 peer->ipaddr = *addr;
62 peer->af_specific = sctp_get_af_specific(addr->sa.sa_family);
63 memset(&peer->saddr, 0, sizeof(union sctp_addr));
64
65 peer->sack_generation = 0;
66
67 /* From 6.3.1 RTO Calculation:
68 *
69 * C1) Until an RTT measurement has been made for a packet sent to the
70 * given destination transport address, set RTO to the protocol
71 * parameter 'RTO.Initial'.
72 */
73 peer->rto = msecs_to_jiffies(net->sctp.rto_initial);
74
75 peer->last_time_heard = 0;
76 peer->last_time_ecne_reduced = jiffies;
77
78 peer->param_flags = SPP_HB_DISABLE |
79 SPP_PMTUD_ENABLE |
80 SPP_SACKDELAY_ENABLE;
81
82 /* Initialize the default path max_retrans. */
83 peer->pathmaxrxt = net->sctp.max_retrans_path;
84 peer->pf_retrans = net->sctp.pf_retrans;
85
86 INIT_LIST_HEAD(&peer->transmitted);
87 INIT_LIST_HEAD(&peer->send_ready);
88 INIT_LIST_HEAD(&peer->transports);
89
90 timer_setup(&peer->T3_rtx_timer, sctp_generate_t3_rtx_event, 0);
91 timer_setup(&peer->hb_timer, sctp_generate_heartbeat_event, 0);
92 timer_setup(&peer->reconf_timer, sctp_generate_reconf_event, 0);
93 timer_setup(&peer->proto_unreach_timer,
94 sctp_generate_proto_unreach_event, 0);
95
96 /* Initialize the 64-bit random nonce sent with heartbeat. */
97 get_random_bytes(&peer->hb_nonce, sizeof(peer->hb_nonce));
98
99 refcount_set(&peer->refcnt, 1);
100
101 return peer;
102 }
103
104 /* Allocate and initialize a new transport. */
sctp_transport_new(struct net * net,const union sctp_addr * addr,gfp_t gfp)105 struct sctp_transport *sctp_transport_new(struct net *net,
106 const union sctp_addr *addr,
107 gfp_t gfp)
108 {
109 struct sctp_transport *transport;
110
111 transport = kzalloc(sizeof(*transport), gfp);
112 if (!transport)
113 goto fail;
114
115 if (!sctp_transport_init(net, transport, addr, gfp))
116 goto fail_init;
117
118 SCTP_DBG_OBJCNT_INC(transport);
119
120 return transport;
121
122 fail_init:
123 kfree(transport);
124
125 fail:
126 return NULL;
127 }
128
129 /* This transport is no longer needed. Free up if possible, or
130 * delay until it last reference count.
131 */
sctp_transport_free(struct sctp_transport * transport)132 void sctp_transport_free(struct sctp_transport *transport)
133 {
134 /* Try to delete the heartbeat timer. */
135 if (del_timer(&transport->hb_timer))
136 sctp_transport_put(transport);
137
138 /* Delete the T3_rtx timer if it's active.
139 * There is no point in not doing this now and letting
140 * structure hang around in memory since we know
141 * the tranport is going away.
142 */
143 if (del_timer(&transport->T3_rtx_timer))
144 sctp_transport_put(transport);
145
146 if (del_timer(&transport->reconf_timer))
147 sctp_transport_put(transport);
148
149 /* Delete the ICMP proto unreachable timer if it's active. */
150 if (del_timer(&transport->proto_unreach_timer))
151 sctp_association_put(transport->asoc);
152
153 sctp_transport_put(transport);
154 }
155
sctp_transport_destroy_rcu(struct rcu_head * head)156 static void sctp_transport_destroy_rcu(struct rcu_head *head)
157 {
158 struct sctp_transport *transport;
159
160 transport = container_of(head, struct sctp_transport, rcu);
161
162 dst_release(transport->dst);
163 kfree(transport);
164 SCTP_DBG_OBJCNT_DEC(transport);
165 }
166
167 /* Destroy the transport data structure.
