1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1999 Eric Youngdale
4 * Copyright (C) 2014 Christoph Hellwig
5 *
6 * SCSI queueing library.
7 * Initial versions: Eric Youngdale (eric@andante.org).
8 * Based upon conversations with large numbers
9 * of people at Linux Expo.
10 */
11
12 #include <linux/bio.h>
13 #include <linux/bitops.h>
14 #include <linux/blkdev.h>
15 #include <linux/completion.h>
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
23 #include <linux/blk-mq.h>
24 #include <linux/ratelimit.h>
25 #include <asm/unaligned.h>
26
27 #include <scsi/scsi.h>
28 #include <scsi/scsi_cmnd.h>
29 #include <scsi/scsi_dbg.h>
30 #include <scsi/scsi_device.h>
31 #include <scsi/scsi_driver.h>
32 #include <scsi/scsi_eh.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
35 #include <scsi/scsi_dh.h>
36
37 #include <trace/events/scsi.h>
38
39 #include "scsi_debugfs.h"
40 #include "scsi_priv.h"
41 #include "scsi_logging.h"
42
43 /*
44 * Size of integrity metadata is usually small, 1 inline sg should
45 * cover normal cases.
46 */
47 #ifdef CONFIG_ARCH_NO_SG_CHAIN
48 #define SCSI_INLINE_PROT_SG_CNT 0
49 #define SCSI_INLINE_SG_CNT 0
50 #else
51 #define SCSI_INLINE_PROT_SG_CNT 1
52 #define SCSI_INLINE_SG_CNT 2
53 #endif
54
55 static struct kmem_cache *scsi_sense_cache;
56 static struct kmem_cache *scsi_sense_isadma_cache;
57 static DEFINE_MUTEX(scsi_sense_cache_mutex);
58
59 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
60
61 static inline struct kmem_cache *
scsi_select_sense_cache(bool unchecked_isa_dma)62 scsi_select_sense_cache(bool unchecked_isa_dma)
63 {
64 return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
65 }
66
scsi_free_sense_buffer(bool unchecked_isa_dma,unsigned char * sense_buffer)67 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
68 unsigned char *sense_buffer)
69 {
70 kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
71 sense_buffer);
72 }
73
scsi_alloc_sense_buffer(bool unchecked_isa_dma,gfp_t gfp_mask,int numa_node)74 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
75 gfp_t gfp_mask, int numa_node)
76 {
77 return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
78 gfp_mask, numa_node);
79 }
80
scsi_init_sense_cache(struct Scsi_Host * shost)81 int scsi_init_sense_cache(struct Scsi_Host *shost)
82 {
83 struct kmem_cache *cache;
84 int ret = 0;
85
86 mutex_lock(&scsi_sense_cache_mutex);
87 cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
88 if (cache)
89 goto exit;
90
91 if (shost->unchecked_isa_dma) {
92 scsi_sense_isadma_cache =
93 kmem_cache_create("scsi_sense_cache(DMA)",
94 SCSI_SENSE_BUFFERSIZE, 0,
95 SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
96 if (!scsi_sense_isadma_cache)
97 ret = -ENOMEM;
98 } else {
99 scsi_sense_cache =
100 kmem_cache_create_usercopy("scsi_sense_cache",
101 SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
102 0, SCSI_SENSE_BUFFERSIZE, NULL);
103 if (!scsi_sense_cache)
104 ret = -ENOMEM;
105 }
106 exit:
107 mutex_unlock(&scsi_sense_cache_mutex);
108 return ret;
109 }
110
111 /*
112 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
113 * not change behaviour from the previous unplug mechanism, experimentation
114 * may prove this needs changing.
115 */
116 #define SCSI_QUEUE_DELAY 3
117
118 static void
scsi_set_blocked(struct scsi_cmnd * cmd,int reason)119 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
120 {
121 struct Scsi_Host *host = cmd->device->host;
122 struct scsi_device *device = cmd->device;
123 struct scsi_target *starget = scsi_target(device);
124
125 /*
126 * Set the appropriate busy bit for the device/host.
127 *
128 * If the host/device isn't busy, assume that something actually
129 * completed, and that we should be able to queue a command now.
130 *
131 * Note that the prior mid-layer assumption that any host could
132 * always queue at least one command is now broken. The mid-layer
133 * will implement a user specifiable stall (see
134 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
135 * if a command is requeued with no other commands outstanding
136 * either for the device or for the host.
137 */
138 switch (reason) {
139 case SCSI_MLQUEUE_HOST_BUSY:
140 atomic_set(&host->host_blocked, host->max_host_blocked);
141 break;
142 case SCSI_MLQUEUE_DEVICE_BUSY:
143 case SCSI_MLQUEUE_EH_RETRY:
144 atomic_set(&device->device_blocked,
145 device->max_device_blocked);
146 break;
147 case SCSI_MLQUEUE_TARGET_BUSY:
148 atomic_set(&starget->target_blocked,
149 starget->max_target_blocked);
150 break;
151 }
152 }
153
scsi_mq_requeue_cmd(struct scsi_cmnd * cmd)154 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
155 {
156 if (cmd->request->rq_flags & RQF_DONTPREP) {
157 cmd->request->rq_flags &= ~RQF_DONTPREP;
158 scsi_mq_uninit_cmd(cmd);
159 } else {
160 WARN_ON_ONCE(true);
161 }
162 blk_mq_requeue_request(cmd->request, true);
163 }
164
165 /**
166 * __scsi_queue_insert - private queue insertion
167 * @cmd: The SCSI command being requeued
168 * @reason: The reason for the requeue
169 * @unbusy: Whether the queue should be unbusied
170 *
171 * This is a private queue insertion. The public interface
172 * scsi_queue_insert() always assumes the queue should be unbusied
173 * because it's always called before the completion. This function is
174 * for a requeue after completion, which should only occur in this
175 * file.
176 */
__scsi_queue_insert(struct scsi_cmnd * cmd,int reason,bool unbusy)177 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
178 {
179 struct scsi_device *device = cmd->device;
180
181 SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
182 "Inserting command %p into mlqueue\n", cmd));
183
184 scsi_set_blocked(cmd, reason);
185
186 /*
187 * Decrement the counters, since these commands are no longer
188 * active on the host/device.
189 */
190 if (unbusy)
191 scsi_device_unbusy(device, cmd);
192
193 /*
194 * Requeue this command. It will go before all other commands
195 * that are already in the queue. Schedule requeue work under
196 * lock such that the kblockd_schedule_work() call happens
197 * before blk_cleanup_queue() finishes.
198 */
199 cmd->result = 0;
200
201 blk_mq_requeue_request(cmd->request, true);
202 }
203
204 /**
205 * scsi_queue_insert - Reinsert a command in the queue.
206 * @cmd: command that we are adding to queue.
207 * @reason: why we are inserting command to queue.
208 *
209 * We do this for one of two cases. Either the host is busy and it cannot accept
210 * any more commands for the time being, or the device returned QUEUE_FULL and
211 * can accept no more commands.
212 *
213 * Context: This could be called either from an interrupt context or a normal
214 * process context.
215 */
scsi_queue_insert(struct scsi_cmnd * cmd,int reason)216 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
217 {
218 __scsi_queue_insert(cmd, reason, true);
219 }
220
221
222 /**
223 * __scsi_execute - insert request and wait for the result
224 * @sdev: scsi device
225 * @cmd: scsi command
226 * @data_direction: data direction
227 * @buffer: data buffer
228 * @bufflen: len of buffer
229 * @sense: optional sense buffer
230 * @sshdr: optional decoded sense header
231 * @timeout: request timeout in seconds
232 * @retries: number of times to retry request
233 * @flags: flags for ->cmd_flags
234 * @rq_flags: flags for ->rq_flags
235 * @resid: optional residual length
236 *
237 * Returns the scsi_cmnd result field if a command was executed, or a negative
238 * Linux error code if we didn't get that far.
239 */
__scsi_execute(struct scsi_device * sdev,const unsigned char * cmd,int data_direction,void * buffer,unsigned bufflen,unsigned char * sense,struct scsi_sense_hdr * sshdr,int timeout,int retries,u64 flags,req_flags_t rq_flags,int * resid)240 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
241 int data_direction, void *buffer, unsigned bufflen,
242 unsigned char *sense, struct scsi_sense_hdr *sshdr,
243 int timeout, int retries, u64 flags, req_flags_t rq_flags,
244 int *resid)
245 {
246 struct request *req;
247 struct scsi_request *rq;
248 int ret = DRIVER_ERROR << 24;
249
250 req = blk_get_request(sdev->request_queue,
251 data_direction == DMA_TO_DEVICE ?
252 REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
253 if (IS_ERR(req))
254 return ret;
255 rq = scsi_req(req);
256
257 if (bufflen && blk_rq_map_kern(sdev->request_queue, req,
258 buffer, bufflen, GFP_NOIO))
259 goto out;
260
261 rq->cmd_len = COMMAND_SIZE(cmd[0]);
262 memcpy(rq->cmd, cmd, rq->cmd_len);
263 rq->retries = retries;
264 req->timeout = timeout;
265 req->cmd_flags |= flags;
266 req->rq_flags |= rq_flags | RQF_QUIET;
267
268 /*
269 * head injection *required* here otherwise quiesce won't work
270 */
271 blk_execute_rq(req->q, NULL, req, 1);
272
273 /*
274 * Some devices (USB mass-storage in particular) may transfer
275 * garbage data together with a residue indicating that the data
276 * is invalid. Prevent the garbage from being misinterpreted
277 * and prevent security leaks by zeroing out the excess data.
278 */
279 if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
280 memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
281
282 if (resid)
283 *resid = rq->resid_len;
284 if (sense && rq->sense_len)
285 memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
286 if (sshdr)
287 scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
288 ret = rq->result;
289 out:
290 blk_put_request(req);
291
292 return ret;
293 }
294 EXPORT_SYMBOL(__scsi_execute);
295
296 /*
297 * Wake up the error handler if necessary. Avoid as follows that the error
298 * handler is not woken up if host in-flight requests number ==
299 * shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
300 * with an RCU read lock in this function to ensure that this function in
301 * its entirety either finishes before scsi_eh_scmd_add() increases the
302 * host_failed counter or that it notices the shost state change made by
303 * scsi_eh_scmd_add().
304 */
scsi_dec_host_busy(struct Scsi_Host * shost,struct scsi_cmnd * cmd)305 static void scsi_dec_host_busy(struct Scsi_Host *shost, struct scsi_cmnd *cmd)
306 {
307 unsigned long flags;
308
309 rcu_read_lock();
310 __clear_bit(SCMD_STATE_INFLIGHT, &cmd->state);
311 if (unlikely(scsi_host_in_recovery(shost))) {
312 spin_lock_irqsave(shost->host_lock, flags);
313 if (shost->host_failed || shost->host_eh_scheduled)
314 scsi_eh_wakeup(shost);
315 spin_unlock_irqrestore(shost->host_lock, flags);
316 }
317 rcu_read_unlock();
318 }
319
scsi_device_unbusy(struct scsi_device * sdev,struct scsi_cmnd * cmd)320 void scsi_device_unbusy(struct scsi_device *sdev, struct scsi_cmnd *cmd)
321 {
322 struct Scsi_Host *shost = sdev->host;
323 struct scsi_target *starget = scsi_target(sdev);
324
325 scsi_dec_host_busy(shost, cmd);
326
327 if (starget->can_queue > 0)
328 atomic_dec(&starget->target_busy);
329
330 atomic_dec(&sdev->device_busy);
331 }
332
scsi_kick_queue(struct request_queue * q)333 static void scsi_kick_queue(struct request_queue *q)
334 {
335 blk_mq_run_hw_queues(q, false);
336 }
337
338 /*
339 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
340 * and call blk_run_queue for all the scsi_devices on the target -
341 * including current_sdev first.
342 *
343 * Called with *no* scsi locks held.
344 */
scsi_single_lun_run(struct scsi_device * current_sdev)345 static void scsi_single_lun_run(struct scsi_device *current_sdev)
346 {
347 struct Scsi_Host *shost = current_sdev->host;
348 struct scsi_device *sdev, *tmp;
349 struct scsi_target *starget = scsi_target(current_sdev);
350 unsigned long flags;
351
352 spin_lock_irqsave(shost->host_lock, flags);
353 starget->starget_sdev_user = NULL;
354 spin_unlock_irqrestore(shost->host_lock, flags);
355
356 /*
357 * Call blk_run_queue for all LUNs on the target, starting with
358 * current_sdev. We race with others (to set starget_sdev_user),
359 * but in most cases, we will be first. Ideally, each LU on the
360 * target would get some limited time or requests on the target.
361 */
362 scsi_kick_queue(current_sdev->request_queue);
363
364 spin_lock_irqsave(shost->host_lock, flags);
365 if (starget->starget_sdev_user)
366 goto out;
367 list_for_each_entry_safe(sdev, tmp, &starget->devices,
368 same_target_siblings) {
369 if (sdev == current_sdev)
370 continue;
371 if (scsi_device_get(sdev))
372 continue;
373
374 spin_unlock_irqrestore(shost->host_lock, flags);
375 scsi_kick_queue(sdev->request_queue);
376 spin_lock_irqsave(shost->host_lock, flags);
377
378 scsi_device_put(sdev);
379 }
380 out:
381 spin_unlock_irqrestore(shost->host_lock, flags);
382 }
383
scsi_device_is_busy(struct scsi_device * sdev)384 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
385 {
386 if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
387 return true;
388 if (atomic_read(&sdev->device_blocked) > 0)
389 return true;
390 return false;
391 }
392
scsi_target_is_busy(struct scsi_target * starget)393 static inline bool scsi_target_is_busy(struct scsi_target *starget)
394 {
395 if (starget->can_queue > 0) {
396 if (atomic_read(&starget->target_busy) >= starget->can_queue)
397 return true;
398 if (atomic_read(&starget->target_blocked) > 0)
399 return true;
400 }
401 return false;
402 }
403
scsi_host_is_busy(struct Scsi_Host * shost)404 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
405 {
406 if (atomic_read(&shost->host_blocked) > 0)
407 return true;
408 if (shost->host_self_blocked)
409 return true;
410 return false;
411 }
412
scsi_starved_list_run(struct Scsi_Host * shost)413 static void scsi_starved_list_run(struct Scsi_Host *shost)
414 {
415 LIST_HEAD(starved_list);
416 struct scsi_device *sdev;
417 unsigned long flags;
418
419 spin_lock_irqsave(shost->host_lock, flags);
420 list_splice_init(&shost->starved_list, &starved_list);
421
422 while (!list_empty(&starved_list)) {
423 struct request_queue *slq;
424
425 /*
426 * As long as shost is accepting commands and we have
427 * starved queues, call blk_run_queue. scsi_request_fn
428 * drops the queue_lock and can add us back to the
429 * starved_list.
