1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #include <linux/highmem.h>
10 #include <linux/hrtimer_api.h>
11 #include <linux/ktime_api.h>
12 #include <linux/sched/signal.h>
13 #include <linux/syscalls_api.h>
14 #include <linux/debug_locks.h>
15 #include <linux/prefetch.h>
16 #include <linux/capability.h>
17 #include <linux/pgtable_api.h>
18 #include <linux/wait_bit.h>
19 #include <linux/jiffies.h>
20 #include <linux/spinlock_api.h>
21 #include <linux/cpumask_api.h>
22 #include <linux/lockdep_api.h>
23 #include <linux/hardirq.h>
24 #include <linux/softirq.h>
25 #include <linux/refcount_api.h>
26 #include <linux/topology.h>
27 #include <linux/sched/clock.h>
28 #include <linux/sched/cond_resched.h>
29 #include <linux/sched/cputime.h>
30 #include <linux/sched/debug.h>
31 #include <linux/sched/hotplug.h>
32 #include <linux/sched/init.h>
33 #include <linux/sched/isolation.h>
34 #include <linux/sched/loadavg.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/nohz.h>
37 #include <linux/sched/rseq_api.h>
38 #include <linux/sched/rt.h>
39
40 #include <linux/blkdev.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpuset.h>
43 #include <linux/delayacct.h>
44 #include <linux/init_task.h>
45 #include <linux/interrupt.h>
46 #include <linux/ioprio.h>
47 #include <linux/kallsyms.h>
48 #include <linux/kcov.h>
49 #include <linux/kprobes.h>
50 #include <linux/llist_api.h>
51 #include <linux/mmu_context.h>
52 #include <linux/mmzone.h>
53 #include <linux/mutex_api.h>
54 #include <linux/nmi.h>
55 #include <linux/nospec.h>
56 #include <linux/perf_event_api.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcuwait_api.h>
60 #include <linux/sched/wake_q.h>
61 #include <linux/scs.h>
62 #include <linux/slab.h>
63 #include <linux/syscalls.h>
64 #include <linux/vtime.h>
65 #include <linux/wait_api.h>
66 #include <linux/workqueue_api.h>
67
68 #ifdef CONFIG_PREEMPT_DYNAMIC
69 # ifdef CONFIG_GENERIC_ENTRY
70 # include <linux/entry-common.h>
71 # endif
72 #endif
73
74 #include <uapi/linux/sched/types.h>
75
76 #include <asm/irq_regs.h>
77 #include <asm/switch_to.h>
78 #include <asm/tlb.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <linux/sched/rseq_api.h>
82 #include <trace/events/sched.h>
83 #undef CREATE_TRACE_POINTS
84
85 #include "sched.h"
86 #include "stats.h"
87 #include "autogroup.h"
88
89 #include "autogroup.h"
90 #include "pelt.h"
91 #include "smp.h"
92 #include "stats.h"
93
94 #include "../workqueue_internal.h"
95 #include "../../io_uring/io-wq.h"
96 #include "../smpboot.h"
97
98 /*
99 * Export tracepoints that act as a bare tracehook (ie: have no trace event
100 * associated with them) to allow external modules to probe them.
101 */
102 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
103 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
104 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
105 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
106 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
108 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
109 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
110 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
111 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
112 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
113
114 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
115
116 #ifdef CONFIG_SCHED_DEBUG
117 /*
118 * Debugging: various feature bits
119 *
120 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
121 * sysctl_sched_features, defined in sched.h, to allow constants propagation
122 * at compile time and compiler optimization based on features default.
123 */
124 #define SCHED_FEAT(name, enabled) \
125 (1UL << __SCHED_FEAT_##name) * enabled |
126 const_debug unsigned int sysctl_sched_features =
127 #include "features.h"
128 0;
129 #undef SCHED_FEAT
130
131 /*
132 * Print a warning if need_resched is set for the given duration (if
133 * LATENCY_WARN is enabled).
134 *
135 * If sysctl_resched_latency_warn_once is set, only one warning will be shown
136 * per boot.
137 */
138 __read_mostly int sysctl_resched_latency_warn_ms = 100;
139 __read_mostly int sysctl_resched_latency_warn_once = 1;
140 #endif /* CONFIG_SCHED_DEBUG */
141
142 /*
143 * Number of tasks to iterate in a single balance run.
144 * Limited because this is done with IRQs disabled.
145 */
146 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK;
147
148 __read_mostly int scheduler_running;
149
150 #ifdef CONFIG_SCHED_CORE
151
152 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled);
153
154 /* kernel prio, less is more */
__task_prio(struct task_struct * p)155 static inline int __task_prio(struct task_struct *p)
156 {
157 if (p->sched_class == &stop_sched_class) /* trumps deadline */
158 return -2;
159
160 if (rt_prio(p->prio)) /* includes deadline */
161 return p->prio; /* [-1, 99] */
162
163 if (p->sched_class == &idle_sched_class)
164 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */
165
166 return MAX_RT_PRIO + MAX_NICE; /* 120, squash fair */
167 }
168
169 /*
170 * l(a,b)
171 * le(a,b) := !l(b,a)
172 * g(a,b) := l(b,a)
173 * ge(a,b) := !l(a,b)
174 */
175
176 /* real prio, less is less */
prio_less(struct task_struct * a,struct task_struct * b,bool in_fi)177 static inline bool prio_less(struct task_struct *a, struct task_struct *b, bool in_fi)
178 {
179
180 int pa = __task_prio(a), pb = __task_prio(b);
181
182 if (-pa < -pb)
183 return true;
184
185 if (-pb < -pa)
186 return false;
187
188 if (pa == -1) /* dl_prio() doesn't work because of stop_class above */
189 return !dl_time_before(a->dl.deadline, b->dl.deadline);
190
191 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */
192 return cfs_prio_less(a, b, in_fi);
193
194 return false;
195 }
196
__sched_core_less(struct task_struct * a,struct task_struct * b)197 static inline bool __sched_core_less(struct task_struct *a, struct task_struct *b)
198 {
199 if (a->core_cookie < b->core_cookie)
200 return true;
201
202 if (a->core_cookie > b->core_cookie)
203 return false;
204
205 /* flip prio, so high prio is leftmost */
206 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count))
207 return true;
208
209 return false;
210 }
211
212 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node)
213
rb_sched_core_less(struct rb_node * a,const struct rb_node * b)214 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b)
215 {
216 return __sched_core_less(__node_2_sc(a), __node_2_sc(b));
217 }
218
rb_sched_core_cmp(const void * key,const struct rb_node * node)219 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node)
220 {
221 const struct task_struct *p = __node_2_sc(node);
222 unsigned long cookie = (unsigned long)key;
223
224 if (cookie < p->core_cookie)
225 return -1;
226
227 if (cookie > p->core_cookie)
228 return 1;
229
230 return 0;
231 }
232
sched_core_enqueue(struct rq * rq,struct task_struct * p)233 void sched_core_enqueue(struct rq *rq, struct task_struct *p)
234 {
235 rq->core->core_task_seq++;
236
237 if (!p->core_cookie)
238 return;
239
240 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less);
241 }
242
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)243 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags)
244 {
245 rq->core->core_task_seq++;
246
247 if (sched_core_enqueued(p)) {
248 rb_erase(&p->core_node, &rq->core_tree);
249 RB_CLEAR_NODE(&p->core_node);
250 }
251
252 /*
253 * Migrating the last task off the cpu, with the cpu in forced idle
254 * state. Reschedule to create an accounting edge for forced idle,
255 * and re-examine whether the core is still in forced idle state.
256 */
257 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 &&
258 rq->core->core_forceidle_count && rq->curr == rq->idle)
259 resched_curr(rq);
260 }
261
262 /*
263 * Find left-most (aka, highest priority) task matching @cookie.
264 */
sched_core_find(struct rq * rq,unsigned long cookie)265 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie)
266 {
267 struct rb_node *node;
268
269 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp);
270 /*
271 * The idle task always matches any cookie!
272 */
273 if (!node)
274 return idle_sched_class.pick_task(rq);
275
276 return __node_2_sc(node);
277 }
278
sched_core_next(struct task_struct * p,unsigned long cookie)279 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie)
280 {
281 struct rb_node *node = &p->core_node;
282
283 node = rb_next(node);
284 if (!node)
285 return NULL;
286
287 p = container_of(node, struct task_struct, core_node);
288 if (p->core_cookie != cookie)
289 return NULL;
290
291 return p;
292 }
293
294 /*
295 * Magic required such that:
296 *
297 * raw_spin_rq_lock(rq);
298 * ...
299 * raw_spin_rq_unlock(rq);
300 *
301 * ends up locking and unlocking the _same_ lock, and all CPUs
302 * always agree on what rq has what lock.
303 *
304 * XXX entirely possible to selectively enable cores, don't bother for now.
305 */
306
307 static DEFINE_MUTEX(sched_core_mutex);
308 static atomic_t sched_core_count;
309 static struct cpumask sched_core_mask;
310
sched_core_lock(int cpu,unsigned long * flags)311 static void sched_core_lock(int cpu, unsigned long *flags)
312 {
313 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
314 int t, i = 0;
315
316 local_irq_save(*flags);
317 for_each_cpu(t, smt_mask)
318 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++);
319 }
320
sched_core_unlock(int cpu,unsigned long * flags)321 static void sched_core_unlock(int cpu, unsigned long *flags)
322 {
323 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
324 int t;
325
326 for_each_cpu(t, smt_mask)
327 raw_spin_unlock(&cpu_rq(t)->__lock);
328 local_irq_restore(*flags);
329 }
330
__sched_core_flip(bool enabled)331 static void __sched_core_flip(bool enabled)
332 {
333 unsigned long flags;
334 int cpu, t;
335
336 cpus_read_lock();
337
338 /*
339 * Toggle the online cores, one by one.
340 */
341 cpumask_copy(&sched_core_mask, cpu_online_mask);
342 for_each_cpu(cpu, &sched_core_mask) {
343 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
344
345 sched_core_lock(cpu, &flags);
346
347 for_each_cpu(t, smt_mask)
348 cpu_rq(t)->core_enabled = enabled;
349
350 cpu_rq(cpu)->core->core_forceidle_start = 0;
351
352 sched_core_unlock(cpu, &flags);
353
354 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask);
355 }
356
357 /*
358 * Toggle the offline CPUs.
359 */
360 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask)
361 cpu_rq(cpu)->core_enabled = enabled;
362
363 cpus_read_unlock();
364 }
365
sched_core_assert_empty(void)366 static void sched_core_assert_empty(void)
367 {
368 int cpu;
369
370 for_each_possible_cpu(cpu)
371 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree));
372 }
373
__sched_core_enable(void)374 static void __sched_core_enable(void)
375 {
376 static_branch_enable(&__sched_core_enabled);
377 /*
378 * Ensure all previous instances of raw_spin_rq_*lock() have finished
379 * and future ones will observe !sched_core_disabled().
380 */
381 synchronize_rcu();
382 __sched_core_flip(true);
383 sched_core_assert_empty();
384 }
385
__sched_core_disable(void)386 static void __sched_core_disable(void)
387 {
388 sched_core_assert_empty();
389 __sched_core_flip(false);
390 static_branch_disable(&__sched_core_enabled);
391 }
392
sched_core_get(void)393 void sched_core_get(void)
394 {
395 if (atomic_inc_not_zero(&sched_core_count))
396 return;
397
398 mutex_lock(&sched_core_mutex);
399 if (!atomic_read(&sched_core_count))
400 __sched_core_enable();
401
402 smp_mb__before_atomic();
403 atomic_inc(&sched_core_count);
404 mutex_unlock(&sched_core_mutex);
405 }
406
__sched_core_put(struct work_struct * work)407 static void __sched_core_put(struct work_struct *work)
408 {
409 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) {
410 __sched_core_disable();
411 mutex_unlock(&sched_core_mutex);
412 }
413 }
414
sched_core_put(void)415 void sched_core_put(void)
416 {
417 static DECLARE_WORK(_work, __sched_core_put);
418
419 /*
420 * "There can be only one"
421 *
422 * Either this is the last one, or we don't actually need to do any
423 * 'work'. If it is the last *again*, we rely on
424 * WORK_STRUCT_PENDING_BIT.
425 */
426 if (!atomic_add_unless(&sched_core_count, -1, 1))
427 schedule_work(&_work);
428 }
429
430 #else /* !CONFIG_SCHED_CORE */
431
sched_core_enqueue(struct rq * rq,struct task_struct * p)432 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { }
433 static inline void
sched_core_dequeue(struct rq * rq,struct task_struct * p,int flags)434 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { }
435
436 #endif /* CONFIG_SCHED_CORE */
437
438 /*
439 * Serialization rules:
440 *
441 * Lock order:
442 *
443 * p->pi_lock
444 * rq->lock
445 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
446 *
447 * rq1->lock
448 * rq2->lock where: rq1 < rq2
449 *
450 * Regular state:
451 *
452 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
453 * local CPU's rq->lock, it optionally removes the task from the runqueue and
454 * always looks at the local rq data structures to find the most eligible task
455 * to run next.
456 *
457 * Task enqueue is also under rq->lock, possibly taken from another CPU.
458 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
459 * the local CPU to avoid bouncing the runqueue state around [ see
460 * ttwu_queue_wakelist() ]
461 *
462 * Task wakeup, specifically wakeups that involve migration, are horribly
463 * complicated to avoid having to take two rq->locks.
464 *
465 * Special state:
466 *
467 * System-calls and anything external will use task_rq_lock() which acquires
468 * both p->pi_lock and rq->lock. As a consequence the state they change is
469 * stable while holding either lock:
470 *
471 * - sched_setaffinity()/
472 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
473 * - set_user_nice(): p->se.load, p->*prio
474 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
475 * p->se.load, p->rt_priority,
476 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
477 * - sched_setnuma(): p->numa_preferred_nid
478 * - sched_move_task(): p->sched_task_group
479 * - uclamp_update_active() p->uclamp*
480 *
481 * p->state <- TASK_*:
482 *
483 * is changed locklessly using set_current_state(), __set_current_state() or
484 * set_special_state(), see their respective comments, or by
485 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
486 * concurrent self.
487 *
488 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
489 *
490 * is set by activate_task() and cleared by deactivate_task(), under
491 * rq->lock. Non-zero indicates the task is runnable, the special
492 * ON_RQ_MIGRATING state is used for migration without holding both
493 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
494 *
495 * p->on_cpu <- { 0, 1 }:
496 *
497 * is set by prepare_task() and cleared by finish_task() such that it will be
498 * set before p is scheduled-in and cleared after p is scheduled-out, both
499 * under rq->lock. Non-zero indicates the task is running on its CPU.
500 *
501 * [ The astute reader will observe that it is possible for two tasks on one
502 * CPU to have ->on_cpu = 1 at the same time. ]
503 *
504 * task_cpu(p): is changed by set_task_cpu(), the rules are:
505 *
506 * - Don't call set_task_cpu() on a blocked task:
507 *
508 * We don't care what CPU we're not running on, this simplifies hotplug,
509 * the CPU assignment of blocked tasks isn't required to be valid.
510 *
511 * - for try_to_wake_up(), called under p->pi_lock:
512 *
513 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
514 *
515 * - for migration called under rq->lock:
516 * [ see task_on_rq_migrating() in task_rq_lock() ]
517 *
518 * o move_queued_task()
519 * o detach_task()
520 *
521 * - for migration called under double_rq_lock():
522 *
523 * o __migrate_swap_task()
524 * o push_rt_task() / pull_rt_task()
525 * o push_dl_task() / pull_dl_task()
526 * o dl_task_offline_migration()
527 *
528 */
529
raw_spin_rq_lock_nested(struct rq * rq,int subclass)530 void raw_spin_rq_lock_nested(struct rq *rq, int subclass)
531 {
532 raw_spinlock_t *lock;
533
534 /* Matches synchronize_rcu() in __sched_core_enable() */
535 preempt_disable();
536 if (sched_core_disabled()) {
537 raw_spin_lock_nested(&rq->__lock, subclass);
538 /* preempt_count *MUST* be > 1 */
539 preempt_enable_no_resched();
540 return;
541 }
542
543 for (;;) {
544 lock = __rq_lockp(rq);
545 raw_spin_lock_nested(lock, subclass);
546 if (likely(lock == __rq_lockp(rq))) {
547 /* preempt_count *MUST* be > 1 */
548 preempt_enable_no_resched();
549 return;
550 }
551 raw_spin_unlock(lock);
552 }
553 }
554
raw_spin_rq_trylock(struct rq * rq)555 bool raw_spin_rq_trylock(struct rq *rq)
556 {
557 raw_spinlock_t *lock;
558 bool ret;
559
560 /* Matches synchronize_rcu() in __sched_core_enable() */
561 preempt_disable();
562 if (sched_core_disabled()) {
563 ret = raw_spin_trylock(&rq->__lock);
564 preempt_enable();
565 return ret;
566 }
567
568 for (;;) {
569 lock = __rq_lockp(rq);
570 ret = raw_spin_trylock(lock);
571 if (!ret || (likely(lock == __rq_lockp(rq)))) {
572 preempt_enable();
573 return ret;
574 }
575 raw_spin_unlock(lock);
576 }
577 }
578
raw_spin_rq_unlock(struct rq * rq)579 void raw_spin_rq_unlock(struct rq *rq)
580 {
581 raw_spin_unlock(rq_lockp(rq));
582 }
583
584 #ifdef CONFIG_SMP
585 /*
586 * double_rq_lock - safely lock two runqueues
587 */
double_rq_lock(struct rq * rq1,struct rq * rq2)588 void double_rq_lock(struct rq *rq1, struct rq *rq2)
589 {
590 lockdep_assert_irqs_disabled();
591
592 if (rq_order_less(rq2, rq1))
593 swap(rq1, rq2);
594
595 raw_spin_rq_lock(rq1);
596 if (__rq_lockp(rq1) != __rq_lockp(rq2))
597 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING);
598
599 double_rq_clock_clear_update(rq1, rq2);
600 }
601 #endif
602
603 /*
604 * __task_rq_lock - lock the rq @p resides on.
605 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)606 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
607 __acquires(rq->lock)
608 {
609 struct rq *rq;
610
611 lockdep_assert_held(&p->pi_lock);
612
613 for (;;) {
614 rq = task_rq(p);
615 raw_spin_rq_lock(rq);
616 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
617 rq_pin_lock(rq, rf);
618 return rq;
619 }
620 raw_spin_rq_unlock(rq);
621
622 while (unlikely(task_on_rq_migrating(p)))
623 cpu_relax();
624 }
625 }
626
627 /*
628 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
629 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)630 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
631 __acquires(p->pi_lock)
632 __acquires(rq->lock)
633 {
634 struct rq *rq;
635
636 for (;;) {
637 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
638 rq = task_rq(p);
639 raw_spin_rq_lock(rq);
640 /*
641 * move_queued_task() task_rq_lock()
642 *
643 * ACQUIRE (rq->lock)
644 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
645 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
646 * [S] ->cpu = new_cpu [L] task_rq()
647 * [L] ->on_rq
648 * RELEASE (rq->lock)
649 *
650 * If we observe the old CPU in task_rq_lock(), the acquire of
651 * the old rq->lock will fully serialize against the stores.
652 *
653 * If we observe the new CPU in task_rq_lock(), the address
654 * dependency headed by '[L] rq = task_rq()' and the acquire
655 * will pair with the WMB to ensure we then also see migrating.
656 */
657 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
658 rq_pin_lock(rq, rf);
659 return rq;
660 }
661 raw_spin_rq_unlock(rq);
662 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
663
664 while (unlikely(task_on_rq_migrating(p)))
665 cpu_relax();
666 }
667 }
668
669 /*
670 * RQ-clock updating methods:
671 */
672
update_rq_clock_task(struct rq * rq,s64 delta)673 static void update_rq_clock_task(struct rq *rq, s64 delta)
674 {
675 /*
676 * In theory, the compile should just see 0 here, and optimize out the call
677 * to sched_rt_avg_update. But I don't trust it...
678 */
679 s64 __maybe_unused steal = 0, irq_delta = 0;
680
681 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
682 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
683
684 /*
685 * Since irq_time is only updated on {soft,}irq_exit, we might run into
686 * this case when a previous update_rq_clock() happened inside a
687 * {soft,}irq region.
688 *
689 * When this happens, we stop ->clock_task and only update the
690 * prev_irq_time stamp to account for the part that fit, so that a next
691 * update will consume the rest. This ensures ->clock_task is
692 * monotonic.
693 *
694 * It does however cause some slight miss-attribution of {soft,}irq
695 * time, a more accurate solution would be to update the irq_time using
696 * the current rq->clock timestamp, except that would require using
697 * atomic ops.
698 */
699 if (irq_delta > delta)
700 irq_delta = delta;
701
702 rq->prev_irq_time += irq_delta;
703 delta -= irq_delta;
704 psi_account_irqtime(rq->curr, irq_delta);
705 #endif
706 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
707 if (static_key_false((¶virt_steal_rq_enabled))) {
708 steal = paravirt_steal_clock(cpu_of(rq));
709 steal -= rq->prev_steal_time_rq;
710
711 if (unlikely(steal > delta))
712 steal = delta;
713
714 rq->prev_steal_time_rq += steal;
715 delta -= steal;
716 }
717 #endif
718
719 rq->clock_task += delta;
720
721 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
722 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
723 update_irq_load_avg(rq, irq_delta + steal);
724 #endif
725 update_rq_clock_pelt(rq, delta);
726 }
727
update_rq_clock(struct rq * rq)728 void update_rq_clock(struct rq *rq)
729 {
730 s64 delta;
731
732 lockdep_assert_rq_held(rq);
733
734 if (rq->clock_update_flags & RQCF_ACT_SKIP)
735 return;
736
737 #ifdef CONFIG_SCHED_DEBUG
738 if (sched_feat(WARN_DOUBLE_CLOCK))
739 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
740 rq->clock_update_flags |= RQCF_UPDATED;
741 #endif
742
743 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
744 if (delta < 0)
745 return;
746 rq->clock += delta;
747 update_rq_clock_task(rq, delta);
748 }
749
750 #ifdef CONFIG_SCHED_HRTICK
751 /*
752 * Use HR-timers to deliver accurate preemption points.
753 */
754
hrtick_clear(struct rq * rq)755 static void hrtick_clear(struct rq *rq)
756 {
757 if (hrtimer_active(&rq->hrtick_timer))
758 hrtimer_cancel(&rq->hrtick_timer);
759 }
760
761 /*
762 * High-resolution timer tick.
763 * Runs from hardirq context with interrupts disabled.
764 */
hrtick(struct hrtimer * timer)765 static enum hrtimer_restart hrtick(struct hrtimer *timer)
766 {
767 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
768 struct rq_flags rf;
769
770 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
771
772 rq_lock(rq, &rf);
773 update_rq_clock(rq);
774 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
775 rq_unlock(rq, &rf);
776
777 return HRTIMER_NORESTART;
778 }
779
780 #ifdef CONFIG_SMP
781
__hrtick_restart(struct rq * rq)782 static void __hrtick_restart(struct rq *rq)
783 {
784 struct hrtimer *timer = &rq->hrtick_timer;
785 ktime_t time = rq->hrtick_time;
786
787 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
788 }
789
790 /*
791 * called from hardirq (IPI) context
792 */
__hrtick_start(void * arg)793 static void __hrtick_start(void *arg)
794 {
795 struct rq *rq = arg;
796 struct rq_flags rf;
797
798 rq_lock(rq, &rf);
799 __hrtick_restart(rq);
800 rq_unlock(rq, &rf);
801 }
802
803 /*
804 * Called to set the hrtick timer state.
805 *
806 * called with rq->lock held and irqs disabled
807 */
hrtick_start(struct rq * rq,u64 delay)808 void hrtick_start(struct rq *rq, u64 delay)
809 {
810 struct hrtimer *timer = &rq->hrtick_timer;
811 s64 delta;
812
813 /*
814 * Don't schedule slices shorter than 10000ns, that just
815 * doesn't make sense and can cause timer DoS.
816 */
817 delta = max_t(s64, delay, 10000LL);
818 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
819
820 if (rq == this_rq())
821 __hrtick_restart(rq);
822 else
823 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
824 }
825
826 #else
827 /*
828 * Called to set the hrtick timer state.
829 *
830 * called with rq->lock held and irqs disabled
831 */
hrtick_start(struct rq * rq,u64 delay)832 void hrtick_start(struct rq *rq, u64 delay)
833 {
834 /*
835 * Don't schedule slices shorter than 10000ns, that just
836 * doesn't make sense. Rely on vruntime for fairness.
837 */
838 delay = max_t(u64, delay, 10000LL);
839 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
840 HRTIMER_MODE_REL_PINNED_HARD);
841 }
842
843 #endif /* CONFIG_SMP */
844
hrtick_rq_init(struct rq * rq)845 static void hrtick_rq_init(struct rq *rq)
846 {
847 #ifdef CONFIG_SMP
848 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq);
849 #endif
850 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
851 rq->hrtick_timer.function = hrtick;
852 }
853 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)854 static inline void hrtick_clear(struct rq *rq)
855 {
856 }
857
hrtick_rq_init(struct rq * rq)858 static inline void hrtick_rq_init(struct rq *rq)
859 {
860 }
861 #endif /* CONFIG_SCHED_HRTICK */
862
863 /*
864 * cmpxchg based fetch_or, macro so it works for different integer types
865 */
866 #define fetch_or(ptr, mask) \
867 ({ \
868 typeof(ptr) _ptr = (ptr); \
869 typeof(mask) _mask = (mask); \
870 typeof(*_ptr) _val = *_ptr; \
871 \
872 do { \
873 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \
874 _val; \
875 })
876
877 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
878 /*
879 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
880 * this avoids any races wrt polling state changes and thereby avoids
881 * spurious IPIs.
882 */
set_nr_and_not_polling(struct task_struct * p)883 static inline bool set_nr_and_not_polling(struct task_struct *p)
884 {
885 struct thread_info *ti = task_thread_info(p);
886 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
887 }
888
889 /*
890 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
891 *
892 * If this returns true, then the idle task promises to call
893 * sched_ttwu_pending() and reschedule soon.
894 */
set_nr_if_polling(struct task_struct * p)895 static bool set_nr_if_polling(struct task_struct *p)
896 {
897 struct thread_info *ti = task_thread_info(p);
898 typeof(ti->flags) val = READ_ONCE(ti->flags);
899
900 for (;;) {
901 if (!(val & _TIF_POLLING_NRFLAG))
902 return false;
903 if (val & _TIF_NEED_RESCHED)
904 return true;
905 if (try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED))
906 break;
907 }
908 return true;
909 }
910
911 #else
set_nr_and_not_polling(struct task_struct * p)912 static inline bool set_nr_and_not_polling(struct task_struct *p)
913 {
914 set_tsk_need_resched(p);
915 return true;
916 }
917
918 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)919 static inline bool set_nr_if_polling(struct task_struct *p)
920 {
921 return false;
922 }
923 #endif
924 #endif
925
__wake_q_add(struct wake_q_head * head,struct task_struct * task)926 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
927 {
928 struct wake_q_node *node = &task->wake_q;
929
930 /*
931 * Atomically grab the task, if ->wake_q is !nil already it means
932 * it's already queued (either by us or someone else) and will get the
933 * wakeup due to that.
934 *
935 * In order to ensure that a pending wakeup will observe our pending
936 * state, even in the failed case, an explicit smp_mb() must be used.
937 */
938 smp_mb__before_atomic();
939 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
940 return false;
941
942 /*
943 * The head is context local, there can be no concurrency.
944 */
945 *head->lastp = node;
946 head->lastp = &node->next;
947 return true;
948 }
949
950 /**
951 * wake_q_add() - queue a wakeup for 'later' waking.
952 * @head: the wake_q_head to add @task to
953 * @task: the task to queue for 'later' wakeup
954 *
955 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
956 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
957 * instantly.
958 *
959 * This function must be used as-if it were wake_up_process(); IOW the task
960 * must be ready to be woken at this location.
961 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)962 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
963 {
964 if (__wake_q_add(head, task))
965 get_task_struct(task);
966 }
967
968 /**
969 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
970 * @head: the wake_q_head to add @task to
971 * @task: the task to queue for 'later' wakeup
972 *
973 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
974 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
975 * instantly.
976 *
977 * This function must be used as-if it were wake_up_process(); IOW the task
978 * must be ready to be woken at this location.
979 *
980 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
981 * that already hold reference to @task can call the 'safe' version and trust
982 * wake_q to do the right thing depending whether or not the @task is already
983 * queued for wakeup.
984 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)985 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
986 {
987 if (!__wake_q_add(head, task))
988 put_task_struct(task);
989 }
990
wake_up_q(struct wake_q_head * head)991 void wake_up_q(struct wake_q_head *head)
992 {
993 struct wake_q_node *node = head->first;
994
995 while (node != WAKE_Q_TAIL) {
996 struct task_struct *task;
997
998 task = container_of(node, struct task_struct, wake_q);
999 /* Task can safely be re-inserted now: */
1000 node = node->next;
1001 task->wake_q.next = NULL;
1002
1003 /*
1004 * wake_up_process() executes a full barrier, which pairs with
1005 * the queueing in wake_q_add() so as not to miss wakeups.
1006 */
1007 wake_up_process(task);
1008 put_task_struct(task);
1009 }
1010 }
1011
1012 /*
1013 * resched_curr - mark rq's current task 'to be rescheduled now'.
1014 *
1015 * On UP this means the setting of the need_resched flag, on SMP it
1016 * might also involve a cross-CPU call to trigger the scheduler on
1017 * the target CPU.
1018 */
resched_curr(struct rq * rq)1019 void resched_curr(struct rq *rq)
1020 {
1021 struct task_struct *curr = rq->curr;
1022 int cpu;
1023
1024 lockdep_assert_rq_held(rq);
1025
1026 if (test_tsk_need_resched(curr))
1027 return;
1028
1029 cpu = cpu_of(rq);
1030
1031 if (cpu == smp_processor_id()) {
1032 set_tsk_need_resched(curr);
1033 set_preempt_need_resched();
1034 return;
1035 }
1036
1037 if (set_nr_and_not_polling(curr))
1038 smp_send_reschedule(cpu);
1039 else
1040 trace_sched_wake_idle_without_ipi(cpu);
1041 }
1042
resched_cpu(int cpu)1043 void resched_cpu(int cpu)
1044 {
1045 struct rq *rq = cpu_rq(cpu);
1046 unsigned long flags;
1047
1048 raw_spin_rq_lock_irqsave(rq, flags);
1049 if (cpu_online(cpu) || cpu == smp_processor_id())
1050 resched_curr(rq);
1051 raw_spin_rq_unlock_irqrestore(rq, flags);
1052 }
1053
1054 #ifdef CONFIG_SMP
1055 #ifdef CONFIG_NO_HZ_COMMON
1056 /*
1057 * In the semi idle case, use the nearest busy CPU for migrating timers
1058 * from an idle CPU. This is good for power-savings.
1059 *
1060 * We don't do similar optimization for completely idle system, as
1061 * selecting an idle CPU will add more delays to the timers than intended
1062 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
1063 */
get_nohz_timer_target(void)1064 int get_nohz_timer_target(void)
1065 {
1066 int i, cpu = smp_processor_id(), default_cpu = -1;
1067 struct sched_domain *sd;
1068 const struct cpumask *hk_mask;
1069
1070 if (housekeeping_cpu(cpu, HK_TYPE_TIMER)) {
1071 if (!idle_cpu(cpu))
1072 return cpu;
1073 default_cpu = cpu;
1074 }
1075
1076 hk_mask = housekeeping_cpumask(HK_TYPE_TIMER);
1077
1078 rcu_read_lock();
1079 for_each_domain(cpu, sd) {
1080 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) {
1081 if (cpu == i)
1082 continue;
1083
1084 if (!idle_cpu(i)) {
1085 cpu = i;
1086 goto unlock;
1087 }
1088 }
1089 }
1090
1091 if (default_cpu == -1)
1092 default_cpu = housekeeping_any_cpu(HK_TYPE_TIMER);
1093 cpu = default_cpu;
1094 unlock:
1095 rcu_read_unlock();
1096 return cpu;
1097 }
1098
1099 /*
1100 * When add_timer_on() enqueues a timer into the timer wheel of an
1101 * idle CPU then this timer might expire before the next timer event
1102 * which is scheduled to wake up that CPU. In case of a completely
1103 * idle system the next event might even be infinite time into the
1104 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1105 * leaves the inner idle loop so the newly added timer is taken into
1106 * account when the CPU goes back to idle and evaluates the timer
1107 * wheel for the next timer event.
1108 */
wake_up_idle_cpu(int cpu)1109 static void wake_up_idle_cpu(int cpu)
1110 {
1111 struct rq *rq = cpu_rq(cpu);
1112
1113 if (cpu == smp_processor_id())
1114 return;
1115
1116 if (set_nr_and_not_polling(rq->idle))
1117 smp_send_reschedule(cpu);
1118 else
1119 trace_sched_wake_idle_without_ipi(cpu);
1120 }
1121
wake_up_full_nohz_cpu(int cpu)1122 static bool wake_up_full_nohz_cpu(int cpu)
1123 {
1124 /*
1125 * We just need the target to call irq_exit() and re-evaluate
1126 * the next tick. The nohz full kick at least implies that.
1127 * If needed we can still optimize that later with an
1128 * empty IRQ.
1129 */
1130 if (cpu_is_offline(cpu))
1131 return true; /* Don't try to wake offline CPUs. */
1132 if (tick_nohz_full_cpu(cpu)) {
1133 if (cpu != smp_processor_id() ||
1134 tick_nohz_tick_stopped())
1135 tick_nohz_full_kick_cpu(cpu);
1136 return true;
1137 }
1138
1139 return false;
1140 }
1141
1142 /*
1143 * Wake up the specified CPU. If the CPU is going offline, it is the
1144 * caller's responsibility to deal with the lost wakeup, for example,
1145 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
1146 */
wake_up_nohz_cpu(int cpu)1147 void wake_up_nohz_cpu(int cpu)
1148 {
1149 if (!wake_up_full_nohz_cpu(cpu))
1150 wake_up_idle_cpu(cpu);
1151 }
1152
nohz_csd_func(void * info)1153 static void nohz_csd_func(void *info)
1154 {
1155 struct rq *rq = info;
1156 int cpu = cpu_of(rq);
1157 unsigned int flags;
1158
1159 /*
1160 * Release the rq::nohz_csd.
1161 */
1162 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu));
1163 WARN_ON(!(flags & NOHZ_KICK_MASK));
1164
1165 rq->idle_balance = idle_cpu(cpu);
1166 if (rq->idle_balance && !need_resched()) {
1167 rq->nohz_idle_balance = flags;
1168 raise_softirq_irqoff(SCHED_SOFTIRQ);
1169 }
1170 }
1171
1172 #endif /* CONFIG_NO_HZ_COMMON */
1173
1174 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)1175 bool sched_can_stop_tick(struct rq *rq)
1176 {
1177 int fifo_nr_running;
1178
1179 /* Deadline tasks, even if single, need the tick */
1180 if (rq->dl.dl_nr_running)
1181 return false;
1182
1183 /*
1184 * If there are more than one RR tasks, we need the tick to affect the
1185 * actual RR behaviour.
1186 */
1187 if (rq->rt.rr_nr_running) {
1188 if (rq->rt.rr_nr_running == 1)
1189 return true;
1190 else
1191 return false;
1192 }
1193
1194 /*
1195 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
1196 * forced preemption between FIFO tasks.
1197 */
1198 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
1199 if (fifo_nr_running)
1200 return true;
1201
1202 /*
1203 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
1204 * if there's more than one we need the tick for involuntary
1205 * preemption.
1206 */
1207 if (rq->nr_running > 1)
1208 return false;
1209
1210 return true;
1211 }
1212 #endif /* CONFIG_NO_HZ_FULL */
1213 #endif /* CONFIG_SMP */
1214
1215 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1216 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1217 /*
1218 * Iterate task_group tree rooted at *from, calling @down when first entering a
1219 * node and @up when leaving it for the final time.
1220 *
1221 * Caller must hold rcu_lock or sufficient equivalent.
1222 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)1223 int walk_tg_tree_from(struct task_group *from,
1224 tg_visitor down, tg_visitor up, void *data)
1225 {
1226 struct task_group *parent, *child;
1227 int ret;
1228
1229 parent = from;
1230
1231 down:
1232 ret = (*down)(parent, data);
1233 if (ret)
1234 goto out;
1235 list_for_each_entry_rcu(child, &parent->children, siblings) {
1236 parent = child;
1237 goto down;
1238
1239 up:
1240 continue;
1241 }
1242 ret = (*up)(parent, data);
1243 if (ret || parent == from)
1244 goto out;
1245
1246 child = parent;
1247 parent = parent->parent;
1248 if (parent)
1249 goto up;
1250 out:
1251 return ret;
1252 }
1253
tg_nop(struct task_group * tg,void * data)1254 int tg_nop(struct task_group *tg, void *data)
1255 {
1256 return 0;
1257 }
1258 #endif
1259
set_load_weight(struct task_struct * p,bool update_load)1260 static void set_load_weight(struct task_struct *p, bool update_load)
1261 {
1262 int prio = p->static_prio - MAX_RT_PRIO;
1263 struct load_weight *load = &p->se.load;
1264
1265 /*
1266 * SCHED_IDLE tasks get minimal weight:
1267 */
1268 if (task_has_idle_policy(p)) {
1269 load->weight = scale_load(WEIGHT_IDLEPRIO);
1270 load->inv_weight = WMULT_IDLEPRIO;
1271 return;
1272 }
1273
1274 /*
1275 * SCHED_OTHER tasks have to update their load when changing their
1276 * weight
1277 */
1278 if (update_load && p->sched_class == &fair_sched_class) {
1279 reweight_task(p, prio);
1280 } else {
1281 load->weight = scale_load(sched_prio_to_weight[prio]);
1282 load->inv_weight = sched_prio_to_wmult[prio];
1283 }
1284 }
1285
1286 #ifdef CONFIG_UCLAMP_TASK
1287 /*
1288 * Serializes updates of utilization clamp values
1289 *
1290 * The (slow-path) user-space triggers utilization clamp value updates which
1291 * can require updates on (fast-path) scheduler's data structures used to
1292 * support enqueue/dequeue operations.
1293 * While the per-CPU rq lock protects fast-path update operations, user-space
1294 * requests are serialized using a mutex to reduce the risk of conflicting
1295 * updates or API abuses.
1296 */
1297 static DEFINE_MUTEX(uclamp_mutex);
1298
1299 /* Max allowed minimum utilization */
1300 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
1301
1302 /* Max allowed maximum utilization */
1303 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
1304
1305 /*
1306 * By default RT tasks run at the maximum performance point/capacity of the
1307 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
1308 * SCHED_CAPACITY_SCALE.
1309 *
1310 * This knob allows admins to change the default behavior when uclamp is being
1311 * used. In battery powered devices, particularly, running at the maximum
1312 * capacity and frequency will increase energy consumption and shorten the
1313 * battery life.
1314 *
1315 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
1316 *
1317 * This knob will not override the system default sched_util_clamp_min defined
1318 * above.
1319 */
1320 static unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
1321
1322 /* All clamps are required to be less or equal than these values */
1323 static struct uclamp_se uclamp_default[UCLAMP_CNT];
1324
1325 /*
1326 * This static key is used to reduce the uclamp overhead in the fast path. It
1327 * primarily disables the call to uclamp_rq_{inc, dec}() in
1328 * enqueue/dequeue_task().
1329 *
1330 * This allows users to continue to enable uclamp in their kernel config with
1331 * minimum uclamp overhead in the fast path.
1332 *
1333 * As soon as userspace modifies any of the uclamp knobs, the static key is
1334 * enabled, since we have an actual users that make use of uclamp
1335 * functionality.
1336 *
1337 * The knobs that would enable this static key are:
1338 *
1339 * * A task modifying its uclamp value with sched_setattr().
1340 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
1341 * * An admin modifying the cgroup cpu.uclamp.{min, max}
1342 */
1343 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
1344
1345 /* Integer rounded range for each bucket */
1346 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
1347
1348 #define for_each_clamp_id(clamp_id) \
1349 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
1350
uclamp_bucket_id(unsigned int clamp_value)1351 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
1352 {
1353 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
1354 }
1355
uclamp_none(enum uclamp_id clamp_id)1356 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
1357 {
1358 if (clamp_id == UCLAMP_MIN)
1359 return 0;
1360 return SCHED_CAPACITY_SCALE;
1361 }
1362
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1363 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1364 unsigned int value, bool user_defined)
1365 {
1366 uc_se->value = value;
1367 uc_se->bucket_id = uclamp_bucket_id(value);
1368 uc_se->user_defined = user_defined;
1369 }
1370
1371 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1372 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1373 unsigned int clamp_value)
1374 {
1375 /*
1376 * Avoid blocked utilization pushing up the frequency when we go
1377 * idle (which drops the max-clamp) by retaining the last known
1378 * max-clamp.
1379 */
1380 if (clamp_id == UCLAMP_MAX) {
1381 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1382 return clamp_value;
1383 }
1384
1385 return uclamp_none(UCLAMP_MIN);
1386 }
1387
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1388 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1389 unsigned int clamp_value)
1390 {
1391 /* Reset max-clamp retention only on idle exit */
1392 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1393 return;
1394
1395 WRITE_ONCE(rq->uclamp[clamp_id].value, clamp_value);
1396 }
1397
1398 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1399 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1400 unsigned int clamp_value)
1401 {
1402 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1403 int bucket_id = UCLAMP_BUCKETS - 1;
1404
1405 /*
1406 * Since both min and max clamps are max aggregated, find the
1407 * top most bucket with tasks in.
1408 */
1409 for ( ; bucket_id >= 0; bucket_id--) {
1410 if (!bucket[bucket_id].tasks)
1411 continue;
1412 return bucket[bucket_id].value;
1413 }
1414
1415 /* No tasks -- default clamp values */
1416 return uclamp_idle_value(rq, clamp_id, clamp_value);
1417 }
1418
__uclamp_update_util_min_rt_default(struct task_struct * p)1419 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1420 {
1421 unsigned int default_util_min;
1422 struct uclamp_se *uc_se;
1423
1424 lockdep_assert_held(&p->pi_lock);
1425
1426 uc_se = &p->uclamp_req[UCLAMP_MIN];
1427
1428 /* Only sync if user didn't override the default */
1429 if (uc_se->user_defined)
1430 return;
1431
1432 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1433 uclamp_se_set(uc_se, default_util_min, false);
1434 }
1435
uclamp_update_util_min_rt_default(struct task_struct * p)1436 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1437 {
1438 struct rq_flags rf;
1439 struct rq *rq;
1440
1441 if (!rt_task(p))
1442 return;
1443
1444 /* Protect updates to p->uclamp_* */
1445 rq = task_rq_lock(p, &rf);
1446 __uclamp_update_util_min_rt_default(p);
1447 task_rq_unlock(rq, p, &rf);
1448 }
1449
1450 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1451 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1452 {
1453 /* Copy by value as we could modify it */
1454 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1455 #ifdef CONFIG_UCLAMP_TASK_GROUP
1456 unsigned int tg_min, tg_max, value;
1457
1458 /*
1459 * Tasks in autogroups or root task group will be
1460 * restricted by system defaults.