168 * Assumes there are no more users of this structure.
169 */
sctp_transport_destroy(struct sctp_transport * transport)170 static void sctp_transport_destroy(struct sctp_transport *transport)
171 {
172 if (unlikely(refcount_read(&transport->refcnt))) {
173 WARN(1, "Attempt to destroy undead transport %p!\n", transport);
174 return;
175 }
176
177 sctp_packet_free(&transport->packet);
178
179 if (transport->asoc)
180 sctp_association_put(transport->asoc);
181
182 call_rcu(&transport->rcu, sctp_transport_destroy_rcu);
183 }
184
185 /* Start T3_rtx timer if it is not already running and update the heartbeat
186 * timer. This routine is called every time a DATA chunk is sent.
187 */
sctp_transport_reset_t3_rtx(struct sctp_transport * transport)188 void sctp_transport_reset_t3_rtx(struct sctp_transport *transport)
189 {
190 /* RFC 2960 6.3.2 Retransmission Timer Rules
191 *
192 * R1) Every time a DATA chunk is sent to any address(including a
193 * retransmission), if the T3-rtx timer of that address is not running
194 * start it running so that it will expire after the RTO of that
195 * address.
196 */
197
198 if (!timer_pending(&transport->T3_rtx_timer))
199 if (!mod_timer(&transport->T3_rtx_timer,
200 jiffies + transport->rto))
201 sctp_transport_hold(transport);
202 }
203
sctp_transport_reset_hb_timer(struct sctp_transport * transport)204 void sctp_transport_reset_hb_timer(struct sctp_transport *transport)
205 {
206 unsigned long expires;
207
208 /* When a data chunk is sent, reset the heartbeat interval. */
209 expires = jiffies + sctp_transport_timeout(transport);
210 if (time_before(transport->hb_timer.expires, expires) &&
211 !mod_timer(&transport->hb_timer,
212 expires + prandom_u32_max(transport->rto)))
213 sctp_transport_hold(transport);
214 }
215
sctp_transport_reset_reconf_timer(struct sctp_transport * transport)216 void sctp_transport_reset_reconf_timer(struct sctp_transport *transport)
217 {
218 if (!timer_pending(&transport->reconf_timer))
219 if (!mod_timer(&transport->reconf_timer,
220 jiffies + transport->rto))
221 sctp_transport_hold(transport);
222 }
223
224 /* This transport has been assigned to an association.
225 * Initialize fields from the association or from the sock itself.
226 * Register the reference count in the association.
227 */
sctp_transport_set_owner(struct sctp_transport * transport,struct sctp_association * asoc)228 void sctp_transport_set_owner(struct sctp_transport *transport,
229 struct sctp_association *asoc)
230 {
231 transport->asoc = asoc;
232 sctp_association_hold(asoc);
233 }
234
235 /* Initialize the pmtu of a transport. */
sctp_transport_pmtu(struct sctp_transport * transport,struct sock * sk)236 void sctp_transport_pmtu(struct sctp_transport *transport, struct sock *sk)
237 {
238 /* If we don't have a fresh route, look one up */
239 if (!transport->dst || transport->dst->obsolete) {
240 sctp_transport_dst_release(transport);
241 transport->af_specific->get_dst(transport, &transport->saddr,
242 &transport->fl, sk);
243 }
244
245 if (transport->param_flags & SPP_PMTUD_DISABLE) {
246 struct sctp_association *asoc = transport->asoc;
247
248 if (!transport->pathmtu && asoc && asoc->pathmtu)
249 transport->pathmtu = asoc->pathmtu;
250 if (transport->pathmtu)
251 return;
252 }
253
254 if (transport->dst)
255 transport->pathmtu = sctp_dst_mtu(transport->dst);
256 else
257 transport->pathmtu = SCTP_DEFAULT_MAXSEGMENT;
258 }
259
sctp_transport_update_pmtu(struct sctp_transport * t,u32 pmtu)260 bool sctp_transport_update_pmtu(struct sctp_transport *t, u32 pmtu)