430 *
431 * host_lock protects the starved_list and starved_entry.
432 * scsi_request_fn must get the host_lock before checking
433 * or modifying starved_list or starved_entry.
434 */
435 if (scsi_host_is_busy(shost))
436 break;
437
438 sdev = list_entry(starved_list.next,
439 struct scsi_device, starved_entry);
440 list_del_init(&sdev->starved_entry);
441 if (scsi_target_is_busy(scsi_target(sdev))) {
442 list_move_tail(&sdev->starved_entry,
443 &shost->starved_list);
444 continue;
445 }
446
447 /*
448 * Once we drop the host lock, a racing scsi_remove_device()
449 * call may remove the sdev from the starved list and destroy
450 * it and the queue. Mitigate by taking a reference to the
451 * queue and never touching the sdev again after we drop the
452 * host lock. Note: if __scsi_remove_device() invokes
453 * blk_cleanup_queue() before the queue is run from this
454 * function then blk_run_queue() will return immediately since
455 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
456 */
457 slq = sdev->request_queue;
458 if (!blk_get_queue(slq))
459 continue;
460 spin_unlock_irqrestore(shost->host_lock, flags);
461
462 scsi_kick_queue(slq);
463 blk_put_queue(slq);
464
465 spin_lock_irqsave(shost->host_lock, flags);
466 }
467 /* put any unprocessed entries back */
468 list_splice(&starved_list, &shost->starved_list);
469 spin_unlock_irqrestore(shost->host_lock, flags);
470 }
471
472 /**
473 * scsi_run_queue - Select a proper request queue to serve next.
474 * @q: last request's queue
475 *
476 * The previous command was completely finished, start a new one if possible.
477 */
scsi_run_queue(struct request_queue * q)478 static void scsi_run_queue(struct request_queue *q)
479 {
480 struct scsi_device *sdev = q->queuedata;
481
482 if (scsi_target(sdev)->single_lun)
483 scsi_single_lun_run(sdev);
484 if (!list_empty(&sdev->host->starved_list))
485 scsi_starved_list_run(sdev->host);
486
487 blk_mq_run_hw_queues(q, false);
488 }
489
scsi_requeue_run_queue(struct work_struct * work)490 void scsi_requeue_run_queue(struct work_struct *work)
491 {
492 struct scsi_device *sdev;
493 struct request_queue *q;
494
495 sdev = container_of(work, struct scsi_device, requeue_work);
496 q = sdev->request_queue;
497 scsi_run_queue(q);
498 }
499
scsi_run_host_queues(struct Scsi_Host * shost)500 void scsi_run_host_queues(struct Scsi_Host *shost)
501 {
502 struct scsi_device *sdev;
503
504 shost_for_each_device(sdev, shost)
505 scsi_run_queue(sdev->request_queue);
506 }
507
scsi_uninit_cmd(struct scsi_cmnd * cmd)508 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
509 {
510 if (!blk_rq_is_passthrough(cmd->request)) {
511 struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
512
513 if (drv->uninit_command)
514 drv->uninit_command(cmd);
515 }
516 }
517
scsi_free_sgtables(struct scsi_cmnd * cmd)518 void scsi_free_sgtables(struct scsi_cmnd *cmd)
519 {
520 if (cmd->sdb.table.nents)
521 sg_free_table_chained(&cmd->sdb.table,
522 SCSI_INLINE_SG_CNT);
523 if (scsi_prot_sg_count(cmd))
524 sg_free_table_chained(&cmd->prot_sdb->table,
525 SCSI_INLINE_PROT_SG_CNT);
526 }
527 EXPORT_SYMBOL_GPL(scsi_free_sgtables);
528
scsi_mq_uninit_cmd(struct scsi_cmnd * cmd)529 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
530 {
531 scsi_free_sgtables(cmd);
532 scsi_uninit_cmd(cmd);
533 }
534
scsi_run_queue_async(struct scsi_device * sdev)535 static void scsi_run_queue_async(struct scsi_device *sdev)
536 {
537 if (scsi_target(sdev)->single_lun ||
538 !list_empty(&sdev->host->starved_list)) {
539 kblockd_schedule_work(&sdev->requeue_work);
540 } else {
541 /*
542 * smp_mb() present in sbitmap_queue_clear() or implied in
543 * .end_io is for ordering writing .device_busy in
544 * scsi_device_unbusy() and reading sdev->restarts.
545 */
546 int old = atomic_read(&sdev->restarts);
547
548 /*
549 * ->restarts has to be kept as non-zero if new budget
550 * contention occurs.
551 *
552 * No need to run queue when either another re-run
553 * queue wins in updating ->restarts or a new budget
554 * contention occurs.
555 */
556 if (old && atomic_cmpxchg(&sdev->restarts, old, 0) == old)
557 blk_mq_run_hw_queues(sdev->request_queue, true);
558 }
559 }
560
561 /* Returns false when no more bytes to process, true if there are more */
scsi_end_request(struct request * req,blk_status_t error,unsigned int bytes)562 static bool scsi_end_request(struct request *req, blk_status_t error,
563 unsigned int bytes)
564 {
565 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
566 struct scsi_device *sdev = cmd->device;
567 struct request_queue *q = sdev->request_queue;
568
569 if (blk_update_request(req, error, bytes))
570 return true;
571
572 if (blk_queue_add_random(q))
573 add_disk_randomness(req->rq_disk);
574
575 if (!blk_rq_is_scsi(req)) {
576 WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
577 cmd->flags &= ~SCMD_INITIALIZED;
578 }
579
580 /*
581 * Calling rcu_barrier() is not necessary here because the
582 * SCSI error handler guarantees that the function called by
583 * call_rcu() has been called before scsi_end_request() is
584 * called.
585 */
586 destroy_rcu_head(&cmd->rcu);
587
588 /*
589 * In the MQ case the command gets freed by __blk_mq_end_request,
590 * so we have to do all cleanup that depends on it earlier.
591 *
592 * We also can't kick the queues from irq context, so we
593 * will have to defer it to a workqueue.
594 */
595 scsi_mq_uninit_cmd(cmd);
596
597 /*
598 * queue is still alive, so grab the ref for preventing it
599 * from being cleaned up during running queue.
600 */
601 percpu_ref_get(&q->q_usage_counter);
602
603 __blk_mq_end_request(req, error);
604
605 scsi_run_queue_async(sdev);
606
607 percpu_ref_put(&q->q_usage_counter);
608 return false;
609 }
610
611 /**
612 * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
613 * @cmd: SCSI command
614 * @result: scsi error code
615 *
616 * Translate a SCSI result code into a blk_status_t value. May reset the host
617 * byte of @cmd->result.
618 */
scsi_result_to_blk_status(struct scsi_cmnd * cmd,int result)619 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
620 {
621 switch (host_byte(result)) {
622 case DID_OK:
623 /*
624 * Also check the other bytes than the status byte in result
625 * to handle the case when a SCSI LLD sets result to
626 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
627 */
628 if (scsi_status_is_good(result) && (result & ~0xff) == 0)
629 return BLK_STS_OK;
630 return BLK_STS_IOERR;
631 case DID_TRANSPORT_FAILFAST:
632 return BLK_STS_TRANSPORT;
633 case DID_TARGET_FAILURE:
634 set_host_byte(cmd, DID_OK);
635 return BLK_STS_TARGET;
636 case DID_NEXUS_FAILURE:
637 set_host_byte(cmd, DID_OK);
638 return BLK_STS_NEXUS;
639 case DID_ALLOC_FAILURE:
640 set_host_byte(cmd, DID_OK);
641 return BLK_STS_NOSPC;
642 case DID_MEDIUM_ERROR:
643 set_host_byte(cmd, DID_OK);
644 return BLK_STS_MEDIUM;
645 default:
646 return BLK_STS_IOERR;
647 }
648 }
649
650 /* Helper for scsi_io_completion() when "reprep" action required. */
scsi_io_completion_reprep(struct scsi_cmnd * cmd,struct request_queue * q)651 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
652 struct request_queue *q)
653 {
654 /* A new command will be prepared and issued. */
655 scsi_mq_requeue_cmd(cmd);
656 }
657
scsi_cmd_runtime_exceeced(struct scsi_cmnd * cmd)658 static bool scsi_cmd_runtime_exceeced(struct scsi_cmnd *cmd)
659 {
660 struct request *req = cmd->request;
661 unsigned long wait_for;
662
663 if (cmd->allowed == SCSI_CMD_RETRIES_NO_LIMIT)
664 return false;
665
666 wait_for = (cmd->allowed + 1) * req->timeout;
667 if (time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
668 scmd_printk(KERN_ERR, cmd, "timing out command, waited %lus\n",
669 wait_for/HZ);
670 return true;
671 }
672 return false;
673 }
674
675 /* Helper for scsi_io_completion() when special action required. */
scsi_io_completion_action(struct scsi_cmnd * cmd,int result)676 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
677 {
678 struct request_queue *q = cmd->device->request_queue;
679 struct request *req = cmd->request;
680 int level = 0;
681 enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
682 ACTION_DELAYED_RETRY} action;
683 struct scsi_sense_hdr sshdr;
684 bool sense_valid;
685 bool sense_current = true; /* false implies "deferred sense" */
686 blk_status_t blk_stat;
687
688 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
689 if (sense_valid)
690 sense_current = !scsi_sense_is_deferred(&sshdr);
691
692 blk_stat = scsi_result_to_blk_status(cmd, result);
693
694 if (host_byte(result) == DID_RESET) {
695 /* Third party bus reset or reset for error recovery
696 * reasons. Just retry the command and see what
697 * happens.
698 */
699 action = ACTION_RETRY;
700 } else if (sense_valid && sense_current) {
701 switch (sshdr.sense_key) {
702 case UNIT_ATTENTION:
703 if (cmd->device->removable) {
704 /* Detected disc change. Set a bit
705 * and quietly refuse further access.
706 */
707 cmd->device->changed = 1;
708 action = ACTION_FAIL;
709 } else {
710 /* Must have been a power glitch, or a
711 * bus reset. Could not have been a
712 * media change, so we just retry the
713 * command and see what happens.
714 */
715 action = ACTION_RETRY;
716 }
717 break;
718 case ILLEGAL_REQUEST:
719 /* If we had an ILLEGAL REQUEST returned, then
720 * we may have performed an unsupported
721 * command. The only thing this should be
722 * would be a ten byte read where only a six
723 * byte read was supported. Also, on a system
724 * where READ CAPACITY failed, we may have
725 * read past the end of the disk.
726 */
727 if ((cmd->device->use_10_for_rw &&
728 sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
729 (cmd->cmnd[0] == READ_10 ||
730 cmd->cmnd[0] == WRITE_10)) {
731 /* This will issue a new 6-byte command. */
732 cmd->device->use_10_for_rw = 0;
733 action = ACTION_REPREP;
734 } else if (sshdr.asc == 0x10) /* DIX */ {
735 action = ACTION_FAIL;
736 blk_stat = BLK_STS_PROTECTION;
737 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
738 } else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
739 action = ACTION_FAIL;
740 blk_stat = BLK_STS_TARGET;
741 } else
742 action = ACTION_FAIL;
743 break;
744 case ABORTED_COMMAND:
745 action = ACTION_FAIL;
746 if (sshdr.asc == 0x10) /* DIF */
747 blk_stat = BLK_STS_PROTECTION;
748 break;
749 case NOT_READY:
750 /* If the device is in the process of becoming
751 * ready, or has a temporary blockage, retry.
