1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* SCTP kernel implementation
3 * (C) Copyright IBM Corp. 2001, 2004
4 * Copyright (c) 1999-2000 Cisco, Inc.
5 * Copyright (c) 1999-2001 Motorola, Inc.
6 * Copyright (c) 2001 Intel Corp.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
8 *
9 * This file is part of the SCTP kernel implementation
10 *
11 * This module provides the abstraction for an SCTP association.
12 *
13 * Please send any bug reports or fixes you make to the
14 * email address(es):
15 * lksctp developers <linux-sctp@vger.kernel.org>
16 *
17 * Written or modified by:
18 * La Monte H.P. Yarroll <piggy@acm.org>
19 * Karl Knutson <karl@athena.chicago.il.us>
20 * Jon Grimm <jgrimm@us.ibm.com>
21 * Xingang Guo <xingang.guo@intel.com>
22 * Hui Huang <hui.huang@nokia.com>
23 * Sridhar Samudrala <sri@us.ibm.com>
24 * Daisy Chang <daisyc@us.ibm.com>
25 * Ryan Layer <rmlayer@us.ibm.com>
26 * Kevin Gao <kevin.gao@intel.com>
27 */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/types.h>
32 #include <linux/fcntl.h>
33 #include <linux/poll.h>
34 #include <linux/init.h>
35
36 #include <linux/slab.h>
37 #include <linux/in.h>
38 #include <net/ipv6.h>
39 #include <net/sctp/sctp.h>
40 #include <net/sctp/sm.h>
41
42 /* Forward declarations for internal functions. */
43 static void sctp_select_active_and_retran_path(struct sctp_association *asoc);
44 static void sctp_assoc_bh_rcv(struct work_struct *work);
45 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc);
46 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc);
47
48 /* 1st Level Abstractions. */
49
50 /* Initialize a new association from provided memory. */
sctp_association_init(struct sctp_association * asoc,const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)51 static struct sctp_association *sctp_association_init(
52 struct sctp_association *asoc,
53 const struct sctp_endpoint *ep,
54 const struct sock *sk,
55 enum sctp_scope scope, gfp_t gfp)
56 {
57 struct sctp_sock *sp;
58 struct sctp_paramhdr *p;
59 int i;
60
61 /* Retrieve the SCTP per socket area. */
62 sp = sctp_sk((struct sock *)sk);
63
64 /* Discarding const is appropriate here. */
65 asoc->ep = (struct sctp_endpoint *)ep;
66 asoc->base.sk = (struct sock *)sk;
67 asoc->base.net = sock_net(sk);
68
69 sctp_endpoint_hold(asoc->ep);
70 sock_hold(asoc->base.sk);
71
72 /* Initialize the common base substructure. */
73 asoc->base.type = SCTP_EP_TYPE_ASSOCIATION;
74
75 /* Initialize the object handling fields. */
76 refcount_set(&asoc->base.refcnt, 1);
77
78 /* Initialize the bind addr area. */
79 sctp_bind_addr_init(&asoc->base.bind_addr, ep->base.bind_addr.port);
80
81 asoc->state = SCTP_STATE_CLOSED;
82 asoc->cookie_life = ms_to_ktime(sp->assocparams.sasoc_cookie_life);
83 asoc->user_frag = sp->user_frag;
84
85 /* Set the association max_retrans and RTO values from the
86 * socket values.
87 */
88 asoc->max_retrans = sp->assocparams.sasoc_asocmaxrxt;
89 asoc->pf_retrans = sp->pf_retrans;
90 asoc->ps_retrans = sp->ps_retrans;
91 asoc->pf_expose = sp->pf_expose;
92
93 asoc->rto_initial = msecs_to_jiffies(sp->rtoinfo.srto_initial);
94 asoc->rto_max = msecs_to_jiffies(sp->rtoinfo.srto_max);
95 asoc->rto_min = msecs_to_jiffies(sp->rtoinfo.srto_min);
96
97 /* Initialize the association's heartbeat interval based on the
98 * sock configured value.
99 */
100 asoc->hbinterval = msecs_to_jiffies(sp->hbinterval);
101 asoc->probe_interval = msecs_to_jiffies(sp->probe_interval);
102
103 asoc->encap_port = sp->encap_port;
104
105 /* Initialize path max retrans value. */
106 asoc->pathmaxrxt = sp->pathmaxrxt;
107
108 asoc->flowlabel = sp->flowlabel;
109 asoc->dscp = sp->dscp;
110
111 /* Set association default SACK delay */
112 asoc->sackdelay = msecs_to_jiffies(sp->sackdelay);
113 asoc->sackfreq = sp->sackfreq;
114
115 /* Set the association default flags controlling
116 * Heartbeat, SACK delay, and Path MTU Discovery.
117 */
118 asoc->param_flags = sp->param_flags;
119
120 /* Initialize the maximum number of new data packets that can be sent
121 * in a burst.
122 */
123 asoc->max_burst = sp->max_burst;
124
125 asoc->subscribe = sp->subscribe;
126
127 /* initialize association timers */
128 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = asoc->rto_initial;
129 asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = asoc->rto_initial;
130 asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = asoc->rto_initial;
131
132 /* sctpimpguide Section 2.12.2
133 * If the 'T5-shutdown-guard' timer is used, it SHOULD be set to the
134 * recommended value of 5 times 'RTO.Max'.
135 */
136 asoc->timeouts[SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]
137 = 5 * asoc->rto_max;
138
139 asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = asoc->sackdelay;
140 asoc->timeouts[SCTP_EVENT_TIMEOUT_AUTOCLOSE] = sp->autoclose * HZ;
141
142 /* Initializes the timers */
143 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i)
144 timer_setup(&asoc->timers[i], sctp_timer_events[i], 0);
145
146 /* Pull default initialization values from the sock options.
147 * Note: This assumes that the values have already been
148 * validated in the sock.
149 */
150 asoc->c.sinit_max_instreams = sp->initmsg.sinit_max_instreams;
151 asoc->c.sinit_num_ostreams = sp->initmsg.sinit_num_ostreams;
152 asoc->max_init_attempts = sp->initmsg.sinit_max_attempts;
153
154 asoc->max_init_timeo =
155 msecs_to_jiffies(sp->initmsg.sinit_max_init_timeo);
156
157 /* Set the local window size for receive.
158 * This is also the rcvbuf space per association.
159 * RFC 6 - A SCTP receiver MUST be able to receive a minimum of
160 * 1500 bytes in one SCTP packet.
161 */
162 if ((sk->sk_rcvbuf/2) < SCTP_DEFAULT_MINWINDOW)
163 asoc->rwnd = SCTP_DEFAULT_MINWINDOW;
164 else
165 asoc->rwnd = sk->sk_rcvbuf/2;
166
167 asoc->a_rwnd = asoc->rwnd;
168
169 /* Use my own max window until I learn something better. */
170 asoc->peer.rwnd = SCTP_DEFAULT_MAXWINDOW;
171
172 /* Initialize the receive memory counter */
173 atomic_set(&asoc->rmem_alloc, 0);
174
175 init_waitqueue_head(&asoc->wait);
176
177 asoc->c.my_vtag = sctp_generate_tag(ep);
178 asoc->c.my_port = ep->base.bind_addr.port;
179
180 asoc->c.initial_tsn = sctp_generate_tsn(ep);
181
182 asoc->next_tsn = asoc->c.initial_tsn;
183
184 asoc->ctsn_ack_point = asoc->next_tsn - 1;
185 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
186 asoc->highest_sacked = asoc->ctsn_ack_point;
187 asoc->last_cwr_tsn = asoc->ctsn_ack_point;
188
189 /* ADDIP Section 4.1 Asconf Chunk Procedures
190 *
191 * When an endpoint has an ASCONF signaled change to be sent to the
192 * remote endpoint it should do the following:
193 * ...
194 * A2) a serial number should be assigned to the chunk. The serial
195 * number SHOULD be a monotonically increasing number. The serial
196 * numbers SHOULD be initialized at the start of the
197 * association to the same value as the initial TSN.
198 */
199 asoc->addip_serial = asoc->c.initial_tsn;
200 asoc->strreset_outseq = asoc->c.initial_tsn;
201
202 INIT_LIST_HEAD(&asoc->addip_chunk_list);
203 INIT_LIST_HEAD(&asoc->asconf_ack_list);
204
205 /* Make an empty list of remote transport addresses. */
206 INIT_LIST_HEAD(&asoc->peer.transport_addr_list);
207
208 /* RFC 2960 5.1 Normal Establishment of an Association
209 *
210 * After the reception of the first data chunk in an
211 * association the endpoint must immediately respond with a
212 * sack to acknowledge the data chunk. Subsequent
213 * acknowledgements should be done as described in Section
214 * 6.2.
