1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 *
7 * This file is part of the SCTP kernel implementation
8 *
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
11 *
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
23 *
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
27 *
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
31 *
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
40 */
41
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
50
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
53 #include <net/sctp/stream_sched.h>
54
55 /* Declare internal functions here. */
56 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
57 static void sctp_check_transmitted(struct sctp_outq *q,
58 struct list_head *transmitted_queue,
59 struct sctp_transport *transport,
60 union sctp_addr *saddr,
61 struct sctp_sackhdr *sack,
62 __u32 *highest_new_tsn);
63
64 static void sctp_mark_missing(struct sctp_outq *q,
65 struct list_head *transmitted_queue,
66 struct sctp_transport *transport,
67 __u32 highest_new_tsn,
68 int count_of_newacks);
69
70 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
71
72 /* Add data to the front of the queue. */
sctp_outq_head_data(struct sctp_outq * q,struct sctp_chunk * ch)73 static inline void sctp_outq_head_data(struct sctp_outq *q,
74 struct sctp_chunk *ch)
75 {
76 struct sctp_stream_out_ext *oute;
77 __u16 stream;
78
79 list_add(&ch->list, &q->out_chunk_list);
80 q->out_qlen += ch->skb->len;
81
82 stream = sctp_chunk_stream_no(ch);
83 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
84 list_add(&ch->stream_list, &oute->outq);
85 }
86
87 /* Take data from the front of the queue. */
sctp_outq_dequeue_data(struct sctp_outq * q)88 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
89 {
90 return q->sched->dequeue(q);
91 }
92
93 /* Add data chunk to the end of the queue. */
sctp_outq_tail_data(struct sctp_outq * q,struct sctp_chunk * ch)94 static inline void sctp_outq_tail_data(struct sctp_outq *q,
95 struct sctp_chunk *ch)
96 {
97 struct sctp_stream_out_ext *oute;
98 __u16 stream;
99
100 list_add_tail(&ch->list, &q->out_chunk_list);
101 q->out_qlen += ch->skb->len;
102
103 stream = sctp_chunk_stream_no(ch);
104 oute = SCTP_SO(&q->asoc->stream, stream)->ext;
105 list_add_tail(&ch->stream_list, &oute->outq);
106 }
107
108 /*
109 * SFR-CACC algorithm:
110 * D) If count_of_newacks is greater than or equal to 2
111 * and t was not sent to the current primary then the
112 * sender MUST NOT increment missing report count for t.
113 */
sctp_cacc_skip_3_1_d(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks)114 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
115 struct sctp_transport *transport,
116 int count_of_newacks)
117 {
118 if (count_of_newacks >= 2 && transport != primary)
119 return 1;
120 return 0;
121 }
122
123 /*
124 * SFR-CACC algorithm:
125 * F) If count_of_newacks is less than 2, let d be the
126 * destination to which t was sent. If cacc_saw_newack
127 * is 0 for destination d, then the sender MUST NOT
128 * increment missing report count for t.
129 */
sctp_cacc_skip_3_1_f(struct sctp_transport * transport,int count_of_newacks)130 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
131 int count_of_newacks)
132 {
133 if (count_of_newacks < 2 &&
134 (transport && !transport->cacc.cacc_saw_newack))
135 return 1;
136 return 0;
137 }
138
139 /*
140 * SFR-CACC algorithm:
141 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
142 * execute steps C, D, F.
143 *
144 * C has been implemented in sctp_outq_sack
145 */
sctp_cacc_skip_3_1(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks)146 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
147 struct sctp_transport *transport,
148 int count_of_newacks)
149 {
150 if (!primary->cacc.cycling_changeover) {
151 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
152 return 1;
153 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
154 return 1;
155 return 0;
156 }
157 return 0;
158 }
159
160 /*
161 * SFR-CACC algorithm:
162 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
163 * than next_tsn_at_change of the current primary, then
164 * the sender MUST NOT increment missing report count
165 * for t.
166 */
sctp_cacc_skip_3_2(struct sctp_transport * primary,__u32 tsn)167 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
168 {
169 if (primary->cacc.cycling_changeover &&
170 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
171 return 1;
172 return 0;
173 }
174
175 /*
176 * SFR-CACC algorithm:
177 * 3) If the missing report count for TSN t is to be
178 * incremented according to [RFC2960] and
179 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
180 * then the sender MUST further execute steps 3.1 and
181 * 3.2 to determine if the missing report count for
182 * TSN t SHOULD NOT be incremented.
183 *
184 * 3.3) If 3.1 and 3.2 do not dictate that the missing
185 * report count for t should not be incremented, then
186 * the sender SHOULD increment missing report count for
187 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
188 */
sctp_cacc_skip(struct sctp_transport * primary,struct sctp_transport * transport,int count_of_newacks,__u32 tsn)189 static inline int sctp_cacc_skip(struct sctp_transport *primary,
190 struct sctp_transport *transport,
191 int count_of_newacks,
192 __u32 tsn)
193 {
194 if (primary->cacc.changeover_active &&
195 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
196 sctp_cacc_skip_3_2(primary, tsn)))
197 return 1;
198 return 0;
199 }
200
201 /* Initialize an existing sctp_outq. This does the boring stuff.
202 * You still need to define handlers if you really want to DO
203 * something with this structure...
204 */
sctp_outq_init(struct sctp_association * asoc,struct sctp_outq * q)205 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
206 {
207 memset(q, 0, sizeof(struct sctp_outq));
208
209 q->asoc = asoc;
210 INIT_LIST_HEAD(&q->out_chunk_list);
211 INIT_LIST_HEAD(&q->control_chunk_list);
212 INIT_LIST_HEAD(&q->retransmit);
213 INIT_LIST_HEAD(&q->sacked);
214 INIT_LIST_HEAD(&q->abandoned);
215 sctp_sched_set_sched(asoc, SCTP_SS_FCFS);
216 }
217
218 /* Free the outqueue structure and any related pending chunks.
219 */
__sctp_outq_teardown(struct sctp_outq * q)220 static void __sctp_outq_teardown(struct sctp_outq *q)
221 {
222 struct sctp_transport *transport;
223 struct list_head *lchunk, *temp;
224 struct sctp_chunk *chunk, *tmp;
225
226 /* Throw away unacknowledged chunks. */
227 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
228 transports) {
229 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
230 chunk = list_entry(lchunk, struct sctp_chunk,
231 transmitted_list);
232 /* Mark as part of a failed message. */
233 sctp_chunk_fail(chunk, q->error);
234 sctp_chunk_free(chunk);
235 }
236 }
237
238 /* Throw away chunks that have been gap ACKed. */
239 list_for_each_safe(lchunk, temp, &q->sacked) {
240 list_del_init(lchunk);
241 chunk = list_entry(lchunk, struct sctp_chunk,
242 transmitted_list);
243 sctp_chunk_fail(chunk, q->error);
244 sctp_chunk_free(chunk);
245 }
246
247 /* Throw away any chunks in the retransmit queue. */
248 list_for_each_safe(lchunk, temp, &q->retransmit) {
249 list_del_init(lchunk);
250 chunk = list_entry(lchunk, struct sctp_chunk,
251 transmitted_list);
252 sctp_chunk_fail(chunk, q->error);
253 sctp_chunk_free(chunk);
254 }
255
256 /* Throw away any chunks that are in the abandoned queue. */
257 list_for_each_safe(lchunk, temp, &q->abandoned) {
258 list_del_init(lchunk);
259 chunk = list_entry(lchunk, struct sctp_chunk,
260 transmitted_list);
261 sctp_chunk_fail(chunk, q->error);
262 sctp_chunk_free(chunk);
263 }
264
265 /* Throw away any leftover data chunks. */
266 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
267 sctp_sched_dequeue_done(q, chunk);
268
269 /* Mark as send failure. */
270 sctp_chunk_fail(chunk, q->error);
271 sctp_chunk_free(chunk);
272 }
273
274 /* Throw away any leftover control chunks. */
275 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
276 list_del_init(&chunk->list);
277 sctp_chunk_free(chunk);
278 }
279 }
280
sctp_outq_teardown(struct sctp_outq * q)281 void sctp_outq_teardown(struct sctp_outq *q)
282 {
283 __sctp_outq_teardown(q);
284 sctp_outq_init(q->asoc, q);
285 }
286
287 /* Free the outqueue structure and any related pending chunks. */
sctp_outq_free(struct sctp_outq * q)288 void sctp_outq_free(struct sctp_outq *q)
289 {
290 /* Throw away leftover chunks. */
291 __sctp_outq_teardown(q);
292 }
293
294 /* Put a new chunk in an sctp_outq. */
sctp_outq_tail(struct sctp_outq * q,struct sctp_chunk * chunk,gfp_t gfp)295 void sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
296 {
297 struct net *net = sock_net(q->asoc->base.sk);
298
299 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
300 chunk && chunk->chunk_hdr ?