752 */
753 if (sshdr.asc == 0x04) {
754 switch (sshdr.ascq) {
755 case 0x01: /* becoming ready */
756 case 0x04: /* format in progress */
757 case 0x05: /* rebuild in progress */
758 case 0x06: /* recalculation in progress */
759 case 0x07: /* operation in progress */
760 case 0x08: /* Long write in progress */
761 case 0x09: /* self test in progress */
762 case 0x14: /* space allocation in progress */
763 case 0x1a: /* start stop unit in progress */
764 case 0x1b: /* sanitize in progress */
765 case 0x1d: /* configuration in progress */
766 case 0x24: /* depopulation in progress */
767 action = ACTION_DELAYED_RETRY;
768 break;
769 default:
770 action = ACTION_FAIL;
771 break;
772 }
773 } else
774 action = ACTION_FAIL;
775 break;
776 case VOLUME_OVERFLOW:
777 /* See SSC3rXX or current. */
778 action = ACTION_FAIL;
779 break;
780 case DATA_PROTECT:
781 action = ACTION_FAIL;
782 if ((sshdr.asc == 0x0C && sshdr.ascq == 0x12) ||
783 (sshdr.asc == 0x55 &&
784 (sshdr.ascq == 0x0E || sshdr.ascq == 0x0F))) {
785 /* Insufficient zone resources */
786 blk_stat = BLK_STS_ZONE_OPEN_RESOURCE;
787 }
788 break;
789 default:
790 action = ACTION_FAIL;
791 break;
792 }
793 } else
794 action = ACTION_FAIL;
795
796 if (action != ACTION_FAIL && scsi_cmd_runtime_exceeced(cmd))
797 action = ACTION_FAIL;
798
799 switch (action) {
800 case ACTION_FAIL:
801 /* Give up and fail the remainder of the request */
802 if (!(req->rq_flags & RQF_QUIET)) {
803 static DEFINE_RATELIMIT_STATE(_rs,
804 DEFAULT_RATELIMIT_INTERVAL,
805 DEFAULT_RATELIMIT_BURST);
806
807 if (unlikely(scsi_logging_level))
808 level =
809 SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
810 SCSI_LOG_MLCOMPLETE_BITS);
811
812 /*
813 * if logging is enabled the failure will be printed
814 * in scsi_log_completion(), so avoid duplicate messages
815 */
816 if (!level && __ratelimit(&_rs)) {
817 scsi_print_result(cmd, NULL, FAILED);
818 if (driver_byte(result) == DRIVER_SENSE)
819 scsi_print_sense(cmd);
820 scsi_print_command(cmd);
821 }
822 }
823 if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req)))
824 return;
825 fallthrough;
826 case ACTION_REPREP:
827 scsi_io_completion_reprep(cmd, q);
828 break;
829 case ACTION_RETRY:
830 /* Retry the same command immediately */
831 __scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
832 break;
833 case ACTION_DELAYED_RETRY:
834 /* Retry the same command after a delay */
835 __scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
836 break;
837 }
838 }
839
840 /*
841 * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
842 * new result that may suppress further error checking. Also modifies
843 * *blk_statp in some cases.
844 */
scsi_io_completion_nz_result(struct scsi_cmnd * cmd,int result,blk_status_t * blk_statp)845 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
846 blk_status_t *blk_statp)
847 {
848 bool sense_valid;
849 bool sense_current = true; /* false implies "deferred sense" */
850 struct request *req = cmd->request;
851 struct scsi_sense_hdr sshdr;
852
853 sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
854 if (sense_valid)
855 sense_current = !scsi_sense_is_deferred(&sshdr);
856
857 if (blk_rq_is_passthrough(req)) {
858 if (sense_valid) {
859 /*
860 * SG_IO wants current and deferred errors
861 */
862 scsi_req(req)->sense_len =
863 min(8 + cmd->sense_buffer[7],
864 SCSI_SENSE_BUFFERSIZE);
865 }
866 if (sense_current)
867 *blk_statp = scsi_result_to_blk_status(cmd, result);
868 } else if (blk_rq_bytes(req) == 0 && sense_current) {
869 /*
870 * Flush commands do not transfers any data, and thus cannot use
871 * good_bytes != blk_rq_bytes(req) as the signal for an error.
872 * This sets *blk_statp explicitly for the problem case.
873 */
874 *blk_statp = scsi_result_to_blk_status(cmd, result);
875 }
876 /*
877 * Recovered errors need reporting, but they're always treated as
878 * success, so fiddle the result code here. For passthrough requests
879 * we already took a copy of the original into sreq->result which
880 * is what gets returned to the user
881 */
882 if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
883 bool do_print = true;
884 /*
885 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
886 * skip print since caller wants ATA registers. Only occurs
887 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
888 */
889 if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
890 do_print = false;
891 else if (req->rq_flags & RQF_QUIET)
892 do_print = false;
893 if (do_print)
894 scsi_print_sense(cmd);
895 result = 0;
896 /* for passthrough, *blk_statp may be set */
897 *blk_statp = BLK_STS_OK;
898 }
899 /*
900 * Another corner case: the SCSI status byte is non-zero but 'good'.
901 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
902 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
903 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
904 * intermediate statuses (both obsolete in SAM-4) as good.
905 */
906 if (status_byte(result) && scsi_status_is_good(result)) {
907 result = 0;
908 *blk_statp = BLK_STS_OK;
909 }
910 return result;
911 }
912
913 /**
914 * scsi_io_completion - Completion processing for SCSI commands.
915 * @cmd: command that is finished.
916 * @good_bytes: number of processed bytes.
917 *
918 * We will finish off the specified number of sectors. If we are done, the
919 * command block will be released and the queue function will be goosed. If we
920 * are not done then we have to figure out what to do next:
921 *
922 * a) We can call scsi_io_completion_reprep(). The request will be
923 * unprepared and put back on the queue. Then a new command will
924 * be created for it. This should be used if we made forward
925 * progress, or if we want to switch from READ(10) to READ(6) for
926 * example.
927 *
928 * b) We can call scsi_io_completion_action(). The request will be
929 * put back on the queue and retried using the same command as
930 * before, possibly after a delay.
931 *
932 * c) We can call scsi_end_request() with blk_stat other than
933 * BLK_STS_OK, to fail the remainder of the request.
934 */
scsi_io_completion(struct scsi_cmnd * cmd,unsigned int good_bytes)935 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
936 {
937 int result = cmd->result;
938 struct request_queue *q = cmd->device->request_queue;
939 struct request *req = cmd->request;
940 blk_status_t blk_stat = BLK_STS_OK;
941
942 if (unlikely(result)) /* a nz result may or may not be an error */
943 result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
944
945 if (unlikely(blk_rq_is_passthrough(req))) {
946 /*
947 * scsi_result_to_blk_status may have reset the host_byte
948 */
949 scsi_req(req)->result = cmd->result;
950 }
951
952 /*
953 * Next deal with any sectors which we were able to correctly
954 * handle.
955 */
956 SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
957 "%u sectors total, %d bytes done.\n",
958 blk_rq_sectors(req), good_bytes));
959
960 /*
961 * Failed, zero length commands always need to drop down
962 * to retry code. Fast path should return in this block.
963 */
964 if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
965 if (likely(!scsi_end_request(req, blk_stat, good_bytes)))
966 return; /* no bytes remaining */
967 }
968
969 /* Kill remainder if no retries. */
970 if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
971 if (scsi_end_request(req, blk_stat, blk_rq_bytes(req)))
972 WARN_ONCE(true,
973 "Bytes remaining after failed, no-retry command");
974 return;
975 }
976
977 /*
978 * If there had been no error, but we have leftover bytes in the
979 * requeues just queue the command up again.
980 */
981 if (likely(result == 0))
982 scsi_io_completion_reprep(cmd, q);
983 else
984 scsi_io_completion_action(cmd, result);
985 }
986
scsi_cmd_needs_dma_drain(struct scsi_device * sdev,struct request * rq)987 static inline bool scsi_cmd_needs_dma_drain(struct scsi_device *sdev,
988 struct request *rq)
989 {
990 return sdev->dma_drain_len && blk_rq_is_passthrough(rq) &&
991 !op_is_write(req_op(rq)) &&
992 sdev->host->hostt->dma_need_drain(rq);
993 }
994
995 /**
996 * scsi_alloc_sgtables - allocate S/G tables for a command
997 * @cmd: command descriptor we wish to initialize
998 *
999 * Returns:
1000 * * BLK_STS_OK - on success
1001 * * BLK_STS_RESOURCE - if the failure is retryable
1002 * * BLK_STS_IOERR - if the failure is fatal
1003 */
scsi_alloc_sgtables(struct scsi_cmnd * cmd)1004 blk_status_t scsi_alloc_sgtables(struct scsi_cmnd *cmd)
1005 {
1006 struct scsi_device *sdev = cmd->device;
1007 struct request *rq = cmd->request;
1008 unsigned short nr_segs = blk_rq_nr_phys_segments(rq);
1009 struct scatterlist *last_sg = NULL;
1010 blk_status_t ret;
1011 bool need_drain = scsi_cmd_needs_dma_drain(sdev, rq);
1012 int count;
1013
1014 if (WARN_ON_ONCE(!nr_segs))
1015 return BLK_STS_IOERR;
1016
1017 /*
1018 * Make sure there is space for the drain. The driver must adjust
1019 * max_hw_segments to be prepared for this.
1020 */
1021 if (need_drain)
1022 nr_segs++;
1023
1024 /*
1025 * If sg table allocation fails, requeue request later.
1026 */
1027 if (unlikely(sg_alloc_table_chained(&cmd->sdb.table, nr_segs,
1028 cmd->sdb.table.sgl, SCSI_INLINE_SG_CNT)))
1029 return BLK_STS_RESOURCE;
1030
1031 /*
1032 * Next, walk the list, and fill in the addresses and sizes of
1033 * each segment.
1034 */
1035 count = __blk_rq_map_sg(rq->q, rq, cmd->sdb.table.sgl, &last_sg);
1036
1037 if (blk_rq_bytes(rq) & rq->q->dma_pad_mask) {
1038 unsigned int pad_len =
1039 (rq->q->dma_pad_mask & ~blk_rq_bytes(rq)) + 1;
1040
1041 last_sg->length += pad_len;
1042 cmd->extra_len += pad_len;
1043 }
1044
1045 if (need_drain) {
1046 sg_unmark_end(last_sg);
1047 last_sg = sg_next(last_sg);
1048 sg_set_buf(last_sg, sdev->dma_drain_buf, sdev->dma_drain_len);
1049 sg_mark_end(last_sg);
1050
1051 cmd->extra_len += sdev->dma_drain_len;
1052 count++;
1053 }
1054
1055 BUG_ON(count > cmd->sdb.table.nents);
1056 cmd->sdb.table.nents = count;
1057 cmd->sdb.length = blk_rq_payload_bytes(rq);
1058
1059 if (blk_integrity_rq(rq)) {
1060 struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1061 int ivecs;
1062
1063 if (WARN_ON_ONCE(!prot_sdb)) {
1064 /*
1065 * This can happen if someone (e.g. multipath)
1066 * queues a command to a device on an adapter
1067 * that does not support DIX.
1068 */
1069 ret = BLK_STS_IOERR;
1070 goto out_free_sgtables;
1071 }
1072
1073 ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1074
1075 if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1076 prot_sdb->table.sgl,
1077 SCSI_INLINE_PROT_SG_CNT)) {
1078 ret = BLK_STS_RESOURCE;
1079 goto out_free_sgtables;
1080 }
1081
1082 count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1083 prot_sdb->table.sgl);
1084 BUG_ON(count > ivecs);
1085 BUG_ON(count > queue_max_integrity_segments(rq->q));
1086
1087 cmd->prot_sdb = prot_sdb;
1088 cmd->prot_sdb->table.nents = count;
1089 }
1090
1091 return BLK_STS_OK;
1092 out_free_sgtables:
1093 scsi_free_sgtables(cmd);
1094 return ret;
1095 }
1096 EXPORT_SYMBOL(scsi_alloc_sgtables);
1097
1098 /**
1099 * scsi_initialize_rq - initialize struct scsi_cmnd partially
1100 * @rq: Request associated with the SCSI command to be initialized.
1101 *
1102 * This function initializes the members of struct scsi_cmnd that must be
1103 * initialized before request processing starts and that won't be
1104 * reinitialized if a SCSI command is requeued.
1105 *
1106 * Called from inside blk_get_request() for pass-through requests and from
1107 * inside scsi_init_command() for filesystem requests.
1108 */
scsi_initialize_rq(struct request * rq)1109 static void scsi_initialize_rq(struct request *rq)
1110 {
1111 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1112
1113 scsi_req_init(&cmd->req);
1114 init_rcu_head(&cmd->rcu);
1115 cmd->jiffies_at_alloc = jiffies;
1116 cmd->retries = 0;
1117 }
1118
1119 /*
1120 * Only called when the request isn't completed by SCSI, and not freed by
1121 * SCSI
1122 */
scsi_cleanup_rq(struct request * rq)1123 static void scsi_cleanup_rq(struct request *rq)
1124 {
1125 if (rq->rq_flags & RQF_DONTPREP) {
1126 scsi_mq_uninit_cmd(blk_mq_rq_to_pdu(rq));
1127 rq->rq_flags &= ~RQF_DONTPREP;
1128 }
1129 }
1130
1131 /* Called before a request is prepared. See also scsi_mq_prep_fn(). */
scsi_init_command(struct scsi_device * dev,struct scsi_cmnd * cmd)1132 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1133 {
1134 void *buf = cmd->sense_buffer;
1135 void *prot = cmd->prot_sdb;
1136 struct request *rq = blk_mq_rq_from_pdu(cmd);
1137 unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1138 unsigned long jiffies_at_alloc;
1139 int retries, to_clear;
1140 bool in_flight;
1141
1142 if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1143 flags |= SCMD_INITIALIZED;
1144 scsi_initialize_rq(rq);
1145 }
1146
1147 jiffies_at_alloc = cmd->jiffies_at_alloc;
1148 retries = cmd->retries;
1149 in_flight = test_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1150 /*
1151 * Zero out the cmd, except for the embedded scsi_request. Only clear
1152 * the driver-private command data if the LLD does not supply a
1153 * function to initialize that data.
1154 */
1155 to_clear = sizeof(*cmd) - sizeof(cmd->req);
1156 if (!dev->host->hostt->init_cmd_priv)
1157 to_clear += dev->host->hostt->cmd_size;
1158 memset((char *)cmd + sizeof(cmd->req), 0, to_clear);
1159
1160 cmd->device = dev;
1161 cmd->sense_buffer = buf;
1162 cmd->prot_sdb = prot;
1163 cmd->flags = flags;
1164 INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1165 cmd->jiffies_at_alloc = jiffies_at_alloc;
1166 cmd->retries = retries;
1167 if (in_flight)
1168 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1169
1170 }
1171
scsi_setup_scsi_cmnd(struct scsi_device * sdev,struct request * req)1172 static blk_status_t scsi_setup_scsi_cmnd(struct scsi_device *sdev,
1173 struct request *req)
1174 {
1175 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1176
1177 /*
1178 * Passthrough requests may transfer data, in which case they must
1179 * a bio attached to them. Or they might contain a SCSI command
1180 * that does not transfer data, in which case they may optionally
1181 * submit a request without an attached bio.
