1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/blk-integrity.h>
25 #include <linux/ratelimit.h>
26 #include <asm/unaligned.h>
27
28 #include <scsi/scsi.h>
29 #include <scsi/scsi_cmnd.h>
30 #include <scsi/scsi_dbg.h>
31 #include <scsi/scsi_device.h>
32 #include <scsi/scsi_driver.h>
33 #include <scsi/scsi_eh.h>
34 #include <scsi/scsi_host.h>
35 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
36 #include <scsi/scsi_dh.h>
37
38 #include <trace/events/scsi.h>
39
40 #include "scsi_debugfs.h"
41 #include "scsi_priv.h"
42 #include "scsi_logging.h"
43
44 /*
45 * Size of integrity metadata is usually small, 1 inline sg should
46 * cover normal cases.
47 */
48 #ifdef CONFIG_ARCH_NO_SG_CHAIN
49 #define SCSI_INLINE_PROT_SG_CNT 0
50 #define SCSI_INLINE_SG_CNT 0
51 #else
52 #define SCSI_INLINE_PROT_SG_CNT 1
53 #define SCSI_INLINE_SG_CNT 2
54 #endif
55
56 static struct kmem_cache *scsi_sense_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
scsi_init_sense_cache(struct Scsi_Host * shost)61 int scsi_init_sense_cache(struct Scsi_Host *shost)
62 {
63 int ret = 0;
64
65 mutex_lock(&scsi_sense_cache_mutex);
66 if (!scsi_sense_cache) {
67 scsi_sense_cache =
68 kmem_cache_create_usercopy("scsi_sense_cache",
69 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
70 0, SCSI_SENSE_BUFFERSIZE, NULL);
71 if (!scsi_sense_cache)
72 ret = -ENOMEM;
73 }
74 mutex_unlock(&scsi_sense_cache_mutex);
75 return ret;
76 }
77
78 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)79 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
80 {
81 struct Scsi_Host *host = cmd->device->host;
82 struct scsi_device *device = cmd->device;
83 struct scsi_target *starget = scsi_target(device);
84
85 /*
86 * Set the appropriate busy bit for the device/host.
87 *
88 * If the host/device isn't busy, assume that something actually
89 * completed, and that we should be able to queue a command now.
90 *
91 * Note that the prior mid-layer assumption that any host could
92 * always queue at least one command is now broken. The mid-layer
93 * will implement a user specifiable stall (see
94 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
95 * if a command is requeued with no other commands outstanding
96 * either for the device or for the host.
97 */
98 switch (reason) {
99 case SCSI_MLQUEUE_HOST_BUSY:
100 atomic_set(&host->host_blocked, host->max_host_blocked);
101 break;
102 case SCSI_MLQUEUE_DEVICE_BUSY:
103 case SCSI_MLQUEUE_EH_RETRY:
104 atomic_set(&device->device_blocked,
105 device->max_device_blocked);
106 break;
107 case SCSI_MLQUEUE_TARGET_BUSY:
108 atomic_set(&starget->target_blocked,
109 starget->max_target_blocked);
110 break;
111 }
112 }
113
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd,unsigned long msecs)114 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd, unsigned long msecs)
115 {
116 struct request *rq = scsi_cmd_to_rq(cmd);
117
118 if (rq->rq_flags & RQF_DONTPREP) {
119 rq->rq_flags &= ~RQF_DONTPREP;
120 scsi_mq_uninit_cmd(cmd);
121 } else {
122 WARN_ON_ONCE(true);
123 }
124
125 blk_mq_requeue_request(rq, false);
126 if (!scsi_host_in_recovery(cmd->device->host))
127 blk_mq_delay_kick_requeue_list(rq->q, msecs);
128 }
129
130 /**
131 * __scsi_queue_insert - private queue insertion
132 * @cmd: The SCSI command being requeued
133 * @reason: The reason for the requeue
134 * @unbusy: Whether the queue should be unbusied
135 *
136 * This is a private queue insertion. The public interface
137 * scsi_queue_insert() always assumes the queue should be unbusied
138 * because it's always called before the completion. This function is
139 * for a requeue after completion, which should only occur in this
140 * file.
141 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)142 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
143 {
144 struct scsi_device *device = cmd->device;
145
146 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
147 "Inserting command %p into mlqueue\n", cmd));
148
149 scsi_set_blocked(cmd, reason);
150
151 /*
152 * Decrement the counters, since these commands are no longer
153 * active on the host/device.
154 */
155 if (unbusy)
156 scsi_device_unbusy(device, cmd);
157
158 /*
159 * Requeue this command. It will go before all other commands
160 * that are already in the queue. Schedule requeue work under
161 * lock such that the kblockd_schedule_work() call happens
162 * before blk_mq_destroy_queue() finishes.
163 */
164 cmd->result = 0;
165
166 blk_mq_requeue_request(scsi_cmd_to_rq(cmd),
167 !scsi_host_in_recovery(cmd->device->host));
168 }
169
170 /**
171 * scsi_queue_insert - Reinsert a command in the queue.
172 * @cmd: command that we are adding to queue.
173 * @reason: why we are inserting command to queue.
174 *
175 * We do this for one of two cases. Either the host is busy and it cannot accept
176 * any more commands for the time being, or the device returned QUEUE_FULL and
177 * can accept no more commands.
178 *
179 * Context: This could be called either from an interrupt context or a normal
180 * process context.
181 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)182 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
183 {
184 __scsi_queue_insert(cmd, reason, true);
185 }
186
187 /**
188 * scsi_execute_cmd - insert request and wait for the result
189 * @sdev: scsi_device
190 * @cmd: scsi command
191 * @opf: block layer request cmd_flags
192 * @buffer: data buffer
193 * @bufflen: len of buffer
194 * @timeout: request timeout in HZ
195 * @retries: number of times to retry request
196 * @args: Optional args. See struct definition for field descriptions
197 *
198 * Returns the scsi_cmnd result field if a command was executed, or a negative
199 * Linux error code if we didn't get that far.
200 */
scsi_execute_cmd(struct scsi_device * sdev,const unsigned char * cmd,blk_opf_t opf,void * buffer,unsigned int bufflen,int timeout,int retries,const struct scsi_exec_args * args)201 int scsi_execute_cmd(struct scsi_device *sdev, const unsigned char *cmd,
202 blk_opf_t opf, void *buffer, unsigned int bufflen,
203 int timeout, int retries,
204 const struct scsi_exec_args *args)
205 {
206 static const struct scsi_exec_args default_args;
207 struct request *req;
208 struct scsi_cmnd *scmd;
209 int ret;
210
211 if (!args)
212 args = &default_args;
213 else if (WARN_ON_ONCE(args->sense &&
214 args->sense_len != SCSI_SENSE_BUFFERSIZE))
215 return -EINVAL;
216
217 req = scsi_alloc_request(sdev->request_queue, opf, args->req_flags);
218 if (IS_ERR(req))
219 return PTR_ERR(req);
220
221 if (bufflen) {
222 ret = blk_rq_map_kern(sdev->request_queue, req,
223 buffer, bufflen, GFP_NOIO);
224 if (ret)
225 goto out;
226 }
227 scmd = blk_mq_rq_to_pdu(req);
228 scmd->cmd_len = COMMAND_SIZE(cmd[0]);
229 memcpy(scmd->cmnd, cmd, scmd->cmd_len);
230 scmd->allowed = retries;
231 scmd->flags |= args->scmd_flags;
232 req->timeout = timeout;
233 req->rq_flags |= RQF_QUIET;
234
235 /*
236 * head injection *required* here otherwise quiesce won't work
237 */
238 blk_execute_rq(req, true);
239
240 /*
241 * Some devices (USB mass-storage in particular) may transfer
242 * garbage data together with a residue indicating that the data
243 * is invalid. Prevent the garbage from being misinterpreted
244 * and prevent security leaks by zeroing out the excess data.
245 */
246 if (unlikely(scmd->resid_len > 0 && scmd->resid_len <= bufflen))
247 memset(buffer + bufflen - scmd->resid_len, 0, scmd->resid_len);
248
249 if (args->resid)
250 *args->resid = scmd->resid_len;
251 if (args->sense)
252 memcpy(args->sense, scmd->sense_buffer, SCSI_SENSE_BUFFERSIZE);
253 if (args->sshdr)
254 scsi_normalize_sense(scmd->sense_buffer, scmd->sense_len,
255 args->sshdr);
256
257 ret = scmd->result;
258 out:
259 blk_mq_free_request(req);
260
261 return ret;
262 }
263 EXPORT_SYMBOL(scsi_execute_cmd);
264
265 /*
266 * Wake up the error handler if necessary. Avoid as follows that the error
267 * handler is not woken up if host in-flight requests number ==
268 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
269 * with an RCU read lock in this function to ensure that this function in
270 * its entirety either finishes before scsi_eh_scmd_add() increases the
271 * host_failed counter or that it notices the shost state change made by
272 * scsi_eh_scmd_add().
273 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)274 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
275 {
276 unsigned long flags;
277
278 rcu_read_lock();
279 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
280 if (unlikely(scsi_host_in_recovery(shost))) {
281 spin_lock_irqsave(shost->host_lock, flags);
282 if (shost->host_failed || shost->host_eh_scheduled)
283 scsi_eh_wakeup(shost);
284 spin_unlock_irqrestore(shost->host_lock, flags);
285 }
286 rcu_read_unlock();
287 }
288
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)289 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
290 {
291 struct Scsi_Host *shost = sdev->host;
292 struct scsi_target *starget = scsi_target(sdev);
293
294 scsi_dec_host_busy(shost, cmd);
295
296 if (starget->can_queue > 0)
297 atomic_dec(&starget->target_busy);
298
299 sbitmap_put(&sdev->budget_map, cmd->budget_token);
300 cmd->budget_token = -1;
301 }
302
303 /*
304 * Kick the queue of SCSI device @sdev if @sdev != current_sdev. Called with
305 * interrupts disabled.
306 */
scsi_kick_sdev_queue(struct scsi_device * sdev,void * data)307 static void scsi_kick_sdev_queue(struct scsi_device *sdev, void *data)
308 {
309 struct scsi_device *current_sdev = data;
310
311 if (sdev != current_sdev)
312 blk_mq_run_hw_queues(sdev->request_queue, true);
313 }
314
315 /*
316 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
317 * and call blk_run_queue for all the scsi_devices on the target -
318 * including current_sdev first.
319 *
320 * Called with *no* scsi locks held.
321 */
scsi_single_lun_run(struct scsi_device * current_sdev)322 static void scsi_single_lun_run(struct scsi_device *current_sdev)
323 {
324 struct Scsi_Host *shost = current_sdev->host;
325 struct scsi_target *starget = scsi_target(current_sdev);
326 unsigned long flags;
327
328 spin_lock_irqsave(shost->host_lock, flags);
329 starget->starget_sdev_user = NULL;
330 spin_unlock_irqrestore(shost->host_lock, flags);
331
332 /*
333 * Call blk_run_queue for all LUNs on the target, starting with
334 * current_sdev. We race with others (to set starget_sdev_user),
335 * but in most cases, we will be first. Ideally, each LU on the
336 * target would get some limited time or requests on the target.
337 */
338 blk_mq_run_hw_queues(current_sdev->request_queue,
339 shost->queuecommand_may_block);
340
341 spin_lock_irqsave(shost->host_lock, flags);
342 if (!starget->starget_sdev_user)
343 __starget_for_each_device(starget, current_sdev,
344 scsi_kick_sdev_queue);
345 spin_unlock_irqrestore(shost->host_lock, flags);
346 }
347
scsi_device_is_busy(struct scsi_device * sdev)348 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
349 {
350 if (scsi_device_busy(sdev) >= sdev->queue_depth)
351 return true;
352 if (atomic_read(&sdev->device_blocked) > 0)
353 return true;
354 return false;
355 }
356
scsi_target_is_busy(struct scsi_target * starget)357 static inline bool scsi_target_is_busy(struct scsi_target *starget)
358 {
359 if (starget->can_queue > 0) {
360 if (atomic_read(&starget->target_busy) >= starget->can_queue)
361 return true;
362 if (atomic_read(&starget->target_blocked) > 0)
363 return true;
364 }
365 return false;
366 }
367
scsi_host_is_busy(struct Scsi_Host * shost)368 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
369 {
370 if (atomic_read(&shost->host_blocked) > 0)
371 return true;
372 if (shost->host_self_blocked)
373 return true;
374 return false;
375 }
376
scsi_starved_list_run(struct Scsi_Host * shost)377 static void scsi_starved_list_run(struct Scsi_Host *shost)
378 {
379 LIST_HEAD(starved_list);
380 struct scsi_device *sdev;
381 unsigned long flags;
382
383 spin_lock_irqsave(shost->host_lock, flags);
384 list_splice_init(&shost->starved_list, &starved_list);
385
386 while (!list_empty(&starved_list)) {
387 struct request_queue *slq;
388
389 /*
390 * As long as shost is accepting commands and we have
391 * starved queues, call blk_run_queue. scsi_request_fn
392 * drops the queue_lock and can add us back to the
393 * starved_list.
394 *
395 * host_lock protects the starved_list and starved_entry.
396 * scsi_request_fn must get the host_lock before checking
397 * or modifying starved_list or starved_entry.