215 *
216 * [We implement this by telling a new association that it
217 * already received one packet.]
218 */
219 asoc->peer.sack_needed = 1;
220 asoc->peer.sack_generation = 1;
221
222 /* Create an input queue. */
223 sctp_inq_init(&asoc->base.inqueue);
224 sctp_inq_set_th_handler(&asoc->base.inqueue, sctp_assoc_bh_rcv);
225
226 /* Create an output queue. */
227 sctp_outq_init(asoc, &asoc->outqueue);
228
229 if (!sctp_ulpq_init(&asoc->ulpq, asoc))
230 goto fail_init;
231
232 if (sctp_stream_init(&asoc->stream, asoc->c.sinit_num_ostreams,
233 0, gfp))
234 goto fail_init;
235
236 /* Initialize default path MTU. */
237 asoc->pathmtu = sp->pathmtu;
238 sctp_assoc_update_frag_point(asoc);
239
240 /* Assume that peer would support both address types unless we are
241 * told otherwise.
242 */
243 asoc->peer.ipv4_address = 1;
244 if (asoc->base.sk->sk_family == PF_INET6)
245 asoc->peer.ipv6_address = 1;
246 INIT_LIST_HEAD(&asoc->asocs);
247
248 asoc->default_stream = sp->default_stream;
249 asoc->default_ppid = sp->default_ppid;
250 asoc->default_flags = sp->default_flags;
251 asoc->default_context = sp->default_context;
252 asoc->default_timetolive = sp->default_timetolive;
253 asoc->default_rcv_context = sp->default_rcv_context;
254
255 /* AUTH related initializations */
256 INIT_LIST_HEAD(&asoc->endpoint_shared_keys);
257 if (sctp_auth_asoc_copy_shkeys(ep, asoc, gfp))
258 goto stream_free;
259
260 asoc->active_key_id = ep->active_key_id;
261 asoc->strreset_enable = ep->strreset_enable;
262
263 /* Save the hmacs and chunks list into this association */
264 if (ep->auth_hmacs_list)
265 memcpy(asoc->c.auth_hmacs, ep->auth_hmacs_list,
266 ntohs(ep->auth_hmacs_list->param_hdr.length));
267 if (ep->auth_chunk_list)
268 memcpy(asoc->c.auth_chunks, ep->auth_chunk_list,
269 ntohs(ep->auth_chunk_list->param_hdr.length));
270
271 /* Get the AUTH random number for this association */
272 p = (struct sctp_paramhdr *)asoc->c.auth_random;
273 p->type = SCTP_PARAM_RANDOM;
274 p->length = htons(sizeof(*p) + SCTP_AUTH_RANDOM_LENGTH);
275 get_random_bytes(p+1, SCTP_AUTH_RANDOM_LENGTH);
276
277 return asoc;
278
279 stream_free:
280 sctp_stream_free(&asoc->stream);
281 fail_init:
282 sock_put(asoc->base.sk);
283 sctp_endpoint_put(asoc->ep);
284 return NULL;
285 }
286
287 /* Allocate and initialize a new association */
sctp_association_new(const struct sctp_endpoint * ep,const struct sock * sk,enum sctp_scope scope,gfp_t gfp)288 struct sctp_association *sctp_association_new(const struct sctp_endpoint *ep,
289 const struct sock *sk,
290 enum sctp_scope scope, gfp_t gfp)
291 {
292 struct sctp_association *asoc;
293
294 asoc = kzalloc(sizeof(*asoc), gfp);
295 if (!asoc)
296 goto fail;
297
298 if (!sctp_association_init(asoc, ep, sk, scope, gfp))
299 goto fail_init;
300
301 SCTP_DBG_OBJCNT_INC(assoc);
302
303 pr_debug("Created asoc %p\n", asoc);
304
305 return asoc;
306
307 fail_init:
308 kfree(asoc);
309 fail:
310 return NULL;
311 }
312
313 /* Free this association if possible. There may still be users, so
314 * the actual deallocation may be delayed.
315 */
sctp_association_free(struct sctp_association * asoc)316 void sctp_association_free(struct sctp_association *asoc)
317 {
318 struct sock *sk = asoc->base.sk;
319 struct sctp_transport *transport;
320 struct list_head *pos, *temp;
321 int i;
322
323 /* Only real associations count against the endpoint, so
324 * don't bother for if this is a temporary association.
325 */
326 if (!list_empty(&asoc->asocs)) {
327 list_del(&asoc->asocs);
328
329 /* Decrement the backlog value for a TCP-style listening
330 * socket.
331 */
332 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
333 sk_acceptq_removed(sk);
334 }
335
336 /* Mark as dead, so other users can know this structure is
337 * going away.
338 */
339 asoc->base.dead = true;
340
341 /* Dispose of any data lying around in the outqueue. */
342 sctp_outq_free(&asoc->outqueue);
343
344 /* Dispose of any pending messages for the upper layer. */
345 sctp_ulpq_free(&asoc->ulpq);
346
347 /* Dispose of any pending chunks on the inqueue. */
348 sctp_inq_free(&asoc->base.inqueue);
349
350 sctp_tsnmap_free(&asoc->peer.tsn_map);
351
352 /* Free stream information. */
353 sctp_stream_free(&asoc->stream);
354
355 if (asoc->strreset_chunk)
356 sctp_chunk_free(asoc->strreset_chunk);
357
358 /* Clean up the bound address list. */
359 sctp_bind_addr_free(&asoc->base.bind_addr);
360
361 /* Do we need to go through all of our timers and
362 * delete them? To be safe we will try to delete all, but we
363 * should be able to go through and make a guess based
364 * on our state.
365 */
366 for (i = SCTP_EVENT_TIMEOUT_NONE; i < SCTP_NUM_TIMEOUT_TYPES; ++i) {
367 if (del_timer(&asoc->timers[i]))
368 sctp_association_put(asoc);
369 }
370
371 /* Free peer's cached cookie. */
372 kfree(asoc->peer.cookie);
373 kfree(asoc->peer.peer_random);
374 kfree(asoc->peer.peer_chunks);
375 kfree(asoc->peer.peer_hmacs);
376
377 /* Release the transport structures. */
378 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
379 transport = list_entry(pos, struct sctp_transport, transports);
380 list_del_rcu(pos);
381 sctp_unhash_transport(transport);
382 sctp_transport_free(transport);
383 }
384
385 asoc->peer.transport_count = 0;
386
387 sctp_asconf_queue_teardown(asoc);
388
389 /* Free pending address space being deleted */
390 kfree(asoc->asconf_addr_del_pending);
391
392 /* AUTH - Free the endpoint shared keys */
393 sctp_auth_destroy_keys(&asoc->endpoint_shared_keys);
394
395 /* AUTH - Free the association shared key */
396 sctp_auth_key_put(asoc->asoc_shared_key);
397
398 sctp_association_put(asoc);
399 }
400
401 /* Cleanup and free up an association. */
sctp_association_destroy(struct sctp_association * asoc)402 static void sctp_association_destroy(struct sctp_association *asoc)
403 {
404 if (unlikely(!asoc->base.dead)) {
405 WARN(1, "Attempt to destroy undead association %p!\n", asoc);
406 return;
407 }
408
409 sctp_endpoint_put(asoc->ep);
410 sock_put(asoc->base.sk);
411
412 if (asoc->assoc_id != 0) {
413 spin_lock_bh(&sctp_assocs_id_lock);
414 idr_remove(&sctp_assocs_id, asoc->assoc_id);
415 spin_unlock_bh(&sctp_assocs_id_lock);
416 }
417
418 WARN_ON(atomic_read(&asoc->rmem_alloc));
419
420 kfree_rcu(asoc, rcu);
421 SCTP_DBG_OBJCNT_DEC(assoc);
422 }
423
424 /* Change the primary destination address for the peer. */
sctp_assoc_set_primary(struct sctp_association * asoc,struct sctp_transport * transport)425 void sctp_assoc_set_primary(struct sctp_association *asoc,
426 struct sctp_transport *transport)
427 {
428 int changeover = 0;
429
430 /* it's a changeover only if we already have a primary path
431 * that we are changing
432 */
433 if (asoc->peer.primary_path != NULL &&
434 asoc->peer.primary_path != transport)
435 changeover = 1 ;
436
437 asoc->peer.primary_path = transport;
438 sctp_ulpevent_notify_peer_addr_change(transport,
439 SCTP_ADDR_MADE_PRIM, 0);
440
441 /* Set a default msg_name for events. */
442 memcpy(&asoc->peer.primary_addr, &transport->ipaddr,
443 sizeof(union sctp_addr));
444
445 /* If the primary path is changing, assume that the
446 * user wants to use this new path.