1182 */
1183 if (req->bio) {
1184 blk_status_t ret = scsi_alloc_sgtables(cmd);
1185 if (unlikely(ret != BLK_STS_OK))
1186 return ret;
1187 } else {
1188 BUG_ON(blk_rq_bytes(req));
1189
1190 memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1191 }
1192
1193 cmd->cmd_len = scsi_req(req)->cmd_len;
1194 if (cmd->cmd_len == 0)
1195 cmd->cmd_len = scsi_command_size(cmd->cmnd);
1196 cmd->cmnd = scsi_req(req)->cmd;
1197 cmd->transfersize = blk_rq_bytes(req);
1198 cmd->allowed = scsi_req(req)->retries;
1199 return BLK_STS_OK;
1200 }
1201
1202 static blk_status_t
scsi_device_state_check(struct scsi_device * sdev,struct request * req)1203 scsi_device_state_check(struct scsi_device *sdev, struct request *req)
1204 {
1205 switch (sdev->sdev_state) {
1206 case SDEV_OFFLINE:
1207 case SDEV_TRANSPORT_OFFLINE:
1208 /*
1209 * If the device is offline we refuse to process any
1210 * commands. The device must be brought online
1211 * before trying any recovery commands.
1212 */
1213 if (!sdev->offline_already) {
1214 sdev->offline_already = true;
1215 sdev_printk(KERN_ERR, sdev,
1216 "rejecting I/O to offline device\n");
1217 }
1218 return BLK_STS_IOERR;
1219 case SDEV_DEL:
1220 /*
1221 * If the device is fully deleted, we refuse to
1222 * process any commands as well.
1223 */
1224 sdev_printk(KERN_ERR, sdev,
1225 "rejecting I/O to dead device\n");
1226 return BLK_STS_IOERR;
1227 case SDEV_BLOCK:
1228 case SDEV_CREATED_BLOCK:
1229 return BLK_STS_RESOURCE;
1230 case SDEV_QUIESCE:
1231 /*
1232 * If the devices is blocked we defer normal commands.
1233 */
1234 if (req && !(req->rq_flags & RQF_PREEMPT))
1235 return BLK_STS_RESOURCE;
1236 return BLK_STS_OK;
1237 default:
1238 /*
1239 * For any other not fully online state we only allow
1240 * special commands. In particular any user initiated
1241 * command is not allowed.
1242 */
1243 if (req && !(req->rq_flags & RQF_PREEMPT))
1244 return BLK_STS_IOERR;
1245 return BLK_STS_OK;
1246 }
1247 }
1248
1249 /*
1250 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1251 * return 0.
1252 *
1253 * Called with the queue_lock held.
1254 */
scsi_dev_queue_ready(struct request_queue * q,struct scsi_device * sdev)1255 static inline int scsi_dev_queue_ready(struct request_queue *q,
1256 struct scsi_device *sdev)
1257 {
1258 unsigned int busy;
1259
1260 busy = atomic_inc_return(&sdev->device_busy) - 1;
1261 if (atomic_read(&sdev->device_blocked)) {
1262 if (busy)
1263 goto out_dec;
1264
1265 /*
1266 * unblock after device_blocked iterates to zero
1267 */
1268 if (atomic_dec_return(&sdev->device_blocked) > 0)
1269 goto out_dec;
1270 SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1271 "unblocking device at zero depth\n"));
1272 }
1273
1274 if (busy >= sdev->queue_depth)
1275 goto out_dec;
1276
1277 return 1;
1278 out_dec:
1279 atomic_dec(&sdev->device_busy);
1280 return 0;
1281 }
1282
1283 /*
1284 * scsi_target_queue_ready: checks if there we can send commands to target
1285 * @sdev: scsi device on starget to check.
1286 */
scsi_target_queue_ready(struct Scsi_Host * shost,struct scsi_device * sdev)1287 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1288 struct scsi_device *sdev)
1289 {
1290 struct scsi_target *starget = scsi_target(sdev);
1291 unsigned int busy;
1292
1293 if (starget->single_lun) {
1294 spin_lock_irq(shost->host_lock);
1295 if (starget->starget_sdev_user &&
1296 starget->starget_sdev_user != sdev) {
1297 spin_unlock_irq(shost->host_lock);
1298 return 0;
1299 }
1300 starget->starget_sdev_user = sdev;
1301 spin_unlock_irq(shost->host_lock);
1302 }
1303
1304 if (starget->can_queue <= 0)
1305 return 1;
1306
1307 busy = atomic_inc_return(&starget->target_busy) - 1;
1308 if (atomic_read(&starget->target_blocked) > 0) {
1309 if (busy)
1310 goto starved;
1311
1312 /*
1313 * unblock after target_blocked iterates to zero
1314 */
1315 if (atomic_dec_return(&starget->target_blocked) > 0)
1316 goto out_dec;
1317
1318 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1319 "unblocking target at zero depth\n"));
1320 }
1321
1322 if (busy >= starget->can_queue)
1323 goto starved;
1324
1325 return 1;
1326
1327 starved:
1328 spin_lock_irq(shost->host_lock);
1329 list_move_tail(&sdev->starved_entry, &shost->starved_list);
1330 spin_unlock_irq(shost->host_lock);
1331 out_dec:
1332 if (starget->can_queue > 0)
1333 atomic_dec(&starget->target_busy);
1334 return 0;
1335 }
1336
1337 /*
1338 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1339 * return 0. We must end up running the queue again whenever 0 is
1340 * returned, else IO can hang.
1341 */
scsi_host_queue_ready(struct request_queue * q,struct Scsi_Host * shost,struct scsi_device * sdev,struct scsi_cmnd * cmd)1342 static inline int scsi_host_queue_ready(struct request_queue *q,
1343 struct Scsi_Host *shost,
1344 struct scsi_device *sdev,
1345 struct scsi_cmnd *cmd)
1346 {
1347 if (scsi_host_in_recovery(shost))
1348 return 0;
1349
1350 if (atomic_read(&shost->host_blocked) > 0) {
1351 if (scsi_host_busy(shost) > 0)
1352 goto starved;
1353
1354 /*
1355 * unblock after host_blocked iterates to zero
1356 */
1357 if (atomic_dec_return(&shost->host_blocked) > 0)
1358 goto out_dec;
1359
1360 SCSI_LOG_MLQUEUE(3,
1361 shost_printk(KERN_INFO, shost,
1362 "unblocking host at zero depth\n"));
1363 }
1364
1365 if (shost->host_self_blocked)
1366 goto starved;
1367
1368 /* We're OK to process the command, so we can't be starved */
1369 if (!list_empty(&sdev->starved_entry)) {
1370 spin_lock_irq(shost->host_lock);
1371 if (!list_empty(&sdev->starved_entry))
1372 list_del_init(&sdev->starved_entry);
1373 spin_unlock_irq(shost->host_lock);
1374 }
1375
1376 __set_bit(SCMD_STATE_INFLIGHT, &cmd->state);
1377
1378 return 1;
1379
1380 starved:
1381 spin_lock_irq(shost->host_lock);
1382 if (list_empty(&sdev->starved_entry))
1383 list_add_tail(&sdev->starved_entry, &shost->starved_list);
1384 spin_unlock_irq(shost->host_lock);
1385 out_dec:
1386 scsi_dec_host_busy(shost, cmd);
1387 return 0;
1388 }
1389
1390 /*
1391 * Busy state exporting function for request stacking drivers.
1392 *
1393 * For efficiency, no lock is taken to check the busy state of
1394 * shost/starget/sdev, since the returned value is not guaranteed and
1395 * may be changed after request stacking drivers call the function,
1396 * regardless of taking lock or not.
1397 *
1398 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1399 * needs to return 'not busy'. Otherwise, request stacking drivers
1400 * may hold requests forever.
1401 */
scsi_mq_lld_busy(struct request_queue * q)1402 static bool scsi_mq_lld_busy(struct request_queue *q)
1403 {
1404 struct scsi_device *sdev = q->queuedata;
1405 struct Scsi_Host *shost;
1406
1407 if (blk_queue_dying(q))
1408 return false;
1409
1410 shost = sdev->host;
1411
1412 /*
1413 * Ignore host/starget busy state.
1414 * Since block layer does not have a concept of fairness across
1415 * multiple queues, congestion of host/starget needs to be handled
1416 * in SCSI layer.
1417 */
1418 if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1419 return true;
1420
1421 return false;
1422 }
1423
scsi_softirq_done(struct request * rq)1424 static void scsi_softirq_done(struct request *rq)
1425 {
1426 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1427 int disposition;
1428
1429 INIT_LIST_HEAD(&cmd->eh_entry);
1430
1431 atomic_inc(&cmd->device->iodone_cnt);
1432 if (cmd->result)
1433 atomic_inc(&cmd->device->ioerr_cnt);
1434
1435 disposition = scsi_decide_disposition(cmd);
1436 if (disposition != SUCCESS && scsi_cmd_runtime_exceeced(cmd))
1437 disposition = SUCCESS;
1438
1439 scsi_log_completion(cmd, disposition);
1440
1441 switch (disposition) {
1442 case SUCCESS:
1443 scsi_finish_command(cmd);
1444 break;
1445 case NEEDS_RETRY:
1446 scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1447 break;
1448 case ADD_TO_MLQUEUE:
1449 scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1450 break;
1451 default:
1452 scsi_eh_scmd_add(cmd);
1453 break;
1454 }
1455 }
1456
1457 /**
1458 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1459 * @cmd: command block we are dispatching.
1460 *
1461 * Return: nonzero return request was rejected and device's queue needs to be
1462 * plugged.
1463 */
scsi_dispatch_cmd(struct scsi_cmnd * cmd)1464 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1465 {
1466 struct Scsi_Host *host = cmd->device->host;
1467 int rtn = 0;
1468
1469 atomic_inc(&cmd->device->iorequest_cnt);
1470
1471 /* check if the device is still usable */
1472 if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1473 /* in SDEV_DEL we error all commands. DID_NO_CONNECT
1474 * returns an immediate error upwards, and signals
1475 * that the device is no longer present */
1476 cmd->result = DID_NO_CONNECT << 16;
1477 goto done;
1478 }
1479
1480 /* Check to see if the scsi lld made this device blocked. */
1481 if (unlikely(scsi_device_blocked(cmd->device))) {
1482 /*
1483 * in blocked state, the command is just put back on
1484 * the device queue. The suspend state has already
1485 * blocked the queue so future requests should not
1486 * occur until the device transitions out of the
1487 * suspend state.
1488 */
1489 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1490 "queuecommand : device blocked\n"));
1491 return SCSI_MLQUEUE_DEVICE_BUSY;
1492 }
1493
1494 /* Store the LUN value in cmnd, if needed. */
1495 if (cmd->device->lun_in_cdb)
1496 cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1497 (cmd->device->lun << 5 & 0xe0);
1498
1499 scsi_log_send(cmd);
1500
1501 /*
1502 * Before we queue this command, check if the command
1503 * length exceeds what the host adapter can handle.
1504 */
1505 if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1506 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1507 "queuecommand : command too long. "
1508 "cdb_size=%d host->max_cmd_len=%d\n",
1509 cmd->cmd_len, cmd->device->host->max_cmd_len));
1510 cmd->result = (DID_ABORT << 16);
1511 goto done;
1512 }
1513
1514 if (unlikely(host->shost_state == SHOST_DEL)) {
1515 cmd->result = (DID_NO_CONNECT << 16);
1516 goto done;
1517
1518 }
1519
1520 trace_scsi_dispatch_cmd_start(cmd);
1521 rtn = host->hostt->queuecommand(host, cmd);
1522 if (rtn) {
1523 trace_scsi_dispatch_cmd_error(cmd, rtn);
1524 if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1525 rtn != SCSI_MLQUEUE_TARGET_BUSY)
1526 rtn = SCSI_MLQUEUE_HOST_BUSY;
1527
1528 SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1529 "queuecommand : request rejected\n"));
1530 }
1531
1532 return rtn;
1533 done:
1534 cmd->scsi_done(cmd);
1535 return 0;
1536 }
1537
1538 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
scsi_mq_inline_sgl_size(struct Scsi_Host * shost)1539 static unsigned int scsi_mq_inline_sgl_size(struct Scsi_Host *shost)
1540 {
1541 return min_t(unsigned int, shost->sg_tablesize, SCSI_INLINE_SG_CNT) *
1542 sizeof(struct scatterlist);
1543 }
1544
scsi_prepare_cmd(struct request * req)1545 static blk_status_t scsi_prepare_cmd(struct request *req)
1546 {
1547 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1548 struct scsi_device *sdev = req->q->queuedata;
1549 struct Scsi_Host *shost = sdev->host;
1550 struct scatterlist *sg;
1551
1552 scsi_init_command(sdev, cmd);
1553
1554 cmd->request = req;
1555 cmd->tag = req->tag;
1556 cmd->prot_op = SCSI_PROT_NORMAL;
1557 if (blk_rq_bytes(req))
1558 cmd->sc_data_direction = rq_dma_dir(req);
1559 else
1560 cmd->sc_data_direction = DMA_NONE;
1561
1562 sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1563 cmd->sdb.table.sgl = sg;
1564
1565 if (scsi_host_get_prot(shost)) {
1566 memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1567
1568 cmd->prot_sdb->table.sgl =
1569 (struct scatterlist *)(cmd->prot_sdb + 1);
1570 }
1571
1572 /*
1573 * Special handling for passthrough commands, which don't go to the ULP
1574 * at all:
1575 */
1576 if (blk_rq_is_scsi(req))
1577 return scsi_setup_scsi_cmnd(sdev, req);
1578
1579 if (sdev->handler && sdev->handler->prep_fn) {
1580 blk_status_t ret = sdev->handler->prep_fn(sdev, req);
1581
1582 if (ret != BLK_STS_OK)
1583 return ret;
1584 }
1585
1586 cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1587 memset(cmd->cmnd, 0, BLK_MAX_CDB);
1588 return scsi_cmd_to_driver(cmd)->init_command(cmd);
1589 }
1590
scsi_mq_done(struct scsi_cmnd * cmd)1591 static void scsi_mq_done(struct scsi_cmnd *cmd)
1592 {
1593 if (unlikely(blk_should_fake_timeout(cmd->request->q)))
1594 return;
1595 if (unlikely(test_and_set_bit(SCMD_STATE_COMPLETE, &cmd->state)))
1596 return;
1597 trace_scsi_dispatch_cmd_done(cmd);
1598 blk_mq_complete_request(cmd->request);
1599 }
1600
scsi_mq_put_budget(struct request_queue * q)1601 static void scsi_mq_put_budget(struct request_queue *q)
1602 {
1603 struct scsi_device *sdev = q->queuedata;
1604
1605 atomic_dec(&sdev->device_busy);
1606 }
1607
scsi_mq_get_budget(struct request_queue * q)1608 static bool scsi_mq_get_budget(struct request_queue *q)
1609 {
1610 struct scsi_device *sdev = q->queuedata;
1611
1612 if (scsi_dev_queue_ready(q, sdev))
1613 return true;
1614
1615 atomic_inc(&sdev->restarts);
1616
1617 /*
1618 * Orders atomic_inc(&sdev->restarts) and atomic_read(&sdev->device_busy).