301 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
302 "illegal chunk");
303
304 /* If it is data, queue it up, otherwise, send it
305 * immediately.
306 */
307 if (sctp_chunk_is_data(chunk)) {
308 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
309 __func__, q, chunk, chunk && chunk->chunk_hdr ?
310 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
311 "illegal chunk");
312
313 sctp_outq_tail_data(q, chunk);
314 if (chunk->asoc->peer.prsctp_capable &&
315 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
316 chunk->asoc->sent_cnt_removable++;
317 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
318 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
319 else
320 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
321 } else {
322 list_add_tail(&chunk->list, &q->control_chunk_list);
323 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
324 }
325
326 if (!q->cork)
327 sctp_outq_flush(q, 0, gfp);
328 }
329
330 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
331 * and the abandoned list are in ascending order.
332 */
sctp_insert_list(struct list_head * head,struct list_head * new)333 static void sctp_insert_list(struct list_head *head, struct list_head *new)
334 {
335 struct list_head *pos;
336 struct sctp_chunk *nchunk, *lchunk;
337 __u32 ntsn, ltsn;
338 int done = 0;
339
340 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
341 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
342
343 list_for_each(pos, head) {
344 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
345 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
346 if (TSN_lt(ntsn, ltsn)) {
347 list_add(new, pos->prev);
348 done = 1;
349 break;
350 }
351 }
352 if (!done)
353 list_add_tail(new, head);
354 }
355
sctp_prsctp_prune_sent(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,struct list_head * queue,int msg_len)356 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
357 struct sctp_sndrcvinfo *sinfo,
358 struct list_head *queue, int msg_len)
359 {
360 struct sctp_chunk *chk, *temp;
361
362 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
363 struct sctp_stream_out *streamout;
364
365 if (!chk->msg->abandoned &&
366 (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
367 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
368 continue;
369
370 chk->msg->abandoned = 1;
371 list_del_init(&chk->transmitted_list);
372 sctp_insert_list(&asoc->outqueue.abandoned,
373 &chk->transmitted_list);
374
375 streamout = SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
376 asoc->sent_cnt_removable--;
377 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
378 streamout->ext->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
379
380 if (queue != &asoc->outqueue.retransmit &&
381 !chk->tsn_gap_acked) {
382 if (chk->transport)
383 chk->transport->flight_size -=
384 sctp_data_size(chk);
385 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
386 }
387
388 msg_len -= SCTP_DATA_SNDSIZE(chk) +
389 sizeof(struct sk_buff) +
390 sizeof(struct sctp_chunk);
391 if (msg_len <= 0)
392 break;
393 }
394
395 return msg_len;
396 }
397
sctp_prsctp_prune_unsent(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,int msg_len)398 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
399 struct sctp_sndrcvinfo *sinfo, int msg_len)
400 {
401 struct sctp_outq *q = &asoc->outqueue;
402 struct sctp_chunk *chk, *temp;
403
404 q->sched->unsched_all(&asoc->stream);
405
406 list_for_each_entry_safe(chk, temp, &q->out_chunk_list, list) {
407 if (!chk->msg->abandoned &&
408 (!(chk->chunk_hdr->flags & SCTP_DATA_FIRST_FRAG) ||
409 !SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
410 chk->sinfo.sinfo_timetolive <= sinfo->sinfo_timetolive))
411 continue;
412
413 chk->msg->abandoned = 1;
414 sctp_sched_dequeue_common(q, chk);
415 asoc->sent_cnt_removable--;
416 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
417 if (chk->sinfo.sinfo_stream < asoc->stream.outcnt) {
418 struct sctp_stream_out *streamout =
419 SCTP_SO(&asoc->stream, chk->sinfo.sinfo_stream);
420
421 streamout->ext->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
422 }
423
424 msg_len -= SCTP_DATA_SNDSIZE(chk) +
425 sizeof(struct sk_buff) +
426 sizeof(struct sctp_chunk);
427 sctp_chunk_free(chk);
428 if (msg_len <= 0)
429 break;
430 }
431
432 q->sched->sched_all(&asoc->stream);
433
434 return msg_len;
435 }
436
437 /* Abandon the chunks according their priorities */
sctp_prsctp_prune(struct sctp_association * asoc,struct sctp_sndrcvinfo * sinfo,int msg_len)438 void sctp_prsctp_prune(struct sctp_association *asoc,
439 struct sctp_sndrcvinfo *sinfo, int msg_len)
440 {
441 struct sctp_transport *transport;
442
443 if (!asoc->peer.prsctp_capable || !asoc->sent_cnt_removable)
444 return;
445
446 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
447 &asoc->outqueue.retransmit,
448 msg_len);
449 if (msg_len <= 0)
450 return;
451
452 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
453 transports) {
454 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
455 &transport->transmitted,
456 msg_len);
457 if (msg_len <= 0)
458 return;
459 }
460
461 sctp_prsctp_prune_unsent(asoc, sinfo, msg_len);
462 }
463
464 /* Mark all the eligible packets on a transport for retransmission. */
sctp_retransmit_mark(struct sctp_outq * q,struct sctp_transport * transport,__u8 reason)465 void sctp_retransmit_mark(struct sctp_outq *q,
466 struct sctp_transport *transport,
467 __u8 reason)
468 {
469 struct list_head *lchunk, *ltemp;
470 struct sctp_chunk *chunk;
471
472 /* Walk through the specified transmitted queue. */
473 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
474 chunk = list_entry(lchunk, struct sctp_chunk,
475 transmitted_list);
476
477 /* If the chunk is abandoned, move it to abandoned list. */
478 if (sctp_chunk_abandoned(chunk)) {
479 list_del_init(lchunk);
480 sctp_insert_list(&q->abandoned, lchunk);
481
482 /* If this chunk has not been previousely acked,
483 * stop considering it 'outstanding'. Our peer
484 * will most likely never see it since it will
485 * not be retransmitted
486 */
487 if (!chunk->tsn_gap_acked) {
488 if (chunk->transport)
489 chunk->transport->flight_size -=
490 sctp_data_size(chunk);
491 q->outstanding_bytes -= sctp_data_size(chunk);
492 q->asoc->peer.rwnd += sctp_data_size(chunk);
493 }
494 continue;
495 }
496
497 /* If we are doing retransmission due to a timeout or pmtu
498 * discovery, only the chunks that are not yet acked should
499 * be added to the retransmit queue.
500 */
501 if ((reason == SCTP_RTXR_FAST_RTX &&
502 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
503 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
504 /* RFC 2960 6.2.1 Processing a Received SACK
505 *
506 * C) Any time a DATA chunk is marked for
507 * retransmission (via either T3-rtx timer expiration
508 * (Section 6.3.3) or via fast retransmit
509 * (Section 7.2.4)), add the data size of those
510 * chunks to the rwnd.
511 */
512 q->asoc->peer.rwnd += sctp_data_size(chunk);
513 q->outstanding_bytes -= sctp_data_size(chunk);
514 if (chunk->transport)
515 transport->flight_size -= sctp_data_size(chunk);
516
517 /* sctpimpguide-05 Section 2.8.2
518 * M5) If a T3-rtx timer expires, the
519 * 'TSN.Missing.Report' of all affected TSNs is set
520 * to 0.
521 */
522 chunk->tsn_missing_report = 0;
523
524 /* If a chunk that is being used for RTT measurement
525 * has to be retransmitted, we cannot use this chunk
526 * anymore for RTT measurements. Reset rto_pending so
527 * that a new RTT measurement is started when a new
528 * data chunk is sent.