398 */
399 if (scsi_host_is_busy(shost))
400 break;
401
402 sdev = list_entry(starved_list.next,
403 struct scsi_device, starved_entry);
404 list_del_init(&sdev->starved_entry);
405 if (scsi_target_is_busy(scsi_target(sdev))) {
406 list_move_tail(&sdev->starved_entry,
407 &shost->starved_list);
408 continue;
409 }
410
411 /*
412 * Once we drop the host lock, a racing scsi_remove_device()
413 * call may remove the sdev from the starved list and destroy
414 * it and the queue. Mitigate by taking a reference to the
415 * queue and never touching the sdev again after we drop the
416 * host lock. Note: if __scsi_remove_device() invokes
417 * blk_mq_destroy_queue() before the queue is run from this
418 * function then blk_run_queue() will return immediately since
419 * blk_mq_destroy_queue() marks the queue with QUEUE_FLAG_DYING.
420 */
421 slq = sdev->request_queue;
422 if (!blk_get_queue(slq))
423 continue;
424 spin_unlock_irqrestore(shost->host_lock, flags);
425
426 blk_mq_run_hw_queues(slq, false);
427 blk_put_queue(slq);
428
429 spin_lock_irqsave(shost->host_lock, flags);
430 }
431 /* put any unprocessed entries back */
432 list_splice(&starved_list, &shost->starved_list);
433 spin_unlock_irqrestore(shost->host_lock, flags);
434 }
435
436 /**
437 * scsi_run_queue - Select a proper request queue to serve next.
438 * @q: last request's queue
439 *
440 * The previous command was completely finished, start a new one if possible.
441 */
scsi_run_queue(struct request_queue * q)442 static void scsi_run_queue(struct request_queue *q)
443 {
444 struct scsi_device *sdev = q->queuedata;
445
446 if (scsi_target(sdev)->single_lun)
447 scsi_single_lun_run(sdev);
448 if (!list_empty(&sdev->host->starved_list))
449 scsi_starved_list_run(sdev->host);
450
451 /* Note: blk_mq_kick_requeue_list() runs the queue asynchronously. */
452 blk_mq_kick_requeue_list(q);
453 }
454
scsi_requeue_run_queue(struct work_struct * work)455 void scsi_requeue_run_queue(struct work_struct *work)
456 {
457 struct scsi_device *sdev;
458 struct request_queue *q;
459
460 sdev = container_of(work, struct scsi_device, requeue_work);
461 q = sdev->request_queue;
462 scsi_run_queue(q);
463 }
464
scsi_run_host_queues(struct Scsi_Host * shost)465 void scsi_run_host_queues(struct Scsi_Host *shost)
466 {
467 struct scsi_device *sdev;
468
469 shost_for_each_device(sdev, shost)
470 scsi_run_queue(sdev->request_queue);
471 }
472
scsi_uninit_cmd(struct scsi_cmnd * cmd)473 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
474 {
475 if (!blk_rq_is_passthrough(scsi_cmd_to_rq(cmd))) {
476 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
477
478 if (drv->uninit_command)
479 drv->uninit_command(cmd);
480 }
481 }
482
scsi_free_sgtables(struct scsi_cmnd * cmd)483 void scsi_free_sgtables(struct scsi_cmnd *cmd)
484 {
485 if (cmd->sdb.table.nents)
486 sg_free_table_chained(&cmd->sdb.table,
487 SCSI_INLINE_SG_CNT);
488 if (scsi_prot_sg_count(cmd))
489 sg_free_table_chained(&cmd->prot_sdb->table,
490 SCSI_INLINE_PROT_SG_CNT);
491 }
492 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
493
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)494 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
495 {
496 scsi_free_sgtables(cmd);
497 scsi_uninit_cmd(cmd);
498 }
499
scsi_run_queue_async(struct scsi_device * sdev)500 static void scsi_run_queue_async(struct scsi_device *sdev)
501 {
502 if (scsi_host_in_recovery(sdev->host))
503 return;
504
505 if (scsi_target(sdev)->single_lun ||
506 !list_empty(&sdev->host->starved_list)) {
507 kblockd_schedule_work(&sdev->requeue_work);
508 } else {
509 /*
510 * smp_mb() present in sbitmap_queue_clear() or implied in
511 * .end_io is for ordering writing .device_busy in
512 * scsi_device_unbusy() and reading sdev->restarts.
513 */
514 int old = atomic_read(&sdev->restarts);
515
516 /*
517 * ->restarts has to be kept as non-zero if new budget
518 * contention occurs.
519 *
520 * No need to run queue when either another re-run
521 * queue wins in updating ->restarts or a new budget
522 * contention occurs.
523 */
524 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
525 blk_mq_run_hw_queues(sdev->request_queue, true);
526 }
527 }
528
529 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)530 static bool scsi_end_request(struct request *req, blk_status_t error,
531 unsigned int bytes)
532 {
533 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
534 struct scsi_device *sdev = cmd->device;
535 struct request_queue *q = sdev->request_queue;
536
537 if (blk_update_request(req, error, bytes))
538 return true;
539
540 // XXX:
541 if (blk_queue_add_random(q))
542 add_disk_randomness(req->q->disk);
543
544 if (!blk_rq_is_passthrough(req)) {
545 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
546 cmd->flags &= ~SCMD_INITIALIZED;
547 }
548
549 /*
550 * Calling rcu_barrier() is not necessary here because the
551 * SCSI error handler guarantees that the function called by
552 * call_rcu() has been called before scsi_end_request() is
553 * called.
554 */
555 destroy_rcu_head(&cmd->rcu);
556
557 /*
558 * In the MQ case the command gets freed by __blk_mq_end_request,
559 * so we have to do all cleanup that depends on it earlier.
560 *
561 * We also can't kick the queues from irq context, so we
562 * will have to defer it to a workqueue.
563 */
564 scsi_mq_uninit_cmd(cmd);
565
566 /*
567 * queue is still alive, so grab the ref for preventing it
568 * from being cleaned up during running queue.
569 */
570 percpu_ref_get(&q->q_usage_counter);
571
572 __blk_mq_end_request(req, error);
573
574 scsi_run_queue_async(sdev);
575
576 percpu_ref_put(&q->q_usage_counter);
577 return false;
578 }
579
580 /**
581 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
582 * @result: scsi error code
583 *
584 * Translate a SCSI result code into a blk_status_t value.
585 */
scsi_result_to_blk_status(int result)586 static blk_status_t scsi_result_to_blk_status(int result)
587 {
588 /*
589 * Check the scsi-ml byte first in case we converted a host or status
590 * byte.
591 */
592 switch (scsi_ml_byte(result)) {
593 case SCSIML_STAT_OK:
594 break;
595 case SCSIML_STAT_RESV_CONFLICT:
596 return BLK_STS_RESV_CONFLICT;
597 case SCSIML_STAT_NOSPC:
598 return BLK_STS_NOSPC;
599 case SCSIML_STAT_MED_ERROR:
600 return BLK_STS_MEDIUM;
601 case SCSIML_STAT_TGT_FAILURE:
602 return BLK_STS_TARGET;
603 case SCSIML_STAT_DL_TIMEOUT:
604 return BLK_STS_DURATION_LIMIT;
605 }
606
607 switch (host_byte(result)) {
608 case DID_OK:
609 if (scsi_status_is_good(result))
610 return BLK_STS_OK;
611 return BLK_STS_IOERR;
612 case DID_TRANSPORT_FAILFAST:
613 case DID_TRANSPORT_MARGINAL:
614 return BLK_STS_TRANSPORT;
615 default:
616 return BLK_STS_IOERR;
617 }
618 }
619
620 /**
621 * scsi_rq_err_bytes - determine number of bytes till the next failure boundary
622 * @rq: request to examine
623 *
624 * Description:
625 * A request could be merge of IOs which require different failure
626 * handling. This function determines the number of bytes which
627 * can be failed from the beginning of the request without
628 * crossing into area which need to be retried further.
629 *
630 * Return:
631 * The number of bytes to fail.
632 */
scsi_rq_err_bytes(const struct request * rq)633 static unsigned int scsi_rq_err_bytes(const struct request *rq)
634 {
635 blk_opf_t ff = rq->cmd_flags & REQ_FAILFAST_MASK;
636 unsigned int bytes = 0;
637 struct bio *bio;
638
639 if (!(rq->rq_flags & RQF_MIXED_MERGE))
640 return blk_rq_bytes(rq);
641
642 /*
643 * Currently the only 'mixing' which can happen is between
644 * different fastfail types. We can safely fail portions
645 * which have all the failfast bits that the first one has -
646 * the ones which are at least as eager to fail as the first
647 * one.
648 */
649 for (bio = rq->bio; bio; bio = bio->bi_next) {
650 if ((bio->bi_opf & ff) != ff)
651 break;
652 bytes += bio->bi_iter.bi_size;
653 }
654
655 /* this could lead to infinite loop */
656 BUG_ON(blk_rq_bytes(rq) && !bytes);
657 return bytes;
658 }
659
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)660 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
661 {
662 struct request *req = scsi_cmd_to_rq(cmd);
663 unsigned long wait_for;
664
665 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
666 return false;
667
668 wait_for = (cmd->allowed + 1) * req->timeout;
669 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
670 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
671 wait_for/HZ);
672 return true;
673 }
674 return false;
675 }
676
677 /*
678 * When ALUA transition state is returned, reprep the cmd to
679 * use the ALUA handler's transition timeout. Delay the reprep
680 * 1 sec to avoid aggressive retries of the target in that
681 * state.
682 */
683 #define ALUA_TRANSITION_REPREP_DELAY 1000
684
685 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)686 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
687 {
688 struct request *req = scsi_cmd_to_rq(cmd);
689 int level = 0;
690 enum {ACTION_FAIL, ACTION_REPREP, ACTION_DELAYED_REPREP,
691 ACTION_RETRY, ACTION_DELAYED_RETRY} action;
692 struct scsi_sense_hdr sshdr;
693 bool sense_valid;
694 bool sense_current = true; /* false implies "deferred sense" */
695 blk_status_t blk_stat;
696
697 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
698 if (sense_valid)
699 sense_current = !scsi_sense_is_deferred(&sshdr);
700
701 blk_stat = scsi_result_to_blk_status(result);
702
703 if (host_byte(result) == DID_RESET) {
704 /* Third party bus reset or reset for error recovery
705 * reasons. Just retry the command and see what
706 * happens.
707 */
708 action = ACTION_RETRY;
709 } else if (sense_valid && sense_current) {
710 switch (sshdr.sense_key) {
711 case UNIT_ATTENTION:
712 if (cmd->device->removable) {
713 /* Detected disc change. Set a bit
714 * and quietly refuse further access.
715 */
716 cmd->device->changed = 1;
717 action = ACTION_FAIL;
718 } else {
719 /* Must have been a power glitch, or a
720 * bus reset. Could not have been a
721 * media change, so we just retry the
722 * command and see what happens.
723 */
724 action = ACTION_RETRY;
725 }
726 break;
727 case ILLEGAL_REQUEST:
728 /* If we had an ILLEGAL REQUEST returned, then
729 * we may have performed an unsupported
730 * command. The only thing this should be
731 * would be a ten byte read where only a six
732 * byte read was supported. Also, on a system
733 * where READ CAPACITY failed, we may have
734 * read past the end of the disk.
735 */
736 if ((cmd->device->use_10_for_rw &&
737 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
738 (cmd->cmnd[0] == READ_10 ||
739 cmd->cmnd[0] == WRITE_10)) {
740 /* This will issue a new 6-byte command. */
741 cmd->device->use_10_for_rw = 0;
742 action = ACTION_REPREP;
743 } else if (sshdr.asc == 0x10) /* DIX */ {
744 action = ACTION_FAIL;
745 blk_stat = BLK_STS_PROTECTION;
746 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
747 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
748 action = ACTION_FAIL;
749 blk_stat = BLK_STS_TARGET;
750 } else
751 action = ACTION_FAIL;
752 break;
753 case ABORTED_COMMAND:
754 action = ACTION_FAIL;
755 if (sshdr.asc == 0x10) /* DIF */
756 blk_stat = BLK_STS_PROTECTION;
757 break;
758 case NOT_READY:
759 /* If the device is in the process of becoming
760 * ready, or has a temporary blockage, retry.
761 */
762 if (sshdr.asc == 0x04) {
763 switch (sshdr.ascq) {
764 case 0x01: /* becoming ready */
765 case 0x04: /* format in progress */
766 case 0x05: /* rebuild in progress */
767 case 0x06: /* recalculation in progress */
768 case 0x07: /* operation in progress */
769 case 0x08: /* Long write in progress */
770 case 0x09: /* self test in progress */
771 case 0x11: /* notify (enable spinup) required */
772 case 0x14: /* space allocation in progress */
773 case 0x1a: /* start stop unit in progress */
774 case 0x1b: /* sanitize in progress */
775 case 0x1d: /* configuration in progress */
776 case 0x24: /* depopulation in progress */
777 action = ACTION_DELAYED_RETRY;
778 break;
779 case 0x0a: /* ALUA state transition */
780 action = ACTION_DELAYED_REPREP;
781 break;
782 default:
783 action = ACTION_FAIL;
784 break;
785 }
786 } else
787 action = ACTION_FAIL;
788 break;
789 case VOLUME_OVERFLOW:
790 /* See SSC3rXX or current. */
791 action = ACTION_FAIL;
792 break;
793 case DATA_PROTECT:
794 action = ACTION_FAIL;
795 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
796 (sshdr.asc == 0x55 &&
797 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
798 /* Insufficient zone resources */
799 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
800 }
801 break;
802 case COMPLETED:
803 fallthrough;
804 default:
805 action = ACTION_FAIL;
806 break;
807 }
808 } else
809 action = ACTION_FAIL;
810
811 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
812 action = ACTION_FAIL;
813
814 switch (action) {
815 case ACTION_FAIL:
816 /* Give up and fail the remainder of the request */
817 if (!(req->rq_flags & RQF_QUIET)) {
818 static DEFINE_RATELIMIT_STATE(_rs,
819 DEFAULT_RATELIMIT_INTERVAL,
820 DEFAULT_RATELIMIT_BURST);
821
822 if (unlikely(scsi_logging_level))
823 level =
824 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
825 SCSI_LOG_MLCOMPLETE_BITS);
826
827 /*
828 * if logging is enabled the failure will be printed
829 * in scsi_log_completion(), so avoid duplicate messages
830 */
831 if (!level && __ratelimit(&_rs)) {
832 scsi_print_result(cmd, NULL, FAILED);
833 if (sense_valid)
834 scsi_print_sense(cmd);
835 scsi_print_command(cmd);
836 }
837 }
838 if (!scsi_end_request(req, blk_stat, scsi_rq_err_bytes(req)))
839 return;
840 fallthrough;
841 case ACTION_REPREP:
842 scsi_mq_requeue_cmd(cmd, 0);
843 break;
844 case ACTION_DELAYED_REPREP:
845 scsi_mq_requeue_cmd(cmd, ALUA_TRANSITION_REPREP_DELAY);
846 break;
847 case ACTION_RETRY:
848 /* Retry the same command immediately */
849 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
850 break;
851 case ACTION_DELAYED_RETRY:
852 /* Retry the same command after a delay */
853 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
854 break;
855 }
856 }
857
858 /*
859 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
860 * new result that may suppress further error checking. Also modifies
861 * *blk_statp in some cases.