1619 * .restarts must be incremented before .device_busy is read because the
1620 * code in scsi_run_queue_async() depends on the order of these operations.
1621 */
1622 smp_mb__after_atomic();
1623
1624 /*
1625 * If all in-flight requests originated from this LUN are completed
1626 * before reading .device_busy, sdev->device_busy will be observed as
1627 * zero, then blk_mq_delay_run_hw_queues() will dispatch this request
1628 * soon. Otherwise, completion of one of these requests will observe
1629 * the .restarts flag, and the request queue will be run for handling
1630 * this request, see scsi_end_request().
1631 */
1632 if (unlikely(atomic_read(&sdev->device_busy) == 0 &&
1633 !scsi_device_blocked(sdev)))
1634 blk_mq_delay_run_hw_queues(sdev->request_queue, SCSI_QUEUE_DELAY);
1635 return false;
1636 }
1637
scsi_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)1638 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1639 const struct blk_mq_queue_data *bd)
1640 {
1641 struct request *req = bd->rq;
1642 struct request_queue *q = req->q;
1643 struct scsi_device *sdev = q->queuedata;
1644 struct Scsi_Host *shost = sdev->host;
1645 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1646 blk_status_t ret;
1647 int reason;
1648
1649 /*
1650 * If the device is not in running state we will reject some or all
1651 * commands.
1652 */
1653 if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1654 ret = scsi_device_state_check(sdev, req);
1655 if (ret != BLK_STS_OK)
1656 goto out_put_budget;
1657 }
1658
1659 ret = BLK_STS_RESOURCE;
1660 if (!scsi_target_queue_ready(shost, sdev))
1661 goto out_put_budget;
1662 if (!scsi_host_queue_ready(q, shost, sdev, cmd))
1663 goto out_dec_target_busy;
1664
1665 if (!(req->rq_flags & RQF_DONTPREP)) {
1666 ret = scsi_prepare_cmd(req);
1667 if (ret != BLK_STS_OK)
1668 goto out_dec_host_busy;
1669 req->rq_flags |= RQF_DONTPREP;
1670 } else {
1671 clear_bit(SCMD_STATE_COMPLETE, &cmd->state);
1672 }
1673
1674 cmd->flags &= SCMD_PRESERVED_FLAGS;
1675 if (sdev->simple_tags)
1676 cmd->flags |= SCMD_TAGGED;
1677 if (bd->last)
1678 cmd->flags |= SCMD_LAST;
1679
1680 scsi_set_resid(cmd, 0);
1681 memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
1682 cmd->scsi_done = scsi_mq_done;
1683
1684 blk_mq_start_request(req);
1685 reason = scsi_dispatch_cmd(cmd);
1686 if (reason) {
1687 scsi_set_blocked(cmd, reason);
1688 ret = BLK_STS_RESOURCE;
1689 goto out_dec_host_busy;
1690 }
1691
1692 return BLK_STS_OK;
1693
1694 out_dec_host_busy:
1695 scsi_dec_host_busy(shost, cmd);
1696 out_dec_target_busy:
1697 if (scsi_target(sdev)->can_queue > 0)
1698 atomic_dec(&scsi_target(sdev)->target_busy);
1699 out_put_budget:
1700 scsi_mq_put_budget(q);
1701 switch (ret) {
1702 case BLK_STS_OK:
1703 break;
1704 case BLK_STS_RESOURCE:
1705 case BLK_STS_ZONE_RESOURCE:
1706 if (scsi_device_blocked(sdev))
1707 ret = BLK_STS_DEV_RESOURCE;
1708 break;
1709 default:
1710 if (unlikely(!scsi_device_online(sdev)))
1711 scsi_req(req)->result = DID_NO_CONNECT << 16;
1712 else
1713 scsi_req(req)->result = DID_ERROR << 16;
1714 /*
1715 * Make sure to release all allocated resources when
1716 * we hit an error, as we will never see this command
1717 * again.
1718 */
1719 if (req->rq_flags & RQF_DONTPREP)
1720 scsi_mq_uninit_cmd(cmd);
1721 scsi_run_queue_async(sdev);
1722 break;
1723 }
1724 return ret;
1725 }
1726
scsi_timeout(struct request * req,bool reserved)1727 static enum blk_eh_timer_return scsi_timeout(struct request *req,
1728 bool reserved)
1729 {
1730 if (reserved)
1731 return BLK_EH_RESET_TIMER;
1732 return scsi_times_out(req);
1733 }
1734
scsi_mq_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)1735 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
1736 unsigned int hctx_idx, unsigned int numa_node)
1737 {
1738 struct Scsi_Host *shost = set->driver_data;
1739 const bool unchecked_isa_dma = shost->unchecked_isa_dma;
1740 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1741 struct scatterlist *sg;
1742 int ret = 0;
1743
1744 if (unchecked_isa_dma)
1745 cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
1746 cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
1747 GFP_KERNEL, numa_node);
1748 if (!cmd->sense_buffer)
1749 return -ENOMEM;
1750 cmd->req.sense = cmd->sense_buffer;
1751
1752 if (scsi_host_get_prot(shost)) {
1753 sg = (void *)cmd + sizeof(struct scsi_cmnd) +
1754 shost->hostt->cmd_size;
1755 cmd->prot_sdb = (void *)sg + scsi_mq_inline_sgl_size(shost);
1756 }
1757
1758 if (shost->hostt->init_cmd_priv) {
1759 ret = shost->hostt->init_cmd_priv(shost, cmd);
1760 if (ret < 0)
1761 scsi_free_sense_buffer(unchecked_isa_dma,
1762 cmd->sense_buffer);
1763 }
1764
1765 return ret;
1766 }
1767
scsi_mq_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)1768 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1769 unsigned int hctx_idx)
1770 {
1771 struct Scsi_Host *shost = set->driver_data;
1772 struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1773
1774 if (shost->hostt->exit_cmd_priv)
1775 shost->hostt->exit_cmd_priv(shost, cmd);
1776 scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
1777 cmd->sense_buffer);
1778 }
1779
scsi_map_queues(struct blk_mq_tag_set * set)1780 static int scsi_map_queues(struct blk_mq_tag_set *set)
1781 {
1782 struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
1783
1784 if (shost->hostt->map_queues)
1785 return shost->hostt->map_queues(shost);
1786 return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
1787 }
1788
__scsi_init_queue(struct Scsi_Host * shost,struct request_queue * q)1789 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
1790 {
1791 struct device *dev = shost->dma_dev;
1792
1793 /*
1794 * this limit is imposed by hardware restrictions
1795 */
1796 blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
1797 SG_MAX_SEGMENTS));
1798
1799 if (scsi_host_prot_dma(shost)) {
1800 shost->sg_prot_tablesize =
1801 min_not_zero(shost->sg_prot_tablesize,
1802 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
1803 BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
1804 blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
1805 }
1806
1807 if (dev->dma_mask) {
1808 shost->max_sectors = min_t(unsigned int, shost->max_sectors,
1809 dma_max_mapping_size(dev) >> SECTOR_SHIFT);
1810 }
1811 blk_queue_max_hw_sectors(q, shost->max_sectors);
1812 if (shost->unchecked_isa_dma)
1813 blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
1814 blk_queue_segment_boundary(q, shost->dma_boundary);
1815 dma_set_seg_boundary(dev, shost->dma_boundary);
1816
1817 blk_queue_max_segment_size(q, shost->max_segment_size);
1818 blk_queue_virt_boundary(q, shost->virt_boundary_mask);
1819 dma_set_max_seg_size(dev, queue_max_segment_size(q));
1820
1821 /*
1822 * Set a reasonable default alignment: The larger of 32-byte (dword),
1823 * which is a common minimum for HBAs, and the minimum DMA alignment,
1824 * which is set by the platform.
1825 *
1826 * Devices that require a bigger alignment can increase it later.
1827 */
1828 blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
1829 }
1830 EXPORT_SYMBOL_GPL(__scsi_init_queue);
1831
1832 static const struct blk_mq_ops scsi_mq_ops_no_commit = {
1833 .get_budget = scsi_mq_get_budget,
1834 .put_budget = scsi_mq_put_budget,
1835 .queue_rq = scsi_queue_rq,
1836 .complete = scsi_softirq_done,
1837 .timeout = scsi_timeout,
1838 #ifdef CONFIG_BLK_DEBUG_FS
1839 .show_rq = scsi_show_rq,
1840 #endif
1841 .init_request = scsi_mq_init_request,
1842 .exit_request = scsi_mq_exit_request,
1843 .initialize_rq_fn = scsi_initialize_rq,
1844 .cleanup_rq = scsi_cleanup_rq,
1845 .busy = scsi_mq_lld_busy,
1846 .map_queues = scsi_map_queues,
1847 };
1848
1849
scsi_commit_rqs(struct blk_mq_hw_ctx * hctx)1850 static void scsi_commit_rqs(struct blk_mq_hw_ctx *hctx)
1851 {
1852 struct request_queue *q = hctx->queue;
1853 struct scsi_device *sdev = q->queuedata;
1854 struct Scsi_Host *shost = sdev->host;
1855
1856 shost->hostt->commit_rqs(shost, hctx->queue_num);
1857 }
1858
1859 static const struct blk_mq_ops scsi_mq_ops = {
1860 .get_budget = scsi_mq_get_budget,
1861 .put_budget = scsi_mq_put_budget,
1862 .queue_rq = scsi_queue_rq,
1863 .commit_rqs = scsi_commit_rqs,
1864 .complete = scsi_softirq_done,
1865 .timeout = scsi_timeout,
1866 #ifdef CONFIG_BLK_DEBUG_FS
1867 .show_rq = scsi_show_rq,
1868 #endif
1869 .init_request = scsi_mq_init_request,
1870 .exit_request = scsi_mq_exit_request,
1871 .initialize_rq_fn = scsi_initialize_rq,
1872 .cleanup_rq = scsi_cleanup_rq,
1873 .busy = scsi_mq_lld_busy,
1874 .map_queues = scsi_map_queues,
1875 };
1876
scsi_mq_alloc_queue(struct scsi_device * sdev)1877 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
1878 {
1879 sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
1880 if (IS_ERR(sdev->request_queue))
1881 return NULL;
1882
1883 sdev->request_queue->queuedata = sdev;
1884 __scsi_init_queue(sdev->host, sdev->request_queue);
1885 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
1886 return sdev->request_queue;
1887 }
1888
scsi_mq_setup_tags(struct Scsi_Host * shost)1889 int scsi_mq_setup_tags(struct Scsi_Host *shost)
1890 {
1891 unsigned int cmd_size, sgl_size;
1892 struct blk_mq_tag_set *tag_set = &shost->tag_set;
1893
1894 sgl_size = max_t(unsigned int, sizeof(struct scatterlist),
1895 scsi_mq_inline_sgl_size(shost));
1896 cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
1897 if (scsi_host_get_prot(shost))
1898 cmd_size += sizeof(struct scsi_data_buffer) +
1899 sizeof(struct scatterlist) * SCSI_INLINE_PROT_SG_CNT;
1900
1901 memset(tag_set, 0, sizeof(*tag_set));
1902 if (shost->hostt->commit_rqs)
1903 tag_set->ops = &scsi_mq_ops;
1904 else
1905 tag_set->ops = &scsi_mq_ops_no_commit;
1906 tag_set->nr_hw_queues = shost->nr_hw_queues ? : 1;
1907 tag_set->queue_depth = shost->can_queue;
1908 tag_set->cmd_size = cmd_size;
1909 tag_set->numa_node = NUMA_NO_NODE;
1910 tag_set->flags = BLK_MQ_F_SHOULD_MERGE;
1911 tag_set->flags |=
1912 BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
1913 tag_set->driver_data = shost;
1914 if (shost->host_tagset)
1915 tag_set->flags |= BLK_MQ_F_TAG_HCTX_SHARED;
1916
1917 return blk_mq_alloc_tag_set(tag_set);
1918 }
1919
scsi_mq_destroy_tags(struct Scsi_Host * shost)1920 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
1921 {
1922 blk_mq_free_tag_set(&shost->tag_set);
1923 }
1924
1925 /**
1926 * scsi_device_from_queue - return sdev associated with a request_queue
1927 * @q: The request queue to return the sdev from
1928 *
1929 * Return the sdev associated with a request queue or NULL if the
1930 * request_queue does not reference a SCSI device.