529 */
530 if (chunk->rtt_in_progress) {
531 chunk->rtt_in_progress = 0;
532 transport->rto_pending = 0;
533 }
534
535 /* Move the chunk to the retransmit queue. The chunks
536 * on the retransmit queue are always kept in order.
537 */
538 list_del_init(lchunk);
539 sctp_insert_list(&q->retransmit, lchunk);
540 }
541 }
542
543 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
544 "flight_size:%d, pba:%d\n", __func__, transport, reason,
545 transport->cwnd, transport->ssthresh, transport->flight_size,
546 transport->partial_bytes_acked);
547 }
548
549 /* Mark all the eligible packets on a transport for retransmission and force
550 * one packet out.
551 */
sctp_retransmit(struct sctp_outq * q,struct sctp_transport * transport,enum sctp_retransmit_reason reason)552 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
553 enum sctp_retransmit_reason reason)
554 {
555 struct net *net = sock_net(q->asoc->base.sk);
556
557 switch (reason) {
558 case SCTP_RTXR_T3_RTX:
559 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
560 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
561 /* Update the retran path if the T3-rtx timer has expired for
562 * the current retran path.
563 */
564 if (transport == transport->asoc->peer.retran_path)
565 sctp_assoc_update_retran_path(transport->asoc);
566 transport->asoc->rtx_data_chunks +=
567 transport->asoc->unack_data;
568 break;
569 case SCTP_RTXR_FAST_RTX:
570 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
571 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
572 q->fast_rtx = 1;
573 break;
574 case SCTP_RTXR_PMTUD:
575 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
576 break;
577 case SCTP_RTXR_T1_RTX:
578 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
579 transport->asoc->init_retries++;
580 break;
581 default:
582 BUG();
583 }
584
585 sctp_retransmit_mark(q, transport, reason);
586
587 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
588 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
589 * following the procedures outlined in C1 - C5.
590 */
591 if (reason == SCTP_RTXR_T3_RTX)
592 q->asoc->stream.si->generate_ftsn(q, q->asoc->ctsn_ack_point);
593
594 /* Flush the queues only on timeout, since fast_rtx is only
595 * triggered during sack processing and the queue
596 * will be flushed at the end.
597 */
598 if (reason != SCTP_RTXR_FAST_RTX)
599 sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
600 }
601
602 /*
603 * Transmit DATA chunks on the retransmit queue. Upon return from
604 * __sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
605 * need to be transmitted by the caller.
606 * We assume that pkt->transport has already been set.
607 *
608 * The return value is a normal kernel error return value.
609 */
__sctp_outq_flush_rtx(struct sctp_outq * q,struct sctp_packet * pkt,int rtx_timeout,int * start_timer,gfp_t gfp)610 static int __sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
611 int rtx_timeout, int *start_timer, gfp_t gfp)
612 {
613 struct sctp_transport *transport = pkt->transport;
614 struct sctp_chunk *chunk, *chunk1;
615 struct list_head *lqueue;
616 enum sctp_xmit status;
617 int error = 0;
618 int timer = 0;
619 int done = 0;
620 int fast_rtx;
621
622 lqueue = &q->retransmit;
623 fast_rtx = q->fast_rtx;
624
625 /* This loop handles time-out retransmissions, fast retransmissions,
626 * and retransmissions due to opening of whindow.
627 *
628 * RFC 2960 6.3.3 Handle T3-rtx Expiration
629 *
630 * E3) Determine how many of the earliest (i.e., lowest TSN)
631 * outstanding DATA chunks for the address for which the
632 * T3-rtx has expired will fit into a single packet, subject
633 * to the MTU constraint for the path corresponding to the
634 * destination transport address to which the retransmission
635 * is being sent (this may be different from the address for
636 * which the timer expires [see Section 6.4]). Call this value
637 * K. Bundle and retransmit those K DATA chunks in a single
638 * packet to the destination endpoint.
639 *
640 * [Just to be painfully clear, if we are retransmitting
641 * because a timeout just happened, we should send only ONE
642 * packet of retransmitted data.]
643 *
644 * For fast retransmissions we also send only ONE packet. However,
645 * if we are just flushing the queue due to open window, we'll
646 * try to send as much as possible.
647 */
648 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
649 /* If the chunk is abandoned, move it to abandoned list. */
650 if (sctp_chunk_abandoned(chunk)) {
651 list_del_init(&chunk->transmitted_list);
652 sctp_insert_list(&q->abandoned,
653 &chunk->transmitted_list);
654 continue;
655 }
656
657 /* Make sure that Gap Acked TSNs are not retransmitted. A
658 * simple approach is just to move such TSNs out of the
659 * way and into a 'transmitted' queue and skip to the
660 * next chunk.
661 */
662 if (chunk->tsn_gap_acked) {
663 list_move_tail(&chunk->transmitted_list,
664 &transport->transmitted);
665 continue;
666 }
667
668 /* If we are doing fast retransmit, ignore non-fast_rtransmit
669 * chunks
670 */
671 if (fast_rtx && !chunk->fast_retransmit)
672 continue;
673
674 redo:
675 /* Attempt to append this chunk to the packet. */
676 status = sctp_packet_append_chunk(pkt, chunk);
677
678 switch (status) {
679 case SCTP_XMIT_PMTU_FULL:
680 if (!pkt->has_data && !pkt->has_cookie_echo) {
681 /* If this packet did not contain DATA then
682 * retransmission did not happen, so do it
683 * again. We'll ignore the error here since
684 * control chunks are already freed so there
685 * is nothing we can do.
686 */
687 sctp_packet_transmit(pkt, gfp);
688 goto redo;
689 }
690
691 /* Send this packet. */
692 error = sctp_packet_transmit(pkt, gfp);
693
694 /* If we are retransmitting, we should only
695 * send a single packet.
696 * Otherwise, try appending this chunk again.
697 */
698 if (rtx_timeout || fast_rtx)
699 done = 1;
700 else
701 goto redo;
702
703 /* Bundle next chunk in the next round. */
704 break;
705
706 case SCTP_XMIT_RWND_FULL:
707 /* Send this packet. */
708 error = sctp_packet_transmit(pkt, gfp);
709
710 /* Stop sending DATA as there is no more room
711 * at the receiver.
712 */
713 done = 1;
714 break;
715
716 case SCTP_XMIT_DELAY:
717 /* Send this packet. */
718 error = sctp_packet_transmit(pkt, gfp);
719
720 /* Stop sending DATA because of nagle delay. */
721 done = 1;
722 break;
723
724 default:
725 /* The append was successful, so add this chunk to
726 * the transmitted list.
727 */
728 list_move_tail(&chunk->transmitted_list,
729 &transport->transmitted);
730
731 /* Mark the chunk as ineligible for fast retransmit
732 * after it is retransmitted.
733 */
734 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
735 chunk->fast_retransmit = SCTP_DONT_FRTX;
736
737 q->asoc->stats.rtxchunks++;
738 break;
739 }
740
741 /* Set the timer if there were no errors */
742 if (!error && !timer)
743 timer = 1;
744
745 if (done)
746 break;
747 }
748
749 /* If we are here due to a retransmit timeout or a fast
750 * retransmit and if there are any chunks left in the retransmit
751 * queue that could not fit in the PMTU sized packet, they need
752 * to be marked as ineligible for a subsequent fast retransmit.