862 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)863 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
864 blk_status_t *blk_statp)
865 {
866 bool sense_valid;
867 bool sense_current = true; /* false implies "deferred sense" */
868 struct request *req = scsi_cmd_to_rq(cmd);
869 struct scsi_sense_hdr sshdr;
870
871 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
872 if (sense_valid)
873 sense_current = !scsi_sense_is_deferred(&sshdr);
874
875 if (blk_rq_is_passthrough(req)) {
876 if (sense_valid) {
877 /*
878 * SG_IO wants current and deferred errors
879 */
880 cmd->sense_len = min(8 + cmd->sense_buffer[7],
881 SCSI_SENSE_BUFFERSIZE);
882 }
883 if (sense_current)
884 *blk_statp = scsi_result_to_blk_status(result);
885 } else if (blk_rq_bytes(req) == 0 && sense_current) {
886 /*
887 * Flush commands do not transfers any data, and thus cannot use
888 * good_bytes != blk_rq_bytes(req) as the signal for an error.
889 * This sets *blk_statp explicitly for the problem case.
890 */
891 *blk_statp = scsi_result_to_blk_status(result);
892 }
893 /*
894 * Recovered errors need reporting, but they're always treated as
895 * success, so fiddle the result code here. For passthrough requests
896 * we already took a copy of the original into sreq->result which
897 * is what gets returned to the user
898 */
899 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
900 bool do_print = true;
901 /*
902 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
903 * skip print since caller wants ATA registers. Only occurs
904 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
905 */
906 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
907 do_print = false;
908 else if (req->rq_flags & RQF_QUIET)
909 do_print = false;
910 if (do_print)
911 scsi_print_sense(cmd);
912 result = 0;
913 /* for passthrough, *blk_statp may be set */
914 *blk_statp = BLK_STS_OK;
915 }
916 /*
917 * Another corner case: the SCSI status byte is non-zero but 'good'.
918 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
919 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
920 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
921 * intermediate statuses (both obsolete in SAM-4) as good.
922 */
923 if ((result & 0xff) && scsi_status_is_good(result)) {
924 result = 0;
925 *blk_statp = BLK_STS_OK;
926 }
927 return result;
928 }
929
930 /**
931 * scsi_io_completion - Completion processing for SCSI commands.
932 * @cmd: command that is finished.
933 * @good_bytes: number of processed bytes.
934 *
935 * We will finish off the specified number of sectors. If we are done, the
936 * command block will be released and the queue function will be goosed. If we
937 * are not done then we have to figure out what to do next:
938 *
939 * a) We can call scsi_mq_requeue_cmd(). The request will be
940 * unprepared and put back on the queue. Then a new command will
941 * be created for it. This should be used if we made forward
942 * progress, or if we want to switch from READ(10) to READ(6) for
943 * example.
944 *
945 * b) We can call scsi_io_completion_action(). The request will be
946 * put back on the queue and retried using the same command as
947 * before, possibly after a delay.
948 *
949 * c) We can call scsi_end_request() with blk_stat other than
950 * BLK_STS_OK, to fail the remainder of the request.
951 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)952 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
953 {
954 int result = cmd->result;
955 struct request *req = scsi_cmd_to_rq(cmd);
956 blk_status_t blk_stat = BLK_STS_OK;
957
958 if (unlikely(result)) /* a nz result may or may not be an error */
959 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
960
961 /*
962 * Next deal with any sectors which we were able to correctly
963 * handle.
964 */
965 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
966 "%u sectors total, %d bytes done.\n",
967 blk_rq_sectors(req), good_bytes));
968
969 /*
970 * Failed, zero length commands always need to drop down
971 * to retry code. Fast path should return in this block.
972 */
973 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
974 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
975 return; /* no bytes remaining */
976 }
977
978 /* Kill remainder if no retries. */
979 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
980 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
981 WARN_ONCE(true,
982 "Bytes remaining after failed, no-retry command");
983 return;
984 }
985
986 /*
987 * If there had been no error, but we have leftover bytes in the
988 * request just queue the command up again.
989 */
990 if (likely(result == 0))
991 scsi_mq_requeue_cmd(cmd, 0);
992 else
993 scsi_io_completion_action(cmd, result);
994 }
995
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)996 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
997 struct request *rq)
998 {
999 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
1000 !op_is_write(req_op(rq)) &&
1001 sdev->host->hostt->dma_need_drain(rq);
1002 }
1003
1004 /**
1005 * scsi_alloc_sgtables - Allocate and initialize data and integrity scatterlists
1006 * @cmd: SCSI command data structure to initialize.
1007 *
1008 * Initializes @cmd->sdb and also @cmd->prot_sdb if data integrity is enabled
1009 * for @cmd.
1010 *
1011 * Returns:
1012 * * BLK_STS_OK - on success
1013 * * BLK_STS_RESOURCE - if the failure is retryable
1014 * * BLK_STS_IOERR - if the failure is fatal
1015 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1016 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1017 {
1018 struct scsi_device *sdev = cmd->device;
1019 struct request *rq = scsi_cmd_to_rq(cmd);
1020 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1021 struct scatterlist *last_sg = NULL;
1022 blk_status_t ret;
1023 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1024 int count;
1025
1026 if (WARN_ON_ONCE(!nr_segs))
1027 return BLK_STS_IOERR;
1028
1029 /*
1030 * Make sure there is space for the drain. The driver must adjust
1031 * max_hw_segments to be prepared for this.
1032 */
1033 if (need_drain)
1034 nr_segs++;
1035
1036 /*
1037 * If sg table allocation fails, requeue request later.
1038 */
1039 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1040 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1041 return BLK_STS_RESOURCE;
1042
1043 /*
1044 * Next, walk the list, and fill in the addresses and sizes of
1045 * each segment.
1046 */
1047 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1048
1049 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1050 unsigned int pad_len =
1051 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1052
1053 last_sg->length += pad_len;
1054 cmd->extra_len += pad_len;
1055 }
1056
1057 if (need_drain) {
1058 sg_unmark_end(last_sg);
1059 last_sg = sg_next(last_sg);
1060 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1061 sg_mark_end(last_sg);
1062
1063 cmd->extra_len += sdev->dma_drain_len;
1064 count++;
1065 }
1066
1067 BUG_ON(count > cmd->sdb.table.nents);
1068 cmd->sdb.table.nents = count;
1069 cmd->sdb.length = blk_rq_payload_bytes(rq);
1070
1071 if (blk_integrity_rq(rq)) {
1072 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1073 int ivecs;
1074
1075 if (WARN_ON_ONCE(!prot_sdb)) {
1076 /*
1077 * This can happen if someone (e.g. multipath)
1078 * queues a command to a device on an adapter
1079 * that does not support DIX.
1080 */
1081 ret = BLK_STS_IOERR;
1082 goto out_free_sgtables;
1083 }
1084
1085 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1086
1087 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1088 prot_sdb->table.sgl,
1089 SCSI_INLINE_PROT_SG_CNT)) {
1090 ret = BLK_STS_RESOURCE;
1091 goto out_free_sgtables;
1092 }
1093
1094 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1095 prot_sdb->table.sgl);
1096 BUG_ON(count > ivecs);
1097 BUG_ON(count > queue_max_integrity_segments(rq->q));
1098
1099 cmd->prot_sdb = prot_sdb;
1100 cmd->prot_sdb->table.nents = count;
1101 }
1102
1103 return BLK_STS_OK;
1104 out_free_sgtables:
1105 scsi_free_sgtables(cmd);
1106 return ret;
1107 }
1108 EXPORT_SYMBOL(scsi_alloc_sgtables);
1109
1110 /**
1111 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1112 * @rq: Request associated with the SCSI command to be initialized.
1113 *
1114 * This function initializes the members of struct scsi_cmnd that must be
1115 * initialized before request processing starts and that won't be
1116 * reinitialized if a SCSI command is requeued.
1117 */
scsi_initialize_rq(struct request * rq)1118 static void scsi_initialize_rq(struct request *rq)
1119 {
1120 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1121
1122 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1123 cmd->cmd_len = MAX_COMMAND_SIZE;
1124 cmd->sense_len = 0;
1125 init_rcu_head(&cmd->rcu);
1126 cmd->jiffies_at_alloc = jiffies;
1127 cmd->retries = 0;
1128 }
1129
scsi_alloc_request(struct request_queue * q,blk_opf_t opf,blk_mq_req_flags_t flags)1130 struct request *scsi_alloc_request(struct request_queue *q, blk_opf_t opf,
1131 blk_mq_req_flags_t flags)
1132 {
1133 struct request *rq;
1134
1135 rq = blk_mq_alloc_request(q, opf, flags);
1136 if (!IS_ERR(rq))
1137 scsi_initialize_rq(rq);
1138 return rq;
1139 }
1140 EXPORT_SYMBOL_GPL(scsi_alloc_request);
1141
1142 /*
1143 * Only called when the request isn't completed by SCSI, and not freed by
1144 * SCSI
1145 */
scsi_cleanup_rq(struct request * rq)1146 static void scsi_cleanup_rq(struct request *rq)
1147 {
1148 if (rq->rq_flags & RQF_DONTPREP) {
1149 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1150 rq->rq_flags &= ~RQF_DONTPREP;
1151 }
1152 }
1153
1154 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1155 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1156 {
1157 struct request *rq = scsi_cmd_to_rq(cmd);
1158
1159 if (!blk_rq_is_passthrough(rq) && !(cmd->flags & SCMD_INITIALIZED)) {
1160 cmd->flags |= SCMD_INITIALIZED;
1161 scsi_initialize_rq(rq);
1162 }
1163
1164 cmd->device = dev;
1165 INIT_LIST_HEAD(&cmd->eh_entry);
1166 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1167 }
1168
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1169 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1170 struct request *req)
1171 {
1172 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1173
1174 /*
1175 * Passthrough requests may transfer data, in which case they must
1176 * a bio attached to them. Or they might contain a SCSI command
1177 * that does not transfer data, in which case they may optionally
1178 * submit a request without an attached bio.
1179 */
1180 if (req->bio) {
1181 blk_status_t ret = scsi_alloc_sgtables(cmd);
1182 if (unlikely(ret != BLK_STS_OK))
1183 return ret;
1184 } else {
1185 BUG_ON(blk_rq_bytes(req));
1186
1187 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1188 }
1189
1190 cmd->transfersize = blk_rq_bytes(req);
1191 return BLK_STS_OK;
1192 }
1193
1194 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1195 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1196 {
1197 switch (sdev->sdev_state) {
1198 case SDEV_CREATED:
1199 return BLK_STS_OK;
1200 case SDEV_OFFLINE:
1201 case SDEV_TRANSPORT_OFFLINE:
1202 /*
1203 * If the device is offline we refuse to process any
1204 * commands. The device must be brought online
1205 * before trying any recovery commands.
1206 */
1207 if (!sdev->offline_already) {
1208 sdev->offline_already = true;
1209 sdev_printk(KERN_ERR, sdev,
1210 "rejecting I/O to offline device\n");
1211 }
1212 return BLK_STS_IOERR;
1213 case SDEV_DEL:
1214 /*
1215 * If the device is fully deleted, we refuse to
1216 * process any commands as well.
1217 */
1218 sdev_printk(KERN_ERR, sdev,
1219 "rejecting I/O to dead device\n");
1220 return BLK_STS_IOERR;
1221 case SDEV_BLOCK:
1222 case SDEV_CREATED_BLOCK:
1223 return BLK_STS_RESOURCE;
1224 case SDEV_QUIESCE:
1225 /*
1226 * If the device is blocked we only accept power management
1227 * commands.
1228 */
1229 if (req && WARN_ON_ONCE(!(req->rq_flags & RQF_PM)))
1230 return BLK_STS_RESOURCE;
1231 return BLK_STS_OK;
1232 default:
1233 /*
1234 * For any other not fully online state we only allow
1235 * power management commands.
1236 */
1237 if (req && !(req->rq_flags & RQF_PM))
1238 return BLK_STS_OFFLINE;
1239 return BLK_STS_OK;
1240 }
1241 }
1242
1243 /*
1244 * scsi_dev_queue_ready: if we can send requests to sdev, assign one token
1245 * and return the token else return -1.