1461 */
1462 if (task_group_is_autogroup(task_group(p)))
1463 return uc_req;
1464 if (task_group(p) == &root_task_group)
1465 return uc_req;
1466
1467 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1468 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1469 value = uc_req.value;
1470 value = clamp(value, tg_min, tg_max);
1471 uclamp_se_set(&uc_req, value, false);
1472 #endif
1473
1474 return uc_req;
1475 }
1476
1477 /*
1478 * The effective clamp bucket index of a task depends on, by increasing
1479 * priority:
1480 * - the task specific clamp value, when explicitly requested from userspace
1481 * - the task group effective clamp value, for tasks not either in the root
1482 * group or in an autogroup
1483 * - the system default clamp value, defined by the sysadmin
1484 */
1485 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1486 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1487 {
1488 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1489 struct uclamp_se uc_max = uclamp_default[clamp_id];
1490
1491 /* System default restrictions always apply */
1492 if (unlikely(uc_req.value > uc_max.value))
1493 return uc_max;
1494
1495 return uc_req;
1496 }
1497
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1498 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1499 {
1500 struct uclamp_se uc_eff;
1501
1502 /* Task currently refcounted: use back-annotated (effective) value */
1503 if (p->uclamp[clamp_id].active)
1504 return (unsigned long)p->uclamp[clamp_id].value;
1505
1506 uc_eff = uclamp_eff_get(p, clamp_id);
1507
1508 return (unsigned long)uc_eff.value;
1509 }
1510
1511 /*
1512 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1513 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1514 * updates the rq's clamp value if required.
1515 *
1516 * Tasks can have a task-specific value requested from user-space, track
1517 * within each bucket the maximum value for tasks refcounted in it.
1518 * This "local max aggregation" allows to track the exact "requested" value
1519 * for each bucket when all its RUNNABLE tasks require the same clamp.
1520 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1521 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1522 enum uclamp_id clamp_id)
1523 {
1524 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1525 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1526 struct uclamp_bucket *bucket;
1527
1528 lockdep_assert_rq_held(rq);
1529
1530 /* Update task effective clamp */
1531 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1532
1533 bucket = &uc_rq->bucket[uc_se->bucket_id];
1534 bucket->tasks++;
1535 uc_se->active = true;
1536
1537 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1538
1539 /*
1540 * Local max aggregation: rq buckets always track the max
1541 * "requested" clamp value of its RUNNABLE tasks.
1542 */
1543 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1544 bucket->value = uc_se->value;
1545
1546 if (uc_se->value > READ_ONCE(uc_rq->value))
1547 WRITE_ONCE(uc_rq->value, uc_se->value);
1548 }
1549
1550 /*
1551 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1552 * is released. If this is the last task reference counting the rq's max
1553 * active clamp value, then the rq's clamp value is updated.
1554 *
1555 * Both refcounted tasks and rq's cached clamp values are expected to be
1556 * always valid. If it's detected they are not, as defensive programming,
1557 * enforce the expected state and warn.
1558 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1559 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1560 enum uclamp_id clamp_id)
1561 {
1562 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1563 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1564 struct uclamp_bucket *bucket;
1565 unsigned int bkt_clamp;
1566 unsigned int rq_clamp;
1567
1568 lockdep_assert_rq_held(rq);
1569
1570 /*
1571 * If sched_uclamp_used was enabled after task @p was enqueued,
1572 * we could end up with unbalanced call to uclamp_rq_dec_id().
1573 *
1574 * In this case the uc_se->active flag should be false since no uclamp
1575 * accounting was performed at enqueue time and we can just return
1576 * here.
1577 *
1578 * Need to be careful of the following enqueue/dequeue ordering
1579 * problem too
1580 *
1581 * enqueue(taskA)
1582 * // sched_uclamp_used gets enabled
1583 * enqueue(taskB)
1584 * dequeue(taskA)
1585 * // Must not decrement bucket->tasks here
1586 * dequeue(taskB)
1587 *
1588 * where we could end up with stale data in uc_se and
1589 * bucket[uc_se->bucket_id].
1590 *
1591 * The following check here eliminates the possibility of such race.
1592 */
1593 if (unlikely(!uc_se->active))
1594 return;
1595
1596 bucket = &uc_rq->bucket[uc_se->bucket_id];
1597
1598 SCHED_WARN_ON(!bucket->tasks);
1599 if (likely(bucket->tasks))
1600 bucket->tasks--;
1601
1602 uc_se->active = false;
1603
1604 /*
1605 * Keep "local max aggregation" simple and accept to (possibly)
1606 * overboost some RUNNABLE tasks in the same bucket.
1607 * The rq clamp bucket value is reset to its base value whenever
1608 * there are no more RUNNABLE tasks refcounting it.
1609 */
1610 if (likely(bucket->tasks))
1611 return;
1612
1613 rq_clamp = READ_ONCE(uc_rq->value);
1614 /*
1615 * Defensive programming: this should never happen. If it happens,
1616 * e.g. due to future modification, warn and fixup the expected value.
1617 */
1618 SCHED_WARN_ON(bucket->value > rq_clamp);
1619 if (bucket->value >= rq_clamp) {
1620 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1621 WRITE_ONCE(uc_rq->value, bkt_clamp);
1622 }
1623 }
1624
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1625 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1626 {
1627 enum uclamp_id clamp_id;
1628
1629 /*
1630 * Avoid any overhead until uclamp is actually used by the userspace.
1631 *
1632 * The condition is constructed such that a NOP is generated when
1633 * sched_uclamp_used is disabled.
1634 */
1635 if (!static_branch_unlikely(&sched_uclamp_used))
1636 return;
1637
1638 if (unlikely(!p->sched_class->uclamp_enabled))
1639 return;
1640
1641 for_each_clamp_id(clamp_id)
1642 uclamp_rq_inc_id(rq, p, clamp_id);
1643
1644 /* Reset clamp idle holding when there is one RUNNABLE task */
1645 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1646 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1647 }
1648
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1649 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1650 {
1651 enum uclamp_id clamp_id;
1652
1653 /*
1654 * Avoid any overhead until uclamp is actually used by the userspace.
1655 *
1656 * The condition is constructed such that a NOP is generated when
1657 * sched_uclamp_used is disabled.
1658 */
1659 if (!static_branch_unlikely(&sched_uclamp_used))
1660 return;
1661
1662 if (unlikely(!p->sched_class->uclamp_enabled))
1663 return;
1664
1665 for_each_clamp_id(clamp_id)
1666 uclamp_rq_dec_id(rq, p, clamp_id);
1667 }
1668
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1669 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1670 enum uclamp_id clamp_id)
1671 {
1672 if (!p->uclamp[clamp_id].active)
1673 return;
1674
1675 uclamp_rq_dec_id(rq, p, clamp_id);
1676 uclamp_rq_inc_id(rq, p, clamp_id);
1677
1678 /*
1679 * Make sure to clear the idle flag if we've transiently reached 0
1680 * active tasks on rq.
1681 */
1682 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1683 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1684 }
1685
1686 static inline void
uclamp_update_active(struct task_struct * p)1687 uclamp_update_active(struct task_struct *p)
1688 {
1689 enum uclamp_id clamp_id;
1690 struct rq_flags rf;
1691 struct rq *rq;
1692
1693 /*
1694 * Lock the task and the rq where the task is (or was) queued.
1695 *
1696 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1697 * price to pay to safely serialize util_{min,max} updates with
1698 * enqueues, dequeues and migration operations.
1699 * This is the same locking schema used by __set_cpus_allowed_ptr().
1700 */
1701 rq = task_rq_lock(p, &rf);
1702
1703 /*
1704 * Setting the clamp bucket is serialized by task_rq_lock().
1705 * If the task is not yet RUNNABLE and its task_struct is not
1706 * affecting a valid clamp bucket, the next time it's enqueued,
1707 * it will already see the updated clamp bucket value.
1708 */
1709 for_each_clamp_id(clamp_id)
1710 uclamp_rq_reinc_id(rq, p, clamp_id);
1711
1712 task_rq_unlock(rq, p, &rf);
1713 }
1714
1715 #ifdef CONFIG_UCLAMP_TASK_GROUP
1716 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1717 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1718 {
1719 struct css_task_iter it;
1720 struct task_struct *p;
1721
1722 css_task_iter_start(css, 0, &it);
1723 while ((p = css_task_iter_next(&it)))
1724 uclamp_update_active(p);
1725 css_task_iter_end(&it);
1726 }
1727
1728 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
1729 #endif
1730
1731 #ifdef CONFIG_SYSCTL
1732 #ifdef CONFIG_UCLAMP_TASK
1733 #ifdef CONFIG_UCLAMP_TASK_GROUP
uclamp_update_root_tg(void)1734 static void uclamp_update_root_tg(void)
1735 {
1736 struct task_group *tg = &root_task_group;
1737
1738 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1739 sysctl_sched_uclamp_util_min, false);
1740 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1741 sysctl_sched_uclamp_util_max, false);
1742
1743 rcu_read_lock();
1744 cpu_util_update_eff(&root_task_group.css);
1745 rcu_read_unlock();
1746 }
1747 #else
uclamp_update_root_tg(void)1748 static void uclamp_update_root_tg(void) { }
1749 #endif
1750
uclamp_sync_util_min_rt_default(void)1751 static void uclamp_sync_util_min_rt_default(void)
1752 {
1753 struct task_struct *g, *p;
1754
1755 /*
1756 * copy_process() sysctl_uclamp
1757 * uclamp_min_rt = X;
1758 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1759 * // link thread smp_mb__after_spinlock()
1760 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1761 * sched_post_fork() for_each_process_thread()
1762 * __uclamp_sync_rt() __uclamp_sync_rt()
1763 *
1764 * Ensures that either sched_post_fork() will observe the new
1765 * uclamp_min_rt or for_each_process_thread() will observe the new
1766 * task.
1767 */
1768 read_lock(&tasklist_lock);
1769 smp_mb__after_spinlock();
1770 read_unlock(&tasklist_lock);
1771
1772 rcu_read_lock();
1773 for_each_process_thread(g, p)
1774 uclamp_update_util_min_rt_default(p);
1775 rcu_read_unlock();
1776 }
1777
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1778 static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1779 void *buffer, size_t *lenp, loff_t *ppos)
1780 {
1781 bool update_root_tg = false;
1782 int old_min, old_max, old_min_rt;
1783 int result;
1784
1785 mutex_lock(&uclamp_mutex);
1786 old_min = sysctl_sched_uclamp_util_min;
1787 old_max = sysctl_sched_uclamp_util_max;
1788 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1789
1790 result = proc_dointvec(table, write, buffer, lenp, ppos);
1791 if (result)
1792 goto undo;
1793 if (!write)
1794 goto done;
1795
1796 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1797 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1798 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1799
1800 result = -EINVAL;
1801 goto undo;
1802 }
1803
1804 if (old_min != sysctl_sched_uclamp_util_min) {
1805 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1806 sysctl_sched_uclamp_util_min, false);
1807 update_root_tg = true;
1808 }
1809 if (old_max != sysctl_sched_uclamp_util_max) {
1810 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1811 sysctl_sched_uclamp_util_max, false);
1812 update_root_tg = true;
1813 }
1814
1815 if (update_root_tg) {
1816 static_branch_enable(&sched_uclamp_used);
1817 uclamp_update_root_tg();
1818 }
1819
1820 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1821 static_branch_enable(&sched_uclamp_used);
1822 uclamp_sync_util_min_rt_default();
1823 }
1824
1825 /*
1826 * We update all RUNNABLE tasks only when task groups are in use.
1827 * Otherwise, keep it simple and do just a lazy update at each next
1828 * task enqueue time.
1829 */
1830
1831 goto done;
1832
1833 undo:
1834 sysctl_sched_uclamp_util_min = old_min;
1835 sysctl_sched_uclamp_util_max = old_max;
1836 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1837 done:
1838 mutex_unlock(&uclamp_mutex);
1839
1840 return result;
1841 }
1842 #endif
1843 #endif
1844
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1845 static int uclamp_validate(struct task_struct *p,
1846 const struct sched_attr *attr)
1847 {
1848 int util_min = p->uclamp_req[UCLAMP_MIN].value;
1849 int util_max = p->uclamp_req[UCLAMP_MAX].value;
1850
1851 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1852 util_min = attr->sched_util_min;
1853
1854 if (util_min + 1 > SCHED_CAPACITY_SCALE + 1)
1855 return -EINVAL;
1856 }
1857
1858 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1859 util_max = attr->sched_util_max;
1860
1861 if (util_max + 1 > SCHED_CAPACITY_SCALE + 1)
1862 return -EINVAL;
1863 }
1864
1865 if (util_min != -1 && util_max != -1 && util_min > util_max)
1866 return -EINVAL;
1867
1868 /*
1869 * We have valid uclamp attributes; make sure uclamp is enabled.
1870 *
1871 * We need to do that here, because enabling static branches is a
1872 * blocking operation which obviously cannot be done while holding
1873 * scheduler locks.
1874 */
1875 static_branch_enable(&sched_uclamp_used);
1876
1877 return 0;
1878 }
1879
uclamp_reset(const struct sched_attr * attr,enum uclamp_id clamp_id,struct uclamp_se * uc_se)1880 static bool uclamp_reset(const struct sched_attr *attr,
1881 enum uclamp_id clamp_id,
1882 struct uclamp_se *uc_se)
1883 {
1884 /* Reset on sched class change for a non user-defined clamp value. */
1885 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)) &&
1886 !uc_se->user_defined)
1887 return true;
1888
1889 /* Reset on sched_util_{min,max} == -1. */
1890 if (clamp_id == UCLAMP_MIN &&
1891 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1892 attr->sched_util_min == -1) {
1893 return true;
1894 }
1895
1896 if (clamp_id == UCLAMP_MAX &&
1897 attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1898 attr->sched_util_max == -1) {
1899 return true;
1900 }
1901
1902 return false;
1903 }
1904
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1905 static void __setscheduler_uclamp(struct task_struct *p,
1906 const struct sched_attr *attr)
1907 {
1908 enum uclamp_id clamp_id;
1909
1910 for_each_clamp_id(clamp_id) {
1911 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1912 unsigned int value;
1913
1914 if (!uclamp_reset(attr, clamp_id, uc_se))
1915 continue;
1916
1917 /*
1918 * RT by default have a 100% boost value that could be modified
1919 * at runtime.
1920 */
1921 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1922 value = sysctl_sched_uclamp_util_min_rt_default;
1923 else
1924 value = uclamp_none(clamp_id);
1925
1926 uclamp_se_set(uc_se, value, false);
1927
1928 }
1929
1930 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1931 return;
1932
1933 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN &&
1934 attr->sched_util_min != -1) {
1935 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1936 attr->sched_util_min, true);
1937 }
1938
1939 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX &&
1940 attr->sched_util_max != -1) {
1941 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1942 attr->sched_util_max, true);
1943 }
1944 }
1945
uclamp_fork(struct task_struct * p)1946 static void uclamp_fork(struct task_struct *p)
1947 {
1948 enum uclamp_id clamp_id;
1949
1950 /*
1951 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1952 * as the task is still at its early fork stages.
1953 */
1954 for_each_clamp_id(clamp_id)
1955 p->uclamp[clamp_id].active = false;
1956
1957 if (likely(!p->sched_reset_on_fork))
1958 return;
1959
1960 for_each_clamp_id(clamp_id) {
1961 uclamp_se_set(&p->uclamp_req[clamp_id],
1962 uclamp_none(clamp_id), false);
1963 }
1964 }
1965
uclamp_post_fork(struct task_struct * p)1966 static void uclamp_post_fork(struct task_struct *p)
1967 {
1968 uclamp_update_util_min_rt_default(p);
1969 }
1970
init_uclamp_rq(struct rq * rq)1971 static void __init init_uclamp_rq(struct rq *rq)
1972 {
1973 enum uclamp_id clamp_id;
1974 struct uclamp_rq *uc_rq = rq->uclamp;
1975
1976 for_each_clamp_id(clamp_id) {
1977 uc_rq[clamp_id] = (struct uclamp_rq) {
1978 .value = uclamp_none(clamp_id)
1979 };
1980 }
1981
1982 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1983 }
1984
init_uclamp(void)1985 static void __init init_uclamp(void)
1986 {
1987 struct uclamp_se uc_max = {};
1988 enum uclamp_id clamp_id;
1989 int cpu;
1990
1991 for_each_possible_cpu(cpu)
1992 init_uclamp_rq(cpu_rq(cpu));
1993
1994 for_each_clamp_id(clamp_id) {
1995 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1996 uclamp_none(clamp_id), false);
1997 }
1998
1999 /* System defaults allow max clamp values for both indexes */
2000 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
2001 for_each_clamp_id(clamp_id) {
2002 uclamp_default[clamp_id] = uc_max;
2003 #ifdef CONFIG_UCLAMP_TASK_GROUP
2004 root_task_group.uclamp_req[clamp_id] = uc_max;
2005 root_task_group.uclamp[clamp_id] = uc_max;
2006 #endif
2007 }
2008 }
2009
2010 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)2011 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)2012 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)2013 static inline int uclamp_validate(struct task_struct *p,
2014 const struct sched_attr *attr)
2015 {
2016 return -EOPNOTSUPP;
2017 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)2018 static void __setscheduler_uclamp(struct task_struct *p,
2019 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)2020 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)2021 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)2022 static inline void init_uclamp(void) { }
2023 #endif /* CONFIG_UCLAMP_TASK */
2024
sched_task_on_rq(struct task_struct * p)2025 bool sched_task_on_rq(struct task_struct *p)
2026 {
2027 return task_on_rq_queued(p);
2028 }
2029
get_wchan(struct task_struct * p)2030 unsigned long get_wchan(struct task_struct *p)
2031 {
2032 unsigned long ip = 0;
2033 unsigned int state;
2034
2035 if (!p || p == current)
2036 return 0;
2037
2038 /* Only get wchan if task is blocked and we can keep it that way. */
2039 raw_spin_lock_irq(&p->pi_lock);
2040 state = READ_ONCE(p->__state);
2041 smp_rmb(); /* see try_to_wake_up() */
2042 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq)
2043 ip = __get_wchan(p);
2044 raw_spin_unlock_irq(&p->pi_lock);
2045
2046 return ip;
2047 }
2048
enqueue_task(struct rq * rq,struct task_struct * p,int flags)2049 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2050 {
2051 if (!(flags & ENQUEUE_NOCLOCK))
2052 update_rq_clock(rq);
2053
2054 if (!(flags & ENQUEUE_RESTORE)) {
2055 sched_info_enqueue(rq, p);
2056 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
2057 }
2058
2059 uclamp_rq_inc(rq, p);
2060 p->sched_class->enqueue_task(rq, p, flags);
2061
2062 if (sched_core_enabled(rq))
2063 sched_core_enqueue(rq, p);
2064 }
2065
dequeue_task(struct rq * rq,struct task_struct * p,int flags)2066 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
2067 {
2068 if (sched_core_enabled(rq))
2069 sched_core_dequeue(rq, p, flags);
2070
2071 if (!(flags & DEQUEUE_NOCLOCK))
2072 update_rq_clock(rq);
2073
2074 if (!(flags & DEQUEUE_SAVE)) {
2075 sched_info_dequeue(rq, p);
2076 psi_dequeue(p, flags & DEQUEUE_SLEEP);
2077 }
2078
2079 uclamp_rq_dec(rq, p);
2080 p->sched_class->dequeue_task(rq, p, flags);
2081 }
2082
activate_task(struct rq * rq,struct task_struct * p,int flags)2083 void activate_task(struct rq *rq, struct task_struct *p, int flags)
2084 {
2085 enqueue_task(rq, p, flags);
2086
2087 p->on_rq = TASK_ON_RQ_QUEUED;
2088 }
2089
deactivate_task(struct rq * rq,struct task_struct * p,int flags)2090 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
2091 {
2092 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
2093
2094 dequeue_task(rq, p, flags);
2095 }
2096
__normal_prio(int policy,int rt_prio,int nice)2097 static inline int __normal_prio(int policy, int rt_prio, int nice)
2098 {
2099 int prio;
2100
2101 if (dl_policy(policy))
2102 prio = MAX_DL_PRIO - 1;
2103 else if (rt_policy(policy))
2104 prio = MAX_RT_PRIO - 1 - rt_prio;
2105 else
2106 prio = NICE_TO_PRIO(nice);
2107
2108 return prio;
2109 }
2110
2111 /*
2112 * Calculate the expected normal priority: i.e. priority
2113 * without taking RT-inheritance into account. Might be
2114 * boosted by interactivity modifiers. Changes upon fork,
2115 * setprio syscalls, and whenever the interactivity
2116 * estimator recalculates.
2117 */
normal_prio(struct task_struct * p)2118 static inline int normal_prio(struct task_struct *p)
2119 {
2120 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
2121 }
2122
2123 /*
2124 * Calculate the current priority, i.e. the priority
2125 * taken into account by the scheduler. This value might
2126 * be boosted by RT tasks, or might be boosted by
2127 * interactivity modifiers. Will be RT if the task got
2128 * RT-boosted. If not then it returns p->normal_prio.
2129 */
effective_prio(struct task_struct * p)2130 static int effective_prio(struct task_struct *p)
2131 {
2132 p->normal_prio = normal_prio(p);
2133 /*
2134 * If we are RT tasks or we were boosted to RT priority,
2135 * keep the priority unchanged. Otherwise, update priority
2136 * to the normal priority:
2137 */
2138 if (!rt_prio(p->prio))
2139 return p->normal_prio;
2140 return p->prio;
2141 }
2142
2143 /**
2144 * task_curr - is this task currently executing on a CPU?
2145 * @p: the task in question.
2146 *
2147 * Return: 1 if the task is currently executing. 0 otherwise.
2148 */
task_curr(const struct task_struct * p)2149 inline int task_curr(const struct task_struct *p)
2150 {
2151 return cpu_curr(task_cpu(p)) == p;
2152 }
2153
2154 /*
2155 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
2156 * use the balance_callback list if you want balancing.
2157 *
2158 * this means any call to check_class_changed() must be followed by a call to
2159 * balance_callback().
2160 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)2161 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2162 const struct sched_class *prev_class,
2163 int oldprio)
2164 {
2165 if (prev_class != p->sched_class) {
2166 if (prev_class->switched_from)
2167 prev_class->switched_from(rq, p);
2168
2169 p->sched_class->switched_to(rq, p);
2170 } else if (oldprio != p->prio || dl_task(p))
2171 p->sched_class->prio_changed(rq, p, oldprio);
2172 }
2173
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)2174 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2175 {
2176 if (p->sched_class == rq->curr->sched_class)
2177 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2178 else if (sched_class_above(p->sched_class, rq->curr->sched_class))
2179 resched_curr(rq);
2180
2181 /*
2182 * A queue event has occurred, and we're going to schedule. In
2183 * this case, we can save a useless back to back clock update.
2184 */
2185 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
2186 rq_clock_skip_update(rq);
2187 }
2188
2189 #ifdef CONFIG_SMP
2190
2191 static void
2192 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags);
2193
2194 static int __set_cpus_allowed_ptr(struct task_struct *p,
2195 const struct cpumask *new_mask,
2196 u32 flags);
2197
migrate_disable_switch(struct rq * rq,struct task_struct * p)2198 static void migrate_disable_switch(struct rq *rq, struct task_struct *p)
2199 {
2200 if (likely(!p->migration_disabled))
2201 return;
2202
2203 if (p->cpus_ptr != &p->cpus_mask)
2204 return;
2205
2206 /*
2207 * Violates locking rules! see comment in __do_set_cpus_allowed().
2208 */
2209 __do_set_cpus_allowed(p, cpumask_of(rq->cpu), SCA_MIGRATE_DISABLE);
2210 }
2211
migrate_disable(void)2212 void migrate_disable(void)
2213 {
2214 struct task_struct *p = current;
2215
2216 if (p->migration_disabled) {
2217 p->migration_disabled++;
2218 return;
2219 }
2220
2221 preempt_disable();
2222 this_rq()->nr_pinned++;
2223 p->migration_disabled = 1;
2224 preempt_enable();
2225 }
2226 EXPORT_SYMBOL_GPL(migrate_disable);
2227
migrate_enable(void)2228 void migrate_enable(void)
2229 {
2230 struct task_struct *p = current;
2231
2232 if (p->migration_disabled > 1) {
2233 p->migration_disabled--;
2234 return;
2235 }
2236
2237 if (WARN_ON_ONCE(!p->migration_disabled))
2238 return;
2239
2240 /*
2241 * Ensure stop_task runs either before or after this, and that
2242 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule().
2243 */
2244 preempt_disable();
2245 if (p->cpus_ptr != &p->cpus_mask)
2246 __set_cpus_allowed_ptr(p, &p->cpus_mask, SCA_MIGRATE_ENABLE);
2247 /*
2248 * Mustn't clear migration_disabled() until cpus_ptr points back at the
2249 * regular cpus_mask, otherwise things that race (eg.
2250 * select_fallback_rq) get confused.
2251 */
2252 barrier();
2253 p->migration_disabled = 0;
2254 this_rq()->nr_pinned--;
2255 preempt_enable();
2256 }
2257 EXPORT_SYMBOL_GPL(migrate_enable);
2258
rq_has_pinned_tasks(struct rq * rq)2259 static inline bool rq_has_pinned_tasks(struct rq *rq)
2260 {
2261 return rq->nr_pinned;
2262 }
2263
2264 /*
2265 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
2266 * __set_cpus_allowed_ptr() and select_fallback_rq().
2267 */
is_cpu_allowed(struct task_struct * p,int cpu)2268 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
2269 {
2270 /* When not in the task's cpumask, no point in looking further. */
2271 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2272 return false;
2273
2274 /* migrate_disabled() must be allowed to finish. */
2275 if (is_migration_disabled(p))
2276 return cpu_online(cpu);
2277
2278 /* Non kernel threads are not allowed during either online or offline. */
2279 if (!(p->flags & PF_KTHREAD))
2280 return cpu_active(cpu) && task_cpu_possible(cpu, p);
2281
2282 /* KTHREAD_IS_PER_CPU is always allowed. */
2283 if (kthread_is_per_cpu(p))
2284 return cpu_online(cpu);
2285
2286 /* Regular kernel threads don't get to stay during offline. */
2287 if (cpu_dying(cpu))
2288 return false;
2289
2290 /* But are allowed during online. */
2291 return cpu_online(cpu);
2292 }
2293
2294 /*
2295 * This is how migration works:
2296 *
2297 * 1) we invoke migration_cpu_stop() on the target CPU using
2298 * stop_one_cpu().
2299 * 2) stopper starts to run (implicitly forcing the migrated thread
2300 * off the CPU)
2301 * 3) it checks whether the migrated task is still in the wrong runqueue.
2302 * 4) if it's in the wrong runqueue then the migration thread removes
2303 * it and puts it into the right queue.
2304 * 5) stopper completes and stop_one_cpu() returns and the migration
2305 * is done.
2306 */
2307
2308 /*
2309 * move_queued_task - move a queued task to new rq.
2310 *
2311 * Returns (locked) new rq. Old rq's lock is released.
2312 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)2313 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
2314 struct task_struct *p, int new_cpu)
2315 {
2316 lockdep_assert_rq_held(rq);
2317
2318 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
2319 set_task_cpu(p, new_cpu);
2320 rq_unlock(rq, rf);
2321
2322 rq = cpu_rq(new_cpu);
2323
2324 rq_lock(rq, rf);
2325 WARN_ON_ONCE(task_cpu(p) != new_cpu);
2326 activate_task(rq, p, 0);
2327 check_preempt_curr(rq, p, 0);
2328
2329 return rq;
2330 }
2331
2332 struct migration_arg {
2333 struct task_struct *task;
2334 int dest_cpu;
2335 struct set_affinity_pending *pending;
2336 };
2337
2338 /*
2339 * @refs: number of wait_for_completion()
2340 * @stop_pending: is @stop_work in use
2341 */
2342 struct set_affinity_pending {
2343 refcount_t refs;
2344 unsigned int stop_pending;
2345 struct completion done;
2346 struct cpu_stop_work stop_work;
2347 struct migration_arg arg;
2348 };
2349
2350 /*
2351 * Move (not current) task off this CPU, onto the destination CPU. We're doing
2352 * this because either it can't run here any more (set_cpus_allowed()
2353 * away from this CPU, or CPU going down), or because we're
2354 * attempting to rebalance this task on exec (sched_exec).
2355 *
2356 * So we race with normal scheduler movements, but that's OK, as long
2357 * as the task is no longer on this CPU.
2358 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)2359 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
2360 struct task_struct *p, int dest_cpu)
2361 {
2362 /* Affinity changed (again). */
2363 if (!is_cpu_allowed(p, dest_cpu))
2364 return rq;
2365
2366 update_rq_clock(rq);
2367 rq = move_queued_task(rq, rf, p, dest_cpu);
2368
2369 return rq;
2370 }
2371
2372 /*
2373 * migration_cpu_stop - this will be executed by a highprio stopper thread
2374 * and performs thread migration by bumping thread off CPU then
2375 * 'pushing' onto another runqueue.
2376 */
migration_cpu_stop(void * data)2377 static int migration_cpu_stop(void *data)
2378 {
2379 struct migration_arg *arg = data;
2380 struct set_affinity_pending *pending = arg->pending;
2381 struct task_struct *p = arg->task;
2382 struct rq *rq = this_rq();
2383 bool complete = false;
2384 struct rq_flags rf;
2385
2386 /*
2387 * The original target CPU might have gone down and we might
2388 * be on another CPU but it doesn't matter.
2389 */
2390 local_irq_save(rf.flags);
2391 /*
2392 * We need to explicitly wake pending tasks before running
2393 * __migrate_task() such that we will not miss enforcing cpus_ptr
2394 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
2395 */
2396 flush_smp_call_function_queue();
2397
2398 raw_spin_lock(&p->pi_lock);
2399 rq_lock(rq, &rf);
2400
2401 /*
2402 * If we were passed a pending, then ->stop_pending was set, thus
2403 * p->migration_pending must have remained stable.
2404 */
2405 WARN_ON_ONCE(pending && pending != p->migration_pending);
2406
2407 /*
2408 * If task_rq(p) != rq, it cannot be migrated here, because we're
2409 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
2410 * we're holding p->pi_lock.
2411 */
2412 if (task_rq(p) == rq) {
2413 if (is_migration_disabled(p))
2414 goto out;
2415
2416 if (pending) {
2417 p->migration_pending = NULL;
2418 complete = true;
2419
2420 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask))
2421 goto out;
2422 }
2423
2424 if (task_on_rq_queued(p))
2425 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
2426 else
2427 p->wake_cpu = arg->dest_cpu;
2428
2429 /*
2430 * XXX __migrate_task() can fail, at which point we might end
2431 * up running on a dodgy CPU, AFAICT this can only happen
2432 * during CPU hotplug, at which point we'll get pushed out
2433 * anyway, so it's probably not a big deal.
2434 */
2435
2436 } else if (pending) {
2437 /*
2438 * This happens when we get migrated between migrate_enable()'s
2439 * preempt_enable() and scheduling the stopper task. At that
2440 * point we're a regular task again and not current anymore.
2441 *
2442 * A !PREEMPT kernel has a giant hole here, which makes it far
2443 * more likely.
2444 */
2445
2446 /*
2447 * The task moved before the stopper got to run. We're holding
2448 * ->pi_lock, so the allowed mask is stable - if it got
2449 * somewhere allowed, we're done.
2450 */
2451 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) {
2452 p->migration_pending = NULL;
2453 complete = true;
2454 goto out;
2455 }
2456
2457 /*
2458 * When migrate_enable() hits a rq mis-match we can't reliably
2459 * determine is_migration_disabled() and so have to chase after
2460 * it.
2461 */
2462 WARN_ON_ONCE(!pending->stop_pending);
2463 task_rq_unlock(rq, p, &rf);
2464 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop,
2465 &pending->arg, &pending->stop_work);
2466 return 0;
2467 }
2468 out:
2469 if (pending)
2470 pending->stop_pending = false;
2471 task_rq_unlock(rq, p, &rf);
2472
2473 if (complete)
2474 complete_all(&pending->done);
2475
2476 return 0;
2477 }
2478
push_cpu_stop(void * arg)2479 int push_cpu_stop(void *arg)
2480 {
2481 struct rq *lowest_rq = NULL, *rq = this_rq();
2482 struct task_struct *p = arg;
2483
2484 raw_spin_lock_irq(&p->pi_lock);
2485 raw_spin_rq_lock(rq);
2486
2487 if (task_rq(p) != rq)
2488 goto out_unlock;
2489
2490 if (is_migration_disabled(p)) {
2491 p->migration_flags |= MDF_PUSH;
2492 goto out_unlock;
2493 }
2494
2495 p->migration_flags &= ~MDF_PUSH;
2496
2497 if (p->sched_class->find_lock_rq)
2498 lowest_rq = p->sched_class->find_lock_rq(p, rq);
2499
2500 if (!lowest_rq)
2501 goto out_unlock;
2502
2503 // XXX validate p is still the highest prio task
2504 if (task_rq(p) == rq) {
2505 deactivate_task(rq, p, 0);
2506 set_task_cpu(p, lowest_rq->cpu);
2507 activate_task(lowest_rq, p, 0);
2508 resched_curr(lowest_rq);
2509 }
2510
2511 double_unlock_balance(rq, lowest_rq);
2512
2513 out_unlock:
2514 rq->push_busy = false;
2515 raw_spin_rq_unlock(rq);
2516 raw_spin_unlock_irq(&p->pi_lock);
2517
2518 put_task_struct(p);
2519 return 0;
2520 }
2521
2522 /*
2523 * sched_class::set_cpus_allowed must do the below, but is not required to
2524 * actually call this function.
2525 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2526 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2527 {
2528 if (flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) {
2529 p->cpus_ptr = new_mask;
2530 return;
2531 }
2532
2533 cpumask_copy(&p->cpus_mask, new_mask);
2534 p->nr_cpus_allowed = cpumask_weight(new_mask);
2535 }
2536
2537 static void
__do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2538 __do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask, u32 flags)
2539 {
2540 struct rq *rq = task_rq(p);
2541 bool queued, running;
2542
2543 /*
2544 * This here violates the locking rules for affinity, since we're only
2545 * supposed to change these variables while holding both rq->lock and
2546 * p->pi_lock.
2547 *
2548 * HOWEVER, it magically works, because ttwu() is the only code that
2549 * accesses these variables under p->pi_lock and only does so after
2550 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule()
2551 * before finish_task().
2552 *
2553 * XXX do further audits, this smells like something putrid.
2554 */
2555 if (flags & SCA_MIGRATE_DISABLE)
2556 SCHED_WARN_ON(!p->on_cpu);
2557 else
2558 lockdep_assert_held(&p->pi_lock);
2559
2560 queued = task_on_rq_queued(p);
2561 running = task_current(rq, p);
2562
2563 if (queued) {
2564 /*
2565 * Because __kthread_bind() calls this on blocked tasks without
2566 * holding rq->lock.
2567 */
2568 lockdep_assert_rq_held(rq);
2569 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
2570 }
2571 if (running)
2572 put_prev_task(rq, p);
2573
2574 p->sched_class->set_cpus_allowed(p, new_mask, flags);
2575
2576 if (queued)
2577 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
2578 if (running)
2579 set_next_task(rq, p);
2580 }
2581
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)2582 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
2583 {
2584 __do_set_cpus_allowed(p, new_mask, 0);
2585 }
2586
dup_user_cpus_ptr(struct task_struct * dst,struct task_struct * src,int node)2587 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src,
2588 int node)
2589 {
2590 if (!src->user_cpus_ptr)
2591 return 0;
2592
2593 dst->user_cpus_ptr = kmalloc_node(cpumask_size(), GFP_KERNEL, node);
2594 if (!dst->user_cpus_ptr)
2595 return -ENOMEM;
2596
2597 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr);
2598 return 0;
2599 }
2600
clear_user_cpus_ptr(struct task_struct * p)2601 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p)
2602 {
2603 struct cpumask *user_mask = NULL;
2604
2605 swap(p->user_cpus_ptr, user_mask);
2606
2607 return user_mask;
2608 }
2609
release_user_cpus_ptr(struct task_struct * p)2610 void release_user_cpus_ptr(struct task_struct *p)
2611 {
2612 kfree(clear_user_cpus_ptr(p));
2613 }
2614
2615 /*
2616 * This function is wildly self concurrent; here be dragons.
2617 *
2618 *
2619 * When given a valid mask, __set_cpus_allowed_ptr() must block until the
2620 * designated task is enqueued on an allowed CPU. If that task is currently
2621 * running, we have to kick it out using the CPU stopper.
2622 *
2623 * Migrate-Disable comes along and tramples all over our nice sandcastle.
2624 * Consider:
2625 *
2626 * Initial conditions: P0->cpus_mask = [0, 1]
2627 *
2628 * P0@CPU0 P1
2629 *
2630 * migrate_disable();
2631 * <preempted>
2632 * set_cpus_allowed_ptr(P0, [1]);
2633 *
2634 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes
2635 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region).
2636 * This means we need the following scheme:
2637 *
2638 * P0@CPU0 P1
2639 *
2640 * migrate_disable();
2641 * <preempted>
2642 * set_cpus_allowed_ptr(P0, [1]);
2643 * <blocks>
2644 * <resumes>
2645 * migrate_enable();
2646 * __set_cpus_allowed_ptr();
2647 * <wakes local stopper>
2648 * `--> <woken on migration completion>
2649 *
2650 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple
2651 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any
2652 * task p are serialized by p->pi_lock, which we can leverage: the one that
2653 * should come into effect at the end of the Migrate-Disable region is the last
2654 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask),
2655 * but we still need to properly signal those waiting tasks at the appropriate
2656 * moment.
2657 *
2658 * This is implemented using struct set_affinity_pending. The first
2659 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will
2660 * setup an instance of that struct and install it on the targeted task_struct.
2661 * Any and all further callers will reuse that instance. Those then wait for
2662 * a completion signaled at the tail of the CPU stopper callback (1), triggered
2663 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()).
2664 *
2665 *
2666 * (1) In the cases covered above. There is one more where the completion is
2667 * signaled within affine_move_task() itself: when a subsequent affinity request
2668 * occurs after the stopper bailed out due to the targeted task still being
2669 * Migrate-Disable. Consider:
2670 *
2671 * Initial conditions: P0->cpus_mask = [0, 1]
2672 *
2673 * CPU0 P1 P2
2674 * <P0>
2675 * migrate_disable();
2676 * <preempted>
2677 * set_cpus_allowed_ptr(P0, [1]);
2678 * <blocks>
2679 * <migration/0>
2680 * migration_cpu_stop()
2681 * is_migration_disabled()
2682 * <bails>
2683 * set_cpus_allowed_ptr(P0, [0, 1]);
2684 * <signal completion>
2685 * <awakes>
2686 *
2687 * Note that the above is safe vs a concurrent migrate_enable(), as any
2688 * pending affinity completion is preceded by an uninstallation of
2689 * p->migration_pending done with p->pi_lock held.
2690 */
affine_move_task(struct rq * rq,struct task_struct * p,struct rq_flags * rf,int dest_cpu,unsigned int flags)2691 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf,
2692 int dest_cpu, unsigned int flags)
2693 {
2694 struct set_affinity_pending my_pending = { }, *pending = NULL;
2695 bool stop_pending, complete = false;
2696
2697 /* Can the task run on the task's current CPU? If so, we're done */
2698 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) {
2699 struct task_struct *push_task = NULL;
2700
2701 if ((flags & SCA_MIGRATE_ENABLE) &&
2702 (p->migration_flags & MDF_PUSH) && !rq->push_busy) {
2703 rq->push_busy = true;
2704 push_task = get_task_struct(p);
2705 }
2706
2707 /*
2708 * If there are pending waiters, but no pending stop_work,
2709 * then complete now.
2710 */
2711 pending = p->migration_pending;
2712 if (pending && !pending->stop_pending) {
2713 p->migration_pending = NULL;
2714 complete = true;
2715 }
2716
2717 task_rq_unlock(rq, p, rf);
2718
2719 if (push_task) {
2720 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2721 p, &rq->push_work);
2722 }
2723
2724 if (complete)
2725 complete_all(&pending->done);
2726
2727 return 0;
2728 }
2729
2730 if (!(flags & SCA_MIGRATE_ENABLE)) {
2731 /* serialized by p->pi_lock */
2732 if (!p->migration_pending) {
2733 /* Install the request */
2734 refcount_set(&my_pending.refs, 1);
2735 init_completion(&my_pending.done);
2736 my_pending.arg = (struct migration_arg) {
2737 .task = p,
2738 .dest_cpu = dest_cpu,
2739 .pending = &my_pending,
2740 };
2741
2742 p->migration_pending = &my_pending;
2743 } else {
2744 pending = p->migration_pending;
2745 refcount_inc(&pending->refs);
2746 /*
2747 * Affinity has changed, but we've already installed a
2748 * pending. migration_cpu_stop() *must* see this, else
2749 * we risk a completion of the pending despite having a
2750 * task on a disallowed CPU.
2751 *
2752 * Serialized by p->pi_lock, so this is safe.
2753 */
2754 pending->arg.dest_cpu = dest_cpu;
2755 }
2756 }
2757 pending = p->migration_pending;
2758 /*
2759 * - !MIGRATE_ENABLE:
2760 * we'll have installed a pending if there wasn't one already.
2761 *
2762 * - MIGRATE_ENABLE:
2763 * we're here because the current CPU isn't matching anymore,
2764 * the only way that can happen is because of a concurrent
2765 * set_cpus_allowed_ptr() call, which should then still be
2766 * pending completion.
2767 *
2768 * Either way, we really should have a @pending here.
2769 */
2770 if (WARN_ON_ONCE(!pending)) {
2771 task_rq_unlock(rq, p, rf);
2772 return -EINVAL;
2773 }
2774
2775 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) {
2776 /*
2777 * MIGRATE_ENABLE gets here because 'p == current', but for
2778 * anything else we cannot do is_migration_disabled(), punt
2779 * and have the stopper function handle it all race-free.
2780 */
2781 stop_pending = pending->stop_pending;
2782 if (!stop_pending)
2783 pending->stop_pending = true;
2784
2785 if (flags & SCA_MIGRATE_ENABLE)
2786 p->migration_flags &= ~MDF_PUSH;
2787
2788 task_rq_unlock(rq, p, rf);
2789
2790 if (!stop_pending) {
2791 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop,
2792 &pending->arg, &pending->stop_work);
2793 }
2794
2795 if (flags & SCA_MIGRATE_ENABLE)
2796 return 0;
2797 } else {
2798
2799 if (!is_migration_disabled(p)) {
2800 if (task_on_rq_queued(p))
2801 rq = move_queued_task(rq, rf, p, dest_cpu);
2802
2803 if (!pending->stop_pending) {
2804 p->migration_pending = NULL;
2805 complete = true;
2806 }
2807 }
2808 task_rq_unlock(rq, p, rf);
2809
2810 if (complete)
2811 complete_all(&pending->done);
2812 }
2813
2814 wait_for_completion(&pending->done);
2815
2816 if (refcount_dec_and_test(&pending->refs))
2817 wake_up_var(&pending->refs); /* No UaF, just an address */
2818
2819 /*
2820 * Block the original owner of &pending until all subsequent callers
2821 * have seen the completion and decremented the refcount
2822 */
2823 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs));
2824
2825 /* ARGH */
2826 WARN_ON_ONCE(my_pending.stop_pending);
2827
2828 return 0;
2829 }
2830
2831 /*
2832 * Called with both p->pi_lock and rq->lock held; drops both before returning.
2833 */
__set_cpus_allowed_ptr_locked(struct task_struct * p,const struct cpumask * new_mask,u32 flags,struct rq * rq,struct rq_flags * rf)2834 static int __set_cpus_allowed_ptr_locked(struct task_struct *p,
2835 const struct cpumask *new_mask,
2836 u32 flags,
2837 struct rq *rq,
2838 struct rq_flags *rf)
2839 __releases(rq->lock)
2840 __releases(p->pi_lock)
2841 {
2842 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p);
2843 const struct cpumask *cpu_valid_mask = cpu_active_mask;
2844 bool kthread = p->flags & PF_KTHREAD;
2845 struct cpumask *user_mask = NULL;
2846 unsigned int dest_cpu;
2847 int ret = 0;
2848
2849 update_rq_clock(rq);
2850
2851 if (kthread || is_migration_disabled(p)) {
2852 /*
2853 * Kernel threads are allowed on online && !active CPUs,
2854 * however, during cpu-hot-unplug, even these might get pushed
2855 * away if not KTHREAD_IS_PER_CPU.
