1 /*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 * SCSI queueing library.
6 * Initial versions: Eric Youngdale (eric@andante.org).
7 * Based upon conversations with large numbers
8 * of people at Linux Expo.
9 */
10
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35
36 #include <trace/events/scsi.h>
37
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48
49 static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54
scsi_free_sense_buffer(bool unchecked_isa_dma,unsigned char * sense_buffer)55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 unsigned char *sense_buffer)
57 {
58 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 sense_buffer);
60 }
61
scsi_alloc_sense_buffer(bool unchecked_isa_dma,gfp_t gfp_mask,int numa_node)62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 gfp_t gfp_mask, int numa_node)
64 {
65 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 gfp_mask, numa_node);
67 }
68
scsi_init_sense_cache(struct Scsi_Host * shost)69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 struct kmem_cache *cache;
72 int ret = 0;
73
74 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 if (cache)
76 return 0;
77
78 mutex_lock(&scsi_sense_cache_mutex);
79 if (shost->unchecked_isa_dma) {
80 scsi_sense_isadma_cache =
81 kmem_cache_create("scsi_sense_cache(DMA)",
82 SCSI_SENSE_BUFFERSIZE, 0,
83 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 if (!scsi_sense_isadma_cache)
85 ret = -ENOMEM;
86 } else {
87 scsi_sense_cache =
88 kmem_cache_create_usercopy("scsi_sense_cache",
89 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 0, SCSI_SENSE_BUFFERSIZE, NULL);
91 if (!scsi_sense_cache)
92 ret = -ENOMEM;
93 }
94
95 mutex_unlock(&scsi_sense_cache_mutex);
96 return ret;
97 }
98
99 /*
100 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101 * not change behaviour from the previous unplug mechanism, experimentation
102 * may prove this needs changing.
103 */
104 #define SCSI_QUEUE_DELAY 3
105
106 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 struct Scsi_Host *host = cmd->device->host;
110 struct scsi_device *device = cmd->device;
111 struct scsi_target *starget = scsi_target(device);
112
113 /*
114 * Set the appropriate busy bit for the device/host.
115 *
116 * If the host/device isn't busy, assume that something actually
117 * completed, and that we should be able to queue a command now.
118 *
119 * Note that the prior mid-layer assumption that any host could
120 * always queue at least one command is now broken. The mid-layer
121 * will implement a user specifiable stall (see
122 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 * if a command is requeued with no other commands outstanding
124 * either for the device or for the host.
125 */
126 switch (reason) {
127 case SCSI_MLQUEUE_HOST_BUSY:
128 atomic_set(&host->host_blocked, host->max_host_blocked);
129 break;
130 case SCSI_MLQUEUE_DEVICE_BUSY:
131 case SCSI_MLQUEUE_EH_RETRY:
132 atomic_set(&device->device_blocked,
133 device->max_device_blocked);
134 break;
135 case SCSI_MLQUEUE_TARGET_BUSY:
136 atomic_set(&starget->target_blocked,
137 starget->max_target_blocked);
138 break;
139 }
140 }
141
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 struct scsi_device *sdev = cmd->device;
145
146 if (cmd->request->rq_flags & RQF_DONTPREP) {
147 cmd->request->rq_flags &= ~RQF_DONTPREP;
148 scsi_mq_uninit_cmd(cmd);
149 } else {
150 WARN_ON_ONCE(true);
151 }
152 blk_mq_requeue_request(cmd->request, true);
153 put_device(&sdev->sdev_gendev);
154 }
155
156 /**
157 * __scsi_queue_insert - private queue insertion
158 * @cmd: The SCSI command being requeued
159 * @reason: The reason for the requeue
160 * @unbusy: Whether the queue should be unbusied
161 *
162 * This is a private queue insertion. The public interface
163 * scsi_queue_insert() always assumes the queue should be unbusied
164 * because it's always called before the completion. This function is
165 * for a requeue after completion, which should only occur in this
166 * file.
167 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 struct scsi_device *device = cmd->device;
171 struct request_queue *q = device->request_queue;
172 unsigned long flags;
173
174 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 "Inserting command %p into mlqueue\n", cmd));
176
177 scsi_set_blocked(cmd, reason);
178
179 /*
180 * Decrement the counters, since these commands are no longer
181 * active on the host/device.
182 */
183 if (unbusy)
184 scsi_device_unbusy(device);
185
186 /*
187 * Requeue this command. It will go before all other commands
188 * that are already in the queue. Schedule requeue work under
189 * lock such that the kblockd_schedule_work() call happens
190 * before blk_cleanup_queue() finishes.
191 */
192 cmd->result = 0;
193 if (q->mq_ops) {
194 /*
195 * Before a SCSI command is dispatched,
196 * get_device(&sdev->sdev_gendev) is called and the host,
197 * target and device busy counters are increased. Since
198 * requeuing a request causes these actions to be repeated and
199 * since scsi_device_unbusy() has already been called,
200 * put_device(&device->sdev_gendev) must still be called. Call
201 * put_device() after blk_mq_requeue_request() to avoid that
202 * removal of the SCSI device can start before requeueing has
203 * happened.
204 */
205 blk_mq_requeue_request(cmd->request, true);
206 put_device(&device->sdev_gendev);
207 return;
208 }
209 spin_lock_irqsave(q->queue_lock, flags);
210 blk_requeue_request(q, cmd->request);
211 kblockd_schedule_work(&device->requeue_work);
212 spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214
215 /*
216 * Function: scsi_queue_insert()
217 *
218 * Purpose: Insert a command in the midlevel queue.
219 *
220 * Arguments: cmd - command that we are adding to queue.
221 * reason - why we are inserting command to queue.
222 *
223 * Lock status: Assumed that lock is not held upon entry.
224 *
225 * Returns: Nothing.
226 *
227 * Notes: We do this for one of two cases. Either the host is busy
228 * and it cannot accept any more commands for the time being,
229 * or the device returned QUEUE_FULL and can accept no more
230 * commands.
231 * Notes: This could be called either from an interrupt context or a
232 * normal process context.
233 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 __scsi_queue_insert(cmd, reason, true);
237 }
238
239
240 /**
241 * __scsi_execute - insert request and wait for the result
242 * @sdev: scsi device
243 * @cmd: scsi command
244 * @data_direction: data direction
245 * @buffer: data buffer
246 * @bufflen: len of buffer
247 * @sense: optional sense buffer
248 * @sshdr: optional decoded sense header
249 * @timeout: request timeout in seconds
250 * @retries: number of times to retry request
251 * @flags: flags for ->cmd_flags
252 * @rq_flags: flags for ->rq_flags
253 * @resid: optional residual length
254 *
255 * Returns the scsi_cmnd result field if a command was executed, or a negative
256 * Linux error code if we didn't get that far.
257 */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 int data_direction, void *buffer, unsigned bufflen,
260 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 int *resid)
263 {
264 struct request *req;
265 struct scsi_request *rq;
266 int ret = DRIVER_ERROR << 24;
267
268 req = blk_get_request(sdev->request_queue,
269 data_direction == DMA_TO_DEVICE ?
270 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 if (IS_ERR(req))
272 return ret;
273 rq = scsi_req(req);
274
275 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
276 buffer, bufflen, GFP_NOIO))
277 goto out;
278
279 rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 memcpy(rq->cmd, cmd, rq->cmd_len);
281 rq->retries = retries;
282 req->timeout = timeout;
283 req->cmd_flags |= flags;
284 req->rq_flags |= rq_flags | RQF_QUIET;
285
286 /*
287 * head injection *required* here otherwise quiesce won't work
288 */
289 blk_execute_rq(req->q, NULL, req, 1);
290
291 /*
292 * Some devices (USB mass-storage in particular) may transfer
293 * garbage data together with a residue indicating that the data
294 * is invalid. Prevent the garbage from being misinterpreted
295 * and prevent security leaks by zeroing out the excess data.
296 */
297 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299
300 if (resid)
301 *resid = rq->resid_len;
302 if (sense && rq->sense_len)
303 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 if (sshdr)
305 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 ret = rq->result;
307 out:
308 blk_put_request(req);
309
310 return ret;
311 }
312 EXPORT_SYMBOL(__scsi_execute);
313
314 /*
315 * Function: scsi_init_cmd_errh()
316 *
317 * Purpose: Initialize cmd fields related to error handling.
318 *
319 * Arguments: cmd - command that is ready to be queued.
320 *
321 * Notes: This function has the job of initializing a number of
322 * fields related to error handling. Typically this will
323 * be called once for each command, as required.
324 */
scsi_init_cmd_errh(struct scsi_cmnd * cmd)325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 cmd->serial_number = 0;
328 scsi_set_resid(cmd, 0);
329 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 if (cmd->cmd_len == 0)
331 cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333
334 /*
335 * Decrement the host_busy counter and wake up the error handler if necessary.
336 * Avoid as follows that the error handler is not woken up if shost->host_busy
337 * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338 * with an RCU read lock in this function to ensure that this function in its
339 * entirety either finishes before scsi_eh_scmd_add() increases the
340 * host_failed counter or that it notices the shost state change made by
341 * scsi_eh_scmd_add().
342 */
scsi_dec_host_busy(struct Scsi_Host * shost)343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 unsigned long flags;
346
347 rcu_read_lock();
348 atomic_dec(&shost->host_busy);
349 if (unlikely(scsi_host_in_recovery(shost))) {
350 spin_lock_irqsave(shost->host_lock, flags);
351 if (shost->host_failed || shost->host_eh_scheduled)
352 scsi_eh_wakeup(shost);
353 spin_unlock_irqrestore(shost->host_lock, flags);
354 }
355 rcu_read_unlock();
356 }
357
scsi_device_unbusy(struct scsi_device * sdev)358 void scsi_device_unbusy(struct scsi_device *sdev)
359 {
360 struct Scsi_Host *shost = sdev->host;
361 struct scsi_target *starget = scsi_target(sdev);
362
363 scsi_dec_host_busy(shost);
364
365 if (starget->can_queue > 0)
366 atomic_dec(&starget->target_busy);
367
368 atomic_dec(&sdev->device_busy);
369 }
370
scsi_kick_queue(struct request_queue * q)371 static void scsi_kick_queue(struct request_queue *q)
372 {
373 if (q->mq_ops)
374 blk_mq_run_hw_queues(q, false);
375 else
376 blk_run_queue(q);
377 }
378
379 /*
380 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
381 * and call blk_run_queue for all the scsi_devices on the target -
382 * including current_sdev first.
383 *
384 * Called with *no* scsi locks held.
385 */
scsi_single_lun_run(struct scsi_device * current_sdev)386 static void scsi_single_lun_run(struct scsi_device *current_sdev)
387 {
388 struct Scsi_Host *shost = current_sdev->host;
389 struct scsi_device *sdev, *tmp;
390 struct scsi_target *starget = scsi_target(current_sdev);
391 unsigned long flags;
392
393 spin_lock_irqsave(shost->host_lock, flags);
394 starget->starget_sdev_user = NULL;
395 spin_unlock_irqrestore(shost->host_lock, flags);
396
397 /*
398 * Call blk_run_queue for all LUNs on the target, starting with
399 * current_sdev. We race with others (to set starget_sdev_user),
400 * but in most cases, we will be first. Ideally, each LU on the
401 * target would get some limited time or requests on the target.
402 */
403 scsi_kick_queue(current_sdev->request_queue);
404
405 spin_lock_irqsave(shost->host_lock, flags);
406 if (starget->starget_sdev_user)
407 goto out;
408 list_for_each_entry_safe(sdev, tmp, &starget->devices,
409 same_target_siblings) {
410 if (sdev == current_sdev)
411 continue;
412 if (scsi_device_get(sdev))
413 continue;
414
415 spin_unlock_irqrestore(shost->host_lock, flags);
416 scsi_kick_queue(sdev->request_queue);
417 spin_lock_irqsave(shost->host_lock, flags);
418
419 scsi_device_put(sdev);
420 }
421 out:
422 spin_unlock_irqrestore(shost->host_lock, flags);
423 }
424
scsi_device_is_busy(struct scsi_device * sdev)425 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
426 {
427 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
428 return true;
429 if (atomic_read(&sdev->device_blocked) > 0)
430 return true;
431 return false;
432 }
433
scsi_target_is_busy(struct scsi_target * starget)434 static inline bool scsi_target_is_busy(struct scsi_target *starget)
435 {
436 if (starget->can_queue > 0) {
437 if (atomic_read(&starget->target_busy) >= starget->can_queue)
438 return true;
439 if (atomic_read(&starget->target_blocked) > 0)
440 return true;
441 }
442 return false;
443 }
444
scsi_host_is_busy(struct Scsi_Host * shost)445 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
446 {
447 if (shost->can_queue > 0 &&
448 atomic_read(&shost->host_busy) >= shost->can_queue)
449 return true;
450 if (atomic_read(&shost->host_blocked) > 0)
451 return true;
452 if (shost->host_self_blocked)
453 return true;
454 return false;
455 }
456
scsi_starved_list_run(struct Scsi_Host * shost)457 static void scsi_starved_list_run(struct Scsi_Host *shost)
458 {
459 LIST_HEAD(starved_list);
460 struct scsi_device *sdev;
461 unsigned long flags;
462
463 spin_lock_irqsave(shost->host_lock, flags);
464 list_splice_init(&shost->starved_list, &starved_list);
465
466 while (!list_empty(&starved_list)) {
467 struct request_queue *slq;
468
469 /*
470 * As long as shost is accepting commands and we have
471 * starved queues, call blk_run_queue. scsi_request_fn
472 * drops the queue_lock and can add us back to the
473 * starved_list.
474 *
475 * host_lock protects the starved_list and starved_entry.
476 * scsi_request_fn must get the host_lock before checking
477 * or modifying starved_list or starved_entry.