1246 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1247 static inline int scsi_dev_queue_ready(struct request_queue *q,
1248 struct scsi_device *sdev)
1249 {
1250 int token;
1251
1252 token = sbitmap_get(&sdev->budget_map);
1253 if (atomic_read(&sdev->device_blocked)) {
1254 if (token < 0)
1255 goto out;
1256
1257 if (scsi_device_busy(sdev) > 1)
1258 goto out_dec;
1259
1260 /*
1261 * unblock after device_blocked iterates to zero
1262 */
1263 if (atomic_dec_return(&sdev->device_blocked) > 0)
1264 goto out_dec;
1265 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1266 "unblocking device at zero depth\n"));
1267 }
1268
1269 return token;
1270 out_dec:
1271 if (token >= 0)
1272 sbitmap_put(&sdev->budget_map, token);
1273 out:
1274 return -1;
1275 }
1276
1277 /*
1278 * scsi_target_queue_ready: checks if there we can send commands to target
1279 * @sdev: scsi device on starget to check.
1280 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1281 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1282 struct scsi_device *sdev)
1283 {
1284 struct scsi_target *starget = scsi_target(sdev);
1285 unsigned int busy;
1286
1287 if (starget->single_lun) {
1288 spin_lock_irq(shost->host_lock);
1289 if (starget->starget_sdev_user &&
1290 starget->starget_sdev_user != sdev) {
1291 spin_unlock_irq(shost->host_lock);
1292 return 0;
1293 }
1294 starget->starget_sdev_user = sdev;
1295 spin_unlock_irq(shost->host_lock);
1296 }
1297
1298 if (starget->can_queue <= 0)
1299 return 1;
1300
1301 busy = atomic_inc_return(&starget->target_busy) - 1;
1302 if (atomic_read(&starget->target_blocked) > 0) {
1303 if (busy)
1304 goto starved;
1305
1306 /*
1307 * unblock after target_blocked iterates to zero
1308 */
1309 if (atomic_dec_return(&starget->target_blocked) > 0)
1310 goto out_dec;
1311
1312 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1313 "unblocking target at zero depth\n"));
1314 }
1315
1316 if (busy >= starget->can_queue)
1317 goto starved;
1318
1319 return 1;
1320
1321 starved:
1322 spin_lock_irq(shost->host_lock);
1323 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1324 spin_unlock_irq(shost->host_lock);
1325 out_dec:
1326 if (starget->can_queue > 0)
1327 atomic_dec(&starget->target_busy);
1328 return 0;
1329 }
1330
1331 /*
1332 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1333 * return 0. We must end up running the queue again whenever 0 is
1334 * returned, else IO can hang.
1335 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1336 static inline int scsi_host_queue_ready(struct request_queue *q,
1337 struct Scsi_Host *shost,
1338 struct scsi_device *sdev,
1339 struct scsi_cmnd *cmd)
1340 {
1341 if (atomic_read(&shost->host_blocked) > 0) {
1342 if (scsi_host_busy(shost) > 0)
1343 goto starved;
1344
1345 /*
1346 * unblock after host_blocked iterates to zero
1347 */
1348 if (atomic_dec_return(&shost->host_blocked) > 0)
1349 goto out_dec;
1350
1351 SCSI_LOG_MLQUEUE(3,
1352 shost_printk(KERN_INFO, shost,
1353 "unblocking host at zero depth\n"));
1354 }
1355
1356 if (shost->host_self_blocked)
1357 goto starved;
1358
1359 /* We're OK to process the command, so we can't be starved */
1360 if (!list_empty(&sdev->starved_entry)) {
1361 spin_lock_irq(shost->host_lock);
1362 if (!list_empty(&sdev->starved_entry))
1363 list_del_init(&sdev->starved_entry);
1364 spin_unlock_irq(shost->host_lock);
1365 }
1366
1367 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1368
1369 return 1;
1370
1371 starved:
1372 spin_lock_irq(shost->host_lock);
1373 if (list_empty(&sdev->starved_entry))
1374 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1375 spin_unlock_irq(shost->host_lock);
1376 out_dec:
1377 scsi_dec_host_busy(shost, cmd);
1378 return 0;
1379 }
1380
1381 /*
1382 * Busy state exporting function for request stacking drivers.
1383 *
1384 * For efficiency, no lock is taken to check the busy state of
1385 * shost/starget/sdev, since the returned value is not guaranteed and
1386 * may be changed after request stacking drivers call the function,
1387 * regardless of taking lock or not.
1388 *
1389 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1390 * needs to return 'not busy'. Otherwise, request stacking drivers
1391 * may hold requests forever.
1392 */
scsi_mq_lld_busy(struct request_queue * q)1393 static bool scsi_mq_lld_busy(struct request_queue *q)
1394 {
1395 struct scsi_device *sdev = q->queuedata;
1396 struct Scsi_Host *shost;
1397
1398 if (blk_queue_dying(q))
1399 return false;
1400
1401 shost = sdev->host;
1402
1403 /*
1404 * Ignore host/starget busy state.
1405 * Since block layer does not have a concept of fairness across
1406 * multiple queues, congestion of host/starget needs to be handled
1407 * in SCSI layer.
1408 */
1409 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1410 return true;
1411
1412 return false;
1413 }
1414
1415 /*
1416 * Block layer request completion callback. May be called from interrupt
1417 * context.
1418 */
scsi_complete(struct request * rq)1419 static void scsi_complete(struct request *rq)
1420 {
1421 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1422 enum scsi_disposition disposition;
1423
1424 INIT_LIST_HEAD(&cmd->eh_entry);
1425
1426 atomic_inc(&cmd->device->iodone_cnt);
1427 if (cmd->result)
1428 atomic_inc(&cmd->device->ioerr_cnt);
1429
1430 disposition = scsi_decide_disposition(cmd);
1431 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1432 disposition = SUCCESS;
1433
1434 scsi_log_completion(cmd, disposition);
1435
1436 switch (disposition) {
1437 case SUCCESS:
1438 scsi_finish_command(cmd);
1439 break;
1440 case NEEDS_RETRY:
1441 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1442 break;
1443 case ADD_TO_MLQUEUE:
1444 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1445 break;
1446 default:
1447 scsi_eh_scmd_add(cmd);
1448 break;
1449 }
1450 }
1451
1452 /**
1453 * scsi_dispatch_cmd - Dispatch a command to the low-level driver.
1454 * @cmd: command block we are dispatching.
1455 *
1456 * Return: nonzero return request was rejected and device's queue needs to be
1457 * plugged.
1458 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1459 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1460 {
1461 struct Scsi_Host *host = cmd->device->host;
1462 int rtn = 0;
1463
1464 atomic_inc(&cmd->device->iorequest_cnt);
1465
1466 /* check if the device is still usable */
1467 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1468 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1469 * returns an immediate error upwards, and signals
1470 * that the device is no longer present */
1471 cmd->result = DID_NO_CONNECT << 16;
1472 goto done;
1473 }
1474
1475 /* Check to see if the scsi lld made this device blocked. */
1476 if (unlikely(scsi_device_blocked(cmd->device))) {
1477 /*
1478 * in blocked state, the command is just put back on
1479 * the device queue. The suspend state has already
1480 * blocked the queue so future requests should not
1481 * occur until the device transitions out of the
1482 * suspend state.
1483 */
1484 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1485 "queuecommand : device blocked\n"));
1486 atomic_dec(&cmd->device->iorequest_cnt);
1487 return SCSI_MLQUEUE_DEVICE_BUSY;
1488 }
1489
1490 /* Store the LUN value in cmnd, if needed. */
1491 if (cmd->device->lun_in_cdb)
1492 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1493 (cmd->device->lun << 5 & 0xe0);
1494
1495 scsi_log_send(cmd);
1496
1497 /*
1498 * Before we queue this command, check if the command
1499 * length exceeds what the host adapter can handle.
1500 */
1501 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1502 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1503 "queuecommand : command too long. "
1504 "cdb_size=%d host->max_cmd_len=%d\n",
1505 cmd->cmd_len, cmd->device->host->max_cmd_len));
1506 cmd->result = (DID_ABORT << 16);
1507 goto done;
1508 }
1509
1510 if (unlikely(host->shost_state == SHOST_DEL)) {
1511 cmd->result = (DID_NO_CONNECT << 16);
1512 goto done;
1513
1514 }
1515
1516 trace_scsi_dispatch_cmd_start(cmd);
1517 rtn = host->hostt->queuecommand(host, cmd);
1518 if (rtn) {
1519 atomic_dec(&cmd->device->iorequest_cnt);
1520 trace_scsi_dispatch_cmd_error(cmd, rtn);
1521 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1522 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1523 rtn = SCSI_MLQUEUE_HOST_BUSY;
1524
1525 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1526 "queuecommand : request rejected\n"));
1527 }
1528
1529 return rtn;
1530 done:
1531 scsi_done(cmd);
1532 return 0;
1533 }
1534
1535 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1536 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1537 {
1538 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1539 sizeof(struct scatterlist);
1540 }
1541
scsi_prepare_cmd(struct request * req)1542 static blk_status_t scsi_prepare_cmd(struct request *req)
1543 {
1544 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1545 struct scsi_device *sdev = req->q->queuedata;
1546 struct Scsi_Host *shost = sdev->host;
1547 bool in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1548 struct scatterlist *sg;
1549
1550 scsi_init_command(sdev, cmd);
1551
1552 cmd->eh_eflags = 0;
1553 cmd->prot_type = 0;
1554 cmd->prot_flags = 0;
1555 cmd->submitter = 0;
1556 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1557 cmd->underflow = 0;
1558 cmd->transfersize = 0;
1559 cmd->host_scribble = NULL;
1560 cmd->result = 0;
1561 cmd->extra_len = 0;
1562 cmd->state = 0;
1563 if (in_flight)
1564 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1565
1566 /*
1567 * Only clear the driver-private command data if the LLD does not supply
1568 * a function to initialize that data.
1569 */
1570 if (!shost->hostt->init_cmd_priv)
1571 memset(cmd + 1, 0, shost->hostt->cmd_size);
1572
1573 cmd->prot_op = SCSI_PROT_NORMAL;
1574 if (blk_rq_bytes(req))
1575 cmd->sc_data_direction = rq_dma_dir(req);
1576 else
1577 cmd->sc_data_direction = DMA_NONE;
1578
1579 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1580 cmd->sdb.table.sgl = sg;
1581
1582 if (scsi_host_get_prot(shost)) {
1583 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1584
1585 cmd->prot_sdb->table.sgl =
1586 (struct scatterlist *)(cmd->prot_sdb + 1);
1587 }
1588
1589 /*
1590 * Special handling for passthrough commands, which don't go to the ULP
1591 * at all:
1592 */
1593 if (blk_rq_is_passthrough(req))
1594 return scsi_setup_scsi_cmnd(sdev, req);
1595
1596 if (sdev->handler && sdev->handler->prep_fn) {
1597 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1598
1599 if (ret != BLK_STS_OK)
1600 return ret;
1601 }
1602
1603 /* Usually overridden by the ULP */
1604 cmd->allowed = 0;
1605 memset(cmd->cmnd, 0, sizeof(cmd->cmnd));
1606 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1607 }
1608
scsi_done_internal(struct scsi_cmnd * cmd,bool complete_directly)1609 static void scsi_done_internal(struct scsi_cmnd *cmd, bool complete_directly)
1610 {
1611 struct request *req = scsi_cmd_to_rq(cmd);
1612
1613 switch (cmd->submitter) {
1614 case SUBMITTED_BY_BLOCK_LAYER:
1615 break;
1616 case SUBMITTED_BY_SCSI_ERROR_HANDLER:
1617 return scsi_eh_done(cmd);
1618 case SUBMITTED_BY_SCSI_RESET_IOCTL:
1619 return;
1620 }
1621
1622 if (unlikely(blk_should_fake_timeout(scsi_cmd_to_rq(cmd)->q)))
1623 return;
1624 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1625 return;
1626 trace_scsi_dispatch_cmd_done(cmd);
1627
1628 if (complete_directly)
1629 blk_mq_complete_request_direct(req, scsi_complete);
1630 else
1631 blk_mq_complete_request(req);
1632 }
1633
scsi_done(struct scsi_cmnd * cmd)1634 void scsi_done(struct scsi_cmnd *cmd)
1635 {
1636 scsi_done_internal(cmd, false);
1637 }
1638 EXPORT_SYMBOL(scsi_done);
1639
scsi_done_direct(struct scsi_cmnd * cmd)1640 void scsi_done_direct(struct scsi_cmnd *cmd)
1641 {
1642 scsi_done_internal(cmd, true);
1643 }
1644 EXPORT_SYMBOL(scsi_done_direct);
1645
scsi_mq_put_budget(struct request_queue * q,int budget_token)1646 static void scsi_mq_put_budget(struct request_queue *q, int budget_token)
1647 {
1648 struct scsi_device *sdev = q->queuedata;
1649
1650 sbitmap_put(&sdev->budget_map, budget_token);
1651 }
1652
1653 /*
1654 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
1655 * not change behaviour from the previous unplug mechanism, experimentation
1656 * may prove this needs changing.
1657 */
1658 #define SCSI_QUEUE_DELAY 3
1659
scsi_mq_get_budget(struct request_queue * q)1660 static int scsi_mq_get_budget(struct request_queue *q)
1661 {
1662 struct scsi_device *sdev = q->queuedata;
1663 int token = scsi_dev_queue_ready(q, sdev);
1664
1665 if (token >= 0)
1666 return token;
1667
1668 atomic_inc(&sdev->restarts);
1669
1670 /*
1671 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1672 * .restarts must be incremented before .device_busy is read because the
1673 * code in scsi_run_queue_async() depends on the order of these operations.
1674 */
1675 smp_mb__after_atomic();
1676
1677 /*
1678 * If all in-flight requests originated from this LUN are completed
1679 * before reading .device_busy, sdev->device_busy will be observed as
1680 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1681 * soon. Otherwise, completion of one of these requests will observe
1682 * the .restarts flag, and the request queue will be run for handling
1683 * this request, see scsi_end_request().