2856 *
2857 * Specifically, migration_disabled() tasks must not fail the
2858 * cpumask_any_and_distribute() pick below, esp. so on
2859 * SCA_MIGRATE_ENABLE, otherwise we'll not call
2860 * set_cpus_allowed_common() and actually reset p->cpus_ptr.
2861 */
2862 cpu_valid_mask = cpu_online_mask;
2863 }
2864
2865 if (!kthread && !cpumask_subset(new_mask, cpu_allowed_mask)) {
2866 ret = -EINVAL;
2867 goto out;
2868 }
2869
2870 /*
2871 * Must re-check here, to close a race against __kthread_bind(),
2872 * sched_setaffinity() is not guaranteed to observe the flag.
2873 */
2874 if ((flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) {
2875 ret = -EINVAL;
2876 goto out;
2877 }
2878
2879 if (!(flags & SCA_MIGRATE_ENABLE)) {
2880 if (cpumask_equal(&p->cpus_mask, new_mask))
2881 goto out;
2882
2883 if (WARN_ON_ONCE(p == current &&
2884 is_migration_disabled(p) &&
2885 !cpumask_test_cpu(task_cpu(p), new_mask))) {
2886 ret = -EBUSY;
2887 goto out;
2888 }
2889 }
2890
2891 /*
2892 * Picking a ~random cpu helps in cases where we are changing affinity
2893 * for groups of tasks (ie. cpuset), so that load balancing is not
2894 * immediately required to distribute the tasks within their new mask.
2895 */
2896 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
2897 if (dest_cpu >= nr_cpu_ids) {
2898 ret = -EINVAL;
2899 goto out;
2900 }
2901
2902 __do_set_cpus_allowed(p, new_mask, flags);
2903
2904 if (flags & SCA_USER)
2905 user_mask = clear_user_cpus_ptr(p);
2906
2907 ret = affine_move_task(rq, p, rf, dest_cpu, flags);
2908
2909 kfree(user_mask);
2910
2911 return ret;
2912
2913 out:
2914 task_rq_unlock(rq, p, rf);
2915
2916 return ret;
2917 }
2918
2919 /*
2920 * Change a given task's CPU affinity. Migrate the thread to a
2921 * proper CPU and schedule it away if the CPU it's executing on
2922 * is removed from the allowed bitmask.
2923 *
2924 * NOTE: the caller must have a valid reference to the task, the
2925 * task must not exit() & deallocate itself prematurely. The
2926 * call is not atomic; no spinlocks may be held.
2927 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)2928 static int __set_cpus_allowed_ptr(struct task_struct *p,
2929 const struct cpumask *new_mask, u32 flags)
2930 {
2931 struct rq_flags rf;
2932 struct rq *rq;
2933
2934 rq = task_rq_lock(p, &rf);
2935 return __set_cpus_allowed_ptr_locked(p, new_mask, flags, rq, &rf);
2936 }
2937
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2938 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2939 {
2940 return __set_cpus_allowed_ptr(p, new_mask, 0);
2941 }
2942 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2943
2944 /*
2945 * Change a given task's CPU affinity to the intersection of its current
2946 * affinity mask and @subset_mask, writing the resulting mask to @new_mask
2947 * and pointing @p->user_cpus_ptr to a copy of the old mask.
2948 * If the resulting mask is empty, leave the affinity unchanged and return
2949 * -EINVAL.
2950 */
restrict_cpus_allowed_ptr(struct task_struct * p,struct cpumask * new_mask,const struct cpumask * subset_mask)2951 static int restrict_cpus_allowed_ptr(struct task_struct *p,
2952 struct cpumask *new_mask,
2953 const struct cpumask *subset_mask)
2954 {
2955 struct cpumask *user_mask = NULL;
2956 struct rq_flags rf;
2957 struct rq *rq;
2958 int err;
2959
2960 if (!p->user_cpus_ptr) {
2961 user_mask = kmalloc(cpumask_size(), GFP_KERNEL);
2962 if (!user_mask)
2963 return -ENOMEM;
2964 }
2965
2966 rq = task_rq_lock(p, &rf);
2967
2968 /*
2969 * Forcefully restricting the affinity of a deadline task is
2970 * likely to cause problems, so fail and noisily override the
2971 * mask entirely.
2972 */
2973 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
2974 err = -EPERM;
2975 goto err_unlock;
2976 }
2977
2978 if (!cpumask_and(new_mask, &p->cpus_mask, subset_mask)) {
2979 err = -EINVAL;
2980 goto err_unlock;
2981 }
2982
2983 /*
2984 * We're about to butcher the task affinity, so keep track of what
2985 * the user asked for in case we're able to restore it later on.
2986 */
2987 if (user_mask) {
2988 cpumask_copy(user_mask, p->cpus_ptr);
2989 p->user_cpus_ptr = user_mask;
2990 }
2991
2992 return __set_cpus_allowed_ptr_locked(p, new_mask, 0, rq, &rf);
2993
2994 err_unlock:
2995 task_rq_unlock(rq, p, &rf);
2996 kfree(user_mask);
2997 return err;
2998 }
2999
3000 /*
3001 * Restrict the CPU affinity of task @p so that it is a subset of
3002 * task_cpu_possible_mask() and point @p->user_cpu_ptr to a copy of the
3003 * old affinity mask. If the resulting mask is empty, we warn and walk
3004 * up the cpuset hierarchy until we find a suitable mask.
3005 */
force_compatible_cpus_allowed_ptr(struct task_struct * p)3006 void force_compatible_cpus_allowed_ptr(struct task_struct *p)
3007 {
3008 cpumask_var_t new_mask;
3009 const struct cpumask *override_mask = task_cpu_possible_mask(p);
3010
3011 alloc_cpumask_var(&new_mask, GFP_KERNEL);
3012
3013 /*
3014 * __migrate_task() can fail silently in the face of concurrent
3015 * offlining of the chosen destination CPU, so take the hotplug
3016 * lock to ensure that the migration succeeds.
3017 */
3018 cpus_read_lock();
3019 if (!cpumask_available(new_mask))
3020 goto out_set_mask;
3021
3022 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask))
3023 goto out_free_mask;
3024
3025 /*
3026 * We failed to find a valid subset of the affinity mask for the
3027 * task, so override it based on its cpuset hierarchy.
3028 */
3029 cpuset_cpus_allowed(p, new_mask);
3030 override_mask = new_mask;
3031
3032 out_set_mask:
3033 if (printk_ratelimit()) {
3034 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n",
3035 task_pid_nr(p), p->comm,
3036 cpumask_pr_args(override_mask));
3037 }
3038
3039 WARN_ON(set_cpus_allowed_ptr(p, override_mask));
3040 out_free_mask:
3041 cpus_read_unlock();
3042 free_cpumask_var(new_mask);
3043 }
3044
3045 static int
3046 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask);
3047
3048 /*
3049 * Restore the affinity of a task @p which was previously restricted by a
3050 * call to force_compatible_cpus_allowed_ptr(). This will clear (and free)
3051 * @p->user_cpus_ptr.
3052 *
3053 * It is the caller's responsibility to serialise this with any calls to
3054 * force_compatible_cpus_allowed_ptr(@p).
3055 */
relax_compatible_cpus_allowed_ptr(struct task_struct * p)3056 void relax_compatible_cpus_allowed_ptr(struct task_struct *p)
3057 {
3058 struct cpumask *user_mask = p->user_cpus_ptr;
3059 unsigned long flags;
3060
3061 /*
3062 * Try to restore the old affinity mask. If this fails, then
3063 * we free the mask explicitly to avoid it being inherited across
3064 * a subsequent fork().
3065 */
3066 if (!user_mask || !__sched_setaffinity(p, user_mask))
3067 return;
3068
3069 raw_spin_lock_irqsave(&p->pi_lock, flags);
3070 user_mask = clear_user_cpus_ptr(p);
3071 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3072
3073 kfree(user_mask);
3074 }
3075
set_task_cpu(struct task_struct * p,unsigned int new_cpu)3076 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
3077 {
3078 #ifdef CONFIG_SCHED_DEBUG
3079 unsigned int state = READ_ONCE(p->__state);
3080
3081 /*
3082 * We should never call set_task_cpu() on a blocked task,
3083 * ttwu() will sort out the placement.
3084 */
3085 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq);
3086
3087 /*
3088 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
3089 * because schedstat_wait_{start,end} rebase migrating task's wait_start
3090 * time relying on p->on_rq.
3091 */
3092 WARN_ON_ONCE(state == TASK_RUNNING &&
3093 p->sched_class == &fair_sched_class &&
3094 (p->on_rq && !task_on_rq_migrating(p)));
3095
3096 #ifdef CONFIG_LOCKDEP
3097 /*
3098 * The caller should hold either p->pi_lock or rq->lock, when changing
3099 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
3100 *
3101 * sched_move_task() holds both and thus holding either pins the cgroup,
3102 * see task_group().
3103 *
3104 * Furthermore, all task_rq users should acquire both locks, see
3105 * task_rq_lock().
3106 */
3107 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
3108 lockdep_is_held(__rq_lockp(task_rq(p)))));
3109 #endif
3110 /*
3111 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
3112 */
3113 WARN_ON_ONCE(!cpu_online(new_cpu));
3114
3115 WARN_ON_ONCE(is_migration_disabled(p));
3116 #endif
3117
3118 trace_sched_migrate_task(p, new_cpu);
3119
3120 if (task_cpu(p) != new_cpu) {
3121 if (p->sched_class->migrate_task_rq)
3122 p->sched_class->migrate_task_rq(p, new_cpu);
3123 p->se.nr_migrations++;
3124 rseq_migrate(p);
3125 perf_event_task_migrate(p);
3126 }
3127
3128 __set_task_cpu(p, new_cpu);
3129 }
3130
3131 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)3132 static void __migrate_swap_task(struct task_struct *p, int cpu)
3133 {
3134 if (task_on_rq_queued(p)) {
3135 struct rq *src_rq, *dst_rq;
3136 struct rq_flags srf, drf;
3137
3138 src_rq = task_rq(p);
3139 dst_rq = cpu_rq(cpu);
3140
3141 rq_pin_lock(src_rq, &srf);
3142 rq_pin_lock(dst_rq, &drf);
3143
3144 deactivate_task(src_rq, p, 0);
3145 set_task_cpu(p, cpu);
3146 activate_task(dst_rq, p, 0);
3147 check_preempt_curr(dst_rq, p, 0);
3148
3149 rq_unpin_lock(dst_rq, &drf);
3150 rq_unpin_lock(src_rq, &srf);
3151
3152 } else {
3153 /*
3154 * Task isn't running anymore; make it appear like we migrated
3155 * it before it went to sleep. This means on wakeup we make the
3156 * previous CPU our target instead of where it really is.
3157 */
3158 p->wake_cpu = cpu;
3159 }
3160 }
3161
3162 struct migration_swap_arg {
3163 struct task_struct *src_task, *dst_task;
3164 int src_cpu, dst_cpu;
3165 };
3166
migrate_swap_stop(void * data)3167 static int migrate_swap_stop(void *data)
3168 {
3169 struct migration_swap_arg *arg = data;
3170 struct rq *src_rq, *dst_rq;
3171 int ret = -EAGAIN;
3172
3173 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
3174 return -EAGAIN;
3175
3176 src_rq = cpu_rq(arg->src_cpu);
3177 dst_rq = cpu_rq(arg->dst_cpu);
3178
3179 double_raw_lock(&arg->src_task->pi_lock,
3180 &arg->dst_task->pi_lock);
3181 double_rq_lock(src_rq, dst_rq);
3182
3183 if (task_cpu(arg->dst_task) != arg->dst_cpu)
3184 goto unlock;
3185
3186 if (task_cpu(arg->src_task) != arg->src_cpu)
3187 goto unlock;
3188
3189 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
3190 goto unlock;
3191
3192 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
3193 goto unlock;
3194
3195 __migrate_swap_task(arg->src_task, arg->dst_cpu);
3196 __migrate_swap_task(arg->dst_task, arg->src_cpu);
3197
3198 ret = 0;
3199
3200 unlock:
3201 double_rq_unlock(src_rq, dst_rq);
3202 raw_spin_unlock(&arg->dst_task->pi_lock);
3203 raw_spin_unlock(&arg->src_task->pi_lock);
3204
3205 return ret;
3206 }
3207
3208 /*
3209 * Cross migrate two tasks
3210 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)3211 int migrate_swap(struct task_struct *cur, struct task_struct *p,
3212 int target_cpu, int curr_cpu)
3213 {
3214 struct migration_swap_arg arg;
3215 int ret = -EINVAL;
3216
3217 arg = (struct migration_swap_arg){
3218 .src_task = cur,
3219 .src_cpu = curr_cpu,
3220 .dst_task = p,
3221 .dst_cpu = target_cpu,
3222 };
3223
3224 if (arg.src_cpu == arg.dst_cpu)
3225 goto out;
3226
3227 /*
3228 * These three tests are all lockless; this is OK since all of them
3229 * will be re-checked with proper locks held further down the line.
3230 */
3231 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
3232 goto out;
3233
3234 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
3235 goto out;
3236
3237 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
3238 goto out;
3239
3240 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
3241 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
3242
3243 out:
3244 return ret;
3245 }
3246 #endif /* CONFIG_NUMA_BALANCING */
3247
3248 /*
3249 * wait_task_inactive - wait for a thread to unschedule.
3250 *
3251 * Wait for the thread to block in any of the states set in @match_state.
3252 * If it changes, i.e. @p might have woken up, then return zero. When we
3253 * succeed in waiting for @p to be off its CPU, we return a positive number
3254 * (its total switch count). If a second call a short while later returns the
3255 * same number, the caller can be sure that @p has remained unscheduled the
3256 * whole time.
3257 *
3258 * The caller must ensure that the task *will* unschedule sometime soon,
3259 * else this function might spin for a *long* time. This function can't
3260 * be called with interrupts off, or it may introduce deadlock with
3261 * smp_call_function() if an IPI is sent by the same process we are
3262 * waiting to become inactive.
3263 */
wait_task_inactive(struct task_struct * p,unsigned int match_state)3264 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state)
3265 {
3266 int running, queued;
3267 struct rq_flags rf;
3268 unsigned long ncsw;
3269 struct rq *rq;
3270
3271 for (;;) {
3272 /*
3273 * We do the initial early heuristics without holding
3274 * any task-queue locks at all. We'll only try to get
3275 * the runqueue lock when things look like they will
3276 * work out!
3277 */
3278 rq = task_rq(p);
3279
3280 /*
3281 * If the task is actively running on another CPU
3282 * still, just relax and busy-wait without holding
3283 * any locks.
3284 *
3285 * NOTE! Since we don't hold any locks, it's not
3286 * even sure that "rq" stays as the right runqueue!
3287 * But we don't care, since "task_on_cpu()" will
3288 * return false if the runqueue has changed and p
3289 * is actually now running somewhere else!
3290 */
3291 while (task_on_cpu(rq, p)) {
3292 if (!(READ_ONCE(p->__state) & match_state))
3293 return 0;
3294 cpu_relax();
3295 }
3296
3297 /*
3298 * Ok, time to look more closely! We need the rq
3299 * lock now, to be *sure*. If we're wrong, we'll
3300 * just go back and repeat.
3301 */
3302 rq = task_rq_lock(p, &rf);
3303 trace_sched_wait_task(p);
3304 running = task_on_cpu(rq, p);
3305 queued = task_on_rq_queued(p);
3306 ncsw = 0;
3307 if (READ_ONCE(p->__state) & match_state)
3308 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3309 task_rq_unlock(rq, p, &rf);
3310
3311 /*
3312 * If it changed from the expected state, bail out now.
3313 */
3314 if (unlikely(!ncsw))
3315 break;
3316
3317 /*
3318 * Was it really running after all now that we
3319 * checked with the proper locks actually held?
3320 *
3321 * Oops. Go back and try again..
3322 */
3323 if (unlikely(running)) {
3324 cpu_relax();
3325 continue;
3326 }
3327
3328 /*
3329 * It's not enough that it's not actively running,
3330 * it must be off the runqueue _entirely_, and not
3331 * preempted!
3332 *
3333 * So if it was still runnable (but just not actively
3334 * running right now), it's preempted, and we should
3335 * yield - it could be a while.
3336 */
3337 if (unlikely(queued)) {
3338 ktime_t to = NSEC_PER_SEC / HZ;
3339
3340 set_current_state(TASK_UNINTERRUPTIBLE);
3341 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD);
3342 continue;
3343 }
3344
3345 /*
3346 * Ahh, all good. It wasn't running, and it wasn't
3347 * runnable, which means that it will never become
3348 * running in the future either. We're all done!
3349 */
3350 break;
3351 }
3352
3353 return ncsw;
3354 }
3355
3356 /***
3357 * kick_process - kick a running thread to enter/exit the kernel
3358 * @p: the to-be-kicked thread
3359 *
3360 * Cause a process which is running on another CPU to enter
3361 * kernel-mode, without any delay. (to get signals handled.)
3362 *
3363 * NOTE: this function doesn't have to take the runqueue lock,
3364 * because all it wants to ensure is that the remote task enters
3365 * the kernel. If the IPI races and the task has been migrated
3366 * to another CPU then no harm is done and the purpose has been
3367 * achieved as well.
3368 */
kick_process(struct task_struct * p)3369 void kick_process(struct task_struct *p)
3370 {
3371 int cpu;
3372
3373 preempt_disable();
3374 cpu = task_cpu(p);
3375 if ((cpu != smp_processor_id()) && task_curr(p))
3376 smp_send_reschedule(cpu);
3377 preempt_enable();
3378 }
3379 EXPORT_SYMBOL_GPL(kick_process);
3380
3381 /*
3382 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
3383 *
3384 * A few notes on cpu_active vs cpu_online:
3385 *
3386 * - cpu_active must be a subset of cpu_online
3387 *
3388 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
3389 * see __set_cpus_allowed_ptr(). At this point the newly online
3390 * CPU isn't yet part of the sched domains, and balancing will not
3391 * see it.
3392 *
3393 * - on CPU-down we clear cpu_active() to mask the sched domains and
3394 * avoid the load balancer to place new tasks on the to be removed
3395 * CPU. Existing tasks will remain running there and will be taken
3396 * off.
3397 *
3398 * This means that fallback selection must not select !active CPUs.
3399 * And can assume that any active CPU must be online. Conversely
3400 * select_task_rq() below may allow selection of !active CPUs in order
3401 * to satisfy the above rules.
3402 */
select_fallback_rq(int cpu,struct task_struct * p)3403 static int select_fallback_rq(int cpu, struct task_struct *p)
3404 {
3405 int nid = cpu_to_node(cpu);
3406 const struct cpumask *nodemask = NULL;
3407 enum { cpuset, possible, fail } state = cpuset;
3408 int dest_cpu;
3409
3410 /*
3411 * If the node that the CPU is on has been offlined, cpu_to_node()
3412 * will return -1. There is no CPU on the node, and we should
3413 * select the CPU on the other node.
3414 */
3415 if (nid != -1) {
3416 nodemask = cpumask_of_node(nid);
3417
3418 /* Look for allowed, online CPU in same node. */
3419 for_each_cpu(dest_cpu, nodemask) {
3420 if (is_cpu_allowed(p, dest_cpu))
3421 return dest_cpu;
3422 }
3423 }
3424
3425 for (;;) {
3426 /* Any allowed, online CPU? */
3427 for_each_cpu(dest_cpu, p->cpus_ptr) {
3428 if (!is_cpu_allowed(p, dest_cpu))
3429 continue;
3430
3431 goto out;
3432 }
3433
3434 /* No more Mr. Nice Guy. */
3435 switch (state) {
3436 case cpuset:
3437 if (cpuset_cpus_allowed_fallback(p)) {
3438 state = possible;
3439 break;
3440 }
3441 fallthrough;
3442 case possible:
3443 /*
3444 * XXX When called from select_task_rq() we only
3445 * hold p->pi_lock and again violate locking order.
3446 *
3447 * More yuck to audit.
3448 */
3449 do_set_cpus_allowed(p, task_cpu_possible_mask(p));
3450 state = fail;
3451 break;
3452 case fail:
3453 BUG();
3454 break;
3455 }
3456 }
3457
3458 out:
3459 if (state != cpuset) {
3460 /*
3461 * Don't tell them about moving exiting tasks or
3462 * kernel threads (both mm NULL), since they never
3463 * leave kernel.
3464 */
3465 if (p->mm && printk_ratelimit()) {
3466 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
3467 task_pid_nr(p), p->comm, cpu);
3468 }
3469 }
3470
3471 return dest_cpu;
3472 }
3473
3474 /*
3475 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
3476 */
3477 static inline
select_task_rq(struct task_struct * p,int cpu,int wake_flags)3478 int select_task_rq(struct task_struct *p, int cpu, int wake_flags)
3479 {
3480 lockdep_assert_held(&p->pi_lock);
3481
3482 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p))
3483 cpu = p->sched_class->select_task_rq(p, cpu, wake_flags);
3484 else
3485 cpu = cpumask_any(p->cpus_ptr);
3486
3487 /*
3488 * In order not to call set_task_cpu() on a blocking task we need
3489 * to rely on ttwu() to place the task on a valid ->cpus_ptr
3490 * CPU.
3491 *
3492 * Since this is common to all placement strategies, this lives here.
3493 *
3494 * [ this allows ->select_task() to simply return task_cpu(p) and
3495 * not worry about this generic constraint ]
3496 */
3497 if (unlikely(!is_cpu_allowed(p, cpu)))
3498 cpu = select_fallback_rq(task_cpu(p), p);
3499
3500 return cpu;
3501 }
3502
sched_set_stop_task(int cpu,struct task_struct * stop)3503 void sched_set_stop_task(int cpu, struct task_struct *stop)
3504 {
3505 static struct lock_class_key stop_pi_lock;
3506 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
3507 struct task_struct *old_stop = cpu_rq(cpu)->stop;
3508
3509 if (stop) {
3510 /*
3511 * Make it appear like a SCHED_FIFO task, its something
3512 * userspace knows about and won't get confused about.
3513 *
3514 * Also, it will make PI more or less work without too
3515 * much confusion -- but then, stop work should not
3516 * rely on PI working anyway.
3517 */
3518 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
3519
3520 stop->sched_class = &stop_sched_class;
3521
3522 /*
3523 * The PI code calls rt_mutex_setprio() with ->pi_lock held to
3524 * adjust the effective priority of a task. As a result,
3525 * rt_mutex_setprio() can trigger (RT) balancing operations,
3526 * which can then trigger wakeups of the stop thread to push
3527 * around the current task.
3528 *
3529 * The stop task itself will never be part of the PI-chain, it
3530 * never blocks, therefore that ->pi_lock recursion is safe.
3531 * Tell lockdep about this by placing the stop->pi_lock in its
3532 * own class.
3533 */
3534 lockdep_set_class(&stop->pi_lock, &stop_pi_lock);
3535 }
3536
3537 cpu_rq(cpu)->stop = stop;
3538
3539 if (old_stop) {
3540 /*
3541 * Reset it back to a normal scheduling class so that
3542 * it can die in pieces.
3543 */
3544 old_stop->sched_class = &rt_sched_class;
3545 }
3546 }
3547
3548 #else /* CONFIG_SMP */
3549
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,u32 flags)3550 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
3551 const struct cpumask *new_mask,
3552 u32 flags)
3553 {
3554 return set_cpus_allowed_ptr(p, new_mask);
3555 }
3556
migrate_disable_switch(struct rq * rq,struct task_struct * p)3557 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { }
3558
rq_has_pinned_tasks(struct rq * rq)3559 static inline bool rq_has_pinned_tasks(struct rq *rq)
3560 {
3561 return false;
3562 }
3563
3564 #endif /* !CONFIG_SMP */
3565
3566 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)3567 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
3568 {
3569 struct rq *rq;
3570
3571 if (!schedstat_enabled())
3572 return;
3573
3574 rq = this_rq();
3575
3576 #ifdef CONFIG_SMP
3577 if (cpu == rq->cpu) {
3578 __schedstat_inc(rq->ttwu_local);
3579 __schedstat_inc(p->stats.nr_wakeups_local);
3580 } else {
3581 struct sched_domain *sd;
3582
3583 __schedstat_inc(p->stats.nr_wakeups_remote);
3584 rcu_read_lock();
3585 for_each_domain(rq->cpu, sd) {
3586 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3587 __schedstat_inc(sd->ttwu_wake_remote);
3588 break;
3589 }
3590 }
3591 rcu_read_unlock();
3592 }
3593
3594 if (wake_flags & WF_MIGRATED)
3595 __schedstat_inc(p->stats.nr_wakeups_migrate);
3596 #endif /* CONFIG_SMP */
3597
3598 __schedstat_inc(rq->ttwu_count);
3599 __schedstat_inc(p->stats.nr_wakeups);
3600
3601 if (wake_flags & WF_SYNC)
3602 __schedstat_inc(p->stats.nr_wakeups_sync);
3603 }
3604
3605 /*
3606 * Mark the task runnable and perform wakeup-preemption.
3607 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3608 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
3609 struct rq_flags *rf)
3610 {
3611 check_preempt_curr(rq, p, wake_flags);
3612 WRITE_ONCE(p->__state, TASK_RUNNING);
3613 trace_sched_wakeup(p);
3614
3615 #ifdef CONFIG_SMP
3616 if (p->sched_class->task_woken) {
3617 /*
3618 * Our task @p is fully woken up and running; so it's safe to
3619 * drop the rq->lock, hereafter rq is only used for statistics.
3620 */
3621 rq_unpin_lock(rq, rf);
3622 p->sched_class->task_woken(rq, p);
3623 rq_repin_lock(rq, rf);
3624 }
3625
3626 if (rq->idle_stamp) {
3627 u64 delta = rq_clock(rq) - rq->idle_stamp;
3628 u64 max = 2*rq->max_idle_balance_cost;
3629
3630 update_avg(&rq->avg_idle, delta);
3631
3632 if (rq->avg_idle > max)
3633 rq->avg_idle = max;
3634
3635 rq->wake_stamp = jiffies;
3636 rq->wake_avg_idle = rq->avg_idle / 2;
3637
3638 rq->idle_stamp = 0;
3639 }
3640 #endif
3641 }
3642
3643 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)3644 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
3645 struct rq_flags *rf)
3646 {
3647 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
3648
3649 lockdep_assert_rq_held(rq);
3650
3651 if (p->sched_contributes_to_load)
3652 rq->nr_uninterruptible--;
3653
3654 #ifdef CONFIG_SMP
3655 if (wake_flags & WF_MIGRATED)
3656 en_flags |= ENQUEUE_MIGRATED;
3657 else
3658 #endif
3659 if (p->in_iowait) {
3660 delayacct_blkio_end(p);
3661 atomic_dec(&task_rq(p)->nr_iowait);
3662 }
3663
3664 activate_task(rq, p, en_flags);
3665 ttwu_do_wakeup(rq, p, wake_flags, rf);
3666 }
3667
3668 /*
3669 * Consider @p being inside a wait loop:
3670 *
3671 * for (;;) {
3672 * set_current_state(TASK_UNINTERRUPTIBLE);
3673 *
3674 * if (CONDITION)
3675 * break;
3676 *
3677 * schedule();
3678 * }
3679 * __set_current_state(TASK_RUNNING);
3680 *
3681 * between set_current_state() and schedule(). In this case @p is still
3682 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
3683 * an atomic manner.
3684 *
3685 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
3686 * then schedule() must still happen and p->state can be changed to
3687 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
3688 * need to do a full wakeup with enqueue.
3689 *
3690 * Returns: %true when the wakeup is done,
3691 * %false otherwise.
3692 */
ttwu_runnable(struct task_struct * p,int wake_flags)3693 static int ttwu_runnable(struct task_struct *p, int wake_flags)
3694 {
3695 struct rq_flags rf;
3696 struct rq *rq;
3697 int ret = 0;
3698
3699 rq = __task_rq_lock(p, &rf);
3700 if (task_on_rq_queued(p)) {
3701 /* check_preempt_curr() may use rq clock */
3702 update_rq_clock(rq);
3703 ttwu_do_wakeup(rq, p, wake_flags, &rf);
3704 ret = 1;
3705 }
3706 __task_rq_unlock(rq, &rf);
3707
3708 return ret;
3709 }
3710
3711 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)3712 void sched_ttwu_pending(void *arg)
3713 {
3714 struct llist_node *llist = arg;
3715 struct rq *rq = this_rq();
3716 struct task_struct *p, *t;
3717 struct rq_flags rf;
3718
3719 if (!llist)
3720 return;
3721
3722 /*
3723 * rq::ttwu_pending racy indication of out-standing wakeups.
3724 * Races such that false-negatives are possible, since they
3725 * are shorter lived that false-positives would be.
3726 */
3727 WRITE_ONCE(rq->ttwu_pending, 0);
3728
3729 rq_lock_irqsave(rq, &rf);
3730 update_rq_clock(rq);
3731
3732 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
3733 if (WARN_ON_ONCE(p->on_cpu))
3734 smp_cond_load_acquire(&p->on_cpu, !VAL);
3735
3736 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
3737 set_task_cpu(p, cpu_of(rq));
3738
3739 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
3740 }
3741
3742 rq_unlock_irqrestore(rq, &rf);
3743 }
3744
send_call_function_single_ipi(int cpu)3745 void send_call_function_single_ipi(int cpu)
3746 {
3747 struct rq *rq = cpu_rq(cpu);
3748
3749 if (!set_nr_if_polling(rq->idle))
3750 arch_send_call_function_single_ipi(cpu);
3751 else
3752 trace_sched_wake_idle_without_ipi(cpu);
3753 }
3754
3755 /*
3756 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
3757 * necessary. The wakee CPU on receipt of the IPI will queue the task
3758 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
3759 * of the wakeup instead of the waker.
3760 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3761 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3762 {
3763 struct rq *rq = cpu_rq(cpu);
3764
3765 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
3766
3767 WRITE_ONCE(rq->ttwu_pending, 1);
3768 __smp_call_single_queue(cpu, &p->wake_entry.llist);
3769 }
3770
wake_up_if_idle(int cpu)3771 void wake_up_if_idle(int cpu)
3772 {
3773 struct rq *rq = cpu_rq(cpu);
3774 struct rq_flags rf;
3775
3776 rcu_read_lock();
3777
3778 if (!is_idle_task(rcu_dereference(rq->curr)))
3779 goto out;
3780
3781 rq_lock_irqsave(rq, &rf);
3782 if (is_idle_task(rq->curr))
3783 resched_curr(rq);
3784 /* Else CPU is not idle, do nothing here: */
3785 rq_unlock_irqrestore(rq, &rf);
3786
3787 out:
3788 rcu_read_unlock();
3789 }
3790
cpus_share_cache(int this_cpu,int that_cpu)3791 bool cpus_share_cache(int this_cpu, int that_cpu)
3792 {
3793 if (this_cpu == that_cpu)
3794 return true;
3795
3796 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
3797 }
3798
ttwu_queue_cond(struct task_struct * p,int cpu)3799 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu)
3800 {
3801 /*
3802 * Do not complicate things with the async wake_list while the CPU is
3803 * in hotplug state.
3804 */
3805 if (!cpu_active(cpu))
3806 return false;
3807
3808 /* Ensure the task will still be allowed to run on the CPU. */
3809 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
3810 return false;
3811
3812 /*
3813 * If the CPU does not share cache, then queue the task on the
3814 * remote rqs wakelist to avoid accessing remote data.
3815 */
3816 if (!cpus_share_cache(smp_processor_id(), cpu))
3817 return true;
3818
3819 if (cpu == smp_processor_id())
3820 return false;
3821
3822 /*
3823 * If the wakee cpu is idle, or the task is descheduling and the
3824 * only running task on the CPU, then use the wakelist to offload
3825 * the task activation to the idle (or soon-to-be-idle) CPU as
3826 * the current CPU is likely busy. nr_running is checked to
3827 * avoid unnecessary task stacking.
3828 *
3829 * Note that we can only get here with (wakee) p->on_rq=0,
3830 * p->on_cpu can be whatever, we've done the dequeue, so
3831 * the wakee has been accounted out of ->nr_running.
3832 */
3833 if (!cpu_rq(cpu)->nr_running)
3834 return true;
3835
3836 return false;
3837 }
3838
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3839 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3840 {
3841 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) {
3842 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
3843 __ttwu_queue_wakelist(p, cpu, wake_flags);
3844 return true;
3845 }
3846
3847 return false;
3848 }
3849
3850 #else /* !CONFIG_SMP */
3851
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)3852 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
3853 {
3854 return false;
3855 }
3856
3857 #endif /* CONFIG_SMP */
3858
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)3859 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
3860 {
3861 struct rq *rq = cpu_rq(cpu);
3862 struct rq_flags rf;
3863
3864 if (ttwu_queue_wakelist(p, cpu, wake_flags))
3865 return;
3866
3867 rq_lock(rq, &rf);
3868 update_rq_clock(rq);
3869 ttwu_do_activate(rq, p, wake_flags, &rf);
3870 rq_unlock(rq, &rf);
3871 }
3872
3873 /*
3874 * Invoked from try_to_wake_up() to check whether the task can be woken up.
3875 *
3876 * The caller holds p::pi_lock if p != current or has preemption
3877 * disabled when p == current.
3878 *
3879 * The rules of PREEMPT_RT saved_state:
3880 *
3881 * The related locking code always holds p::pi_lock when updating
3882 * p::saved_state, which means the code is fully serialized in both cases.
3883 *
3884 * The lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. No other
3885 * bits set. This allows to distinguish all wakeup scenarios.
3886 */
3887 static __always_inline
ttwu_state_match(struct task_struct * p,unsigned int state,int * success)3888 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success)
3889 {
3890 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) {
3891 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) &&
3892 state != TASK_RTLOCK_WAIT);
3893 }
3894
3895 if (READ_ONCE(p->__state) & state) {
3896 *success = 1;
3897 return true;
3898 }
3899
3900 #ifdef CONFIG_PREEMPT_RT
3901 /*
3902 * Saved state preserves the task state across blocking on
3903 * an RT lock. If the state matches, set p::saved_state to
3904 * TASK_RUNNING, but do not wake the task because it waits
3905 * for a lock wakeup. Also indicate success because from
3906 * the regular waker's point of view this has succeeded.
3907 *
3908 * After acquiring the lock the task will restore p::__state
3909 * from p::saved_state which ensures that the regular
3910 * wakeup is not lost. The restore will also set
3911 * p::saved_state to TASK_RUNNING so any further tests will
3912 * not result in false positives vs. @success
3913 */
3914 if (p->saved_state & state) {
3915 p->saved_state = TASK_RUNNING;
3916 *success = 1;
3917 }
3918 #endif
3919 return false;
3920 }
3921
3922 /*
3923 * Notes on Program-Order guarantees on SMP systems.
3924 *
3925 * MIGRATION
3926 *
3927 * The basic program-order guarantee on SMP systems is that when a task [t]
3928 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
3929 * execution on its new CPU [c1].
3930 *
3931 * For migration (of runnable tasks) this is provided by the following means:
3932 *
3933 * A) UNLOCK of the rq(c0)->lock scheduling out task t
3934 * B) migration for t is required to synchronize *both* rq(c0)->lock and
3935 * rq(c1)->lock (if not at the same time, then in that order).
3936 * C) LOCK of the rq(c1)->lock scheduling in task
3937 *
3938 * Release/acquire chaining guarantees that B happens after A and C after B.
3939 * Note: the CPU doing B need not be c0 or c1
3940 *
3941 * Example:
3942 *
3943 * CPU0 CPU1 CPU2
3944 *
3945 * LOCK rq(0)->lock
3946 * sched-out X
3947 * sched-in Y
3948 * UNLOCK rq(0)->lock
3949 *
3950 * LOCK rq(0)->lock // orders against CPU0
3951 * dequeue X
3952 * UNLOCK rq(0)->lock
3953 *
3954 * LOCK rq(1)->lock
3955 * enqueue X
3956 * UNLOCK rq(1)->lock
3957 *
3958 * LOCK rq(1)->lock // orders against CPU2
3959 * sched-out Z
3960 * sched-in X
3961 * UNLOCK rq(1)->lock
3962 *
3963 *
3964 * BLOCKING -- aka. SLEEP + WAKEUP
3965 *
3966 * For blocking we (obviously) need to provide the same guarantee as for
3967 * migration. However the means are completely different as there is no lock
3968 * chain to provide order. Instead we do:
3969 *
3970 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
3971 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
3972 *
3973 * Example:
3974 *
3975 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
3976 *
3977 * LOCK rq(0)->lock LOCK X->pi_lock
3978 * dequeue X
3979 * sched-out X
3980 * smp_store_release(X->on_cpu, 0);
3981 *
3982 * smp_cond_load_acquire(&X->on_cpu, !VAL);
3983 * X->state = WAKING
3984 * set_task_cpu(X,2)
3985 *
3986 * LOCK rq(2)->lock
3987 * enqueue X
3988 * X->state = RUNNING
3989 * UNLOCK rq(2)->lock
3990 *
3991 * LOCK rq(2)->lock // orders against CPU1
3992 * sched-out Z
3993 * sched-in X
3994 * UNLOCK rq(2)->lock
3995 *
3996 * UNLOCK X->pi_lock
3997 * UNLOCK rq(0)->lock
3998 *
3999 *
4000 * However, for wakeups there is a second guarantee we must provide, namely we
4001 * must ensure that CONDITION=1 done by the caller can not be reordered with
4002 * accesses to the task state; see try_to_wake_up() and set_current_state().
4003 */
4004
4005 /**
4006 * try_to_wake_up - wake up a thread
4007 * @p: the thread to be awakened
4008 * @state: the mask of task states that can be woken
4009 * @wake_flags: wake modifier flags (WF_*)
4010 *
4011 * Conceptually does:
4012 *
4013 * If (@state & @p->state) @p->state = TASK_RUNNING.
4014 *
4015 * If the task was not queued/runnable, also place it back on a runqueue.
4016 *
4017 * This function is atomic against schedule() which would dequeue the task.
4018 *
4019 * It issues a full memory barrier before accessing @p->state, see the comment
4020 * with set_current_state().
4021 *
4022 * Uses p->pi_lock to serialize against concurrent wake-ups.
4023 *
4024 * Relies on p->pi_lock stabilizing:
4025 * - p->sched_class
4026 * - p->cpus_ptr
4027 * - p->sched_task_group
4028 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
4029 *
4030 * Tries really hard to only take one task_rq(p)->lock for performance.
4031 * Takes rq->lock in:
4032 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
4033 * - ttwu_queue() -- new rq, for enqueue of the task;
4034 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
4035 *
4036 * As a consequence we race really badly with just about everything. See the
4037 * many memory barriers and their comments for details.
4038 *
4039 * Return: %true if @p->state changes (an actual wakeup was done),
4040 * %false otherwise.
4041 */
4042 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)4043 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
4044 {
4045 unsigned long flags;
4046 int cpu, success = 0;
4047
4048 preempt_disable();
4049 if (p == current) {
4050 /*
4051 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
4052 * == smp_processor_id()'. Together this means we can special
4053 * case the whole 'p->on_rq && ttwu_runnable()' case below
4054 * without taking any locks.
4055 *
4056 * In particular:
4057 * - we rely on Program-Order guarantees for all the ordering,
4058 * - we're serialized against set_special_state() by virtue of
4059 * it disabling IRQs (this allows not taking ->pi_lock).
4060 */
4061 if (!ttwu_state_match(p, state, &success))
4062 goto out;
4063
4064 trace_sched_waking(p);
4065 WRITE_ONCE(p->__state, TASK_RUNNING);
4066 trace_sched_wakeup(p);
4067 goto out;
4068 }
4069
4070 /*
4071 * If we are going to wake up a thread waiting for CONDITION we
4072 * need to ensure that CONDITION=1 done by the caller can not be
4073 * reordered with p->state check below. This pairs with smp_store_mb()
4074 * in set_current_state() that the waiting thread does.
4075 */
4076 raw_spin_lock_irqsave(&p->pi_lock, flags);
4077 smp_mb__after_spinlock();
4078 if (!ttwu_state_match(p, state, &success))
4079 goto unlock;
4080
4081 trace_sched_waking(p);
4082
4083 /*
4084 * Ensure we load p->on_rq _after_ p->state, otherwise it would
4085 * be possible to, falsely, observe p->on_rq == 0 and get stuck
4086 * in smp_cond_load_acquire() below.
4087 *
4088 * sched_ttwu_pending() try_to_wake_up()
4089 * STORE p->on_rq = 1 LOAD p->state
4090 * UNLOCK rq->lock
4091 *
4092 * __schedule() (switch to task 'p')
4093 * LOCK rq->lock smp_rmb();
4094 * smp_mb__after_spinlock();
4095 * UNLOCK rq->lock
4096 *
4097 * [task p]
4098 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
4099 *
4100 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4101 * __schedule(). See the comment for smp_mb__after_spinlock().
4102 *
4103 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
4104 */
4105 smp_rmb();
4106 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
4107 goto unlock;
4108
4109 #ifdef CONFIG_SMP
4110 /*
4111 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
4112 * possible to, falsely, observe p->on_cpu == 0.
4113 *
4114 * One must be running (->on_cpu == 1) in order to remove oneself
4115 * from the runqueue.
4116 *
4117 * __schedule() (switch to task 'p') try_to_wake_up()
4118 * STORE p->on_cpu = 1 LOAD p->on_rq
4119 * UNLOCK rq->lock
4120 *
4121 * __schedule() (put 'p' to sleep)
4122 * LOCK rq->lock smp_rmb();
4123 * smp_mb__after_spinlock();
4124 * STORE p->on_rq = 0 LOAD p->on_cpu
4125 *
4126 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
4127 * __schedule(). See the comment for smp_mb__after_spinlock().
4128 *
4129 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
4130 * schedule()'s deactivate_task() has 'happened' and p will no longer
4131 * care about it's own p->state. See the comment in __schedule().
4132 */
4133 smp_acquire__after_ctrl_dep();
4134
4135 /*
4136 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
4137 * == 0), which means we need to do an enqueue, change p->state to
4138 * TASK_WAKING such that we can unlock p->pi_lock before doing the
4139 * enqueue, such as ttwu_queue_wakelist().
4140 */
4141 WRITE_ONCE(p->__state, TASK_WAKING);
4142
4143 /*
4144 * If the owning (remote) CPU is still in the middle of schedule() with
4145 * this task as prev, considering queueing p on the remote CPUs wake_list
4146 * which potentially sends an IPI instead of spinning on p->on_cpu to
4147 * let the waker make forward progress. This is safe because IRQs are
4148 * disabled and the IPI will deliver after on_cpu is cleared.
4149 *
4150 * Ensure we load task_cpu(p) after p->on_cpu:
4151 *
4152 * set_task_cpu(p, cpu);
4153 * STORE p->cpu = @cpu
4154 * __schedule() (switch to task 'p')
4155 * LOCK rq->lock
4156 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
4157 * STORE p->on_cpu = 1 LOAD p->cpu
4158 *
4159 * to ensure we observe the correct CPU on which the task is currently
4160 * scheduling.
4161 */
4162 if (smp_load_acquire(&p->on_cpu) &&
4163 ttwu_queue_wakelist(p, task_cpu(p), wake_flags))
4164 goto unlock;
4165
4166 /*
4167 * If the owning (remote) CPU is still in the middle of schedule() with
4168 * this task as prev, wait until it's done referencing the task.
4169 *
4170 * Pairs with the smp_store_release() in finish_task().
4171 *
4172 * This ensures that tasks getting woken will be fully ordered against
4173 * their previous state and preserve Program Order.