1931 */
scsi_device_from_queue(struct request_queue * q)1932 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
1933 {
1934 struct scsi_device *sdev = NULL;
1935
1936 if (q->mq_ops == &scsi_mq_ops_no_commit ||
1937 q->mq_ops == &scsi_mq_ops)
1938 sdev = q->queuedata;
1939 if (!sdev || !get_device(&sdev->sdev_gendev))
1940 sdev = NULL;
1941
1942 return sdev;
1943 }
1944
1945 /**
1946 * scsi_block_requests - Utility function used by low-level drivers to prevent
1947 * further commands from being queued to the device.
1948 * @shost: host in question
1949 *
1950 * There is no timer nor any other means by which the requests get unblocked
1951 * other than the low-level driver calling scsi_unblock_requests().
1952 */
scsi_block_requests(struct Scsi_Host * shost)1953 void scsi_block_requests(struct Scsi_Host *shost)
1954 {
1955 shost->host_self_blocked = 1;
1956 }
1957 EXPORT_SYMBOL(scsi_block_requests);
1958
1959 /**
1960 * scsi_unblock_requests - Utility function used by low-level drivers to allow
1961 * further commands to be queued to the device.
1962 * @shost: host in question
1963 *
1964 * There is no timer nor any other means by which the requests get unblocked
1965 * other than the low-level driver calling scsi_unblock_requests(). This is done
1966 * as an API function so that changes to the internals of the scsi mid-layer
1967 * won't require wholesale changes to drivers that use this feature.
1968 */
scsi_unblock_requests(struct Scsi_Host * shost)1969 void scsi_unblock_requests(struct Scsi_Host *shost)
1970 {
1971 shost->host_self_blocked = 0;
1972 scsi_run_host_queues(shost);
1973 }
1974 EXPORT_SYMBOL(scsi_unblock_requests);
1975
scsi_exit_queue(void)1976 void scsi_exit_queue(void)
1977 {
1978 kmem_cache_destroy(scsi_sense_cache);
1979 kmem_cache_destroy(scsi_sense_isadma_cache);
1980 }
1981
1982 /**
1983 * scsi_mode_select - issue a mode select
1984 * @sdev: SCSI device to be queried
1985 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1986 * @sp: Save page bit (0 == don't save, 1 == save)
1987 * @modepage: mode page being requested
1988 * @buffer: request buffer (may not be smaller than eight bytes)
1989 * @len: length of request buffer.
1990 * @timeout: command timeout
1991 * @retries: number of retries before failing
1992 * @data: returns a structure abstracting the mode header data
1993 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1994 * must be SCSI_SENSE_BUFFERSIZE big.
1995 *
1996 * Returns zero if successful; negative error number or scsi
1997 * status on error
1998 *
1999 */
2000 int
scsi_mode_select(struct scsi_device * sdev,int pf,int sp,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2001 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2002 unsigned char *buffer, int len, int timeout, int retries,
2003 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2004 {
2005 unsigned char cmd[10];
2006 unsigned char *real_buffer;
2007 int ret;
2008
2009 memset(cmd, 0, sizeof(cmd));
2010 cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2011
2012 if (sdev->use_10_for_ms) {
2013 if (len > 65535)
2014 return -EINVAL;
2015 real_buffer = kmalloc(8 + len, GFP_KERNEL);
2016 if (!real_buffer)
2017 return -ENOMEM;
2018 memcpy(real_buffer + 8, buffer, len);
2019 len += 8;
2020 real_buffer[0] = 0;
2021 real_buffer[1] = 0;
2022 real_buffer[2] = data->medium_type;
2023 real_buffer[3] = data->device_specific;
2024 real_buffer[4] = data->longlba ? 0x01 : 0;
2025 real_buffer[5] = 0;
2026 real_buffer[6] = data->block_descriptor_length >> 8;
2027 real_buffer[7] = data->block_descriptor_length;
2028
2029 cmd[0] = MODE_SELECT_10;
2030 cmd[7] = len >> 8;
2031 cmd[8] = len;
2032 } else {
2033 if (len > 255 || data->block_descriptor_length > 255 ||
2034 data->longlba)
2035 return -EINVAL;
2036
2037 real_buffer = kmalloc(4 + len, GFP_KERNEL);
2038 if (!real_buffer)
2039 return -ENOMEM;
2040 memcpy(real_buffer + 4, buffer, len);
2041 len += 4;
2042 real_buffer[0] = 0;
2043 real_buffer[1] = data->medium_type;
2044 real_buffer[2] = data->device_specific;
2045 real_buffer[3] = data->block_descriptor_length;
2046
2047 cmd[0] = MODE_SELECT;
2048 cmd[4] = len;
2049 }
2050
2051 ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2052 sshdr, timeout, retries, NULL);
2053 kfree(real_buffer);
2054 return ret;
2055 }
2056 EXPORT_SYMBOL_GPL(scsi_mode_select);
2057
2058 /**
2059 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2060 * @sdev: SCSI device to be queried
2061 * @dbd: set if mode sense will allow block descriptors to be returned
2062 * @modepage: mode page being requested
2063 * @buffer: request buffer (may not be smaller than eight bytes)
2064 * @len: length of request buffer.
2065 * @timeout: command timeout
2066 * @retries: number of retries before failing
2067 * @data: returns a structure abstracting the mode header data
2068 * @sshdr: place to put sense data (or NULL if no sense to be collected).
2069 * must be SCSI_SENSE_BUFFERSIZE big.
2070 *
2071 * Returns zero if unsuccessful, or the header offset (either 4
2072 * or 8 depending on whether a six or ten byte command was
2073 * issued) if successful.
2074 */
2075 int
scsi_mode_sense(struct scsi_device * sdev,int dbd,int modepage,unsigned char * buffer,int len,int timeout,int retries,struct scsi_mode_data * data,struct scsi_sense_hdr * sshdr)2076 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2077 unsigned char *buffer, int len, int timeout, int retries,
2078 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2079 {
2080 unsigned char cmd[12];
2081 int use_10_for_ms;
2082 int header_length;
2083 int result, retry_count = retries;
2084 struct scsi_sense_hdr my_sshdr;
2085
2086 memset(data, 0, sizeof(*data));
2087 memset(&cmd[0], 0, 12);
2088
2089 dbd = sdev->set_dbd_for_ms ? 8 : dbd;
2090 cmd[1] = dbd & 0x18; /* allows DBD and LLBA bits */
2091 cmd[2] = modepage;
2092
2093 /* caller might not be interested in sense, but we need it */
2094 if (!sshdr)
2095 sshdr = &my_sshdr;
2096
2097 retry:
2098 use_10_for_ms = sdev->use_10_for_ms;
2099
2100 if (use_10_for_ms) {
2101 if (len < 8)
2102 len = 8;
2103
2104 cmd[0] = MODE_SENSE_10;
2105 cmd[8] = len;
2106 header_length = 8;
2107 } else {
2108 if (len < 4)
2109 len = 4;
2110
2111 cmd[0] = MODE_SENSE;
2112 cmd[4] = len;
2113 header_length = 4;
2114 }
2115
2116 memset(buffer, 0, len);
2117
2118 result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2119 sshdr, timeout, retries, NULL);
2120
2121 /* This code looks awful: what it's doing is making sure an
2122 * ILLEGAL REQUEST sense return identifies the actual command
2123 * byte as the problem. MODE_SENSE commands can return
2124 * ILLEGAL REQUEST if the code page isn't supported */
2125
2126 if (use_10_for_ms && !scsi_status_is_good(result) &&
2127 driver_byte(result) == DRIVER_SENSE) {
2128 if (scsi_sense_valid(sshdr)) {
2129 if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2130 (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2131 /*
2132 * Invalid command operation code
2133 */
2134 sdev->use_10_for_ms = 0;
2135 goto retry;
2136 }
2137 }
2138 }
2139
2140 if (scsi_status_is_good(result)) {
2141 if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2142 (modepage == 6 || modepage == 8))) {
2143 /* Initio breakage? */
2144 header_length = 0;
2145 data->length = 13;
2146 data->medium_type = 0;
2147 data->device_specific = 0;
2148 data->longlba = 0;
2149 data->block_descriptor_length = 0;
2150 } else if (use_10_for_ms) {
2151 data->length = buffer[0]*256 + buffer[1] + 2;
2152 data->medium_type = buffer[2];
2153 data->device_specific = buffer[3];
2154 data->longlba = buffer[4] & 0x01;
2155 data->block_descriptor_length = buffer[6]*256
2156 + buffer[7];
2157 } else {
2158 data->length = buffer[0] + 1;
2159 data->medium_type = buffer[1];
2160 data->device_specific = buffer[2];
2161 data->block_descriptor_length = buffer[3];
2162 }
2163 data->header_length = header_length;
2164 } else if ((status_byte(result) == CHECK_CONDITION) &&
2165 scsi_sense_valid(sshdr) &&
2166 sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2167 retry_count--;
2168 goto retry;
2169 }
2170
2171 return result;
2172 }
2173 EXPORT_SYMBOL(scsi_mode_sense);
2174
2175 /**
2176 * scsi_test_unit_ready - test if unit is ready
2177 * @sdev: scsi device to change the state of.
2178 * @timeout: command timeout
2179 * @retries: number of retries before failing
2180 * @sshdr: outpout pointer for decoded sense information.
2181 *
2182 * Returns zero if unsuccessful or an error if TUR failed. For
2183 * removable media, UNIT_ATTENTION sets ->changed flag.
2184 **/
2185 int
scsi_test_unit_ready(struct scsi_device * sdev,int timeout,int retries,struct scsi_sense_hdr * sshdr)2186 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2187 struct scsi_sense_hdr *sshdr)
2188 {
2189 char cmd[] = {
2190 TEST_UNIT_READY, 0, 0, 0, 0, 0,
2191 };
2192 int result;
2193
2194 /* try to eat the UNIT_ATTENTION if there are enough retries */
2195 do {
2196 result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2197 timeout, 1, NULL);
2198 if (sdev->removable && scsi_sense_valid(sshdr) &&
2199 sshdr->sense_key == UNIT_ATTENTION)
2200 sdev->changed = 1;
2201 } while (scsi_sense_valid(sshdr) &&
2202 sshdr->sense_key == UNIT_ATTENTION && --retries);
2203
2204 return result;
2205 }
2206 EXPORT_SYMBOL(scsi_test_unit_ready);
2207
2208 /**
2209 * scsi_device_set_state - Take the given device through the device state model.
2210 * @sdev: scsi device to change the state of.
2211 * @state: state to change to.
2212 *
2213 * Returns zero if successful or an error if the requested
2214 * transition is illegal.
2215 */
2216 int
scsi_device_set_state(struct scsi_device * sdev,enum scsi_device_state state)2217 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2218 {
2219 enum scsi_device_state oldstate = sdev->sdev_state;
2220
2221 if (state == oldstate)
2222 return 0;
2223
2224 switch (state) {
2225 case SDEV_CREATED:
2226 switch (oldstate) {
2227 case SDEV_CREATED_BLOCK:
2228 break;
2229 default:
2230 goto illegal;
2231 }
2232 break;
2233
2234 case SDEV_RUNNING:
2235 switch (oldstate) {
2236 case SDEV_CREATED:
2237 case SDEV_OFFLINE:
2238 case SDEV_TRANSPORT_OFFLINE:
2239 case SDEV_QUIESCE:
2240 case SDEV_BLOCK:
2241 break;
2242 default:
2243 goto illegal;
2244 }
2245 break;
2246
2247 case SDEV_QUIESCE:
2248 switch (oldstate) {
2249 case SDEV_RUNNING:
2250 case SDEV_OFFLINE:
2251 case SDEV_TRANSPORT_OFFLINE:
2252 break;
2253 default:
2254 goto illegal;
2255 }
2256 break;
2257
2258 case SDEV_OFFLINE:
2259 case SDEV_TRANSPORT_OFFLINE:
2260 switch (oldstate) {
2261 case SDEV_CREATED:
2262 case SDEV_RUNNING:
2263 case SDEV_QUIESCE:
2264 case SDEV_BLOCK:
2265 break;
2266 default:
2267 goto illegal;
2268 }
2269 break;
2270
2271 case SDEV_BLOCK:
2272 switch (oldstate) {
2273 case SDEV_RUNNING:
2274 case SDEV_CREATED_BLOCK:
2275 case SDEV_QUIESCE:
2276 case SDEV_OFFLINE:
2277 break;
2278 default:
2279 goto illegal;
2280 }
2281 break;
2282
2283 case SDEV_CREATED_BLOCK:
2284 switch (oldstate) {
2285 case SDEV_CREATED:
2286 break;
2287 default:
2288 goto illegal;
2289 }
2290 break;
2291
2292 case SDEV_CANCEL:
2293 switch (oldstate) {
2294 case SDEV_CREATED:
2295 case SDEV_RUNNING:
2296 case SDEV_QUIESCE:
2297 case SDEV_OFFLINE:
2298 case SDEV_TRANSPORT_OFFLINE:
2299 break;
2300 default:
2301 goto illegal;
2302 }
2303 break;
2304
2305 case SDEV_DEL:
2306 switch (oldstate) {
2307 case SDEV_CREATED:
2308 case SDEV_RUNNING:
2309 case SDEV_OFFLINE:
2310 case SDEV_TRANSPORT_OFFLINE:
2311 case SDEV_CANCEL:
2312 case SDEV_BLOCK:
2313 case SDEV_CREATED_BLOCK:
2314 break;
2315 default:
2316 goto illegal;
2317 }
2318 break;
2319
2320 }
2321 sdev->offline_already = false;
2322 sdev->sdev_state = state;
2323 return 0;
2324
2325 illegal:
2326 SCSI_LOG_ERROR_RECOVERY(1,
2327 sdev_printk(KERN_ERR, sdev,
2328 "Illegal state transition %s->%s",
2329 scsi_device_state_name(oldstate),
2330 scsi_device_state_name(state))
2331 );
2332 return -EINVAL;
2333 }
2334 EXPORT_SYMBOL(scsi_device_set_state);
2335
2336 /**
2337 * sdev_evt_emit - emit a single SCSI device uevent
2338 * @sdev: associated SCSI device
2339 * @evt: event to emit
2340 *
2341 * Send a single uevent (scsi_event) to the associated scsi_device.