447 */
448 if ((transport->state == SCTP_ACTIVE) ||
449 (transport->state == SCTP_UNKNOWN))
450 asoc->peer.active_path = transport;
451
452 /*
453 * SFR-CACC algorithm:
454 * Upon the receipt of a request to change the primary
455 * destination address, on the data structure for the new
456 * primary destination, the sender MUST do the following:
457 *
458 * 1) If CHANGEOVER_ACTIVE is set, then there was a switch
459 * to this destination address earlier. The sender MUST set
460 * CYCLING_CHANGEOVER to indicate that this switch is a
461 * double switch to the same destination address.
462 *
463 * Really, only bother is we have data queued or outstanding on
464 * the association.
465 */
466 if (!asoc->outqueue.outstanding_bytes && !asoc->outqueue.out_qlen)
467 return;
468
469 if (transport->cacc.changeover_active)
470 transport->cacc.cycling_changeover = changeover;
471
472 /* 2) The sender MUST set CHANGEOVER_ACTIVE to indicate that
473 * a changeover has occurred.
474 */
475 transport->cacc.changeover_active = changeover;
476
477 /* 3) The sender MUST store the next TSN to be sent in
478 * next_tsn_at_change.
479 */
480 transport->cacc.next_tsn_at_change = asoc->next_tsn;
481 }
482
483 /* Remove a transport from an association. */
sctp_assoc_rm_peer(struct sctp_association * asoc,struct sctp_transport * peer)484 void sctp_assoc_rm_peer(struct sctp_association *asoc,
485 struct sctp_transport *peer)
486 {
487 struct sctp_transport *transport;
488 struct list_head *pos;
489 struct sctp_chunk *ch;
490
491 pr_debug("%s: association:%p addr:%pISpc\n",
492 __func__, asoc, &peer->ipaddr.sa);
493
494 /* If we are to remove the current retran_path, update it
495 * to the next peer before removing this peer from the list.
496 */
497 if (asoc->peer.retran_path == peer)
498 sctp_assoc_update_retran_path(asoc);
499
500 /* Remove this peer from the list. */
501 list_del_rcu(&peer->transports);
502 /* Remove this peer from the transport hashtable */
503 sctp_unhash_transport(peer);
504
505 /* Get the first transport of asoc. */
506 pos = asoc->peer.transport_addr_list.next;
507 transport = list_entry(pos, struct sctp_transport, transports);
508
509 /* Update any entries that match the peer to be deleted. */
510 if (asoc->peer.primary_path == peer)
511 sctp_assoc_set_primary(asoc, transport);
512 if (asoc->peer.active_path == peer)
513 asoc->peer.active_path = transport;
514 if (asoc->peer.retran_path == peer)
515 asoc->peer.retran_path = transport;
516 if (asoc->peer.last_data_from == peer)
517 asoc->peer.last_data_from = transport;
518
519 if (asoc->strreset_chunk &&
520 asoc->strreset_chunk->transport == peer) {
521 asoc->strreset_chunk->transport = transport;
522 sctp_transport_reset_reconf_timer(transport);
523 }
524
525 /* If we remove the transport an INIT was last sent to, set it to
526 * NULL. Combined with the update of the retran path above, this
527 * will cause the next INIT to be sent to the next available
528 * transport, maintaining the cycle.
529 */
530 if (asoc->init_last_sent_to == peer)
531 asoc->init_last_sent_to = NULL;
532
533 /* If we remove the transport an SHUTDOWN was last sent to, set it
534 * to NULL. Combined with the update of the retran path above, this
535 * will cause the next SHUTDOWN to be sent to the next available
536 * transport, maintaining the cycle.
537 */
538 if (asoc->shutdown_last_sent_to == peer)
539 asoc->shutdown_last_sent_to = NULL;
540
541 /* If we remove the transport an ASCONF was last sent to, set it to
542 * NULL.
543 */
544 if (asoc->addip_last_asconf &&
545 asoc->addip_last_asconf->transport == peer)
546 asoc->addip_last_asconf->transport = NULL;
547
548 /* If we have something on the transmitted list, we have to
549 * save it off. The best place is the active path.
550 */
551 if (!list_empty(&peer->transmitted)) {
552 struct sctp_transport *active = asoc->peer.active_path;
553
554 /* Reset the transport of each chunk on this list */
555 list_for_each_entry(ch, &peer->transmitted,
556 transmitted_list) {
557 ch->transport = NULL;
558 ch->rtt_in_progress = 0;
559 }
560
561 list_splice_tail_init(&peer->transmitted,
562 &active->transmitted);
563
564 /* Start a T3 timer here in case it wasn't running so
565 * that these migrated packets have a chance to get
566 * retransmitted.
567 */
568 if (!timer_pending(&active->T3_rtx_timer))
569 if (!mod_timer(&active->T3_rtx_timer,
570 jiffies + active->rto))
571 sctp_transport_hold(active);
572 }
573
574 list_for_each_entry(ch, &asoc->outqueue.out_chunk_list, list)
575 if (ch->transport == peer)
576 ch->transport = NULL;
577
578 asoc->peer.transport_count--;
579
580 sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_REMOVED, 0);
581 sctp_transport_free(peer);
582 }
583
584 /* Add a transport address to an association. */
sctp_assoc_add_peer(struct sctp_association * asoc,const union sctp_addr * addr,const gfp_t gfp,const int peer_state)585 struct sctp_transport *sctp_assoc_add_peer(struct sctp_association *asoc,
586 const union sctp_addr *addr,
587 const gfp_t gfp,
588 const int peer_state)
589 {
590 struct sctp_transport *peer;
591 struct sctp_sock *sp;
592 unsigned short port;
593
594 sp = sctp_sk(asoc->base.sk);
595
596 /* AF_INET and AF_INET6 share common port field. */
597 port = ntohs(addr->v4.sin_port);
598
599 pr_debug("%s: association:%p addr:%pISpc state:%d\n", __func__,
600 asoc, &addr->sa, peer_state);
601
602 /* Set the port if it has not been set yet. */
603 if (0 == asoc->peer.port)
604 asoc->peer.port = port;
605
606 /* Check to see if this is a duplicate. */
607 peer = sctp_assoc_lookup_paddr(asoc, addr);
608 if (peer) {
609 /* An UNKNOWN state is only set on transports added by
610 * user in sctp_connectx() call. Such transports should be
611 * considered CONFIRMED per RFC 4960, Section 5.4.
612 */
613 if (peer->state == SCTP_UNKNOWN) {
614 peer->state = SCTP_ACTIVE;
615 }
616 return peer;
617 }
618
619 peer = sctp_transport_new(asoc->base.net, addr, gfp);
620 if (!peer)
621 return NULL;
622
623 sctp_transport_set_owner(peer, asoc);
624
625 /* Initialize the peer's heartbeat interval based on the
626 * association configured value.
627 */
628 peer->hbinterval = asoc->hbinterval;
629 peer->probe_interval = asoc->probe_interval;
630
631 peer->encap_port = asoc->encap_port;
632
633 /* Set the path max_retrans. */
634 peer->pathmaxrxt = asoc->pathmaxrxt;
635
636 /* And the partial failure retrans threshold */
637 peer->pf_retrans = asoc->pf_retrans;
638 /* And the primary path switchover retrans threshold */
639 peer->ps_retrans = asoc->ps_retrans;
640
641 /* Initialize the peer's SACK delay timeout based on the
642 * association configured value.
643 */
644 peer->sackdelay = asoc->sackdelay;
645 peer->sackfreq = asoc->sackfreq;
646
647 if (addr->sa.sa_family == AF_INET6) {
648 __be32 info = addr->v6.sin6_flowinfo;
649
650 if (info) {
651 peer->flowlabel = ntohl(info & IPV6_FLOWLABEL_MASK);
652 peer->flowlabel |= SCTP_FLOWLABEL_SET_MASK;
653 } else {
654 peer->flowlabel = asoc->flowlabel;
655 }
656 }
657 peer->dscp = asoc->dscp;
658
659 /* Enable/disable heartbeat, SACK delay, and path MTU discovery
660 * based on association setting.
661 */
662 peer->param_flags = asoc->param_flags;
663
664 /* Initialize the pmtu of the transport. */
665 sctp_transport_route(peer, NULL, sp);
666
667 /* If this is the first transport addr on this association,
668 * initialize the association PMTU to the peer's PMTU.
669 * If not and the current association PMTU is higher than the new
670 * peer's PMTU, reset the association PMTU to the new peer's PMTU.