4174 */
4175 smp_cond_load_acquire(&p->on_cpu, !VAL);
4176
4177 cpu = select_task_rq(p, p->wake_cpu, wake_flags | WF_TTWU);
4178 if (task_cpu(p) != cpu) {
4179 if (p->in_iowait) {
4180 delayacct_blkio_end(p);
4181 atomic_dec(&task_rq(p)->nr_iowait);
4182 }
4183
4184 wake_flags |= WF_MIGRATED;
4185 psi_ttwu_dequeue(p);
4186 set_task_cpu(p, cpu);
4187 }
4188 #else
4189 cpu = task_cpu(p);
4190 #endif /* CONFIG_SMP */
4191
4192 ttwu_queue(p, cpu, wake_flags);
4193 unlock:
4194 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4195 out:
4196 if (success)
4197 ttwu_stat(p, task_cpu(p), wake_flags);
4198 preempt_enable();
4199
4200 return success;
4201 }
4202
__task_needs_rq_lock(struct task_struct * p)4203 static bool __task_needs_rq_lock(struct task_struct *p)
4204 {
4205 unsigned int state = READ_ONCE(p->__state);
4206
4207 /*
4208 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when
4209 * the task is blocked. Make sure to check @state since ttwu() can drop
4210 * locks at the end, see ttwu_queue_wakelist().
4211 */
4212 if (state == TASK_RUNNING || state == TASK_WAKING)
4213 return true;
4214
4215 /*
4216 * Ensure we load p->on_rq after p->__state, otherwise it would be
4217 * possible to, falsely, observe p->on_rq == 0.
4218 *
4219 * See try_to_wake_up() for a longer comment.
4220 */
4221 smp_rmb();
4222 if (p->on_rq)
4223 return true;
4224
4225 #ifdef CONFIG_SMP
4226 /*
4227 * Ensure the task has finished __schedule() and will not be referenced
4228 * anymore. Again, see try_to_wake_up() for a longer comment.
4229 */
4230 smp_rmb();
4231 smp_cond_load_acquire(&p->on_cpu, !VAL);
4232 #endif
4233
4234 return false;
4235 }
4236
4237 /**
4238 * task_call_func - Invoke a function on task in fixed state
4239 * @p: Process for which the function is to be invoked, can be @current.
4240 * @func: Function to invoke.
4241 * @arg: Argument to function.
4242 *
4243 * Fix the task in it's current state by avoiding wakeups and or rq operations
4244 * and call @func(@arg) on it. This function can use ->on_rq and task_curr()
4245 * to work out what the state is, if required. Given that @func can be invoked
4246 * with a runqueue lock held, it had better be quite lightweight.
4247 *
4248 * Returns:
4249 * Whatever @func returns
4250 */
task_call_func(struct task_struct * p,task_call_f func,void * arg)4251 int task_call_func(struct task_struct *p, task_call_f func, void *arg)
4252 {
4253 struct rq *rq = NULL;
4254 struct rq_flags rf;
4255 int ret;
4256
4257 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4258
4259 if (__task_needs_rq_lock(p))
4260 rq = __task_rq_lock(p, &rf);
4261
4262 /*
4263 * At this point the task is pinned; either:
4264 * - blocked and we're holding off wakeups (pi->lock)
4265 * - woken, and we're holding off enqueue (rq->lock)
4266 * - queued, and we're holding off schedule (rq->lock)
4267 * - running, and we're holding off de-schedule (rq->lock)
4268 *
4269 * The called function (@func) can use: task_curr(), p->on_rq and
4270 * p->__state to differentiate between these states.
4271 */
4272 ret = func(p, arg);
4273
4274 if (rq)
4275 rq_unlock(rq, &rf);
4276
4277 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
4278 return ret;
4279 }
4280
4281 /**
4282 * cpu_curr_snapshot - Return a snapshot of the currently running task
4283 * @cpu: The CPU on which to snapshot the task.
4284 *
4285 * Returns the task_struct pointer of the task "currently" running on
4286 * the specified CPU. If the same task is running on that CPU throughout,
4287 * the return value will be a pointer to that task's task_struct structure.
4288 * If the CPU did any context switches even vaguely concurrently with the
4289 * execution of this function, the return value will be a pointer to the
4290 * task_struct structure of a randomly chosen task that was running on
4291 * that CPU somewhere around the time that this function was executing.
4292 *
4293 * If the specified CPU was offline, the return value is whatever it
4294 * is, perhaps a pointer to the task_struct structure of that CPU's idle
4295 * task, but there is no guarantee. Callers wishing a useful return
4296 * value must take some action to ensure that the specified CPU remains
4297 * online throughout.
4298 *
4299 * This function executes full memory barriers before and after fetching
4300 * the pointer, which permits the caller to confine this function's fetch
4301 * with respect to the caller's accesses to other shared variables.
4302 */
cpu_curr_snapshot(int cpu)4303 struct task_struct *cpu_curr_snapshot(int cpu)
4304 {
4305 struct task_struct *t;
4306
4307 smp_mb(); /* Pairing determined by caller's synchronization design. */
4308 t = rcu_dereference(cpu_curr(cpu));
4309 smp_mb(); /* Pairing determined by caller's synchronization design. */
4310 return t;
4311 }
4312
4313 /**
4314 * wake_up_process - Wake up a specific process
4315 * @p: The process to be woken up.
4316 *
4317 * Attempt to wake up the nominated process and move it to the set of runnable
4318 * processes.
4319 *
4320 * Return: 1 if the process was woken up, 0 if it was already running.
4321 *
4322 * This function executes a full memory barrier before accessing the task state.
4323 */
wake_up_process(struct task_struct * p)4324 int wake_up_process(struct task_struct *p)
4325 {
4326 return try_to_wake_up(p, TASK_NORMAL, 0);
4327 }
4328 EXPORT_SYMBOL(wake_up_process);
4329
wake_up_state(struct task_struct * p,unsigned int state)4330 int wake_up_state(struct task_struct *p, unsigned int state)
4331 {
4332 return try_to_wake_up(p, state, 0);
4333 }
4334
4335 /*
4336 * Perform scheduler related setup for a newly forked process p.
4337 * p is forked by current.
4338 *
4339 * __sched_fork() is basic setup used by init_idle() too:
4340 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)4341 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
4342 {
4343 p->on_rq = 0;
4344
4345 p->se.on_rq = 0;
4346 p->se.exec_start = 0;
4347 p->se.sum_exec_runtime = 0;
4348 p->se.prev_sum_exec_runtime = 0;
4349 p->se.nr_migrations = 0;
4350 p->se.vruntime = 0;
4351 INIT_LIST_HEAD(&p->se.group_node);
4352
4353 #ifdef CONFIG_FAIR_GROUP_SCHED
4354 p->se.cfs_rq = NULL;
4355 #endif
4356
4357 #ifdef CONFIG_SCHEDSTATS
4358 /* Even if schedstat is disabled, there should not be garbage */
4359 memset(&p->stats, 0, sizeof(p->stats));
4360 #endif
4361
4362 RB_CLEAR_NODE(&p->dl.rb_node);
4363 init_dl_task_timer(&p->dl);
4364 init_dl_inactive_task_timer(&p->dl);
4365 __dl_clear_params(p);
4366
4367 INIT_LIST_HEAD(&p->rt.run_list);
4368 p->rt.timeout = 0;
4369 p->rt.time_slice = sched_rr_timeslice;
4370 p->rt.on_rq = 0;
4371 p->rt.on_list = 0;
4372
4373 #ifdef CONFIG_PREEMPT_NOTIFIERS
4374 INIT_HLIST_HEAD(&p->preempt_notifiers);
4375 #endif
4376
4377 #ifdef CONFIG_COMPACTION
4378 p->capture_control = NULL;
4379 #endif
4380 init_numa_balancing(clone_flags, p);
4381 #ifdef CONFIG_SMP
4382 p->wake_entry.u_flags = CSD_TYPE_TTWU;
4383 p->migration_pending = NULL;
4384 #endif
4385 }
4386
4387 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
4388
4389 #ifdef CONFIG_NUMA_BALANCING
4390
4391 int sysctl_numa_balancing_mode;
4392
__set_numabalancing_state(bool enabled)4393 static void __set_numabalancing_state(bool enabled)
4394 {
4395 if (enabled)
4396 static_branch_enable(&sched_numa_balancing);
4397 else
4398 static_branch_disable(&sched_numa_balancing);
4399 }
4400
set_numabalancing_state(bool enabled)4401 void set_numabalancing_state(bool enabled)
4402 {
4403 if (enabled)
4404 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL;
4405 else
4406 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED;
4407 __set_numabalancing_state(enabled);
4408 }
4409
4410 #ifdef CONFIG_PROC_SYSCTL
reset_memory_tiering(void)4411 static void reset_memory_tiering(void)
4412 {
4413 struct pglist_data *pgdat;
4414
4415 for_each_online_pgdat(pgdat) {
4416 pgdat->nbp_threshold = 0;
4417 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
4418 pgdat->nbp_th_start = jiffies_to_msecs(jiffies);
4419 }
4420 }
4421
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4422 int sysctl_numa_balancing(struct ctl_table *table, int write,
4423 void *buffer, size_t *lenp, loff_t *ppos)
4424 {
4425 struct ctl_table t;
4426 int err;
4427 int state = sysctl_numa_balancing_mode;
4428
4429 if (write && !capable(CAP_SYS_ADMIN))
4430 return -EPERM;
4431
4432 t = *table;
4433 t.data = &state;
4434 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4435 if (err < 0)
4436 return err;
4437 if (write) {
4438 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4439 (state & NUMA_BALANCING_MEMORY_TIERING))
4440 reset_memory_tiering();
4441 sysctl_numa_balancing_mode = state;
4442 __set_numabalancing_state(state);
4443 }
4444 return err;
4445 }
4446 #endif
4447 #endif
4448
4449 #ifdef CONFIG_SCHEDSTATS
4450
4451 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
4452
set_schedstats(bool enabled)4453 static void set_schedstats(bool enabled)
4454 {
4455 if (enabled)
4456 static_branch_enable(&sched_schedstats);
4457 else
4458 static_branch_disable(&sched_schedstats);
4459 }
4460
force_schedstat_enabled(void)4461 void force_schedstat_enabled(void)
4462 {
4463 if (!schedstat_enabled()) {
4464 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
4465 static_branch_enable(&sched_schedstats);
4466 }
4467 }
4468
setup_schedstats(char * str)4469 static int __init setup_schedstats(char *str)
4470 {
4471 int ret = 0;
4472 if (!str)
4473 goto out;
4474
4475 if (!strcmp(str, "enable")) {
4476 set_schedstats(true);
4477 ret = 1;
4478 } else if (!strcmp(str, "disable")) {
4479 set_schedstats(false);
4480 ret = 1;
4481 }
4482 out:
4483 if (!ret)
4484 pr_warn("Unable to parse schedstats=\n");
4485
4486 return ret;
4487 }
4488 __setup("schedstats=", setup_schedstats);
4489
4490 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)4491 static int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
4492 size_t *lenp, loff_t *ppos)
4493 {
4494 struct ctl_table t;
4495 int err;
4496 int state = static_branch_likely(&sched_schedstats);
4497
4498 if (write && !capable(CAP_SYS_ADMIN))
4499 return -EPERM;
4500
4501 t = *table;
4502 t.data = &state;
4503 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
4504 if (err < 0)
4505 return err;
4506 if (write)
4507 set_schedstats(state);
4508 return err;
4509 }
4510 #endif /* CONFIG_PROC_SYSCTL */
4511 #endif /* CONFIG_SCHEDSTATS */
4512
4513 #ifdef CONFIG_SYSCTL
4514 static struct ctl_table sched_core_sysctls[] = {
4515 #ifdef CONFIG_SCHEDSTATS
4516 {
4517 .procname = "sched_schedstats",
4518 .data = NULL,
4519 .maxlen = sizeof(unsigned int),
4520 .mode = 0644,
4521 .proc_handler = sysctl_schedstats,
4522 .extra1 = SYSCTL_ZERO,
4523 .extra2 = SYSCTL_ONE,
4524 },
4525 #endif /* CONFIG_SCHEDSTATS */
4526 #ifdef CONFIG_UCLAMP_TASK
4527 {
4528 .procname = "sched_util_clamp_min",
4529 .data = &sysctl_sched_uclamp_util_min,
4530 .maxlen = sizeof(unsigned int),
4531 .mode = 0644,
4532 .proc_handler = sysctl_sched_uclamp_handler,
4533 },
4534 {
4535 .procname = "sched_util_clamp_max",
4536 .data = &sysctl_sched_uclamp_util_max,
4537 .maxlen = sizeof(unsigned int),
4538 .mode = 0644,
4539 .proc_handler = sysctl_sched_uclamp_handler,
4540 },
4541 {
4542 .procname = "sched_util_clamp_min_rt_default",
4543 .data = &sysctl_sched_uclamp_util_min_rt_default,
4544 .maxlen = sizeof(unsigned int),
4545 .mode = 0644,
4546 .proc_handler = sysctl_sched_uclamp_handler,
4547 },
4548 #endif /* CONFIG_UCLAMP_TASK */
4549 {}
4550 };
sched_core_sysctl_init(void)4551 static int __init sched_core_sysctl_init(void)
4552 {
4553 register_sysctl_init("kernel", sched_core_sysctls);
4554 return 0;
4555 }
4556 late_initcall(sched_core_sysctl_init);
4557 #endif /* CONFIG_SYSCTL */
4558
4559 /*
4560 * fork()/clone()-time setup:
4561 */
sched_fork(unsigned long clone_flags,struct task_struct * p)4562 int sched_fork(unsigned long clone_flags, struct task_struct *p)
4563 {
4564 __sched_fork(clone_flags, p);
4565 /*
4566 * We mark the process as NEW here. This guarantees that
4567 * nobody will actually run it, and a signal or other external
4568 * event cannot wake it up and insert it on the runqueue either.
4569 */
4570 p->__state = TASK_NEW;
4571
4572 /*
4573 * Make sure we do not leak PI boosting priority to the child.
4574 */
4575 p->prio = current->normal_prio;
4576
4577 uclamp_fork(p);
4578
4579 /*
4580 * Revert to default priority/policy on fork if requested.
4581 */
4582 if (unlikely(p->sched_reset_on_fork)) {
4583 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
4584 p->policy = SCHED_NORMAL;
4585 p->static_prio = NICE_TO_PRIO(0);
4586 p->rt_priority = 0;
4587 } else if (PRIO_TO_NICE(p->static_prio) < 0)
4588 p->static_prio = NICE_TO_PRIO(0);
4589
4590 p->prio = p->normal_prio = p->static_prio;
4591 set_load_weight(p, false);
4592
4593 /*
4594 * We don't need the reset flag anymore after the fork. It has
4595 * fulfilled its duty:
4596 */
4597 p->sched_reset_on_fork = 0;
4598 }
4599
4600 if (dl_prio(p->prio))
4601 return -EAGAIN;
4602 else if (rt_prio(p->prio))
4603 p->sched_class = &rt_sched_class;
4604 else
4605 p->sched_class = &fair_sched_class;
4606
4607 init_entity_runnable_average(&p->se);
4608
4609
4610 #ifdef CONFIG_SCHED_INFO
4611 if (likely(sched_info_on()))
4612 memset(&p->sched_info, 0, sizeof(p->sched_info));
4613 #endif
4614 #if defined(CONFIG_SMP)
4615 p->on_cpu = 0;
4616 #endif
4617 init_task_preempt_count(p);
4618 #ifdef CONFIG_SMP
4619 plist_node_init(&p->pushable_tasks, MAX_PRIO);
4620 RB_CLEAR_NODE(&p->pushable_dl_tasks);
4621 #endif
4622 return 0;
4623 }
4624
sched_cgroup_fork(struct task_struct * p,struct kernel_clone_args * kargs)4625 void sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs)
4626 {
4627 unsigned long flags;
4628
4629 /*
4630 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly
4631 * required yet, but lockdep gets upset if rules are violated.
4632 */
4633 raw_spin_lock_irqsave(&p->pi_lock, flags);
4634 #ifdef CONFIG_CGROUP_SCHED
4635 if (1) {
4636 struct task_group *tg;
4637 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
4638 struct task_group, css);
4639 tg = autogroup_task_group(p, tg);
4640 p->sched_task_group = tg;
4641 }
4642 #endif
4643 rseq_migrate(p);
4644 /*
4645 * We're setting the CPU for the first time, we don't migrate,
4646 * so use __set_task_cpu().
4647 */
4648 __set_task_cpu(p, smp_processor_id());
4649 if (p->sched_class->task_fork)
4650 p->sched_class->task_fork(p);
4651 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4652 }
4653
sched_post_fork(struct task_struct * p)4654 void sched_post_fork(struct task_struct *p)
4655 {
4656 uclamp_post_fork(p);
4657 }
4658
to_ratio(u64 period,u64 runtime)4659 unsigned long to_ratio(u64 period, u64 runtime)
4660 {
4661 if (runtime == RUNTIME_INF)
4662 return BW_UNIT;
4663
4664 /*
4665 * Doing this here saves a lot of checks in all
4666 * the calling paths, and returning zero seems
4667 * safe for them anyway.
4668 */
4669 if (period == 0)
4670 return 0;
4671
4672 return div64_u64(runtime << BW_SHIFT, period);
4673 }
4674
4675 /*
4676 * wake_up_new_task - wake up a newly created task for the first time.
4677 *
4678 * This function will do some initial scheduler statistics housekeeping
4679 * that must be done for every newly created context, then puts the task
4680 * on the runqueue and wakes it.
4681 */
wake_up_new_task(struct task_struct * p)4682 void wake_up_new_task(struct task_struct *p)
4683 {
4684 struct rq_flags rf;
4685 struct rq *rq;
4686
4687 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
4688 WRITE_ONCE(p->__state, TASK_RUNNING);
4689 #ifdef CONFIG_SMP
4690 /*
4691 * Fork balancing, do it here and not earlier because:
4692 * - cpus_ptr can change in the fork path
4693 * - any previously selected CPU might disappear through hotplug
4694 *
4695 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
4696 * as we're not fully set-up yet.
4697 */
4698 p->recent_used_cpu = task_cpu(p);
4699 rseq_migrate(p);
4700 __set_task_cpu(p, select_task_rq(p, task_cpu(p), WF_FORK));
4701 #endif
4702 rq = __task_rq_lock(p, &rf);
4703 update_rq_clock(rq);
4704 post_init_entity_util_avg(p);
4705
4706 activate_task(rq, p, ENQUEUE_NOCLOCK);
4707 trace_sched_wakeup_new(p);
4708 check_preempt_curr(rq, p, WF_FORK);
4709 #ifdef CONFIG_SMP
4710 if (p->sched_class->task_woken) {
4711 /*
4712 * Nothing relies on rq->lock after this, so it's fine to
4713 * drop it.
4714 */
4715 rq_unpin_lock(rq, &rf);
4716 p->sched_class->task_woken(rq, p);
4717 rq_repin_lock(rq, &rf);
4718 }
4719 #endif
4720 task_rq_unlock(rq, p, &rf);
4721 }
4722
4723 #ifdef CONFIG_PREEMPT_NOTIFIERS
4724
4725 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
4726
preempt_notifier_inc(void)4727 void preempt_notifier_inc(void)
4728 {
4729 static_branch_inc(&preempt_notifier_key);
4730 }
4731 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
4732
preempt_notifier_dec(void)4733 void preempt_notifier_dec(void)
4734 {
4735 static_branch_dec(&preempt_notifier_key);
4736 }
4737 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
4738
4739 /**
4740 * preempt_notifier_register - tell me when current is being preempted & rescheduled
4741 * @notifier: notifier struct to register
4742 */
preempt_notifier_register(struct preempt_notifier * notifier)4743 void preempt_notifier_register(struct preempt_notifier *notifier)
4744 {
4745 if (!static_branch_unlikely(&preempt_notifier_key))
4746 WARN(1, "registering preempt_notifier while notifiers disabled\n");
4747
4748 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
4749 }
4750 EXPORT_SYMBOL_GPL(preempt_notifier_register);
4751
4752 /**
4753 * preempt_notifier_unregister - no longer interested in preemption notifications
4754 * @notifier: notifier struct to unregister
4755 *
4756 * This is *not* safe to call from within a preemption notifier.
4757 */
preempt_notifier_unregister(struct preempt_notifier * notifier)4758 void preempt_notifier_unregister(struct preempt_notifier *notifier)
4759 {
4760 hlist_del(¬ifier->link);
4761 }
4762 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
4763
__fire_sched_in_preempt_notifiers(struct task_struct * curr)4764 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
4765 {
4766 struct preempt_notifier *notifier;
4767
4768 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4769 notifier->ops->sched_in(notifier, raw_smp_processor_id());
4770 }
4771
fire_sched_in_preempt_notifiers(struct task_struct * curr)4772 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4773 {
4774 if (static_branch_unlikely(&preempt_notifier_key))
4775 __fire_sched_in_preempt_notifiers(curr);
4776 }
4777
4778 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4779 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
4780 struct task_struct *next)
4781 {
4782 struct preempt_notifier *notifier;
4783
4784 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
4785 notifier->ops->sched_out(notifier, next);
4786 }
4787
4788 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4789 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4790 struct task_struct *next)
4791 {
4792 if (static_branch_unlikely(&preempt_notifier_key))
4793 __fire_sched_out_preempt_notifiers(curr, next);
4794 }
4795
4796 #else /* !CONFIG_PREEMPT_NOTIFIERS */
4797
fire_sched_in_preempt_notifiers(struct task_struct * curr)4798 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
4799 {
4800 }
4801
4802 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)4803 fire_sched_out_preempt_notifiers(struct task_struct *curr,
4804 struct task_struct *next)
4805 {
4806 }
4807
4808 #endif /* CONFIG_PREEMPT_NOTIFIERS */
4809
prepare_task(struct task_struct * next)4810 static inline void prepare_task(struct task_struct *next)
4811 {
4812 #ifdef CONFIG_SMP
4813 /*
4814 * Claim the task as running, we do this before switching to it
4815 * such that any running task will have this set.
4816 *
4817 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and
4818 * its ordering comment.
4819 */
4820 WRITE_ONCE(next->on_cpu, 1);
4821 #endif
4822 }
4823
finish_task(struct task_struct * prev)4824 static inline void finish_task(struct task_struct *prev)
4825 {
4826 #ifdef CONFIG_SMP
4827 /*
4828 * This must be the very last reference to @prev from this CPU. After
4829 * p->on_cpu is cleared, the task can be moved to a different CPU. We
4830 * must ensure this doesn't happen until the switch is completely
4831 * finished.
4832 *
4833 * In particular, the load of prev->state in finish_task_switch() must
4834 * happen before this.
4835 *
4836 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
4837 */
4838 smp_store_release(&prev->on_cpu, 0);
4839 #endif
4840 }
4841
4842 #ifdef CONFIG_SMP
4843
do_balance_callbacks(struct rq * rq,struct balance_callback * head)4844 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head)
4845 {
4846 void (*func)(struct rq *rq);
4847 struct balance_callback *next;
4848
4849 lockdep_assert_rq_held(rq);
4850
4851 while (head) {
4852 func = (void (*)(struct rq *))head->func;
4853 next = head->next;
4854 head->next = NULL;
4855 head = next;
4856
4857 func(rq);
4858 }
4859 }
4860
4861 static void balance_push(struct rq *rq);
4862
4863 /*
4864 * balance_push_callback is a right abuse of the callback interface and plays
4865 * by significantly different rules.
4866 *
4867 * Where the normal balance_callback's purpose is to be ran in the same context
4868 * that queued it (only later, when it's safe to drop rq->lock again),
4869 * balance_push_callback is specifically targeted at __schedule().
4870 *
4871 * This abuse is tolerated because it places all the unlikely/odd cases behind
4872 * a single test, namely: rq->balance_callback == NULL.
4873 */
4874 struct balance_callback balance_push_callback = {
4875 .next = NULL,
4876 .func = balance_push,
4877 };
4878
4879 static inline struct balance_callback *
__splice_balance_callbacks(struct rq * rq,bool split)4880 __splice_balance_callbacks(struct rq *rq, bool split)
4881 {
4882 struct balance_callback *head = rq->balance_callback;
4883
4884 if (likely(!head))
4885 return NULL;
4886
4887 lockdep_assert_rq_held(rq);
4888 /*
4889 * Must not take balance_push_callback off the list when
4890 * splice_balance_callbacks() and balance_callbacks() are not
4891 * in the same rq->lock section.
4892 *
4893 * In that case it would be possible for __schedule() to interleave
4894 * and observe the list empty.
4895 */
4896 if (split && head == &balance_push_callback)
4897 head = NULL;
4898 else
4899 rq->balance_callback = NULL;
4900
4901 return head;
4902 }
4903
splice_balance_callbacks(struct rq * rq)4904 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4905 {
4906 return __splice_balance_callbacks(rq, true);
4907 }
4908
__balance_callbacks(struct rq * rq)4909 static void __balance_callbacks(struct rq *rq)
4910 {
4911 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false));
4912 }
4913
balance_callbacks(struct rq * rq,struct balance_callback * head)4914 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4915 {
4916 unsigned long flags;
4917
4918 if (unlikely(head)) {
4919 raw_spin_rq_lock_irqsave(rq, flags);
4920 do_balance_callbacks(rq, head);
4921 raw_spin_rq_unlock_irqrestore(rq, flags);
4922 }
4923 }
4924
4925 #else
4926
__balance_callbacks(struct rq * rq)4927 static inline void __balance_callbacks(struct rq *rq)
4928 {
4929 }
4930
splice_balance_callbacks(struct rq * rq)4931 static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
4932 {
4933 return NULL;
4934 }
4935
balance_callbacks(struct rq * rq,struct balance_callback * head)4936 static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
4937 {
4938 }
4939
4940 #endif
4941
4942 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)4943 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
4944 {
4945 /*
4946 * Since the runqueue lock will be released by the next
4947 * task (which is an invalid locking op but in the case
4948 * of the scheduler it's an obvious special-case), so we
4949 * do an early lockdep release here:
4950 */
4951 rq_unpin_lock(rq, rf);
4952 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_);
4953 #ifdef CONFIG_DEBUG_SPINLOCK
4954 /* this is a valid case when another task releases the spinlock */
4955 rq_lockp(rq)->owner = next;
4956 #endif
4957 }
4958
finish_lock_switch(struct rq * rq)4959 static inline void finish_lock_switch(struct rq *rq)
4960 {
4961 /*
4962 * If we are tracking spinlock dependencies then we have to
4963 * fix up the runqueue lock - which gets 'carried over' from
4964 * prev into current:
4965 */
4966 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_);
4967 __balance_callbacks(rq);
4968 raw_spin_rq_unlock_irq(rq);
4969 }
4970
4971 /*
4972 * NOP if the arch has not defined these:
4973 */
4974
4975 #ifndef prepare_arch_switch
4976 # define prepare_arch_switch(next) do { } while (0)
4977 #endif
4978
4979 #ifndef finish_arch_post_lock_switch
4980 # define finish_arch_post_lock_switch() do { } while (0)
4981 #endif
4982
kmap_local_sched_out(void)4983 static inline void kmap_local_sched_out(void)
4984 {
4985 #ifdef CONFIG_KMAP_LOCAL
4986 if (unlikely(current->kmap_ctrl.idx))
4987 __kmap_local_sched_out();
4988 #endif
4989 }
4990
kmap_local_sched_in(void)4991 static inline void kmap_local_sched_in(void)
4992 {
4993 #ifdef CONFIG_KMAP_LOCAL
4994 if (unlikely(current->kmap_ctrl.idx))
4995 __kmap_local_sched_in();
4996 #endif
4997 }
4998
4999 /**
5000 * prepare_task_switch - prepare to switch tasks
5001 * @rq: the runqueue preparing to switch
5002 * @prev: the current task that is being switched out
5003 * @next: the task we are going to switch to.
5004 *
5005 * This is called with the rq lock held and interrupts off. It must
5006 * be paired with a subsequent finish_task_switch after the context
5007 * switch.
5008 *
5009 * prepare_task_switch sets up locking and calls architecture specific
5010 * hooks.
5011 */
5012 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)5013 prepare_task_switch(struct rq *rq, struct task_struct *prev,
5014 struct task_struct *next)
5015 {
5016 kcov_prepare_switch(prev);
5017 sched_info_switch(rq, prev, next);
5018 perf_event_task_sched_out(prev, next);
5019 rseq_preempt(prev);
5020 fire_sched_out_preempt_notifiers(prev, next);
5021 kmap_local_sched_out();
5022 prepare_task(next);
5023 prepare_arch_switch(next);
5024 }
5025
5026 /**
5027 * finish_task_switch - clean up after a task-switch
5028 * @prev: the thread we just switched away from.
5029 *
5030 * finish_task_switch must be called after the context switch, paired
5031 * with a prepare_task_switch call before the context switch.
5032 * finish_task_switch will reconcile locking set up by prepare_task_switch,
5033 * and do any other architecture-specific cleanup actions.
5034 *
5035 * Note that we may have delayed dropping an mm in context_switch(). If
5036 * so, we finish that here outside of the runqueue lock. (Doing it
5037 * with the lock held can cause deadlocks; see schedule() for
5038 * details.)
5039 *
5040 * The context switch have flipped the stack from under us and restored the
5041 * local variables which were saved when this task called schedule() in the
5042 * past. prev == current is still correct but we need to recalculate this_rq
5043 * because prev may have moved to another CPU.
5044 */
finish_task_switch(struct task_struct * prev)5045 static struct rq *finish_task_switch(struct task_struct *prev)
5046 __releases(rq->lock)
5047 {
5048 struct rq *rq = this_rq();
5049 struct mm_struct *mm = rq->prev_mm;
5050 unsigned int prev_state;
5051
5052 /*
5053 * The previous task will have left us with a preempt_count of 2
5054 * because it left us after:
5055 *
5056 * schedule()
5057 * preempt_disable(); // 1
5058 * __schedule()
5059 * raw_spin_lock_irq(&rq->lock) // 2
5060 *
5061 * Also, see FORK_PREEMPT_COUNT.
5062 */
5063 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
5064 "corrupted preempt_count: %s/%d/0x%x\n",
5065 current->comm, current->pid, preempt_count()))
5066 preempt_count_set(FORK_PREEMPT_COUNT);
5067
5068 rq->prev_mm = NULL;
5069
5070 /*
5071 * A task struct has one reference for the use as "current".
5072 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
5073 * schedule one last time. The schedule call will never return, and
5074 * the scheduled task must drop that reference.
5075 *
5076 * We must observe prev->state before clearing prev->on_cpu (in
5077 * finish_task), otherwise a concurrent wakeup can get prev
5078 * running on another CPU and we could rave with its RUNNING -> DEAD
5079 * transition, resulting in a double drop.
5080 */
5081 prev_state = READ_ONCE(prev->__state);
5082 vtime_task_switch(prev);
5083 perf_event_task_sched_in(prev, current);
5084 finish_task(prev);
5085 tick_nohz_task_switch();
5086 finish_lock_switch(rq);
5087 finish_arch_post_lock_switch();
5088 kcov_finish_switch(current);
5089 /*
5090 * kmap_local_sched_out() is invoked with rq::lock held and
5091 * interrupts disabled. There is no requirement for that, but the
5092 * sched out code does not have an interrupt enabled section.
5093 * Restoring the maps on sched in does not require interrupts being
5094 * disabled either.
5095 */
5096 kmap_local_sched_in();
5097
5098 fire_sched_in_preempt_notifiers(current);
5099 /*
5100 * When switching through a kernel thread, the loop in
5101 * membarrier_{private,global}_expedited() may have observed that
5102 * kernel thread and not issued an IPI. It is therefore possible to
5103 * schedule between user->kernel->user threads without passing though
5104 * switch_mm(). Membarrier requires a barrier after storing to
5105 * rq->curr, before returning to userspace, so provide them here:
5106 *
5107 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
5108 * provided by mmdrop(),
5109 * - a sync_core for SYNC_CORE.
5110 */
5111 if (mm) {
5112 membarrier_mm_sync_core_before_usermode(mm);
5113 mmdrop_sched(mm);
5114 }
5115 if (unlikely(prev_state == TASK_DEAD)) {
5116 if (prev->sched_class->task_dead)
5117 prev->sched_class->task_dead(prev);
5118
5119 /* Task is done with its stack. */
5120 put_task_stack(prev);
5121
5122 put_task_struct_rcu_user(prev);
5123 }
5124
5125 return rq;
5126 }
5127
5128 /**
5129 * schedule_tail - first thing a freshly forked thread must call.
5130 * @prev: the thread we just switched away from.
5131 */
schedule_tail(struct task_struct * prev)5132 asmlinkage __visible void schedule_tail(struct task_struct *prev)
5133 __releases(rq->lock)
5134 {
5135 /*
5136 * New tasks start with FORK_PREEMPT_COUNT, see there and
5137 * finish_task_switch() for details.
5138 *
5139 * finish_task_switch() will drop rq->lock() and lower preempt_count
5140 * and the preempt_enable() will end up enabling preemption (on
5141 * PREEMPT_COUNT kernels).
5142 */
5143
5144 finish_task_switch(prev);
5145 preempt_enable();
5146
5147 if (current->set_child_tid)
5148 put_user(task_pid_vnr(current), current->set_child_tid);
5149
5150 calculate_sigpending();
5151 }
5152
5153 /*
5154 * context_switch - switch to the new MM and the new thread's register state.
5155 */
5156 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)5157 context_switch(struct rq *rq, struct task_struct *prev,
5158 struct task_struct *next, struct rq_flags *rf)
5159 {
5160 prepare_task_switch(rq, prev, next);
5161
5162 /*
5163 * For paravirt, this is coupled with an exit in switch_to to
5164 * combine the page table reload and the switch backend into
5165 * one hypercall.
5166 */
5167 arch_start_context_switch(prev);
5168
5169 /*
5170 * kernel -> kernel lazy + transfer active
5171 * user -> kernel lazy + mmgrab() active
5172 *
5173 * kernel -> user switch + mmdrop() active
5174 * user -> user switch
5175 */
5176 if (!next->mm) { // to kernel
5177 enter_lazy_tlb(prev->active_mm, next);
5178
5179 next->active_mm = prev->active_mm;
5180 if (prev->mm) // from user
5181 mmgrab(prev->active_mm);
5182 else
5183 prev->active_mm = NULL;
5184 } else { // to user
5185 membarrier_switch_mm(rq, prev->active_mm, next->mm);
5186 /*
5187 * sys_membarrier() requires an smp_mb() between setting
5188 * rq->curr / membarrier_switch_mm() and returning to userspace.
5189 *
5190 * The below provides this either through switch_mm(), or in
5191 * case 'prev->active_mm == next->mm' through
5192 * finish_task_switch()'s mmdrop().
5193 */
5194 switch_mm_irqs_off(prev->active_mm, next->mm, next);
5195 lru_gen_use_mm(next->mm);
5196
5197 if (!prev->mm) { // from kernel
5198 /* will mmdrop() in finish_task_switch(). */
5199 rq->prev_mm = prev->active_mm;
5200 prev->active_mm = NULL;
5201 }
5202 }
5203
5204 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
5205
5206 prepare_lock_switch(rq, next, rf);
5207
5208 /* Here we just switch the register state and the stack. */
5209 switch_to(prev, next, prev);
5210 barrier();
5211
5212 return finish_task_switch(prev);
5213 }
5214
5215 /*
5216 * nr_running and nr_context_switches:
5217 *
5218 * externally visible scheduler statistics: current number of runnable
5219 * threads, total number of context switches performed since bootup.
5220 */
nr_running(void)5221 unsigned int nr_running(void)
5222 {
5223 unsigned int i, sum = 0;
5224
5225 for_each_online_cpu(i)
5226 sum += cpu_rq(i)->nr_running;
5227
5228 return sum;
5229 }
5230
5231 /*
5232 * Check if only the current task is running on the CPU.
5233 *
5234 * Caution: this function does not check that the caller has disabled
5235 * preemption, thus the result might have a time-of-check-to-time-of-use
5236 * race. The caller is responsible to use it correctly, for example:
5237 *
5238 * - from a non-preemptible section (of course)
5239 *
5240 * - from a thread that is bound to a single CPU
5241 *
5242 * - in a loop with very short iterations (e.g. a polling loop)
5243 */
single_task_running(void)5244 bool single_task_running(void)
5245 {
5246 return raw_rq()->nr_running == 1;
5247 }
5248 EXPORT_SYMBOL(single_task_running);
5249
nr_context_switches(void)5250 unsigned long long nr_context_switches(void)
5251 {
5252 int i;
5253 unsigned long long sum = 0;
5254
5255 for_each_possible_cpu(i)
5256 sum += cpu_rq(i)->nr_switches;
5257
5258 return sum;
5259 }
5260
5261 /*
5262 * Consumers of these two interfaces, like for example the cpuidle menu
5263 * governor, are using nonsensical data. Preferring shallow idle state selection
5264 * for a CPU that has IO-wait which might not even end up running the task when
5265 * it does become runnable.
5266 */
5267
nr_iowait_cpu(int cpu)5268 unsigned int nr_iowait_cpu(int cpu)
5269 {
5270 return atomic_read(&cpu_rq(cpu)->nr_iowait);
5271 }
5272
5273 /*
5274 * IO-wait accounting, and how it's mostly bollocks (on SMP).
5275 *
5276 * The idea behind IO-wait account is to account the idle time that we could
5277 * have spend running if it were not for IO. That is, if we were to improve the
5278 * storage performance, we'd have a proportional reduction in IO-wait time.
5279 *
5280 * This all works nicely on UP, where, when a task blocks on IO, we account
5281 * idle time as IO-wait, because if the storage were faster, it could've been
5282 * running and we'd not be idle.
5283 *
5284 * This has been extended to SMP, by doing the same for each CPU. This however
5285 * is broken.
5286 *
5287 * Imagine for instance the case where two tasks block on one CPU, only the one
5288 * CPU will have IO-wait accounted, while the other has regular idle. Even
5289 * though, if the storage were faster, both could've ran at the same time,
5290 * utilising both CPUs.
5291 *
5292 * This means, that when looking globally, the current IO-wait accounting on
5293 * SMP is a lower bound, by reason of under accounting.
5294 *
5295 * Worse, since the numbers are provided per CPU, they are sometimes
5296 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
5297 * associated with any one particular CPU, it can wake to another CPU than it
5298 * blocked on. This means the per CPU IO-wait number is meaningless.
5299 *
5300 * Task CPU affinities can make all that even more 'interesting'.
5301 */
5302
nr_iowait(void)5303 unsigned int nr_iowait(void)
5304 {
5305 unsigned int i, sum = 0;
5306
5307 for_each_possible_cpu(i)
5308 sum += nr_iowait_cpu(i);
5309
5310 return sum;
5311 }
5312
5313 #ifdef CONFIG_SMP
5314
5315 /*
5316 * sched_exec - execve() is a valuable balancing opportunity, because at
5317 * this point the task has the smallest effective memory and cache footprint.
5318 */
sched_exec(void)5319 void sched_exec(void)
5320 {
5321 struct task_struct *p = current;
5322 unsigned long flags;
5323 int dest_cpu;
5324
5325 raw_spin_lock_irqsave(&p->pi_lock, flags);
5326 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC);
5327 if (dest_cpu == smp_processor_id())
5328 goto unlock;
5329
5330 if (likely(cpu_active(dest_cpu))) {
5331 struct migration_arg arg = { p, dest_cpu };
5332
5333 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5334 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
5335 return;
5336 }
5337 unlock:
5338 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5339 }
5340
5341 #endif
5342
5343 DEFINE_PER_CPU(struct kernel_stat, kstat);
5344 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
5345
5346 EXPORT_PER_CPU_SYMBOL(kstat);
5347 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
5348
5349 /*
5350 * The function fair_sched_class.update_curr accesses the struct curr
5351 * and its field curr->exec_start; when called from task_sched_runtime(),
5352 * we observe a high rate of cache misses in practice.
5353 * Prefetching this data results in improved performance.
5354 */
prefetch_curr_exec_start(struct task_struct * p)5355 static inline void prefetch_curr_exec_start(struct task_struct *p)
5356 {
5357 #ifdef CONFIG_FAIR_GROUP_SCHED
5358 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
5359 #else
5360 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
5361 #endif
5362 prefetch(curr);
5363 prefetch(&curr->exec_start);
5364 }
5365
5366 /*
5367 * Return accounted runtime for the task.
5368 * In case the task is currently running, return the runtime plus current's
5369 * pending runtime that have not been accounted yet.
5370 */
task_sched_runtime(struct task_struct * p)5371 unsigned long long task_sched_runtime(struct task_struct *p)
5372 {
5373 struct rq_flags rf;
5374 struct rq *rq;
5375 u64 ns;
5376
5377 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
5378 /*
5379 * 64-bit doesn't need locks to atomically read a 64-bit value.
5380 * So we have a optimization chance when the task's delta_exec is 0.
5381 * Reading ->on_cpu is racy, but this is ok.
5382 *
5383 * If we race with it leaving CPU, we'll take a lock. So we're correct.
5384 * If we race with it entering CPU, unaccounted time is 0. This is
5385 * indistinguishable from the read occurring a few cycles earlier.
5386 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
5387 * been accounted, so we're correct here as well.
5388 */
5389 if (!p->on_cpu || !task_on_rq_queued(p))
5390 return p->se.sum_exec_runtime;
5391 #endif
5392
5393 rq = task_rq_lock(p, &rf);
5394 /*
5395 * Must be ->curr _and_ ->on_rq. If dequeued, we would
5396 * project cycles that may never be accounted to this
5397 * thread, breaking clock_gettime().
5398 */
5399 if (task_current(rq, p) && task_on_rq_queued(p)) {
5400 prefetch_curr_exec_start(p);
5401 update_rq_clock(rq);
5402 p->sched_class->update_curr(rq);
5403 }
5404 ns = p->se.sum_exec_runtime;
5405 task_rq_unlock(rq, p, &rf);
5406
5407 return ns;
5408 }
5409
5410 #ifdef CONFIG_SCHED_DEBUG
cpu_resched_latency(struct rq * rq)5411 static u64 cpu_resched_latency(struct rq *rq)
5412 {
5413 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms);
5414 u64 resched_latency, now = rq_clock(rq);
5415 static bool warned_once;
5416
5417 if (sysctl_resched_latency_warn_once && warned_once)
5418 return 0;
5419
5420 if (!need_resched() || !latency_warn_ms)
5421 return 0;
5422
5423 if (system_state == SYSTEM_BOOTING)
5424 return 0;
5425
5426 if (!rq->last_seen_need_resched_ns) {
5427 rq->last_seen_need_resched_ns = now;
5428 rq->ticks_without_resched = 0;
5429 return 0;
5430 }
5431
5432 rq->ticks_without_resched++;
5433 resched_latency = now - rq->last_seen_need_resched_ns;
5434 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC)
5435 return 0;
5436
5437 warned_once = true;
5438
5439 return resched_latency;
5440 }
5441
setup_resched_latency_warn_ms(char * str)5442 static int __init setup_resched_latency_warn_ms(char *str)
5443 {
5444 long val;
5445
5446 if ((kstrtol(str, 0, &val))) {
5447 pr_warn("Unable to set resched_latency_warn_ms\n");
5448 return 1;
5449 }
5450
5451 sysctl_resched_latency_warn_ms = val;
5452 return 1;
5453 }
5454 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms);
5455 #else
cpu_resched_latency(struct rq * rq)5456 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; }
5457 #endif /* CONFIG_SCHED_DEBUG */
5458
5459 /*
5460 * This function gets called by the timer code, with HZ frequency.
5461 * We call it with interrupts disabled.