1684 */
1685 if (unlikely(scsi_device_busy(sdev) == 0 &&
1686 !scsi_device_blocked(sdev)))
1687 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1688 return -1;
1689 }
1690
scsi_mq_set_rq_budget_token(struct request * req,int token)1691 static void scsi_mq_set_rq_budget_token(struct request *req, int token)
1692 {
1693 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1694
1695 cmd->budget_token = token;
1696 }
1697
scsi_mq_get_rq_budget_token(struct request * req)1698 static int scsi_mq_get_rq_budget_token(struct request *req)
1699 {
1700 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1701
1702 return cmd->budget_token;
1703 }
1704
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1705 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1706 const struct blk_mq_queue_data *bd)
1707 {
1708 struct request *req = bd->rq;
1709 struct request_queue *q = req->q;
1710 struct scsi_device *sdev = q->queuedata;
1711 struct Scsi_Host *shost = sdev->host;
1712 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1713 blk_status_t ret;
1714 int reason;
1715
1716 WARN_ON_ONCE(cmd->budget_token < 0);
1717
1718 /*
1719 * If the device is not in running state we will reject some or all
1720 * commands.
1721 */
1722 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1723 ret = scsi_device_state_check(sdev, req);
1724 if (ret != BLK_STS_OK)
1725 goto out_put_budget;
1726 }
1727
1728 ret = BLK_STS_RESOURCE;
1729 if (!scsi_target_queue_ready(shost, sdev))
1730 goto out_put_budget;
1731 if (unlikely(scsi_host_in_recovery(shost))) {
1732 if (cmd->flags & SCMD_FAIL_IF_RECOVERING)
1733 ret = BLK_STS_OFFLINE;
1734 goto out_dec_target_busy;
1735 }
1736 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1737 goto out_dec_target_busy;
1738
1739 if (!(req->rq_flags & RQF_DONTPREP)) {
1740 ret = scsi_prepare_cmd(req);
1741 if (ret != BLK_STS_OK)
1742 goto out_dec_host_busy;
1743 req->rq_flags |= RQF_DONTPREP;
1744 } else {
1745 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1746 }
1747
1748 cmd->flags &= SCMD_PRESERVED_FLAGS;
1749 if (sdev->simple_tags)
1750 cmd->flags |= SCMD_TAGGED;
1751 if (bd->last)
1752 cmd->flags |= SCMD_LAST;
1753
1754 scsi_set_resid(cmd, 0);
1755 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1756 cmd->submitter = SUBMITTED_BY_BLOCK_LAYER;
1757
1758 blk_mq_start_request(req);
1759 reason = scsi_dispatch_cmd(cmd);
1760 if (reason) {
1761 scsi_set_blocked(cmd, reason);
1762 ret = BLK_STS_RESOURCE;
1763 goto out_dec_host_busy;
1764 }
1765
1766 return BLK_STS_OK;
1767
1768 out_dec_host_busy:
1769 scsi_dec_host_busy(shost, cmd);
1770 out_dec_target_busy:
1771 if (scsi_target(sdev)->can_queue > 0)
1772 atomic_dec(&scsi_target(sdev)->target_busy);
1773 out_put_budget:
1774 scsi_mq_put_budget(q, cmd->budget_token);
1775 cmd->budget_token = -1;
1776 switch (ret) {
1777 case BLK_STS_OK:
1778 break;
1779 case BLK_STS_RESOURCE:
1780 case BLK_STS_ZONE_RESOURCE:
1781 if (scsi_device_blocked(sdev))
1782 ret = BLK_STS_DEV_RESOURCE;
1783 break;
1784 case BLK_STS_AGAIN:
1785 cmd->result = DID_BUS_BUSY << 16;
1786 if (req->rq_flags & RQF_DONTPREP)
1787 scsi_mq_uninit_cmd(cmd);
1788 break;
1789 default:
1790 if (unlikely(!scsi_device_online(sdev)))
1791 cmd->result = DID_NO_CONNECT << 16;
1792 else
1793 cmd->result = DID_ERROR << 16;
1794 /*
1795 * Make sure to release all allocated resources when
1796 * we hit an error, as we will never see this command
1797 * again.
1798 */
1799 if (req->rq_flags & RQF_DONTPREP)
1800 scsi_mq_uninit_cmd(cmd);
1801 scsi_run_queue_async(sdev);
1802 break;
1803 }
1804 return ret;
1805 }
1806
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1807 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1808 unsigned int hctx_idx, unsigned int numa_node)
1809 {
1810 struct Scsi_Host *shost = set->driver_data;
1811 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1812 struct scatterlist *sg;
1813 int ret = 0;
1814
1815 cmd->sense_buffer =
1816 kmem_cache_alloc_node(scsi_sense_cache, GFP_KERNEL, numa_node);
1817 if (!cmd->sense_buffer)
1818 return -ENOMEM;
1819
1820 if (scsi_host_get_prot(shost)) {
1821 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1822 shost->hostt->cmd_size;
1823 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1824 }
1825
1826 if (shost->hostt->init_cmd_priv) {
1827 ret = shost->hostt->init_cmd_priv(shost, cmd);
1828 if (ret < 0)
1829 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1830 }
1831
1832 return ret;
1833 }
1834
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1835 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1836 unsigned int hctx_idx)
1837 {
1838 struct Scsi_Host *shost = set->driver_data;
1839 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1840
1841 if (shost->hostt->exit_cmd_priv)
1842 shost->hostt->exit_cmd_priv(shost, cmd);
1843 kmem_cache_free(scsi_sense_cache, cmd->sense_buffer);
1844 }
1845
1846
scsi_mq_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)1847 static int scsi_mq_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
1848 {
1849 struct Scsi_Host *shost = hctx->driver_data;
1850
1851 if (shost->hostt->mq_poll)
1852 return shost->hostt->mq_poll(shost, hctx->queue_num);
1853
1854 return 0;
1855 }
1856
scsi_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)1857 static int scsi_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
1858 unsigned int hctx_idx)
1859 {
1860 struct Scsi_Host *shost = data;
1861
1862 hctx->driver_data = shost;
1863 return 0;
1864 }
1865
scsi_map_queues(struct blk_mq_tag_set * set)1866 static void scsi_map_queues(struct blk_mq_tag_set *set)
1867 {
1868 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1869
1870 if (shost->hostt->map_queues)
1871 return shost->hostt->map_queues(shost);
1872 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1873 }
1874
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1875 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1876 {
1877 struct device *dev = shost->dma_dev;
1878
1879 /*
1880 * this limit is imposed by hardware restrictions
1881 */
1882 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1883 SG_MAX_SEGMENTS));
1884
1885 if (scsi_host_prot_dma(shost)) {
1886 shost->sg_prot_tablesize =
1887 min_not_zero(shost->sg_prot_tablesize,
1888 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1889 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1890 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1891 }
1892
1893 blk_queue_max_hw_sectors(q, shost->max_sectors);
1894 blk_queue_segment_boundary(q, shost->dma_boundary);
1895 dma_set_seg_boundary(dev, shost->dma_boundary);
1896
1897 blk_queue_max_segment_size(q, shost->max_segment_size);
1898 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1899 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1900
1901 /*
1902 * Set a reasonable default alignment: The larger of 32-byte (dword),
1903 * which is a common minimum for HBAs, and the minimum DMA alignment,
1904 * which is set by the platform.
1905 *
1906 * Devices that require a bigger alignment can increase it later.
1907 */
1908 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1909 }
1910 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1911
1912 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1913 .get_budget = scsi_mq_get_budget,
1914 .put_budget = scsi_mq_put_budget,
1915 .queue_rq = scsi_queue_rq,
1916 .complete = scsi_complete,
1917 .timeout = scsi_timeout,
1918 #ifdef CONFIG_BLK_DEBUG_FS
1919 .show_rq = scsi_show_rq,
1920 #endif
1921 .init_request = scsi_mq_init_request,
1922 .exit_request = scsi_mq_exit_request,
1923 .cleanup_rq = scsi_cleanup_rq,
1924 .busy = scsi_mq_lld_busy,
1925 .map_queues = scsi_map_queues,
1926 .init_hctx = scsi_init_hctx,
1927 .poll = scsi_mq_poll,
1928 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1929 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1930 };
1931
1932
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1933 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1934 {
1935 struct Scsi_Host *shost = hctx->driver_data;
1936
1937 shost->hostt->commit_rqs(shost, hctx->queue_num);
1938 }
1939
1940 static const struct blk_mq_ops scsi_mq_ops = {
1941 .get_budget = scsi_mq_get_budget,
1942 .put_budget = scsi_mq_put_budget,
1943 .queue_rq = scsi_queue_rq,
1944 .commit_rqs = scsi_commit_rqs,
1945 .complete = scsi_complete,
1946 .timeout = scsi_timeout,
1947 #ifdef CONFIG_BLK_DEBUG_FS
1948 .show_rq = scsi_show_rq,
1949 #endif
1950 .init_request = scsi_mq_init_request,
1951 .exit_request = scsi_mq_exit_request,
1952 .cleanup_rq = scsi_cleanup_rq,
1953 .busy = scsi_mq_lld_busy,
1954 .map_queues = scsi_map_queues,
1955 .init_hctx = scsi_init_hctx,
1956 .poll = scsi_mq_poll,
1957 .set_rq_budget_token = scsi_mq_set_rq_budget_token,
1958 .get_rq_budget_token = scsi_mq_get_rq_budget_token,
1959 };
1960
scsi_mq_setup_tags(struct Scsi_Host * shost)1961 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1962 {
1963 unsigned int cmd_size, sgl_size;
1964 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1965
1966 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1967 scsi_mq_inline_sgl_size(shost));
1968 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1969 if (scsi_host_get_prot(shost))
1970 cmd_size += sizeof(struct scsi_data_buffer) +
1971 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1972
1973 memset(tag_set, 0, sizeof(*tag_set));
1974 if (shost->hostt->commit_rqs)
1975 tag_set->ops = &scsi_mq_ops;
1976 else
1977 tag_set->ops = &scsi_mq_ops_no_commit;
1978 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1979 tag_set->nr_maps = shost->nr_maps ? : 1;
1980 tag_set->queue_depth = shost->can_queue;
1981 tag_set->cmd_size = cmd_size;
1982 tag_set->numa_node = dev_to_node(shost->dma_dev);
1983 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1984 tag_set->flags |=
1985 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1986 if (shost->queuecommand_may_block)
1987 tag_set->flags |= BLK_MQ_F_BLOCKING;
1988 tag_set->driver_data = shost;
1989 if (shost->host_tagset)
1990 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1991
1992 return blk_mq_alloc_tag_set(tag_set);
1993 }
1994
scsi_mq_free_tags(struct kref * kref)1995 void scsi_mq_free_tags(struct kref *kref)
1996 {
1997 struct Scsi_Host *shost = container_of(kref, typeof(*shost),
1998 tagset_refcnt);
1999
2000 blk_mq_free_tag_set(&shost->tag_set);
2001 complete(&shost->tagset_freed);
2002 }
2003
2004 /**
2005 * scsi_device_from_queue - return sdev associated with a request_queue
2006 * @q: The request queue to return the sdev from
2007 *
2008 * Return the sdev associated with a request queue or NULL if the
2009 * request_queue does not reference a SCSI device.
2010 */
scsi_device_from_queue(struct request_queue * q)2011 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2012 {
2013 struct scsi_device *sdev = NULL;
2014
2015 if (q->mq_ops == &scsi_mq_ops_no_commit ||
2016 q->mq_ops == &scsi_mq_ops)
2017 sdev = q->queuedata;
2018 if (!sdev || !get_device(&sdev->sdev_gendev))
2019 sdev = NULL;
2020
2021 return sdev;
2022 }
2023 /*
2024 * pktcdvd should have been integrated into the SCSI layers, but for historical
2025 * reasons like the old IDE driver it isn't. This export allows it to safely
2026 * probe if a given device is a SCSI one and only attach to that.
2027 */
2028 #ifdef CONFIG_CDROM_PKTCDVD_MODULE
2029 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2030 #endif
2031
2032 /**
2033 * scsi_block_requests - Utility function used by low-level drivers to prevent
2034 * further commands from being queued to the device.
2035 * @shost: host in question
2036 *
2037 * There is no timer nor any other means by which the requests get unblocked
2038 * other than the low-level driver calling scsi_unblock_requests().
2039 */
scsi_block_requests(struct Scsi_Host * shost)2040 void scsi_block_requests(struct Scsi_Host *shost)
2041 {
2042 shost->host_self_blocked = 1;
2043 }
2044 EXPORT_SYMBOL(scsi_block_requests);
2045
2046 /**
2047 * scsi_unblock_requests - Utility function used by low-level drivers to allow
2048 * further commands to be queued to the device.
2049 * @shost: host in question
2050 *
2051 * There is no timer nor any other means by which the requests get unblocked
2052 * other than the low-level driver calling scsi_unblock_requests(). This is done
2053 * as an API function so that changes to the internals of the scsi mid-layer
2054 * won't require wholesale changes to drivers that use this feature.
2055 */
scsi_unblock_requests(struct Scsi_Host * shost)2056 void scsi_unblock_requests(struct Scsi_Host *shost)
2057 {
2058 shost->host_self_blocked = 0;
2059 scsi_run_host_queues(shost);
2060 }
2061 EXPORT_SYMBOL(scsi_unblock_requests);
2062
scsi_exit_queue(void)2063 void scsi_exit_queue(void)
2064 {
2065 kmem_cache_destroy(scsi_sense_cache);
2066 }
2067
2068 /**
2069 * scsi_mode_select - issue a mode select
2070 * @sdev: SCSI device to be queried
2071 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2072 * @sp: Save page bit (0 == don't save, 1 == save)
2073 * @buffer: request buffer (may not be smaller than eight bytes)
2074 * @len: length of request buffer.