671 */
672 sctp_assoc_set_pmtu(asoc, asoc->pathmtu ?
673 min_t(int, peer->pathmtu, asoc->pathmtu) :
674 peer->pathmtu);
675
676 peer->pmtu_pending = 0;
677
678 /* The asoc->peer.port might not be meaningful yet, but
679 * initialize the packet structure anyway.
680 */
681 sctp_packet_init(&peer->packet, peer, asoc->base.bind_addr.port,
682 asoc->peer.port);
683
684 /* 7.2.1 Slow-Start
685 *
686 * o The initial cwnd before DATA transmission or after a sufficiently
687 * long idle period MUST be set to
688 * min(4*MTU, max(2*MTU, 4380 bytes))
689 *
690 * o The initial value of ssthresh MAY be arbitrarily high
691 * (for example, implementations MAY use the size of the
692 * receiver advertised window).
693 */
694 peer->cwnd = min(4*asoc->pathmtu, max_t(__u32, 2*asoc->pathmtu, 4380));
695
696 /* At this point, we may not have the receiver's advertised window,
697 * so initialize ssthresh to the default value and it will be set
698 * later when we process the INIT.
699 */
700 peer->ssthresh = SCTP_DEFAULT_MAXWINDOW;
701
702 peer->partial_bytes_acked = 0;
703 peer->flight_size = 0;
704 peer->burst_limited = 0;
705
706 /* Set the transport's RTO.initial value */
707 peer->rto = asoc->rto_initial;
708 sctp_max_rto(asoc, peer);
709
710 /* Set the peer's active state. */
711 peer->state = peer_state;
712
713 /* Add this peer into the transport hashtable */
714 if (sctp_hash_transport(peer)) {
715 sctp_transport_free(peer);
716 return NULL;
717 }
718
719 sctp_transport_pl_reset(peer);
720
721 /* Attach the remote transport to our asoc. */
722 list_add_tail_rcu(&peer->transports, &asoc->peer.transport_addr_list);
723 asoc->peer.transport_count++;
724
725 sctp_ulpevent_notify_peer_addr_change(peer, SCTP_ADDR_ADDED, 0);
726
727 /* If we do not yet have a primary path, set one. */
728 if (!asoc->peer.primary_path) {
729 sctp_assoc_set_primary(asoc, peer);
730 asoc->peer.retran_path = peer;
731 }
732
733 if (asoc->peer.active_path == asoc->peer.retran_path &&
734 peer->state != SCTP_UNCONFIRMED) {
735 asoc->peer.retran_path = peer;
736 }
737
738 return peer;
739 }
740
741 /* Delete a transport address from an association. */
sctp_assoc_del_peer(struct sctp_association * asoc,const union sctp_addr * addr)742 void sctp_assoc_del_peer(struct sctp_association *asoc,
743 const union sctp_addr *addr)
744 {
745 struct list_head *pos;
746 struct list_head *temp;
747 struct sctp_transport *transport;
748
749 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
750 transport = list_entry(pos, struct sctp_transport, transports);
751 if (sctp_cmp_addr_exact(addr, &transport->ipaddr)) {
752 /* Do book keeping for removing the peer and free it. */
753 sctp_assoc_rm_peer(asoc, transport);
754 break;
755 }
756 }
757 }
758
759 /* Lookup a transport by address. */
sctp_assoc_lookup_paddr(const struct sctp_association * asoc,const union sctp_addr * address)760 struct sctp_transport *sctp_assoc_lookup_paddr(
761 const struct sctp_association *asoc,
762 const union sctp_addr *address)
763 {
764 struct sctp_transport *t;
765
766 /* Cycle through all transports searching for a peer address. */
767
768 list_for_each_entry(t, &asoc->peer.transport_addr_list,
769 transports) {
770 if (sctp_cmp_addr_exact(address, &t->ipaddr))
771 return t;
772 }
773
774 return NULL;
775 }
776
777 /* Remove all transports except a give one */
sctp_assoc_del_nonprimary_peers(struct sctp_association * asoc,struct sctp_transport * primary)778 void sctp_assoc_del_nonprimary_peers(struct sctp_association *asoc,
779 struct sctp_transport *primary)
780 {
781 struct sctp_transport *temp;
782 struct sctp_transport *t;
783
784 list_for_each_entry_safe(t, temp, &asoc->peer.transport_addr_list,
785 transports) {
786 /* if the current transport is not the primary one, delete it */
787 if (t != primary)
788 sctp_assoc_rm_peer(asoc, t);
789 }
790 }
791
792 /* Engage in transport control operations.
793 * Mark the transport up or down and send a notification to the user.
794 * Select and update the new active and retran paths.
795 */
sctp_assoc_control_transport(struct sctp_association * asoc,struct sctp_transport * transport,enum sctp_transport_cmd command,sctp_sn_error_t error)796 void sctp_assoc_control_transport(struct sctp_association *asoc,
797 struct sctp_transport *transport,
798 enum sctp_transport_cmd command,
799 sctp_sn_error_t error)
800 {
801 int spc_state = SCTP_ADDR_AVAILABLE;
802 bool ulp_notify = true;
803
804 /* Record the transition on the transport. */
805 switch (command) {
806 case SCTP_TRANSPORT_UP:
807 /* If we are moving from UNCONFIRMED state due
808 * to heartbeat success, report the SCTP_ADDR_CONFIRMED
809 * state to the user, otherwise report SCTP_ADDR_AVAILABLE.
810 */
811 if (transport->state == SCTP_PF &&
812 asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
813 ulp_notify = false;
814 else if (transport->state == SCTP_UNCONFIRMED &&
815 error == SCTP_HEARTBEAT_SUCCESS)
816 spc_state = SCTP_ADDR_CONFIRMED;
817
818 transport->state = SCTP_ACTIVE;
819 sctp_transport_pl_reset(transport);
820 break;
821
822 case SCTP_TRANSPORT_DOWN:
823 /* If the transport was never confirmed, do not transition it
824 * to inactive state. Also, release the cached route since
825 * there may be a better route next time.
826 */
827 if (transport->state != SCTP_UNCONFIRMED) {
828 transport->state = SCTP_INACTIVE;
829 sctp_transport_pl_reset(transport);
830 spc_state = SCTP_ADDR_UNREACHABLE;
831 } else {
832 sctp_transport_dst_release(transport);
833 ulp_notify = false;
834 }
835 break;
836
837 case SCTP_TRANSPORT_PF:
838 transport->state = SCTP_PF;
839 if (asoc->pf_expose != SCTP_PF_EXPOSE_ENABLE)
840 ulp_notify = false;
841 else
842 spc_state = SCTP_ADDR_POTENTIALLY_FAILED;
843 break;
844
845 default:
846 return;
847 }
848
849 /* Generate and send a SCTP_PEER_ADDR_CHANGE notification
850 * to the user.
851 */
852 if (ulp_notify)
853 sctp_ulpevent_notify_peer_addr_change(transport,
854 spc_state, error);
855
856 /* Select new active and retran paths. */
857 sctp_select_active_and_retran_path(asoc);
858 }
859
860 /* Hold a reference to an association. */
sctp_association_hold(struct sctp_association * asoc)861 void sctp_association_hold(struct sctp_association *asoc)
862 {
863 refcount_inc(&asoc->base.refcnt);
864 }
865
866 /* Release a reference to an association and cleanup
867 * if there are no more references.
868 */
sctp_association_put(struct sctp_association * asoc)869 void sctp_association_put(struct sctp_association *asoc)
870 {
871 if (refcount_dec_and_test(&asoc->base.refcnt))
872 sctp_association_destroy(asoc);
873 }
874
875 /* Allocate the next TSN, Transmission Sequence Number, for the given
876 * association.
877 */
sctp_association_get_next_tsn(struct sctp_association * asoc)878 __u32 sctp_association_get_next_tsn(struct sctp_association *asoc)
879 {
880 /* From Section 1.6 Serial Number Arithmetic:
881 * Transmission Sequence Numbers wrap around when they reach
882 * 2**32 - 1. That is, the next TSN a DATA chunk MUST use
883 * after transmitting TSN = 2*32 - 1 is TSN = 0.
884 */
885 __u32 retval = asoc->next_tsn;
886 asoc->next_tsn++;
887 asoc->unack_data++;
888
889 return retval;
890 }
891
892 /* Compare two addresses to see if they match. Wildcard addresses
893 * only match themselves.