5462 */
scheduler_tick(void)5463 void scheduler_tick(void)
5464 {
5465 int cpu = smp_processor_id();
5466 struct rq *rq = cpu_rq(cpu);
5467 struct task_struct *curr = rq->curr;
5468 struct rq_flags rf;
5469 unsigned long thermal_pressure;
5470 u64 resched_latency;
5471
5472 arch_scale_freq_tick();
5473 sched_clock_tick();
5474
5475 rq_lock(rq, &rf);
5476
5477 update_rq_clock(rq);
5478 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
5479 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
5480 curr->sched_class->task_tick(rq, curr, 0);
5481 if (sched_feat(LATENCY_WARN))
5482 resched_latency = cpu_resched_latency(rq);
5483 calc_global_load_tick(rq);
5484 sched_core_tick(rq);
5485
5486 rq_unlock(rq, &rf);
5487
5488 if (sched_feat(LATENCY_WARN) && resched_latency)
5489 resched_latency_warn(cpu, resched_latency);
5490
5491 perf_event_task_tick();
5492
5493 #ifdef CONFIG_SMP
5494 rq->idle_balance = idle_cpu(cpu);
5495 trigger_load_balance(rq);
5496 #endif
5497 }
5498
5499 #ifdef CONFIG_NO_HZ_FULL
5500
5501 struct tick_work {
5502 int cpu;
5503 atomic_t state;
5504 struct delayed_work work;
5505 };
5506 /* Values for ->state, see diagram below. */
5507 #define TICK_SCHED_REMOTE_OFFLINE 0
5508 #define TICK_SCHED_REMOTE_OFFLINING 1
5509 #define TICK_SCHED_REMOTE_RUNNING 2
5510
5511 /*
5512 * State diagram for ->state:
5513 *
5514 *
5515 * TICK_SCHED_REMOTE_OFFLINE
5516 * | ^
5517 * | |
5518 * | | sched_tick_remote()
5519 * | |
5520 * | |
5521 * +--TICK_SCHED_REMOTE_OFFLINING
5522 * | ^
5523 * | |
5524 * sched_tick_start() | | sched_tick_stop()
5525 * | |
5526 * V |
5527 * TICK_SCHED_REMOTE_RUNNING
5528 *
5529 *
5530 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
5531 * and sched_tick_start() are happy to leave the state in RUNNING.
5532 */
5533
5534 static struct tick_work __percpu *tick_work_cpu;
5535
sched_tick_remote(struct work_struct * work)5536 static void sched_tick_remote(struct work_struct *work)
5537 {
5538 struct delayed_work *dwork = to_delayed_work(work);
5539 struct tick_work *twork = container_of(dwork, struct tick_work, work);
5540 int cpu = twork->cpu;
5541 struct rq *rq = cpu_rq(cpu);
5542 struct task_struct *curr;
5543 struct rq_flags rf;
5544 u64 delta;
5545 int os;
5546
5547 /*
5548 * Handle the tick only if it appears the remote CPU is running in full
5549 * dynticks mode. The check is racy by nature, but missing a tick or
5550 * having one too much is no big deal because the scheduler tick updates
5551 * statistics and checks timeslices in a time-independent way, regardless
5552 * of when exactly it is running.
5553 */
5554 if (!tick_nohz_tick_stopped_cpu(cpu))
5555 goto out_requeue;
5556
5557 rq_lock_irq(rq, &rf);
5558 curr = rq->curr;
5559 if (cpu_is_offline(cpu))
5560 goto out_unlock;
5561
5562 update_rq_clock(rq);
5563
5564 if (!is_idle_task(curr)) {
5565 /*
5566 * Make sure the next tick runs within a reasonable
5567 * amount of time.
5568 */
5569 delta = rq_clock_task(rq) - curr->se.exec_start;
5570 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
5571 }
5572 curr->sched_class->task_tick(rq, curr, 0);
5573
5574 calc_load_nohz_remote(rq);
5575 out_unlock:
5576 rq_unlock_irq(rq, &rf);
5577 out_requeue:
5578
5579 /*
5580 * Run the remote tick once per second (1Hz). This arbitrary
5581 * frequency is large enough to avoid overload but short enough
5582 * to keep scheduler internal stats reasonably up to date. But
5583 * first update state to reflect hotplug activity if required.
5584 */
5585 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
5586 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
5587 if (os == TICK_SCHED_REMOTE_RUNNING)
5588 queue_delayed_work(system_unbound_wq, dwork, HZ);
5589 }
5590
sched_tick_start(int cpu)5591 static void sched_tick_start(int cpu)
5592 {
5593 int os;
5594 struct tick_work *twork;
5595
5596 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5597 return;
5598
5599 WARN_ON_ONCE(!tick_work_cpu);
5600
5601 twork = per_cpu_ptr(tick_work_cpu, cpu);
5602 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
5603 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
5604 if (os == TICK_SCHED_REMOTE_OFFLINE) {
5605 twork->cpu = cpu;
5606 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
5607 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
5608 }
5609 }
5610
5611 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)5612 static void sched_tick_stop(int cpu)
5613 {
5614 struct tick_work *twork;
5615 int os;
5616
5617 if (housekeeping_cpu(cpu, HK_TYPE_TICK))
5618 return;
5619
5620 WARN_ON_ONCE(!tick_work_cpu);
5621
5622 twork = per_cpu_ptr(tick_work_cpu, cpu);
5623 /* There cannot be competing actions, but don't rely on stop-machine. */
5624 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
5625 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
5626 /* Don't cancel, as this would mess up the state machine. */
5627 }
5628 #endif /* CONFIG_HOTPLUG_CPU */
5629
sched_tick_offload_init(void)5630 int __init sched_tick_offload_init(void)
5631 {
5632 tick_work_cpu = alloc_percpu(struct tick_work);
5633 BUG_ON(!tick_work_cpu);
5634 return 0;
5635 }
5636
5637 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)5638 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)5639 static inline void sched_tick_stop(int cpu) { }
5640 #endif
5641
5642 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
5643 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
5644 /*
5645 * If the value passed in is equal to the current preempt count
5646 * then we just disabled preemption. Start timing the latency.
5647 */
preempt_latency_start(int val)5648 static inline void preempt_latency_start(int val)
5649 {
5650 if (preempt_count() == val) {
5651 unsigned long ip = get_lock_parent_ip();
5652 #ifdef CONFIG_DEBUG_PREEMPT
5653 current->preempt_disable_ip = ip;
5654 #endif
5655 trace_preempt_off(CALLER_ADDR0, ip);
5656 }
5657 }
5658
preempt_count_add(int val)5659 void preempt_count_add(int val)
5660 {
5661 #ifdef CONFIG_DEBUG_PREEMPT
5662 /*
5663 * Underflow?
5664 */
5665 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5666 return;
5667 #endif
5668 __preempt_count_add(val);
5669 #ifdef CONFIG_DEBUG_PREEMPT
5670 /*
5671 * Spinlock count overflowing soon?
5672 */
5673 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5674 PREEMPT_MASK - 10);
5675 #endif
5676 preempt_latency_start(val);
5677 }
5678 EXPORT_SYMBOL(preempt_count_add);
5679 NOKPROBE_SYMBOL(preempt_count_add);
5680
5681 /*
5682 * If the value passed in equals to the current preempt count
5683 * then we just enabled preemption. Stop timing the latency.
5684 */
preempt_latency_stop(int val)5685 static inline void preempt_latency_stop(int val)
5686 {
5687 if (preempt_count() == val)
5688 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
5689 }
5690
preempt_count_sub(int val)5691 void preempt_count_sub(int val)
5692 {
5693 #ifdef CONFIG_DEBUG_PREEMPT
5694 /*
5695 * Underflow?
5696 */
5697 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5698 return;
5699 /*
5700 * Is the spinlock portion underflowing?
5701 */
5702 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5703 !(preempt_count() & PREEMPT_MASK)))
5704 return;
5705 #endif
5706
5707 preempt_latency_stop(val);
5708 __preempt_count_sub(val);
5709 }
5710 EXPORT_SYMBOL(preempt_count_sub);
5711 NOKPROBE_SYMBOL(preempt_count_sub);
5712
5713 #else
preempt_latency_start(int val)5714 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)5715 static inline void preempt_latency_stop(int val) { }
5716 #endif
5717
get_preempt_disable_ip(struct task_struct * p)5718 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
5719 {
5720 #ifdef CONFIG_DEBUG_PREEMPT
5721 return p->preempt_disable_ip;
5722 #else
5723 return 0;
5724 #endif
5725 }
5726
5727 /*
5728 * Print scheduling while atomic bug:
5729 */
__schedule_bug(struct task_struct * prev)5730 static noinline void __schedule_bug(struct task_struct *prev)
5731 {
5732 /* Save this before calling printk(), since that will clobber it */
5733 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
5734
5735 if (oops_in_progress)
5736 return;
5737
5738 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5739 prev->comm, prev->pid, preempt_count());
5740
5741 debug_show_held_locks(prev);
5742 print_modules();
5743 if (irqs_disabled())
5744 print_irqtrace_events(prev);
5745 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
5746 && in_atomic_preempt_off()) {
5747 pr_err("Preemption disabled at:");
5748 print_ip_sym(KERN_ERR, preempt_disable_ip);
5749 }
5750 if (panic_on_warn)
5751 panic("scheduling while atomic\n");
5752
5753 dump_stack();
5754 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5755 }
5756
5757 /*
5758 * Various schedule()-time debugging checks and statistics:
5759 */
schedule_debug(struct task_struct * prev,bool preempt)5760 static inline void schedule_debug(struct task_struct *prev, bool preempt)
5761 {
5762 #ifdef CONFIG_SCHED_STACK_END_CHECK
5763 if (task_stack_end_corrupted(prev))
5764 panic("corrupted stack end detected inside scheduler\n");
5765
5766 if (task_scs_end_corrupted(prev))
5767 panic("corrupted shadow stack detected inside scheduler\n");
5768 #endif
5769
5770 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
5771 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) {
5772 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
5773 prev->comm, prev->pid, prev->non_block_count);
5774 dump_stack();
5775 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
5776 }
5777 #endif
5778
5779 if (unlikely(in_atomic_preempt_off())) {
5780 __schedule_bug(prev);
5781 preempt_count_set(PREEMPT_DISABLED);
5782 }
5783 rcu_sleep_check();
5784 SCHED_WARN_ON(ct_state() == CONTEXT_USER);
5785
5786 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5787
5788 schedstat_inc(this_rq()->sched_count);
5789 }
5790
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5791 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
5792 struct rq_flags *rf)
5793 {
5794 #ifdef CONFIG_SMP
5795 const struct sched_class *class;
5796 /*
5797 * We must do the balancing pass before put_prev_task(), such
5798 * that when we release the rq->lock the task is in the same
5799 * state as before we took rq->lock.
5800 *
5801 * We can terminate the balance pass as soon as we know there is
5802 * a runnable task of @class priority or higher.
5803 */
5804 for_class_range(class, prev->sched_class, &idle_sched_class) {
5805 if (class->balance(rq, prev, rf))
5806 break;
5807 }
5808 #endif
5809
5810 put_prev_task(rq, prev);
5811 }
5812
5813 /*
5814 * Pick up the highest-prio task:
5815 */
5816 static inline struct task_struct *
__pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5817 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5818 {
5819 const struct sched_class *class;
5820 struct task_struct *p;
5821
5822 /*
5823 * Optimization: we know that if all tasks are in the fair class we can
5824 * call that function directly, but only if the @prev task wasn't of a
5825 * higher scheduling class, because otherwise those lose the
5826 * opportunity to pull in more work from other CPUs.
5827 */
5828 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) &&
5829 rq->nr_running == rq->cfs.h_nr_running)) {
5830
5831 p = pick_next_task_fair(rq, prev, rf);
5832 if (unlikely(p == RETRY_TASK))
5833 goto restart;
5834
5835 /* Assume the next prioritized class is idle_sched_class */
5836 if (!p) {
5837 put_prev_task(rq, prev);
5838 p = pick_next_task_idle(rq);
5839 }
5840
5841 return p;
5842 }
5843
5844 restart:
5845 put_prev_task_balance(rq, prev, rf);
5846
5847 for_each_class(class) {
5848 p = class->pick_next_task(rq);
5849 if (p)
5850 return p;
5851 }
5852
5853 BUG(); /* The idle class should always have a runnable task. */
5854 }
5855
5856 #ifdef CONFIG_SCHED_CORE
is_task_rq_idle(struct task_struct * t)5857 static inline bool is_task_rq_idle(struct task_struct *t)
5858 {
5859 return (task_rq(t)->idle == t);
5860 }
5861
cookie_equals(struct task_struct * a,unsigned long cookie)5862 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie)
5863 {
5864 return is_task_rq_idle(a) || (a->core_cookie == cookie);
5865 }
5866
cookie_match(struct task_struct * a,struct task_struct * b)5867 static inline bool cookie_match(struct task_struct *a, struct task_struct *b)
5868 {
5869 if (is_task_rq_idle(a) || is_task_rq_idle(b))
5870 return true;
5871
5872 return a->core_cookie == b->core_cookie;
5873 }
5874
pick_task(struct rq * rq)5875 static inline struct task_struct *pick_task(struct rq *rq)
5876 {
5877 const struct sched_class *class;
5878 struct task_struct *p;
5879
5880 for_each_class(class) {
5881 p = class->pick_task(rq);
5882 if (p)
5883 return p;
5884 }
5885
5886 BUG(); /* The idle class should always have a runnable task. */
5887 }
5888
5889 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
5890
5891 static void queue_core_balance(struct rq *rq);
5892
5893 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)5894 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
5895 {
5896 struct task_struct *next, *p, *max = NULL;
5897 const struct cpumask *smt_mask;
5898 bool fi_before = false;
5899 bool core_clock_updated = (rq == rq->core);
5900 unsigned long cookie;
5901 int i, cpu, occ = 0;
5902 struct rq *rq_i;
5903 bool need_sync;
5904
5905 if (!sched_core_enabled(rq))
5906 return __pick_next_task(rq, prev, rf);
5907
5908 cpu = cpu_of(rq);
5909
5910 /* Stopper task is switching into idle, no need core-wide selection. */
5911 if (cpu_is_offline(cpu)) {
5912 /*
5913 * Reset core_pick so that we don't enter the fastpath when
5914 * coming online. core_pick would already be migrated to
5915 * another cpu during offline.
5916 */
5917 rq->core_pick = NULL;
5918 return __pick_next_task(rq, prev, rf);
5919 }
5920
5921 /*
5922 * If there were no {en,de}queues since we picked (IOW, the task
5923 * pointers are all still valid), and we haven't scheduled the last
5924 * pick yet, do so now.
5925 *
5926 * rq->core_pick can be NULL if no selection was made for a CPU because
5927 * it was either offline or went offline during a sibling's core-wide
5928 * selection. In this case, do a core-wide selection.
5929 */
5930 if (rq->core->core_pick_seq == rq->core->core_task_seq &&
5931 rq->core->core_pick_seq != rq->core_sched_seq &&
5932 rq->core_pick) {
5933 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq);
5934
5935 next = rq->core_pick;
5936 if (next != prev) {
5937 put_prev_task(rq, prev);
5938 set_next_task(rq, next);
5939 }
5940
5941 rq->core_pick = NULL;
5942 goto out;
5943 }
5944
5945 put_prev_task_balance(rq, prev, rf);
5946
5947 smt_mask = cpu_smt_mask(cpu);
5948 need_sync = !!rq->core->core_cookie;
5949
5950 /* reset state */
5951 rq->core->core_cookie = 0UL;
5952 if (rq->core->core_forceidle_count) {
5953 if (!core_clock_updated) {
5954 update_rq_clock(rq->core);
5955 core_clock_updated = true;
5956 }
5957 sched_core_account_forceidle(rq);
5958 /* reset after accounting force idle */
5959 rq->core->core_forceidle_start = 0;
5960 rq->core->core_forceidle_count = 0;
5961 rq->core->core_forceidle_occupation = 0;
5962 need_sync = true;
5963 fi_before = true;
5964 }
5965
5966 /*
5967 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq
5968 *
5969 * @task_seq guards the task state ({en,de}queues)
5970 * @pick_seq is the @task_seq we did a selection on
5971 * @sched_seq is the @pick_seq we scheduled
5972 *
5973 * However, preemptions can cause multiple picks on the same task set.
5974 * 'Fix' this by also increasing @task_seq for every pick.
5975 */
5976 rq->core->core_task_seq++;
5977
5978 /*
5979 * Optimize for common case where this CPU has no cookies
5980 * and there are no cookied tasks running on siblings.
5981 */
5982 if (!need_sync) {
5983 next = pick_task(rq);
5984 if (!next->core_cookie) {
5985 rq->core_pick = NULL;
5986 /*
5987 * For robustness, update the min_vruntime_fi for
5988 * unconstrained picks as well.
5989 */
5990 WARN_ON_ONCE(fi_before);
5991 task_vruntime_update(rq, next, false);
5992 goto out_set_next;
5993 }
5994 }
5995
5996 /*
5997 * For each thread: do the regular task pick and find the max prio task
5998 * amongst them.
5999 *
6000 * Tie-break prio towards the current CPU
6001 */
6002 for_each_cpu_wrap(i, smt_mask, cpu) {
6003 rq_i = cpu_rq(i);
6004
6005 /*
6006 * Current cpu always has its clock updated on entrance to
6007 * pick_next_task(). If the current cpu is not the core,
6008 * the core may also have been updated above.
6009 */
6010 if (i != cpu && (rq_i != rq->core || !core_clock_updated))
6011 update_rq_clock(rq_i);
6012
6013 p = rq_i->core_pick = pick_task(rq_i);
6014 if (!max || prio_less(max, p, fi_before))
6015 max = p;
6016 }
6017
6018 cookie = rq->core->core_cookie = max->core_cookie;
6019
6020 /*
6021 * For each thread: try and find a runnable task that matches @max or
6022 * force idle.
6023 */
6024 for_each_cpu(i, smt_mask) {
6025 rq_i = cpu_rq(i);
6026 p = rq_i->core_pick;
6027
6028 if (!cookie_equals(p, cookie)) {
6029 p = NULL;
6030 if (cookie)
6031 p = sched_core_find(rq_i, cookie);
6032 if (!p)
6033 p = idle_sched_class.pick_task(rq_i);
6034 }
6035
6036 rq_i->core_pick = p;
6037
6038 if (p == rq_i->idle) {
6039 if (rq_i->nr_running) {
6040 rq->core->core_forceidle_count++;
6041 if (!fi_before)
6042 rq->core->core_forceidle_seq++;
6043 }
6044 } else {
6045 occ++;
6046 }
6047 }
6048
6049 if (schedstat_enabled() && rq->core->core_forceidle_count) {
6050 rq->core->core_forceidle_start = rq_clock(rq->core);
6051 rq->core->core_forceidle_occupation = occ;
6052 }
6053
6054 rq->core->core_pick_seq = rq->core->core_task_seq;
6055 next = rq->core_pick;
6056 rq->core_sched_seq = rq->core->core_pick_seq;
6057
6058 /* Something should have been selected for current CPU */
6059 WARN_ON_ONCE(!next);
6060
6061 /*
6062 * Reschedule siblings
6063 *
6064 * NOTE: L1TF -- at this point we're no longer running the old task and
6065 * sending an IPI (below) ensures the sibling will no longer be running
6066 * their task. This ensures there is no inter-sibling overlap between
6067 * non-matching user state.
6068 */
6069 for_each_cpu(i, smt_mask) {
6070 rq_i = cpu_rq(i);
6071
6072 /*
6073 * An online sibling might have gone offline before a task
6074 * could be picked for it, or it might be offline but later
6075 * happen to come online, but its too late and nothing was
6076 * picked for it. That's Ok - it will pick tasks for itself,
6077 * so ignore it.
6078 */
6079 if (!rq_i->core_pick)
6080 continue;
6081
6082 /*
6083 * Update for new !FI->FI transitions, or if continuing to be in !FI:
6084 * fi_before fi update?
6085 * 0 0 1
6086 * 0 1 1
6087 * 1 0 1
6088 * 1 1 0
6089 */
6090 if (!(fi_before && rq->core->core_forceidle_count))
6091 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count);
6092
6093 rq_i->core_pick->core_occupation = occ;
6094
6095 if (i == cpu) {
6096 rq_i->core_pick = NULL;
6097 continue;
6098 }
6099
6100 /* Did we break L1TF mitigation requirements? */
6101 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick));
6102
6103 if (rq_i->curr == rq_i->core_pick) {
6104 rq_i->core_pick = NULL;
6105 continue;
6106 }
6107
6108 resched_curr(rq_i);
6109 }
6110
6111 out_set_next:
6112 set_next_task(rq, next);
6113 out:
6114 if (rq->core->core_forceidle_count && next == rq->idle)
6115 queue_core_balance(rq);
6116
6117 return next;
6118 }
6119
try_steal_cookie(int this,int that)6120 static bool try_steal_cookie(int this, int that)
6121 {
6122 struct rq *dst = cpu_rq(this), *src = cpu_rq(that);
6123 struct task_struct *p;
6124 unsigned long cookie;
6125 bool success = false;
6126
6127 local_irq_disable();
6128 double_rq_lock(dst, src);
6129
6130 cookie = dst->core->core_cookie;
6131 if (!cookie)
6132 goto unlock;
6133
6134 if (dst->curr != dst->idle)
6135 goto unlock;
6136
6137 p = sched_core_find(src, cookie);
6138 if (p == src->idle)
6139 goto unlock;
6140
6141 do {
6142 if (p == src->core_pick || p == src->curr)
6143 goto next;
6144
6145 if (!is_cpu_allowed(p, this))
6146 goto next;
6147
6148 if (p->core_occupation > dst->idle->core_occupation)
6149 goto next;
6150
6151 deactivate_task(src, p, 0);
6152 set_task_cpu(p, this);
6153 activate_task(dst, p, 0);
6154
6155 resched_curr(dst);
6156
6157 success = true;
6158 break;
6159
6160 next:
6161 p = sched_core_next(p, cookie);
6162 } while (p);
6163
6164 unlock:
6165 double_rq_unlock(dst, src);
6166 local_irq_enable();
6167
6168 return success;
6169 }
6170
steal_cookie_task(int cpu,struct sched_domain * sd)6171 static bool steal_cookie_task(int cpu, struct sched_domain *sd)
6172 {
6173 int i;
6174
6175 for_each_cpu_wrap(i, sched_domain_span(sd), cpu) {
6176 if (i == cpu)
6177 continue;
6178
6179 if (need_resched())
6180 break;
6181
6182 if (try_steal_cookie(cpu, i))
6183 return true;
6184 }
6185
6186 return false;
6187 }
6188
sched_core_balance(struct rq * rq)6189 static void sched_core_balance(struct rq *rq)
6190 {
6191 struct sched_domain *sd;
6192 int cpu = cpu_of(rq);
6193
6194 preempt_disable();
6195 rcu_read_lock();
6196 raw_spin_rq_unlock_irq(rq);
6197 for_each_domain(cpu, sd) {
6198 if (need_resched())
6199 break;
6200
6201 if (steal_cookie_task(cpu, sd))
6202 break;
6203 }
6204 raw_spin_rq_lock_irq(rq);
6205 rcu_read_unlock();
6206 preempt_enable();
6207 }
6208
6209 static DEFINE_PER_CPU(struct balance_callback, core_balance_head);
6210
queue_core_balance(struct rq * rq)6211 static void queue_core_balance(struct rq *rq)
6212 {
6213 if (!sched_core_enabled(rq))
6214 return;
6215
6216 if (!rq->core->core_cookie)
6217 return;
6218
6219 if (!rq->nr_running) /* not forced idle */
6220 return;
6221
6222 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance);
6223 }
6224
sched_core_cpu_starting(unsigned int cpu)6225 static void sched_core_cpu_starting(unsigned int cpu)
6226 {
6227 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6228 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6229 unsigned long flags;
6230 int t;
6231
6232 sched_core_lock(cpu, &flags);
6233
6234 WARN_ON_ONCE(rq->core != rq);
6235
6236 /* if we're the first, we'll be our own leader */
6237 if (cpumask_weight(smt_mask) == 1)
6238 goto unlock;
6239
6240 /* find the leader */
6241 for_each_cpu(t, smt_mask) {
6242 if (t == cpu)
6243 continue;
6244 rq = cpu_rq(t);
6245 if (rq->core == rq) {
6246 core_rq = rq;
6247 break;
6248 }
6249 }
6250
6251 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */
6252 goto unlock;
6253
6254 /* install and validate core_rq */
6255 for_each_cpu(t, smt_mask) {
6256 rq = cpu_rq(t);
6257
6258 if (t == cpu)
6259 rq->core = core_rq;
6260
6261 WARN_ON_ONCE(rq->core != core_rq);
6262 }
6263
6264 unlock:
6265 sched_core_unlock(cpu, &flags);
6266 }
6267
sched_core_cpu_deactivate(unsigned int cpu)6268 static void sched_core_cpu_deactivate(unsigned int cpu)
6269 {
6270 const struct cpumask *smt_mask = cpu_smt_mask(cpu);
6271 struct rq *rq = cpu_rq(cpu), *core_rq = NULL;
6272 unsigned long flags;
6273 int t;
6274
6275 sched_core_lock(cpu, &flags);
6276
6277 /* if we're the last man standing, nothing to do */
6278 if (cpumask_weight(smt_mask) == 1) {
6279 WARN_ON_ONCE(rq->core != rq);
6280 goto unlock;
6281 }
6282
6283 /* if we're not the leader, nothing to do */
6284 if (rq->core != rq)
6285 goto unlock;
6286
6287 /* find a new leader */
6288 for_each_cpu(t, smt_mask) {
6289 if (t == cpu)
6290 continue;
6291 core_rq = cpu_rq(t);
6292 break;
6293 }
6294
6295 if (WARN_ON_ONCE(!core_rq)) /* impossible */
6296 goto unlock;
6297
6298 /* copy the shared state to the new leader */
6299 core_rq->core_task_seq = rq->core_task_seq;
6300 core_rq->core_pick_seq = rq->core_pick_seq;
6301 core_rq->core_cookie = rq->core_cookie;
6302 core_rq->core_forceidle_count = rq->core_forceidle_count;
6303 core_rq->core_forceidle_seq = rq->core_forceidle_seq;
6304 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation;
6305
6306 /*
6307 * Accounting edge for forced idle is handled in pick_next_task().
6308 * Don't need another one here, since the hotplug thread shouldn't
6309 * have a cookie.
6310 */
6311 core_rq->core_forceidle_start = 0;
6312
6313 /* install new leader */
6314 for_each_cpu(t, smt_mask) {
6315 rq = cpu_rq(t);
6316 rq->core = core_rq;
6317 }
6318
6319 unlock:
6320 sched_core_unlock(cpu, &flags);
6321 }
6322
sched_core_cpu_dying(unsigned int cpu)6323 static inline void sched_core_cpu_dying(unsigned int cpu)
6324 {
6325 struct rq *rq = cpu_rq(cpu);
6326
6327 if (rq->core != rq)
6328 rq->core = rq;
6329 }
6330
6331 #else /* !CONFIG_SCHED_CORE */
6332
sched_core_cpu_starting(unsigned int cpu)6333 static inline void sched_core_cpu_starting(unsigned int cpu) {}
sched_core_cpu_deactivate(unsigned int cpu)6334 static inline void sched_core_cpu_deactivate(unsigned int cpu) {}
sched_core_cpu_dying(unsigned int cpu)6335 static inline void sched_core_cpu_dying(unsigned int cpu) {}
6336
6337 static struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)6338 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6339 {
6340 return __pick_next_task(rq, prev, rf);
6341 }
6342
6343 #endif /* CONFIG_SCHED_CORE */
6344
6345 /*
6346 * Constants for the sched_mode argument of __schedule().
6347 *
6348 * The mode argument allows RT enabled kernels to differentiate a
6349 * preemption from blocking on an 'sleeping' spin/rwlock. Note that
6350 * SM_MASK_PREEMPT for !RT has all bits set, which allows the compiler to
6351 * optimize the AND operation out and just check for zero.
6352 */
6353 #define SM_NONE 0x0
6354 #define SM_PREEMPT 0x1
6355 #define SM_RTLOCK_WAIT 0x2
6356
6357 #ifndef CONFIG_PREEMPT_RT
6358 # define SM_MASK_PREEMPT (~0U)
6359 #else
6360 # define SM_MASK_PREEMPT SM_PREEMPT
6361 #endif
6362
6363 /*
6364 * __schedule() is the main scheduler function.
6365 *
6366 * The main means of driving the scheduler and thus entering this function are:
6367 *
6368 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
6369 *
6370 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
6371 * paths. For example, see arch/x86/entry_64.S.
6372 *
6373 * To drive preemption between tasks, the scheduler sets the flag in timer
6374 * interrupt handler scheduler_tick().
6375 *
6376 * 3. Wakeups don't really cause entry into schedule(). They add a
6377 * task to the run-queue and that's it.
6378 *
6379 * Now, if the new task added to the run-queue preempts the current
6380 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
6381 * called on the nearest possible occasion:
6382 *
6383 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
6384 *
6385 * - in syscall or exception context, at the next outmost
6386 * preempt_enable(). (this might be as soon as the wake_up()'s
6387 * spin_unlock()!)
6388 *
6389 * - in IRQ context, return from interrupt-handler to
6390 * preemptible context
6391 *
6392 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
6393 * then at the next:
6394 *
6395 * - cond_resched() call
6396 * - explicit schedule() call
6397 * - return from syscall or exception to user-space
6398 * - return from interrupt-handler to user-space
6399 *
6400 * WARNING: must be called with preemption disabled!
6401 */
__schedule(unsigned int sched_mode)6402 static void __sched notrace __schedule(unsigned int sched_mode)
6403 {
6404 struct task_struct *prev, *next;
6405 unsigned long *switch_count;
6406 unsigned long prev_state;
6407 struct rq_flags rf;
6408 struct rq *rq;
6409 int cpu;
6410
6411 cpu = smp_processor_id();
6412 rq = cpu_rq(cpu);
6413 prev = rq->curr;
6414
6415 schedule_debug(prev, !!sched_mode);
6416
6417 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL))
6418 hrtick_clear(rq);
6419
6420 local_irq_disable();
6421 rcu_note_context_switch(!!sched_mode);
6422
6423 /*
6424 * Make sure that signal_pending_state()->signal_pending() below
6425 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
6426 * done by the caller to avoid the race with signal_wake_up():
6427 *
6428 * __set_current_state(@state) signal_wake_up()
6429 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
6430 * wake_up_state(p, state)
6431 * LOCK rq->lock LOCK p->pi_state
6432 * smp_mb__after_spinlock() smp_mb__after_spinlock()
6433 * if (signal_pending_state()) if (p->state & @state)
6434 *
6435 * Also, the membarrier system call requires a full memory barrier
6436 * after coming from user-space, before storing to rq->curr.
6437 */
6438 rq_lock(rq, &rf);
6439 smp_mb__after_spinlock();
6440
6441 /* Promote REQ to ACT */
6442 rq->clock_update_flags <<= 1;
6443 update_rq_clock(rq);
6444
6445 switch_count = &prev->nivcsw;
6446
6447 /*
6448 * We must load prev->state once (task_struct::state is volatile), such
6449 * that we form a control dependency vs deactivate_task() below.
6450 */
6451 prev_state = READ_ONCE(prev->__state);
6452 if (!(sched_mode & SM_MASK_PREEMPT) && prev_state) {
6453 if (signal_pending_state(prev_state, prev)) {
6454 WRITE_ONCE(prev->__state, TASK_RUNNING);
6455 } else {
6456 prev->sched_contributes_to_load =
6457 (prev_state & TASK_UNINTERRUPTIBLE) &&
6458 !(prev_state & TASK_NOLOAD) &&
6459 !(prev_state & TASK_FROZEN);
6460
6461 if (prev->sched_contributes_to_load)
6462 rq->nr_uninterruptible++;
6463
6464 /*
6465 * __schedule() ttwu()
6466 * prev_state = prev->state; if (p->on_rq && ...)
6467 * if (prev_state) goto out;
6468 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
6469 * p->state = TASK_WAKING
6470 *
6471 * Where __schedule() and ttwu() have matching control dependencies.
6472 *
6473 * After this, schedule() must not care about p->state any more.
6474 */
6475 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
6476
6477 if (prev->in_iowait) {
6478 atomic_inc(&rq->nr_iowait);
6479 delayacct_blkio_start();
6480 }
6481 }
6482 switch_count = &prev->nvcsw;
6483 }
6484
6485 next = pick_next_task(rq, prev, &rf);
6486 clear_tsk_need_resched(prev);
6487 clear_preempt_need_resched();
6488 #ifdef CONFIG_SCHED_DEBUG
6489 rq->last_seen_need_resched_ns = 0;
6490 #endif
6491
6492 if (likely(prev != next)) {
6493 rq->nr_switches++;
6494 /*
6495 * RCU users of rcu_dereference(rq->curr) may not see
6496 * changes to task_struct made by pick_next_task().
6497 */
6498 RCU_INIT_POINTER(rq->curr, next);
6499 /*
6500 * The membarrier system call requires each architecture
6501 * to have a full memory barrier after updating
6502 * rq->curr, before returning to user-space.
6503 *
6504 * Here are the schemes providing that barrier on the
6505 * various architectures:
6506 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
6507 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
6508 * - finish_lock_switch() for weakly-ordered
6509 * architectures where spin_unlock is a full barrier,
6510 * - switch_to() for arm64 (weakly-ordered, spin_unlock
6511 * is a RELEASE barrier),
6512 */
6513 ++*switch_count;
6514
6515 migrate_disable_switch(rq, prev);
6516 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
6517
6518 trace_sched_switch(sched_mode & SM_MASK_PREEMPT, prev, next, prev_state);
6519
6520 /* Also unlocks the rq: */
6521 rq = context_switch(rq, prev, next, &rf);
6522 } else {
6523 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
6524
6525 rq_unpin_lock(rq, &rf);
6526 __balance_callbacks(rq);
6527 raw_spin_rq_unlock_irq(rq);
6528 }
6529 }
6530
do_task_dead(void)6531 void __noreturn do_task_dead(void)
6532 {
6533 /* Causes final put_task_struct in finish_task_switch(): */
6534 set_special_state(TASK_DEAD);
6535
6536 /* Tell freezer to ignore us: */
6537 current->flags |= PF_NOFREEZE;
6538
6539 __schedule(SM_NONE);
6540 BUG();
6541
6542 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
6543 for (;;)
6544 cpu_relax();
6545 }
6546
sched_submit_work(struct task_struct * tsk)6547 static inline void sched_submit_work(struct task_struct *tsk)
6548 {
6549 unsigned int task_flags;
6550
6551 if (task_is_running(tsk))
6552 return;
6553
6554 task_flags = tsk->flags;
6555 /*
6556 * If a worker goes to sleep, notify and ask workqueue whether it
6557 * wants to wake up a task to maintain concurrency.
6558 */
6559 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6560 if (task_flags & PF_WQ_WORKER)
6561 wq_worker_sleeping(tsk);
6562 else
6563 io_wq_worker_sleeping(tsk);
6564 }
6565
6566 /*
6567 * spinlock and rwlock must not flush block requests. This will
6568 * deadlock if the callback attempts to acquire a lock which is
6569 * already acquired.
6570 */
6571 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT);
6572
6573 /*
6574 * If we are going to sleep and we have plugged IO queued,
6575 * make sure to submit it to avoid deadlocks.
6576 */
6577 blk_flush_plug(tsk->plug, true);
6578 }
6579
sched_update_worker(struct task_struct * tsk)6580 static void sched_update_worker(struct task_struct *tsk)
6581 {
6582 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
6583 if (tsk->flags & PF_WQ_WORKER)
6584 wq_worker_running(tsk);
6585 else
6586 io_wq_worker_running(tsk);
6587 }
6588 }
6589
schedule(void)6590 asmlinkage __visible void __sched schedule(void)
6591 {
6592 struct task_struct *tsk = current;
6593
6594 sched_submit_work(tsk);
6595 do {
6596 preempt_disable();
6597 __schedule(SM_NONE);
6598 sched_preempt_enable_no_resched();
6599 } while (need_resched());
6600 sched_update_worker(tsk);
6601 }
6602 EXPORT_SYMBOL(schedule);
6603
6604 /*
6605 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
6606 * state (have scheduled out non-voluntarily) by making sure that all
6607 * tasks have either left the run queue or have gone into user space.
6608 * As idle tasks do not do either, they must not ever be preempted
6609 * (schedule out non-voluntarily).
6610 *
6611 * schedule_idle() is similar to schedule_preempt_disable() except that it
6612 * never enables preemption because it does not call sched_submit_work().
6613 */
schedule_idle(void)6614 void __sched schedule_idle(void)
6615 {
6616 /*
6617 * As this skips calling sched_submit_work(), which the idle task does
6618 * regardless because that function is a nop when the task is in a
6619 * TASK_RUNNING state, make sure this isn't used someplace that the
6620 * current task can be in any other state. Note, idle is always in the
6621 * TASK_RUNNING state.
6622 */
6623 WARN_ON_ONCE(current->__state);
6624 do {
6625 __schedule(SM_NONE);
6626 } while (need_resched());
6627 }
6628
6629 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK)
schedule_user(void)6630 asmlinkage __visible void __sched schedule_user(void)
6631 {
6632 /*
6633 * If we come here after a random call to set_need_resched(),
6634 * or we have been woken up remotely but the IPI has not yet arrived,
6635 * we haven't yet exited the RCU idle mode. Do it here manually until
6636 * we find a better solution.
6637 *
6638 * NB: There are buggy callers of this function. Ideally we
6639 * should warn if prev_state != CONTEXT_USER, but that will trigger
6640 * too frequently to make sense yet.
6641 */
6642 enum ctx_state prev_state = exception_enter();
6643 schedule();
6644 exception_exit(prev_state);
6645 }
6646 #endif
6647
6648 /**
6649 * schedule_preempt_disabled - called with preemption disabled
6650 *
6651 * Returns with preemption disabled. Note: preempt_count must be 1
6652 */
schedule_preempt_disabled(void)6653 void __sched schedule_preempt_disabled(void)
6654 {
6655 sched_preempt_enable_no_resched();
6656 schedule();
6657 preempt_disable();
6658 }
6659
6660 #ifdef CONFIG_PREEMPT_RT
schedule_rtlock(void)6661 void __sched notrace schedule_rtlock(void)
6662 {
6663 do {
6664 preempt_disable();
6665 __schedule(SM_RTLOCK_WAIT);
6666 sched_preempt_enable_no_resched();
6667 } while (need_resched());
6668 }
6669 NOKPROBE_SYMBOL(schedule_rtlock);
6670 #endif
6671
preempt_schedule_common(void)6672 static void __sched notrace preempt_schedule_common(void)
6673 {
6674 do {
6675 /*
6676 * Because the function tracer can trace preempt_count_sub()
6677 * and it also uses preempt_enable/disable_notrace(), if
6678 * NEED_RESCHED is set, the preempt_enable_notrace() called
6679 * by the function tracer will call this function again and
6680 * cause infinite recursion.
6681 *
6682 * Preemption must be disabled here before the function
6683 * tracer can trace. Break up preempt_disable() into two
6684 * calls. One to disable preemption without fear of being
6685 * traced. The other to still record the preemption latency,
6686 * which can also be traced by the function tracer.
6687 */
6688 preempt_disable_notrace();
6689 preempt_latency_start(1);
6690 __schedule(SM_PREEMPT);
6691 preempt_latency_stop(1);
6692 preempt_enable_no_resched_notrace();
6693
6694 /*
6695 * Check again in case we missed a preemption opportunity
6696 * between schedule and now.
6697 */
6698 } while (need_resched());
6699 }
6700
6701 #ifdef CONFIG_PREEMPTION
6702 /*
6703 * This is the entry point to schedule() from in-kernel preemption
6704 * off of preempt_enable.
6705 */
preempt_schedule(void)6706 asmlinkage __visible void __sched notrace preempt_schedule(void)
6707 {
6708 /*
6709 * If there is a non-zero preempt_count or interrupts are disabled,
6710 * we do not want to preempt the current task. Just return..
6711 */
6712 if (likely(!preemptible()))
6713 return;
6714 preempt_schedule_common();
6715 }
6716 NOKPROBE_SYMBOL(preempt_schedule);
6717 EXPORT_SYMBOL(preempt_schedule);
6718
6719 #ifdef CONFIG_PREEMPT_DYNAMIC
6720 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6721 #ifndef preempt_schedule_dynamic_enabled
6722 #define preempt_schedule_dynamic_enabled preempt_schedule
6723 #define preempt_schedule_dynamic_disabled NULL
6724 #endif
6725 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled);
6726 EXPORT_STATIC_CALL_TRAMP(preempt_schedule);
6727 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6728 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule);
dynamic_preempt_schedule(void)6729 void __sched notrace dynamic_preempt_schedule(void)
6730 {
6731 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule))
6732 return;
6733 preempt_schedule();
6734 }
6735 NOKPROBE_SYMBOL(dynamic_preempt_schedule);
6736 EXPORT_SYMBOL(dynamic_preempt_schedule);
6737 #endif
6738 #endif
6739
6740 /**
6741 * preempt_schedule_notrace - preempt_schedule called by tracing
6742 *
6743 * The tracing infrastructure uses preempt_enable_notrace to prevent
6744 * recursion and tracing preempt enabling caused by the tracing
6745 * infrastructure itself. But as tracing can happen in areas coming
6746 * from userspace or just about to enter userspace, a preempt enable
6747 * can occur before user_exit() is called. This will cause the scheduler
6748 * to be called when the system is still in usermode.
6749 *
6750 * To prevent this, the preempt_enable_notrace will use this function
6751 * instead of preempt_schedule() to exit user context if needed before
6752 * calling the scheduler.
6753 */
preempt_schedule_notrace(void)6754 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
6755 {
6756 enum ctx_state prev_ctx;
6757
6758 if (likely(!preemptible()))
6759 return;
6760
6761 do {
6762 /*
6763 * Because the function tracer can trace preempt_count_sub()
6764 * and it also uses preempt_enable/disable_notrace(), if
6765 * NEED_RESCHED is set, the preempt_enable_notrace() called
6766 * by the function tracer will call this function again and
6767 * cause infinite recursion.
6768 *
6769 * Preemption must be disabled here before the function
6770 * tracer can trace. Break up preempt_disable() into two
6771 * calls. One to disable preemption without fear of being
6772 * traced. The other to still record the preemption latency,
6773 * which can also be traced by the function tracer.
6774 */
6775 preempt_disable_notrace();
6776 preempt_latency_start(1);
6777 /*
6778 * Needs preempt disabled in case user_exit() is traced
6779 * and the tracer calls preempt_enable_notrace() causing
6780 * an infinite recursion.
6781 */
6782 prev_ctx = exception_enter();
6783 __schedule(SM_PREEMPT);
6784 exception_exit(prev_ctx);
6785
6786 preempt_latency_stop(1);
6787 preempt_enable_no_resched_notrace();
6788 } while (need_resched());
6789 }
6790 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
6791
6792 #ifdef CONFIG_PREEMPT_DYNAMIC
6793 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
6794 #ifndef preempt_schedule_notrace_dynamic_enabled
6795 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace
6796 #define preempt_schedule_notrace_dynamic_disabled NULL
6797 #endif
6798 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled);
6799 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace);
6800 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
6801 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace);
dynamic_preempt_schedule_notrace(void)6802 void __sched notrace dynamic_preempt_schedule_notrace(void)
6803 {
6804 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace))
6805 return;
6806 preempt_schedule_notrace();
6807 }
6808 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace);
6809 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace);
6810 #endif
6811 #endif
6812
6813 #endif /* CONFIG_PREEMPTION */
6814
6815 /*
6816 * This is the entry point to schedule() from kernel preemption
6817 * off of irq context.
6818 * Note, that this is called and return with irqs disabled. This will
6819 * protect us against recursive calling from irq.