261 {
262 struct dst_entry *dst = sctp_transport_dst_check(t);
263 struct sock *sk = t->asoc->base.sk;
264 bool change = true;
265
266 if (unlikely(pmtu < SCTP_DEFAULT_MINSEGMENT)) {
267 pr_warn_ratelimited("%s: Reported pmtu %d too low, using default minimum of %d\n",
268 __func__, pmtu, SCTP_DEFAULT_MINSEGMENT);
269 /* Use default minimum segment instead */
270 pmtu = SCTP_DEFAULT_MINSEGMENT;
271 }
272 pmtu = SCTP_TRUNC4(pmtu);
273
274 if (dst) {
275 struct sctp_pf *pf = sctp_get_pf_specific(dst->ops->family);
276 union sctp_addr addr;
277
278 pf->af->from_sk(&addr, sk);
279 pf->to_sk_daddr(&t->ipaddr, sk);
280 dst->ops->update_pmtu(dst, sk, NULL, pmtu);
281 pf->to_sk_daddr(&addr, sk);
282
283 dst = sctp_transport_dst_check(t);
284 }
285
286 if (!dst) {
287 t->af_specific->get_dst(t, &t->saddr, &t->fl, sk);
288 dst = t->dst;
289 }
290
291 if (dst) {
292 /* Re-fetch, as under layers may have a higher minimum size */
293 pmtu = sctp_dst_mtu(dst);
294 change = t->pathmtu != pmtu;
295 }
296 t->pathmtu = pmtu;
297
298 return change;
299 }
300
301 /* Caches the dst entry and source address for a transport's destination
302 * address.
303 */
sctp_transport_route(struct sctp_transport * transport,union sctp_addr * saddr,struct sctp_sock * opt)304 void sctp_transport_route(struct sctp_transport *transport,
305 union sctp_addr *saddr, struct sctp_sock *opt)
306 {
307 struct sctp_association *asoc = transport->asoc;
308 struct sctp_af *af = transport->af_specific;
309
310 sctp_transport_dst_release(transport);
311 af->get_dst(transport, saddr, &transport->fl, sctp_opt2sk(opt));
312
313 if (saddr)
314 memcpy(&transport->saddr, saddr, sizeof(union sctp_addr));
315 else
316 af->get_saddr(opt, transport, &transport->fl);
317
318 sctp_transport_pmtu(transport, sctp_opt2sk(opt));
319
320 /* Initialize sk->sk_rcv_saddr, if the transport is the
321 * association's active path for getsockname().
322 */
323 if (transport->dst && asoc &&
324 (!asoc->peer.primary_path || transport == asoc->peer.active_path))
325 opt->pf->to_sk_saddr(&transport->saddr, asoc->base.sk);
326 }
327
328 /* Hold a reference to a transport. */
sctp_transport_hold(struct sctp_transport * transport)329 int sctp_transport_hold(struct sctp_transport *transport)
330 {
331 return refcount_inc_not_zero(&transport->refcnt);
332 }
333
334 /* Release a reference to a transport and clean up
335 * if there are no more references.
336 */
sctp_transport_put(struct sctp_transport * transport)337 void sctp_transport_put(struct sctp_transport *transport)
338 {
339 if (refcount_dec_and_test(&transport->refcnt))
340 sctp_transport_destroy(transport);
341 }
342
343 /* Update transport's RTO based on the newly calculated RTT. */
sctp_transport_update_rto(struct sctp_transport * tp,__u32 rtt)344 void sctp_transport_update_rto(struct sctp_transport *tp, __u32 rtt)
345 {
346 if (unlikely(!tp->rto_pending))
347 /* We should not be doing any RTO updates unless rto_pending is set. */
348 pr_debug("%s: rto_pending not set on transport %p!\n", __func__, tp);
349
350 if (tp->rttvar || tp->srtt) {
351 struct net *net = sock_net(tp->asoc->base.sk);
352 /* 6.3.1 C3) When a new RTT measurement R' is made, set
353 * RTTVAR <- (1 - RTO.Beta) * RTTVAR + RTO.Beta * |SRTT - R'|
354 * SRTT <- (1 - RTO.Alpha) * SRTT + RTO.Alpha * R'
355 */
356
357 /* Note: The above algorithm has been rewritten to
358 * express rto_beta and rto_alpha as inverse powers
359 * of two.