2342 */
scsi_evt_emit(struct scsi_device * sdev,struct scsi_event * evt)2343 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2344 {
2345 int idx = 0;
2346 char *envp[3];
2347
2348 switch (evt->evt_type) {
2349 case SDEV_EVT_MEDIA_CHANGE:
2350 envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2351 break;
2352 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2353 scsi_rescan_device(&sdev->sdev_gendev);
2354 envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2355 break;
2356 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2357 envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2358 break;
2359 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2360 envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2361 break;
2362 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2363 envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2364 break;
2365 case SDEV_EVT_LUN_CHANGE_REPORTED:
2366 envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2367 break;
2368 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2369 envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2370 break;
2371 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2372 envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2373 break;
2374 default:
2375 /* do nothing */
2376 break;
2377 }
2378
2379 envp[idx++] = NULL;
2380
2381 kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2382 }
2383
2384 /**
2385 * sdev_evt_thread - send a uevent for each scsi event
2386 * @work: work struct for scsi_device
2387 *
2388 * Dispatch queued events to their associated scsi_device kobjects
2389 * as uevents.
2390 */
scsi_evt_thread(struct work_struct * work)2391 void scsi_evt_thread(struct work_struct *work)
2392 {
2393 struct scsi_device *sdev;
2394 enum scsi_device_event evt_type;
2395 LIST_HEAD(event_list);
2396
2397 sdev = container_of(work, struct scsi_device, event_work);
2398
2399 for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2400 if (test_and_clear_bit(evt_type, sdev->pending_events))
2401 sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2402
2403 while (1) {
2404 struct scsi_event *evt;
2405 struct list_head *this, *tmp;
2406 unsigned long flags;
2407
2408 spin_lock_irqsave(&sdev->list_lock, flags);
2409 list_splice_init(&sdev->event_list, &event_list);
2410 spin_unlock_irqrestore(&sdev->list_lock, flags);
2411
2412 if (list_empty(&event_list))
2413 break;
2414
2415 list_for_each_safe(this, tmp, &event_list) {
2416 evt = list_entry(this, struct scsi_event, node);
2417 list_del(&evt->node);
2418 scsi_evt_emit(sdev, evt);
2419 kfree(evt);
2420 }
2421 }
2422 }
2423
2424 /**
2425 * sdev_evt_send - send asserted event to uevent thread
2426 * @sdev: scsi_device event occurred on
2427 * @evt: event to send
2428 *
2429 * Assert scsi device event asynchronously.
2430 */
sdev_evt_send(struct scsi_device * sdev,struct scsi_event * evt)2431 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2432 {
2433 unsigned long flags;
2434
2435 #if 0
2436 /* FIXME: currently this check eliminates all media change events
2437 * for polled devices. Need to update to discriminate between AN
2438 * and polled events */
2439 if (!test_bit(evt->evt_type, sdev->supported_events)) {
2440 kfree(evt);
2441 return;
2442 }
2443 #endif
2444
2445 spin_lock_irqsave(&sdev->list_lock, flags);
2446 list_add_tail(&evt->node, &sdev->event_list);
2447 schedule_work(&sdev->event_work);
2448 spin_unlock_irqrestore(&sdev->list_lock, flags);
2449 }
2450 EXPORT_SYMBOL_GPL(sdev_evt_send);
2451
2452 /**
2453 * sdev_evt_alloc - allocate a new scsi event
2454 * @evt_type: type of event to allocate
2455 * @gfpflags: GFP flags for allocation
2456 *
2457 * Allocates and returns a new scsi_event.
2458 */
sdev_evt_alloc(enum scsi_device_event evt_type,gfp_t gfpflags)2459 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2460 gfp_t gfpflags)
2461 {
2462 struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2463 if (!evt)
2464 return NULL;
2465
2466 evt->evt_type = evt_type;
2467 INIT_LIST_HEAD(&evt->node);
2468
2469 /* evt_type-specific initialization, if any */
2470 switch (evt_type) {
2471 case SDEV_EVT_MEDIA_CHANGE:
2472 case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2473 case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2474 case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2475 case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2476 case SDEV_EVT_LUN_CHANGE_REPORTED:
2477 case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2478 case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2479 default:
2480 /* do nothing */
2481 break;
2482 }
2483
2484 return evt;
2485 }
2486 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2487
2488 /**
2489 * sdev_evt_send_simple - send asserted event to uevent thread
2490 * @sdev: scsi_device event occurred on
2491 * @evt_type: type of event to send
2492 * @gfpflags: GFP flags for allocation
2493 *
2494 * Assert scsi device event asynchronously, given an event type.
2495 */
sdev_evt_send_simple(struct scsi_device * sdev,enum scsi_device_event evt_type,gfp_t gfpflags)2496 void sdev_evt_send_simple(struct scsi_device *sdev,
2497 enum scsi_device_event evt_type, gfp_t gfpflags)
2498 {
2499 struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2500 if (!evt) {
2501 sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2502 evt_type);
2503 return;
2504 }
2505
2506 sdev_evt_send(sdev, evt);
2507 }
2508 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2509
2510 /**
2511 * scsi_device_quiesce - Block user issued commands.
2512 * @sdev: scsi device to quiesce.
2513 *
2514 * This works by trying to transition to the SDEV_QUIESCE state
2515 * (which must be a legal transition). When the device is in this
2516 * state, only special requests will be accepted, all others will
2517 * be deferred. Since special requests may also be requeued requests,
2518 * a successful return doesn't guarantee the device will be
2519 * totally quiescent.
2520 *
2521 * Must be called with user context, may sleep.
2522 *
2523 * Returns zero if unsuccessful or an error if not.
2524 */
2525 int
scsi_device_quiesce(struct scsi_device * sdev)2526 scsi_device_quiesce(struct scsi_device *sdev)
2527 {
2528 struct request_queue *q = sdev->request_queue;
2529 int err;
2530
2531 /*
2532 * It is allowed to call scsi_device_quiesce() multiple times from
2533 * the same context but concurrent scsi_device_quiesce() calls are
2534 * not allowed.
2535 */
2536 WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
2537
2538 if (sdev->quiesced_by == current)
2539 return 0;
2540
2541 blk_set_pm_only(q);
2542
2543 blk_mq_freeze_queue(q);
2544 /*
2545 * Ensure that the effect of blk_set_pm_only() will be visible
2546 * for percpu_ref_tryget() callers that occur after the queue
2547 * unfreeze even if the queue was already frozen before this function
2548 * was called. See also https://lwn.net/Articles/573497/.
2549 */
2550 synchronize_rcu();
2551 blk_mq_unfreeze_queue(q);
2552
2553 mutex_lock(&sdev->state_mutex);
2554 err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2555 if (err == 0)
2556 sdev->quiesced_by = current;
2557 else
2558 blk_clear_pm_only(q);
2559 mutex_unlock(&sdev->state_mutex);
2560
2561 return err;
2562 }
2563 EXPORT_SYMBOL(scsi_device_quiesce);
2564
2565 /**
2566 * scsi_device_resume - Restart user issued commands to a quiesced device.
2567 * @sdev: scsi device to resume.
2568 *
2569 * Moves the device from quiesced back to running and restarts the
2570 * queues.
2571 *
2572 * Must be called with user context, may sleep.
2573 */
scsi_device_resume(struct scsi_device * sdev)2574 void scsi_device_resume(struct scsi_device *sdev)
2575 {
2576 /* check if the device state was mutated prior to resume, and if
2577 * so assume the state is being managed elsewhere (for example
2578 * device deleted during suspend)
2579 */
2580 mutex_lock(&sdev->state_mutex);
2581 if (sdev->quiesced_by) {
2582 sdev->quiesced_by = NULL;
2583 blk_clear_pm_only(sdev->request_queue);
2584 }
2585 if (sdev->sdev_state == SDEV_QUIESCE)
2586 scsi_device_set_state(sdev, SDEV_RUNNING);
2587 mutex_unlock(&sdev->state_mutex);
2588 }
2589 EXPORT_SYMBOL(scsi_device_resume);
2590
2591 static void
device_quiesce_fn(struct scsi_device * sdev,void * data)2592 device_quiesce_fn(struct scsi_device *sdev, void *data)
2593 {
2594 scsi_device_quiesce(sdev);
2595 }
2596
2597 void
scsi_target_quiesce(struct scsi_target * starget)2598 scsi_target_quiesce(struct scsi_target *starget)
2599 {
2600 starget_for_each_device(starget, NULL, device_quiesce_fn);
2601 }
2602 EXPORT_SYMBOL(scsi_target_quiesce);
2603
2604 static void
device_resume_fn(struct scsi_device * sdev,void * data)2605 device_resume_fn(struct scsi_device *sdev, void *data)
2606 {
2607 scsi_device_resume(sdev);
2608 }
2609
2610 void
scsi_target_resume(struct scsi_target * starget)2611 scsi_target_resume(struct scsi_target *starget)
2612 {
2613 starget_for_each_device(starget, NULL, device_resume_fn);
2614 }
2615 EXPORT_SYMBOL(scsi_target_resume);
2616
2617 /**
2618 * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
2619 * @sdev: device to block
2620 *
2621 * Pause SCSI command processing on the specified device. Does not sleep.
2622 *
2623 * Returns zero if successful or a negative error code upon failure.
2624 *
2625 * Notes:
2626 * This routine transitions the device to the SDEV_BLOCK state (which must be
2627 * a legal transition). When the device is in this state, command processing
2628 * is paused until the device leaves the SDEV_BLOCK state. See also
2629 * scsi_internal_device_unblock_nowait().
2630 */
scsi_internal_device_block_nowait(struct scsi_device * sdev)2631 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
2632 {
2633 struct request_queue *q = sdev->request_queue;
2634 int err = 0;
2635
2636 err = scsi_device_set_state(sdev, SDEV_BLOCK);
2637 if (err) {
2638 err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2639
2640 if (err)
2641 return err;
2642 }
2643
2644 /*
2645 * The device has transitioned to SDEV_BLOCK. Stop the
2646 * block layer from calling the midlayer with this device's
2647 * request queue.
2648 */
2649 blk_mq_quiesce_queue_nowait(q);
2650 return 0;
2651 }
2652 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
2653
2654 /**
2655 * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
2656 * @sdev: device to block
2657 *
2658 * Pause SCSI command processing on the specified device and wait until all
2659 * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
2660 *
2661 * Returns zero if successful or a negative error code upon failure.
2662 *
2663 * Note:
2664 * This routine transitions the device to the SDEV_BLOCK state (which must be
2665 * a legal transition). When the device is in this state, command processing
2666 * is paused until the device leaves the SDEV_BLOCK state. See also
2667 * scsi_internal_device_unblock().
2668 */
scsi_internal_device_block(struct scsi_device * sdev)2669 static int scsi_internal_device_block(struct scsi_device *sdev)
2670 {
2671 struct request_queue *q = sdev->request_queue;
2672 int err;
2673
2674 mutex_lock(&sdev->state_mutex);
2675 err = scsi_internal_device_block_nowait(sdev);
2676 if (err == 0)
2677 blk_mq_quiesce_queue(q);
2678 mutex_unlock(&sdev->state_mutex);
2679
2680 return err;
2681 }
2682
scsi_start_queue(struct scsi_device * sdev)2683 void scsi_start_queue(struct scsi_device *sdev)
2684 {
2685 struct request_queue *q = sdev->request_queue;
2686
2687 blk_mq_unquiesce_queue(q);
2688 }
2689
2690 /**
2691 * scsi_internal_device_unblock_nowait - resume a device after a block request
2692 * @sdev: device to resume
2693 * @new_state: state to set the device to after unblocking
2694 *
2695 * Restart the device queue for a previously suspended SCSI device. Does not
2696 * sleep.
2697 *
2698 * Returns zero if successful or a negative error code upon failure.
2699 *
2700 * Notes:
2701 * This routine transitions the device to the SDEV_RUNNING state or to one of
2702 * the offline states (which must be a legal transition) allowing the midlayer
2703 * to goose the queue for this device.
2704 */
scsi_internal_device_unblock_nowait(struct scsi_device * sdev,enum scsi_device_state new_state)2705 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
2706 enum scsi_device_state new_state)
2707 {
2708 switch (new_state) {
2709 case SDEV_RUNNING:
2710 case SDEV_TRANSPORT_OFFLINE:
2711 break;
2712 default:
2713 return -EINVAL;
2714 }
2715
2716 /*
2717 * Try to transition the scsi device to SDEV_RUNNING or one of the
2718 * offlined states and goose the device queue if successful.
2719 */
2720 switch (sdev->sdev_state) {
2721 case SDEV_BLOCK:
2722 case SDEV_TRANSPORT_OFFLINE:
2723 sdev->sdev_state = new_state;
2724 break;
2725 case SDEV_CREATED_BLOCK:
2726 if (new_state == SDEV_TRANSPORT_OFFLINE ||
2727 new_state == SDEV_OFFLINE)
2728 sdev->sdev_state = new_state;
2729 else
2730 sdev->sdev_state = SDEV_CREATED;
2731 break;
2732 case SDEV_CANCEL:
2733 case SDEV_OFFLINE:
2734 break;
2735 default:
2736 return -EINVAL;
2737 }
2738 scsi_start_queue(sdev);
2739
2740 return 0;
2741 }
2742 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
2743
2744 /**
2745 * scsi_internal_device_unblock - resume a device after a block request
2746 * @sdev: device to resume
2747 * @new_state: state to set the device to after unblocking
2748 *
2749 * Restart the device queue for a previously suspended SCSI device. May sleep.