478 */
479 if (scsi_host_is_busy(shost))
480 break;
481
482 sdev = list_entry(starved_list.next,
483 struct scsi_device, starved_entry);
484 list_del_init(&sdev->starved_entry);
485 if (scsi_target_is_busy(scsi_target(sdev))) {
486 list_move_tail(&sdev->starved_entry,
487 &shost->starved_list);
488 continue;
489 }
490
491 /*
492 * Once we drop the host lock, a racing scsi_remove_device()
493 * call may remove the sdev from the starved list and destroy
494 * it and the queue. Mitigate by taking a reference to the
495 * queue and never touching the sdev again after we drop the
496 * host lock. Note: if __scsi_remove_device() invokes
497 * blk_cleanup_queue() before the queue is run from this
498 * function then blk_run_queue() will return immediately since
499 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
500 */
501 slq = sdev->request_queue;
502 if (!blk_get_queue(slq))
503 continue;
504 spin_unlock_irqrestore(shost->host_lock, flags);
505
506 scsi_kick_queue(slq);
507 blk_put_queue(slq);
508
509 spin_lock_irqsave(shost->host_lock, flags);
510 }
511 /* put any unprocessed entries back */
512 list_splice(&starved_list, &shost->starved_list);
513 spin_unlock_irqrestore(shost->host_lock, flags);
514 }
515
516 /*
517 * Function: scsi_run_queue()
518 *
519 * Purpose: Select a proper request queue to serve next
520 *
521 * Arguments: q - last request's queue
522 *
523 * Returns: Nothing
524 *
525 * Notes: The previous command was completely finished, start
526 * a new one if possible.
527 */
scsi_run_queue(struct request_queue * q)528 static void scsi_run_queue(struct request_queue *q)
529 {
530 struct scsi_device *sdev = q->queuedata;
531
532 if (scsi_target(sdev)->single_lun)
533 scsi_single_lun_run(sdev);
534 if (!list_empty(&sdev->host->starved_list))
535 scsi_starved_list_run(sdev->host);
536
537 if (q->mq_ops)
538 blk_mq_run_hw_queues(q, false);
539 else
540 blk_run_queue(q);
541 }
542
scsi_requeue_run_queue(struct work_struct * work)543 void scsi_requeue_run_queue(struct work_struct *work)
544 {
545 struct scsi_device *sdev;
546 struct request_queue *q;
547
548 sdev = container_of(work, struct scsi_device, requeue_work);
549 q = sdev->request_queue;
550 scsi_run_queue(q);
551 }
552
553 /*
554 * Function: scsi_requeue_command()
555 *
556 * Purpose: Handle post-processing of completed commands.
557 *
558 * Arguments: q - queue to operate on
559 * cmd - command that may need to be requeued.
560 *
561 * Returns: Nothing
562 *
563 * Notes: After command completion, there may be blocks left
564 * over which weren't finished by the previous command
565 * this can be for a number of reasons - the main one is
566 * I/O errors in the middle of the request, in which case
567 * we need to request the blocks that come after the bad
568 * sector.
569 * Notes: Upon return, cmd is a stale pointer.
570 */
scsi_requeue_command(struct request_queue * q,struct scsi_cmnd * cmd)571 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
572 {
573 struct scsi_device *sdev = cmd->device;
574 struct request *req = cmd->request;
575 unsigned long flags;
576
577 spin_lock_irqsave(q->queue_lock, flags);
578 blk_unprep_request(req);
579 req->special = NULL;
580 scsi_put_command(cmd);
581 blk_requeue_request(q, req);
582 spin_unlock_irqrestore(q->queue_lock, flags);
583
584 scsi_run_queue(q);
585
586 put_device(&sdev->sdev_gendev);
587 }
588
scsi_run_host_queues(struct Scsi_Host * shost)589 void scsi_run_host_queues(struct Scsi_Host *shost)
590 {
591 struct scsi_device *sdev;
592
593 shost_for_each_device(sdev, shost)
594 scsi_run_queue(sdev->request_queue);
595 }
596
scsi_uninit_cmd(struct scsi_cmnd * cmd)597 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
598 {
599 if (!blk_rq_is_passthrough(cmd->request)) {
600 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
601
602 if (drv->uninit_command)
603 drv->uninit_command(cmd);
604 }
605 }
606
scsi_mq_free_sgtables(struct scsi_cmnd * cmd)607 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
608 {
609 struct scsi_data_buffer *sdb;
610
611 if (cmd->sdb.table.nents)
612 sg_free_table_chained(&cmd->sdb.table, true);
613 if (cmd->request->next_rq) {
614 sdb = cmd->request->next_rq->special;
615 if (sdb)
616 sg_free_table_chained(&sdb->table, true);
617 }
618 if (scsi_prot_sg_count(cmd))
619 sg_free_table_chained(&cmd->prot_sdb->table, true);
620 }
621
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)622 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
623 {
624 scsi_mq_free_sgtables(cmd);
625 scsi_uninit_cmd(cmd);
626 scsi_del_cmd_from_list(cmd);
627 }
628
629 /*
630 * Function: scsi_release_buffers()
631 *
632 * Purpose: Free resources allocate for a scsi_command.
633 *
634 * Arguments: cmd - command that we are bailing.
635 *
636 * Lock status: Assumed that no lock is held upon entry.
637 *
638 * Returns: Nothing
639 *
640 * Notes: In the event that an upper level driver rejects a
641 * command, we must release resources allocated during
642 * the __init_io() function. Primarily this would involve
643 * the scatter-gather table.
644 */
scsi_release_buffers(struct scsi_cmnd * cmd)645 static void scsi_release_buffers(struct scsi_cmnd *cmd)
646 {
647 if (cmd->sdb.table.nents)
648 sg_free_table_chained(&cmd->sdb.table, false);
649
650 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
651
652 if (scsi_prot_sg_count(cmd))
653 sg_free_table_chained(&cmd->prot_sdb->table, false);
654 }
655
scsi_release_bidi_buffers(struct scsi_cmnd * cmd)656 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
657 {
658 struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
659
660 sg_free_table_chained(&bidi_sdb->table, false);
661 kmem_cache_free(scsi_sdb_cache, bidi_sdb);
662 cmd->request->next_rq->special = NULL;
663 }
664
665 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes,unsigned int bidi_bytes)666 static bool scsi_end_request(struct request *req, blk_status_t error,
667 unsigned int bytes, unsigned int bidi_bytes)
668 {
669 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
670 struct scsi_device *sdev = cmd->device;
671 struct request_queue *q = sdev->request_queue;
672
673 if (blk_update_request(req, error, bytes))
674 return true;
675
676 /* Bidi request must be completed as a whole */
677 if (unlikely(bidi_bytes) &&
678 blk_update_request(req->next_rq, error, bidi_bytes))
679 return true;
680
681 if (blk_queue_add_random(q))
682 add_disk_randomness(req->rq_disk);
683
684 if (!blk_rq_is_scsi(req)) {
685 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
686 cmd->flags &= ~SCMD_INITIALIZED;
687 destroy_rcu_head(&cmd->rcu);
688 }
689
690 if (req->mq_ctx) {
691 /*
692 * In the MQ case the command gets freed by __blk_mq_end_request,
693 * so we have to do all cleanup that depends on it earlier.
694 *
695 * We also can't kick the queues from irq context, so we
696 * will have to defer it to a workqueue.
697 */
698 scsi_mq_uninit_cmd(cmd);
699
700 __blk_mq_end_request(req, error);
701
702 if (scsi_target(sdev)->single_lun ||
703 !list_empty(&sdev->host->starved_list))
704 kblockd_schedule_work(&sdev->requeue_work);
705 else
706 blk_mq_run_hw_queues(q, true);
707 } else {
708 unsigned long flags;
709
710 if (bidi_bytes)
711 scsi_release_bidi_buffers(cmd);
712 scsi_release_buffers(cmd);
713 scsi_put_command(cmd);
714
715 spin_lock_irqsave(q->queue_lock, flags);
716 blk_finish_request(req, error);
717 spin_unlock_irqrestore(q->queue_lock, flags);
718
719 scsi_run_queue(q);
720 }
721
722 put_device(&sdev->sdev_gendev);
723 return false;
724 }
725
726 /**
727 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
728 * @cmd: SCSI command
729 * @result: scsi error code
730 *
731 * Translate a SCSI result code into a blk_status_t value. May reset the host
732 * byte of @cmd->result.
733 */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)734 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
735 {
736 switch (host_byte(result)) {
737 case DID_OK:
738 /*
739 * Also check the other bytes than the status byte in result
740 * to handle the case when a SCSI LLD sets result to
741 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
742 */
743 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
744 return BLK_STS_OK;
745 return BLK_STS_IOERR;
746 case DID_TRANSPORT_FAILFAST:
747 return BLK_STS_TRANSPORT;
748 case DID_TARGET_FAILURE:
749 set_host_byte(cmd, DID_OK);
750 return BLK_STS_TARGET;
751 case DID_NEXUS_FAILURE:
752 return BLK_STS_NEXUS;
753 case DID_ALLOC_FAILURE:
754 set_host_byte(cmd, DID_OK);
755 return BLK_STS_NOSPC;
756 case DID_MEDIUM_ERROR:
757 set_host_byte(cmd, DID_OK);
758 return BLK_STS_MEDIUM;
759 default:
760 return BLK_STS_IOERR;
761 }
762 }
763
764 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)765 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
766 struct request_queue *q)
767 {
768 /* A new command will be prepared and issued. */
769 if (q->mq_ops) {
770 scsi_mq_requeue_cmd(cmd);
771 } else {
772 /* Unprep request and put it back at head of the queue. */
773 scsi_release_buffers(cmd);
774 scsi_requeue_command(q, cmd);
775 }
776 }
777
778 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)779 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
780 {
781 struct request_queue *q = cmd->device->request_queue;
782 struct request *req = cmd->request;
783 int level = 0;
784 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
785 ACTION_DELAYED_RETRY} action;
786 unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
787 struct scsi_sense_hdr sshdr;
788 bool sense_valid;
789 bool sense_current = true; /* false implies "deferred sense" */
790 blk_status_t blk_stat;
791
792 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
793 if (sense_valid)
794 sense_current = !scsi_sense_is_deferred(&sshdr);
795
796 blk_stat = scsi_result_to_blk_status(cmd, result);
797
798 if (host_byte(result) == DID_RESET) {
799 /* Third party bus reset or reset for error recovery
800 * reasons. Just retry the command and see what
801 * happens.
802 */
803 action = ACTION_RETRY;
804 } else if (sense_valid && sense_current) {
805 switch (sshdr.sense_key) {
806 case UNIT_ATTENTION:
807 if (cmd->device->removable) {
808 /* Detected disc change. Set a bit
809 * and quietly refuse further access.
810 */
811 cmd->device->changed = 1;
812 action = ACTION_FAIL;
813 } else {
814 /* Must have been a power glitch, or a
815 * bus reset. Could not have been a
816 * media change, so we just retry the
817 * command and see what happens.
818 */
819 action = ACTION_RETRY;
820 }
821 break;
822 case ILLEGAL_REQUEST:
823 /* If we had an ILLEGAL REQUEST returned, then
824 * we may have performed an unsupported
825 * command. The only thing this should be
826 * would be a ten byte read where only a six
827 * byte read was supported. Also, on a system
828 * where READ CAPACITY failed, we may have
829 * read past the end of the disk.
830 */
831 if ((cmd->device->use_10_for_rw &&
832 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
833 (cmd->cmnd[0] == READ_10 ||
834 cmd->cmnd[0] == WRITE_10)) {
835 /* This will issue a new 6-byte command. */
836 cmd->device->use_10_for_rw = 0;
837 action = ACTION_REPREP;
838 } else if (sshdr.asc == 0x10) /* DIX */ {
839 action = ACTION_FAIL;
840 blk_stat = BLK_STS_PROTECTION;
841 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
842 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
843 action = ACTION_FAIL;
844 blk_stat = BLK_STS_TARGET;
845 } else
846 action = ACTION_FAIL;
847 break;
848 case ABORTED_COMMAND:
849 action = ACTION_FAIL;
850 if (sshdr.asc == 0x10) /* DIF */
851 blk_stat = BLK_STS_PROTECTION;
852 break;
853 case NOT_READY:
854 /* If the device is in the process of becoming
855 * ready, or has a temporary blockage, retry.
856 */
857 if (sshdr.asc == 0x04) {
858 switch (sshdr.ascq) {
859 case 0x01: /* becoming ready */
860 case 0x04: /* format in progress */
861 case 0x05: /* rebuild in progress */
862 case 0x06: /* recalculation in progress */
863 case 0x07: /* operation in progress */
864 case 0x08: /* Long write in progress */
865 case 0x09: /* self test in progress */
866 case 0x14: /* space allocation in progress */
867 case 0x1a: /* start stop unit in progress */
868 case 0x1b: /* sanitize in progress */
869 case 0x1d: /* configuration in progress */
870 case 0x24: /* depopulation in progress */
871 action = ACTION_DELAYED_RETRY;
872 break;
873 default:
874 action = ACTION_FAIL;
875 break;
876 }
877 } else
878 action = ACTION_FAIL;
879 break;
880 case VOLUME_OVERFLOW:
881 /* See SSC3rXX or current. */
882 action = ACTION_FAIL;
883 break;
884 default:
885 action = ACTION_FAIL;
886 break;
887 }
888 } else
889 action = ACTION_FAIL;
890
891 if (action != ACTION_FAIL &&
892 time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
893 action = ACTION_FAIL;
894
895 switch (action) {
896 case ACTION_FAIL:
897 /* Give up and fail the remainder of the request */
898 if (!(req->rq_flags & RQF_QUIET)) {
899 static DEFINE_RATELIMIT_STATE(_rs,
900 DEFAULT_RATELIMIT_INTERVAL,
901 DEFAULT_RATELIMIT_BURST);
902
903 if (unlikely(scsi_logging_level))
904 level =
905 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
906 SCSI_LOG_MLCOMPLETE_BITS);
907
908 /*
909 * if logging is enabled the failure will be printed
910 * in scsi_log_completion(), so avoid duplicate messages
911 */
912 if (!level && __ratelimit(&_rs)) {
913 scsi_print_result(cmd, NULL, FAILED);
914 if (driver_byte(result) == DRIVER_SENSE)
915 scsi_print_sense(cmd);
916 scsi_print_command(cmd);
917 }
918 }
919 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
920 return;
921 /*FALLTHRU*/
922 case ACTION_REPREP:
923 scsi_io_completion_reprep(cmd, q);
924 break;
925 case ACTION_RETRY:
926 /* Retry the same command immediately */
927 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
928 break;
929 case ACTION_DELAYED_RETRY:
930 /* Retry the same command after a delay */
931 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
932 break;
933 }
934 }
935
936 /*
937 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
938 * new result that may suppress further error checking. Also modifies
939 * *blk_statp in some cases.