894 */
sctp_cmp_addr_exact(const union sctp_addr * ss1,const union sctp_addr * ss2)895 int sctp_cmp_addr_exact(const union sctp_addr *ss1,
896 const union sctp_addr *ss2)
897 {
898 struct sctp_af *af;
899
900 af = sctp_get_af_specific(ss1->sa.sa_family);
901 if (unlikely(!af))
902 return 0;
903
904 return af->cmp_addr(ss1, ss2);
905 }
906
907 /* Return an ecne chunk to get prepended to a packet.
908 * Note: We are sly and return a shared, prealloced chunk. FIXME:
909 * No we don't, but we could/should.
910 */
sctp_get_ecne_prepend(struct sctp_association * asoc)911 struct sctp_chunk *sctp_get_ecne_prepend(struct sctp_association *asoc)
912 {
913 if (!asoc->need_ecne)
914 return NULL;
915
916 /* Send ECNE if needed.
917 * Not being able to allocate a chunk here is not deadly.
918 */
919 return sctp_make_ecne(asoc, asoc->last_ecne_tsn);
920 }
921
922 /*
923 * Find which transport this TSN was sent on.
924 */
sctp_assoc_lookup_tsn(struct sctp_association * asoc,__u32 tsn)925 struct sctp_transport *sctp_assoc_lookup_tsn(struct sctp_association *asoc,
926 __u32 tsn)
927 {
928 struct sctp_transport *active;
929 struct sctp_transport *match;
930 struct sctp_transport *transport;
931 struct sctp_chunk *chunk;
932 __be32 key = htonl(tsn);
933
934 match = NULL;
935
936 /*
937 * FIXME: In general, find a more efficient data structure for
938 * searching.
939 */
940
941 /*
942 * The general strategy is to search each transport's transmitted
943 * list. Return which transport this TSN lives on.
944 *
945 * Let's be hopeful and check the active_path first.
946 * Another optimization would be to know if there is only one
947 * outbound path and not have to look for the TSN at all.
948 *
949 */
950
951 active = asoc->peer.active_path;
952
953 list_for_each_entry(chunk, &active->transmitted,
954 transmitted_list) {
955
956 if (key == chunk->subh.data_hdr->tsn) {
957 match = active;
958 goto out;
959 }
960 }
961
962 /* If not found, go search all the other transports. */
963 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
964 transports) {
965
966 if (transport == active)
967 continue;
968 list_for_each_entry(chunk, &transport->transmitted,
969 transmitted_list) {
970 if (key == chunk->subh.data_hdr->tsn) {
971 match = transport;
972 goto out;
973 }
974 }
975 }
976 out:
977 return match;
978 }
979
980 /* Do delayed input processing. This is scheduled by sctp_rcv(). */
sctp_assoc_bh_rcv(struct work_struct * work)981 static void sctp_assoc_bh_rcv(struct work_struct *work)
982 {
983 struct sctp_association *asoc =
984 container_of(work, struct sctp_association,
985 base.inqueue.immediate);
986 struct net *net = asoc->base.net;
987 union sctp_subtype subtype;
988 struct sctp_endpoint *ep;
989 struct sctp_chunk *chunk;
990 struct sctp_inq *inqueue;
991 int first_time = 1; /* is this the first time through the loop */
992 int error = 0;
993 int state;
994
995 /* The association should be held so we should be safe. */
996 ep = asoc->ep;
997
998 inqueue = &asoc->base.inqueue;
999 sctp_association_hold(asoc);
1000 while (NULL != (chunk = sctp_inq_pop(inqueue))) {
1001 state = asoc->state;
1002 subtype = SCTP_ST_CHUNK(chunk->chunk_hdr->type);
1003
1004 /* If the first chunk in the packet is AUTH, do special
1005 * processing specified in Section 6.3 of SCTP-AUTH spec
1006 */
1007 if (first_time && subtype.chunk == SCTP_CID_AUTH) {
1008 struct sctp_chunkhdr *next_hdr;
1009
1010 next_hdr = sctp_inq_peek(inqueue);
1011 if (!next_hdr)
1012 goto normal;
1013
1014 /* If the next chunk is COOKIE-ECHO, skip the AUTH
1015 * chunk while saving a pointer to it so we can do
1016 * Authentication later (during cookie-echo
1017 * processing).
1018 */
1019 if (next_hdr->type == SCTP_CID_COOKIE_ECHO) {
1020 chunk->auth_chunk = skb_clone(chunk->skb,
1021 GFP_ATOMIC);
1022 chunk->auth = 1;
1023 continue;
1024 }
1025 }
1026
1027 normal:
1028 /* SCTP-AUTH, Section 6.3:
1029 * The receiver has a list of chunk types which it expects
1030 * to be received only after an AUTH-chunk. This list has
1031 * been sent to the peer during the association setup. It
1032 * MUST silently discard these chunks if they are not placed
1033 * after an AUTH chunk in the packet.
1034 */
1035 if (sctp_auth_recv_cid(subtype.chunk, asoc) && !chunk->auth)
1036 continue;
1037
1038 /* Remember where the last DATA chunk came from so we
1039 * know where to send the SACK.
1040 */
1041 if (sctp_chunk_is_data(chunk))
1042 asoc->peer.last_data_from = chunk->transport;
1043 else {
1044 SCTP_INC_STATS(net, SCTP_MIB_INCTRLCHUNKS);
1045 asoc->stats.ictrlchunks++;
1046 if (chunk->chunk_hdr->type == SCTP_CID_SACK)
1047 asoc->stats.isacks++;
1048 }
1049
1050 if (chunk->transport)
1051 chunk->transport->last_time_heard = ktime_get();
1052
1053 /* Run through the state machine. */
1054 error = sctp_do_sm(net, SCTP_EVENT_T_CHUNK, subtype,
1055 state, ep, asoc, chunk, GFP_ATOMIC);
1056
1057 /* Check to see if the association is freed in response to
1058 * the incoming chunk. If so, get out of the while loop.
1059 */
1060 if (asoc->base.dead)
1061 break;
1062
1063 /* If there is an error on chunk, discard this packet. */
1064 if (error && chunk)
1065 chunk->pdiscard = 1;
1066
1067 if (first_time)
1068 first_time = 0;
1069 }
1070 sctp_association_put(asoc);
1071 }
1072
1073 /* This routine moves an association from its old sk to a new sk. */
sctp_assoc_migrate(struct sctp_association * assoc,struct sock * newsk)1074 void sctp_assoc_migrate(struct sctp_association *assoc, struct sock *newsk)
1075 {
1076 struct sctp_sock *newsp = sctp_sk(newsk);
1077 struct sock *oldsk = assoc->base.sk;
1078
1079 /* Delete the association from the old endpoint's list of
1080 * associations.
1081 */
1082 list_del_init(&assoc->asocs);
1083
1084 /* Decrement the backlog value for a TCP-style socket. */
1085 if (sctp_style(oldsk, TCP))
1086 sk_acceptq_removed(oldsk);
1087
1088 /* Release references to the old endpoint and the sock. */
1089 sctp_endpoint_put(assoc->ep);
1090 sock_put(assoc->base.sk);
1091
1092 /* Get a reference to the new endpoint. */
1093 assoc->ep = newsp->ep;
1094 sctp_endpoint_hold(assoc->ep);
1095
1096 /* Get a reference to the new sock. */
1097 assoc->base.sk = newsk;
1098 sock_hold(assoc->base.sk);
1099
1100 /* Add the association to the new endpoint's list of associations. */
1101 sctp_endpoint_add_asoc(newsp->ep, assoc);
1102 }
1103
1104 /* Update an association (possibly from unexpected COOKIE-ECHO processing). */
sctp_assoc_update(struct sctp_association * asoc,struct sctp_association * new)1105 int sctp_assoc_update(struct sctp_association *asoc,
1106 struct sctp_association *new)
1107 {
1108 struct sctp_transport *trans;
1109 struct list_head *pos, *temp;
1110
1111 /* Copy in new parameters of peer. */
1112 asoc->c = new->c;
1113 asoc->peer.rwnd = new->peer.rwnd;
1114 asoc->peer.sack_needed = new->peer.sack_needed;
1115 asoc->peer.auth_capable = new->peer.auth_capable;
1116 asoc->peer.i = new->peer.i;
1117
1118 if (!sctp_tsnmap_init(&asoc->peer.tsn_map, SCTP_TSN_MAP_INITIAL,
1119 asoc->peer.i.initial_tsn, GFP_ATOMIC))
1120 return -ENOMEM;
1121
1122 /* Remove any peer addresses not present in the new association. */
1123 list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) {
1124 trans = list_entry(pos, struct sctp_transport, transports);
1125 if (!sctp_assoc_lookup_paddr(new, &trans->ipaddr)) {
1126 sctp_assoc_rm_peer(asoc, trans);
1127 continue;
1128 }
1129
1130 if (asoc->state >= SCTP_STATE_ESTABLISHED)
1131 sctp_transport_reset(trans);
1132 }
1133
1134 /* If the case is A (association restart), use
1135 * initial_tsn as next_tsn. If the case is B, use
1136 * current next_tsn in case data sent to peer
1137 * has been discarded and needs retransmission.