753 */
754 if (rtx_timeout || fast_rtx) {
755 list_for_each_entry(chunk1, lqueue, transmitted_list) {
756 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
757 chunk1->fast_retransmit = SCTP_DONT_FRTX;
758 }
759 }
760
761 *start_timer = timer;
762
763 /* Clear fast retransmit hint */
764 if (fast_rtx)
765 q->fast_rtx = 0;
766
767 return error;
768 }
769
770 /* Cork the outqueue so queued chunks are really queued. */
sctp_outq_uncork(struct sctp_outq * q,gfp_t gfp)771 void sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
772 {
773 if (q->cork)
774 q->cork = 0;
775
776 sctp_outq_flush(q, 0, gfp);
777 }
778
sctp_packet_singleton(struct sctp_transport * transport,struct sctp_chunk * chunk,gfp_t gfp)779 static int sctp_packet_singleton(struct sctp_transport *transport,
780 struct sctp_chunk *chunk, gfp_t gfp)
781 {
782 const struct sctp_association *asoc = transport->asoc;
783 const __u16 sport = asoc->base.bind_addr.port;
784 const __u16 dport = asoc->peer.port;
785 const __u32 vtag = asoc->peer.i.init_tag;
786 struct sctp_packet singleton;
787
788 sctp_packet_init(&singleton, transport, sport, dport);
789 sctp_packet_config(&singleton, vtag, 0);
790 sctp_packet_append_chunk(&singleton, chunk);
791 return sctp_packet_transmit(&singleton, gfp);
792 }
793
794 /* Struct to hold the context during sctp outq flush */
795 struct sctp_flush_ctx {
796 struct sctp_outq *q;
797 /* Current transport being used. It's NOT the same as curr active one */
798 struct sctp_transport *transport;
799 /* These transports have chunks to send. */
800 struct list_head transport_list;
801 struct sctp_association *asoc;
802 /* Packet on the current transport above */
803 struct sctp_packet *packet;
804 gfp_t gfp;
805 };
806
807 /* transport: current transport */
sctp_outq_select_transport(struct sctp_flush_ctx * ctx,struct sctp_chunk * chunk)808 static void sctp_outq_select_transport(struct sctp_flush_ctx *ctx,
809 struct sctp_chunk *chunk)
810 {
811 struct sctp_transport *new_transport = chunk->transport;
812
813 if (!new_transport) {
814 if (!sctp_chunk_is_data(chunk)) {
815 /* If we have a prior transport pointer, see if
816 * the destination address of the chunk
817 * matches the destination address of the
818 * current transport. If not a match, then
819 * try to look up the transport with a given
820 * destination address. We do this because
821 * after processing ASCONFs, we may have new
822 * transports created.
823 */
824 if (ctx->transport && sctp_cmp_addr_exact(&chunk->dest,
825 &ctx->transport->ipaddr))
826 new_transport = ctx->transport;
827 else
828 new_transport = sctp_assoc_lookup_paddr(ctx->asoc,
829 &chunk->dest);
830 }
831
832 /* if we still don't have a new transport, then
833 * use the current active path.
834 */
835 if (!new_transport)
836 new_transport = ctx->asoc->peer.active_path;
837 } else {
838 __u8 type;
839
840 switch (new_transport->state) {
841 case SCTP_INACTIVE:
842 case SCTP_UNCONFIRMED:
843 case SCTP_PF:
844 /* If the chunk is Heartbeat or Heartbeat Ack,
845 * send it to chunk->transport, even if it's
846 * inactive.
847 *
848 * 3.3.6 Heartbeat Acknowledgement:
849 * ...
850 * A HEARTBEAT ACK is always sent to the source IP
851 * address of the IP datagram containing the
852 * HEARTBEAT chunk to which this ack is responding.
853 * ...
854 *
855 * ASCONF_ACKs also must be sent to the source.
856 */
857 type = chunk->chunk_hdr->type;
858 if (type != SCTP_CID_HEARTBEAT &&
859 type != SCTP_CID_HEARTBEAT_ACK &&
860 type != SCTP_CID_ASCONF_ACK)
861 new_transport = ctx->asoc->peer.active_path;
862 break;
863 default:
864 break;
865 }
866 }
867
868 /* Are we switching transports? Take care of transport locks. */
869 if (new_transport != ctx->transport) {
870 ctx->transport = new_transport;
871 ctx->packet = &ctx->transport->packet;
872
873 if (list_empty(&ctx->transport->send_ready))
874 list_add_tail(&ctx->transport->send_ready,
875 &ctx->transport_list);
876
877 sctp_packet_config(ctx->packet,
878 ctx->asoc->peer.i.init_tag,
879 ctx->asoc->peer.ecn_capable);
880 /* We've switched transports, so apply the
881 * Burst limit to the new transport.
882 */
883 sctp_transport_burst_limited(ctx->transport);
884 }
885 }
886
sctp_outq_flush_ctrl(struct sctp_flush_ctx * ctx)887 static void sctp_outq_flush_ctrl(struct sctp_flush_ctx *ctx)
888 {
889 struct sctp_chunk *chunk, *tmp;
890 enum sctp_xmit status;
891 int one_packet, error;
892
893 list_for_each_entry_safe(chunk, tmp, &ctx->q->control_chunk_list, list) {
894 one_packet = 0;
895
896 /* RFC 5061, 5.3
897 * F1) This means that until such time as the ASCONF
898 * containing the add is acknowledged, the sender MUST
899 * NOT use the new IP address as a source for ANY SCTP
900 * packet except on carrying an ASCONF Chunk.
901 */
902 if (ctx->asoc->src_out_of_asoc_ok &&
903 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
904 continue;
905
906 list_del_init(&chunk->list);
907
908 /* Pick the right transport to use. Should always be true for
909 * the first chunk as we don't have a transport by then.
910 */
911 sctp_outq_select_transport(ctx, chunk);
912
913 switch (chunk->chunk_hdr->type) {
914 /* 6.10 Bundling
915 * ...
916 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
917 * COMPLETE with any other chunks. [Send them immediately.]
918 */
919 case SCTP_CID_INIT:
920 case SCTP_CID_INIT_ACK:
921 case SCTP_CID_SHUTDOWN_COMPLETE:
922 error = sctp_packet_singleton(ctx->transport, chunk,
923 ctx->gfp);
924 if (error < 0) {
925 ctx->asoc->base.sk->sk_err = -error;
926 return;
927 }
928 break;
929
930 case SCTP_CID_ABORT:
931 if (sctp_test_T_bit(chunk))
932 ctx->packet->vtag = ctx->asoc->c.my_vtag;
933 /* fallthru */
934
935 /* The following chunks are "response" chunks, i.e.
936 * they are generated in response to something we
937 * received. If we are sending these, then we can
938 * send only 1 packet containing these chunks.
939 */
940 case SCTP_CID_HEARTBEAT_ACK:
941 case SCTP_CID_SHUTDOWN_ACK:
942 case SCTP_CID_COOKIE_ACK:
943 case SCTP_CID_COOKIE_ECHO:
944 case SCTP_CID_ERROR:
945 case SCTP_CID_ECN_CWR:
946 case SCTP_CID_ASCONF_ACK:
947 one_packet = 1;
948 /* Fall through */
949
950 case SCTP_CID_SACK:
951 case SCTP_CID_HEARTBEAT:
952 case SCTP_CID_SHUTDOWN:
953 case SCTP_CID_ECN_ECNE:
954 case SCTP_CID_ASCONF:
955 case SCTP_CID_FWD_TSN:
956 case SCTP_CID_I_FWD_TSN:
957 case SCTP_CID_RECONF:
958 status = sctp_packet_transmit_chunk(ctx->packet, chunk,
959 one_packet, ctx->gfp);
960 if (status != SCTP_XMIT_OK) {
961 /* put the chunk back */
962 list_add(&chunk->list, &ctx->q->control_chunk_list);
963 break;
964 }
965
966 ctx->asoc->stats.octrlchunks++;
967 /* PR-SCTP C5) If a FORWARD TSN is sent, the
968 * sender MUST assure that at least one T3-rtx
969 * timer is running.