940 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)941 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
942 blk_status_t *blk_statp)
943 {
944 bool sense_valid;
945 bool sense_current = true; /* false implies "deferred sense" */
946 struct request *req = cmd->request;
947 struct scsi_sense_hdr sshdr;
948
949 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
950 if (sense_valid)
951 sense_current = !scsi_sense_is_deferred(&sshdr);
952
953 if (blk_rq_is_passthrough(req)) {
954 if (sense_valid) {
955 /*
956 * SG_IO wants current and deferred errors
957 */
958 scsi_req(req)->sense_len =
959 min(8 + cmd->sense_buffer[7],
960 SCSI_SENSE_BUFFERSIZE);
961 }
962 if (sense_current)
963 *blk_statp = scsi_result_to_blk_status(cmd, result);
964 } else if (blk_rq_bytes(req) == 0 && sense_current) {
965 /*
966 * Flush commands do not transfers any data, and thus cannot use
967 * good_bytes != blk_rq_bytes(req) as the signal for an error.
968 * This sets *blk_statp explicitly for the problem case.
969 */
970 *blk_statp = scsi_result_to_blk_status(cmd, result);
971 }
972 /*
973 * Recovered errors need reporting, but they're always treated as
974 * success, so fiddle the result code here. For passthrough requests
975 * we already took a copy of the original into sreq->result which
976 * is what gets returned to the user
977 */
978 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
979 bool do_print = true;
980 /*
981 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
982 * skip print since caller wants ATA registers. Only occurs
983 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
984 */
985 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
986 do_print = false;
987 else if (req->rq_flags & RQF_QUIET)
988 do_print = false;
989 if (do_print)
990 scsi_print_sense(cmd);
991 result = 0;
992 /* for passthrough, *blk_statp may be set */
993 *blk_statp = BLK_STS_OK;
994 }
995 /*
996 * Another corner case: the SCSI status byte is non-zero but 'good'.
997 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
998 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
999 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1000 * intermediate statuses (both obsolete in SAM-4) as good.
1001 */
1002 if (status_byte(result) && scsi_status_is_good(result)) {
1003 result = 0;
1004 *blk_statp = BLK_STS_OK;
1005 }
1006 return result;
1007 }
1008
1009 /*
1010 * Function: scsi_io_completion()
1011 *
1012 * Purpose: Completion processing for block device I/O requests.
1013 *
1014 * Arguments: cmd - command that is finished.
1015 *
1016 * Lock status: Assumed that no lock is held upon entry.
1017 *
1018 * Returns: Nothing
1019 *
1020 * Notes: We will finish off the specified number of sectors. If we
1021 * are done, the command block will be released and the queue
1022 * function will be goosed. If we are not done then we have to
1023 * figure out what to do next:
1024 *
1025 * a) We can call scsi_requeue_command(). The request
1026 * will be unprepared and put back on the queue. Then
1027 * a new command will be created for it. This should
1028 * be used if we made forward progress, or if we want
1029 * to switch from READ(10) to READ(6) for example.
1030 *
1031 * b) We can call __scsi_queue_insert(). The request will
1032 * be put back on the queue and retried using the same
1033 * command as before, possibly after a delay.
1034 *
1035 * c) We can call scsi_end_request() with blk_stat other than
1036 * BLK_STS_OK, to fail the remainder of the request.
1037 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)1038 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1039 {
1040 int result = cmd->result;
1041 struct request_queue *q = cmd->device->request_queue;
1042 struct request *req = cmd->request;
1043 blk_status_t blk_stat = BLK_STS_OK;
1044
1045 if (unlikely(result)) /* a nz result may or may not be an error */
1046 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1047
1048 if (unlikely(blk_rq_is_passthrough(req))) {
1049 /*
1050 * scsi_result_to_blk_status may have reset the host_byte
1051 */
1052 scsi_req(req)->result = cmd->result;
1053 scsi_req(req)->resid_len = scsi_get_resid(cmd);
1054
1055 if (unlikely(scsi_bidi_cmnd(cmd))) {
1056 /*
1057 * Bidi commands Must be complete as a whole,
1058 * both sides at once.
1059 */
1060 scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1061 if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1062 blk_rq_bytes(req->next_rq)))
1063 WARN_ONCE(true,
1064 "Bidi command with remaining bytes");
1065 return;
1066 }
1067 }
1068
1069 /* no bidi support yet, other than in pass-through */
1070 if (unlikely(blk_bidi_rq(req))) {
1071 WARN_ONCE(true, "Only support bidi command in passthrough");
1072 scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1073 if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1074 blk_rq_bytes(req->next_rq)))
1075 WARN_ONCE(true, "Bidi command with remaining bytes");
1076 return;
1077 }
1078
1079 /*
1080 * Next deal with any sectors which we were able to correctly
1081 * handle.
1082 */
1083 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1084 "%u sectors total, %d bytes done.\n",
1085 blk_rq_sectors(req), good_bytes));
1086
1087 /*
1088 * Next deal with any sectors which we were able to correctly
1089 * handle. Failed, zero length commands always need to drop down
1090 * to retry code. Fast path should return in this block.
1091 */
1092 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1093 if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1094 return; /* no bytes remaining */
1095 }
1096
1097 /* Kill remainder if no retries. */
1098 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1099 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1100 WARN_ONCE(true,
1101 "Bytes remaining after failed, no-retry command");
1102 return;
1103 }
1104
1105 /*
1106 * If there had been no error, but we have leftover bytes in the
1107 * requeues just queue the command up again.
1108 */
1109 if (likely(result == 0))
1110 scsi_io_completion_reprep(cmd, q);
1111 else
1112 scsi_io_completion_action(cmd, result);
1113 }
1114
scsi_init_sgtable(struct request * req,struct scsi_data_buffer * sdb)1115 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1116 {
1117 int count;
1118
1119 /*
1120 * If sg table allocation fails, requeue request later.
1121 */
1122 if (unlikely(sg_alloc_table_chained(&sdb->table,
1123 blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1124 return BLKPREP_DEFER;
1125
1126 /*
1127 * Next, walk the list, and fill in the addresses and sizes of
1128 * each segment.
1129 */
1130 count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1131 BUG_ON(count > sdb->table.nents);
1132 sdb->table.nents = count;
1133 sdb->length = blk_rq_payload_bytes(req);
1134 return BLKPREP_OK;
1135 }
1136
1137 /*
1138 * Function: scsi_init_io()
1139 *
1140 * Purpose: SCSI I/O initialize function.
1141 *
1142 * Arguments: cmd - Command descriptor we wish to initialize
1143 *
1144 * Returns: 0 on success
1145 * BLKPREP_DEFER if the failure is retryable
1146 * BLKPREP_KILL if the failure is fatal
1147 */
scsi_init_io(struct scsi_cmnd * cmd)1148 int scsi_init_io(struct scsi_cmnd *cmd)
1149 {
1150 struct scsi_device *sdev = cmd->device;
1151 struct request *rq = cmd->request;
1152 bool is_mq = (rq->mq_ctx != NULL);
1153 int error = BLKPREP_KILL;
1154
1155 if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1156 goto err_exit;
1157
1158 error = scsi_init_sgtable(rq, &cmd->sdb);
1159 if (error)
1160 goto err_exit;
1161
1162 if (blk_bidi_rq(rq)) {
1163 if (!rq->q->mq_ops) {
1164 struct scsi_data_buffer *bidi_sdb =
1165 kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1166 if (!bidi_sdb) {
1167 error = BLKPREP_DEFER;
1168 goto err_exit;
1169 }
1170
1171 rq->next_rq->special = bidi_sdb;
1172 }
1173
1174 error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1175 if (error)
1176 goto err_exit;
1177 }
1178
1179 if (blk_integrity_rq(rq)) {
1180 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1181 int ivecs, count;
1182
1183 if (prot_sdb == NULL) {
1184 /*
1185 * This can happen if someone (e.g. multipath)
1186 * queues a command to a device on an adapter
1187 * that does not support DIX.
1188 */
1189 WARN_ON_ONCE(1);
1190 error = BLKPREP_KILL;
1191 goto err_exit;
1192 }
1193
1194 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1195
1196 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1197 prot_sdb->table.sgl)) {
1198 error = BLKPREP_DEFER;
1199 goto err_exit;
1200 }
1201
1202 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1203 prot_sdb->table.sgl);
1204 BUG_ON(unlikely(count > ivecs));
1205 BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1206
1207 cmd->prot_sdb = prot_sdb;
1208 cmd->prot_sdb->table.nents = count;
1209 }
1210
1211 return BLKPREP_OK;
1212 err_exit:
1213 if (is_mq) {
1214 scsi_mq_free_sgtables(cmd);
1215 } else {
1216 scsi_release_buffers(cmd);
1217 cmd->request->special = NULL;
1218 scsi_put_command(cmd);
1219 put_device(&sdev->sdev_gendev);
1220 }
1221 return error;
1222 }
1223 EXPORT_SYMBOL(scsi_init_io);
1224
1225 /**
1226 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1227 * @rq: Request associated with the SCSI command to be initialized.
1228 *
1229 * This function initializes the members of struct scsi_cmnd that must be
1230 * initialized before request processing starts and that won't be
1231 * reinitialized if a SCSI command is requeued.
1232 *
1233 * Called from inside blk_get_request() for pass-through requests and from
1234 * inside scsi_init_command() for filesystem requests.
1235 */
scsi_initialize_rq(struct request * rq)1236 static void scsi_initialize_rq(struct request *rq)
1237 {
1238 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1239
1240 scsi_req_init(&cmd->req);
1241 init_rcu_head(&cmd->rcu);
1242 cmd->jiffies_at_alloc = jiffies;
1243 cmd->retries = 0;
1244 }
1245
1246 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
scsi_add_cmd_to_list(struct scsi_cmnd * cmd)1247 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1248 {
1249 struct scsi_device *sdev = cmd->device;
1250 struct Scsi_Host *shost = sdev->host;
1251 unsigned long flags;
1252
1253 if (shost->use_cmd_list) {
1254 spin_lock_irqsave(&sdev->list_lock, flags);
1255 list_add_tail(&cmd->list, &sdev->cmd_list);
1256 spin_unlock_irqrestore(&sdev->list_lock, flags);
1257 }
1258 }
1259
1260 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
scsi_del_cmd_from_list(struct scsi_cmnd * cmd)1261 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1262 {
1263 struct scsi_device *sdev = cmd->device;
1264 struct Scsi_Host *shost = sdev->host;
1265 unsigned long flags;
1266
1267 if (shost->use_cmd_list) {
1268 spin_lock_irqsave(&sdev->list_lock, flags);
1269 BUG_ON(list_empty(&cmd->list));
1270 list_del_init(&cmd->list);
1271 spin_unlock_irqrestore(&sdev->list_lock, flags);
1272 }
1273 }
1274
1275 /* Called after a request has been started. */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1276 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1277 {
1278 void *buf = cmd->sense_buffer;
1279 void *prot = cmd->prot_sdb;
1280 struct request *rq = blk_mq_rq_from_pdu(cmd);
1281 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1282 unsigned long jiffies_at_alloc;
1283 int retries;
1284
1285 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1286 flags |= SCMD_INITIALIZED;
1287 scsi_initialize_rq(rq);
1288 }
1289
1290 jiffies_at_alloc = cmd->jiffies_at_alloc;
1291 retries = cmd->retries;
1292 /* zero out the cmd, except for the embedded scsi_request */
1293 memset((char *)cmd + sizeof(cmd->req), 0,
1294 sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1295
1296 cmd->device = dev;
1297 cmd->sense_buffer = buf;
1298 cmd->prot_sdb = prot;
1299 cmd->flags = flags;
1300 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1301 cmd->jiffies_at_alloc = jiffies_at_alloc;
1302 cmd->retries = retries;
1303
1304 scsi_add_cmd_to_list(cmd);
1305 }
1306
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1307 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1308 {
1309 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1310
1311 /*
1312 * Passthrough requests may transfer data, in which case they must
1313 * a bio attached to them. Or they might contain a SCSI command
1314 * that does not transfer data, in which case they may optionally
1315 * submit a request without an attached bio.
1316 */
1317 if (req->bio) {
1318 int ret = scsi_init_io(cmd);
1319 if (unlikely(ret))
1320 return ret;
1321 } else {
1322 BUG_ON(blk_rq_bytes(req));
1323
1324 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1325 }
1326
1327 cmd->cmd_len = scsi_req(req)->cmd_len;
1328 cmd->cmnd = scsi_req(req)->cmd;
1329 cmd->transfersize = blk_rq_bytes(req);
1330 cmd->allowed = scsi_req(req)->retries;
1331 return BLKPREP_OK;
1332 }
1333
1334 /*
1335 * Setup a normal block command. These are simple request from filesystems
1336 * that still need to be translated to SCSI CDBs from the ULD.
1337 */
scsi_setup_fs_cmnd(struct scsi_device * sdev,struct request * req)1338 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1339 {
1340 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1341
1342 if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1343 int ret = sdev->handler->prep_fn(sdev, req);
1344 if (ret != BLKPREP_OK)
1345 return ret;
1346 }
1347
1348 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1349 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1350 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1351 }
1352
scsi_setup_cmnd(struct scsi_device * sdev,struct request * req)1353 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1354 {
1355 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1356
1357 if (!blk_rq_bytes(req))
1358 cmd->sc_data_direction = DMA_NONE;
1359 else if (rq_data_dir(req) == WRITE)
1360 cmd->sc_data_direction = DMA_TO_DEVICE;
1361 else
1362 cmd->sc_data_direction = DMA_FROM_DEVICE;
1363
1364 if (blk_rq_is_scsi(req))
1365 return scsi_setup_scsi_cmnd(sdev, req);
1366 else
1367 return scsi_setup_fs_cmnd(sdev, req);
1368 }
1369
1370 static int
scsi_prep_state_check(struct scsi_device * sdev,struct request * req)1371 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1372 {
1373 int ret = BLKPREP_OK;
1374
1375 /*
1376 * If the device is not in running state we will reject some
1377 * or all commands.