360 * For example, assuming the default value of RTO.Alpha of
361 * 1/8, rto_alpha would be expressed as 3.
362 */
363 tp->rttvar = tp->rttvar - (tp->rttvar >> net->sctp.rto_beta)
364 + (((__u32)abs((__s64)tp->srtt - (__s64)rtt)) >> net->sctp.rto_beta);
365 tp->srtt = tp->srtt - (tp->srtt >> net->sctp.rto_alpha)
366 + (rtt >> net->sctp.rto_alpha);
367 } else {
368 /* 6.3.1 C2) When the first RTT measurement R is made, set
369 * SRTT <- R, RTTVAR <- R/2.
370 */
371 tp->srtt = rtt;
372 tp->rttvar = rtt >> 1;
373 }
374
375 /* 6.3.1 G1) Whenever RTTVAR is computed, if RTTVAR = 0, then
376 * adjust RTTVAR <- G, where G is the CLOCK GRANULARITY.
377 */
378 if (tp->rttvar == 0)
379 tp->rttvar = SCTP_CLOCK_GRANULARITY;
380
381 /* 6.3.1 C3) After the computation, update RTO <- SRTT + 4 * RTTVAR. */
382 tp->rto = tp->srtt + (tp->rttvar << 2);
383
384 /* 6.3.1 C6) Whenever RTO is computed, if it is less than RTO.Min
385 * seconds then it is rounded up to RTO.Min seconds.
386 */
387 if (tp->rto < tp->asoc->rto_min)
388 tp->rto = tp->asoc->rto_min;
389
390 /* 6.3.1 C7) A maximum value may be placed on RTO provided it is
391 * at least RTO.max seconds.
392 */
393 if (tp->rto > tp->asoc->rto_max)
394 tp->rto = tp->asoc->rto_max;
395
396 sctp_max_rto(tp->asoc, tp);
397 tp->rtt = rtt;
398
399 /* Reset rto_pending so that a new RTT measurement is started when a
400 * new data chunk is sent.
401 */
402 tp->rto_pending = 0;
403
404 pr_debug("%s: transport:%p, rtt:%d, srtt:%d rttvar:%d, rto:%ld\n",
405 __func__, tp, rtt, tp->srtt, tp->rttvar, tp->rto);
406 }
407
408 /* This routine updates the transport's cwnd and partial_bytes_acked
409 * parameters based on the bytes acked in the received SACK.
410 */
sctp_transport_raise_cwnd(struct sctp_transport * transport,__u32 sack_ctsn,__u32 bytes_acked)411 void sctp_transport_raise_cwnd(struct sctp_transport *transport,
412 __u32 sack_ctsn, __u32 bytes_acked)
413 {
414 struct sctp_association *asoc = transport->asoc;
415 __u32 cwnd, ssthresh, flight_size, pba, pmtu;
416
417 cwnd = transport->cwnd;
418 flight_size = transport->flight_size;
419
420 /* See if we need to exit Fast Recovery first */
421 if (asoc->fast_recovery &&
422 TSN_lte(asoc->fast_recovery_exit, sack_ctsn))
423 asoc->fast_recovery = 0;
424
425 ssthresh = transport->ssthresh;
426 pba = transport->partial_bytes_acked;
427 pmtu = transport->asoc->pathmtu;
428
429 if (cwnd <= ssthresh) {
430 /* RFC 4960 7.2.1
431 * o When cwnd is less than or equal to ssthresh, an SCTP
432 * endpoint MUST use the slow-start algorithm to increase
433 * cwnd only if the current congestion window is being fully
434 * utilized, an incoming SACK advances the Cumulative TSN
435 * Ack Point, and the data sender is not in Fast Recovery.