6820 */
preempt_schedule_irq(void)6821 asmlinkage __visible void __sched preempt_schedule_irq(void)
6822 {
6823 enum ctx_state prev_state;
6824
6825 /* Catch callers which need to be fixed */
6826 BUG_ON(preempt_count() || !irqs_disabled());
6827
6828 prev_state = exception_enter();
6829
6830 do {
6831 preempt_disable();
6832 local_irq_enable();
6833 __schedule(SM_PREEMPT);
6834 local_irq_disable();
6835 sched_preempt_enable_no_resched();
6836 } while (need_resched());
6837
6838 exception_exit(prev_state);
6839 }
6840
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)6841 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
6842 void *key)
6843 {
6844 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
6845 return try_to_wake_up(curr->private, mode, wake_flags);
6846 }
6847 EXPORT_SYMBOL(default_wake_function);
6848
__setscheduler_prio(struct task_struct * p,int prio)6849 static void __setscheduler_prio(struct task_struct *p, int prio)
6850 {
6851 if (dl_prio(prio))
6852 p->sched_class = &dl_sched_class;
6853 else if (rt_prio(prio))
6854 p->sched_class = &rt_sched_class;
6855 else
6856 p->sched_class = &fair_sched_class;
6857
6858 p->prio = prio;
6859 }
6860
6861 #ifdef CONFIG_RT_MUTEXES
6862
__rt_effective_prio(struct task_struct * pi_task,int prio)6863 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
6864 {
6865 if (pi_task)
6866 prio = min(prio, pi_task->prio);
6867
6868 return prio;
6869 }
6870
rt_effective_prio(struct task_struct * p,int prio)6871 static inline int rt_effective_prio(struct task_struct *p, int prio)
6872 {
6873 struct task_struct *pi_task = rt_mutex_get_top_task(p);
6874
6875 return __rt_effective_prio(pi_task, prio);
6876 }
6877
6878 /*
6879 * rt_mutex_setprio - set the current priority of a task
6880 * @p: task to boost
6881 * @pi_task: donor task
6882 *
6883 * This function changes the 'effective' priority of a task. It does
6884 * not touch ->normal_prio like __setscheduler().
6885 *
6886 * Used by the rt_mutex code to implement priority inheritance
6887 * logic. Call site only calls if the priority of the task changed.
6888 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)6889 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
6890 {
6891 int prio, oldprio, queued, running, queue_flag =
6892 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
6893 const struct sched_class *prev_class;
6894 struct rq_flags rf;
6895 struct rq *rq;
6896
6897 /* XXX used to be waiter->prio, not waiter->task->prio */
6898 prio = __rt_effective_prio(pi_task, p->normal_prio);
6899
6900 /*
6901 * If nothing changed; bail early.
6902 */
6903 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
6904 return;
6905
6906 rq = __task_rq_lock(p, &rf);
6907 update_rq_clock(rq);
6908 /*
6909 * Set under pi_lock && rq->lock, such that the value can be used under
6910 * either lock.
6911 *
6912 * Note that there is loads of tricky to make this pointer cache work
6913 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
6914 * ensure a task is de-boosted (pi_task is set to NULL) before the
6915 * task is allowed to run again (and can exit). This ensures the pointer
6916 * points to a blocked task -- which guarantees the task is present.
6917 */
6918 p->pi_top_task = pi_task;
6919
6920 /*
6921 * For FIFO/RR we only need to set prio, if that matches we're done.
6922 */
6923 if (prio == p->prio && !dl_prio(prio))
6924 goto out_unlock;
6925
6926 /*
6927 * Idle task boosting is a nono in general. There is one
6928 * exception, when PREEMPT_RT and NOHZ is active:
6929 *
6930 * The idle task calls get_next_timer_interrupt() and holds
6931 * the timer wheel base->lock on the CPU and another CPU wants
6932 * to access the timer (probably to cancel it). We can safely
6933 * ignore the boosting request, as the idle CPU runs this code
6934 * with interrupts disabled and will complete the lock
6935 * protected section without being interrupted. So there is no
6936 * real need to boost.
6937 */
6938 if (unlikely(p == rq->idle)) {
6939 WARN_ON(p != rq->curr);
6940 WARN_ON(p->pi_blocked_on);
6941 goto out_unlock;
6942 }
6943
6944 trace_sched_pi_setprio(p, pi_task);
6945 oldprio = p->prio;
6946
6947 if (oldprio == prio)
6948 queue_flag &= ~DEQUEUE_MOVE;
6949
6950 prev_class = p->sched_class;
6951 queued = task_on_rq_queued(p);
6952 running = task_current(rq, p);
6953 if (queued)
6954 dequeue_task(rq, p, queue_flag);
6955 if (running)
6956 put_prev_task(rq, p);
6957
6958 /*
6959 * Boosting condition are:
6960 * 1. -rt task is running and holds mutex A
6961 * --> -dl task blocks on mutex A
6962 *
6963 * 2. -dl task is running and holds mutex A
6964 * --> -dl task blocks on mutex A and could preempt the
6965 * running task
6966 */
6967 if (dl_prio(prio)) {
6968 if (!dl_prio(p->normal_prio) ||
6969 (pi_task && dl_prio(pi_task->prio) &&
6970 dl_entity_preempt(&pi_task->dl, &p->dl))) {
6971 p->dl.pi_se = pi_task->dl.pi_se;
6972 queue_flag |= ENQUEUE_REPLENISH;
6973 } else {
6974 p->dl.pi_se = &p->dl;
6975 }
6976 } else if (rt_prio(prio)) {
6977 if (dl_prio(oldprio))
6978 p->dl.pi_se = &p->dl;
6979 if (oldprio < prio)
6980 queue_flag |= ENQUEUE_HEAD;
6981 } else {
6982 if (dl_prio(oldprio))
6983 p->dl.pi_se = &p->dl;
6984 if (rt_prio(oldprio))
6985 p->rt.timeout = 0;
6986 }
6987
6988 __setscheduler_prio(p, prio);
6989
6990 if (queued)
6991 enqueue_task(rq, p, queue_flag);
6992 if (running)
6993 set_next_task(rq, p);
6994
6995 check_class_changed(rq, p, prev_class, oldprio);
6996 out_unlock:
6997 /* Avoid rq from going away on us: */
6998 preempt_disable();
6999
7000 rq_unpin_lock(rq, &rf);
7001 __balance_callbacks(rq);
7002 raw_spin_rq_unlock(rq);
7003
7004 preempt_enable();
7005 }
7006 #else
rt_effective_prio(struct task_struct * p,int prio)7007 static inline int rt_effective_prio(struct task_struct *p, int prio)
7008 {
7009 return prio;
7010 }
7011 #endif
7012
set_user_nice(struct task_struct * p,long nice)7013 void set_user_nice(struct task_struct *p, long nice)
7014 {
7015 bool queued, running;
7016 int old_prio;
7017 struct rq_flags rf;
7018 struct rq *rq;
7019
7020 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
7021 return;
7022 /*
7023 * We have to be careful, if called from sys_setpriority(),
7024 * the task might be in the middle of scheduling on another CPU.
7025 */
7026 rq = task_rq_lock(p, &rf);
7027 update_rq_clock(rq);
7028
7029 /*
7030 * The RT priorities are set via sched_setscheduler(), but we still
7031 * allow the 'normal' nice value to be set - but as expected
7032 * it won't have any effect on scheduling until the task is
7033 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
7034 */
7035 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
7036 p->static_prio = NICE_TO_PRIO(nice);
7037 goto out_unlock;
7038 }
7039 queued = task_on_rq_queued(p);
7040 running = task_current(rq, p);
7041 if (queued)
7042 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
7043 if (running)
7044 put_prev_task(rq, p);
7045
7046 p->static_prio = NICE_TO_PRIO(nice);
7047 set_load_weight(p, true);
7048 old_prio = p->prio;
7049 p->prio = effective_prio(p);
7050
7051 if (queued)
7052 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
7053 if (running)
7054 set_next_task(rq, p);
7055
7056 /*
7057 * If the task increased its priority or is running and
7058 * lowered its priority, then reschedule its CPU:
7059 */
7060 p->sched_class->prio_changed(rq, p, old_prio);
7061
7062 out_unlock:
7063 task_rq_unlock(rq, p, &rf);
7064 }
7065 EXPORT_SYMBOL(set_user_nice);
7066
7067 /*
7068 * is_nice_reduction - check if nice value is an actual reduction
7069 *
7070 * Similar to can_nice() but does not perform a capability check.
7071 *
7072 * @p: task
7073 * @nice: nice value
7074 */
is_nice_reduction(const struct task_struct * p,const int nice)7075 static bool is_nice_reduction(const struct task_struct *p, const int nice)
7076 {
7077 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
7078 int nice_rlim = nice_to_rlimit(nice);
7079
7080 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE));
7081 }
7082
7083 /*
7084 * can_nice - check if a task can reduce its nice value
7085 * @p: task
7086 * @nice: nice value
7087 */
can_nice(const struct task_struct * p,const int nice)7088 int can_nice(const struct task_struct *p, const int nice)
7089 {
7090 return is_nice_reduction(p, nice) || capable(CAP_SYS_NICE);
7091 }
7092
7093 #ifdef __ARCH_WANT_SYS_NICE
7094
7095 /*
7096 * sys_nice - change the priority of the current process.
7097 * @increment: priority increment
7098 *
7099 * sys_setpriority is a more generic, but much slower function that
7100 * does similar things.
7101 */
SYSCALL_DEFINE1(nice,int,increment)7102 SYSCALL_DEFINE1(nice, int, increment)
7103 {
7104 long nice, retval;
7105
7106 /*
7107 * Setpriority might change our priority at the same moment.
7108 * We don't have to worry. Conceptually one call occurs first
7109 * and we have a single winner.
7110 */
7111 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
7112 nice = task_nice(current) + increment;
7113
7114 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
7115 if (increment < 0 && !can_nice(current, nice))
7116 return -EPERM;
7117
7118 retval = security_task_setnice(current, nice);
7119 if (retval)
7120 return retval;
7121
7122 set_user_nice(current, nice);
7123 return 0;
7124 }
7125
7126 #endif
7127
7128 /**
7129 * task_prio - return the priority value of a given task.
7130 * @p: the task in question.
7131 *
7132 * Return: The priority value as seen by users in /proc.
7133 *
7134 * sched policy return value kernel prio user prio/nice
7135 *
7136 * normal, batch, idle [0 ... 39] [100 ... 139] 0/[-20 ... 19]
7137 * fifo, rr [-2 ... -100] [98 ... 0] [1 ... 99]
7138 * deadline -101 -1 0
7139 */
task_prio(const struct task_struct * p)7140 int task_prio(const struct task_struct *p)
7141 {
7142 return p->prio - MAX_RT_PRIO;
7143 }
7144
7145 /**
7146 * idle_cpu - is a given CPU idle currently?
7147 * @cpu: the processor in question.
7148 *
7149 * Return: 1 if the CPU is currently idle. 0 otherwise.
7150 */
idle_cpu(int cpu)7151 int idle_cpu(int cpu)
7152 {
7153 struct rq *rq = cpu_rq(cpu);
7154
7155 if (rq->curr != rq->idle)
7156 return 0;
7157
7158 if (rq->nr_running)
7159 return 0;
7160
7161 #ifdef CONFIG_SMP
7162 if (rq->ttwu_pending)
7163 return 0;
7164 #endif
7165
7166 return 1;
7167 }
7168
7169 /**
7170 * available_idle_cpu - is a given CPU idle for enqueuing work.
7171 * @cpu: the CPU in question.
7172 *
7173 * Return: 1 if the CPU is currently idle. 0 otherwise.
7174 */
available_idle_cpu(int cpu)7175 int available_idle_cpu(int cpu)
7176 {
7177 if (!idle_cpu(cpu))
7178 return 0;
7179
7180 if (vcpu_is_preempted(cpu))
7181 return 0;
7182
7183 return 1;
7184 }
7185
7186 /**
7187 * idle_task - return the idle task for a given CPU.
7188 * @cpu: the processor in question.
7189 *
7190 * Return: The idle task for the CPU @cpu.
7191 */
idle_task(int cpu)7192 struct task_struct *idle_task(int cpu)
7193 {
7194 return cpu_rq(cpu)->idle;
7195 }
7196
7197 #ifdef CONFIG_SMP
7198 /*
7199 * This function computes an effective utilization for the given CPU, to be
7200 * used for frequency selection given the linear relation: f = u * f_max.
7201 *
7202 * The scheduler tracks the following metrics:
7203 *
7204 * cpu_util_{cfs,rt,dl,irq}()
7205 * cpu_bw_dl()
7206 *
7207 * Where the cfs,rt and dl util numbers are tracked with the same metric and
7208 * synchronized windows and are thus directly comparable.
7209 *
7210 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
7211 * which excludes things like IRQ and steal-time. These latter are then accrued
7212 * in the irq utilization.
7213 *
7214 * The DL bandwidth number otoh is not a measured metric but a value computed
7215 * based on the task model parameters and gives the minimal utilization
7216 * required to meet deadlines.
7217 */
effective_cpu_util(int cpu,unsigned long util_cfs,enum cpu_util_type type,struct task_struct * p)7218 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
7219 enum cpu_util_type type,
7220 struct task_struct *p)
7221 {
7222 unsigned long dl_util, util, irq, max;
7223 struct rq *rq = cpu_rq(cpu);
7224
7225 max = arch_scale_cpu_capacity(cpu);
7226
7227 if (!uclamp_is_used() &&
7228 type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
7229 return max;
7230 }
7231
7232 /*
7233 * Early check to see if IRQ/steal time saturates the CPU, can be
7234 * because of inaccuracies in how we track these -- see
7235 * update_irq_load_avg().
7236 */
7237 irq = cpu_util_irq(rq);
7238 if (unlikely(irq >= max))
7239 return max;
7240
7241 /*
7242 * Because the time spend on RT/DL tasks is visible as 'lost' time to
7243 * CFS tasks and we use the same metric to track the effective
7244 * utilization (PELT windows are synchronized) we can directly add them
7245 * to obtain the CPU's actual utilization.
7246 *
7247 * CFS and RT utilization can be boosted or capped, depending on
7248 * utilization clamp constraints requested by currently RUNNABLE
7249 * tasks.
7250 * When there are no CFS RUNNABLE tasks, clamps are released and
7251 * frequency will be gracefully reduced with the utilization decay.
7252 */
7253 util = util_cfs + cpu_util_rt(rq);
7254 if (type == FREQUENCY_UTIL)
7255 util = uclamp_rq_util_with(rq, util, p);
7256
7257 dl_util = cpu_util_dl(rq);
7258
7259 /*
7260 * For frequency selection we do not make cpu_util_dl() a permanent part
7261 * of this sum because we want to use cpu_bw_dl() later on, but we need
7262 * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
7263 * that we select f_max when there is no idle time.
7264 *
7265 * NOTE: numerical errors or stop class might cause us to not quite hit
7266 * saturation when we should -- something for later.
7267 */
7268 if (util + dl_util >= max)
7269 return max;
7270
7271 /*
7272 * OTOH, for energy computation we need the estimated running time, so
7273 * include util_dl and ignore dl_bw.
7274 */
7275 if (type == ENERGY_UTIL)
7276 util += dl_util;
7277
7278 /*
7279 * There is still idle time; further improve the number by using the
7280 * irq metric. Because IRQ/steal time is hidden from the task clock we
7281 * need to scale the task numbers:
7282 *
7283 * max - irq
7284 * U' = irq + --------- * U
7285 * max
7286 */
7287 util = scale_irq_capacity(util, irq, max);
7288 util += irq;
7289
7290 /*
7291 * Bandwidth required by DEADLINE must always be granted while, for
7292 * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
7293 * to gracefully reduce the frequency when no tasks show up for longer
7294 * periods of time.
7295 *
7296 * Ideally we would like to set bw_dl as min/guaranteed freq and util +
7297 * bw_dl as requested freq. However, cpufreq is not yet ready for such
7298 * an interface. So, we only do the latter for now.
7299 */
7300 if (type == FREQUENCY_UTIL)
7301 util += cpu_bw_dl(rq);
7302
7303 return min(max, util);
7304 }
7305
sched_cpu_util(int cpu)7306 unsigned long sched_cpu_util(int cpu)
7307 {
7308 return effective_cpu_util(cpu, cpu_util_cfs(cpu), ENERGY_UTIL, NULL);
7309 }
7310 #endif /* CONFIG_SMP */
7311
7312 /**
7313 * find_process_by_pid - find a process with a matching PID value.
7314 * @pid: the pid in question.
7315 *
7316 * The task of @pid, if found. %NULL otherwise.
7317 */
find_process_by_pid(pid_t pid)7318 static struct task_struct *find_process_by_pid(pid_t pid)
7319 {
7320 return pid ? find_task_by_vpid(pid) : current;
7321 }
7322
7323 /*
7324 * sched_setparam() passes in -1 for its policy, to let the functions
7325 * it calls know not to change it.
7326 */
7327 #define SETPARAM_POLICY -1
7328
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)7329 static void __setscheduler_params(struct task_struct *p,
7330 const struct sched_attr *attr)
7331 {
7332 int policy = attr->sched_policy;
7333
7334 if (policy == SETPARAM_POLICY)
7335 policy = p->policy;
7336
7337 p->policy = policy;
7338
7339 if (dl_policy(policy))
7340 __setparam_dl(p, attr);
7341 else if (fair_policy(policy))
7342 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
7343
7344 /*
7345 * __sched_setscheduler() ensures attr->sched_priority == 0 when
7346 * !rt_policy. Always setting this ensures that things like
7347 * getparam()/getattr() don't report silly values for !rt tasks.
7348 */
7349 p->rt_priority = attr->sched_priority;
7350 p->normal_prio = normal_prio(p);
7351 set_load_weight(p, true);
7352 }
7353
7354 /*
7355 * Check the target process has a UID that matches the current process's:
7356 */
check_same_owner(struct task_struct * p)7357 static bool check_same_owner(struct task_struct *p)
7358 {
7359 const struct cred *cred = current_cred(), *pcred;
7360 bool match;
7361
7362 rcu_read_lock();
7363 pcred = __task_cred(p);
7364 match = (uid_eq(cred->euid, pcred->euid) ||
7365 uid_eq(cred->euid, pcred->uid));
7366 rcu_read_unlock();
7367 return match;
7368 }
7369
7370 /*
7371 * Allow unprivileged RT tasks to decrease priority.
7372 * Only issue a capable test if needed and only once to avoid an audit
7373 * event on permitted non-privileged operations:
7374 */
user_check_sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,int policy,int reset_on_fork)7375 static int user_check_sched_setscheduler(struct task_struct *p,
7376 const struct sched_attr *attr,
7377 int policy, int reset_on_fork)
7378 {
7379 if (fair_policy(policy)) {
7380 if (attr->sched_nice < task_nice(p) &&
7381 !is_nice_reduction(p, attr->sched_nice))
7382 goto req_priv;
7383 }
7384
7385 if (rt_policy(policy)) {
7386 unsigned long rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
7387
7388 /* Can't set/change the rt policy: */
7389 if (policy != p->policy && !rlim_rtprio)
7390 goto req_priv;
7391
7392 /* Can't increase priority: */
7393 if (attr->sched_priority > p->rt_priority &&
7394 attr->sched_priority > rlim_rtprio)
7395 goto req_priv;
7396 }
7397
7398 /*
7399 * Can't set/change SCHED_DEADLINE policy at all for now
7400 * (safest behavior); in the future we would like to allow
7401 * unprivileged DL tasks to increase their relative deadline
7402 * or reduce their runtime (both ways reducing utilization)
7403 */
7404 if (dl_policy(policy))
7405 goto req_priv;
7406
7407 /*
7408 * Treat SCHED_IDLE as nice 20. Only allow a switch to
7409 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
7410 */
7411 if (task_has_idle_policy(p) && !idle_policy(policy)) {
7412 if (!is_nice_reduction(p, task_nice(p)))
7413 goto req_priv;
7414 }
7415
7416 /* Can't change other user's priorities: */
7417 if (!check_same_owner(p))
7418 goto req_priv;
7419
7420 /* Normal users shall not reset the sched_reset_on_fork flag: */
7421 if (p->sched_reset_on_fork && !reset_on_fork)
7422 goto req_priv;
7423
7424 return 0;
7425
7426 req_priv:
7427 if (!capable(CAP_SYS_NICE))
7428 return -EPERM;
7429
7430 return 0;
7431 }
7432
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)7433 static int __sched_setscheduler(struct task_struct *p,
7434 const struct sched_attr *attr,
7435 bool user, bool pi)
7436 {
7437 int oldpolicy = -1, policy = attr->sched_policy;
7438 int retval, oldprio, newprio, queued, running;
7439 const struct sched_class *prev_class;
7440 struct balance_callback *head;
7441 struct rq_flags rf;
7442 int reset_on_fork;
7443 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
7444 struct rq *rq;
7445
7446 /* The pi code expects interrupts enabled */
7447 BUG_ON(pi && in_interrupt());
7448 recheck:
7449 /* Double check policy once rq lock held: */
7450 if (policy < 0) {
7451 reset_on_fork = p->sched_reset_on_fork;
7452 policy = oldpolicy = p->policy;
7453 } else {
7454 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
7455
7456 if (!valid_policy(policy))
7457 return -EINVAL;
7458 }
7459
7460 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
7461 return -EINVAL;
7462
7463 /*
7464 * Valid priorities for SCHED_FIFO and SCHED_RR are
7465 * 1..MAX_RT_PRIO-1, valid priority for SCHED_NORMAL,
7466 * SCHED_BATCH and SCHED_IDLE is 0.
7467 */
7468 if (attr->sched_priority > MAX_RT_PRIO-1)
7469 return -EINVAL;
7470 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
7471 (rt_policy(policy) != (attr->sched_priority != 0)))
7472 return -EINVAL;
7473
7474 if (user) {
7475 retval = user_check_sched_setscheduler(p, attr, policy, reset_on_fork);
7476 if (retval)
7477 return retval;
7478
7479 if (attr->sched_flags & SCHED_FLAG_SUGOV)
7480 return -EINVAL;
7481
7482 retval = security_task_setscheduler(p);
7483 if (retval)
7484 return retval;
7485 }
7486
7487 /* Update task specific "requested" clamps */
7488 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
7489 retval = uclamp_validate(p, attr);
7490 if (retval)
7491 return retval;
7492 }
7493
7494 if (pi)
7495 cpuset_read_lock();
7496
7497 /*
7498 * Make sure no PI-waiters arrive (or leave) while we are
7499 * changing the priority of the task:
7500 *
7501 * To be able to change p->policy safely, the appropriate
7502 * runqueue lock must be held.
7503 */
7504 rq = task_rq_lock(p, &rf);
7505 update_rq_clock(rq);
7506
7507 /*
7508 * Changing the policy of the stop threads its a very bad idea:
7509 */
7510 if (p == rq->stop) {
7511 retval = -EINVAL;
7512 goto unlock;
7513 }
7514
7515 /*
7516 * If not changing anything there's no need to proceed further,
7517 * but store a possible modification of reset_on_fork.
7518 */
7519 if (unlikely(policy == p->policy)) {
7520 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
7521 goto change;
7522 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
7523 goto change;
7524 if (dl_policy(policy) && dl_param_changed(p, attr))
7525 goto change;
7526 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
7527 goto change;
7528
7529 p->sched_reset_on_fork = reset_on_fork;
7530 retval = 0;
7531 goto unlock;
7532 }
7533 change:
7534
7535 if (user) {
7536 #ifdef CONFIG_RT_GROUP_SCHED
7537 /*
7538 * Do not allow realtime tasks into groups that have no runtime
7539 * assigned.
7540 */
7541 if (rt_bandwidth_enabled() && rt_policy(policy) &&
7542 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
7543 !task_group_is_autogroup(task_group(p))) {
7544 retval = -EPERM;
7545 goto unlock;
7546 }
7547 #endif
7548 #ifdef CONFIG_SMP
7549 if (dl_bandwidth_enabled() && dl_policy(policy) &&
7550 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
7551 cpumask_t *span = rq->rd->span;
7552
7553 /*
7554 * Don't allow tasks with an affinity mask smaller than
7555 * the entire root_domain to become SCHED_DEADLINE. We
7556 * will also fail if there's no bandwidth available.
7557 */
7558 if (!cpumask_subset(span, p->cpus_ptr) ||
7559 rq->rd->dl_bw.bw == 0) {
7560 retval = -EPERM;
7561 goto unlock;
7562 }
7563 }
7564 #endif
7565 }
7566
7567 /* Re-check policy now with rq lock held: */
7568 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
7569 policy = oldpolicy = -1;
7570 task_rq_unlock(rq, p, &rf);
7571 if (pi)
7572 cpuset_read_unlock();
7573 goto recheck;
7574 }
7575
7576 /*
7577 * If setscheduling to SCHED_DEADLINE (or changing the parameters
7578 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
7579 * is available.
7580 */
7581 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
7582 retval = -EBUSY;
7583 goto unlock;
7584 }
7585
7586 p->sched_reset_on_fork = reset_on_fork;
7587 oldprio = p->prio;
7588
7589 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
7590 if (pi) {
7591 /*
7592 * Take priority boosted tasks into account. If the new
7593 * effective priority is unchanged, we just store the new
7594 * normal parameters and do not touch the scheduler class and
7595 * the runqueue. This will be done when the task deboost
7596 * itself.
7597 */
7598 newprio = rt_effective_prio(p, newprio);
7599 if (newprio == oldprio)
7600 queue_flags &= ~DEQUEUE_MOVE;
7601 }
7602
7603 queued = task_on_rq_queued(p);
7604 running = task_current(rq, p);
7605 if (queued)
7606 dequeue_task(rq, p, queue_flags);
7607 if (running)
7608 put_prev_task(rq, p);
7609
7610 prev_class = p->sched_class;
7611
7612 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
7613 __setscheduler_params(p, attr);
7614 __setscheduler_prio(p, newprio);
7615 }
7616 __setscheduler_uclamp(p, attr);
7617
7618 if (queued) {
7619 /*
7620 * We enqueue to tail when the priority of a task is
7621 * increased (user space view).
7622 */
7623 if (oldprio < p->prio)
7624 queue_flags |= ENQUEUE_HEAD;
7625
7626 enqueue_task(rq, p, queue_flags);
7627 }
7628 if (running)
7629 set_next_task(rq, p);
7630
7631 check_class_changed(rq, p, prev_class, oldprio);
7632
7633 /* Avoid rq from going away on us: */
7634 preempt_disable();
7635 head = splice_balance_callbacks(rq);
7636 task_rq_unlock(rq, p, &rf);
7637
7638 if (pi) {
7639 cpuset_read_unlock();
7640 rt_mutex_adjust_pi(p);
7641 }
7642
7643 /* Run balance callbacks after we've adjusted the PI chain: */
7644 balance_callbacks(rq, head);
7645 preempt_enable();
7646
7647 return 0;
7648
7649 unlock:
7650 task_rq_unlock(rq, p, &rf);
7651 if (pi)
7652 cpuset_read_unlock();
7653 return retval;
7654 }
7655
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)7656 static int _sched_setscheduler(struct task_struct *p, int policy,
7657 const struct sched_param *param, bool check)
7658 {
7659 struct sched_attr attr = {
7660 .sched_policy = policy,
7661 .sched_priority = param->sched_priority,
7662 .sched_nice = PRIO_TO_NICE(p->static_prio),
7663 };
7664
7665 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
7666 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7667 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
7668 policy &= ~SCHED_RESET_ON_FORK;
7669 attr.sched_policy = policy;
7670 }
7671
7672 return __sched_setscheduler(p, &attr, check, true);
7673 }
7674 /**
7675 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
7676 * @p: the task in question.
7677 * @policy: new policy.
7678 * @param: structure containing the new RT priority.
7679 *
7680 * Use sched_set_fifo(), read its comment.
7681 *
7682 * Return: 0 on success. An error code otherwise.
7683 *
7684 * NOTE that the task may be already dead.
7685 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)7686 int sched_setscheduler(struct task_struct *p, int policy,
7687 const struct sched_param *param)
7688 {
7689 return _sched_setscheduler(p, policy, param, true);
7690 }
7691
sched_setattr(struct task_struct * p,const struct sched_attr * attr)7692 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
7693 {
7694 return __sched_setscheduler(p, attr, true, true);
7695 }
7696
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)7697 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
7698 {
7699 return __sched_setscheduler(p, attr, false, true);
7700 }
7701 EXPORT_SYMBOL_GPL(sched_setattr_nocheck);
7702
7703 /**
7704 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
7705 * @p: the task in question.
7706 * @policy: new policy.
7707 * @param: structure containing the new RT priority.
7708 *
7709 * Just like sched_setscheduler, only don't bother checking if the
7710 * current context has permission. For example, this is needed in
7711 * stop_machine(): we create temporary high priority worker threads,
7712 * but our caller might not have that capability.
7713 *
7714 * Return: 0 on success. An error code otherwise.
7715 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)7716 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
7717 const struct sched_param *param)
7718 {
7719 return _sched_setscheduler(p, policy, param, false);
7720 }
7721
7722 /*
7723 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
7724 * incapable of resource management, which is the one thing an OS really should
7725 * be doing.
7726 *
7727 * This is of course the reason it is limited to privileged users only.
7728 *
7729 * Worse still; it is fundamentally impossible to compose static priority
7730 * workloads. You cannot take two correctly working static prio workloads
7731 * and smash them together and still expect them to work.
7732 *
7733 * For this reason 'all' FIFO tasks the kernel creates are basically at:
7734 *
7735 * MAX_RT_PRIO / 2
7736 *
7737 * The administrator _MUST_ configure the system, the kernel simply doesn't
7738 * know enough information to make a sensible choice.
7739 */
sched_set_fifo(struct task_struct * p)7740 void sched_set_fifo(struct task_struct *p)
7741 {
7742 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
7743 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7744 }
7745 EXPORT_SYMBOL_GPL(sched_set_fifo);
7746
7747 /*
7748 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
7749 */
sched_set_fifo_low(struct task_struct * p)7750 void sched_set_fifo_low(struct task_struct *p)
7751 {
7752 struct sched_param sp = { .sched_priority = 1 };
7753 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
7754 }
7755 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
7756
sched_set_normal(struct task_struct * p,int nice)7757 void sched_set_normal(struct task_struct *p, int nice)
7758 {
7759 struct sched_attr attr = {
7760 .sched_policy = SCHED_NORMAL,
7761 .sched_nice = nice,
7762 };
7763 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
7764 }
7765 EXPORT_SYMBOL_GPL(sched_set_normal);
7766
7767 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)7768 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
7769 {
7770 struct sched_param lparam;
7771 struct task_struct *p;
7772 int retval;
7773
7774 if (!param || pid < 0)
7775 return -EINVAL;
7776 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
7777 return -EFAULT;
7778
7779 rcu_read_lock();
7780 retval = -ESRCH;
7781 p = find_process_by_pid(pid);
7782 if (likely(p))
7783 get_task_struct(p);
7784 rcu_read_unlock();
7785
7786 if (likely(p)) {
7787 retval = sched_setscheduler(p, policy, &lparam);
7788 put_task_struct(p);
7789 }
7790
7791 return retval;
7792 }
7793
7794 /*
7795 * Mimics kernel/events/core.c perf_copy_attr().
7796 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)7797 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
7798 {
7799 u32 size;
7800 int ret;
7801
7802 /* Zero the full structure, so that a short copy will be nice: */
7803 memset(attr, 0, sizeof(*attr));
7804
7805 ret = get_user(size, &uattr->size);
7806 if (ret)
7807 return ret;
7808
7809 /* ABI compatibility quirk: */
7810 if (!size)
7811 size = SCHED_ATTR_SIZE_VER0;
7812 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
7813 goto err_size;
7814
7815 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
7816 if (ret) {
7817 if (ret == -E2BIG)
7818 goto err_size;
7819 return ret;
7820 }
7821
7822 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
7823 size < SCHED_ATTR_SIZE_VER1)
7824 return -EINVAL;
7825
7826 /*
7827 * XXX: Do we want to be lenient like existing syscalls; or do we want
7828 * to be strict and return an error on out-of-bounds values?
7829 */
7830 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
7831
7832 return 0;
7833
7834 err_size:
7835 put_user(sizeof(*attr), &uattr->size);
7836 return -E2BIG;
7837 }
7838
get_params(struct task_struct * p,struct sched_attr * attr)7839 static void get_params(struct task_struct *p, struct sched_attr *attr)
7840 {
7841 if (task_has_dl_policy(p))
7842 __getparam_dl(p, attr);
7843 else if (task_has_rt_policy(p))
7844 attr->sched_priority = p->rt_priority;
7845 else
7846 attr->sched_nice = task_nice(p);
7847 }
7848
7849 /**
7850 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
7851 * @pid: the pid in question.
7852 * @policy: new policy.
7853 * @param: structure containing the new RT priority.
7854 *
7855 * Return: 0 on success. An error code otherwise.
7856 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)7857 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
7858 {
7859 if (policy < 0)
7860 return -EINVAL;
7861
7862 return do_sched_setscheduler(pid, policy, param);
7863 }
7864
7865 /**
7866 * sys_sched_setparam - set/change the RT priority of a thread
7867 * @pid: the pid in question.
7868 * @param: structure containing the new RT priority.
7869 *
7870 * Return: 0 on success. An error code otherwise.
7871 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)7872 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
7873 {
7874 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
7875 }
7876
7877 /**
7878 * sys_sched_setattr - same as above, but with extended sched_attr
7879 * @pid: the pid in question.
7880 * @uattr: structure containing the extended parameters.
7881 * @flags: for future extension.
7882 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)7883 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
7884 unsigned int, flags)
7885 {
7886 struct sched_attr attr;
7887 struct task_struct *p;
7888 int retval;
7889
7890 if (!uattr || pid < 0 || flags)
7891 return -EINVAL;
7892
7893 retval = sched_copy_attr(uattr, &attr);
7894 if (retval)
7895 return retval;
7896
7897 if ((int)attr.sched_policy < 0)
7898 return -EINVAL;
7899 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
7900 attr.sched_policy = SETPARAM_POLICY;
7901
7902 rcu_read_lock();
7903 retval = -ESRCH;
7904 p = find_process_by_pid(pid);
7905 if (likely(p))
7906 get_task_struct(p);
7907 rcu_read_unlock();
7908
7909 if (likely(p)) {
7910 if (attr.sched_flags & SCHED_FLAG_KEEP_PARAMS)
7911 get_params(p, &attr);
7912 retval = sched_setattr(p, &attr);
7913 put_task_struct(p);
7914 }
7915
7916 return retval;
7917 }
7918
7919 /**
7920 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
7921 * @pid: the pid in question.
7922 *
7923 * Return: On success, the policy of the thread. Otherwise, a negative error
7924 * code.
7925 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)7926 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
7927 {
7928 struct task_struct *p;
7929 int retval;
7930
7931 if (pid < 0)
7932 return -EINVAL;
7933
7934 retval = -ESRCH;
7935 rcu_read_lock();
7936 p = find_process_by_pid(pid);
7937 if (p) {
7938 retval = security_task_getscheduler(p);
7939 if (!retval)
7940 retval = p->policy
7941 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
7942 }
7943 rcu_read_unlock();
7944 return retval;
7945 }
7946
7947 /**
7948 * sys_sched_getparam - get the RT priority of a thread
7949 * @pid: the pid in question.
7950 * @param: structure containing the RT priority.
7951 *
7952 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
7953 * code.
7954 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)7955 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
7956 {
7957 struct sched_param lp = { .sched_priority = 0 };
7958 struct task_struct *p;
7959 int retval;
7960
7961 if (!param || pid < 0)
7962 return -EINVAL;
7963
7964 rcu_read_lock();
7965 p = find_process_by_pid(pid);
7966 retval = -ESRCH;
7967 if (!p)
7968 goto out_unlock;
7969
7970 retval = security_task_getscheduler(p);
7971 if (retval)
7972 goto out_unlock;
7973
7974 if (task_has_rt_policy(p))
7975 lp.sched_priority = p->rt_priority;
7976 rcu_read_unlock();
7977
7978 /*
7979 * This one might sleep, we cannot do it with a spinlock held ...
7980 */
7981 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
7982
7983 return retval;
7984
7985 out_unlock:
7986 rcu_read_unlock();
7987 return retval;
7988 }
7989
7990 /*
7991 * Copy the kernel size attribute structure (which might be larger
7992 * than what user-space knows about) to user-space.
7993 *
7994 * Note that all cases are valid: user-space buffer can be larger or
7995 * smaller than the kernel-space buffer. The usual case is that both
7996 * have the same size.
7997 */
7998 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)7999 sched_attr_copy_to_user(struct sched_attr __user *uattr,
8000 struct sched_attr *kattr,
8001 unsigned int usize)
8002 {
8003 unsigned int ksize = sizeof(*kattr);
8004
8005 if (!access_ok(uattr, usize))
8006 return -EFAULT;
8007
8008 /*
8009 * sched_getattr() ABI forwards and backwards compatibility:
8010 *
8011 * If usize == ksize then we just copy everything to user-space and all is good.
8012 *
8013 * If usize < ksize then we only copy as much as user-space has space for,
8014 * this keeps ABI compatibility as well. We skip the rest.
8015 *
8016 * If usize > ksize then user-space is using a newer version of the ABI,
8017 * which part the kernel doesn't know about. Just ignore it - tooling can
8018 * detect the kernel's knowledge of attributes from the attr->size value
8019 * which is set to ksize in this case.
8020 */
8021 kattr->size = min(usize, ksize);
8022
8023 if (copy_to_user(uattr, kattr, kattr->size))
8024 return -EFAULT;
8025
8026 return 0;
8027 }
8028
8029 /**
8030 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
8031 * @pid: the pid in question.
8032 * @uattr: structure containing the extended parameters.
8033 * @usize: sizeof(attr) for fwd/bwd comp.
8034 * @flags: for future extension.
8035 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)8036 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
8037 unsigned int, usize, unsigned int, flags)
8038 {
8039 struct sched_attr kattr = { };
8040 struct task_struct *p;
8041 int retval;
8042
8043 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
8044 usize < SCHED_ATTR_SIZE_VER0 || flags)
8045 return -EINVAL;
8046
8047 rcu_read_lock();
8048 p = find_process_by_pid(pid);
8049 retval = -ESRCH;
8050 if (!p)
8051 goto out_unlock;
8052
8053 retval = security_task_getscheduler(p);
8054 if (retval)
8055 goto out_unlock;
8056
8057 kattr.sched_policy = p->policy;
8058 if (p->sched_reset_on_fork)
8059 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
8060 get_params(p, &kattr);
8061 kattr.sched_flags &= SCHED_FLAG_ALL;
8062
8063 #ifdef CONFIG_UCLAMP_TASK
8064 /*
8065 * This could race with another potential updater, but this is fine
8066 * because it'll correctly read the old or the new value. We don't need
8067 * to guarantee who wins the race as long as it doesn't return garbage.
8068 */
8069 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
8070 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
8071 #endif
8072
8073 rcu_read_unlock();
8074
8075 return sched_attr_copy_to_user(uattr, &kattr, usize);
8076
8077 out_unlock:
8078 rcu_read_unlock();
8079 return retval;
8080 }
8081
8082 #ifdef CONFIG_SMP
dl_task_check_affinity(struct task_struct * p,const struct cpumask * mask)8083 int dl_task_check_affinity(struct task_struct *p, const struct cpumask *mask)
8084 {
8085 int ret = 0;
8086
8087 /*
8088 * If the task isn't a deadline task or admission control is
8089 * disabled then we don't care about affinity changes.
8090 */
8091 if (!task_has_dl_policy(p) || !dl_bandwidth_enabled())
8092 return 0;
8093
8094 /*
8095 * Since bandwidth control happens on root_domain basis,
8096 * if admission test is enabled, we only admit -deadline
8097 * tasks allowed to run on all the CPUs in the task's
8098 * root_domain.
8099 */
8100 rcu_read_lock();
8101 if (!cpumask_subset(task_rq(p)->rd->span, mask))
8102 ret = -EBUSY;
8103 rcu_read_unlock();
8104 return ret;
8105 }
8106 #endif
8107
8108 static int
__sched_setaffinity(struct task_struct * p,const struct cpumask * mask)8109 __sched_setaffinity(struct task_struct *p, const struct cpumask *mask)
8110 {
8111 int retval;
8112 cpumask_var_t cpus_allowed, new_mask;
8113
8114 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL))
8115 return -ENOMEM;
8116
8117 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
8118 retval = -ENOMEM;
8119 goto out_free_cpus_allowed;
8120 }
8121
8122 cpuset_cpus_allowed(p, cpus_allowed);
8123 cpumask_and(new_mask, mask, cpus_allowed);
8124
8125 retval = dl_task_check_affinity(p, new_mask);
8126 if (retval)
8127 goto out_free_new_mask;
8128 again:
8129 retval = __set_cpus_allowed_ptr(p, new_mask, SCA_CHECK | SCA_USER);
8130 if (retval)
8131 goto out_free_new_mask;
8132
8133 cpuset_cpus_allowed(p, cpus_allowed);
8134 if (!cpumask_subset(new_mask, cpus_allowed)) {
8135 /*
8136 * We must have raced with a concurrent cpuset update.
8137 * Just reset the cpumask to the cpuset's cpus_allowed.
8138 */
8139 cpumask_copy(new_mask, cpus_allowed);
8140 goto again;
8141 }
8142
8143 out_free_new_mask:
8144 free_cpumask_var(new_mask);
8145 out_free_cpus_allowed:
8146 free_cpumask_var(cpus_allowed);
8147 return retval;
8148 }
8149
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)8150 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
8151 {
8152 struct task_struct *p;
8153 int retval;
8154
8155 rcu_read_lock();
8156
8157 p = find_process_by_pid(pid);
8158 if (!p) {
8159 rcu_read_unlock();
8160 return -ESRCH;
8161 }
8162
8163 /* Prevent p going away */
8164 get_task_struct(p);
8165 rcu_read_unlock();
8166
8167 if (p->flags & PF_NO_SETAFFINITY) {
8168 retval = -EINVAL;
8169 goto out_put_task;
8170 }
8171
8172 if (!check_same_owner(p)) {
8173 rcu_read_lock();
8174 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
8175 rcu_read_unlock();
8176 retval = -EPERM;
8177 goto out_put_task;
8178 }
8179 rcu_read_unlock();
8180 }
8181
8182 retval = security_task_setscheduler(p);
8183 if (retval)
8184 goto out_put_task;
8185
8186 retval = __sched_setaffinity(p, in_mask);
8187 out_put_task:
8188 put_task_struct(p);
8189 return retval;
8190 }
8191
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)8192 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
8193 struct cpumask *new_mask)
8194 {
8195 if (len < cpumask_size())
8196 cpumask_clear(new_mask);
8197 else if (len > cpumask_size())
8198 len = cpumask_size();
8199
8200 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
8201 }
8202
8203 /**
8204 * sys_sched_setaffinity - set the CPU affinity of a process
8205 * @pid: pid of the process
8206 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8207 * @user_mask_ptr: user-space pointer to the new CPU mask
8208 *
8209 * Return: 0 on success. An error code otherwise.
8210 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8211 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
8212 unsigned long __user *, user_mask_ptr)
8213 {
8214 cpumask_var_t new_mask;
8215 int retval;
8216
8217 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
8218 return -ENOMEM;
8219
8220 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
8221 if (retval == 0)
8222 retval = sched_setaffinity(pid, new_mask);
8223 free_cpumask_var(new_mask);
8224 return retval;
8225 }
8226
sched_getaffinity(pid_t pid,struct cpumask * mask)8227 long sched_getaffinity(pid_t pid, struct cpumask *mask)
8228 {
8229 struct task_struct *p;
8230 unsigned long flags;
8231 int retval;
8232
8233 rcu_read_lock();
8234
8235 retval = -ESRCH;
8236 p = find_process_by_pid(pid);
8237 if (!p)
8238 goto out_unlock;
8239
8240 retval = security_task_getscheduler(p);
8241 if (retval)
8242 goto out_unlock;
8243
8244 raw_spin_lock_irqsave(&p->pi_lock, flags);
8245 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
8246 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
8247
8248 out_unlock:
8249 rcu_read_unlock();
8250
8251 return retval;
8252 }
8253
8254 /**
8255 * sys_sched_getaffinity - get the CPU affinity of a process
8256 * @pid: pid of the process
8257 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
8258 * @user_mask_ptr: user-space pointer to hold the current CPU mask
8259 *
8260 * Return: size of CPU mask copied to user_mask_ptr on success. An
8261 * error code otherwise.