1378 */
1379 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1380 switch (sdev->sdev_state) {
1381 case SDEV_OFFLINE:
1382 case SDEV_TRANSPORT_OFFLINE:
1383 /*
1384 * If the device is offline we refuse to process any
1385 * commands. The device must be brought online
1386 * before trying any recovery commands.
1387 */
1388 sdev_printk(KERN_ERR, sdev,
1389 "rejecting I/O to offline device\n");
1390 ret = BLKPREP_KILL;
1391 break;
1392 case SDEV_DEL:
1393 /*
1394 * If the device is fully deleted, we refuse to
1395 * process any commands as well.
1396 */
1397 sdev_printk(KERN_ERR, sdev,
1398 "rejecting I/O to dead device\n");
1399 ret = BLKPREP_KILL;
1400 break;
1401 case SDEV_BLOCK:
1402 case SDEV_CREATED_BLOCK:
1403 ret = BLKPREP_DEFER;
1404 break;
1405 case SDEV_QUIESCE:
1406 /*
1407 * If the devices is blocked we defer normal commands.
1408 */
1409 if (req && !(req->rq_flags & RQF_PREEMPT))
1410 ret = BLKPREP_DEFER;
1411 break;
1412 default:
1413 /*
1414 * For any other not fully online state we only allow
1415 * special commands. In particular any user initiated
1416 * command is not allowed.
1417 */
1418 if (req && !(req->rq_flags & RQF_PREEMPT))
1419 ret = BLKPREP_KILL;
1420 break;
1421 }
1422 }
1423 return ret;
1424 }
1425
1426 static int
scsi_prep_return(struct request_queue * q,struct request * req,int ret)1427 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1428 {
1429 struct scsi_device *sdev = q->queuedata;
1430
1431 switch (ret) {
1432 case BLKPREP_KILL:
1433 case BLKPREP_INVALID:
1434 scsi_req(req)->result = DID_NO_CONNECT << 16;
1435 /* release the command and kill it */
1436 if (req->special) {
1437 struct scsi_cmnd *cmd = req->special;
1438 scsi_release_buffers(cmd);
1439 scsi_put_command(cmd);
1440 put_device(&sdev->sdev_gendev);
1441 req->special = NULL;
1442 }
1443 break;
1444 case BLKPREP_DEFER:
1445 /*
1446 * If we defer, the blk_peek_request() returns NULL, but the
1447 * queue must be restarted, so we schedule a callback to happen
1448 * shortly.
1449 */
1450 if (atomic_read(&sdev->device_busy) == 0)
1451 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1452 break;
1453 default:
1454 req->rq_flags |= RQF_DONTPREP;
1455 }
1456
1457 return ret;
1458 }
1459
scsi_prep_fn(struct request_queue * q,struct request * req)1460 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1461 {
1462 struct scsi_device *sdev = q->queuedata;
1463 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1464 int ret;
1465
1466 ret = scsi_prep_state_check(sdev, req);
1467 if (ret != BLKPREP_OK)
1468 goto out;
1469
1470 if (!req->special) {
1471 /* Bail if we can't get a reference to the device */
1472 if (unlikely(!get_device(&sdev->sdev_gendev))) {
1473 ret = BLKPREP_DEFER;
1474 goto out;
1475 }
1476
1477 scsi_init_command(sdev, cmd);
1478 req->special = cmd;
1479 }
1480
1481 cmd->tag = req->tag;
1482 cmd->request = req;
1483 cmd->prot_op = SCSI_PROT_NORMAL;
1484
1485 ret = scsi_setup_cmnd(sdev, req);
1486 out:
1487 return scsi_prep_return(q, req, ret);
1488 }
1489
scsi_unprep_fn(struct request_queue * q,struct request * req)1490 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1491 {
1492 scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1493 }
1494
1495 /*
1496 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1497 * return 0.
1498 *
1499 * Called with the queue_lock held.
1500 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1501 static inline int scsi_dev_queue_ready(struct request_queue *q,
1502 struct scsi_device *sdev)
1503 {
1504 unsigned int busy;
1505
1506 busy = atomic_inc_return(&sdev->device_busy) - 1;
1507 if (atomic_read(&sdev->device_blocked)) {
1508 if (busy)
1509 goto out_dec;
1510
1511 /*
1512 * unblock after device_blocked iterates to zero
1513 */
1514 if (atomic_dec_return(&sdev->device_blocked) > 0) {
1515 /*
1516 * For the MQ case we take care of this in the caller.
1517 */
1518 if (!q->mq_ops)
1519 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1520 goto out_dec;
1521 }
1522 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1523 "unblocking device at zero depth\n"));
1524 }
1525
1526 if (busy >= sdev->queue_depth)
1527 goto out_dec;
1528
1529 return 1;
1530 out_dec:
1531 atomic_dec(&sdev->device_busy);
1532 return 0;
1533 }
1534
1535 /*
1536 * scsi_target_queue_ready: checks if there we can send commands to target
1537 * @sdev: scsi device on starget to check.
1538 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1539 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1540 struct scsi_device *sdev)
1541 {
1542 struct scsi_target *starget = scsi_target(sdev);
1543 unsigned int busy;
1544
1545 if (starget->single_lun) {
1546 spin_lock_irq(shost->host_lock);
1547 if (starget->starget_sdev_user &&
1548 starget->starget_sdev_user != sdev) {
1549 spin_unlock_irq(shost->host_lock);
1550 return 0;
1551 }
1552 starget->starget_sdev_user = sdev;
1553 spin_unlock_irq(shost->host_lock);
1554 }
1555
1556 if (starget->can_queue <= 0)
1557 return 1;
1558
1559 busy = atomic_inc_return(&starget->target_busy) - 1;
1560 if (atomic_read(&starget->target_blocked) > 0) {
1561 if (busy)
1562 goto starved;
1563
1564 /*
1565 * unblock after target_blocked iterates to zero
1566 */
1567 if (atomic_dec_return(&starget->target_blocked) > 0)
1568 goto out_dec;
1569
1570 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1571 "unblocking target at zero depth\n"));
1572 }
1573
1574 if (busy >= starget->can_queue)
1575 goto starved;
1576
1577 return 1;
1578
1579 starved:
1580 spin_lock_irq(shost->host_lock);
1581 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1582 spin_unlock_irq(shost->host_lock);
1583 out_dec:
1584 if (starget->can_queue > 0)
1585 atomic_dec(&starget->target_busy);
1586 return 0;
1587 }
1588
1589 /*
1590 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1591 * return 0. We must end up running the queue again whenever 0 is
1592 * returned, else IO can hang.
1593 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev)1594 static inline int scsi_host_queue_ready(struct request_queue *q,
1595 struct Scsi_Host *shost,
1596 struct scsi_device *sdev)
1597 {
1598 unsigned int busy;
1599
1600 if (scsi_host_in_recovery(shost))
1601 return 0;
1602
1603 busy = atomic_inc_return(&shost->host_busy) - 1;
1604 if (atomic_read(&shost->host_blocked) > 0) {
1605 if (busy)
1606 goto starved;
1607
1608 /*
1609 * unblock after host_blocked iterates to zero
1610 */
1611 if (atomic_dec_return(&shost->host_blocked) > 0)
1612 goto out_dec;
1613
1614 SCSI_LOG_MLQUEUE(3,
1615 shost_printk(KERN_INFO, shost,
1616 "unblocking host at zero depth\n"));
1617 }
1618
1619 if (shost->can_queue > 0 && busy >= shost->can_queue)
1620 goto starved;
1621 if (shost->host_self_blocked)
1622 goto starved;
1623
1624 /* We're OK to process the command, so we can't be starved */
1625 if (!list_empty(&sdev->starved_entry)) {
1626 spin_lock_irq(shost->host_lock);
1627 if (!list_empty(&sdev->starved_entry))
1628 list_del_init(&sdev->starved_entry);
1629 spin_unlock_irq(shost->host_lock);
1630 }
1631
1632 return 1;
1633
1634 starved:
1635 spin_lock_irq(shost->host_lock);
1636 if (list_empty(&sdev->starved_entry))
1637 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1638 spin_unlock_irq(shost->host_lock);
1639 out_dec:
1640 scsi_dec_host_busy(shost);
1641 return 0;
1642 }
1643
1644 /*
1645 * Busy state exporting function for request stacking drivers.
1646 *
1647 * For efficiency, no lock is taken to check the busy state of
1648 * shost/starget/sdev, since the returned value is not guaranteed and
1649 * may be changed after request stacking drivers call the function,
1650 * regardless of taking lock or not.
1651 *
1652 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1653 * needs to return 'not busy'. Otherwise, request stacking drivers
1654 * may hold requests forever.
1655 */
scsi_lld_busy(struct request_queue * q)1656 static int scsi_lld_busy(struct request_queue *q)
1657 {
1658 struct scsi_device *sdev = q->queuedata;
1659 struct Scsi_Host *shost;
1660
1661 if (blk_queue_dying(q))
1662 return 0;
1663
1664 shost = sdev->host;
1665
1666 /*
1667 * Ignore host/starget busy state.
1668 * Since block layer does not have a concept of fairness across
1669 * multiple queues, congestion of host/starget needs to be handled
1670 * in SCSI layer.
1671 */
1672 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1673 return 1;
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * Kill a request for a dead device
1680 */
scsi_kill_request(struct request * req,struct request_queue * q)1681 static void scsi_kill_request(struct request *req, struct request_queue *q)
1682 {
1683 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1684 struct scsi_device *sdev;
1685 struct scsi_target *starget;
1686 struct Scsi_Host *shost;
1687
1688 blk_start_request(req);
1689
1690 scmd_printk(KERN_INFO, cmd, "killing request\n");
1691
1692 sdev = cmd->device;
1693 starget = scsi_target(sdev);
1694 shost = sdev->host;
1695 scsi_init_cmd_errh(cmd);
1696 cmd->result = DID_NO_CONNECT << 16;
1697 atomic_inc(&cmd->device->iorequest_cnt);
1698
1699 /*
1700 * SCSI request completion path will do scsi_device_unbusy(),
1701 * bump busy counts. To bump the counters, we need to dance
1702 * with the locks as normal issue path does.
1703 */
1704 atomic_inc(&sdev->device_busy);
1705 atomic_inc(&shost->host_busy);
1706 if (starget->can_queue > 0)
1707 atomic_inc(&starget->target_busy);
1708
1709 blk_complete_request(req);
1710 }
1711
scsi_softirq_done(struct request * rq)1712 static void scsi_softirq_done(struct request *rq)
1713 {
1714 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1715 unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1716 int disposition;
1717
1718 INIT_LIST_HEAD(&cmd->eh_entry);
1719
1720 atomic_inc(&cmd->device->iodone_cnt);
1721 if (cmd->result)
1722 atomic_inc(&cmd->device->ioerr_cnt);
1723
1724 disposition = scsi_decide_disposition(cmd);
1725 if (disposition != SUCCESS &&
1726 time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1727 sdev_printk(KERN_ERR, cmd->device,
1728 "timing out command, waited %lus\n",
1729 wait_for/HZ);
1730 disposition = SUCCESS;
1731 }
1732
1733 scsi_log_completion(cmd, disposition);
1734
1735 switch (disposition) {
1736 case SUCCESS:
1737 scsi_finish_command(cmd);
1738 break;
1739 case NEEDS_RETRY:
1740 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1741 break;
1742 case ADD_TO_MLQUEUE:
1743 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1744 break;
1745 default:
1746 scsi_eh_scmd_add(cmd);
1747 break;
1748 }
1749 }
1750
1751 /**
1752 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1753 * @cmd: command block we are dispatching.
1754 *
1755 * Return: nonzero return request was rejected and device's queue needs to be
1756 * plugged.
1757 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1758 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1759 {
1760 struct Scsi_Host *host = cmd->device->host;
1761 int rtn = 0;
1762
1763 atomic_inc(&cmd->device->iorequest_cnt);
1764
1765 /* check if the device is still usable */
1766 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1767 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1768 * returns an immediate error upwards, and signals
1769 * that the device is no longer present */
1770 cmd->result = DID_NO_CONNECT << 16;
1771 goto done;
1772 }
1773
1774 /* Check to see if the scsi lld made this device blocked. */
1775 if (unlikely(scsi_device_blocked(cmd->device))) {
1776 /*
1777 * in blocked state, the command is just put back on
1778 * the device queue. The suspend state has already
1779 * blocked the queue so future requests should not
1780 * occur until the device transitions out of the
1781 * suspend state.
1782 */
1783 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1784 "queuecommand : device blocked\n"));
1785 return SCSI_MLQUEUE_DEVICE_BUSY;
1786 }
1787
1788 /* Store the LUN value in cmnd, if needed. */
1789 if (cmd->device->lun_in_cdb)
1790 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1791 (cmd->device->lun << 5 & 0xe0);
1792
1793 scsi_log_send(cmd);
1794
1795 /*
1796 * Before we queue this command, check if the command
1797 * length exceeds what the host adapter can handle.
1798 */
1799 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1800 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1801 "queuecommand : command too long. "
1802 "cdb_size=%d host->max_cmd_len=%d\n",
1803 cmd->cmd_len, cmd->device->host->max_cmd_len));
1804 cmd->result = (DID_ABORT << 16);
1805 goto done;
1806 }
1807
1808 if (unlikely(host->shost_state == SHOST_DEL)) {
1809 cmd->result = (DID_NO_CONNECT << 16);
1810 goto done;
1811
1812 }
1813
1814 trace_scsi_dispatch_cmd_start(cmd);
1815 rtn = host->hostt->queuecommand(host, cmd);
1816 if (rtn) {
1817 trace_scsi_dispatch_cmd_error(cmd, rtn);
1818 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1819 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1820 rtn = SCSI_MLQUEUE_HOST_BUSY;
1821
1822 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1823 "queuecommand : request rejected\n"));
1824 }
1825
1826 return rtn;
1827 done:
1828 cmd->scsi_done(cmd);
1829 return 0;
1830 }
1831
1832 /**
1833 * scsi_done - Invoke completion on finished SCSI command.
1834 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1835 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1836 *
1837 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1838 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1839 * calls blk_complete_request() for further processing.