436 * Only when these three conditions are met can the cwnd be
437 * increased; otherwise, the cwnd MUST not be increased.
438 * If these conditions are met, then cwnd MUST be increased
439 * by, at most, the lesser of 1) the total size of the
440 * previously outstanding DATA chunk(s) acknowledged, and
441 * 2) the destination's path MTU. This upper bound protects
442 * against the ACK-Splitting attack outlined in [SAVAGE99].
443 */
444 if (asoc->fast_recovery)
445 return;
446
447 /* The appropriate cwnd increase algorithm is performed
448 * if, and only if the congestion window is being fully
449 * utilized. Note that RFC4960 Errata 3.22 removed the
450 * other condition on ctsn moving.
451 */
452 if (flight_size < cwnd)
453 return;
454
455 if (bytes_acked > pmtu)
456 cwnd += pmtu;
457 else
458 cwnd += bytes_acked;
459
460 pr_debug("%s: slow start: transport:%p, bytes_acked:%d, "
461 "cwnd:%d, ssthresh:%d, flight_size:%d, pba:%d\n",
462 __func__, transport, bytes_acked, cwnd, ssthresh,
463 flight_size, pba);
464 } else {
465 /* RFC 2960 7.2.2 Whenever cwnd is greater than ssthresh,
466 * upon each SACK arrival, increase partial_bytes_acked
467 * by the total number of bytes of all new chunks
468 * acknowledged in that SACK including chunks
469 * acknowledged by the new Cumulative TSN Ack and by Gap
470 * Ack Blocks. (updated by RFC4960 Errata 3.22)
471 *
472 * When partial_bytes_acked is greater than cwnd and
473 * before the arrival of the SACK the sender had less
474 * bytes of data outstanding than cwnd (i.e., before
475 * arrival of the SACK, flightsize was less than cwnd),
476 * reset partial_bytes_acked to cwnd. (RFC 4960 Errata
477 * 3.26)
478 *
479 * When partial_bytes_acked is equal to or greater than
480 * cwnd and before the arrival of the SACK the sender
481 * had cwnd or more bytes of data outstanding (i.e.,
482 * before arrival of the SACK, flightsize was greater
483 * than or equal to cwnd), partial_bytes_acked is reset
484 * to (partial_bytes_acked - cwnd). Next, cwnd is
485 * increased by MTU. (RFC 4960 Errata 3.12)
486 */
487 pba += bytes_acked;
488 if (pba > cwnd && flight_size < cwnd)
489 pba = cwnd;
490 if (pba >= cwnd && flight_size >= cwnd) {
491 pba = pba - cwnd;
492 cwnd += pmtu;
493 }
494
495 pr_debug("%s: congestion avoidance: transport:%p, "
496 "bytes_acked:%d, cwnd:%d, ssthresh:%d, "
497 "flight_size:%d, pba:%d\n", __func__,
498 transport, bytes_acked, cwnd, ssthresh,
499 flight_size, pba);
500 }
501
502 transport->cwnd = cwnd;
503 transport->partial_bytes_acked = pba;
504 }
505
506 /* This routine is used to lower the transport's cwnd when congestion is
507 * detected.