8262 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)8263 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
8264 unsigned long __user *, user_mask_ptr)
8265 {
8266 int ret;
8267 cpumask_var_t mask;
8268
8269 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
8270 return -EINVAL;
8271 if (len & (sizeof(unsigned long)-1))
8272 return -EINVAL;
8273
8274 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
8275 return -ENOMEM;
8276
8277 ret = sched_getaffinity(pid, mask);
8278 if (ret == 0) {
8279 unsigned int retlen = min(len, cpumask_size());
8280
8281 if (copy_to_user(user_mask_ptr, mask, retlen))
8282 ret = -EFAULT;
8283 else
8284 ret = retlen;
8285 }
8286 free_cpumask_var(mask);
8287
8288 return ret;
8289 }
8290
do_sched_yield(void)8291 static void do_sched_yield(void)
8292 {
8293 struct rq_flags rf;
8294 struct rq *rq;
8295
8296 rq = this_rq_lock_irq(&rf);
8297
8298 schedstat_inc(rq->yld_count);
8299 current->sched_class->yield_task(rq);
8300
8301 preempt_disable();
8302 rq_unlock_irq(rq, &rf);
8303 sched_preempt_enable_no_resched();
8304
8305 schedule();
8306 }
8307
8308 /**
8309 * sys_sched_yield - yield the current processor to other threads.
8310 *
8311 * This function yields the current CPU to other tasks. If there are no
8312 * other threads running on this CPU then this function will return.
8313 *
8314 * Return: 0.
8315 */
SYSCALL_DEFINE0(sched_yield)8316 SYSCALL_DEFINE0(sched_yield)
8317 {
8318 do_sched_yield();
8319 return 0;
8320 }
8321
8322 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC)
__cond_resched(void)8323 int __sched __cond_resched(void)
8324 {
8325 if (should_resched(0)) {
8326 preempt_schedule_common();
8327 return 1;
8328 }
8329 /*
8330 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick
8331 * whether the current CPU is in an RCU read-side critical section,
8332 * so the tick can report quiescent states even for CPUs looping
8333 * in kernel context. In contrast, in non-preemptible kernels,
8334 * RCU readers leave no in-memory hints, which means that CPU-bound
8335 * processes executing in kernel context might never report an
8336 * RCU quiescent state. Therefore, the following code causes
8337 * cond_resched() to report a quiescent state, but only when RCU
8338 * is in urgent need of one.
8339 */
8340 #ifndef CONFIG_PREEMPT_RCU
8341 rcu_all_qs();
8342 #endif
8343 return 0;
8344 }
8345 EXPORT_SYMBOL(__cond_resched);
8346 #endif
8347
8348 #ifdef CONFIG_PREEMPT_DYNAMIC
8349 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8350 #define cond_resched_dynamic_enabled __cond_resched
8351 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0)
8352 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched);
8353 EXPORT_STATIC_CALL_TRAMP(cond_resched);
8354
8355 #define might_resched_dynamic_enabled __cond_resched
8356 #define might_resched_dynamic_disabled ((void *)&__static_call_return0)
8357 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched);
8358 EXPORT_STATIC_CALL_TRAMP(might_resched);
8359 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8360 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched);
dynamic_cond_resched(void)8361 int __sched dynamic_cond_resched(void)
8362 {
8363 if (!static_branch_unlikely(&sk_dynamic_cond_resched))
8364 return 0;
8365 return __cond_resched();
8366 }
8367 EXPORT_SYMBOL(dynamic_cond_resched);
8368
8369 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched);
dynamic_might_resched(void)8370 int __sched dynamic_might_resched(void)
8371 {
8372 if (!static_branch_unlikely(&sk_dynamic_might_resched))
8373 return 0;
8374 return __cond_resched();
8375 }
8376 EXPORT_SYMBOL(dynamic_might_resched);
8377 #endif
8378 #endif
8379
8380 /*
8381 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
8382 * call schedule, and on return reacquire the lock.
8383 *
8384 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
8385 * operations here to prevent schedule() from being called twice (once via
8386 * spin_unlock(), once by hand).
8387 */
__cond_resched_lock(spinlock_t * lock)8388 int __cond_resched_lock(spinlock_t *lock)
8389 {
8390 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8391 int ret = 0;
8392
8393 lockdep_assert_held(lock);
8394
8395 if (spin_needbreak(lock) || resched) {
8396 spin_unlock(lock);
8397 if (!_cond_resched())
8398 cpu_relax();
8399 ret = 1;
8400 spin_lock(lock);
8401 }
8402 return ret;
8403 }
8404 EXPORT_SYMBOL(__cond_resched_lock);
8405
__cond_resched_rwlock_read(rwlock_t * lock)8406 int __cond_resched_rwlock_read(rwlock_t *lock)
8407 {
8408 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8409 int ret = 0;
8410
8411 lockdep_assert_held_read(lock);
8412
8413 if (rwlock_needbreak(lock) || resched) {
8414 read_unlock(lock);
8415 if (!_cond_resched())
8416 cpu_relax();
8417 ret = 1;
8418 read_lock(lock);
8419 }
8420 return ret;
8421 }
8422 EXPORT_SYMBOL(__cond_resched_rwlock_read);
8423
__cond_resched_rwlock_write(rwlock_t * lock)8424 int __cond_resched_rwlock_write(rwlock_t *lock)
8425 {
8426 int resched = should_resched(PREEMPT_LOCK_OFFSET);
8427 int ret = 0;
8428
8429 lockdep_assert_held_write(lock);
8430
8431 if (rwlock_needbreak(lock) || resched) {
8432 write_unlock(lock);
8433 if (!_cond_resched())
8434 cpu_relax();
8435 ret = 1;
8436 write_lock(lock);
8437 }
8438 return ret;
8439 }
8440 EXPORT_SYMBOL(__cond_resched_rwlock_write);
8441
8442 #ifdef CONFIG_PREEMPT_DYNAMIC
8443
8444 #ifdef CONFIG_GENERIC_ENTRY
8445 #include <linux/entry-common.h>
8446 #endif
8447
8448 /*
8449 * SC:cond_resched
8450 * SC:might_resched
8451 * SC:preempt_schedule
8452 * SC:preempt_schedule_notrace
8453 * SC:irqentry_exit_cond_resched
8454 *
8455 *
8456 * NONE:
8457 * cond_resched <- __cond_resched
8458 * might_resched <- RET0
8459 * preempt_schedule <- NOP
8460 * preempt_schedule_notrace <- NOP
8461 * irqentry_exit_cond_resched <- NOP
8462 *
8463 * VOLUNTARY:
8464 * cond_resched <- __cond_resched
8465 * might_resched <- __cond_resched
8466 * preempt_schedule <- NOP
8467 * preempt_schedule_notrace <- NOP
8468 * irqentry_exit_cond_resched <- NOP
8469 *
8470 * FULL:
8471 * cond_resched <- RET0
8472 * might_resched <- RET0
8473 * preempt_schedule <- preempt_schedule
8474 * preempt_schedule_notrace <- preempt_schedule_notrace
8475 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched
8476 */
8477
8478 enum {
8479 preempt_dynamic_undefined = -1,
8480 preempt_dynamic_none,
8481 preempt_dynamic_voluntary,
8482 preempt_dynamic_full,
8483 };
8484
8485 int preempt_dynamic_mode = preempt_dynamic_undefined;
8486
sched_dynamic_mode(const char * str)8487 int sched_dynamic_mode(const char *str)
8488 {
8489 if (!strcmp(str, "none"))
8490 return preempt_dynamic_none;
8491
8492 if (!strcmp(str, "voluntary"))
8493 return preempt_dynamic_voluntary;
8494
8495 if (!strcmp(str, "full"))
8496 return preempt_dynamic_full;
8497
8498 return -EINVAL;
8499 }
8500
8501 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL)
8502 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled)
8503 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled)
8504 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY)
8505 #define preempt_dynamic_enable(f) static_key_enable(&sk_dynamic_##f.key)
8506 #define preempt_dynamic_disable(f) static_key_disable(&sk_dynamic_##f.key)
8507 #else
8508 #error "Unsupported PREEMPT_DYNAMIC mechanism"
8509 #endif
8510
sched_dynamic_update(int mode)8511 void sched_dynamic_update(int mode)
8512 {
8513 /*
8514 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in
8515 * the ZERO state, which is invalid.
8516 */
8517 preempt_dynamic_enable(cond_resched);
8518 preempt_dynamic_enable(might_resched);
8519 preempt_dynamic_enable(preempt_schedule);
8520 preempt_dynamic_enable(preempt_schedule_notrace);
8521 preempt_dynamic_enable(irqentry_exit_cond_resched);
8522
8523 switch (mode) {
8524 case preempt_dynamic_none:
8525 preempt_dynamic_enable(cond_resched);
8526 preempt_dynamic_disable(might_resched);
8527 preempt_dynamic_disable(preempt_schedule);
8528 preempt_dynamic_disable(preempt_schedule_notrace);
8529 preempt_dynamic_disable(irqentry_exit_cond_resched);
8530 pr_info("Dynamic Preempt: none\n");
8531 break;
8532
8533 case preempt_dynamic_voluntary:
8534 preempt_dynamic_enable(cond_resched);
8535 preempt_dynamic_enable(might_resched);
8536 preempt_dynamic_disable(preempt_schedule);
8537 preempt_dynamic_disable(preempt_schedule_notrace);
8538 preempt_dynamic_disable(irqentry_exit_cond_resched);
8539 pr_info("Dynamic Preempt: voluntary\n");
8540 break;
8541
8542 case preempt_dynamic_full:
8543 preempt_dynamic_disable(cond_resched);
8544 preempt_dynamic_disable(might_resched);
8545 preempt_dynamic_enable(preempt_schedule);
8546 preempt_dynamic_enable(preempt_schedule_notrace);
8547 preempt_dynamic_enable(irqentry_exit_cond_resched);
8548 pr_info("Dynamic Preempt: full\n");
8549 break;
8550 }
8551
8552 preempt_dynamic_mode = mode;
8553 }
8554
setup_preempt_mode(char * str)8555 static int __init setup_preempt_mode(char *str)
8556 {
8557 int mode = sched_dynamic_mode(str);
8558 if (mode < 0) {
8559 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str);
8560 return 0;
8561 }
8562
8563 sched_dynamic_update(mode);
8564 return 1;
8565 }
8566 __setup("preempt=", setup_preempt_mode);
8567
preempt_dynamic_init(void)8568 static void __init preempt_dynamic_init(void)
8569 {
8570 if (preempt_dynamic_mode == preempt_dynamic_undefined) {
8571 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) {
8572 sched_dynamic_update(preempt_dynamic_none);
8573 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) {
8574 sched_dynamic_update(preempt_dynamic_voluntary);
8575 } else {
8576 /* Default static call setting, nothing to do */
8577 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT));
8578 preempt_dynamic_mode = preempt_dynamic_full;
8579 pr_info("Dynamic Preempt: full\n");
8580 }
8581 }
8582 }
8583
8584 #define PREEMPT_MODEL_ACCESSOR(mode) \
8585 bool preempt_model_##mode(void) \
8586 { \
8587 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \
8588 return preempt_dynamic_mode == preempt_dynamic_##mode; \
8589 } \
8590 EXPORT_SYMBOL_GPL(preempt_model_##mode)
8591
8592 PREEMPT_MODEL_ACCESSOR(none);
8593 PREEMPT_MODEL_ACCESSOR(voluntary);
8594 PREEMPT_MODEL_ACCESSOR(full);
8595
8596 #else /* !CONFIG_PREEMPT_DYNAMIC */
8597
preempt_dynamic_init(void)8598 static inline void preempt_dynamic_init(void) { }
8599
8600 #endif /* #ifdef CONFIG_PREEMPT_DYNAMIC */
8601
8602 /**
8603 * yield - yield the current processor to other threads.
8604 *
8605 * Do not ever use this function, there's a 99% chance you're doing it wrong.
8606 *
8607 * The scheduler is at all times free to pick the calling task as the most
8608 * eligible task to run, if removing the yield() call from your code breaks
8609 * it, it's already broken.
8610 *
8611 * Typical broken usage is:
8612 *
8613 * while (!event)
8614 * yield();
8615 *
8616 * where one assumes that yield() will let 'the other' process run that will
8617 * make event true. If the current task is a SCHED_FIFO task that will never
8618 * happen. Never use yield() as a progress guarantee!!
8619 *
8620 * If you want to use yield() to wait for something, use wait_event().
8621 * If you want to use yield() to be 'nice' for others, use cond_resched().
8622 * If you still want to use yield(), do not!
8623 */
yield(void)8624 void __sched yield(void)
8625 {
8626 set_current_state(TASK_RUNNING);
8627 do_sched_yield();
8628 }
8629 EXPORT_SYMBOL(yield);
8630
8631 /**
8632 * yield_to - yield the current processor to another thread in
8633 * your thread group, or accelerate that thread toward the
8634 * processor it's on.
8635 * @p: target task
8636 * @preempt: whether task preemption is allowed or not
8637 *
8638 * It's the caller's job to ensure that the target task struct
8639 * can't go away on us before we can do any checks.
8640 *
8641 * Return:
8642 * true (>0) if we indeed boosted the target task.
8643 * false (0) if we failed to boost the target.
8644 * -ESRCH if there's no task to yield to.
8645 */
yield_to(struct task_struct * p,bool preempt)8646 int __sched yield_to(struct task_struct *p, bool preempt)
8647 {
8648 struct task_struct *curr = current;
8649 struct rq *rq, *p_rq;
8650 unsigned long flags;
8651 int yielded = 0;
8652
8653 local_irq_save(flags);
8654 rq = this_rq();
8655
8656 again:
8657 p_rq = task_rq(p);
8658 /*
8659 * If we're the only runnable task on the rq and target rq also
8660 * has only one task, there's absolutely no point in yielding.
8661 */
8662 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
8663 yielded = -ESRCH;
8664 goto out_irq;
8665 }
8666
8667 double_rq_lock(rq, p_rq);
8668 if (task_rq(p) != p_rq) {
8669 double_rq_unlock(rq, p_rq);
8670 goto again;
8671 }
8672
8673 if (!curr->sched_class->yield_to_task)
8674 goto out_unlock;
8675
8676 if (curr->sched_class != p->sched_class)
8677 goto out_unlock;
8678
8679 if (task_on_cpu(p_rq, p) || !task_is_running(p))
8680 goto out_unlock;
8681
8682 yielded = curr->sched_class->yield_to_task(rq, p);
8683 if (yielded) {
8684 schedstat_inc(rq->yld_count);
8685 /*
8686 * Make p's CPU reschedule; pick_next_entity takes care of
8687 * fairness.
8688 */
8689 if (preempt && rq != p_rq)
8690 resched_curr(p_rq);
8691 }
8692
8693 out_unlock:
8694 double_rq_unlock(rq, p_rq);
8695 out_irq:
8696 local_irq_restore(flags);
8697
8698 if (yielded > 0)
8699 schedule();
8700
8701 return yielded;
8702 }
8703 EXPORT_SYMBOL_GPL(yield_to);
8704
io_schedule_prepare(void)8705 int io_schedule_prepare(void)
8706 {
8707 int old_iowait = current->in_iowait;
8708
8709 current->in_iowait = 1;
8710 blk_flush_plug(current->plug, true);
8711 return old_iowait;
8712 }
8713
io_schedule_finish(int token)8714 void io_schedule_finish(int token)
8715 {
8716 current->in_iowait = token;
8717 }
8718
8719 /*
8720 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
8721 * that process accounting knows that this is a task in IO wait state.
8722 */
io_schedule_timeout(long timeout)8723 long __sched io_schedule_timeout(long timeout)
8724 {
8725 int token;
8726 long ret;
8727
8728 token = io_schedule_prepare();
8729 ret = schedule_timeout(timeout);
8730 io_schedule_finish(token);
8731
8732 return ret;
8733 }
8734 EXPORT_SYMBOL(io_schedule_timeout);
8735
io_schedule(void)8736 void __sched io_schedule(void)
8737 {
8738 int token;
8739
8740 token = io_schedule_prepare();
8741 schedule();
8742 io_schedule_finish(token);
8743 }
8744 EXPORT_SYMBOL(io_schedule);
8745
8746 /**
8747 * sys_sched_get_priority_max - return maximum RT priority.
8748 * @policy: scheduling class.
8749 *
8750 * Return: On success, this syscall returns the maximum
8751 * rt_priority that can be used by a given scheduling class.
8752 * On failure, a negative error code is returned.
8753 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)8754 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
8755 {
8756 int ret = -EINVAL;
8757
8758 switch (policy) {
8759 case SCHED_FIFO:
8760 case SCHED_RR:
8761 ret = MAX_RT_PRIO-1;
8762 break;
8763 case SCHED_DEADLINE:
8764 case SCHED_NORMAL:
8765 case SCHED_BATCH:
8766 case SCHED_IDLE:
8767 ret = 0;
8768 break;
8769 }
8770 return ret;
8771 }
8772
8773 /**
8774 * sys_sched_get_priority_min - return minimum RT priority.
8775 * @policy: scheduling class.
8776 *
8777 * Return: On success, this syscall returns the minimum
8778 * rt_priority that can be used by a given scheduling class.
8779 * On failure, a negative error code is returned.
8780 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)8781 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
8782 {
8783 int ret = -EINVAL;
8784
8785 switch (policy) {
8786 case SCHED_FIFO:
8787 case SCHED_RR:
8788 ret = 1;
8789 break;
8790 case SCHED_DEADLINE:
8791 case SCHED_NORMAL:
8792 case SCHED_BATCH:
8793 case SCHED_IDLE:
8794 ret = 0;
8795 }
8796 return ret;
8797 }
8798
sched_rr_get_interval(pid_t pid,struct timespec64 * t)8799 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
8800 {
8801 struct task_struct *p;
8802 unsigned int time_slice;
8803 struct rq_flags rf;
8804 struct rq *rq;
8805 int retval;
8806
8807 if (pid < 0)
8808 return -EINVAL;
8809
8810 retval = -ESRCH;
8811 rcu_read_lock();
8812 p = find_process_by_pid(pid);
8813 if (!p)
8814 goto out_unlock;
8815
8816 retval = security_task_getscheduler(p);
8817 if (retval)
8818 goto out_unlock;
8819
8820 rq = task_rq_lock(p, &rf);
8821 time_slice = 0;
8822 if (p->sched_class->get_rr_interval)
8823 time_slice = p->sched_class->get_rr_interval(rq, p);
8824 task_rq_unlock(rq, p, &rf);
8825
8826 rcu_read_unlock();
8827 jiffies_to_timespec64(time_slice, t);
8828 return 0;
8829
8830 out_unlock:
8831 rcu_read_unlock();
8832 return retval;
8833 }
8834
8835 /**
8836 * sys_sched_rr_get_interval - return the default timeslice of a process.
8837 * @pid: pid of the process.
8838 * @interval: userspace pointer to the timeslice value.
8839 *
8840 * this syscall writes the default timeslice value of a given process
8841 * into the user-space timespec buffer. A value of '0' means infinity.
8842 *
8843 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
8844 * an error code.
8845 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)8846 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
8847 struct __kernel_timespec __user *, interval)
8848 {
8849 struct timespec64 t;
8850 int retval = sched_rr_get_interval(pid, &t);
8851
8852 if (retval == 0)
8853 retval = put_timespec64(&t, interval);
8854
8855 return retval;
8856 }
8857
8858 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)8859 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
8860 struct old_timespec32 __user *, interval)
8861 {
8862 struct timespec64 t;
8863 int retval = sched_rr_get_interval(pid, &t);
8864
8865 if (retval == 0)
8866 retval = put_old_timespec32(&t, interval);
8867 return retval;
8868 }
8869 #endif
8870
sched_show_task(struct task_struct * p)8871 void sched_show_task(struct task_struct *p)
8872 {
8873 unsigned long free = 0;
8874 int ppid;
8875
8876 if (!try_get_task_stack(p))
8877 return;
8878
8879 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
8880
8881 if (task_is_running(p))
8882 pr_cont(" running task ");
8883 #ifdef CONFIG_DEBUG_STACK_USAGE
8884 free = stack_not_used(p);
8885 #endif
8886 ppid = 0;
8887 rcu_read_lock();
8888 if (pid_alive(p))
8889 ppid = task_pid_nr(rcu_dereference(p->real_parent));
8890 rcu_read_unlock();
8891 pr_cont(" stack:%-5lu pid:%-5d ppid:%-6d flags:0x%08lx\n",
8892 free, task_pid_nr(p), ppid,
8893 read_task_thread_flags(p));
8894
8895 print_worker_info(KERN_INFO, p);
8896 print_stop_info(KERN_INFO, p);
8897 show_stack(p, NULL, KERN_INFO);
8898 put_task_stack(p);
8899 }
8900 EXPORT_SYMBOL_GPL(sched_show_task);
8901
8902 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)8903 state_filter_match(unsigned long state_filter, struct task_struct *p)
8904 {
8905 unsigned int state = READ_ONCE(p->__state);
8906
8907 /* no filter, everything matches */
8908 if (!state_filter)
8909 return true;
8910
8911 /* filter, but doesn't match */
8912 if (!(state & state_filter))
8913 return false;
8914
8915 /*
8916 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
8917 * TASK_KILLABLE).
8918 */
8919 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD))
8920 return false;
8921
8922 return true;
8923 }
8924
8925
show_state_filter(unsigned int state_filter)8926 void show_state_filter(unsigned int state_filter)
8927 {
8928 struct task_struct *g, *p;
8929
8930 rcu_read_lock();
8931 for_each_process_thread(g, p) {
8932 /*
8933 * reset the NMI-timeout, listing all files on a slow
8934 * console might take a lot of time:
8935 * Also, reset softlockup watchdogs on all CPUs, because
8936 * another CPU might be blocked waiting for us to process
8937 * an IPI.
8938 */
8939 touch_nmi_watchdog();
8940 touch_all_softlockup_watchdogs();
8941 if (state_filter_match(state_filter, p))
8942 sched_show_task(p);
8943 }
8944
8945 #ifdef CONFIG_SCHED_DEBUG
8946 if (!state_filter)
8947 sysrq_sched_debug_show();
8948 #endif
8949 rcu_read_unlock();
8950 /*
8951 * Only show locks if all tasks are dumped:
8952 */
8953 if (!state_filter)
8954 debug_show_all_locks();
8955 }
8956
8957 /**
8958 * init_idle - set up an idle thread for a given CPU
8959 * @idle: task in question
8960 * @cpu: CPU the idle task belongs to
8961 *
8962 * NOTE: this function does not set the idle thread's NEED_RESCHED
8963 * flag, to make booting more robust.
8964 */
init_idle(struct task_struct * idle,int cpu)8965 void __init init_idle(struct task_struct *idle, int cpu)
8966 {
8967 struct rq *rq = cpu_rq(cpu);
8968 unsigned long flags;
8969
8970 __sched_fork(0, idle);
8971
8972 raw_spin_lock_irqsave(&idle->pi_lock, flags);
8973 raw_spin_rq_lock(rq);
8974
8975 idle->__state = TASK_RUNNING;
8976 idle->se.exec_start = sched_clock();
8977 /*
8978 * PF_KTHREAD should already be set at this point; regardless, make it
8979 * look like a proper per-CPU kthread.
8980 */
8981 idle->flags |= PF_IDLE | PF_KTHREAD | PF_NO_SETAFFINITY;
8982 kthread_set_per_cpu(idle, cpu);
8983
8984 #ifdef CONFIG_SMP
8985 /*
8986 * It's possible that init_idle() gets called multiple times on a task,
8987 * in that case do_set_cpus_allowed() will not do the right thing.
8988 *
8989 * And since this is boot we can forgo the serialization.
8990 */
8991 set_cpus_allowed_common(idle, cpumask_of(cpu), 0);
8992 #endif
8993 /*
8994 * We're having a chicken and egg problem, even though we are
8995 * holding rq->lock, the CPU isn't yet set to this CPU so the
8996 * lockdep check in task_group() will fail.
8997 *
8998 * Similar case to sched_fork(). / Alternatively we could
8999 * use task_rq_lock() here and obtain the other rq->lock.
9000 *
9001 * Silence PROVE_RCU
9002 */
9003 rcu_read_lock();
9004 __set_task_cpu(idle, cpu);
9005 rcu_read_unlock();
9006
9007 rq->idle = idle;
9008 rcu_assign_pointer(rq->curr, idle);
9009 idle->on_rq = TASK_ON_RQ_QUEUED;
9010 #ifdef CONFIG_SMP
9011 idle->on_cpu = 1;
9012 #endif
9013 raw_spin_rq_unlock(rq);
9014 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
9015
9016 /* Set the preempt count _outside_ the spinlocks! */
9017 init_idle_preempt_count(idle, cpu);
9018
9019 /*
9020 * The idle tasks have their own, simple scheduling class:
9021 */
9022 idle->sched_class = &idle_sched_class;
9023 ftrace_graph_init_idle_task(idle, cpu);
9024 vtime_init_idle(idle, cpu);
9025 #ifdef CONFIG_SMP
9026 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
9027 #endif
9028 }
9029
9030 #ifdef CONFIG_SMP
9031
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)9032 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
9033 const struct cpumask *trial)
9034 {
9035 int ret = 1;
9036
9037 if (cpumask_empty(cur))
9038 return ret;
9039
9040 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
9041
9042 return ret;
9043 }
9044
task_can_attach(struct task_struct * p,const struct cpumask * cs_effective_cpus)9045 int task_can_attach(struct task_struct *p,
9046 const struct cpumask *cs_effective_cpus)
9047 {
9048 int ret = 0;
9049
9050 /*
9051 * Kthreads which disallow setaffinity shouldn't be moved
9052 * to a new cpuset; we don't want to change their CPU
9053 * affinity and isolating such threads by their set of
9054 * allowed nodes is unnecessary. Thus, cpusets are not
9055 * applicable for such threads. This prevents checking for
9056 * success of set_cpus_allowed_ptr() on all attached tasks
9057 * before cpus_mask may be changed.
9058 */
9059 if (p->flags & PF_NO_SETAFFINITY) {
9060 ret = -EINVAL;
9061 goto out;
9062 }
9063
9064 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
9065 cs_effective_cpus)) {
9066 int cpu = cpumask_any_and(cpu_active_mask, cs_effective_cpus);
9067
9068 if (unlikely(cpu >= nr_cpu_ids))
9069 return -EINVAL;
9070 ret = dl_cpu_busy(cpu, p);
9071 }
9072
9073 out:
9074 return ret;
9075 }
9076
9077 bool sched_smp_initialized __read_mostly;
9078
9079 #ifdef CONFIG_NUMA_BALANCING
9080 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)9081 int migrate_task_to(struct task_struct *p, int target_cpu)
9082 {
9083 struct migration_arg arg = { p, target_cpu };
9084 int curr_cpu = task_cpu(p);
9085
9086 if (curr_cpu == target_cpu)
9087 return 0;
9088
9089 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
9090 return -EINVAL;
9091
9092 /* TODO: This is not properly updating schedstats */
9093
9094 trace_sched_move_numa(p, curr_cpu, target_cpu);
9095 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
9096 }
9097
9098 /*
9099 * Requeue a task on a given node and accurately track the number of NUMA
9100 * tasks on the runqueues
9101 */
sched_setnuma(struct task_struct * p,int nid)9102 void sched_setnuma(struct task_struct *p, int nid)
9103 {
9104 bool queued, running;
9105 struct rq_flags rf;
9106 struct rq *rq;
9107
9108 rq = task_rq_lock(p, &rf);
9109 queued = task_on_rq_queued(p);
9110 running = task_current(rq, p);
9111
9112 if (queued)
9113 dequeue_task(rq, p, DEQUEUE_SAVE);
9114 if (running)
9115 put_prev_task(rq, p);
9116
9117 p->numa_preferred_nid = nid;
9118
9119 if (queued)
9120 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
9121 if (running)
9122 set_next_task(rq, p);
9123 task_rq_unlock(rq, p, &rf);
9124 }
9125 #endif /* CONFIG_NUMA_BALANCING */
9126
9127 #ifdef CONFIG_HOTPLUG_CPU
9128 /*
9129 * Ensure that the idle task is using init_mm right before its CPU goes
9130 * offline.
9131 */
idle_task_exit(void)9132 void idle_task_exit(void)
9133 {
9134 struct mm_struct *mm = current->active_mm;
9135
9136 BUG_ON(cpu_online(smp_processor_id()));
9137 BUG_ON(current != this_rq()->idle);
9138
9139 if (mm != &init_mm) {
9140 switch_mm(mm, &init_mm, current);
9141 finish_arch_post_lock_switch();
9142 }
9143
9144 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
9145 }
9146
__balance_push_cpu_stop(void * arg)9147 static int __balance_push_cpu_stop(void *arg)
9148 {
9149 struct task_struct *p = arg;
9150 struct rq *rq = this_rq();
9151 struct rq_flags rf;
9152 int cpu;
9153
9154 raw_spin_lock_irq(&p->pi_lock);
9155 rq_lock(rq, &rf);
9156
9157 update_rq_clock(rq);
9158
9159 if (task_rq(p) == rq && task_on_rq_queued(p)) {
9160 cpu = select_fallback_rq(rq->cpu, p);
9161 rq = __migrate_task(rq, &rf, p, cpu);
9162 }
9163
9164 rq_unlock(rq, &rf);
9165 raw_spin_unlock_irq(&p->pi_lock);
9166
9167 put_task_struct(p);
9168
9169 return 0;
9170 }
9171
9172 static DEFINE_PER_CPU(struct cpu_stop_work, push_work);
9173
9174 /*
9175 * Ensure we only run per-cpu kthreads once the CPU goes !active.
9176 *
9177 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only
9178 * effective when the hotplug motion is down.
9179 */
balance_push(struct rq * rq)9180 static void balance_push(struct rq *rq)
9181 {
9182 struct task_struct *push_task = rq->curr;
9183
9184 lockdep_assert_rq_held(rq);
9185
9186 /*
9187 * Ensure the thing is persistent until balance_push_set(.on = false);
9188 */
9189 rq->balance_callback = &balance_push_callback;
9190
9191 /*
9192 * Only active while going offline and when invoked on the outgoing
9193 * CPU.
9194 */
9195 if (!cpu_dying(rq->cpu) || rq != this_rq())
9196 return;
9197
9198 /*
9199 * Both the cpu-hotplug and stop task are in this case and are
9200 * required to complete the hotplug process.
9201 */
9202 if (kthread_is_per_cpu(push_task) ||
9203 is_migration_disabled(push_task)) {
9204
9205 /*
9206 * If this is the idle task on the outgoing CPU try to wake
9207 * up the hotplug control thread which might wait for the
9208 * last task to vanish. The rcuwait_active() check is
9209 * accurate here because the waiter is pinned on this CPU
9210 * and can't obviously be running in parallel.
9211 *
9212 * On RT kernels this also has to check whether there are
9213 * pinned and scheduled out tasks on the runqueue. They
9214 * need to leave the migrate disabled section first.
9215 */
9216 if (!rq->nr_running && !rq_has_pinned_tasks(rq) &&
9217 rcuwait_active(&rq->hotplug_wait)) {
9218 raw_spin_rq_unlock(rq);
9219 rcuwait_wake_up(&rq->hotplug_wait);
9220 raw_spin_rq_lock(rq);
9221 }
9222 return;
9223 }
9224
9225 get_task_struct(push_task);
9226 /*
9227 * Temporarily drop rq->lock such that we can wake-up the stop task.
9228 * Both preemption and IRQs are still disabled.
9229 */
9230 raw_spin_rq_unlock(rq);
9231 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task,
9232 this_cpu_ptr(&push_work));
9233 /*
9234 * At this point need_resched() is true and we'll take the loop in
9235 * schedule(). The next pick is obviously going to be the stop task
9236 * which kthread_is_per_cpu() and will push this task away.
9237 */
9238 raw_spin_rq_lock(rq);
9239 }
9240
balance_push_set(int cpu,bool on)9241 static void balance_push_set(int cpu, bool on)
9242 {
9243 struct rq *rq = cpu_rq(cpu);
9244 struct rq_flags rf;
9245
9246 rq_lock_irqsave(rq, &rf);
9247 if (on) {
9248 WARN_ON_ONCE(rq->balance_callback);
9249 rq->balance_callback = &balance_push_callback;
9250 } else if (rq->balance_callback == &balance_push_callback) {
9251 rq->balance_callback = NULL;
9252 }
9253 rq_unlock_irqrestore(rq, &rf);
9254 }
9255
9256 /*
9257 * Invoked from a CPUs hotplug control thread after the CPU has been marked
9258 * inactive. All tasks which are not per CPU kernel threads are either
9259 * pushed off this CPU now via balance_push() or placed on a different CPU
9260 * during wakeup. Wait until the CPU is quiescent.
9261 */
balance_hotplug_wait(void)9262 static void balance_hotplug_wait(void)
9263 {
9264 struct rq *rq = this_rq();
9265
9266 rcuwait_wait_event(&rq->hotplug_wait,
9267 rq->nr_running == 1 && !rq_has_pinned_tasks(rq),
9268 TASK_UNINTERRUPTIBLE);
9269 }
9270
9271 #else
9272
balance_push(struct rq * rq)9273 static inline void balance_push(struct rq *rq)
9274 {
9275 }
9276
balance_push_set(int cpu,bool on)9277 static inline void balance_push_set(int cpu, bool on)
9278 {
9279 }
9280
balance_hotplug_wait(void)9281 static inline void balance_hotplug_wait(void)
9282 {
9283 }
9284
9285 #endif /* CONFIG_HOTPLUG_CPU */
9286
set_rq_online(struct rq * rq)9287 void set_rq_online(struct rq *rq)
9288 {
9289 if (!rq->online) {
9290 const struct sched_class *class;
9291
9292 cpumask_set_cpu(rq->cpu, rq->rd->online);
9293 rq->online = 1;
9294
9295 for_each_class(class) {
9296 if (class->rq_online)
9297 class->rq_online(rq);
9298 }
9299 }
9300 }
9301
set_rq_offline(struct rq * rq)9302 void set_rq_offline(struct rq *rq)
9303 {
9304 if (rq->online) {
9305 const struct sched_class *class;
9306
9307 for_each_class(class) {
9308 if (class->rq_offline)
9309 class->rq_offline(rq);
9310 }
9311
9312 cpumask_clear_cpu(rq->cpu, rq->rd->online);
9313 rq->online = 0;
9314 }
9315 }
9316
9317 /*
9318 * used to mark begin/end of suspend/resume:
9319 */
9320 static int num_cpus_frozen;
9321
9322 /*
9323 * Update cpusets according to cpu_active mask. If cpusets are
9324 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
9325 * around partition_sched_domains().
9326 *
9327 * If we come here as part of a suspend/resume, don't touch cpusets because we
9328 * want to restore it back to its original state upon resume anyway.
9329 */
cpuset_cpu_active(void)9330 static void cpuset_cpu_active(void)
9331 {
9332 if (cpuhp_tasks_frozen) {
9333 /*
9334 * num_cpus_frozen tracks how many CPUs are involved in suspend
9335 * resume sequence. As long as this is not the last online
9336 * operation in the resume sequence, just build a single sched
9337 * domain, ignoring cpusets.
9338 */
9339 partition_sched_domains(1, NULL, NULL);
9340 if (--num_cpus_frozen)
9341 return;
9342 /*
9343 * This is the last CPU online operation. So fall through and
9344 * restore the original sched domains by considering the
9345 * cpuset configurations.
9346 */
9347 cpuset_force_rebuild();
9348 }
9349 cpuset_update_active_cpus();
9350 }
9351
cpuset_cpu_inactive(unsigned int cpu)9352 static int cpuset_cpu_inactive(unsigned int cpu)
9353 {
9354 if (!cpuhp_tasks_frozen) {
9355 int ret = dl_cpu_busy(cpu, NULL);
9356
9357 if (ret)
9358 return ret;
9359 cpuset_update_active_cpus();
9360 } else {
9361 num_cpus_frozen++;
9362 partition_sched_domains(1, NULL, NULL);
9363 }
9364 return 0;
9365 }
9366
sched_cpu_activate(unsigned int cpu)9367 int sched_cpu_activate(unsigned int cpu)
9368 {
9369 struct rq *rq = cpu_rq(cpu);
9370 struct rq_flags rf;
9371
9372 /*
9373 * Clear the balance_push callback and prepare to schedule
9374 * regular tasks.
9375 */
9376 balance_push_set(cpu, false);
9377
9378 #ifdef CONFIG_SCHED_SMT
9379 /*
9380 * When going up, increment the number of cores with SMT present.
9381 */
9382 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9383 static_branch_inc_cpuslocked(&sched_smt_present);
9384 #endif
9385 set_cpu_active(cpu, true);
9386
9387 if (sched_smp_initialized) {
9388 sched_update_numa(cpu, true);
9389 sched_domains_numa_masks_set(cpu);
9390 cpuset_cpu_active();
9391 }
9392
9393 /*
9394 * Put the rq online, if not already. This happens:
9395 *
9396 * 1) In the early boot process, because we build the real domains
9397 * after all CPUs have been brought up.
9398 *
9399 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
9400 * domains.
9401 */
9402 rq_lock_irqsave(rq, &rf);
9403 if (rq->rd) {
9404 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9405 set_rq_online(rq);
9406 }
9407 rq_unlock_irqrestore(rq, &rf);
9408
9409 return 0;
9410 }
9411
sched_cpu_deactivate(unsigned int cpu)9412 int sched_cpu_deactivate(unsigned int cpu)
9413 {
9414 struct rq *rq = cpu_rq(cpu);
9415 struct rq_flags rf;
9416 int ret;
9417
9418 /*
9419 * Remove CPU from nohz.idle_cpus_mask to prevent participating in
9420 * load balancing when not active
9421 */
9422 nohz_balance_exit_idle(rq);
9423
9424 set_cpu_active(cpu, false);
9425
9426 /*
9427 * From this point forward, this CPU will refuse to run any task that
9428 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively
9429 * push those tasks away until this gets cleared, see
9430 * sched_cpu_dying().
9431 */
9432 balance_push_set(cpu, true);
9433
9434 /*
9435 * We've cleared cpu_active_mask / set balance_push, wait for all
9436 * preempt-disabled and RCU users of this state to go away such that
9437 * all new such users will observe it.
9438 *
9439 * Specifically, we rely on ttwu to no longer target this CPU, see
9440 * ttwu_queue_cond() and is_cpu_allowed().
9441 *
9442 * Do sync before park smpboot threads to take care the rcu boost case.
9443 */
9444 synchronize_rcu();
9445
9446 rq_lock_irqsave(rq, &rf);
9447 if (rq->rd) {
9448 update_rq_clock(rq);
9449 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
9450 set_rq_offline(rq);
9451 }
9452 rq_unlock_irqrestore(rq, &rf);
9453
9454 #ifdef CONFIG_SCHED_SMT
9455 /*
9456 * When going down, decrement the number of cores with SMT present.
9457 */
9458 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
9459 static_branch_dec_cpuslocked(&sched_smt_present);
9460
9461 sched_core_cpu_deactivate(cpu);
9462 #endif
9463
9464 if (!sched_smp_initialized)
9465 return 0;
9466
9467 sched_update_numa(cpu, false);
9468 ret = cpuset_cpu_inactive(cpu);
9469 if (ret) {
9470 balance_push_set(cpu, false);
9471 set_cpu_active(cpu, true);
9472 sched_update_numa(cpu, true);
9473 return ret;
9474 }
9475 sched_domains_numa_masks_clear(cpu);
9476 return 0;
9477 }
9478
sched_rq_cpu_starting(unsigned int cpu)9479 static void sched_rq_cpu_starting(unsigned int cpu)
9480 {
9481 struct rq *rq = cpu_rq(cpu);
9482
9483 rq->calc_load_update = calc_load_update;
9484 update_max_interval();
9485 }
9486
sched_cpu_starting(unsigned int cpu)9487 int sched_cpu_starting(unsigned int cpu)
9488 {
9489 sched_core_cpu_starting(cpu);
9490 sched_rq_cpu_starting(cpu);
9491 sched_tick_start(cpu);
9492 return 0;
9493 }
9494
9495 #ifdef CONFIG_HOTPLUG_CPU
9496
9497 /*
9498 * Invoked immediately before the stopper thread is invoked to bring the
9499 * CPU down completely. At this point all per CPU kthreads except the
9500 * hotplug thread (current) and the stopper thread (inactive) have been
9501 * either parked or have been unbound from the outgoing CPU. Ensure that
9502 * any of those which might be on the way out are gone.
9503 *
9504 * If after this point a bound task is being woken on this CPU then the
9505 * responsible hotplug callback has failed to do it's job.
9506 * sched_cpu_dying() will catch it with the appropriate fireworks.
9507 */
sched_cpu_wait_empty(unsigned int cpu)9508 int sched_cpu_wait_empty(unsigned int cpu)
9509 {
9510 balance_hotplug_wait();
9511 return 0;
9512 }
9513
9514 /*
9515 * Since this CPU is going 'away' for a while, fold any nr_active delta we
9516 * might have. Called from the CPU stopper task after ensuring that the
9517 * stopper is the last running task on the CPU, so nr_active count is
9518 * stable. We need to take the teardown thread which is calling this into
9519 * account, so we hand in adjust = 1 to the load calculation.
9520 *
9521 * Also see the comment "Global load-average calculations".
9522 */
calc_load_migrate(struct rq * rq)9523 static void calc_load_migrate(struct rq *rq)
9524 {
9525 long delta = calc_load_fold_active(rq, 1);
9526
9527 if (delta)
9528 atomic_long_add(delta, &calc_load_tasks);
9529 }
9530
dump_rq_tasks(struct rq * rq,const char * loglvl)9531 static void dump_rq_tasks(struct rq *rq, const char *loglvl)
9532 {
9533 struct task_struct *g, *p;
9534 int cpu = cpu_of(rq);
9535
9536 lockdep_assert_rq_held(rq);
9537
9538 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running);
9539 for_each_process_thread(g, p) {
9540 if (task_cpu(p) != cpu)
9541 continue;
9542
9543 if (!task_on_rq_queued(p))
9544 continue;
9545
9546 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm);
9547 }
9548 }
9549
sched_cpu_dying(unsigned int cpu)9550 int sched_cpu_dying(unsigned int cpu)
9551 {
9552 struct rq *rq = cpu_rq(cpu);
9553 struct rq_flags rf;
9554
9555 /* Handle pending wakeups and then migrate everything off */
9556 sched_tick_stop(cpu);
9557
9558 rq_lock_irqsave(rq, &rf);
9559 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) {
9560 WARN(true, "Dying CPU not properly vacated!");
9561 dump_rq_tasks(rq, KERN_WARNING);
9562 }
9563 rq_unlock_irqrestore(rq, &rf);
9564
9565 calc_load_migrate(rq);
9566 update_max_interval();
9567 hrtick_clear(rq);
9568 sched_core_cpu_dying(cpu);
9569 return 0;
9570 }
9571 #endif
9572
sched_init_smp(void)9573 void __init sched_init_smp(void)
9574 {
9575 sched_init_numa(NUMA_NO_NODE);
9576
9577 /*
9578 * There's no userspace yet to cause hotplug operations; hence all the
9579 * CPU masks are stable and all blatant races in the below code cannot
9580 * happen.