1840 *
1841 * This function is interrupt context safe.
1842 */
scsi_done(struct scsi_cmnd * cmd)1843 static void scsi_done(struct scsi_cmnd *cmd)
1844 {
1845 trace_scsi_dispatch_cmd_done(cmd);
1846 blk_complete_request(cmd->request);
1847 }
1848
1849 /*
1850 * Function: scsi_request_fn()
1851 *
1852 * Purpose: Main strategy routine for SCSI.
1853 *
1854 * Arguments: q - Pointer to actual queue.
1855 *
1856 * Returns: Nothing
1857 *
1858 * Lock status: request queue lock assumed to be held when called.
1859 *
1860 * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1861 * protection for ZBC disks.
1862 */
scsi_request_fn(struct request_queue * q)1863 static void scsi_request_fn(struct request_queue *q)
1864 __releases(q->queue_lock)
1865 __acquires(q->queue_lock)
1866 {
1867 struct scsi_device *sdev = q->queuedata;
1868 struct Scsi_Host *shost;
1869 struct scsi_cmnd *cmd;
1870 struct request *req;
1871
1872 /*
1873 * To start with, we keep looping until the queue is empty, or until
1874 * the host is no longer able to accept any more requests.
1875 */
1876 shost = sdev->host;
1877 for (;;) {
1878 int rtn;
1879 /*
1880 * get next queueable request. We do this early to make sure
1881 * that the request is fully prepared even if we cannot
1882 * accept it.
1883 */
1884 req = blk_peek_request(q);
1885 if (!req)
1886 break;
1887
1888 if (unlikely(!scsi_device_online(sdev))) {
1889 sdev_printk(KERN_ERR, sdev,
1890 "rejecting I/O to offline device\n");
1891 scsi_kill_request(req, q);
1892 continue;
1893 }
1894
1895 if (!scsi_dev_queue_ready(q, sdev))
1896 break;
1897
1898 /*
1899 * Remove the request from the request list.
1900 */
1901 if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1902 blk_start_request(req);
1903
1904 spin_unlock_irq(q->queue_lock);
1905 cmd = blk_mq_rq_to_pdu(req);
1906 if (cmd != req->special) {
1907 printk(KERN_CRIT "impossible request in %s.\n"
1908 "please mail a stack trace to "
1909 "linux-scsi@vger.kernel.org\n",
1910 __func__);
1911 blk_dump_rq_flags(req, "foo");
1912 BUG();
1913 }
1914
1915 /*
1916 * We hit this when the driver is using a host wide
1917 * tag map. For device level tag maps the queue_depth check
1918 * in the device ready fn would prevent us from trying
1919 * to allocate a tag. Since the map is a shared host resource
1920 * we add the dev to the starved list so it eventually gets
1921 * a run when a tag is freed.
1922 */
1923 if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1924 spin_lock_irq(shost->host_lock);
1925 if (list_empty(&sdev->starved_entry))
1926 list_add_tail(&sdev->starved_entry,
1927 &shost->starved_list);
1928 spin_unlock_irq(shost->host_lock);
1929 goto not_ready;
1930 }
1931
1932 if (!scsi_target_queue_ready(shost, sdev))
1933 goto not_ready;
1934
1935 if (!scsi_host_queue_ready(q, shost, sdev))
1936 goto host_not_ready;
1937
1938 if (sdev->simple_tags)
1939 cmd->flags |= SCMD_TAGGED;
1940 else
1941 cmd->flags &= ~SCMD_TAGGED;
1942
1943 /*
1944 * Finally, initialize any error handling parameters, and set up
1945 * the timers for timeouts.
1946 */
1947 scsi_init_cmd_errh(cmd);
1948
1949 /*
1950 * Dispatch the command to the low-level driver.
1951 */
1952 cmd->scsi_done = scsi_done;
1953 rtn = scsi_dispatch_cmd(cmd);
1954 if (rtn) {
1955 scsi_queue_insert(cmd, rtn);
1956 spin_lock_irq(q->queue_lock);
1957 goto out_delay;
1958 }
1959 spin_lock_irq(q->queue_lock);
1960 }
1961
1962 return;
1963
1964 host_not_ready:
1965 if (scsi_target(sdev)->can_queue > 0)
1966 atomic_dec(&scsi_target(sdev)->target_busy);
1967 not_ready:
1968 /*
1969 * lock q, handle tag, requeue req, and decrement device_busy. We
1970 * must return with queue_lock held.
1971 *
1972 * Decrementing device_busy without checking it is OK, as all such
1973 * cases (host limits or settings) should run the queue at some
1974 * later time.
1975 */
1976 spin_lock_irq(q->queue_lock);
1977 blk_requeue_request(q, req);
1978 atomic_dec(&sdev->device_busy);
1979 out_delay:
1980 if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1981 blk_delay_queue(q, SCSI_QUEUE_DELAY);
1982 }
1983
prep_to_mq(int ret)1984 static inline blk_status_t prep_to_mq(int ret)
1985 {
1986 switch (ret) {
1987 case BLKPREP_OK:
1988 return BLK_STS_OK;
1989 case BLKPREP_DEFER:
1990 return BLK_STS_RESOURCE;
1991 default:
1992 return BLK_STS_IOERR;
1993 }
1994 }
1995
1996 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_sgl_size(struct Scsi_Host * shost)1997 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
1998 {
1999 return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2000 sizeof(struct scatterlist);
2001 }
2002
scsi_mq_prep_fn(struct request * req)2003 static int scsi_mq_prep_fn(struct request *req)
2004 {
2005 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2006 struct scsi_device *sdev = req->q->queuedata;
2007 struct Scsi_Host *shost = sdev->host;
2008 struct scatterlist *sg;
2009
2010 scsi_init_command(sdev, cmd);
2011
2012 req->special = cmd;
2013
2014 cmd->request = req;
2015
2016 cmd->tag = req->tag;
2017 cmd->prot_op = SCSI_PROT_NORMAL;
2018
2019 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2020 cmd->sdb.table.sgl = sg;
2021
2022 if (scsi_host_get_prot(shost)) {
2023 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2024
2025 cmd->prot_sdb->table.sgl =
2026 (struct scatterlist *)(cmd->prot_sdb + 1);
2027 }
2028
2029 if (blk_bidi_rq(req)) {
2030 struct request *next_rq = req->next_rq;
2031 struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2032
2033 memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2034 bidi_sdb->table.sgl =
2035 (struct scatterlist *)(bidi_sdb + 1);
2036
2037 next_rq->special = bidi_sdb;
2038 }
2039
2040 blk_mq_start_request(req);
2041
2042 return scsi_setup_cmnd(sdev, req);
2043 }
2044
scsi_mq_done(struct scsi_cmnd * cmd)2045 static void scsi_mq_done(struct scsi_cmnd *cmd)
2046 {
2047 trace_scsi_dispatch_cmd_done(cmd);
2048 blk_mq_complete_request(cmd->request);
2049 }
2050
scsi_mq_put_budget(struct blk_mq_hw_ctx * hctx)2051 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2052 {
2053 struct request_queue *q = hctx->queue;
2054 struct scsi_device *sdev = q->queuedata;
2055
2056 atomic_dec(&sdev->device_busy);
2057 put_device(&sdev->sdev_gendev);
2058 }
2059
scsi_mq_get_budget(struct blk_mq_hw_ctx * hctx)2060 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2061 {
2062 struct request_queue *q = hctx->queue;
2063 struct scsi_device *sdev = q->queuedata;
2064
2065 if (!get_device(&sdev->sdev_gendev))
2066 goto out;
2067 if (!scsi_dev_queue_ready(q, sdev))
2068 goto out_put_device;
2069
2070 return true;
2071
2072 out_put_device:
2073 put_device(&sdev->sdev_gendev);
2074 out:
2075 if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2076 blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2077 return false;
2078 }
2079
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2080 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2081 const struct blk_mq_queue_data *bd)
2082 {
2083 struct request *req = bd->rq;
2084 struct request_queue *q = req->q;
2085 struct scsi_device *sdev = q->queuedata;
2086 struct Scsi_Host *shost = sdev->host;
2087 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2088 blk_status_t ret;
2089 int reason;
2090
2091 ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2092 if (ret != BLK_STS_OK)
2093 goto out_put_budget;
2094
2095 ret = BLK_STS_RESOURCE;
2096 if (!scsi_target_queue_ready(shost, sdev))
2097 goto out_put_budget;
2098 if (!scsi_host_queue_ready(q, shost, sdev))
2099 goto out_dec_target_busy;
2100
2101 if (!(req->rq_flags & RQF_DONTPREP)) {
2102 ret = prep_to_mq(scsi_mq_prep_fn(req));
2103 if (ret != BLK_STS_OK)
2104 goto out_dec_host_busy;
2105 req->rq_flags |= RQF_DONTPREP;
2106 } else {
2107 blk_mq_start_request(req);
2108 }
2109
2110 if (sdev->simple_tags)
2111 cmd->flags |= SCMD_TAGGED;
2112 else
2113 cmd->flags &= ~SCMD_TAGGED;
2114
2115 scsi_init_cmd_errh(cmd);
2116 cmd->scsi_done = scsi_mq_done;
2117
2118 reason = scsi_dispatch_cmd(cmd);
2119 if (reason) {
2120 scsi_set_blocked(cmd, reason);
2121 ret = BLK_STS_RESOURCE;
2122 goto out_dec_host_busy;
2123 }
2124
2125 return BLK_STS_OK;
2126
2127 out_dec_host_busy:
2128 scsi_dec_host_busy(shost);
2129 out_dec_target_busy:
2130 if (scsi_target(sdev)->can_queue > 0)
2131 atomic_dec(&scsi_target(sdev)->target_busy);
2132 out_put_budget:
2133 scsi_mq_put_budget(hctx);
2134 switch (ret) {
2135 case BLK_STS_OK:
2136 break;
2137 case BLK_STS_RESOURCE:
2138 if (atomic_read(&sdev->device_busy) ||
2139 scsi_device_blocked(sdev))
2140 ret = BLK_STS_DEV_RESOURCE;
2141 break;
2142 default:
2143 /*
2144 * Make sure to release all allocated ressources when
2145 * we hit an error, as we will never see this command
2146 * again.
2147 */
2148 if (req->rq_flags & RQF_DONTPREP)
2149 scsi_mq_uninit_cmd(cmd);
2150 break;
2151 }
2152 return ret;
2153 }
2154
scsi_timeout(struct request * req,bool reserved)2155 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2156 bool reserved)
2157 {
2158 if (reserved)
2159 return BLK_EH_RESET_TIMER;
2160 return scsi_times_out(req);
2161 }
2162
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)2163 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2164 unsigned int hctx_idx, unsigned int numa_node)
2165 {
2166 struct Scsi_Host *shost = set->driver_data;
2167 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2168 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2169 struct scatterlist *sg;
2170
2171 if (unchecked_isa_dma)
2172 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2173 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2174 GFP_KERNEL, numa_node);
2175 if (!cmd->sense_buffer)
2176 return -ENOMEM;
2177 cmd->req.sense = cmd->sense_buffer;
2178
2179 if (scsi_host_get_prot(shost)) {
2180 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2181 shost->hostt->cmd_size;
2182 cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2183 }
2184
2185 return 0;
2186 }
2187
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)2188 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2189 unsigned int hctx_idx)
2190 {
2191 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2192
2193 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2194 cmd->sense_buffer);
2195 }
2196
scsi_map_queues(struct blk_mq_tag_set * set)2197 static int scsi_map_queues(struct blk_mq_tag_set *set)
2198 {
2199 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2200
2201 if (shost->hostt->map_queues)
2202 return shost->hostt->map_queues(shost);
2203 return blk_mq_map_queues(set);
2204 }
2205
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)2206 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2207 {
2208 struct device *dev = shost->dma_dev;
2209
2210 /*
2211 * this limit is imposed by hardware restrictions
2212 */
2213 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2214 SG_MAX_SEGMENTS));
2215
2216 if (scsi_host_prot_dma(shost)) {
2217 shost->sg_prot_tablesize =
2218 min_not_zero(shost->sg_prot_tablesize,
2219 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2220 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2221 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2222 }
2223
2224 blk_queue_max_hw_sectors(q, shost->max_sectors);
2225 if (shost->unchecked_isa_dma)
2226 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2227 blk_queue_segment_boundary(q, shost->dma_boundary);
2228 dma_set_seg_boundary(dev, shost->dma_boundary);
2229
2230 blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2231
2232 if (!shost->use_clustering)
2233 q->limits.cluster = 0;
2234
2235 /*
2236 * Set a reasonable default alignment: The larger of 32-byte (dword),
2237 * which is a common minimum for HBAs, and the minimum DMA alignment,
2238 * which is set by the platform.
2239 *
2240 * Devices that require a bigger alignment can increase it later.