508 */
sctp_transport_lower_cwnd(struct sctp_transport * transport,enum sctp_lower_cwnd reason)509 void sctp_transport_lower_cwnd(struct sctp_transport *transport,
510 enum sctp_lower_cwnd reason)
511 {
512 struct sctp_association *asoc = transport->asoc;
513
514 switch (reason) {
515 case SCTP_LOWER_CWND_T3_RTX:
516 /* RFC 2960 Section 7.2.3, sctpimpguide
517 * When the T3-rtx timer expires on an address, SCTP should
518 * perform slow start by:
519 * ssthresh = max(cwnd/2, 4*MTU)
520 * cwnd = 1*MTU
521 * partial_bytes_acked = 0
522 */
523 transport->ssthresh = max(transport->cwnd/2,
524 4*asoc->pathmtu);
525 transport->cwnd = asoc->pathmtu;
526
527 /* T3-rtx also clears fast recovery */
528 asoc->fast_recovery = 0;
529 break;
530
531 case SCTP_LOWER_CWND_FAST_RTX:
532 /* RFC 2960 7.2.4 Adjust the ssthresh and cwnd of the
533 * destination address(es) to which the missing DATA chunks
534 * were last sent, according to the formula described in
535 * Section 7.2.3.
536 *
537 * RFC 2960 7.2.3, sctpimpguide Upon detection of packet
538 * losses from SACK (see Section 7.2.4), An endpoint
539 * should do the following:
540 * ssthresh = max(cwnd/2, 4*MTU)
541 * cwnd = ssthresh
542 * partial_bytes_acked = 0
543 */
544 if (asoc->fast_recovery)
545 return;
546
547 /* Mark Fast recovery */
548 asoc->fast_recovery = 1;
549 asoc->fast_recovery_exit = asoc->next_tsn - 1;
550
551 transport->ssthresh = max(transport->cwnd/2,
552 4*asoc->pathmtu);
553 transport->cwnd = transport->ssthresh;
554 break;
555
556 case SCTP_LOWER_CWND_ECNE:
557 /* RFC 2481 Section 6.1.2.
558 * If the sender receives an ECN-Echo ACK packet
559 * then the sender knows that congestion was encountered in the
560 * network on the path from the sender to the receiver. The
561 * indication of congestion should be treated just as a
562 * congestion loss in non-ECN Capable TCP. That is, the TCP
563 * source halves the congestion window "cwnd" and reduces the
564 * slow start threshold "ssthresh".
565 * A critical condition is that TCP does not react to
566 * congestion indications more than once every window of
567 * data (or more loosely more than once every round-trip time).
568 */
569 if (time_after(jiffies, transport->last_time_ecne_reduced +
570 transport->rtt)) {
571 transport->ssthresh = max(transport->cwnd/2,
572 4*asoc->pathmtu);
573 transport->cwnd = transport->ssthresh;
574 transport->last_time_ecne_reduced = jiffies;
575 }
576 break;
577
578 case SCTP_LOWER_CWND_INACTIVE:
579 /* RFC 2960 Section 7.2.1, sctpimpguide
580 * When the endpoint does not transmit data on a given
581 * transport address, the cwnd of the transport address
582 * should be adjusted to max(cwnd/2, 4*MTU) per RTO.
583 * NOTE: Although the draft recommends that this check needs
584 * to be done every RTO interval, we do it every hearbeat
585 * interval.
586 */
587 transport->cwnd = max(transport->cwnd/2,
588 4*asoc->pathmtu);
589 /* RFC 4960 Errata 3.27.2: also adjust sshthresh */
590 transport->ssthresh = transport->cwnd;
591 break;
592 }
593
594 transport->partial_bytes_acked = 0;
595
596 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d\n",
597 __func__, transport, reason, transport->cwnd,
598 transport->ssthresh);
599 }
600
601 /* Apply Max.Burst limit to the congestion window:
602 * sctpimpguide-05 2.14.2
603 * D) When the time comes for the sender to
604 * transmit new DATA chunks, the protocol parameter Max.Burst MUST
605 * first be applied to limit how many new DATA chunks may be sent.