1138 */
1139 if (asoc->state >= SCTP_STATE_ESTABLISHED) {
1140 asoc->next_tsn = new->next_tsn;
1141 asoc->ctsn_ack_point = new->ctsn_ack_point;
1142 asoc->adv_peer_ack_point = new->adv_peer_ack_point;
1143
1144 /* Reinitialize SSN for both local streams
1145 * and peer's streams.
1146 */
1147 sctp_stream_clear(&asoc->stream);
1148
1149 /* Flush the ULP reassembly and ordered queue.
1150 * Any data there will now be stale and will
1151 * cause problems.
1152 */
1153 sctp_ulpq_flush(&asoc->ulpq);
1154
1155 /* reset the overall association error count so
1156 * that the restarted association doesn't get torn
1157 * down on the next retransmission timer.
1158 */
1159 asoc->overall_error_count = 0;
1160
1161 } else {
1162 /* Add any peer addresses from the new association. */
1163 list_for_each_entry(trans, &new->peer.transport_addr_list,
1164 transports)
1165 if (!sctp_assoc_lookup_paddr(asoc, &trans->ipaddr) &&
1166 !sctp_assoc_add_peer(asoc, &trans->ipaddr,
1167 GFP_ATOMIC, trans->state))
1168 return -ENOMEM;
1169
1170 asoc->ctsn_ack_point = asoc->next_tsn - 1;
1171 asoc->adv_peer_ack_point = asoc->ctsn_ack_point;
1172
1173 if (sctp_state(asoc, COOKIE_WAIT))
1174 sctp_stream_update(&asoc->stream, &new->stream);
1175
1176 /* get a new assoc id if we don't have one yet. */
1177 if (sctp_assoc_set_id(asoc, GFP_ATOMIC))
1178 return -ENOMEM;
1179 }
1180
1181 /* SCTP-AUTH: Save the peer parameters from the new associations
1182 * and also move the association shared keys over
1183 */
1184 kfree(asoc->peer.peer_random);
1185 asoc->peer.peer_random = new->peer.peer_random;
1186 new->peer.peer_random = NULL;
1187
1188 kfree(asoc->peer.peer_chunks);
1189 asoc->peer.peer_chunks = new->peer.peer_chunks;
1190 new->peer.peer_chunks = NULL;
1191
1192 kfree(asoc->peer.peer_hmacs);
1193 asoc->peer.peer_hmacs = new->peer.peer_hmacs;
1194 new->peer.peer_hmacs = NULL;
1195
1196 return sctp_auth_asoc_init_active_key(asoc, GFP_ATOMIC);
1197 }
1198
1199 /* Update the retran path for sending a retransmitted packet.
1200 * See also RFC4960, 6.4. Multi-Homed SCTP Endpoints:
1201 *
1202 * When there is outbound data to send and the primary path
1203 * becomes inactive (e.g., due to failures), or where the
1204 * SCTP user explicitly requests to send data to an
1205 * inactive destination transport address, before reporting
1206 * an error to its ULP, the SCTP endpoint should try to send
1207 * the data to an alternate active destination transport
1208 * address if one exists.
1209 *
1210 * When retransmitting data that timed out, if the endpoint
1211 * is multihomed, it should consider each source-destination
1212 * address pair in its retransmission selection policy.
1213 * When retransmitting timed-out data, the endpoint should
1214 * attempt to pick the most divergent source-destination
1215 * pair from the original source-destination pair to which
1216 * the packet was transmitted.
1217 *
1218 * Note: Rules for picking the most divergent source-destination
1219 * pair are an implementation decision and are not specified
1220 * within this document.
1221 *
1222 * Our basic strategy is to round-robin transports in priorities
1223 * according to sctp_trans_score() e.g., if no such
1224 * transport with state SCTP_ACTIVE exists, round-robin through
1225 * SCTP_UNKNOWN, etc. You get the picture.
1226 */
sctp_trans_score(const struct sctp_transport * trans)1227 static u8 sctp_trans_score(const struct sctp_transport *trans)
1228 {
1229 switch (trans->state) {
1230 case SCTP_ACTIVE:
1231 return 3; /* best case */
1232 case SCTP_UNKNOWN:
1233 return 2;
1234 case SCTP_PF:
1235 return 1;
1236 default: /* case SCTP_INACTIVE */
1237 return 0; /* worst case */
1238 }
1239 }
1240
sctp_trans_elect_tie(struct sctp_transport * trans1,struct sctp_transport * trans2)1241 static struct sctp_transport *sctp_trans_elect_tie(struct sctp_transport *trans1,
1242 struct sctp_transport *trans2)
1243 {
1244 if (trans1->error_count > trans2->error_count) {
1245 return trans2;
1246 } else if (trans1->error_count == trans2->error_count &&
1247 ktime_after(trans2->last_time_heard,
1248 trans1->last_time_heard)) {
1249 return trans2;
1250 } else {
1251 return trans1;
1252 }
1253 }
1254
sctp_trans_elect_best(struct sctp_transport * curr,struct sctp_transport * best)1255 static struct sctp_transport *sctp_trans_elect_best(struct sctp_transport *curr,
1256 struct sctp_transport *best)
1257 {
1258 u8 score_curr, score_best;
1259
1260 if (best == NULL || curr == best)
1261 return curr;
1262
1263 score_curr = sctp_trans_score(curr);
1264 score_best = sctp_trans_score(best);
1265
1266 /* First, try a score-based selection if both transport states
1267 * differ. If we're in a tie, lets try to make a more clever
1268 * decision here based on error counts and last time heard.
1269 */
1270 if (score_curr > score_best)
1271 return curr;
1272 else if (score_curr == score_best)
1273 return sctp_trans_elect_tie(best, curr);
1274 else
1275 return best;
1276 }
1277
sctp_assoc_update_retran_path(struct sctp_association * asoc)1278 void sctp_assoc_update_retran_path(struct sctp_association *asoc)
1279 {
1280 struct sctp_transport *trans = asoc->peer.retran_path;
1281 struct sctp_transport *trans_next = NULL;
1282
1283 /* We're done as we only have the one and only path. */
1284 if (asoc->peer.transport_count == 1)
1285 return;
1286 /* If active_path and retran_path are the same and active,
1287 * then this is the only active path. Use it.
1288 */
1289 if (asoc->peer.active_path == asoc->peer.retran_path &&
1290 asoc->peer.active_path->state == SCTP_ACTIVE)
1291 return;
1292
1293 /* Iterate from retran_path's successor back to retran_path. */
1294 for (trans = list_next_entry(trans, transports); 1;
1295 trans = list_next_entry(trans, transports)) {
1296 /* Manually skip the head element. */
1297 if (&trans->transports == &asoc->peer.transport_addr_list)
1298 continue;
1299 if (trans->state == SCTP_UNCONFIRMED)
1300 continue;
1301 trans_next = sctp_trans_elect_best(trans, trans_next);
1302 /* Active is good enough for immediate return. */
1303 if (trans_next->state == SCTP_ACTIVE)
1304 break;
1305 /* We've reached the end, time to update path. */
1306 if (trans == asoc->peer.retran_path)
1307 break;
1308 }
1309
1310 asoc->peer.retran_path = trans_next;
1311
1312 pr_debug("%s: association:%p updated new path to addr:%pISpc\n",
1313 __func__, asoc, &asoc->peer.retran_path->ipaddr.sa);
1314 }
1315
sctp_select_active_and_retran_path(struct sctp_association * asoc)1316 static void sctp_select_active_and_retran_path(struct sctp_association *asoc)
1317 {
1318 struct sctp_transport *trans, *trans_pri = NULL, *trans_sec = NULL;
1319 struct sctp_transport *trans_pf = NULL;
1320
1321 /* Look for the two most recently used active transports. */
1322 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
1323 transports) {
1324 /* Skip uninteresting transports. */
1325 if (trans->state == SCTP_INACTIVE ||
1326 trans->state == SCTP_UNCONFIRMED)
1327 continue;
1328 /* Keep track of the best PF transport from our
1329 * list in case we don't find an active one.