2241 */
2242 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2243 }
2244 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2245
scsi_old_init_rq(struct request_queue * q,struct request * rq,gfp_t gfp)2246 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2247 gfp_t gfp)
2248 {
2249 struct Scsi_Host *shost = q->rq_alloc_data;
2250 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2251 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2252
2253 memset(cmd, 0, sizeof(*cmd));
2254
2255 if (unchecked_isa_dma)
2256 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2257 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2258 NUMA_NO_NODE);
2259 if (!cmd->sense_buffer)
2260 goto fail;
2261 cmd->req.sense = cmd->sense_buffer;
2262
2263 if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2264 cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2265 if (!cmd->prot_sdb)
2266 goto fail_free_sense;
2267 }
2268
2269 return 0;
2270
2271 fail_free_sense:
2272 scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2273 fail:
2274 return -ENOMEM;
2275 }
2276
scsi_old_exit_rq(struct request_queue * q,struct request * rq)2277 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2278 {
2279 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2280
2281 if (cmd->prot_sdb)
2282 kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2283 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2284 cmd->sense_buffer);
2285 }
2286
scsi_old_alloc_queue(struct scsi_device * sdev)2287 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2288 {
2289 struct Scsi_Host *shost = sdev->host;
2290 struct request_queue *q;
2291
2292 q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2293 if (!q)
2294 return NULL;
2295 q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2296 q->rq_alloc_data = shost;
2297 q->request_fn = scsi_request_fn;
2298 q->init_rq_fn = scsi_old_init_rq;
2299 q->exit_rq_fn = scsi_old_exit_rq;
2300 q->initialize_rq_fn = scsi_initialize_rq;
2301
2302 if (blk_init_allocated_queue(q) < 0) {
2303 blk_cleanup_queue(q);
2304 return NULL;
2305 }
2306
2307 __scsi_init_queue(shost, q);
2308 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2309 blk_queue_prep_rq(q, scsi_prep_fn);
2310 blk_queue_unprep_rq(q, scsi_unprep_fn);
2311 blk_queue_softirq_done(q, scsi_softirq_done);
2312 blk_queue_rq_timed_out(q, scsi_times_out);
2313 blk_queue_lld_busy(q, scsi_lld_busy);
2314 return q;
2315 }
2316
2317 static const struct blk_mq_ops scsi_mq_ops = {
2318 .get_budget = scsi_mq_get_budget,
2319 .put_budget = scsi_mq_put_budget,
2320 .queue_rq = scsi_queue_rq,
2321 .complete = scsi_softirq_done,
2322 .timeout = scsi_timeout,
2323 #ifdef CONFIG_BLK_DEBUG_FS
2324 .show_rq = scsi_show_rq,
2325 #endif
2326 .init_request = scsi_mq_init_request,
2327 .exit_request = scsi_mq_exit_request,
2328 .initialize_rq_fn = scsi_initialize_rq,
2329 .map_queues = scsi_map_queues,
2330 };
2331
scsi_mq_alloc_queue(struct scsi_device * sdev)2332 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2333 {
2334 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2335 if (IS_ERR(sdev->request_queue))
2336 return NULL;
2337
2338 sdev->request_queue->queuedata = sdev;
2339 __scsi_init_queue(sdev->host, sdev->request_queue);
2340 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2341 return sdev->request_queue;
2342 }
2343
scsi_mq_setup_tags(struct Scsi_Host * shost)2344 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2345 {
2346 unsigned int cmd_size, sgl_size;
2347
2348 sgl_size = scsi_mq_sgl_size(shost);
2349 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2350 if (scsi_host_get_prot(shost))
2351 cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2352
2353 memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2354 shost->tag_set.ops = &scsi_mq_ops;
2355 shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2356 shost->tag_set.queue_depth = shost->can_queue;
2357 shost->tag_set.cmd_size = cmd_size;
2358 shost->tag_set.numa_node = NUMA_NO_NODE;
2359 shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2360 shost->tag_set.flags |=
2361 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2362 shost->tag_set.driver_data = shost;
2363
2364 return blk_mq_alloc_tag_set(&shost->tag_set);
2365 }
2366
scsi_mq_destroy_tags(struct Scsi_Host * shost)2367 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2368 {
2369 blk_mq_free_tag_set(&shost->tag_set);
2370 }
2371
2372 /**
2373 * scsi_device_from_queue - return sdev associated with a request_queue
2374 * @q: The request queue to return the sdev from
2375 *
2376 * Return the sdev associated with a request queue or NULL if the
2377 * request_queue does not reference a SCSI device.
2378 */
scsi_device_from_queue(struct request_queue * q)2379 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2380 {
2381 struct scsi_device *sdev = NULL;
2382
2383 if (q->mq_ops) {
2384 if (q->mq_ops == &scsi_mq_ops)
2385 sdev = q->queuedata;
2386 } else if (q->request_fn == scsi_request_fn)
2387 sdev = q->queuedata;
2388 if (!sdev || !get_device(&sdev->sdev_gendev))
2389 sdev = NULL;
2390
2391 return sdev;
2392 }
2393 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2394
2395 /*
2396 * Function: scsi_block_requests()
2397 *
2398 * Purpose: Utility function used by low-level drivers to prevent further
2399 * commands from being queued to the device.
2400 *
2401 * Arguments: shost - Host in question
2402 *
2403 * Returns: Nothing
2404 *
2405 * Lock status: No locks are assumed held.
2406 *
2407 * Notes: There is no timer nor any other means by which the requests
2408 * get unblocked other than the low-level driver calling
2409 * scsi_unblock_requests().
2410 */
scsi_block_requests(struct Scsi_Host * shost)2411 void scsi_block_requests(struct Scsi_Host *shost)
2412 {
2413 shost->host_self_blocked = 1;
2414 }
2415 EXPORT_SYMBOL(scsi_block_requests);
2416
2417 /*
2418 * Function: scsi_unblock_requests()
2419 *
2420 * Purpose: Utility function used by low-level drivers to allow further
2421 * commands from being queued to the device.
2422 *
2423 * Arguments: shost - Host in question
2424 *
2425 * Returns: Nothing
2426 *
2427 * Lock status: No locks are assumed held.
2428 *
2429 * Notes: There is no timer nor any other means by which the requests
2430 * get unblocked other than the low-level driver calling
2431 * scsi_unblock_requests().
2432 *
2433 * This is done as an API function so that changes to the
2434 * internals of the scsi mid-layer won't require wholesale
2435 * changes to drivers that use this feature.
2436 */
scsi_unblock_requests(struct Scsi_Host * shost)2437 void scsi_unblock_requests(struct Scsi_Host *shost)
2438 {
2439 shost->host_self_blocked = 0;
2440 scsi_run_host_queues(shost);
2441 }
2442 EXPORT_SYMBOL(scsi_unblock_requests);
2443
scsi_init_queue(void)2444 int __init scsi_init_queue(void)
2445 {
2446 scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2447 sizeof(struct scsi_data_buffer),
2448 0, 0, NULL);
2449 if (!scsi_sdb_cache) {
2450 printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2451 return -ENOMEM;
2452 }
2453
2454 return 0;
2455 }
2456
scsi_exit_queue(void)2457 void scsi_exit_queue(void)
2458 {
2459 kmem_cache_destroy(scsi_sense_cache);
2460 kmem_cache_destroy(scsi_sense_isadma_cache);
2461 kmem_cache_destroy(scsi_sdb_cache);
2462 }
2463
2464 /**
2465 * scsi_mode_select - issue a mode select
2466 * @sdev: SCSI device to be queried
2467 * @pf: Page format bit (1 == standard, 0 == vendor specific)
2468 * @sp: Save page bit (0 == don't save, 1 == save)
2469 * @modepage: mode page being requested
2470 * @buffer: request buffer (may not be smaller than eight bytes)
2471 * @len: length of request buffer.
2472 * @timeout: command timeout
2473 * @retries: number of retries before failing
2474 * @data: returns a structure abstracting the mode header data
2475 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2476 * must be SCSI_SENSE_BUFFERSIZE big.
2477 *
2478 * Returns zero if successful; negative error number or scsi
2479 * status on error
2480 *
2481 */
2482 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2483 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2484 unsigned char *buffer, int len, int timeout, int retries,
2485 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2486 {
2487 unsigned char cmd[10];
2488 unsigned char *real_buffer;
2489 int ret;
2490
2491 memset(cmd, 0, sizeof(cmd));
2492 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2493
2494 if (sdev->use_10_for_ms) {
2495 if (len > 65535)
2496 return -EINVAL;
2497 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2498 if (!real_buffer)
2499 return -ENOMEM;
2500 memcpy(real_buffer + 8, buffer, len);
2501 len += 8;
2502 real_buffer[0] = 0;
2503 real_buffer[1] = 0;
2504 real_buffer[2] = data->medium_type;
2505 real_buffer[3] = data->device_specific;
2506 real_buffer[4] = data->longlba ? 0x01 : 0;
2507 real_buffer[5] = 0;
2508 real_buffer[6] = data->block_descriptor_length >> 8;
2509 real_buffer[7] = data->block_descriptor_length;
2510
2511 cmd[0] = MODE_SELECT_10;
2512 cmd[7] = len >> 8;
2513 cmd[8] = len;
2514 } else {
2515 if (len > 255 || data->block_descriptor_length > 255 ||
2516 data->longlba)
2517 return -EINVAL;
2518
2519 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2520 if (!real_buffer)
2521 return -ENOMEM;
2522 memcpy(real_buffer + 4, buffer, len);
2523 len += 4;
2524 real_buffer[0] = 0;
2525 real_buffer[1] = data->medium_type;
2526 real_buffer[2] = data->device_specific;
2527 real_buffer[3] = data->block_descriptor_length;
2528
2529
2530 cmd[0] = MODE_SELECT;
2531 cmd[4] = len;
2532 }
2533
2534 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2535 sshdr, timeout, retries, NULL);
2536 kfree(real_buffer);
2537 return ret;
2538 }
2539 EXPORT_SYMBOL_GPL(scsi_mode_select);
2540
2541 /**
2542 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2543 * @sdev: SCSI device to be queried
2544 * @dbd: set if mode sense will allow block descriptors to be returned
2545 * @modepage: mode page being requested
2546 * @buffer: request buffer (may not be smaller than eight bytes)
2547 * @len: length of request buffer.
2548 * @timeout: command timeout
2549 * @retries: number of retries before failing
2550 * @data: returns a structure abstracting the mode header data
2551 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2552 * must be SCSI_SENSE_BUFFERSIZE big.
2553 *
2554 * Returns zero if unsuccessful, or the header offset (either 4
2555 * or 8 depending on whether a six or ten byte command was
2556 * issued) if successful.
2557 */
2558 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2559 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2560 unsigned char *buffer, int len, int timeout, int retries,
2561 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2562 {
2563 unsigned char cmd[12];
2564 int use_10_for_ms;
2565 int header_length;
2566 int result, retry_count = retries;
2567 struct scsi_sense_hdr my_sshdr;
2568
2569 memset(data, 0, sizeof(*data));
2570 memset(&cmd[0], 0, 12);
2571 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2572 cmd[2] = modepage;
2573
2574 /* caller might not be interested in sense, but we need it */
2575 if (!sshdr)
2576 sshdr = &my_sshdr;
2577
2578 retry:
2579 use_10_for_ms = sdev->use_10_for_ms;
2580
2581 if (use_10_for_ms) {
2582 if (len < 8)
2583 len = 8;
2584
2585 cmd[0] = MODE_SENSE_10;
2586 cmd[8] = len;
2587 header_length = 8;
2588 } else {
2589 if (len < 4)
2590 len = 4;
2591
2592 cmd[0] = MODE_SENSE;
2593 cmd[4] = len;
2594 header_length = 4;
2595 }
2596
2597 memset(buffer, 0, len);
2598
2599 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2600 sshdr, timeout, retries, NULL);
2601
2602 /* This code looks awful: what it's doing is making sure an
2603 * ILLEGAL REQUEST sense return identifies the actual command
2604 * byte as the problem. MODE_SENSE commands can return
2605 * ILLEGAL REQUEST if the code page isn't supported */
2606
2607 if (use_10_for_ms && !scsi_status_is_good(result) &&
2608 driver_byte(result) == DRIVER_SENSE) {
2609 if (scsi_sense_valid(sshdr)) {
2610 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2611 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2612 /*
2613 * Invalid command operation code
2614 */
2615 sdev->use_10_for_ms = 0;
2616 goto retry;
2617 }
2618 }
2619 }
2620
2621 if(scsi_status_is_good(result)) {
2622 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2623 (modepage == 6 || modepage == 8))) {
2624 /* Initio breakage? */
2625 header_length = 0;
2626 data->length = 13;
2627 data->medium_type = 0;
2628 data->device_specific = 0;
2629 data->longlba = 0;
2630 data->block_descriptor_length = 0;
2631 } else if(use_10_for_ms) {
2632 data->length = buffer[0]*256 + buffer[1] + 2;
2633 data->medium_type = buffer[2];
2634 data->device_specific = buffer[3];
2635 data->longlba = buffer[4] & 0x01;
2636 data->block_descriptor_length = buffer[6]*256
2637 + buffer[7];
2638 } else {
2639 data->length = buffer[0] + 1;
2640 data->medium_type = buffer[1];
2641 data->device_specific = buffer[2];
2642 data->block_descriptor_length = buffer[3];
2643 }
2644 data->header_length = header_length;
2645 } else if ((status_byte(result) == CHECK_CONDITION) &&
2646 scsi_sense_valid(sshdr) &&
2647 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2648 retry_count--;
2649 goto retry;
2650 }
2651
2652 return result;
2653 }
2654 EXPORT_SYMBOL(scsi_mode_sense);
2655
2656 /**
2657 * scsi_test_unit_ready - test if unit is ready
2658 * @sdev: scsi device to change the state of.
2659 * @timeout: command timeout
2660 * @retries: number of retries before failing
2661 * @sshdr: outpout pointer for decoded sense information.
2662 *
2663 * Returns zero if unsuccessful or an error if TUR failed. For
2664 * removable media, UNIT_ATTENTION sets ->changed flag.
2665 **/
2666 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2667 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2668 struct scsi_sense_hdr *sshdr)
2669 {
2670 char cmd[] = {
2671 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2672 };
2673 int result;
2674
2675 /* try to eat the UNIT_ATTENTION if there are enough retries */
2676 do {
2677 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2678 timeout, 1, NULL);
2679 if (sdev->removable && scsi_sense_valid(sshdr) &&
2680 sshdr->sense_key == UNIT_ATTENTION)
2681 sdev->changed = 1;
2682 } while (scsi_sense_valid(sshdr) &&
2683 sshdr->sense_key == UNIT_ATTENTION && --retries);
2684
2685 return result;
2686 }
2687 EXPORT_SYMBOL(scsi_test_unit_ready);
2688
2689 /**
2690 * scsi_device_set_state - Take the given device through the device state model.
2691 * @sdev: scsi device to change the state of.
2692 * @state: state to change to.
2693 *
2694 * Returns zero if successful or an error if the requested
2695 * transition is illegal.