606 * The limit is applied by adjusting cwnd as follows:
607 * if ((flightsize+ Max.Burst * MTU) < cwnd)
608 * cwnd = flightsize + Max.Burst * MTU
609 */
610
sctp_transport_burst_limited(struct sctp_transport * t)611 void sctp_transport_burst_limited(struct sctp_transport *t)
612 {
613 struct sctp_association *asoc = t->asoc;
614 u32 old_cwnd = t->cwnd;
615 u32 max_burst_bytes;
616
617 if (t->burst_limited || asoc->max_burst == 0)
618 return;
619
620 max_burst_bytes = t->flight_size + (asoc->max_burst * asoc->pathmtu);
621 if (max_burst_bytes < old_cwnd) {
622 t->cwnd = max_burst_bytes;
623 t->burst_limited = old_cwnd;
624 }
625 }
626
627 /* Restore the old cwnd congestion window, after the burst had it's
628 * desired effect.
629 */
sctp_transport_burst_reset(struct sctp_transport * t)630 void sctp_transport_burst_reset(struct sctp_transport *t)
631 {
632 if (t->burst_limited) {
633 t->cwnd = t->burst_limited;
634 t->burst_limited = 0;
635 }
636 }
637
638 /* What is the next timeout value for this transport? */
sctp_transport_timeout(struct sctp_transport * trans)639 unsigned long sctp_transport_timeout(struct sctp_transport *trans)
640 {
641 /* RTO + timer slack +/- 50% of RTO */
642 unsigned long timeout = trans->rto >> 1;
643
644 if (trans->state != SCTP_UNCONFIRMED &&
645 trans->state != SCTP_PF)
646 timeout += trans->hbinterval;
647
648 return max_t(unsigned long, timeout, HZ / 5);
649 }
650
651 /* Reset transport variables to their initial values */
sctp_transport_reset(struct sctp_transport * t)652 void sctp_transport_reset(struct sctp_transport *t)
653 {
654 struct sctp_association *asoc = t->asoc;
655
656 /* RFC 2960 (bis), Section 5.2.4
657 * All the congestion control parameters (e.g., cwnd, ssthresh)
658 * related to this peer MUST be reset to their initial values
659 * (see Section 6.2.1)
660 */
661 t->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
662 t->burst_limited = 0;
663 t->ssthresh = asoc->peer.i.a_rwnd;
664 t->rto = asoc->rto_initial;
665 sctp_max_rto(asoc, t);
666 t->rtt = 0;
667 t->srtt = 0;
668 t->rttvar = 0;
669
670 /* Reset these additional variables so that we have a clean slate. */
671 t->partial_bytes_acked = 0;
672 t->flight_size = 0;
673 t->error_count = 0;
674 t->rto_pending = 0;
675 t->hb_sent = 0;
676
677 /* Initialize the state information for SFR-CACC */
678 t->cacc.changeover_active = 0;
679 t->cacc.cycling_changeover = 0;
680 t->cacc.next_tsn_at_change = 0;
681 t->cacc.cacc_saw_newack = 0;
682 }
683
684 /* Schedule retransmission on the given transport */
sctp_transport_immediate_rtx(struct sctp_transport * t)685 void sctp_transport_immediate_rtx(struct sctp_transport *t)
686 {
687 /* Stop pending T3_rtx_timer */
688 if (del_timer(&t->T3_rtx_timer))
689 sctp_transport_put(t);
690
691 sctp_retransmit(&t->asoc->outqueue, t, SCTP_RTXR_T3_RTX);
692 if (!timer_pending(&t->T3_rtx_timer)) {
693 if (!mod_timer(&t->T3_rtx_timer, jiffies + t->rto))
694 sctp_transport_hold(t);
695 }
696 }
697
698 /* Drop dst */
sctp_transport_dst_release(struct sctp_transport * t)699 void sctp_transport_dst_release(struct sctp_transport *t)
700 {
701 dst_release(t->dst);
702 t->dst = NULL;
703 t->dst_pending_confirm = 0;
704 }
705
706 /* Schedule neighbour confirm */
sctp_transport_dst_confirm(struct sctp_transport * t)707 void sctp_transport_dst_confirm(struct sctp_transport *t)
708 {
709 t->dst_pending_confirm = 1;
710 }
711