970 */
971 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN ||
972 chunk->chunk_hdr->type == SCTP_CID_I_FWD_TSN) {
973 sctp_transport_reset_t3_rtx(ctx->transport);
974 ctx->transport->last_time_sent = jiffies;
975 }
976
977 if (chunk == ctx->asoc->strreset_chunk)
978 sctp_transport_reset_reconf_timer(ctx->transport);
979
980 break;
981
982 default:
983 /* We built a chunk with an illegal type! */
984 BUG();
985 }
986 }
987 }
988
989 /* Returns false if new data shouldn't be sent */
sctp_outq_flush_rtx(struct sctp_flush_ctx * ctx,int rtx_timeout)990 static bool sctp_outq_flush_rtx(struct sctp_flush_ctx *ctx,
991 int rtx_timeout)
992 {
993 int error, start_timer = 0;
994
995 if (ctx->asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
996 return false;
997
998 if (ctx->transport != ctx->asoc->peer.retran_path) {
999 /* Switch transports & prepare the packet. */
1000 ctx->transport = ctx->asoc->peer.retran_path;
1001 ctx->packet = &ctx->transport->packet;
1002
1003 if (list_empty(&ctx->transport->send_ready))
1004 list_add_tail(&ctx->transport->send_ready,
1005 &ctx->transport_list);
1006
1007 sctp_packet_config(ctx->packet, ctx->asoc->peer.i.init_tag,
1008 ctx->asoc->peer.ecn_capable);
1009 }
1010
1011 error = __sctp_outq_flush_rtx(ctx->q, ctx->packet, rtx_timeout,
1012 &start_timer, ctx->gfp);
1013 if (error < 0)
1014 ctx->asoc->base.sk->sk_err = -error;
1015
1016 if (start_timer) {
1017 sctp_transport_reset_t3_rtx(ctx->transport);
1018 ctx->transport->last_time_sent = jiffies;
1019 }
1020
1021 /* This can happen on COOKIE-ECHO resend. Only
1022 * one chunk can get bundled with a COOKIE-ECHO.
1023 */
1024 if (ctx->packet->has_cookie_echo)
1025 return false;
1026
1027 /* Don't send new data if there is still data
1028 * waiting to retransmit.
1029 */
1030 if (!list_empty(&ctx->q->retransmit))
1031 return false;
1032
1033 return true;
1034 }
1035
sctp_outq_flush_data(struct sctp_flush_ctx * ctx,int rtx_timeout)1036 static void sctp_outq_flush_data(struct sctp_flush_ctx *ctx,
1037 int rtx_timeout)
1038 {
1039 struct sctp_chunk *chunk;
1040 enum sctp_xmit status;
1041
1042 /* Is it OK to send data chunks? */
1043 switch (ctx->asoc->state) {
1044 case SCTP_STATE_COOKIE_ECHOED:
1045 /* Only allow bundling when this packet has a COOKIE-ECHO
1046 * chunk.
1047 */
1048 if (!ctx->packet || !ctx->packet->has_cookie_echo)
1049 return;
1050
1051 /* fall through */
1052 case SCTP_STATE_ESTABLISHED:
1053 case SCTP_STATE_SHUTDOWN_PENDING:
1054 case SCTP_STATE_SHUTDOWN_RECEIVED:
1055 break;
1056
1057 default:
1058 /* Do nothing. */
1059 return;
1060 }
1061
1062 /* RFC 2960 6.1 Transmission of DATA Chunks
1063 *
1064 * C) When the time comes for the sender to transmit,
1065 * before sending new DATA chunks, the sender MUST
1066 * first transmit any outstanding DATA chunks which
1067 * are marked for retransmission (limited by the
1068 * current cwnd).
1069 */
1070 if (!list_empty(&ctx->q->retransmit) &&
1071 !sctp_outq_flush_rtx(ctx, rtx_timeout))
1072 return;
1073
1074 /* Apply Max.Burst limitation to the current transport in
1075 * case it will be used for new data. We are going to
1076 * rest it before we return, but we want to apply the limit
1077 * to the currently queued data.
1078 */
1079 if (ctx->transport)
1080 sctp_transport_burst_limited(ctx->transport);
1081
1082 /* Finally, transmit new packets. */
1083 while ((chunk = sctp_outq_dequeue_data(ctx->q)) != NULL) {
1084 __u32 sid = ntohs(chunk->subh.data_hdr->stream);
1085 __u8 stream_state = SCTP_SO(&ctx->asoc->stream, sid)->state;
1086
1087 /* Has this chunk expired? */
1088 if (sctp_chunk_abandoned(chunk)) {
1089 sctp_sched_dequeue_done(ctx->q, chunk);
1090 sctp_chunk_fail(chunk, 0);
1091 sctp_chunk_free(chunk);
1092 continue;
1093 }
1094
1095 if (stream_state == SCTP_STREAM_CLOSED) {
1096 sctp_outq_head_data(ctx->q, chunk);
1097 break;
1098 }
1099
1100 sctp_outq_select_transport(ctx, chunk);
1101
1102 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p skb->users:%d\n",
1103 __func__, ctx->q, chunk, chunk && chunk->chunk_hdr ?
1104 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1105 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1106 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1107 refcount_read(&chunk->skb->users) : -1);
1108
1109 /* Add the chunk to the packet. */
1110 status = sctp_packet_transmit_chunk(ctx->packet, chunk, 0,
1111 ctx->gfp);
1112 if (status != SCTP_XMIT_OK) {
1113 /* We could not append this chunk, so put
1114 * the chunk back on the output queue.
1115 */
1116 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1117 __func__, ntohl(chunk->subh.data_hdr->tsn),
1118 status);
1119
1120 sctp_outq_head_data(ctx->q, chunk);
1121 break;
1122 }
1123
1124 /* The sender is in the SHUTDOWN-PENDING state,
1125 * The sender MAY set the I-bit in the DATA
1126 * chunk header.
1127 */
1128 if (ctx->asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1129 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1130 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1131 ctx->asoc->stats.ouodchunks++;
1132 else
1133 ctx->asoc->stats.oodchunks++;
1134
1135 /* Only now it's safe to consider this
1136 * chunk as sent, sched-wise.
1137 */
1138 sctp_sched_dequeue_done(ctx->q, chunk);
1139
1140 list_add_tail(&chunk->transmitted_list,
1141 &ctx->transport->transmitted);
1142
1143 sctp_transport_reset_t3_rtx(ctx->transport);
1144 ctx->transport->last_time_sent = jiffies;
1145
1146 /* Only let one DATA chunk get bundled with a
1147 * COOKIE-ECHO chunk.
1148 */
1149 if (ctx->packet->has_cookie_echo)
1150 break;
1151 }
1152 }
1153
sctp_outq_flush_transports(struct sctp_flush_ctx * ctx)1154 static void sctp_outq_flush_transports(struct sctp_flush_ctx *ctx)
1155 {
1156 struct list_head *ltransport;
1157 struct sctp_packet *packet;
1158 struct sctp_transport *t;
1159 int error = 0;
1160
1161 while ((ltransport = sctp_list_dequeue(&ctx->transport_list)) != NULL) {
1162 t = list_entry(ltransport, struct sctp_transport, send_ready);
1163 packet = &t->packet;
1164 if (!sctp_packet_empty(packet)) {
1165 error = sctp_packet_transmit(packet, ctx->gfp);
1166 if (error < 0)
1167 ctx->q->asoc->base.sk->sk_err = -error;
1168 }
1169
1170 /* Clear the burst limited state, if any */
1171 sctp_transport_burst_reset(t);
1172 }
1173 }
1174
1175 /* Try to flush an outqueue.
1176 *
1177 * Description: Send everything in q which we legally can, subject to
1178 * congestion limitations.
1179 * * Note: This function can be called from multiple contexts so appropriate
1180 * locking concerns must be made. Today we use the sock lock to protect
1181 * this function.
1182 */
1183
sctp_outq_flush(struct sctp_outq * q,int rtx_timeout,gfp_t gfp)1184 static void sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
1185 {
1186 struct sctp_flush_ctx ctx = {
1187 .q = q,
1188 .transport = NULL,
1189 .transport_list = LIST_HEAD_INIT(ctx.transport_list),
1190 .asoc = q->asoc,
1191 .packet = NULL,
1192 .gfp = gfp,
1193 };
1194
1195 /* 6.10 Bundling
1196 * ...
1197 * When bundling control chunks with DATA chunks, an
1198 * endpoint MUST place control chunks first in the outbound
1199 * SCTP packet. The transmitter MUST transmit DATA chunks
1200 * within a SCTP packet in increasing order of TSN.
1201 * ...