2696 */
2697 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2698 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2699 {
2700 enum scsi_device_state oldstate = sdev->sdev_state;
2701
2702 if (state == oldstate)
2703 return 0;
2704
2705 switch (state) {
2706 case SDEV_CREATED:
2707 switch (oldstate) {
2708 case SDEV_CREATED_BLOCK:
2709 break;
2710 default:
2711 goto illegal;
2712 }
2713 break;
2714
2715 case SDEV_RUNNING:
2716 switch (oldstate) {
2717 case SDEV_CREATED:
2718 case SDEV_OFFLINE:
2719 case SDEV_TRANSPORT_OFFLINE:
2720 case SDEV_QUIESCE:
2721 case SDEV_BLOCK:
2722 break;
2723 default:
2724 goto illegal;
2725 }
2726 break;
2727
2728 case SDEV_QUIESCE:
2729 switch (oldstate) {
2730 case SDEV_RUNNING:
2731 case SDEV_OFFLINE:
2732 case SDEV_TRANSPORT_OFFLINE:
2733 break;
2734 default:
2735 goto illegal;
2736 }
2737 break;
2738
2739 case SDEV_OFFLINE:
2740 case SDEV_TRANSPORT_OFFLINE:
2741 switch (oldstate) {
2742 case SDEV_CREATED:
2743 case SDEV_RUNNING:
2744 case SDEV_QUIESCE:
2745 case SDEV_BLOCK:
2746 break;
2747 default:
2748 goto illegal;
2749 }
2750 break;
2751
2752 case SDEV_BLOCK:
2753 switch (oldstate) {
2754 case SDEV_RUNNING:
2755 case SDEV_CREATED_BLOCK:
2756 break;
2757 default:
2758 goto illegal;
2759 }
2760 break;
2761
2762 case SDEV_CREATED_BLOCK:
2763 switch (oldstate) {
2764 case SDEV_CREATED:
2765 break;
2766 default:
2767 goto illegal;
2768 }
2769 break;
2770
2771 case SDEV_CANCEL:
2772 switch (oldstate) {
2773 case SDEV_CREATED:
2774 case SDEV_RUNNING:
2775 case SDEV_QUIESCE:
2776 case SDEV_OFFLINE:
2777 case SDEV_TRANSPORT_OFFLINE:
2778 break;
2779 default:
2780 goto illegal;
2781 }
2782 break;
2783
2784 case SDEV_DEL:
2785 switch (oldstate) {
2786 case SDEV_CREATED:
2787 case SDEV_RUNNING:
2788 case SDEV_OFFLINE:
2789 case SDEV_TRANSPORT_OFFLINE:
2790 case SDEV_CANCEL:
2791 case SDEV_BLOCK:
2792 case SDEV_CREATED_BLOCK:
2793 break;
2794 default:
2795 goto illegal;
2796 }
2797 break;
2798
2799 }
2800 sdev->sdev_state = state;
2801 return 0;
2802
2803 illegal:
2804 SCSI_LOG_ERROR_RECOVERY(1,
2805 sdev_printk(KERN_ERR, sdev,
2806 "Illegal state transition %s->%s",
2807 scsi_device_state_name(oldstate),
2808 scsi_device_state_name(state))
2809 );
2810 return -EINVAL;
2811 }
2812 EXPORT_SYMBOL(scsi_device_set_state);
2813
2814 /**
2815 * sdev_evt_emit - emit a single SCSI device uevent
2816 * @sdev: associated SCSI device
2817 * @evt: event to emit
2818 *
2819 * Send a single uevent (scsi_event) to the associated scsi_device.
2820 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2821 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2822 {
2823 int idx = 0;
2824 char *envp[3];
2825
2826 switch (evt->evt_type) {
2827 case SDEV_EVT_MEDIA_CHANGE:
2828 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2829 break;
2830 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2831 scsi_rescan_device(&sdev->sdev_gendev);
2832 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2833 break;
2834 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2835 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2836 break;
2837 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2838 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2839 break;
2840 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2841 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2842 break;
2843 case SDEV_EVT_LUN_CHANGE_REPORTED:
2844 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2845 break;
2846 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2847 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2848 break;
2849 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2850 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2851 break;
2852 default:
2853 /* do nothing */
2854 break;
2855 }
2856
2857 envp[idx++] = NULL;
2858
2859 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2860 }
2861
2862 /**
2863 * sdev_evt_thread - send a uevent for each scsi event
2864 * @work: work struct for scsi_device
2865 *
2866 * Dispatch queued events to their associated scsi_device kobjects
2867 * as uevents.
2868 */
scsi_evt_thread(struct work_struct * work)2869 void scsi_evt_thread(struct work_struct *work)
2870 {
2871 struct scsi_device *sdev;
2872 enum scsi_device_event evt_type;
2873 LIST_HEAD(event_list);
2874
2875 sdev = container_of(work, struct scsi_device, event_work);
2876
2877 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2878 if (test_and_clear_bit(evt_type, sdev->pending_events))
2879 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2880
2881 while (1) {
2882 struct scsi_event *evt;
2883 struct list_head *this, *tmp;
2884 unsigned long flags;
2885
2886 spin_lock_irqsave(&sdev->list_lock, flags);
2887 list_splice_init(&sdev->event_list, &event_list);
2888 spin_unlock_irqrestore(&sdev->list_lock, flags);
2889
2890 if (list_empty(&event_list))
2891 break;
2892
2893 list_for_each_safe(this, tmp, &event_list) {
2894 evt = list_entry(this, struct scsi_event, node);
2895 list_del(&evt->node);
2896 scsi_evt_emit(sdev, evt);
2897 kfree(evt);
2898 }
2899 }
2900 }
2901
2902 /**
2903 * sdev_evt_send - send asserted event to uevent thread
2904 * @sdev: scsi_device event occurred on
2905 * @evt: event to send
2906 *
2907 * Assert scsi device event asynchronously.
2908 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2909 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2910 {
2911 unsigned long flags;
2912
2913 #if 0
2914 /* FIXME: currently this check eliminates all media change events
2915 * for polled devices. Need to update to discriminate between AN
2916 * and polled events */
2917 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2918 kfree(evt);
2919 return;
2920 }
2921 #endif
2922
2923 spin_lock_irqsave(&sdev->list_lock, flags);
2924 list_add_tail(&evt->node, &sdev->event_list);
2925 schedule_work(&sdev->event_work);
2926 spin_unlock_irqrestore(&sdev->list_lock, flags);
2927 }
2928 EXPORT_SYMBOL_GPL(sdev_evt_send);
2929
2930 /**
2931 * sdev_evt_alloc - allocate a new scsi event
2932 * @evt_type: type of event to allocate
2933 * @gfpflags: GFP flags for allocation
2934 *
2935 * Allocates and returns a new scsi_event.
2936 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2937 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2938 gfp_t gfpflags)
2939 {
2940 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2941 if (!evt)
2942 return NULL;
2943
2944 evt->evt_type = evt_type;
2945 INIT_LIST_HEAD(&evt->node);
2946
2947 /* evt_type-specific initialization, if any */
2948 switch (evt_type) {
2949 case SDEV_EVT_MEDIA_CHANGE:
2950 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2951 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2952 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2953 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2954 case SDEV_EVT_LUN_CHANGE_REPORTED:
2955 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2956 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2957 default:
2958 /* do nothing */
2959 break;
2960 }
2961
2962 return evt;
2963 }
2964 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2965
2966 /**
2967 * sdev_evt_send_simple - send asserted event to uevent thread
2968 * @sdev: scsi_device event occurred on
2969 * @evt_type: type of event to send
2970 * @gfpflags: GFP flags for allocation
2971 *
2972 * Assert scsi device event asynchronously, given an event type.
2973 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2974 void sdev_evt_send_simple(struct scsi_device *sdev,
2975 enum scsi_device_event evt_type, gfp_t gfpflags)
2976 {
2977 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2978 if (!evt) {
2979 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2980 evt_type);
2981 return;
2982 }
2983
2984 sdev_evt_send(sdev, evt);
2985 }
2986 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2987
2988 /**
2989 * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
2990 * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
2991 */
scsi_request_fn_active(struct scsi_device * sdev)2992 static int scsi_request_fn_active(struct scsi_device *sdev)
2993 {
2994 struct request_queue *q = sdev->request_queue;
2995 int request_fn_active;
2996
2997 WARN_ON_ONCE(sdev->host->use_blk_mq);
2998
2999 spin_lock_irq(q->queue_lock);
3000 request_fn_active = q->request_fn_active;
3001 spin_unlock_irq(q->queue_lock);
3002
3003 return request_fn_active;
3004 }
3005
3006 /**
3007 * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3008 * @sdev: SCSI device pointer.
3009 *
3010 * Wait until the ongoing shost->hostt->queuecommand() calls that are
3011 * invoked from scsi_request_fn() have finished.
3012 */
scsi_wait_for_queuecommand(struct scsi_device * sdev)3013 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3014 {
3015 WARN_ON_ONCE(sdev->host->use_blk_mq);
3016
3017 while (scsi_request_fn_active(sdev))
3018 msleep(20);
3019 }
3020
3021 /**
3022 * scsi_device_quiesce - Block user issued commands.
3023 * @sdev: scsi device to quiesce.
3024 *
3025 * This works by trying to transition to the SDEV_QUIESCE state
3026 * (which must be a legal transition). When the device is in this
3027 * state, only special requests will be accepted, all others will
3028 * be deferred. Since special requests may also be requeued requests,
3029 * a successful return doesn't guarantee the device will be
3030 * totally quiescent.
3031 *
3032 * Must be called with user context, may sleep.
3033 *
3034 * Returns zero if unsuccessful or an error if not.
3035 */
3036 int
scsi_device_quiesce(struct scsi_device * sdev)3037 scsi_device_quiesce(struct scsi_device *sdev)
3038 {
3039 struct request_queue *q = sdev->request_queue;
3040 int err;
3041
3042 /*
3043 * It is allowed to call scsi_device_quiesce() multiple times from
3044 * the same context but concurrent scsi_device_quiesce() calls are
3045 * not allowed.
3046 */
3047 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3048
3049 blk_set_preempt_only(q);
3050
3051 blk_mq_freeze_queue(q);
3052 /*
3053 * Ensure that the effect of blk_set_preempt_only() will be visible
3054 * for percpu_ref_tryget() callers that occur after the queue
3055 * unfreeze even if the queue was already frozen before this function
3056 * was called. See also https://lwn.net/Articles/573497/.
3057 */
3058 synchronize_rcu();
3059 blk_mq_unfreeze_queue(q);
3060
3061 mutex_lock(&sdev->state_mutex);
3062 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3063 if (err == 0)
3064 sdev->quiesced_by = current;
3065 else
3066 blk_clear_preempt_only(q);
3067 mutex_unlock(&sdev->state_mutex);
3068
3069 return err;
3070 }
3071 EXPORT_SYMBOL(scsi_device_quiesce);
3072
3073 /**
3074 * scsi_device_resume - Restart user issued commands to a quiesced device.
3075 * @sdev: scsi device to resume.
3076 *
3077 * Moves the device from quiesced back to running and restarts the
3078 * queues.
3079 *
3080 * Must be called with user context, may sleep.
3081 */
scsi_device_resume(struct scsi_device * sdev)3082 void scsi_device_resume(struct scsi_device *sdev)
3083 {
3084 /* check if the device state was mutated prior to resume, and if
3085 * so assume the state is being managed elsewhere (for example
3086 * device deleted during suspend)
3087 */
3088 mutex_lock(&sdev->state_mutex);
3089 WARN_ON_ONCE(!sdev->quiesced_by);
3090 sdev->quiesced_by = NULL;
3091 blk_clear_preempt_only(sdev->request_queue);
3092 if (sdev->sdev_state == SDEV_QUIESCE)
3093 scsi_device_set_state(sdev, SDEV_RUNNING);
3094 mutex_unlock(&sdev->state_mutex);
3095 }
3096 EXPORT_SYMBOL(scsi_device_resume);
3097
3098 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)3099 device_quiesce_fn(struct scsi_device *sdev, void *data)
3100 {
3101 scsi_device_quiesce(sdev);
3102 }
3103
3104 void
scsi_target_quiesce(struct scsi_target * starget)3105 scsi_target_quiesce(struct scsi_target *starget)
3106 {
3107 starget_for_each_device(starget, NULL, device_quiesce_fn);
3108 }
3109 EXPORT_SYMBOL(scsi_target_quiesce);
3110
3111 static void
device_resume_fn(struct scsi_device * sdev,void * data)3112 device_resume_fn(struct scsi_device *sdev, void *data)
3113 {
3114 scsi_device_resume(sdev);
3115 }
3116
3117 void
scsi_target_resume(struct scsi_target * starget)3118 scsi_target_resume(struct scsi_target *starget)
3119 {
3120 starget_for_each_device(starget, NULL, device_resume_fn);
3121 }
3122 EXPORT_SYMBOL(scsi_target_resume);
3123
3124 /**
3125 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3126 * @sdev: device to block
3127 *
3128 * Pause SCSI command processing on the specified device. Does not sleep.
3129 *
3130 * Returns zero if successful or a negative error code upon failure.
3131 *
3132 * Notes:
3133 * This routine transitions the device to the SDEV_BLOCK state (which must be
3134 * a legal transition). When the device is in this state, command processing
3135 * is paused until the device leaves the SDEV_BLOCK state. See also
3136 * scsi_internal_device_unblock_nowait().
3137 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)3138 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3139 {
3140 struct request_queue *q = sdev->request_queue;
3141 unsigned long flags;
3142 int err = 0;
3143
3144 err = scsi_device_set_state(sdev, SDEV_BLOCK);
3145 if (err) {
3146 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3147
3148 if (err)
3149 return err;
3150 }
3151
3152 /*
3153 * The device has transitioned to SDEV_BLOCK. Stop the
3154 * block layer from calling the midlayer with this device's
3155 * request queue.
3156 */
3157 if (q->mq_ops) {
3158 blk_mq_quiesce_queue_nowait(q);
3159 } else {
3160 spin_lock_irqsave(q->queue_lock, flags);
3161 blk_stop_queue(q);
3162 spin_unlock_irqrestore(q->queue_lock, flags);
3163 }
3164
3165 return 0;
3166 }
3167 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3168
3169 /**
3170 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3171 * @sdev: device to block
3172 *
3173 * Pause SCSI command processing on the specified device and wait until all
3174 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3175 *
3176 * Returns zero if successful or a negative error code upon failure.
3177 *
3178 * Note:
3179 * This routine transitions the device to the SDEV_BLOCK state (which must be
3180 * a legal transition). When the device is in this state, command processing
3181 * is paused until the device leaves the SDEV_BLOCK state. See also
3182 * scsi_internal_device_unblock().