1330 */
1331 if (trans->state == SCTP_PF) {
1332 trans_pf = sctp_trans_elect_best(trans, trans_pf);
1333 continue;
1334 }
1335 /* For active transports, pick the most recent ones. */
1336 if (trans_pri == NULL ||
1337 ktime_after(trans->last_time_heard,
1338 trans_pri->last_time_heard)) {
1339 trans_sec = trans_pri;
1340 trans_pri = trans;
1341 } else if (trans_sec == NULL ||
1342 ktime_after(trans->last_time_heard,
1343 trans_sec->last_time_heard)) {
1344 trans_sec = trans;
1345 }
1346 }
1347
1348 /* RFC 2960 6.4 Multi-Homed SCTP Endpoints
1349 *
1350 * By default, an endpoint should always transmit to the primary
1351 * path, unless the SCTP user explicitly specifies the
1352 * destination transport address (and possibly source transport
1353 * address) to use. [If the primary is active but not most recent,
1354 * bump the most recently used transport.]
1355 */
1356 if ((asoc->peer.primary_path->state == SCTP_ACTIVE ||
1357 asoc->peer.primary_path->state == SCTP_UNKNOWN) &&
1358 asoc->peer.primary_path != trans_pri) {
1359 trans_sec = trans_pri;
1360 trans_pri = asoc->peer.primary_path;
1361 }
1362
1363 /* We did not find anything useful for a possible retransmission
1364 * path; either primary path that we found is the same as
1365 * the current one, or we didn't generally find an active one.
1366 */
1367 if (trans_sec == NULL)
1368 trans_sec = trans_pri;
1369
1370 /* If we failed to find a usable transport, just camp on the
1371 * active or pick a PF iff it's the better choice.
1372 */
1373 if (trans_pri == NULL) {
1374 trans_pri = sctp_trans_elect_best(asoc->peer.active_path, trans_pf);
1375 trans_sec = trans_pri;
1376 }
1377
1378 /* Set the active and retran transports. */
1379 asoc->peer.active_path = trans_pri;
1380 asoc->peer.retran_path = trans_sec;
1381 }
1382
1383 struct sctp_transport *
sctp_assoc_choose_alter_transport(struct sctp_association * asoc,struct sctp_transport * last_sent_to)1384 sctp_assoc_choose_alter_transport(struct sctp_association *asoc,
1385 struct sctp_transport *last_sent_to)
1386 {
1387 /* If this is the first time packet is sent, use the active path,
1388 * else use the retran path. If the last packet was sent over the
1389 * retran path, update the retran path and use it.
1390 */
1391 if (last_sent_to == NULL) {
1392 return asoc->peer.active_path;
1393 } else {
1394 if (last_sent_to == asoc->peer.retran_path)
1395 sctp_assoc_update_retran_path(asoc);
1396
1397 return asoc->peer.retran_path;
1398 }
1399 }
1400
sctp_assoc_update_frag_point(struct sctp_association * asoc)1401 void sctp_assoc_update_frag_point(struct sctp_association *asoc)
1402 {
1403 int frag = sctp_mtu_payload(sctp_sk(asoc->base.sk), asoc->pathmtu,
1404 sctp_datachk_len(&asoc->stream));
1405
1406 if (asoc->user_frag)
1407 frag = min_t(int, frag, asoc->user_frag);
1408
1409 frag = min_t(int, frag, SCTP_MAX_CHUNK_LEN -
1410 sctp_datachk_len(&asoc->stream));
1411
1412 asoc->frag_point = SCTP_TRUNC4(frag);
1413 }
1414
sctp_assoc_set_pmtu(struct sctp_association * asoc,__u32 pmtu)1415 void sctp_assoc_set_pmtu(struct sctp_association *asoc, __u32 pmtu)
1416 {
1417 if (asoc->pathmtu != pmtu) {
1418 asoc->pathmtu = pmtu;
1419 sctp_assoc_update_frag_point(asoc);
1420 }
1421
1422 pr_debug("%s: asoc:%p, pmtu:%d, frag_point:%d\n", __func__, asoc,
1423 asoc->pathmtu, asoc->frag_point);
1424 }
1425
1426 /* Update the association's pmtu and frag_point by going through all the
1427 * transports. This routine is called when a transport's PMTU has changed.
1428 */
sctp_assoc_sync_pmtu(struct sctp_association * asoc)1429 void sctp_assoc_sync_pmtu(struct sctp_association *asoc)
1430 {
1431 struct sctp_transport *t;
1432 __u32 pmtu = 0;
1433
1434 if (!asoc)
1435 return;
1436
1437 /* Get the lowest pmtu of all the transports. */
1438 list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) {
1439 if (t->pmtu_pending && t->dst) {
1440 sctp_transport_update_pmtu(t,
1441 atomic_read(&t->mtu_info));
1442 t->pmtu_pending = 0;
1443 }
1444 if (!pmtu || (t->pathmtu < pmtu))
1445 pmtu = t->pathmtu;
1446 }
1447
1448 sctp_assoc_set_pmtu(asoc, pmtu);
1449 }
1450
1451 /* Should we send a SACK to update our peer? */
sctp_peer_needs_update(struct sctp_association * asoc)1452 static inline bool sctp_peer_needs_update(struct sctp_association *asoc)
1453 {
1454 struct net *net = asoc->base.net;
1455
1456 switch (asoc->state) {
1457 case SCTP_STATE_ESTABLISHED:
1458 case SCTP_STATE_SHUTDOWN_PENDING:
1459 case SCTP_STATE_SHUTDOWN_RECEIVED:
1460 case SCTP_STATE_SHUTDOWN_SENT:
1461 if ((asoc->rwnd > asoc->a_rwnd) &&
1462 ((asoc->rwnd - asoc->a_rwnd) >= max_t(__u32,
1463 (asoc->base.sk->sk_rcvbuf >> net->sctp.rwnd_upd_shift),
1464 asoc->pathmtu)))
1465 return true;
1466 break;
1467 default:
1468 break;
1469 }
1470 return false;
1471 }
1472
1473 /* Increase asoc's rwnd by len and send any window update SACK if needed. */
sctp_assoc_rwnd_increase(struct sctp_association * asoc,unsigned int len)1474 void sctp_assoc_rwnd_increase(struct sctp_association *asoc, unsigned int len)
1475 {
1476 struct sctp_chunk *sack;
1477 struct timer_list *timer;
1478
1479 if (asoc->rwnd_over) {
1480 if (asoc->rwnd_over >= len) {
1481 asoc->rwnd_over -= len;
1482 } else {
1483 asoc->rwnd += (len - asoc->rwnd_over);
1484 asoc->rwnd_over = 0;
1485 }
1486 } else {
1487 asoc->rwnd += len;
1488 }
1489
1490 /* If we had window pressure, start recovering it
1491 * once our rwnd had reached the accumulated pressure
1492 * threshold. The idea is to recover slowly, but up
1493 * to the initial advertised window.
1494 */
1495 if (asoc->rwnd_press) {
1496 int change = min(asoc->pathmtu, asoc->rwnd_press);
1497 asoc->rwnd += change;
1498 asoc->rwnd_press -= change;
1499 }
1500
1501 pr_debug("%s: asoc:%p rwnd increased by %d to (%u, %u) - %u\n",
1502 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1503 asoc->a_rwnd);
1504
1505 /* Send a window update SACK if the rwnd has increased by at least the
1506 * minimum of the association's PMTU and half of the receive buffer.
1507 * The algorithm used is similar to the one described in
1508 * Section 4.2.3.3 of RFC 1122.
1509 */
1510 if (sctp_peer_needs_update(asoc)) {
1511 asoc->a_rwnd = asoc->rwnd;
1512
1513 pr_debug("%s: sending window update SACK- asoc:%p rwnd:%u "
1514 "a_rwnd:%u\n", __func__, asoc, asoc->rwnd,
1515 asoc->a_rwnd);
1516
1517 sack = sctp_make_sack(asoc);
1518 if (!sack)
1519 return;
1520
1521 asoc->peer.sack_needed = 0;
1522
1523 sctp_outq_tail(&asoc->outqueue, sack, GFP_ATOMIC);
1524
1525 /* Stop the SACK timer. */
1526 timer = &asoc->timers[SCTP_EVENT_TIMEOUT_SACK];
1527 if (del_timer(timer))
1528 sctp_association_put(asoc);
1529 }
1530 }
1531
1532 /* Decrease asoc's rwnd by len. */
sctp_assoc_rwnd_decrease(struct sctp_association * asoc,unsigned int len)1533 void sctp_assoc_rwnd_decrease(struct sctp_association *asoc, unsigned int len)
1534 {
1535 int rx_count;
1536 int over = 0;
1537
1538 if (unlikely(!asoc->rwnd || asoc->rwnd_over))
1539 pr_debug("%s: association:%p has asoc->rwnd:%u, "
1540 "asoc->rwnd_over:%u!\n", __func__, asoc,
1541 asoc->rwnd, asoc->rwnd_over);
1542
1543 if (asoc->ep->rcvbuf_policy)
1544 rx_count = atomic_read(&asoc->rmem_alloc);
1545 else
1546 rx_count = atomic_read(&asoc->base.sk->sk_rmem_alloc);
1547
1548 /* If we've reached or overflowed our receive buffer, announce
1549 * a 0 rwnd if rwnd would still be positive. Store the
1550 * potential pressure overflow so that the window can be restored
1551 * back to original value.