1202 */
1203
1204 sctp_outq_flush_ctrl(&ctx);
1205
1206 if (q->asoc->src_out_of_asoc_ok)
1207 goto sctp_flush_out;
1208
1209 sctp_outq_flush_data(&ctx, rtx_timeout);
1210
1211 sctp_flush_out:
1212
1213 sctp_outq_flush_transports(&ctx);
1214 }
1215
1216 /* Update unack_data based on the incoming SACK chunk */
sctp_sack_update_unack_data(struct sctp_association * assoc,struct sctp_sackhdr * sack)1217 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1218 struct sctp_sackhdr *sack)
1219 {
1220 union sctp_sack_variable *frags;
1221 __u16 unack_data;
1222 int i;
1223
1224 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1225
1226 frags = sack->variable;
1227 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1228 unack_data -= ((ntohs(frags[i].gab.end) -
1229 ntohs(frags[i].gab.start) + 1));
1230 }
1231
1232 assoc->unack_data = unack_data;
1233 }
1234
1235 /* This is where we REALLY process a SACK.
1236 *
1237 * Process the SACK against the outqueue. Mostly, this just frees
1238 * things off the transmitted queue.
1239 */
sctp_outq_sack(struct sctp_outq * q,struct sctp_chunk * chunk)1240 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1241 {
1242 struct sctp_association *asoc = q->asoc;
1243 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1244 struct sctp_transport *transport;
1245 struct sctp_chunk *tchunk = NULL;
1246 struct list_head *lchunk, *transport_list, *temp;
1247 union sctp_sack_variable *frags = sack->variable;
1248 __u32 sack_ctsn, ctsn, tsn;
1249 __u32 highest_tsn, highest_new_tsn;
1250 __u32 sack_a_rwnd;
1251 unsigned int outstanding;
1252 struct sctp_transport *primary = asoc->peer.primary_path;
1253 int count_of_newacks = 0;
1254 int gap_ack_blocks;
1255 u8 accum_moved = 0;
1256
1257 /* Grab the association's destination address list. */
1258 transport_list = &asoc->peer.transport_addr_list;
1259
1260 sack_ctsn = ntohl(sack->cum_tsn_ack);
1261 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1262 asoc->stats.gapcnt += gap_ack_blocks;
1263 /*
1264 * SFR-CACC algorithm:
1265 * On receipt of a SACK the sender SHOULD execute the
1266 * following statements.
1267 *
1268 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1269 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1270 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1271 * all destinations.
1272 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1273 * is set the receiver of the SACK MUST take the following actions:
1274 *
1275 * A) Initialize the cacc_saw_newack to 0 for all destination
1276 * addresses.
1277 *
1278 * Only bother if changeover_active is set. Otherwise, this is
1279 * totally suboptimal to do on every SACK.
1280 */
1281 if (primary->cacc.changeover_active) {
1282 u8 clear_cycling = 0;
1283
1284 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1285 primary->cacc.changeover_active = 0;
1286 clear_cycling = 1;
1287 }
1288
1289 if (clear_cycling || gap_ack_blocks) {
1290 list_for_each_entry(transport, transport_list,
1291 transports) {
1292 if (clear_cycling)
1293 transport->cacc.cycling_changeover = 0;
1294 if (gap_ack_blocks)
1295 transport->cacc.cacc_saw_newack = 0;
1296 }
1297 }
1298 }
1299
1300 /* Get the highest TSN in the sack. */
1301 highest_tsn = sack_ctsn;
1302 if (gap_ack_blocks)
1303 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1304
1305 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1306 asoc->highest_sacked = highest_tsn;
1307
1308 highest_new_tsn = sack_ctsn;
1309
1310 /* Run through the retransmit queue. Credit bytes received
1311 * and free those chunks that we can.
1312 */
1313 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1314
1315 /* Run through the transmitted queue.
1316 * Credit bytes received and free those chunks which we can.
1317 *
1318 * This is a MASSIVE candidate for optimization.
1319 */
1320 list_for_each_entry(transport, transport_list, transports) {
1321 sctp_check_transmitted(q, &transport->transmitted,
1322 transport, &chunk->source, sack,
1323 &highest_new_tsn);
1324 /*
1325 * SFR-CACC algorithm:
1326 * C) Let count_of_newacks be the number of
1327 * destinations for which cacc_saw_newack is set.
1328 */
1329 if (transport->cacc.cacc_saw_newack)
1330 count_of_newacks++;
1331 }
1332
1333 /* Move the Cumulative TSN Ack Point if appropriate. */
1334 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1335 asoc->ctsn_ack_point = sack_ctsn;
1336 accum_moved = 1;
1337 }
1338
1339 if (gap_ack_blocks) {
1340
1341 if (asoc->fast_recovery && accum_moved)
1342 highest_new_tsn = highest_tsn;
1343
1344 list_for_each_entry(transport, transport_list, transports)
1345 sctp_mark_missing(q, &transport->transmitted, transport,
1346 highest_new_tsn, count_of_newacks);
1347 }
1348
1349 /* Update unack_data field in the assoc. */
1350 sctp_sack_update_unack_data(asoc, sack);
1351
1352 ctsn = asoc->ctsn_ack_point;
1353
1354 /* Throw away stuff rotting on the sack queue. */
1355 list_for_each_safe(lchunk, temp, &q->sacked) {
1356 tchunk = list_entry(lchunk, struct sctp_chunk,
1357 transmitted_list);
1358 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1359 if (TSN_lte(tsn, ctsn)) {
1360 list_del_init(&tchunk->transmitted_list);
1361 if (asoc->peer.prsctp_capable &&
1362 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1363 asoc->sent_cnt_removable--;
1364 sctp_chunk_free(tchunk);
1365 }
1366 }
1367
1368 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1369 * number of bytes still outstanding after processing the
1370 * Cumulative TSN Ack and the Gap Ack Blocks.
1371 */
1372
1373 sack_a_rwnd = ntohl(sack->a_rwnd);
1374 asoc->peer.zero_window_announced = !sack_a_rwnd;
1375 outstanding = q->outstanding_bytes;
1376
1377 if (outstanding < sack_a_rwnd)
1378 sack_a_rwnd -= outstanding;
1379 else
1380 sack_a_rwnd = 0;
1381
1382 asoc->peer.rwnd = sack_a_rwnd;
1383
1384 asoc->stream.si->generate_ftsn(q, sack_ctsn);
1385
1386 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1387 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1388 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1389 asoc->adv_peer_ack_point);
1390
1391 return sctp_outq_is_empty(q);
1392 }
1393
1394 /* Is the outqueue empty?
1395 * The queue is empty when we have not pending data, no in-flight data
1396 * and nothing pending retransmissions.
1397 */
sctp_outq_is_empty(const struct sctp_outq * q)1398 int sctp_outq_is_empty(const struct sctp_outq *q)
1399 {
1400 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1401 list_empty(&q->retransmit);
1402 }
1403
1404 /********************************************************************
1405 * 2nd Level Abstractions
1406 ********************************************************************/
1407
1408 /* Go through a transport's transmitted list or the association's retransmit
1409 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1410 * The retransmit list will not have an associated transport.
1411 *
1412 * I added coherent debug information output. --xguo
1413 *
1414 * Instead of printing 'sacked' or 'kept' for each TSN on the
1415 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1416 * KEPT TSN6-TSN7, etc.
1417 */
sctp_check_transmitted(struct sctp_outq * q,struct list_head * transmitted_queue,struct sctp_transport * transport,union sctp_addr * saddr,struct sctp_sackhdr * sack,__u32 * highest_new_tsn_in_sack)1418 static void sctp_check_transmitted(struct sctp_outq *q,
1419 struct list_head *transmitted_queue,
1420 struct sctp_transport *transport,
1421 union sctp_addr *saddr,
1422 struct sctp_sackhdr *sack,
1423 __u32 *highest_new_tsn_in_sack)
1424 {
1425 struct list_head *lchunk;
1426 struct sctp_chunk *tchunk;
1427 struct list_head tlist;
1428 __u32 tsn;
1429 __u32 sack_ctsn;
1430 __u32 rtt;
1431 __u8 restart_timer = 0;
1432 int bytes_acked = 0;
1433 int migrate_bytes = 0;
1434 bool forward_progress = false;
1435
1436 sack_ctsn = ntohl(sack->cum_tsn_ack);
1437
1438 INIT_LIST_HEAD(&tlist);
1439
1440 /* The while loop will skip empty transmitted queues. */
1441 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1442 tchunk = list_entry(lchunk, struct sctp_chunk,
1443 transmitted_list);
1444
1445 if (sctp_chunk_abandoned(tchunk)) {
1446 /* Move the chunk to abandoned list. */
1447 sctp_insert_list(&q->abandoned, lchunk);
1448
1449 /* If this chunk has not been acked, stop
1450 * considering it as 'outstanding'.