3183 *
3184 * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3185 * scsi_internal_device_block() has blocked a SCSI device and also
3186 * remove the rport mutex lock and unlock calls from srp_queuecommand().
3187 */
scsi_internal_device_block(struct scsi_device * sdev)3188 static int scsi_internal_device_block(struct scsi_device *sdev)
3189 {
3190 struct request_queue *q = sdev->request_queue;
3191 int err;
3192
3193 mutex_lock(&sdev->state_mutex);
3194 err = scsi_internal_device_block_nowait(sdev);
3195 if (err == 0) {
3196 if (q->mq_ops)
3197 blk_mq_quiesce_queue(q);
3198 else
3199 scsi_wait_for_queuecommand(sdev);
3200 }
3201 mutex_unlock(&sdev->state_mutex);
3202
3203 return err;
3204 }
3205
scsi_start_queue(struct scsi_device * sdev)3206 void scsi_start_queue(struct scsi_device *sdev)
3207 {
3208 struct request_queue *q = sdev->request_queue;
3209 unsigned long flags;
3210
3211 if (q->mq_ops) {
3212 blk_mq_unquiesce_queue(q);
3213 } else {
3214 spin_lock_irqsave(q->queue_lock, flags);
3215 blk_start_queue(q);
3216 spin_unlock_irqrestore(q->queue_lock, flags);
3217 }
3218 }
3219
3220 /**
3221 * scsi_internal_device_unblock_nowait - resume a device after a block request
3222 * @sdev: device to resume
3223 * @new_state: state to set the device to after unblocking
3224 *
3225 * Restart the device queue for a previously suspended SCSI device. Does not
3226 * sleep.
3227 *
3228 * Returns zero if successful or a negative error code upon failure.
3229 *
3230 * Notes:
3231 * This routine transitions the device to the SDEV_RUNNING state or to one of
3232 * the offline states (which must be a legal transition) allowing the midlayer
3233 * to goose the queue for this device.
3234 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)3235 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3236 enum scsi_device_state new_state)
3237 {
3238 /*
3239 * Try to transition the scsi device to SDEV_RUNNING or one of the
3240 * offlined states and goose the device queue if successful.
3241 */
3242 switch (sdev->sdev_state) {
3243 case SDEV_BLOCK:
3244 case SDEV_TRANSPORT_OFFLINE:
3245 sdev->sdev_state = new_state;
3246 break;
3247 case SDEV_CREATED_BLOCK:
3248 if (new_state == SDEV_TRANSPORT_OFFLINE ||
3249 new_state == SDEV_OFFLINE)
3250 sdev->sdev_state = new_state;
3251 else
3252 sdev->sdev_state = SDEV_CREATED;
3253 break;
3254 case SDEV_CANCEL:
3255 case SDEV_OFFLINE:
3256 break;
3257 default:
3258 return -EINVAL;
3259 }
3260 scsi_start_queue(sdev);
3261
3262 return 0;
3263 }
3264 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3265
3266 /**
3267 * scsi_internal_device_unblock - resume a device after a block request
3268 * @sdev: device to resume
3269 * @new_state: state to set the device to after unblocking
3270 *
3271 * Restart the device queue for a previously suspended SCSI device. May sleep.
3272 *
3273 * Returns zero if successful or a negative error code upon failure.
3274 *
3275 * Notes:
3276 * This routine transitions the device to the SDEV_RUNNING state or to one of
3277 * the offline states (which must be a legal transition) allowing the midlayer
3278 * to goose the queue for this device.
3279 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)3280 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3281 enum scsi_device_state new_state)
3282 {
3283 int ret;
3284
3285 mutex_lock(&sdev->state_mutex);
3286 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3287 mutex_unlock(&sdev->state_mutex);
3288
3289 return ret;
3290 }
3291
3292 static void
device_block(struct scsi_device * sdev,void * data)3293 device_block(struct scsi_device *sdev, void *data)
3294 {
3295 scsi_internal_device_block(sdev);
3296 }
3297
3298 static int
target_block(struct device * dev,void * data)3299 target_block(struct device *dev, void *data)
3300 {
3301 if (scsi_is_target_device(dev))
3302 starget_for_each_device(to_scsi_target(dev), NULL,
3303 device_block);
3304 return 0;
3305 }
3306
3307 void
scsi_target_block(struct device * dev)3308 scsi_target_block(struct device *dev)
3309 {
3310 if (scsi_is_target_device(dev))
3311 starget_for_each_device(to_scsi_target(dev), NULL,
3312 device_block);
3313 else
3314 device_for_each_child(dev, NULL, target_block);
3315 }
3316 EXPORT_SYMBOL_GPL(scsi_target_block);
3317
3318 static void
device_unblock(struct scsi_device * sdev,void * data)3319 device_unblock(struct scsi_device *sdev, void *data)
3320 {
3321 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3322 }
3323
3324 static int
target_unblock(struct device * dev,void * data)3325 target_unblock(struct device *dev, void *data)
3326 {
3327 if (scsi_is_target_device(dev))
3328 starget_for_each_device(to_scsi_target(dev), data,
3329 device_unblock);
3330 return 0;
3331 }
3332
3333 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)3334 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3335 {
3336 if (scsi_is_target_device(dev))
3337 starget_for_each_device(to_scsi_target(dev), &new_state,
3338 device_unblock);
3339 else
3340 device_for_each_child(dev, &new_state, target_unblock);
3341 }
3342 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3343
3344 /**
3345 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3346 * @sgl: scatter-gather list
3347 * @sg_count: number of segments in sg
3348 * @offset: offset in bytes into sg, on return offset into the mapped area
3349 * @len: bytes to map, on return number of bytes mapped
3350 *
3351 * Returns virtual address of the start of the mapped page
3352 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)3353 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3354 size_t *offset, size_t *len)
3355 {
3356 int i;
3357 size_t sg_len = 0, len_complete = 0;
3358 struct scatterlist *sg;
3359 struct page *page;
3360
3361 WARN_ON(!irqs_disabled());
3362
3363 for_each_sg(sgl, sg, sg_count, i) {
3364 len_complete = sg_len; /* Complete sg-entries */
3365 sg_len += sg->length;
3366 if (sg_len > *offset)
3367 break;
3368 }
3369
3370 if (unlikely(i == sg_count)) {
3371 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3372 "elements %d\n",
3373 __func__, sg_len, *offset, sg_count);
3374 WARN_ON(1);
3375 return NULL;
3376 }
3377
3378 /* Offset starting from the beginning of first page in this sg-entry */
3379 *offset = *offset - len_complete + sg->offset;
3380
3381 /* Assumption: contiguous pages can be accessed as "page + i" */
3382 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3383 *offset &= ~PAGE_MASK;
3384
3385 /* Bytes in this sg-entry from *offset to the end of the page */
3386 sg_len = PAGE_SIZE - *offset;
3387 if (*len > sg_len)
3388 *len = sg_len;
3389
3390 return kmap_atomic(page);
3391 }
3392 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3393
3394 /**
3395 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3396 * @virt: virtual address to be unmapped
3397 */
scsi_kunmap_atomic_sg(void * virt)3398 void scsi_kunmap_atomic_sg(void *virt)
3399 {
3400 kunmap_atomic(virt);
3401 }
3402 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3403
sdev_disable_disk_events(struct scsi_device * sdev)3404 void sdev_disable_disk_events(struct scsi_device *sdev)
3405 {
3406 atomic_inc(&sdev->disk_events_disable_depth);
3407 }
3408 EXPORT_SYMBOL(sdev_disable_disk_events);
3409
sdev_enable_disk_events(struct scsi_device * sdev)3410 void sdev_enable_disk_events(struct scsi_device *sdev)
3411 {
3412 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3413 return;
3414 atomic_dec(&sdev->disk_events_disable_depth);
3415 }
3416 EXPORT_SYMBOL(sdev_enable_disk_events);
3417
3418 /**
3419 * scsi_vpd_lun_id - return a unique device identification
3420 * @sdev: SCSI device
3421 * @id: buffer for the identification
3422 * @id_len: length of the buffer
3423 *
3424 * Copies a unique device identification into @id based
3425 * on the information in the VPD page 0x83 of the device.
3426 * The string will be formatted as a SCSI name string.
3427 *
3428 * Returns the length of the identification or error on failure.
3429 * If the identifier is longer than the supplied buffer the actual
3430 * identifier length is returned and the buffer is not zero-padded.
3431 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)3432 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3433 {
3434 u8 cur_id_type = 0xff;
3435 u8 cur_id_size = 0;
3436 const unsigned char *d, *cur_id_str;
3437 const struct scsi_vpd *vpd_pg83;
3438 int id_size = -EINVAL;
3439
3440 rcu_read_lock();
3441 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3442 if (!vpd_pg83) {
3443 rcu_read_unlock();
3444 return -ENXIO;
3445 }
3446
3447 /*
3448 * Look for the correct descriptor.
3449 * Order of preference for lun descriptor:
3450 * - SCSI name string
3451 * - NAA IEEE Registered Extended
3452 * - EUI-64 based 16-byte
3453 * - EUI-64 based 12-byte
3454 * - NAA IEEE Registered
3455 * - NAA IEEE Extended
3456 * - T10 Vendor ID
3457 * as longer descriptors reduce the likelyhood
3458 * of identification clashes.
3459 */
3460
3461 /* The id string must be at least 20 bytes + terminating NULL byte */
3462 if (id_len < 21) {
3463 rcu_read_unlock();
3464 return -EINVAL;
3465 }
3466
3467 memset(id, 0, id_len);
3468 d = vpd_pg83->data + 4;
3469 while (d < vpd_pg83->data + vpd_pg83->len) {
3470 /* Skip designators not referring to the LUN */
3471 if ((d[1] & 0x30) != 0x00)
3472 goto next_desig;
3473
3474 switch (d[1] & 0xf) {
3475 case 0x1:
3476 /* T10 Vendor ID */
3477 if (cur_id_size > d[3])
3478 break;
3479 /* Prefer anything */
3480 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3481 break;
3482 cur_id_size = d[3];
3483 if (cur_id_size + 4 > id_len)
3484 cur_id_size = id_len - 4;
3485 cur_id_str = d + 4;
3486 cur_id_type = d[1] & 0xf;
3487 id_size = snprintf(id, id_len, "t10.%*pE",
3488 cur_id_size, cur_id_str);
3489 break;
3490 case 0x2:
3491 /* EUI-64 */
3492 if (cur_id_size > d[3])
3493 break;
3494 /* Prefer NAA IEEE Registered Extended */
3495 if (cur_id_type == 0x3 &&
3496 cur_id_size == d[3])
3497 break;
3498 cur_id_size = d[3];
3499 cur_id_str = d + 4;
3500 cur_id_type = d[1] & 0xf;
3501 switch (cur_id_size) {
3502 case 8:
3503 id_size = snprintf(id, id_len,
3504 "eui.%8phN",
3505 cur_id_str);
3506 break;
3507 case 12:
3508 id_size = snprintf(id, id_len,
3509 "eui.%12phN",
3510 cur_id_str);
3511 break;
3512 case 16:
3513 id_size = snprintf(id, id_len,
3514 "eui.%16phN",
3515 cur_id_str);
3516 break;
3517 default:
3518 cur_id_size = 0;
3519 break;
3520 }
3521 break;
3522 case 0x3:
3523 /* NAA */
3524 if (cur_id_size > d[3])
3525 break;
3526 cur_id_size = d[3];
3527 cur_id_str = d + 4;
3528 cur_id_type = d[1] & 0xf;
3529 switch (cur_id_size) {
3530 case 8:
3531 id_size = snprintf(id, id_len,
3532 "naa.%8phN",
3533 cur_id_str);
3534 break;
3535 case 16:
3536 id_size = snprintf(id, id_len,
3537 "naa.%16phN",
3538 cur_id_str);
3539 break;
3540 default:
3541 cur_id_size = 0;
3542 break;
3543 }
3544 break;
3545 case 0x8:
3546 /* SCSI name string */
3547 if (cur_id_size + 4 > d[3])
3548 break;
3549 /* Prefer others for truncated descriptor */
3550 if (cur_id_size && d[3] > id_len)
3551 break;
3552 cur_id_size = id_size = d[3];
3553 cur_id_str = d + 4;
3554 cur_id_type = d[1] & 0xf;
3555 if (cur_id_size >= id_len)
3556 cur_id_size = id_len - 1;
3557 memcpy(id, cur_id_str, cur_id_size);
3558 /* Decrease priority for truncated descriptor */
3559 if (cur_id_size != id_size)
3560 cur_id_size = 6;
3561 break;
3562 default:
3563 break;
3564 }
3565 next_desig:
3566 d += d[3] + 4;
3567 }
3568 rcu_read_unlock();
3569
3570 return id_size;
3571 }
3572 EXPORT_SYMBOL(scsi_vpd_lun_id);
3573
3574 /*
3575 * scsi_vpd_tpg_id - return a target port group identifier
3576 * @sdev: SCSI device
3577 *
3578 * Returns the Target Port Group identifier from the information
3579 * froom VPD page 0x83 of the device.
3580 *
3581 * Returns the identifier or error on failure.
3582 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3583 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3584 {
3585 const unsigned char *d;
3586 const struct scsi_vpd *vpd_pg83;
3587 int group_id = -EAGAIN, rel_port = -1;
3588
3589 rcu_read_lock();
3590 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3591 if (!vpd_pg83) {
3592 rcu_read_unlock();
3593 return -ENXIO;
3594 }
3595
3596 d = vpd_pg83->data + 4;
3597 while (d < vpd_pg83->data + vpd_pg83->len) {
3598 switch (d[1] & 0xf) {
3599 case 0x4:
3600 /* Relative target port */
3601 rel_port = get_unaligned_be16(&d[6]);
3602 break;
3603 case 0x5:
3604 /* Target port group */
3605 group_id = get_unaligned_be16(&d[6]);
3606 break;
3607 default:
3608 break;
3609 }
3610 d += d[3] + 4;
3611 }
3612 rcu_read_unlock();
3613
3614 if (group_id >= 0 && rel_id && rel_port != -1)
3615 *rel_id = rel_port;
3616
3617 return group_id;
3618 }
3619 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3620