2075 * @timeout: command timeout
2076 * @retries: number of retries before failing
2077 * @data: returns a structure abstracting the mode header data
2078 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2079 * must be SCSI_SENSE_BUFFERSIZE big.
2080 *
2081 * Returns zero if successful; negative error number or scsi
2082 * status on error
2083 *
2084 */
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2085 int scsi_mode_select(struct scsi_device *sdev, int pf, int sp,
2086 unsigned char *buffer, int len, int timeout, int retries,
2087 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2088 {
2089 unsigned char cmd[10];
2090 unsigned char *real_buffer;
2091 const struct scsi_exec_args exec_args = {
2092 .sshdr = sshdr,
2093 };
2094 int ret;
2095
2096 memset(cmd, 0, sizeof(cmd));
2097 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2098
2099 /*
2100 * Use MODE SELECT(10) if the device asked for it or if the mode page
2101 * and the mode select header cannot fit within the maximumm 255 bytes
2102 * of the MODE SELECT(6) command.
2103 */
2104 if (sdev->use_10_for_ms ||
2105 len + 4 > 255 ||
2106 data->block_descriptor_length > 255) {
2107 if (len > 65535 - 8)
2108 return -EINVAL;
2109 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2110 if (!real_buffer)
2111 return -ENOMEM;
2112 memcpy(real_buffer + 8, buffer, len);
2113 len += 8;
2114 real_buffer[0] = 0;
2115 real_buffer[1] = 0;
2116 real_buffer[2] = data->medium_type;
2117 real_buffer[3] = data->device_specific;
2118 real_buffer[4] = data->longlba ? 0x01 : 0;
2119 real_buffer[5] = 0;
2120 put_unaligned_be16(data->block_descriptor_length,
2121 &real_buffer[6]);
2122
2123 cmd[0] = MODE_SELECT_10;
2124 put_unaligned_be16(len, &cmd[7]);
2125 } else {
2126 if (data->longlba)
2127 return -EINVAL;
2128
2129 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2130 if (!real_buffer)
2131 return -ENOMEM;
2132 memcpy(real_buffer + 4, buffer, len);
2133 len += 4;
2134 real_buffer[0] = 0;
2135 real_buffer[1] = data->medium_type;
2136 real_buffer[2] = data->device_specific;
2137 real_buffer[3] = data->block_descriptor_length;
2138
2139 cmd[0] = MODE_SELECT;
2140 cmd[4] = len;
2141 }
2142
2143 ret = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_OUT, real_buffer, len,
2144 timeout, retries, &exec_args);
2145 kfree(real_buffer);
2146 return ret;
2147 }
2148 EXPORT_SYMBOL_GPL(scsi_mode_select);
2149
2150 /**
2151 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2152 * @sdev: SCSI device to be queried
2153 * @dbd: set to prevent mode sense from returning block descriptors
2154 * @modepage: mode page being requested
2155 * @subpage: sub-page of the mode page being requested
2156 * @buffer: request buffer (may not be smaller than eight bytes)
2157 * @len: length of request buffer.
2158 * @timeout: command timeout
2159 * @retries: number of retries before failing
2160 * @data: returns a structure abstracting the mode header data
2161 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2162 * must be SCSI_SENSE_BUFFERSIZE big.
2163 *
2164 * Returns zero if successful, or a negative error number on failure
2165 */
2166 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,int subpage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2167 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage, int subpage,
2168 unsigned char *buffer, int len, int timeout, int retries,
2169 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2170 {
2171 unsigned char cmd[12];
2172 int use_10_for_ms;
2173 int header_length;
2174 int result, retry_count = retries;
2175 struct scsi_sense_hdr my_sshdr;
2176 const struct scsi_exec_args exec_args = {
2177 /* caller might not be interested in sense, but we need it */
2178 .sshdr = sshdr ? : &my_sshdr,
2179 };
2180
2181 memset(data, 0, sizeof(*data));
2182 memset(&cmd[0], 0, 12);
2183
2184 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2185 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2186 cmd[2] = modepage;
2187 cmd[3] = subpage;
2188
2189 sshdr = exec_args.sshdr;
2190
2191 retry:
2192 use_10_for_ms = sdev->use_10_for_ms || len > 255;
2193
2194 if (use_10_for_ms) {
2195 if (len < 8 || len > 65535)
2196 return -EINVAL;
2197
2198 cmd[0] = MODE_SENSE_10;
2199 put_unaligned_be16(len, &cmd[7]);
2200 header_length = 8;
2201 } else {
2202 if (len < 4)
2203 return -EINVAL;
2204
2205 cmd[0] = MODE_SENSE;
2206 cmd[4] = len;
2207 header_length = 4;
2208 }
2209
2210 memset(buffer, 0, len);
2211
2212 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, buffer, len,
2213 timeout, retries, &exec_args);
2214 if (result < 0)
2215 return result;
2216
2217 /* This code looks awful: what it's doing is making sure an
2218 * ILLEGAL REQUEST sense return identifies the actual command
2219 * byte as the problem. MODE_SENSE commands can return
2220 * ILLEGAL REQUEST if the code page isn't supported */
2221
2222 if (!scsi_status_is_good(result)) {
2223 if (scsi_sense_valid(sshdr)) {
2224 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2225 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2226 /*
2227 * Invalid command operation code: retry using
2228 * MODE SENSE(6) if this was a MODE SENSE(10)
2229 * request, except if the request mode page is
2230 * too large for MODE SENSE single byte
2231 * allocation length field.
2232 */
2233 if (use_10_for_ms) {
2234 if (len > 255)
2235 return -EIO;
2236 sdev->use_10_for_ms = 0;
2237 goto retry;
2238 }
2239 }
2240 if (scsi_status_is_check_condition(result) &&
2241 sshdr->sense_key == UNIT_ATTENTION &&
2242 retry_count) {
2243 retry_count--;
2244 goto retry;
2245 }
2246 }
2247 return -EIO;
2248 }
2249 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2250 (modepage == 6 || modepage == 8))) {
2251 /* Initio breakage? */
2252 header_length = 0;
2253 data->length = 13;
2254 data->medium_type = 0;
2255 data->device_specific = 0;
2256 data->longlba = 0;
2257 data->block_descriptor_length = 0;
2258 } else if (use_10_for_ms) {
2259 data->length = get_unaligned_be16(&buffer[0]) + 2;
2260 data->medium_type = buffer[2];
2261 data->device_specific = buffer[3];
2262 data->longlba = buffer[4] & 0x01;
2263 data->block_descriptor_length = get_unaligned_be16(&buffer[6]);
2264 } else {
2265 data->length = buffer[0] + 1;
2266 data->medium_type = buffer[1];
2267 data->device_specific = buffer[2];
2268 data->block_descriptor_length = buffer[3];
2269 }
2270 data->header_length = header_length;
2271
2272 return 0;
2273 }
2274 EXPORT_SYMBOL(scsi_mode_sense);
2275
2276 /**
2277 * scsi_test_unit_ready - test if unit is ready
2278 * @sdev: scsi device to change the state of.
2279 * @timeout: command timeout
2280 * @retries: number of retries before failing
2281 * @sshdr: outpout pointer for decoded sense information.
2282 *
2283 * Returns zero if unsuccessful or an error if TUR failed. For
2284 * removable media, UNIT_ATTENTION sets ->changed flag.
2285 **/
2286 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2287 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2288 struct scsi_sense_hdr *sshdr)
2289 {
2290 char cmd[] = {
2291 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2292 };
2293 const struct scsi_exec_args exec_args = {
2294 .sshdr = sshdr,
2295 };
2296 int result;
2297
2298 /* try to eat the UNIT_ATTENTION if there are enough retries */
2299 do {
2300 result = scsi_execute_cmd(sdev, cmd, REQ_OP_DRV_IN, NULL, 0,
2301 timeout, 1, &exec_args);
2302 if (sdev->removable && scsi_sense_valid(sshdr) &&
2303 sshdr->sense_key == UNIT_ATTENTION)
2304 sdev->changed = 1;
2305 } while (scsi_sense_valid(sshdr) &&
2306 sshdr->sense_key == UNIT_ATTENTION && --retries);
2307
2308 return result;
2309 }
2310 EXPORT_SYMBOL(scsi_test_unit_ready);
2311
2312 /**
2313 * scsi_device_set_state - Take the given device through the device state model.
2314 * @sdev: scsi device to change the state of.
2315 * @state: state to change to.
2316 *
2317 * Returns zero if successful or an error if the requested
2318 * transition is illegal.
2319 */
2320 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2321 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2322 {
2323 enum scsi_device_state oldstate = sdev->sdev_state;
2324
2325 if (state == oldstate)
2326 return 0;
2327
2328 switch (state) {
2329 case SDEV_CREATED:
2330 switch (oldstate) {
2331 case SDEV_CREATED_BLOCK:
2332 break;
2333 default:
2334 goto illegal;
2335 }
2336 break;
2337
2338 case SDEV_RUNNING:
2339 switch (oldstate) {
2340 case SDEV_CREATED:
2341 case SDEV_OFFLINE:
2342 case SDEV_TRANSPORT_OFFLINE:
2343 case SDEV_QUIESCE:
2344 case SDEV_BLOCK:
2345 break;
2346 default:
2347 goto illegal;
2348 }
2349 break;
2350
2351 case SDEV_QUIESCE:
2352 switch (oldstate) {
2353 case SDEV_RUNNING:
2354 case SDEV_OFFLINE:
2355 case SDEV_TRANSPORT_OFFLINE:
2356 break;
2357 default:
2358 goto illegal;
2359 }
2360 break;
2361
2362 case SDEV_OFFLINE:
2363 case SDEV_TRANSPORT_OFFLINE:
2364 switch (oldstate) {
2365 case SDEV_CREATED:
2366 case SDEV_RUNNING:
2367 case SDEV_QUIESCE:
2368 case SDEV_BLOCK:
2369 break;
2370 default:
2371 goto illegal;
2372 }
2373 break;
2374
2375 case SDEV_BLOCK:
2376 switch (oldstate) {
2377 case SDEV_RUNNING:
2378 case SDEV_CREATED_BLOCK:
2379 case SDEV_QUIESCE:
2380 case SDEV_OFFLINE:
2381 break;
2382 default:
2383 goto illegal;
2384 }
2385 break;
2386
2387 case SDEV_CREATED_BLOCK:
2388 switch (oldstate) {
2389 case SDEV_CREATED:
2390 break;
2391 default:
2392 goto illegal;
2393 }
2394 break;
2395
2396 case SDEV_CANCEL:
2397 switch (oldstate) {
2398 case SDEV_CREATED:
2399 case SDEV_RUNNING:
2400 case SDEV_QUIESCE:
2401 case SDEV_OFFLINE:
2402 case SDEV_TRANSPORT_OFFLINE:
2403 break;
2404 default:
2405 goto illegal;
2406 }
2407 break;
2408
2409 case SDEV_DEL:
2410 switch (oldstate) {
2411 case SDEV_CREATED:
2412 case SDEV_RUNNING:
2413 case SDEV_OFFLINE:
2414 case SDEV_TRANSPORT_OFFLINE:
2415 case SDEV_CANCEL:
2416 case SDEV_BLOCK:
2417 case SDEV_CREATED_BLOCK:
2418 break;
2419 default:
2420 goto illegal;
2421 }
2422 break;
2423
2424 }
2425 sdev->offline_already = false;
2426 sdev->sdev_state = state;
2427 return 0;
2428
2429 illegal:
2430 SCSI_LOG_ERROR_RECOVERY(1,
2431 sdev_printk(KERN_ERR, sdev,
2432 "Illegal state transition %s->%s",
2433 scsi_device_state_name(oldstate),
2434 scsi_device_state_name(state))
2435 );
2436 return -EINVAL;
2437 }
2438 EXPORT_SYMBOL(scsi_device_set_state);
2439
2440 /**
2441 * scsi_evt_emit - emit a single SCSI device uevent
2442 * @sdev: associated SCSI device
2443 * @evt: event to emit
2444 *
2445 * Send a single uevent (scsi_event) to the associated scsi_device.
2446 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2447 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2448 {
2449 int idx = 0;
2450 char *envp[3];
2451
2452 switch (evt->evt_type) {
2453 case SDEV_EVT_MEDIA_CHANGE:
2454 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2455 break;
2456 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2457 scsi_rescan_device(sdev);
2458 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2459 break;
2460 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2461 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2462 break;
2463 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2464 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2465 break;
2466 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2467 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2468 break;
2469 case SDEV_EVT_LUN_CHANGE_REPORTED:
2470 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2471 break;
2472 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2473 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2474 break;
2475 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2476 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2477 break;
2478 default:
2479 /* do nothing */
2480 break;
2481 }
2482
2483 envp[idx++] = NULL;
2484
2485 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2486 }
2487
2488 /**
2489 * scsi_evt_thread - send a uevent for each scsi event
2490 * @work: work struct for scsi_device
2491 *
2492 * Dispatch queued events to their associated scsi_device kobjects
2493 * as uevents.