2750 *
2751 * Returns zero if successful or a negative error code upon failure.
2752 *
2753 * Notes:
2754 * This routine transitions the device to the SDEV_RUNNING state or to one of
2755 * the offline states (which must be a legal transition) allowing the midlayer
2756 * to goose the queue for this device.
2757 */
scsi_internal_device_unblock(struct scsi_device * sdev,enum scsi_device_state new_state)2758 static int scsi_internal_device_unblock(struct scsi_device *sdev,
2759 enum scsi_device_state new_state)
2760 {
2761 int ret;
2762
2763 mutex_lock(&sdev->state_mutex);
2764 ret = scsi_internal_device_unblock_nowait(sdev, new_state);
2765 mutex_unlock(&sdev->state_mutex);
2766
2767 return ret;
2768 }
2769
2770 static void
device_block(struct scsi_device * sdev,void * data)2771 device_block(struct scsi_device *sdev, void *data)
2772 {
2773 int ret;
2774
2775 ret = scsi_internal_device_block(sdev);
2776
2777 WARN_ONCE(ret, "scsi_internal_device_block(%s) failed: ret = %d\n",
2778 dev_name(&sdev->sdev_gendev), ret);
2779 }
2780
2781 static int
target_block(struct device * dev,void * data)2782 target_block(struct device *dev, void *data)
2783 {
2784 if (scsi_is_target_device(dev))
2785 starget_for_each_device(to_scsi_target(dev), NULL,
2786 device_block);
2787 return 0;
2788 }
2789
2790 void
scsi_target_block(struct device * dev)2791 scsi_target_block(struct device *dev)
2792 {
2793 if (scsi_is_target_device(dev))
2794 starget_for_each_device(to_scsi_target(dev), NULL,
2795 device_block);
2796 else
2797 device_for_each_child(dev, NULL, target_block);
2798 }
2799 EXPORT_SYMBOL_GPL(scsi_target_block);
2800
2801 static void
device_unblock(struct scsi_device * sdev,void * data)2802 device_unblock(struct scsi_device *sdev, void *data)
2803 {
2804 scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
2805 }
2806
2807 static int
target_unblock(struct device * dev,void * data)2808 target_unblock(struct device *dev, void *data)
2809 {
2810 if (scsi_is_target_device(dev))
2811 starget_for_each_device(to_scsi_target(dev), data,
2812 device_unblock);
2813 return 0;
2814 }
2815
2816 void
scsi_target_unblock(struct device * dev,enum scsi_device_state new_state)2817 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
2818 {
2819 if (scsi_is_target_device(dev))
2820 starget_for_each_device(to_scsi_target(dev), &new_state,
2821 device_unblock);
2822 else
2823 device_for_each_child(dev, &new_state, target_unblock);
2824 }
2825 EXPORT_SYMBOL_GPL(scsi_target_unblock);
2826
2827 int
scsi_host_block(struct Scsi_Host * shost)2828 scsi_host_block(struct Scsi_Host *shost)
2829 {
2830 struct scsi_device *sdev;
2831 int ret = 0;
2832
2833 /*
2834 * Call scsi_internal_device_block_nowait so we can avoid
2835 * calling synchronize_rcu() for each LUN.
2836 */
2837 shost_for_each_device(sdev, shost) {
2838 mutex_lock(&sdev->state_mutex);
2839 ret = scsi_internal_device_block_nowait(sdev);
2840 mutex_unlock(&sdev->state_mutex);
2841 if (ret) {
2842 scsi_device_put(sdev);
2843 break;
2844 }
2845 }
2846
2847 /*
2848 * SCSI never enables blk-mq's BLK_MQ_F_BLOCKING flag so
2849 * calling synchronize_rcu() once is enough.
2850 */
2851 WARN_ON_ONCE(shost->tag_set.flags & BLK_MQ_F_BLOCKING);
2852
2853 if (!ret)
2854 synchronize_rcu();
2855
2856 return ret;
2857 }
2858 EXPORT_SYMBOL_GPL(scsi_host_block);
2859
2860 int
scsi_host_unblock(struct Scsi_Host * shost,int new_state)2861 scsi_host_unblock(struct Scsi_Host *shost, int new_state)
2862 {
2863 struct scsi_device *sdev;
2864 int ret = 0;
2865
2866 shost_for_each_device(sdev, shost) {
2867 ret = scsi_internal_device_unblock(sdev, new_state);
2868 if (ret) {
2869 scsi_device_put(sdev);
2870 break;
2871 }
2872 }
2873 return ret;
2874 }
2875 EXPORT_SYMBOL_GPL(scsi_host_unblock);
2876
2877 /**
2878 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2879 * @sgl: scatter-gather list
2880 * @sg_count: number of segments in sg
2881 * @offset: offset in bytes into sg, on return offset into the mapped area
2882 * @len: bytes to map, on return number of bytes mapped
2883 *
2884 * Returns virtual address of the start of the mapped page
2885 */
scsi_kmap_atomic_sg(struct scatterlist * sgl,int sg_count,size_t * offset,size_t * len)2886 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
2887 size_t *offset, size_t *len)
2888 {
2889 int i;
2890 size_t sg_len = 0, len_complete = 0;
2891 struct scatterlist *sg;
2892 struct page *page;
2893
2894 WARN_ON(!irqs_disabled());
2895
2896 for_each_sg(sgl, sg, sg_count, i) {
2897 len_complete = sg_len; /* Complete sg-entries */
2898 sg_len += sg->length;
2899 if (sg_len > *offset)
2900 break;
2901 }
2902
2903 if (unlikely(i == sg_count)) {
2904 printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
2905 "elements %d\n",
2906 __func__, sg_len, *offset, sg_count);
2907 WARN_ON(1);
2908 return NULL;
2909 }
2910
2911 /* Offset starting from the beginning of first page in this sg-entry */
2912 *offset = *offset - len_complete + sg->offset;
2913
2914 /* Assumption: contiguous pages can be accessed as "page + i" */
2915 page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
2916 *offset &= ~PAGE_MASK;
2917
2918 /* Bytes in this sg-entry from *offset to the end of the page */
2919 sg_len = PAGE_SIZE - *offset;
2920 if (*len > sg_len)
2921 *len = sg_len;
2922
2923 return kmap_atomic(page);
2924 }
2925 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
2926
2927 /**
2928 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2929 * @virt: virtual address to be unmapped
2930 */
scsi_kunmap_atomic_sg(void * virt)2931 void scsi_kunmap_atomic_sg(void *virt)
2932 {
2933 kunmap_atomic(virt);
2934 }
2935 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
2936
sdev_disable_disk_events(struct scsi_device * sdev)2937 void sdev_disable_disk_events(struct scsi_device *sdev)
2938 {
2939 atomic_inc(&sdev->disk_events_disable_depth);
2940 }
2941 EXPORT_SYMBOL(sdev_disable_disk_events);
2942
sdev_enable_disk_events(struct scsi_device * sdev)2943 void sdev_enable_disk_events(struct scsi_device *sdev)
2944 {
2945 if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
2946 return;
2947 atomic_dec(&sdev->disk_events_disable_depth);
2948 }
2949 EXPORT_SYMBOL(sdev_enable_disk_events);
2950
2951 /**
2952 * scsi_vpd_lun_id - return a unique device identification
2953 * @sdev: SCSI device
2954 * @id: buffer for the identification
2955 * @id_len: length of the buffer
2956 *
2957 * Copies a unique device identification into @id based
2958 * on the information in the VPD page 0x83 of the device.
2959 * The string will be formatted as a SCSI name string.
2960 *
2961 * Returns the length of the identification or error on failure.
2962 * If the identifier is longer than the supplied buffer the actual
2963 * identifier length is returned and the buffer is not zero-padded.
2964 */
scsi_vpd_lun_id(struct scsi_device * sdev,char * id,size_t id_len)2965 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
2966 {
2967 u8 cur_id_type = 0xff;
2968 u8 cur_id_size = 0;
2969 const unsigned char *d, *cur_id_str;
2970 const struct scsi_vpd *vpd_pg83;
2971 int id_size = -EINVAL;
2972
2973 rcu_read_lock();
2974 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
2975 if (!vpd_pg83) {
2976 rcu_read_unlock();
2977 return -ENXIO;
2978 }
2979
2980 /*
2981 * Look for the correct descriptor.
2982 * Order of preference for lun descriptor:
2983 * - SCSI name string
2984 * - NAA IEEE Registered Extended
2985 * - EUI-64 based 16-byte
2986 * - EUI-64 based 12-byte
2987 * - NAA IEEE Registered
2988 * - NAA IEEE Extended
2989 * - T10 Vendor ID
2990 * as longer descriptors reduce the likelyhood
2991 * of identification clashes.
2992 */
2993
2994 /* The id string must be at least 20 bytes + terminating NULL byte */
2995 if (id_len < 21) {
2996 rcu_read_unlock();
2997 return -EINVAL;
2998 }
2999
3000 memset(id, 0, id_len);
3001 d = vpd_pg83->data + 4;
3002 while (d < vpd_pg83->data + vpd_pg83->len) {
3003 /* Skip designators not referring to the LUN */
3004 if ((d[1] & 0x30) != 0x00)
3005 goto next_desig;
3006
3007 switch (d[1] & 0xf) {
3008 case 0x1:
3009 /* T10 Vendor ID */
3010 if (cur_id_size > d[3])
3011 break;
3012 /* Prefer anything */
3013 if (cur_id_type > 0x01 && cur_id_type != 0xff)
3014 break;
3015 cur_id_size = d[3];
3016 if (cur_id_size + 4 > id_len)
3017 cur_id_size = id_len - 4;
3018 cur_id_str = d + 4;
3019 cur_id_type = d[1] & 0xf;
3020 id_size = snprintf(id, id_len, "t10.%*pE",
3021 cur_id_size, cur_id_str);
3022 break;
3023 case 0x2:
3024 /* EUI-64 */
3025 if (cur_id_size > d[3])
3026 break;
3027 /* Prefer NAA IEEE Registered Extended */
3028 if (cur_id_type == 0x3 &&
3029 cur_id_size == d[3])
3030 break;
3031 cur_id_size = d[3];
3032 cur_id_str = d + 4;
3033 cur_id_type = d[1] & 0xf;
3034 switch (cur_id_size) {
3035 case 8:
3036 id_size = snprintf(id, id_len,
3037 "eui.%8phN",
3038 cur_id_str);
3039 break;
3040 case 12:
3041 id_size = snprintf(id, id_len,
3042 "eui.%12phN",
3043 cur_id_str);
3044 break;
3045 case 16:
3046 id_size = snprintf(id, id_len,
3047 "eui.%16phN",
3048 cur_id_str);
3049 break;
3050 default:
3051 cur_id_size = 0;
3052 break;
3053 }
3054 break;
3055 case 0x3:
3056 /* NAA */
3057 if (cur_id_size > d[3])
3058 break;
3059 cur_id_size = d[3];
3060 cur_id_str = d + 4;
3061 cur_id_type = d[1] & 0xf;
3062 switch (cur_id_size) {
3063 case 8:
3064 id_size = snprintf(id, id_len,
3065 "naa.%8phN",
3066 cur_id_str);
3067 break;
3068 case 16:
3069 id_size = snprintf(id, id_len,
3070 "naa.%16phN",
3071 cur_id_str);
3072 break;
3073 default:
3074 cur_id_size = 0;
3075 break;
3076 }
3077 break;
3078 case 0x8:
3079 /* SCSI name string */
3080 if (cur_id_size + 4 > d[3])
3081 break;
3082 /* Prefer others for truncated descriptor */
3083 if (cur_id_size && d[3] > id_len)
3084 break;
3085 cur_id_size = id_size = d[3];
3086 cur_id_str = d + 4;
3087 cur_id_type = d[1] & 0xf;
3088 if (cur_id_size >= id_len)
3089 cur_id_size = id_len - 1;
3090 memcpy(id, cur_id_str, cur_id_size);
3091 /* Decrease priority for truncated descriptor */
3092 if (cur_id_size != id_size)
3093 cur_id_size = 6;
3094 break;
3095 default:
3096 break;
3097 }
3098 next_desig:
3099 d += d[3] + 4;
3100 }
3101 rcu_read_unlock();
3102
3103 return id_size;
3104 }
3105 EXPORT_SYMBOL(scsi_vpd_lun_id);
3106
3107 /*
3108 * scsi_vpd_tpg_id - return a target port group identifier
3109 * @sdev: SCSI device
3110 *
3111 * Returns the Target Port Group identifier from the information
3112 * froom VPD page 0x83 of the device.
3113 *
3114 * Returns the identifier or error on failure.
3115 */
scsi_vpd_tpg_id(struct scsi_device * sdev,int * rel_id)3116 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3117 {
3118 const unsigned char *d;
3119 const struct scsi_vpd *vpd_pg83;
3120 int group_id = -EAGAIN, rel_port = -1;
3121
3122 rcu_read_lock();
3123 vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3124 if (!vpd_pg83) {
3125 rcu_read_unlock();
3126 return -ENXIO;
3127 }
3128
3129 d = vpd_pg83->data + 4;
3130 while (d < vpd_pg83->data + vpd_pg83->len) {
3131 switch (d[1] & 0xf) {
3132 case 0x4:
3133 /* Relative target port */
3134 rel_port = get_unaligned_be16(&d[6]);
3135 break;
3136 case 0x5:
3137 /* Target port group */
3138 group_id = get_unaligned_be16(&d[6]);
3139 break;
3140 default:
3141 break;
3142 }
3143 d += d[3] + 4;
3144 }
3145 rcu_read_unlock();
3146
3147 if (group_id >= 0 && rel_id && rel_port != -1)
3148 *rel_id = rel_port;
3149
3150 return group_id;
3151 }
3152 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3153