1451 */
1452 if (transmitted_queue != &q->retransmit &&
1453 !tchunk->tsn_gap_acked) {
1454 if (tchunk->transport)
1455 tchunk->transport->flight_size -=
1456 sctp_data_size(tchunk);
1457 q->outstanding_bytes -= sctp_data_size(tchunk);
1458 }
1459 continue;
1460 }
1461
1462 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1463 if (sctp_acked(sack, tsn)) {
1464 /* If this queue is the retransmit queue, the
1465 * retransmit timer has already reclaimed
1466 * the outstanding bytes for this chunk, so only
1467 * count bytes associated with a transport.
1468 */
1469 if (transport && !tchunk->tsn_gap_acked) {
1470 /* If this chunk is being used for RTT
1471 * measurement, calculate the RTT and update
1472 * the RTO using this value.
1473 *
1474 * 6.3.1 C5) Karn's algorithm: RTT measurements
1475 * MUST NOT be made using packets that were
1476 * retransmitted (and thus for which it is
1477 * ambiguous whether the reply was for the
1478 * first instance of the packet or a later
1479 * instance).
1480 */
1481 if (!sctp_chunk_retransmitted(tchunk) &&
1482 tchunk->rtt_in_progress) {
1483 tchunk->rtt_in_progress = 0;
1484 rtt = jiffies - tchunk->sent_at;
1485 sctp_transport_update_rto(transport,
1486 rtt);
1487 }
1488
1489 if (TSN_lte(tsn, sack_ctsn)) {
1490 /*
1491 * SFR-CACC algorithm:
1492 * 2) If the SACK contains gap acks
1493 * and the flag CHANGEOVER_ACTIVE is
1494 * set the receiver of the SACK MUST
1495 * take the following action:
1496 *
1497 * B) For each TSN t being acked that
1498 * has not been acked in any SACK so
1499 * far, set cacc_saw_newack to 1 for
1500 * the destination that the TSN was
1501 * sent to.
1502 */
1503 if (sack->num_gap_ack_blocks &&
1504 q->asoc->peer.primary_path->cacc.
1505 changeover_active)
1506 transport->cacc.cacc_saw_newack
1507 = 1;
1508 }
1509 }
1510
1511 /* If the chunk hasn't been marked as ACKED,
1512 * mark it and account bytes_acked if the
1513 * chunk had a valid transport (it will not
1514 * have a transport if ASCONF had deleted it
1515 * while DATA was outstanding).
1516 */
1517 if (!tchunk->tsn_gap_acked) {
1518 tchunk->tsn_gap_acked = 1;
1519 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1520 *highest_new_tsn_in_sack = tsn;
1521 bytes_acked += sctp_data_size(tchunk);
1522 if (!tchunk->transport)
1523 migrate_bytes += sctp_data_size(tchunk);
1524 forward_progress = true;
1525 }
1526
1527 if (TSN_lte(tsn, sack_ctsn)) {
1528 /* RFC 2960 6.3.2 Retransmission Timer Rules
1529 *
1530 * R3) Whenever a SACK is received
1531 * that acknowledges the DATA chunk
1532 * with the earliest outstanding TSN
1533 * for that address, restart T3-rtx
1534 * timer for that address with its
1535 * current RTO.
1536 */
1537 restart_timer = 1;
1538 forward_progress = true;
1539
1540 list_add_tail(&tchunk->transmitted_list,
1541 &q->sacked);
1542 } else {
1543 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1544 * M2) Each time a SACK arrives reporting
1545 * 'Stray DATA chunk(s)' record the highest TSN
1546 * reported as newly acknowledged, call this
1547 * value 'HighestTSNinSack'. A newly
1548 * acknowledged DATA chunk is one not
1549 * previously acknowledged in a SACK.
1550 *
1551 * When the SCTP sender of data receives a SACK
1552 * chunk that acknowledges, for the first time,
1553 * the receipt of a DATA chunk, all the still
1554 * unacknowledged DATA chunks whose TSN is
1555 * older than that newly acknowledged DATA
1556 * chunk, are qualified as 'Stray DATA chunks'.
1557 */
1558 list_add_tail(lchunk, &tlist);
1559 }
1560 } else {
1561 if (tchunk->tsn_gap_acked) {
1562 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1563 __func__, tsn);
1564
1565 tchunk->tsn_gap_acked = 0;
1566
1567 if (tchunk->transport)
1568 bytes_acked -= sctp_data_size(tchunk);
1569
1570 /* RFC 2960 6.3.2 Retransmission Timer Rules
1571 *
1572 * R4) Whenever a SACK is received missing a
1573 * TSN that was previously acknowledged via a
1574 * Gap Ack Block, start T3-rtx for the
1575 * destination address to which the DATA
1576 * chunk was originally
1577 * transmitted if it is not already running.
1578 */
1579 restart_timer = 1;
1580 }
1581
1582 list_add_tail(lchunk, &tlist);
1583 }
1584 }
1585
1586 if (transport) {
1587 if (bytes_acked) {
1588 struct sctp_association *asoc = transport->asoc;
1589
1590 /* We may have counted DATA that was migrated
1591 * to this transport due to DEL-IP operation.
1592 * Subtract those bytes, since the were never
1593 * send on this transport and shouldn't be
1594 * credited to this transport.
1595 */
1596 bytes_acked -= migrate_bytes;
1597
1598 /* 8.2. When an outstanding TSN is acknowledged,
1599 * the endpoint shall clear the error counter of
1600 * the destination transport address to which the
1601 * DATA chunk was last sent.
1602 * The association's overall error counter is
1603 * also cleared.
1604 */
1605 transport->error_count = 0;
1606 transport->asoc->overall_error_count = 0;
1607 forward_progress = true;
1608
1609 /*
1610 * While in SHUTDOWN PENDING, we may have started
1611 * the T5 shutdown guard timer after reaching the
1612 * retransmission limit. Stop that timer as soon
1613 * as the receiver acknowledged any data.
1614 */
1615 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1616 del_timer(&asoc->timers
1617 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1618 sctp_association_put(asoc);
1619
1620 /* Mark the destination transport address as
1621 * active if it is not so marked.
1622 */
1623 if ((transport->state == SCTP_INACTIVE ||
1624 transport->state == SCTP_UNCONFIRMED) &&
1625 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1626 sctp_assoc_control_transport(
1627 transport->asoc,
1628 transport,
1629 SCTP_TRANSPORT_UP,
1630 SCTP_RECEIVED_SACK);
1631 }
1632
1633 sctp_transport_raise_cwnd(transport, sack_ctsn,
1634 bytes_acked);
1635
1636 transport->flight_size -= bytes_acked;
1637 if (transport->flight_size == 0)
1638 transport->partial_bytes_acked = 0;
1639 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1640 } else {
1641 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1642 * When a sender is doing zero window probing, it
1643 * should not timeout the association if it continues
1644 * to receive new packets from the receiver. The
1645 * reason is that the receiver MAY keep its window
1646 * closed for an indefinite time.
1647 * A sender is doing zero window probing when the
1648 * receiver's advertised window is zero, and there is
1649 * only one data chunk in flight to the receiver.
1650 *
1651 * Allow the association to timeout while in SHUTDOWN
1652 * PENDING or SHUTDOWN RECEIVED in case the receiver
1653 * stays in zero window mode forever.
1654 */
1655 if (!q->asoc->peer.rwnd &&
1656 !list_empty(&tlist) &&
1657 (sack_ctsn+2 == q->asoc->next_tsn) &&
1658 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1659 pr_debug("%s: sack received for zero window "
1660 "probe:%u\n", __func__, sack_ctsn);
1661
1662 q->asoc->overall_error_count = 0;
1663 transport->error_count = 0;
1664 }
1665 }
1666
1667 /* RFC 2960 6.3.2 Retransmission Timer Rules
1668 *
1669 * R2) Whenever all outstanding data sent to an address have
1670 * been acknowledged, turn off the T3-rtx timer of that
1671 * address.