2494 */
scsi_evt_thread(struct work_struct * work)2495 void scsi_evt_thread(struct work_struct *work)
2496 {
2497 struct scsi_device *sdev;
2498 enum scsi_device_event evt_type;
2499 LIST_HEAD(event_list);
2500
2501 sdev = container_of(work, struct scsi_device, event_work);
2502
2503 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2504 if (test_and_clear_bit(evt_type, sdev->pending_events))
2505 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2506
2507 while (1) {
2508 struct scsi_event *evt;
2509 struct list_head *this, *tmp;
2510 unsigned long flags;
2511
2512 spin_lock_irqsave(&sdev->list_lock, flags);
2513 list_splice_init(&sdev->event_list, &event_list);
2514 spin_unlock_irqrestore(&sdev->list_lock, flags);
2515
2516 if (list_empty(&event_list))
2517 break;
2518
2519 list_for_each_safe(this, tmp, &event_list) {
2520 evt = list_entry(this, struct scsi_event, node);
2521 list_del(&evt->node);
2522 scsi_evt_emit(sdev, evt);
2523 kfree(evt);
2524 }
2525 }
2526 }
2527
2528 /**
2529 * sdev_evt_send - send asserted event to uevent thread
2530 * @sdev: scsi_device event occurred on
2531 * @evt: event to send
2532 *
2533 * Assert scsi device event asynchronously.
2534 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2535 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2536 {
2537 unsigned long flags;
2538
2539 #if 0
2540 /* FIXME: currently this check eliminates all media change events
2541 * for polled devices. Need to update to discriminate between AN
2542 * and polled events */
2543 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2544 kfree(evt);
2545 return;
2546 }
2547 #endif
2548
2549 spin_lock_irqsave(&sdev->list_lock, flags);
2550 list_add_tail(&evt->node, &sdev->event_list);
2551 schedule_work(&sdev->event_work);
2552 spin_unlock_irqrestore(&sdev->list_lock, flags);
2553 }
2554 EXPORT_SYMBOL_GPL(sdev_evt_send);
2555
2556 /**
2557 * sdev_evt_alloc - allocate a new scsi event
2558 * @evt_type: type of event to allocate
2559 * @gfpflags: GFP flags for allocation
2560 *
2561 * Allocates and returns a new scsi_event.
2562 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2563 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2564 gfp_t gfpflags)
2565 {
2566 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2567 if (!evt)
2568 return NULL;
2569
2570 evt->evt_type = evt_type;
2571 INIT_LIST_HEAD(&evt->node);
2572
2573 /* evt_type-specific initialization, if any */
2574 switch (evt_type) {
2575 case SDEV_EVT_MEDIA_CHANGE:
2576 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2577 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2578 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2579 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2580 case SDEV_EVT_LUN_CHANGE_REPORTED:
2581 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2582 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2583 default:
2584 /* do nothing */
2585 break;
2586 }
2587
2588 return evt;
2589 }
2590 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2591
2592 /**
2593 * sdev_evt_send_simple - send asserted event to uevent thread
2594 * @sdev: scsi_device event occurred on
2595 * @evt_type: type of event to send
2596 * @gfpflags: GFP flags for allocation
2597 *
2598 * Assert scsi device event asynchronously, given an event type.
2599 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2600 void sdev_evt_send_simple(struct scsi_device *sdev,
2601 enum scsi_device_event evt_type, gfp_t gfpflags)
2602 {
2603 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2604 if (!evt) {
2605 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2606 evt_type);
2607 return;
2608 }
2609
2610 sdev_evt_send(sdev, evt);
2611 }
2612 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2613
2614 /**
2615 * scsi_device_quiesce - Block all commands except power management.
2616 * @sdev: scsi device to quiesce.
2617 *
2618 * This works by trying to transition to the SDEV_QUIESCE state
2619 * (which must be a legal transition). When the device is in this
2620 * state, only power management requests will be accepted, all others will
2621 * be deferred.
2622 *
2623 * Must be called with user context, may sleep.
2624 *
2625 * Returns zero if unsuccessful or an error if not.
2626 */
2627 int
scsi_device_quiesce(struct scsi_device * sdev)2628 scsi_device_quiesce(struct scsi_device *sdev)
2629 {
2630 struct request_queue *q = sdev->request_queue;
2631 int err;
2632
2633 /*
2634 * It is allowed to call scsi_device_quiesce() multiple times from
2635 * the same context but concurrent scsi_device_quiesce() calls are
2636 * not allowed.
2637 */
2638 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2639
2640 if (sdev->quiesced_by == current)
2641 return 0;
2642
2643 blk_set_pm_only(q);
2644
2645 blk_mq_freeze_queue(q);
2646 /*
2647 * Ensure that the effect of blk_set_pm_only() will be visible
2648 * for percpu_ref_tryget() callers that occur after the queue
2649 * unfreeze even if the queue was already frozen before this function
2650 * was called. See also https://lwn.net/Articles/573497/.
2651 */
2652 synchronize_rcu();
2653 blk_mq_unfreeze_queue(q);
2654
2655 mutex_lock(&sdev->state_mutex);
2656 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2657 if (err == 0)
2658 sdev->quiesced_by = current;
2659 else
2660 blk_clear_pm_only(q);
2661 mutex_unlock(&sdev->state_mutex);
2662
2663 return err;
2664 }
2665 EXPORT_SYMBOL(scsi_device_quiesce);
2666
2667 /**
2668 * scsi_device_resume - Restart user issued commands to a quiesced device.
2669 * @sdev: scsi device to resume.
2670 *
2671 * Moves the device from quiesced back to running and restarts the
2672 * queues.
2673 *
2674 * Must be called with user context, may sleep.
2675 */
scsi_device_resume(struct scsi_device * sdev)2676 void scsi_device_resume(struct scsi_device *sdev)
2677 {
2678 /* check if the device state was mutated prior to resume, and if
2679 * so assume the state is being managed elsewhere (for example
2680 * device deleted during suspend)
2681 */
2682 mutex_lock(&sdev->state_mutex);
2683 if (sdev->sdev_state == SDEV_QUIESCE)
2684 scsi_device_set_state(sdev, SDEV_RUNNING);
2685 if (sdev->quiesced_by) {
2686 sdev->quiesced_by = NULL;
2687 blk_clear_pm_only(sdev->request_queue);
2688 }
2689 mutex_unlock(&sdev->state_mutex);
2690 }
2691 EXPORT_SYMBOL(scsi_device_resume);
2692
2693 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2694 device_quiesce_fn(struct scsi_device *sdev, void *data)
2695 {
2696 scsi_device_quiesce(sdev);
2697 }
2698
2699 void
scsi_target_quiesce(struct scsi_target * starget)2700 scsi_target_quiesce(struct scsi_target *starget)
2701 {
2702 starget_for_each_device(starget, NULL, device_quiesce_fn);
2703 }
2704 EXPORT_SYMBOL(scsi_target_quiesce);
2705
2706 static void
device_resume_fn(struct scsi_device * sdev,void * data)2707 device_resume_fn(struct scsi_device *sdev, void *data)
2708 {
2709 scsi_device_resume(sdev);
2710 }
2711
2712 void
scsi_target_resume(struct scsi_target * starget)2713 scsi_target_resume(struct scsi_target *starget)
2714 {
2715 starget_for_each_device(starget, NULL, device_resume_fn);
2716 }
2717 EXPORT_SYMBOL(scsi_target_resume);
2718
__scsi_internal_device_block_nowait(struct scsi_device * sdev)2719 static int __scsi_internal_device_block_nowait(struct scsi_device *sdev)
2720 {
2721 if (scsi_device_set_state(sdev, SDEV_BLOCK))
2722 return scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2723
2724 return 0;
2725 }
2726
scsi_start_queue(struct scsi_device * sdev)2727 void scsi_start_queue(struct scsi_device *sdev)
2728 {
2729 if (cmpxchg(&sdev->queue_stopped, 1, 0))
2730 blk_mq_unquiesce_queue(sdev->request_queue);
2731 }
2732
scsi_stop_queue(struct scsi_device * sdev)2733 static void scsi_stop_queue(struct scsi_device *sdev)
2734 {
2735 /*
2736 * The atomic variable of ->queue_stopped covers that
2737 * blk_mq_quiesce_queue* is balanced with blk_mq_unquiesce_queue.
2738 *
2739 * The caller needs to wait until quiesce is done.
2740 */
2741 if (!cmpxchg(&sdev->queue_stopped, 0, 1))
2742 blk_mq_quiesce_queue_nowait(sdev->request_queue);
2743 }
2744
2745 /**
2746 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2747 * @sdev: device to block
2748 *
2749 * Pause SCSI command processing on the specified device. Does not sleep.
2750 *
2751 * Returns zero if successful or a negative error code upon failure.
2752 *
2753 * Notes:
2754 * This routine transitions the device to the SDEV_BLOCK state (which must be
2755 * a legal transition). When the device is in this state, command processing
2756 * is paused until the device leaves the SDEV_BLOCK state. See also
2757 * scsi_internal_device_unblock_nowait().
2758 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2759 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2760 {
2761 int ret = __scsi_internal_device_block_nowait(sdev);
2762
2763 /*
2764 * The device has transitioned to SDEV_BLOCK. Stop the
2765 * block layer from calling the midlayer with this device's
2766 * request queue.
2767 */
2768 if (!ret)
2769 scsi_stop_queue(sdev);
2770 return ret;
2771 }
2772 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2773
2774 /**
2775 * scsi_device_block - try to transition to the SDEV_BLOCK state
2776 * @sdev: device to block
2777 * @data: dummy argument, ignored
2778 *
2779 * Pause SCSI command processing on the specified device. Callers must wait
2780 * until all ongoing scsi_queue_rq() calls have finished after this function
2781 * returns.
2782 *
2783 * Note:
2784 * This routine transitions the device to the SDEV_BLOCK state (which must be
2785 * a legal transition). When the device is in this state, command processing
2786 * is paused until the device leaves the SDEV_BLOCK state. See also
2787 * scsi_internal_device_unblock().
2788 */
scsi_device_block(struct scsi_device * sdev,void * data)2789 static void scsi_device_block(struct scsi_device *sdev, void *data)
2790 {
2791 int err;
2792 enum scsi_device_state state;
2793
2794 mutex_lock(&sdev->state_mutex);
2795 err = __scsi_internal_device_block_nowait(sdev);
2796 state = sdev->sdev_state;
2797 if (err == 0)
2798 /*
2799 * scsi_stop_queue() must be called with the state_mutex
2800 * held. Otherwise a simultaneous scsi_start_queue() call
2801 * might unquiesce the queue before we quiesce it.
2802 */
2803 scsi_stop_queue(sdev);
2804
2805 mutex_unlock(&sdev->state_mutex);
2806
2807 WARN_ONCE(err, "%s: failed to block %s in state %d\n",
2808 __func__, dev_name(&sdev->sdev_gendev), state);
2809 }
2810
2811 /**
2812 * scsi_internal_device_unblock_nowait - resume a device after a block request
2813 * @sdev: device to resume
2814 * @new_state: state to set the device to after unblocking
2815 *
2816 * Restart the device queue for a previously suspended SCSI device. Does not
2817 * sleep.
2818 *
2819 * Returns zero if successful or a negative error code upon failure.
2820 *
2821 * Notes:
2822 * This routine transitions the device to the SDEV_RUNNING state or to one of
2823 * the offline states (which must be a legal transition) allowing the midlayer
2824 * to goose the queue for this device.
2825 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2826 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2827 enum scsi_device_state new_state)
2828 {
2829 switch (new_state) {
2830 case SDEV_RUNNING:
2831 case SDEV_TRANSPORT_OFFLINE:
2832 break;
2833 default:
2834 return -EINVAL;
2835 }
2836
2837 /*
2838 * Try to transition the scsi device to SDEV_RUNNING or one of the
2839 * offlined states and goose the device queue if successful.
2840 */
2841 switch (sdev->sdev_state) {
2842 case SDEV_BLOCK:
2843 case SDEV_TRANSPORT_OFFLINE:
2844 sdev->sdev_state = new_state;
2845 break;
2846 case SDEV_CREATED_BLOCK:
2847 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2848 new_state == SDEV_OFFLINE)
2849 sdev->sdev_state = new_state;
2850 else
2851 sdev->sdev_state = SDEV_CREATED;
2852 break;
2853 case SDEV_CANCEL:
2854 case SDEV_OFFLINE:
2855 break;
2856 default:
2857 return -EINVAL;
2858 }
2859 scsi_start_queue(sdev);
2860
2861 return 0;
2862 }
2863 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2864
2865 /**
2866 * scsi_internal_device_unblock - resume a device after a block request
2867 * @sdev: device to resume
2868 * @new_state: state to set the device to after unblocking
2869 *
2870 * Restart the device queue for a previously suspended SCSI device. May sleep.
2871 *
2872 * Returns zero if successful or a negative error code upon failure.
2873 *
2874 * Notes:
2875 * This routine transitions the device to the SDEV_RUNNING state or to one of
2876 * the offline states (which must be a legal transition) allowing the midlayer
2877 * to goose the queue for this device.
2878 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2879 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2880 enum scsi_device_state new_state)
2881 {
2882 int ret;
2883
2884 mutex_lock(&sdev->state_mutex);
2885 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2886 mutex_unlock(&sdev->state_mutex);
2887
2888 return ret;
2889 }
2890
2891 static int
target_block(struct device * dev,void * data)2892 target_block(struct device *dev, void *data)
2893 {
2894 if (scsi_is_target_device(dev))
2895 starget_for_each_device(to_scsi_target(dev), NULL,
2896 scsi_device_block);
2897 return 0;
2898 }
2899
2900 /**
2901 * scsi_block_targets - transition all SCSI child devices to SDEV_BLOCK state
2902 * @dev: a parent device of one or more scsi_target devices
2903 * @shost: the Scsi_Host to which this device belongs
2904 *
2905 * Iterate over all children of @dev, which should be scsi_target devices,
2906 * and switch all subordinate scsi devices to SDEV_BLOCK state. Wait for
2907 * ongoing scsi_queue_rq() calls to finish. May sleep.