1552 */
1553 if (rx_count >= asoc->base.sk->sk_rcvbuf)
1554 over = 1;
1555
1556 if (asoc->rwnd >= len) {
1557 asoc->rwnd -= len;
1558 if (over) {
1559 asoc->rwnd_press += asoc->rwnd;
1560 asoc->rwnd = 0;
1561 }
1562 } else {
1563 asoc->rwnd_over += len - asoc->rwnd;
1564 asoc->rwnd = 0;
1565 }
1566
1567 pr_debug("%s: asoc:%p rwnd decreased by %d to (%u, %u, %u)\n",
1568 __func__, asoc, len, asoc->rwnd, asoc->rwnd_over,
1569 asoc->rwnd_press);
1570 }
1571
1572 /* Build the bind address list for the association based on info from the
1573 * local endpoint and the remote peer.
1574 */
sctp_assoc_set_bind_addr_from_ep(struct sctp_association * asoc,enum sctp_scope scope,gfp_t gfp)1575 int sctp_assoc_set_bind_addr_from_ep(struct sctp_association *asoc,
1576 enum sctp_scope scope, gfp_t gfp)
1577 {
1578 struct sock *sk = asoc->base.sk;
1579 int flags;
1580
1581 /* Use scoping rules to determine the subset of addresses from
1582 * the endpoint.
1583 */
1584 flags = (PF_INET6 == sk->sk_family) ? SCTP_ADDR6_ALLOWED : 0;
1585 if (!inet_v6_ipv6only(sk))
1586 flags |= SCTP_ADDR4_ALLOWED;
1587 if (asoc->peer.ipv4_address)
1588 flags |= SCTP_ADDR4_PEERSUPP;
1589 if (asoc->peer.ipv6_address)
1590 flags |= SCTP_ADDR6_PEERSUPP;
1591
1592 return sctp_bind_addr_copy(asoc->base.net,
1593 &asoc->base.bind_addr,
1594 &asoc->ep->base.bind_addr,
1595 scope, gfp, flags);
1596 }
1597
1598 /* Build the association's bind address list from the cookie. */
sctp_assoc_set_bind_addr_from_cookie(struct sctp_association * asoc,struct sctp_cookie * cookie,gfp_t gfp)1599 int sctp_assoc_set_bind_addr_from_cookie(struct sctp_association *asoc,
1600 struct sctp_cookie *cookie,
1601 gfp_t gfp)
1602 {
1603 int var_size2 = ntohs(cookie->peer_init->chunk_hdr.length);
1604 int var_size3 = cookie->raw_addr_list_len;
1605 __u8 *raw = (__u8 *)cookie->peer_init + var_size2;
1606
1607 return sctp_raw_to_bind_addrs(&asoc->base.bind_addr, raw, var_size3,
1608 asoc->ep->base.bind_addr.port, gfp);
1609 }
1610
1611 /* Lookup laddr in the bind address list of an association. */
sctp_assoc_lookup_laddr(struct sctp_association * asoc,const union sctp_addr * laddr)1612 int sctp_assoc_lookup_laddr(struct sctp_association *asoc,
1613 const union sctp_addr *laddr)
1614 {
1615 int found = 0;
1616
1617 if ((asoc->base.bind_addr.port == ntohs(laddr->v4.sin_port)) &&
1618 sctp_bind_addr_match(&asoc->base.bind_addr, laddr,
1619 sctp_sk(asoc->base.sk)))
1620 found = 1;
1621
1622 return found;
1623 }
1624
1625 /* Set an association id for a given association */
sctp_assoc_set_id(struct sctp_association * asoc,gfp_t gfp)1626 int sctp_assoc_set_id(struct sctp_association *asoc, gfp_t gfp)
1627 {
1628 bool preload = gfpflags_allow_blocking(gfp);
1629 int ret;
1630
1631 /* If the id is already assigned, keep it. */
1632 if (asoc->assoc_id)
1633 return 0;
1634
1635 if (preload)
1636 idr_preload(gfp);
1637 spin_lock_bh(&sctp_assocs_id_lock);
1638 /* 0, 1, 2 are used as SCTP_FUTURE_ASSOC, SCTP_CURRENT_ASSOC and
1639 * SCTP_ALL_ASSOC, so an available id must be > SCTP_ALL_ASSOC.
1640 */
1641 ret = idr_alloc_cyclic(&sctp_assocs_id, asoc, SCTP_ALL_ASSOC + 1, 0,
1642 GFP_NOWAIT);
1643 spin_unlock_bh(&sctp_assocs_id_lock);
1644 if (preload)
1645 idr_preload_end();
1646 if (ret < 0)
1647 return ret;
1648
1649 asoc->assoc_id = (sctp_assoc_t)ret;
1650 return 0;
1651 }
1652
1653 /* Free the ASCONF queue */
sctp_assoc_free_asconf_queue(struct sctp_association * asoc)1654 static void sctp_assoc_free_asconf_queue(struct sctp_association *asoc)
1655 {
1656 struct sctp_chunk *asconf;
1657 struct sctp_chunk *tmp;
1658
1659 list_for_each_entry_safe(asconf, tmp, &asoc->addip_chunk_list, list) {
1660 list_del_init(&asconf->list);
1661 sctp_chunk_free(asconf);
1662 }
1663 }
1664
1665 /* Free asconf_ack cache */
sctp_assoc_free_asconf_acks(struct sctp_association * asoc)1666 static void sctp_assoc_free_asconf_acks(struct sctp_association *asoc)
1667 {
1668 struct sctp_chunk *ack;
1669 struct sctp_chunk *tmp;
1670
1671 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1672 transmitted_list) {
1673 list_del_init(&ack->transmitted_list);
1674 sctp_chunk_free(ack);
1675 }
1676 }
1677
1678 /* Clean up the ASCONF_ACK queue */
sctp_assoc_clean_asconf_ack_cache(const struct sctp_association * asoc)1679 void sctp_assoc_clean_asconf_ack_cache(const struct sctp_association *asoc)
1680 {
1681 struct sctp_chunk *ack;
1682 struct sctp_chunk *tmp;
1683
1684 /* We can remove all the entries from the queue up to
1685 * the "Peer-Sequence-Number".
1686 */
1687 list_for_each_entry_safe(ack, tmp, &asoc->asconf_ack_list,
1688 transmitted_list) {
1689 if (ack->subh.addip_hdr->serial ==
1690 htonl(asoc->peer.addip_serial))
1691 break;
1692
1693 list_del_init(&ack->transmitted_list);
1694 sctp_chunk_free(ack);
1695 }
1696 }
1697
1698 /* Find the ASCONF_ACK whose serial number matches ASCONF */
sctp_assoc_lookup_asconf_ack(const struct sctp_association * asoc,__be32 serial)1699 struct sctp_chunk *sctp_assoc_lookup_asconf_ack(
1700 const struct sctp_association *asoc,
1701 __be32 serial)
1702 {
1703 struct sctp_chunk *ack;
1704
1705 /* Walk through the list of cached ASCONF-ACKs and find the
1706 * ack chunk whose serial number matches that of the request.
1707 */
1708 list_for_each_entry(ack, &asoc->asconf_ack_list, transmitted_list) {
1709 if (sctp_chunk_pending(ack))
1710 continue;
1711 if (ack->subh.addip_hdr->serial == serial) {
1712 sctp_chunk_hold(ack);
1713 return ack;
1714 }
1715 }
1716
1717 return NULL;
1718 }
1719
sctp_asconf_queue_teardown(struct sctp_association * asoc)1720 void sctp_asconf_queue_teardown(struct sctp_association *asoc)
1721 {
1722 /* Free any cached ASCONF_ACK chunk. */
1723 sctp_assoc_free_asconf_acks(asoc);
1724
1725 /* Free the ASCONF queue. */
1726 sctp_assoc_free_asconf_queue(asoc);
1727
1728 /* Free any cached ASCONF chunk. */
1729 if (asoc->addip_last_asconf)
1730 sctp_chunk_free(asoc->addip_last_asconf);
1731 }
1732