1672 */
1673 if (!transport->flight_size) {
1674 if (del_timer(&transport->T3_rtx_timer))
1675 sctp_transport_put(transport);
1676 } else if (restart_timer) {
1677 if (!mod_timer(&transport->T3_rtx_timer,
1678 jiffies + transport->rto))
1679 sctp_transport_hold(transport);
1680 }
1681
1682 if (forward_progress) {
1683 if (transport->dst)
1684 sctp_transport_dst_confirm(transport);
1685 }
1686 }
1687
1688 list_splice(&tlist, transmitted_queue);
1689 }
1690
1691 /* Mark chunks as missing and consequently may get retransmitted. */
sctp_mark_missing(struct sctp_outq * q,struct list_head * transmitted_queue,struct sctp_transport * transport,__u32 highest_new_tsn_in_sack,int count_of_newacks)1692 static void sctp_mark_missing(struct sctp_outq *q,
1693 struct list_head *transmitted_queue,
1694 struct sctp_transport *transport,
1695 __u32 highest_new_tsn_in_sack,
1696 int count_of_newacks)
1697 {
1698 struct sctp_chunk *chunk;
1699 __u32 tsn;
1700 char do_fast_retransmit = 0;
1701 struct sctp_association *asoc = q->asoc;
1702 struct sctp_transport *primary = asoc->peer.primary_path;
1703
1704 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1705
1706 tsn = ntohl(chunk->subh.data_hdr->tsn);
1707
1708 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1709 * 'Unacknowledged TSN's', if the TSN number of an
1710 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1711 * value, increment the 'TSN.Missing.Report' count on that
1712 * chunk if it has NOT been fast retransmitted or marked for
1713 * fast retransmit already.
1714 */
1715 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1716 !chunk->tsn_gap_acked &&
1717 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1718
1719 /* SFR-CACC may require us to skip marking
1720 * this chunk as missing.
1721 */
1722 if (!transport || !sctp_cacc_skip(primary,
1723 chunk->transport,
1724 count_of_newacks, tsn)) {
1725 chunk->tsn_missing_report++;
1726
1727 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1728 __func__, tsn, chunk->tsn_missing_report);
1729 }
1730 }
1731 /*
1732 * M4) If any DATA chunk is found to have a
1733 * 'TSN.Missing.Report'
1734 * value larger than or equal to 3, mark that chunk for
1735 * retransmission and start the fast retransmit procedure.
1736 */
1737
1738 if (chunk->tsn_missing_report >= 3) {
1739 chunk->fast_retransmit = SCTP_NEED_FRTX;
1740 do_fast_retransmit = 1;
1741 }
1742 }
1743
1744 if (transport) {
1745 if (do_fast_retransmit)
1746 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1747
1748 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1749 "flight_size:%d, pba:%d\n", __func__, transport,
1750 transport->cwnd, transport->ssthresh,
1751 transport->flight_size, transport->partial_bytes_acked);
1752 }
1753 }
1754
1755 /* Is the given TSN acked by this packet? */
sctp_acked(struct sctp_sackhdr * sack,__u32 tsn)1756 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1757 {
1758 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1759 union sctp_sack_variable *frags;
1760 __u16 tsn_offset, blocks;
1761 int i;
1762
1763 if (TSN_lte(tsn, ctsn))
1764 goto pass;
1765
1766 /* 3.3.4 Selective Acknowledgment (SACK) (3):
1767 *
1768 * Gap Ack Blocks:
1769 * These fields contain the Gap Ack Blocks. They are repeated
1770 * for each Gap Ack Block up to the number of Gap Ack Blocks
1771 * defined in the Number of Gap Ack Blocks field. All DATA
1772 * chunks with TSNs greater than or equal to (Cumulative TSN
1773 * Ack + Gap Ack Block Start) and less than or equal to
1774 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1775 * Block are assumed to have been received correctly.
1776 */
1777
1778 frags = sack->variable;
1779 blocks = ntohs(sack->num_gap_ack_blocks);
1780 tsn_offset = tsn - ctsn;
1781 for (i = 0; i < blocks; ++i) {
1782 if (tsn_offset >= ntohs(frags[i].gab.start) &&
1783 tsn_offset <= ntohs(frags[i].gab.end))
1784 goto pass;
1785 }
1786
1787 return 0;
1788 pass:
1789 return 1;
1790 }
1791
sctp_get_skip_pos(struct sctp_fwdtsn_skip * skiplist,int nskips,__be16 stream)1792 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1793 int nskips, __be16 stream)
1794 {
1795 int i;
1796
1797 for (i = 0; i < nskips; i++) {
1798 if (skiplist[i].stream == stream)
1799 return i;
1800 }
1801 return i;
1802 }
1803
1804 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
sctp_generate_fwdtsn(struct sctp_outq * q,__u32 ctsn)1805 void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1806 {
1807 struct sctp_association *asoc = q->asoc;
1808 struct sctp_chunk *ftsn_chunk = NULL;
1809 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1810 int nskips = 0;
1811 int skip_pos = 0;
1812 __u32 tsn;
1813 struct sctp_chunk *chunk;
1814 struct list_head *lchunk, *temp;
1815
1816 if (!asoc->peer.prsctp_capable)
1817 return;
1818
1819 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1820 * received SACK.
1821 *
1822 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1823 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1824 */
1825 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1826 asoc->adv_peer_ack_point = ctsn;
1827
1828 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1829 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1830 * the chunk next in the out-queue space is marked as "abandoned" as
1831 * shown in the following example:
1832 *
1833 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1834 * and the Advanced.Peer.Ack.Point is updated to this value:
1835 *
1836 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1837 * normal SACK processing local advancement
1838 * ... ...
1839 * Adv.Ack.Pt-> 102 acked 102 acked
1840 * 103 abandoned 103 abandoned
1841 * 104 abandoned Adv.Ack.P-> 104 abandoned
1842 * 105 105
1843 * 106 acked 106 acked
1844 * ... ...
1845 *
1846 * In this example, the data sender successfully advanced the
1847 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1848 */
1849 list_for_each_safe(lchunk, temp, &q->abandoned) {
1850 chunk = list_entry(lchunk, struct sctp_chunk,
1851 transmitted_list);
1852 tsn = ntohl(chunk->subh.data_hdr->tsn);
1853
1854 /* Remove any chunks in the abandoned queue that are acked by
1855 * the ctsn.
1856 */
1857 if (TSN_lte(tsn, ctsn)) {
1858 list_del_init(lchunk);
1859 sctp_chunk_free(chunk);
1860 } else {
1861 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1862 asoc->adv_peer_ack_point = tsn;
1863 if (chunk->chunk_hdr->flags &
1864 SCTP_DATA_UNORDERED)
1865 continue;
1866 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1867 nskips,
1868 chunk->subh.data_hdr->stream);
1869 ftsn_skip_arr[skip_pos].stream =
1870 chunk->subh.data_hdr->stream;
1871 ftsn_skip_arr[skip_pos].ssn =
1872 chunk->subh.data_hdr->ssn;
1873 if (skip_pos == nskips)
1874 nskips++;
1875 if (nskips == 10)
1876 break;
1877 } else
1878 break;
1879 }
1880 }
1881
1882 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1883 * is greater than the Cumulative TSN ACK carried in the received
1884 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1885 * chunk containing the latest value of the
1886 * "Advanced.Peer.Ack.Point".
1887 *
1888 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1889 * list each stream and sequence number in the forwarded TSN. This
1890 * information will enable the receiver to easily find any
1891 * stranded TSN's waiting on stream reorder queues. Each stream
1892 * SHOULD only be reported once; this means that if multiple
1893 * abandoned messages occur in the same stream then only the
1894 * highest abandoned stream sequence number is reported. If the
1895 * total size of the FORWARD TSN does NOT fit in a single MTU then
1896 * the sender of the FORWARD TSN SHOULD lower the
1897 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1898 * single MTU.
1899 */
1900 if (asoc->adv_peer_ack_point > ctsn)
1901 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1902 nskips, &ftsn_skip_arr[0]);
1903
1904 if (ftsn_chunk) {
1905 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1906 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);
1907 }
1908 }
1909