2908 *
2909 * Note:
2910 * @dev must not itself be a scsi_target device.
2911 */
2912 void
scsi_block_targets(struct Scsi_Host * shost,struct device * dev)2913 scsi_block_targets(struct Scsi_Host *shost, struct device *dev)
2914 {
2915 WARN_ON_ONCE(scsi_is_target_device(dev));
2916 device_for_each_child(dev, NULL, target_block);
2917 blk_mq_wait_quiesce_done(&shost->tag_set);
2918 }
2919 EXPORT_SYMBOL_GPL(scsi_block_targets);
2920
2921 static void
device_unblock(struct scsi_device * sdev,void * data)2922 device_unblock(struct scsi_device *sdev, void *data)
2923 {
2924 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2925 }
2926
2927 static int
target_unblock(struct device * dev,void * data)2928 target_unblock(struct device *dev, void *data)
2929 {
2930 if (scsi_is_target_device(dev))
2931 starget_for_each_device(to_scsi_target(dev), data,
2932 device_unblock);
2933 return 0;
2934 }
2935
2936 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2937 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2938 {
2939 if (scsi_is_target_device(dev))
2940 starget_for_each_device(to_scsi_target(dev), &new_state,
2941 device_unblock);
2942 else
2943 device_for_each_child(dev, &new_state, target_unblock);
2944 }
2945 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2946
2947 /**
2948 * scsi_host_block - Try to transition all logical units to the SDEV_BLOCK state
2949 * @shost: device to block
2950 *
2951 * Pause SCSI command processing for all logical units associated with the SCSI
2952 * host and wait until pending scsi_queue_rq() calls have finished.
2953 *
2954 * Returns zero if successful or a negative error code upon failure.
2955 */
2956 int
scsi_host_block(struct Scsi_Host * shost)2957 scsi_host_block(struct Scsi_Host *shost)
2958 {
2959 struct scsi_device *sdev;
2960 int ret;
2961
2962 /*
2963 * Call scsi_internal_device_block_nowait so we can avoid
2964 * calling synchronize_rcu() for each LUN.
2965 */
2966 shost_for_each_device(sdev, shost) {
2967 mutex_lock(&sdev->state_mutex);
2968 ret = scsi_internal_device_block_nowait(sdev);
2969 mutex_unlock(&sdev->state_mutex);
2970 if (ret) {
2971 scsi_device_put(sdev);
2972 return ret;
2973 }
2974 }
2975
2976 /* Wait for ongoing scsi_queue_rq() calls to finish. */
2977 blk_mq_wait_quiesce_done(&shost->tag_set);
2978
2979 return 0;
2980 }
2981 EXPORT_SYMBOL_GPL(scsi_host_block);
2982
2983 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2984 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2985 {
2986 struct scsi_device *sdev;
2987 int ret = 0;
2988
2989 shost_for_each_device(sdev, shost) {
2990 ret = scsi_internal_device_unblock(sdev, new_state);
2991 if (ret) {
2992 scsi_device_put(sdev);
2993 break;
2994 }
2995 }
2996 return ret;
2997 }
2998 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2999
3000 /**
3001 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3002 * @sgl: scatter-gather list
3003 * @sg_count: number of segments in sg
3004 * @offset: offset in bytes into sg, on return offset into the mapped area
3005 * @len: bytes to map, on return number of bytes mapped
3006 *
3007 * Returns virtual address of the start of the mapped page
3008 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3009 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3010 size_t *offset, size_t *len)
3011 {
3012 int i;
3013 size_t sg_len = 0, len_complete = 0;
3014 struct scatterlist *sg;
3015 struct page *page;
3016
3017 WARN_ON(!irqs_disabled());
3018
3019 for_each_sg(sgl, sg, sg_count, i) {
3020 len_complete = sg_len; /* Complete sg-entries */
3021 sg_len += sg->length;
3022 if (sg_len > *offset)
3023 break;
3024 }
3025
3026 if (unlikely(i == sg_count)) {
3027 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3028 "elements %d\n",
3029 __func__, sg_len, *offset, sg_count);
3030 WARN_ON(1);
3031 return NULL;
3032 }
3033
3034 /* Offset starting from the beginning of first page in this sg-entry */
3035 *offset = *offset - len_complete + sg->offset;
3036
3037 /* Assumption: contiguous pages can be accessed as "page + i" */
3038 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3039 *offset &= ~PAGE_MASK;
3040
3041 /* Bytes in this sg-entry from *offset to the end of the page */
3042 sg_len = PAGE_SIZE - *offset;
3043 if (*len > sg_len)
3044 *len = sg_len;
3045
3046 return kmap_atomic(page);
3047 }
3048 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3049
3050 /**
3051 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3052 * @virt: virtual address to be unmapped
3053 */
scsi_kunmap_atomic_sg(void * virt)3054 void scsi_kunmap_atomic_sg(void *virt)
3055 {
3056 kunmap_atomic(virt);
3057 }
3058 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3059
sdev_disable_disk_events(struct scsi_device * sdev)3060 void sdev_disable_disk_events(struct scsi_device *sdev)
3061 {
3062 atomic_inc(&sdev->disk_events_disable_depth);
3063 }
3064 EXPORT_SYMBOL(sdev_disable_disk_events);
3065
sdev_enable_disk_events(struct scsi_device * sdev)3066 void sdev_enable_disk_events(struct scsi_device *sdev)
3067 {
3068 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3069 return;
3070 atomic_dec(&sdev->disk_events_disable_depth);
3071 }
3072 EXPORT_SYMBOL(sdev_enable_disk_events);
3073
designator_prio(const unsigned char * d)3074 static unsigned char designator_prio(const unsigned char *d)
3075 {
3076 if (d[1] & 0x30)
3077 /* not associated with LUN */
3078 return 0;
3079
3080 if (d[3] == 0)
3081 /* invalid length */
3082 return 0;
3083
3084 /*
3085 * Order of preference for lun descriptor:
3086 * - SCSI name string
3087 * - NAA IEEE Registered Extended
3088 * - EUI-64 based 16-byte
3089 * - EUI-64 based 12-byte
3090 * - NAA IEEE Registered
3091 * - NAA IEEE Extended
3092 * - EUI-64 based 8-byte
3093 * - SCSI name string (truncated)
3094 * - T10 Vendor ID
3095 * as longer descriptors reduce the likelyhood
3096 * of identification clashes.
3097 */
3098
3099 switch (d[1] & 0xf) {
3100 case 8:
3101 /* SCSI name string, variable-length UTF-8 */
3102 return 9;
3103 case 3:
3104 switch (d[4] >> 4) {
3105 case 6:
3106 /* NAA registered extended */
3107 return 8;
3108 case 5:
3109 /* NAA registered */
3110 return 5;
3111 case 4:
3112 /* NAA extended */
3113 return 4;
3114 case 3:
3115 /* NAA locally assigned */
3116 return 1;
3117 default:
3118 break;
3119 }
3120 break;
3121 case 2:
3122 switch (d[3]) {
3123 case 16:
3124 /* EUI64-based, 16 byte */
3125 return 7;
3126 case 12:
3127 /* EUI64-based, 12 byte */
3128 return 6;
3129 case 8:
3130 /* EUI64-based, 8 byte */
3131 return 3;
3132 default:
3133 break;
3134 }
3135 break;
3136 case 1:
3137 /* T10 vendor ID */
3138 return 1;
3139 default:
3140 break;
3141 }
3142
3143 return 0;
3144 }
3145
3146 /**
3147 * scsi_vpd_lun_id - return a unique device identification
3148 * @sdev: SCSI device
3149 * @id: buffer for the identification
3150 * @id_len: length of the buffer
3151 *
3152 * Copies a unique device identification into @id based
3153 * on the information in the VPD page 0x83 of the device.
3154 * The string will be formatted as a SCSI name string.
3155 *
3156 * Returns the length of the identification or error on failure.
3157 * If the identifier is longer than the supplied buffer the actual
3158 * identifier length is returned and the buffer is not zero-padded.
3159 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3160 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3161 {
3162 u8 cur_id_prio = 0;
3163 u8 cur_id_size = 0;
3164 const unsigned char *d, *cur_id_str;
3165 const struct scsi_vpd *vpd_pg83;
3166 int id_size = -EINVAL;
3167
3168 rcu_read_lock();
3169 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3170 if (!vpd_pg83) {
3171 rcu_read_unlock();
3172 return -ENXIO;
3173 }
3174
3175 /* The id string must be at least 20 bytes + terminating NULL byte */
3176 if (id_len < 21) {
3177 rcu_read_unlock();
3178 return -EINVAL;
3179 }
3180
3181 memset(id, 0, id_len);
3182 for (d = vpd_pg83->data + 4;
3183 d < vpd_pg83->data + vpd_pg83->len;
3184 d += d[3] + 4) {
3185 u8 prio = designator_prio(d);
3186
3187 if (prio == 0 || cur_id_prio > prio)
3188 continue;
3189
3190 switch (d[1] & 0xf) {
3191 case 0x1:
3192 /* T10 Vendor ID */
3193 if (cur_id_size > d[3])
3194 break;
3195 cur_id_prio = prio;
3196 cur_id_size = d[3];
3197 if (cur_id_size + 4 > id_len)
3198 cur_id_size = id_len - 4;
3199 cur_id_str = d + 4;
3200 id_size = snprintf(id, id_len, "t10.%*pE",
3201 cur_id_size, cur_id_str);
3202 break;
3203 case 0x2:
3204 /* EUI-64 */
3205 cur_id_prio = prio;
3206 cur_id_size = d[3];
3207 cur_id_str = d + 4;
3208 switch (cur_id_size) {
3209 case 8:
3210 id_size = snprintf(id, id_len,
3211 "eui.%8phN",
3212 cur_id_str);
3213 break;
3214 case 12:
3215 id_size = snprintf(id, id_len,
3216 "eui.%12phN",
3217 cur_id_str);
3218 break;
3219 case 16:
3220 id_size = snprintf(id, id_len,
3221 "eui.%16phN",
3222 cur_id_str);
3223 break;
3224 default:
3225 break;
3226 }
3227 break;
3228 case 0x3:
3229 /* NAA */
3230 cur_id_prio = prio;
3231 cur_id_size = d[3];
3232 cur_id_str = d + 4;
3233 switch (cur_id_size) {
3234 case 8:
3235 id_size = snprintf(id, id_len,
3236 "naa.%8phN",
3237 cur_id_str);
3238 break;
3239 case 16:
3240 id_size = snprintf(id, id_len,
3241 "naa.%16phN",
3242 cur_id_str);
3243 break;
3244 default:
3245 break;
3246 }
3247 break;
3248 case 0x8:
3249 /* SCSI name string */
3250 if (cur_id_size > d[3])
3251 break;
3252 /* Prefer others for truncated descriptor */
3253 if (d[3] > id_len) {
3254 prio = 2;
3255 if (cur_id_prio > prio)
3256 break;
3257 }
3258 cur_id_prio = prio;
3259 cur_id_size = id_size = d[3];
3260 cur_id_str = d + 4;
3261 if (cur_id_size >= id_len)
3262 cur_id_size = id_len - 1;
3263 memcpy(id, cur_id_str, cur_id_size);
3264 break;
3265 default:
3266 break;
3267 }
3268 }
3269 rcu_read_unlock();
3270
3271 return id_size;
3272 }
3273 EXPORT_SYMBOL(scsi_vpd_lun_id);
3274
3275 /*
3276 * scsi_vpd_tpg_id - return a target port group identifier
3277 * @sdev: SCSI device
3278 *
3279 * Returns the Target Port Group identifier from the information
3280 * froom VPD page 0x83 of the device.
3281 *
3282 * Returns the identifier or error on failure.
3283 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3284 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3285 {
3286 const unsigned char *d;
3287 const struct scsi_vpd *vpd_pg83;
3288 int group_id = -EAGAIN, rel_port = -1;
3289
3290 rcu_read_lock();
3291 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3292 if (!vpd_pg83) {
3293 rcu_read_unlock();
3294 return -ENXIO;
3295 }
3296
3297 d = vpd_pg83->data + 4;
3298 while (d < vpd_pg83->data + vpd_pg83->len) {
3299 switch (d[1] & 0xf) {
3300 case 0x4:
3301 /* Relative target port */
3302 rel_port = get_unaligned_be16(&d[6]);
3303 break;
3304 case 0x5:
3305 /* Target port group */
3306 group_id = get_unaligned_be16(&d[6]);
3307 break;
3308 default:
3309 break;
3310 }
3311 d += d[3] + 4;
3312 }
3313 rcu_read_unlock();
3314
3315 if (group_id >= 0 && rel_id && rel_port != -1)
3316 *rel_id = rel_port;
3317
3318 return group_id;
3319 }
3320 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3321
3322 /**
3323 * scsi_build_sense - build sense data for a command
3324 * @scmd: scsi command for which the sense should be formatted
3325 * @desc: Sense format (non-zero == descriptor format,
3326 * 0 == fixed format)
3327 * @key: Sense key
3328 * @asc: Additional sense code
3329 * @ascq: Additional sense code qualifier
3330 *
3331 **/
scsi_build_sense(struct scsi_cmnd * scmd,int desc,u8 key,u8 asc,u8 ascq)3332 void scsi_build_sense(struct scsi_cmnd *scmd, int desc, u8 key, u8 asc, u8 ascq)
3333 {
3334 scsi_build_sense_buffer(desc, scmd->sense_buffer, key, asc, ascq);
3335 scmd->result = SAM_STAT_CHECK_CONDITION;
3336 }
3337 EXPORT_SYMBOL_GPL(scsi_build_sense);
3338