9581 */
9582 mutex_lock(&sched_domains_mutex);
9583 sched_init_domains(cpu_active_mask);
9584 mutex_unlock(&sched_domains_mutex);
9585
9586 /* Move init over to a non-isolated CPU */
9587 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0)
9588 BUG();
9589 current->flags &= ~PF_NO_SETAFFINITY;
9590 sched_init_granularity();
9591
9592 init_sched_rt_class();
9593 init_sched_dl_class();
9594
9595 sched_smp_initialized = true;
9596 }
9597
migration_init(void)9598 static int __init migration_init(void)
9599 {
9600 sched_cpu_starting(smp_processor_id());
9601 return 0;
9602 }
9603 early_initcall(migration_init);
9604
9605 #else
sched_init_smp(void)9606 void __init sched_init_smp(void)
9607 {
9608 sched_init_granularity();
9609 }
9610 #endif /* CONFIG_SMP */
9611
in_sched_functions(unsigned long addr)9612 int in_sched_functions(unsigned long addr)
9613 {
9614 return in_lock_functions(addr) ||
9615 (addr >= (unsigned long)__sched_text_start
9616 && addr < (unsigned long)__sched_text_end);
9617 }
9618
9619 #ifdef CONFIG_CGROUP_SCHED
9620 /*
9621 * Default task group.
9622 * Every task in system belongs to this group at bootup.
9623 */
9624 struct task_group root_task_group;
9625 LIST_HEAD(task_groups);
9626
9627 /* Cacheline aligned slab cache for task_group */
9628 static struct kmem_cache *task_group_cache __read_mostly;
9629 #endif
9630
sched_init(void)9631 void __init sched_init(void)
9632 {
9633 unsigned long ptr = 0;
9634 int i;
9635
9636 /* Make sure the linker didn't screw up */
9637 BUG_ON(&idle_sched_class != &fair_sched_class + 1 ||
9638 &fair_sched_class != &rt_sched_class + 1 ||
9639 &rt_sched_class != &dl_sched_class + 1);
9640 #ifdef CONFIG_SMP
9641 BUG_ON(&dl_sched_class != &stop_sched_class + 1);
9642 #endif
9643
9644 wait_bit_init();
9645
9646 #ifdef CONFIG_FAIR_GROUP_SCHED
9647 ptr += 2 * nr_cpu_ids * sizeof(void **);
9648 #endif
9649 #ifdef CONFIG_RT_GROUP_SCHED
9650 ptr += 2 * nr_cpu_ids * sizeof(void **);
9651 #endif
9652 if (ptr) {
9653 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
9654
9655 #ifdef CONFIG_FAIR_GROUP_SCHED
9656 root_task_group.se = (struct sched_entity **)ptr;
9657 ptr += nr_cpu_ids * sizeof(void **);
9658
9659 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9660 ptr += nr_cpu_ids * sizeof(void **);
9661
9662 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
9663 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
9664 #endif /* CONFIG_FAIR_GROUP_SCHED */
9665 #ifdef CONFIG_RT_GROUP_SCHED
9666 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9667 ptr += nr_cpu_ids * sizeof(void **);
9668
9669 root_task_group.rt_rq = (struct rt_rq **)ptr;
9670 ptr += nr_cpu_ids * sizeof(void **);
9671
9672 #endif /* CONFIG_RT_GROUP_SCHED */
9673 }
9674
9675 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
9676
9677 #ifdef CONFIG_SMP
9678 init_defrootdomain();
9679 #endif
9680
9681 #ifdef CONFIG_RT_GROUP_SCHED
9682 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9683 global_rt_period(), global_rt_runtime());
9684 #endif /* CONFIG_RT_GROUP_SCHED */
9685
9686 #ifdef CONFIG_CGROUP_SCHED
9687 task_group_cache = KMEM_CACHE(task_group, 0);
9688
9689 list_add(&root_task_group.list, &task_groups);
9690 INIT_LIST_HEAD(&root_task_group.children);
9691 INIT_LIST_HEAD(&root_task_group.siblings);
9692 autogroup_init(&init_task);
9693 #endif /* CONFIG_CGROUP_SCHED */
9694
9695 for_each_possible_cpu(i) {
9696 struct rq *rq;
9697
9698 rq = cpu_rq(i);
9699 raw_spin_lock_init(&rq->__lock);
9700 rq->nr_running = 0;
9701 rq->calc_load_active = 0;
9702 rq->calc_load_update = jiffies + LOAD_FREQ;
9703 init_cfs_rq(&rq->cfs);
9704 init_rt_rq(&rq->rt);
9705 init_dl_rq(&rq->dl);
9706 #ifdef CONFIG_FAIR_GROUP_SCHED
9707 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9708 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
9709 /*
9710 * How much CPU bandwidth does root_task_group get?
9711 *
9712 * In case of task-groups formed thr' the cgroup filesystem, it
9713 * gets 100% of the CPU resources in the system. This overall
9714 * system CPU resource is divided among the tasks of
9715 * root_task_group and its child task-groups in a fair manner,
9716 * based on each entity's (task or task-group's) weight
9717 * (se->load.weight).
9718 *
9719 * In other words, if root_task_group has 10 tasks of weight
9720 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9721 * then A0's share of the CPU resource is:
9722 *
9723 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9724 *
9725 * We achieve this by letting root_task_group's tasks sit
9726 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
9727 */
9728 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
9729 #endif /* CONFIG_FAIR_GROUP_SCHED */
9730
9731 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9732 #ifdef CONFIG_RT_GROUP_SCHED
9733 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
9734 #endif
9735 #ifdef CONFIG_SMP
9736 rq->sd = NULL;
9737 rq->rd = NULL;
9738 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
9739 rq->balance_callback = &balance_push_callback;
9740 rq->active_balance = 0;
9741 rq->next_balance = jiffies;
9742 rq->push_cpu = 0;
9743 rq->cpu = i;
9744 rq->online = 0;
9745 rq->idle_stamp = 0;
9746 rq->avg_idle = 2*sysctl_sched_migration_cost;
9747 rq->wake_stamp = jiffies;
9748 rq->wake_avg_idle = rq->avg_idle;
9749 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
9750
9751 INIT_LIST_HEAD(&rq->cfs_tasks);
9752
9753 rq_attach_root(rq, &def_root_domain);
9754 #ifdef CONFIG_NO_HZ_COMMON
9755 rq->last_blocked_load_update_tick = jiffies;
9756 atomic_set(&rq->nohz_flags, 0);
9757
9758 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq);
9759 #endif
9760 #ifdef CONFIG_HOTPLUG_CPU
9761 rcuwait_init(&rq->hotplug_wait);
9762 #endif
9763 #endif /* CONFIG_SMP */
9764 hrtick_rq_init(rq);
9765 atomic_set(&rq->nr_iowait, 0);
9766
9767 #ifdef CONFIG_SCHED_CORE
9768 rq->core = rq;
9769 rq->core_pick = NULL;
9770 rq->core_enabled = 0;
9771 rq->core_tree = RB_ROOT;
9772 rq->core_forceidle_count = 0;
9773 rq->core_forceidle_occupation = 0;
9774 rq->core_forceidle_start = 0;
9775
9776 rq->core_cookie = 0UL;
9777 #endif
9778 }
9779
9780 set_load_weight(&init_task, false);
9781
9782 /*
9783 * The boot idle thread does lazy MMU switching as well:
9784 */
9785 mmgrab(&init_mm);
9786 enter_lazy_tlb(&init_mm, current);
9787
9788 /*
9789 * The idle task doesn't need the kthread struct to function, but it
9790 * is dressed up as a per-CPU kthread and thus needs to play the part
9791 * if we want to avoid special-casing it in code that deals with per-CPU
9792 * kthreads.
9793 */
9794 WARN_ON(!set_kthread_struct(current));
9795
9796 /*
9797 * Make us the idle thread. Technically, schedule() should not be
9798 * called from this thread, however somewhere below it might be,
9799 * but because we are the idle thread, we just pick up running again
9800 * when this runqueue becomes "idle".
9801 */
9802 init_idle(current, smp_processor_id());
9803
9804 calc_load_update = jiffies + LOAD_FREQ;
9805
9806 #ifdef CONFIG_SMP
9807 idle_thread_set_boot_cpu();
9808 balance_push_set(smp_processor_id(), false);
9809 #endif
9810 init_sched_fair_class();
9811
9812 psi_init();
9813
9814 init_uclamp();
9815
9816 preempt_dynamic_init();
9817
9818 scheduler_running = 1;
9819 }
9820
9821 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
9822
__might_sleep(const char * file,int line)9823 void __might_sleep(const char *file, int line)
9824 {
9825 unsigned int state = get_current_state();
9826 /*
9827 * Blocking primitives will set (and therefore destroy) current->state,
9828 * since we will exit with TASK_RUNNING make sure we enter with it,
9829 * otherwise we will destroy state.
9830 */
9831 WARN_ONCE(state != TASK_RUNNING && current->task_state_change,
9832 "do not call blocking ops when !TASK_RUNNING; "
9833 "state=%x set at [<%p>] %pS\n", state,
9834 (void *)current->task_state_change,
9835 (void *)current->task_state_change);
9836
9837 __might_resched(file, line, 0);
9838 }
9839 EXPORT_SYMBOL(__might_sleep);
9840
print_preempt_disable_ip(int preempt_offset,unsigned long ip)9841 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip)
9842 {
9843 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT))
9844 return;
9845
9846 if (preempt_count() == preempt_offset)
9847 return;
9848
9849 pr_err("Preemption disabled at:");
9850 print_ip_sym(KERN_ERR, ip);
9851 }
9852
resched_offsets_ok(unsigned int offsets)9853 static inline bool resched_offsets_ok(unsigned int offsets)
9854 {
9855 unsigned int nested = preempt_count();
9856
9857 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT;
9858
9859 return nested == offsets;
9860 }
9861
__might_resched(const char * file,int line,unsigned int offsets)9862 void __might_resched(const char *file, int line, unsigned int offsets)
9863 {
9864 /* Ratelimiting timestamp: */
9865 static unsigned long prev_jiffy;
9866
9867 unsigned long preempt_disable_ip;
9868
9869 /* WARN_ON_ONCE() by default, no rate limit required: */
9870 rcu_sleep_check();
9871
9872 if ((resched_offsets_ok(offsets) && !irqs_disabled() &&
9873 !is_idle_task(current) && !current->non_block_count) ||
9874 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
9875 oops_in_progress)
9876 return;
9877
9878 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9879 return;
9880 prev_jiffy = jiffies;
9881
9882 /* Save this before calling printk(), since that will clobber it: */
9883 preempt_disable_ip = get_preempt_disable_ip(current);
9884
9885 pr_err("BUG: sleeping function called from invalid context at %s:%d\n",
9886 file, line);
9887 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
9888 in_atomic(), irqs_disabled(), current->non_block_count,
9889 current->pid, current->comm);
9890 pr_err("preempt_count: %x, expected: %x\n", preempt_count(),
9891 offsets & MIGHT_RESCHED_PREEMPT_MASK);
9892
9893 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) {
9894 pr_err("RCU nest depth: %d, expected: %u\n",
9895 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT);
9896 }
9897
9898 if (task_stack_end_corrupted(current))
9899 pr_emerg("Thread overran stack, or stack corrupted\n");
9900
9901 debug_show_held_locks(current);
9902 if (irqs_disabled())
9903 print_irqtrace_events(current);
9904
9905 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK,
9906 preempt_disable_ip);
9907
9908 dump_stack();
9909 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9910 }
9911 EXPORT_SYMBOL(__might_resched);
9912
__cant_sleep(const char * file,int line,int preempt_offset)9913 void __cant_sleep(const char *file, int line, int preempt_offset)
9914 {
9915 static unsigned long prev_jiffy;
9916
9917 if (irqs_disabled())
9918 return;
9919
9920 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9921 return;
9922
9923 if (preempt_count() > preempt_offset)
9924 return;
9925
9926 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9927 return;
9928 prev_jiffy = jiffies;
9929
9930 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
9931 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9932 in_atomic(), irqs_disabled(),
9933 current->pid, current->comm);
9934
9935 debug_show_held_locks(current);
9936 dump_stack();
9937 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9938 }
9939 EXPORT_SYMBOL_GPL(__cant_sleep);
9940
9941 #ifdef CONFIG_SMP
__cant_migrate(const char * file,int line)9942 void __cant_migrate(const char *file, int line)
9943 {
9944 static unsigned long prev_jiffy;
9945
9946 if (irqs_disabled())
9947 return;
9948
9949 if (is_migration_disabled(current))
9950 return;
9951
9952 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
9953 return;
9954
9955 if (preempt_count() > 0)
9956 return;
9957
9958 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9959 return;
9960 prev_jiffy = jiffies;
9961
9962 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line);
9963 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n",
9964 in_atomic(), irqs_disabled(), is_migration_disabled(current),
9965 current->pid, current->comm);
9966
9967 debug_show_held_locks(current);
9968 dump_stack();
9969 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
9970 }
9971 EXPORT_SYMBOL_GPL(__cant_migrate);
9972 #endif
9973 #endif
9974
9975 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)9976 void normalize_rt_tasks(void)
9977 {
9978 struct task_struct *g, *p;
9979 struct sched_attr attr = {
9980 .sched_policy = SCHED_NORMAL,
9981 };
9982
9983 read_lock(&tasklist_lock);
9984 for_each_process_thread(g, p) {
9985 /*
9986 * Only normalize user tasks:
9987 */
9988 if (p->flags & PF_KTHREAD)
9989 continue;
9990
9991 p->se.exec_start = 0;
9992 schedstat_set(p->stats.wait_start, 0);
9993 schedstat_set(p->stats.sleep_start, 0);
9994 schedstat_set(p->stats.block_start, 0);
9995
9996 if (!dl_task(p) && !rt_task(p)) {
9997 /*
9998 * Renice negative nice level userspace
9999 * tasks back to 0:
10000 */
10001 if (task_nice(p) < 0)
10002 set_user_nice(p, 0);
10003 continue;
10004 }
10005
10006 __sched_setscheduler(p, &attr, false, false);
10007 }
10008 read_unlock(&tasklist_lock);
10009 }
10010
10011 #endif /* CONFIG_MAGIC_SYSRQ */
10012
10013 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
10014 /*
10015 * These functions are only useful for the IA64 MCA handling, or kdb.
10016 *
10017 * They can only be called when the whole system has been
10018 * stopped - every CPU needs to be quiescent, and no scheduling
10019 * activity can take place. Using them for anything else would
10020 * be a serious bug, and as a result, they aren't even visible
10021 * under any other configuration.
10022 */
10023
10024 /**
10025 * curr_task - return the current task for a given CPU.
10026 * @cpu: the processor in question.
10027 *
10028 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10029 *
10030 * Return: The current task for @cpu.
10031 */
curr_task(int cpu)10032 struct task_struct *curr_task(int cpu)
10033 {
10034 return cpu_curr(cpu);
10035 }
10036
10037 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
10038
10039 #ifdef CONFIG_IA64
10040 /**
10041 * ia64_set_curr_task - set the current task for a given CPU.
10042 * @cpu: the processor in question.
10043 * @p: the task pointer to set.
10044 *
10045 * Description: This function must only be used when non-maskable interrupts
10046 * are serviced on a separate stack. It allows the architecture to switch the
10047 * notion of the current task on a CPU in a non-blocking manner. This function
10048 * must be called with all CPU's synchronized, and interrupts disabled, the
10049 * and caller must save the original value of the current task (see
10050 * curr_task() above) and restore that value before reenabling interrupts and
10051 * re-starting the system.
10052 *
10053 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
10054 */
ia64_set_curr_task(int cpu,struct task_struct * p)10055 void ia64_set_curr_task(int cpu, struct task_struct *p)
10056 {
10057 cpu_curr(cpu) = p;
10058 }
10059
10060 #endif
10061
10062 #ifdef CONFIG_CGROUP_SCHED
10063 /* task_group_lock serializes the addition/removal of task groups */
10064 static DEFINE_SPINLOCK(task_group_lock);
10065
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)10066 static inline void alloc_uclamp_sched_group(struct task_group *tg,
10067 struct task_group *parent)
10068 {
10069 #ifdef CONFIG_UCLAMP_TASK_GROUP
10070 enum uclamp_id clamp_id;
10071
10072 for_each_clamp_id(clamp_id) {
10073 uclamp_se_set(&tg->uclamp_req[clamp_id],
10074 uclamp_none(clamp_id), false);
10075 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
10076 }
10077 #endif
10078 }
10079
sched_free_group(struct task_group * tg)10080 static void sched_free_group(struct task_group *tg)
10081 {
10082 free_fair_sched_group(tg);
10083 free_rt_sched_group(tg);
10084 autogroup_free(tg);
10085 kmem_cache_free(task_group_cache, tg);
10086 }
10087
sched_free_group_rcu(struct rcu_head * rcu)10088 static void sched_free_group_rcu(struct rcu_head *rcu)
10089 {
10090 sched_free_group(container_of(rcu, struct task_group, rcu));
10091 }
10092
sched_unregister_group(struct task_group * tg)10093 static void sched_unregister_group(struct task_group *tg)
10094 {
10095 unregister_fair_sched_group(tg);
10096 unregister_rt_sched_group(tg);
10097 /*
10098 * We have to wait for yet another RCU grace period to expire, as
10099 * print_cfs_stats() might run concurrently.
10100 */
10101 call_rcu(&tg->rcu, sched_free_group_rcu);
10102 }
10103
10104 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)10105 struct task_group *sched_create_group(struct task_group *parent)
10106 {
10107 struct task_group *tg;
10108
10109 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
10110 if (!tg)
10111 return ERR_PTR(-ENOMEM);
10112
10113 if (!alloc_fair_sched_group(tg, parent))
10114 goto err;
10115
10116 if (!alloc_rt_sched_group(tg, parent))
10117 goto err;
10118
10119 alloc_uclamp_sched_group(tg, parent);
10120
10121 return tg;
10122
10123 err:
10124 sched_free_group(tg);
10125 return ERR_PTR(-ENOMEM);
10126 }
10127
sched_online_group(struct task_group * tg,struct task_group * parent)10128 void sched_online_group(struct task_group *tg, struct task_group *parent)
10129 {
10130 unsigned long flags;
10131
10132 spin_lock_irqsave(&task_group_lock, flags);
10133 list_add_rcu(&tg->list, &task_groups);
10134
10135 /* Root should already exist: */
10136 WARN_ON(!parent);
10137
10138 tg->parent = parent;
10139 INIT_LIST_HEAD(&tg->children);
10140 list_add_rcu(&tg->siblings, &parent->children);
10141 spin_unlock_irqrestore(&task_group_lock, flags);
10142
10143 online_fair_sched_group(tg);
10144 }
10145
10146 /* rcu callback to free various structures associated with a task group */
sched_unregister_group_rcu(struct rcu_head * rhp)10147 static void sched_unregister_group_rcu(struct rcu_head *rhp)
10148 {
10149 /* Now it should be safe to free those cfs_rqs: */
10150 sched_unregister_group(container_of(rhp, struct task_group, rcu));
10151 }
10152
sched_destroy_group(struct task_group * tg)10153 void sched_destroy_group(struct task_group *tg)
10154 {
10155 /* Wait for possible concurrent references to cfs_rqs complete: */
10156 call_rcu(&tg->rcu, sched_unregister_group_rcu);
10157 }
10158
sched_release_group(struct task_group * tg)10159 void sched_release_group(struct task_group *tg)
10160 {
10161 unsigned long flags;
10162
10163 /*
10164 * Unlink first, to avoid walk_tg_tree_from() from finding us (via
10165 * sched_cfs_period_timer()).
10166 *
10167 * For this to be effective, we have to wait for all pending users of
10168 * this task group to leave their RCU critical section to ensure no new
10169 * user will see our dying task group any more. Specifically ensure
10170 * that tg_unthrottle_up() won't add decayed cfs_rq's to it.
10171 *
10172 * We therefore defer calling unregister_fair_sched_group() to
10173 * sched_unregister_group() which is guarantied to get called only after the
10174 * current RCU grace period has expired.
10175 */
10176 spin_lock_irqsave(&task_group_lock, flags);
10177 list_del_rcu(&tg->list);
10178 list_del_rcu(&tg->siblings);
10179 spin_unlock_irqrestore(&task_group_lock, flags);
10180 }
10181
sched_change_group(struct task_struct * tsk)10182 static void sched_change_group(struct task_struct *tsk)
10183 {
10184 struct task_group *tg;
10185
10186 /*
10187 * All callers are synchronized by task_rq_lock(); we do not use RCU
10188 * which is pointless here. Thus, we pass "true" to task_css_check()
10189 * to prevent lockdep warnings.
10190 */
10191 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
10192 struct task_group, css);
10193 tg = autogroup_task_group(tsk, tg);
10194 tsk->sched_task_group = tg;
10195
10196 #ifdef CONFIG_FAIR_GROUP_SCHED
10197 if (tsk->sched_class->task_change_group)
10198 tsk->sched_class->task_change_group(tsk);
10199 else
10200 #endif
10201 set_task_rq(tsk, task_cpu(tsk));
10202 }
10203
10204 /*
10205 * Change task's runqueue when it moves between groups.
10206 *
10207 * The caller of this function should have put the task in its new group by
10208 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
10209 * its new group.
10210 */
sched_move_task(struct task_struct * tsk)10211 void sched_move_task(struct task_struct *tsk)
10212 {
10213 int queued, running, queue_flags =
10214 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
10215 struct rq_flags rf;
10216 struct rq *rq;
10217
10218 rq = task_rq_lock(tsk, &rf);
10219 update_rq_clock(rq);
10220
10221 running = task_current(rq, tsk);
10222 queued = task_on_rq_queued(tsk);
10223
10224 if (queued)
10225 dequeue_task(rq, tsk, queue_flags);
10226 if (running)
10227 put_prev_task(rq, tsk);
10228
10229 sched_change_group(tsk);
10230
10231 if (queued)
10232 enqueue_task(rq, tsk, queue_flags);
10233 if (running) {
10234 set_next_task(rq, tsk);
10235 /*
10236 * After changing group, the running task may have joined a
10237 * throttled one but it's still the running task. Trigger a
10238 * resched to make sure that task can still run.
10239 */
10240 resched_curr(rq);
10241 }
10242
10243 task_rq_unlock(rq, tsk, &rf);
10244 }
10245
css_tg(struct cgroup_subsys_state * css)10246 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
10247 {
10248 return css ? container_of(css, struct task_group, css) : NULL;
10249 }
10250
10251 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)10252 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
10253 {
10254 struct task_group *parent = css_tg(parent_css);
10255 struct task_group *tg;
10256
10257 if (!parent) {
10258 /* This is early initialization for the top cgroup */
10259 return &root_task_group.css;
10260 }
10261
10262 tg = sched_create_group(parent);
10263 if (IS_ERR(tg))
10264 return ERR_PTR(-ENOMEM);
10265
10266 return &tg->css;
10267 }
10268
10269 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)10270 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
10271 {
10272 struct task_group *tg = css_tg(css);
10273 struct task_group *parent = css_tg(css->parent);
10274
10275 if (parent)
10276 sched_online_group(tg, parent);
10277
10278 #ifdef CONFIG_UCLAMP_TASK_GROUP
10279 /* Propagate the effective uclamp value for the new group */
10280 mutex_lock(&uclamp_mutex);
10281 rcu_read_lock();
10282 cpu_util_update_eff(css);
10283 rcu_read_unlock();
10284 mutex_unlock(&uclamp_mutex);
10285 #endif
10286
10287 return 0;
10288 }
10289
cpu_cgroup_css_released(struct cgroup_subsys_state * css)10290 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
10291 {
10292 struct task_group *tg = css_tg(css);
10293
10294 sched_release_group(tg);
10295 }
10296
cpu_cgroup_css_free(struct cgroup_subsys_state * css)10297 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
10298 {
10299 struct task_group *tg = css_tg(css);
10300
10301 /*
10302 * Relies on the RCU grace period between css_released() and this.
10303 */
10304 sched_unregister_group(tg);
10305 }
10306
10307 #ifdef CONFIG_RT_GROUP_SCHED
cpu_cgroup_can_attach(struct cgroup_taskset * tset)10308 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
10309 {
10310 struct task_struct *task;
10311 struct cgroup_subsys_state *css;
10312
10313 cgroup_taskset_for_each(task, css, tset) {
10314 if (!sched_rt_can_attach(css_tg(css), task))
10315 return -EINVAL;
10316 }
10317 return 0;
10318 }
10319 #endif
10320
cpu_cgroup_attach(struct cgroup_taskset * tset)10321 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
10322 {
10323 struct task_struct *task;
10324 struct cgroup_subsys_state *css;
10325
10326 cgroup_taskset_for_each(task, css, tset)
10327 sched_move_task(task);
10328 }
10329
10330 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)10331 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
10332 {
10333 struct cgroup_subsys_state *top_css = css;
10334 struct uclamp_se *uc_parent = NULL;
10335 struct uclamp_se *uc_se = NULL;
10336 unsigned int eff[UCLAMP_CNT];
10337 enum uclamp_id clamp_id;
10338 unsigned int clamps;
10339
10340 lockdep_assert_held(&uclamp_mutex);
10341 SCHED_WARN_ON(!rcu_read_lock_held());
10342
10343 css_for_each_descendant_pre(css, top_css) {
10344 uc_parent = css_tg(css)->parent
10345 ? css_tg(css)->parent->uclamp : NULL;
10346
10347 for_each_clamp_id(clamp_id) {
10348 /* Assume effective clamps matches requested clamps */
10349 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
10350 /* Cap effective clamps with parent's effective clamps */
10351 if (uc_parent &&
10352 eff[clamp_id] > uc_parent[clamp_id].value) {
10353 eff[clamp_id] = uc_parent[clamp_id].value;
10354 }
10355 }
10356 /* Ensure protection is always capped by limit */
10357 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
10358
10359 /* Propagate most restrictive effective clamps */
10360 clamps = 0x0;
10361 uc_se = css_tg(css)->uclamp;
10362 for_each_clamp_id(clamp_id) {
10363 if (eff[clamp_id] == uc_se[clamp_id].value)
10364 continue;
10365 uc_se[clamp_id].value = eff[clamp_id];
10366 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
10367 clamps |= (0x1 << clamp_id);
10368 }
10369 if (!clamps) {
10370 css = css_rightmost_descendant(css);
10371 continue;
10372 }
10373
10374 /* Immediately update descendants RUNNABLE tasks */
10375 uclamp_update_active_tasks(css);
10376 }
10377 }
10378
10379 /*
10380 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
10381 * C expression. Since there is no way to convert a macro argument (N) into a
10382 * character constant, use two levels of macros.
10383 */
10384 #define _POW10(exp) ((unsigned int)1e##exp)
10385 #define POW10(exp) _POW10(exp)
10386
10387 struct uclamp_request {
10388 #define UCLAMP_PERCENT_SHIFT 2
10389 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
10390 s64 percent;
10391 u64 util;
10392 int ret;
10393 };
10394
10395 static inline struct uclamp_request
capacity_from_percent(char * buf)10396 capacity_from_percent(char *buf)
10397 {
10398 struct uclamp_request req = {
10399 .percent = UCLAMP_PERCENT_SCALE,
10400 .util = SCHED_CAPACITY_SCALE,
10401 .ret = 0,
10402 };
10403
10404 buf = strim(buf);
10405 if (strcmp(buf, "max")) {
10406 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
10407 &req.percent);
10408 if (req.ret)
10409 return req;
10410 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
10411 req.ret = -ERANGE;
10412 return req;
10413 }
10414
10415 req.util = req.percent << SCHED_CAPACITY_SHIFT;
10416 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
10417 }
10418
10419 return req;
10420 }
10421
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)10422 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
10423 size_t nbytes, loff_t off,
10424 enum uclamp_id clamp_id)
10425 {
10426 struct uclamp_request req;
10427 struct task_group *tg;
10428
10429 req = capacity_from_percent(buf);
10430 if (req.ret)
10431 return req.ret;
10432
10433 static_branch_enable(&sched_uclamp_used);
10434
10435 mutex_lock(&uclamp_mutex);
10436 rcu_read_lock();
10437
10438 tg = css_tg(of_css(of));
10439 if (tg->uclamp_req[clamp_id].value != req.util)
10440 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
10441
10442 /*
10443 * Because of not recoverable conversion rounding we keep track of the
10444 * exact requested value
10445 */
10446 tg->uclamp_pct[clamp_id] = req.percent;
10447
10448 /* Update effective clamps to track the most restrictive value */
10449 cpu_util_update_eff(of_css(of));
10450
10451 rcu_read_unlock();
10452 mutex_unlock(&uclamp_mutex);
10453
10454 return nbytes;
10455 }
10456
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10457 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
10458 char *buf, size_t nbytes,
10459 loff_t off)
10460 {
10461 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
10462 }
10463
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)10464 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
10465 char *buf, size_t nbytes,
10466 loff_t off)
10467 {
10468 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
10469 }
10470
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)10471 static inline void cpu_uclamp_print(struct seq_file *sf,
10472 enum uclamp_id clamp_id)
10473 {
10474 struct task_group *tg;
10475 u64 util_clamp;
10476 u64 percent;
10477 u32 rem;
10478
10479 rcu_read_lock();
10480 tg = css_tg(seq_css(sf));
10481 util_clamp = tg->uclamp_req[clamp_id].value;
10482 rcu_read_unlock();
10483
10484 if (util_clamp == SCHED_CAPACITY_SCALE) {
10485 seq_puts(sf, "max\n");
10486 return;
10487 }
10488
10489 percent = tg->uclamp_pct[clamp_id];
10490 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
10491 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
10492 }
10493
cpu_uclamp_min_show(struct seq_file * sf,void * v)10494 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
10495 {
10496 cpu_uclamp_print(sf, UCLAMP_MIN);
10497 return 0;
10498 }
10499
cpu_uclamp_max_show(struct seq_file * sf,void * v)10500 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
10501 {
10502 cpu_uclamp_print(sf, UCLAMP_MAX);
10503 return 0;
10504 }
10505 #endif /* CONFIG_UCLAMP_TASK_GROUP */
10506
10507 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)10508 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
10509 struct cftype *cftype, u64 shareval)
10510 {
10511 if (shareval > scale_load_down(ULONG_MAX))
10512 shareval = MAX_SHARES;
10513 return sched_group_set_shares(css_tg(css), scale_load(shareval));
10514 }
10515
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10516 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
10517 struct cftype *cft)
10518 {
10519 struct task_group *tg = css_tg(css);
10520
10521 return (u64) scale_load_down(tg->shares);
10522 }
10523
10524 #ifdef CONFIG_CFS_BANDWIDTH
10525 static DEFINE_MUTEX(cfs_constraints_mutex);
10526
10527 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
10528 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
10529 /* More than 203 days if BW_SHIFT equals 20. */
10530 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
10531
10532 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
10533
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota,u64 burst)10534 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota,
10535 u64 burst)
10536 {
10537 int i, ret = 0, runtime_enabled, runtime_was_enabled;
10538 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10539
10540 if (tg == &root_task_group)
10541 return -EINVAL;
10542
10543 /*
10544 * Ensure we have at some amount of bandwidth every period. This is
10545 * to prevent reaching a state of large arrears when throttled via
10546 * entity_tick() resulting in prolonged exit starvation.
10547 */
10548 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
10549 return -EINVAL;
10550
10551 /*
10552 * Likewise, bound things on the other side by preventing insane quota
10553 * periods. This also allows us to normalize in computing quota
10554 * feasibility.
10555 */
10556 if (period > max_cfs_quota_period)
10557 return -EINVAL;
10558
10559 /*
10560 * Bound quota to defend quota against overflow during bandwidth shift.
10561 */
10562 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
10563 return -EINVAL;
10564
10565 if (quota != RUNTIME_INF && (burst > quota ||
10566 burst + quota > max_cfs_runtime))
10567 return -EINVAL;
10568
10569 /*
10570 * Prevent race between setting of cfs_rq->runtime_enabled and
10571 * unthrottle_offline_cfs_rqs().
10572 */
10573 cpus_read_lock();
10574 mutex_lock(&cfs_constraints_mutex);
10575 ret = __cfs_schedulable(tg, period, quota);
10576 if (ret)
10577 goto out_unlock;
10578
10579 runtime_enabled = quota != RUNTIME_INF;
10580 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
10581 /*
10582 * If we need to toggle cfs_bandwidth_used, off->on must occur
10583 * before making related changes, and on->off must occur afterwards
10584 */
10585 if (runtime_enabled && !runtime_was_enabled)
10586 cfs_bandwidth_usage_inc();
10587 raw_spin_lock_irq(&cfs_b->lock);
10588 cfs_b->period = ns_to_ktime(period);
10589 cfs_b->quota = quota;
10590 cfs_b->burst = burst;
10591
10592 __refill_cfs_bandwidth_runtime(cfs_b);
10593
10594 /* Restart the period timer (if active) to handle new period expiry: */
10595 if (runtime_enabled)
10596 start_cfs_bandwidth(cfs_b);
10597
10598 raw_spin_unlock_irq(&cfs_b->lock);
10599
10600 for_each_online_cpu(i) {
10601 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
10602 struct rq *rq = cfs_rq->rq;
10603 struct rq_flags rf;
10604
10605 rq_lock_irq(rq, &rf);
10606 cfs_rq->runtime_enabled = runtime_enabled;
10607 cfs_rq->runtime_remaining = 0;
10608
10609 if (cfs_rq->throttled)
10610 unthrottle_cfs_rq(cfs_rq);
10611 rq_unlock_irq(rq, &rf);
10612 }
10613 if (runtime_was_enabled && !runtime_enabled)
10614 cfs_bandwidth_usage_dec();
10615 out_unlock:
10616 mutex_unlock(&cfs_constraints_mutex);
10617 cpus_read_unlock();
10618
10619 return ret;
10620 }
10621
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)10622 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
10623 {
10624 u64 quota, period, burst;
10625
10626 period = ktime_to_ns(tg->cfs_bandwidth.period);
10627 burst = tg->cfs_bandwidth.burst;
10628 if (cfs_quota_us < 0)
10629 quota = RUNTIME_INF;
10630 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
10631 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
10632 else
10633 return -EINVAL;
10634
10635 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10636 }
10637
tg_get_cfs_quota(struct task_group * tg)10638 static long tg_get_cfs_quota(struct task_group *tg)
10639 {
10640 u64 quota_us;
10641
10642 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
10643 return -1;
10644
10645 quota_us = tg->cfs_bandwidth.quota;
10646 do_div(quota_us, NSEC_PER_USEC);
10647
10648 return quota_us;
10649 }
10650
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)10651 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
10652 {
10653 u64 quota, period, burst;
10654
10655 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
10656 return -EINVAL;
10657
10658 period = (u64)cfs_period_us * NSEC_PER_USEC;
10659 quota = tg->cfs_bandwidth.quota;
10660 burst = tg->cfs_bandwidth.burst;
10661
10662 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10663 }
10664
tg_get_cfs_period(struct task_group * tg)10665 static long tg_get_cfs_period(struct task_group *tg)
10666 {
10667 u64 cfs_period_us;
10668
10669 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
10670 do_div(cfs_period_us, NSEC_PER_USEC);
10671
10672 return cfs_period_us;
10673 }
10674
tg_set_cfs_burst(struct task_group * tg,long cfs_burst_us)10675 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us)
10676 {
10677 u64 quota, period, burst;
10678
10679 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC)
10680 return -EINVAL;
10681
10682 burst = (u64)cfs_burst_us * NSEC_PER_USEC;
10683 period = ktime_to_ns(tg->cfs_bandwidth.period);
10684 quota = tg->cfs_bandwidth.quota;
10685
10686 return tg_set_cfs_bandwidth(tg, period, quota, burst);
10687 }
10688
tg_get_cfs_burst(struct task_group * tg)10689 static long tg_get_cfs_burst(struct task_group *tg)
10690 {
10691 u64 burst_us;
10692
10693 burst_us = tg->cfs_bandwidth.burst;
10694 do_div(burst_us, NSEC_PER_USEC);
10695
10696 return burst_us;
10697 }
10698
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10699 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
10700 struct cftype *cft)
10701 {
10702 return tg_get_cfs_quota(css_tg(css));
10703 }
10704
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)10705 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
10706 struct cftype *cftype, s64 cfs_quota_us)
10707 {
10708 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
10709 }
10710
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10711 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
10712 struct cftype *cft)
10713 {
10714 return tg_get_cfs_period(css_tg(css));
10715 }
10716
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)10717 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
10718 struct cftype *cftype, u64 cfs_period_us)
10719 {
10720 return tg_set_cfs_period(css_tg(css), cfs_period_us);
10721 }
10722
cpu_cfs_burst_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10723 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css,
10724 struct cftype *cft)
10725 {
10726 return tg_get_cfs_burst(css_tg(css));
10727 }
10728
cpu_cfs_burst_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_burst_us)10729 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css,
10730 struct cftype *cftype, u64 cfs_burst_us)
10731 {
10732 return tg_set_cfs_burst(css_tg(css), cfs_burst_us);
10733 }
10734
10735 struct cfs_schedulable_data {
10736 struct task_group *tg;
10737 u64 period, quota;
10738 };
10739
10740 /*
10741 * normalize group quota/period to be quota/max_period
10742 * note: units are usecs
10743 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)10744 static u64 normalize_cfs_quota(struct task_group *tg,
10745 struct cfs_schedulable_data *d)
10746 {
10747 u64 quota, period;
10748
10749 if (tg == d->tg) {
10750 period = d->period;
10751 quota = d->quota;
10752 } else {
10753 period = tg_get_cfs_period(tg);
10754 quota = tg_get_cfs_quota(tg);
10755 }
10756
10757 /* note: these should typically be equivalent */
10758 if (quota == RUNTIME_INF || quota == -1)
10759 return RUNTIME_INF;
10760
10761 return to_ratio(period, quota);
10762 }
10763
tg_cfs_schedulable_down(struct task_group * tg,void * data)10764 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
10765 {
10766 struct cfs_schedulable_data *d = data;
10767 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10768 s64 quota = 0, parent_quota = -1;
10769
10770 if (!tg->parent) {
10771 quota = RUNTIME_INF;
10772 } else {
10773 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
10774
10775 quota = normalize_cfs_quota(tg, d);
10776 parent_quota = parent_b->hierarchical_quota;
10777
10778 /*
10779 * Ensure max(child_quota) <= parent_quota. On cgroup2,
10780 * always take the min. On cgroup1, only inherit when no
10781 * limit is set:
10782 */
10783 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
10784 quota = min(quota, parent_quota);
10785 } else {
10786 if (quota == RUNTIME_INF)
10787 quota = parent_quota;
10788 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
10789 return -EINVAL;
10790 }
10791 }
10792 cfs_b->hierarchical_quota = quota;
10793
10794 return 0;
10795 }
10796
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)10797 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
10798 {
10799 int ret;
10800 struct cfs_schedulable_data data = {
10801 .tg = tg,
10802 .period = period,
10803 .quota = quota,
10804 };
10805
10806 if (quota != RUNTIME_INF) {
10807 do_div(data.period, NSEC_PER_USEC);
10808 do_div(data.quota, NSEC_PER_USEC);
10809 }
10810
10811 rcu_read_lock();
10812 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
10813 rcu_read_unlock();
10814
10815 return ret;
10816 }
10817
cpu_cfs_stat_show(struct seq_file * sf,void * v)10818 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
10819 {
10820 struct task_group *tg = css_tg(seq_css(sf));
10821 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10822
10823 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
10824 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
10825 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
10826
10827 if (schedstat_enabled() && tg != &root_task_group) {
10828 struct sched_statistics *stats;
10829 u64 ws = 0;
10830 int i;
10831
10832 for_each_possible_cpu(i) {
10833 stats = __schedstats_from_se(tg->se[i]);
10834 ws += schedstat_val(stats->wait_sum);
10835 }
10836
10837 seq_printf(sf, "wait_sum %llu\n", ws);
10838 }
10839
10840 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst);
10841 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time);
10842
10843 return 0;
10844 }
10845 #endif /* CONFIG_CFS_BANDWIDTH */
10846 #endif /* CONFIG_FAIR_GROUP_SCHED */
10847
10848 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)10849 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
10850 struct cftype *cft, s64 val)
10851 {
10852 return sched_group_set_rt_runtime(css_tg(css), val);
10853 }
10854
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)10855 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
10856 struct cftype *cft)
10857 {
10858 return sched_group_rt_runtime(css_tg(css));
10859 }
10860
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)10861 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
10862 struct cftype *cftype, u64 rt_period_us)
10863 {
10864 return sched_group_set_rt_period(css_tg(css), rt_period_us);
10865 }
10866
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)10867 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
10868 struct cftype *cft)
10869 {
10870 return sched_group_rt_period(css_tg(css));
10871 }
10872 #endif /* CONFIG_RT_GROUP_SCHED */
10873
10874 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_idle_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)10875 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css,
10876 struct cftype *cft)
10877 {
10878 return css_tg(css)->idle;
10879 }
10880
cpu_idle_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 idle)10881 static int cpu_idle_write_s64(struct cgroup_subsys_state *css,
10882 struct cftype *cft, s64 idle)
10883 {
10884 return sched_group_set_idle(css_tg(css), idle);
10885 }
10886 #endif
10887
10888 static struct cftype cpu_legacy_files[] = {
10889 #ifdef CONFIG_FAIR_GROUP_SCHED
10890 {
10891 .name = "shares",
10892 .read_u64 = cpu_shares_read_u64,
10893 .write_u64 = cpu_shares_write_u64,
10894 },
10895 {
10896 .name = "idle",
10897 .read_s64 = cpu_idle_read_s64,
10898 .write_s64 = cpu_idle_write_s64,
10899 },
10900 #endif
10901 #ifdef CONFIG_CFS_BANDWIDTH
10902 {
10903 .name = "cfs_quota_us",
10904 .read_s64 = cpu_cfs_quota_read_s64,
10905 .write_s64 = cpu_cfs_quota_write_s64,
10906 },
10907 {
10908 .name = "cfs_period_us",
10909 .read_u64 = cpu_cfs_period_read_u64,
10910 .write_u64 = cpu_cfs_period_write_u64,
10911 },
10912 {
10913 .name = "cfs_burst_us",
10914 .read_u64 = cpu_cfs_burst_read_u64,
10915 .write_u64 = cpu_cfs_burst_write_u64,
10916 },
10917 {
10918 .name = "stat",
10919 .seq_show = cpu_cfs_stat_show,
10920 },
10921 #endif
10922 #ifdef CONFIG_RT_GROUP_SCHED
10923 {
10924 .name = "rt_runtime_us",
10925 .read_s64 = cpu_rt_runtime_read,
10926 .write_s64 = cpu_rt_runtime_write,
10927 },
10928 {
10929 .name = "rt_period_us",
10930 .read_u64 = cpu_rt_period_read_uint,
10931 .write_u64 = cpu_rt_period_write_uint,
10932 },
10933 #endif
10934 #ifdef CONFIG_UCLAMP_TASK_GROUP
10935 {
10936 .name = "uclamp.min",
10937 .flags = CFTYPE_NOT_ON_ROOT,
10938 .seq_show = cpu_uclamp_min_show,
10939 .write = cpu_uclamp_min_write,
10940 },
10941 {
10942 .name = "uclamp.max",
10943 .flags = CFTYPE_NOT_ON_ROOT,
10944 .seq_show = cpu_uclamp_max_show,
10945 .write = cpu_uclamp_max_write,
10946 },
10947 #endif
10948 { } /* Terminate */
10949 };
10950
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)10951 static int cpu_extra_stat_show(struct seq_file *sf,
10952 struct cgroup_subsys_state *css)
10953 {
10954 #ifdef CONFIG_CFS_BANDWIDTH
10955 {
10956 struct task_group *tg = css_tg(css);
10957 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
10958 u64 throttled_usec, burst_usec;
10959
10960 throttled_usec = cfs_b->throttled_time;
10961 do_div(throttled_usec, NSEC_PER_USEC);
10962 burst_usec = cfs_b->burst_time;
10963 do_div(burst_usec, NSEC_PER_USEC);
10964
10965 seq_printf(sf, "nr_periods %d\n"
10966 "nr_throttled %d\n"
10967 "throttled_usec %llu\n"
10968 "nr_bursts %d\n"
10969 "burst_usec %llu\n",
10970 cfs_b->nr_periods, cfs_b->nr_throttled,
10971 throttled_usec, cfs_b->nr_burst, burst_usec);
10972 }
10973 #endif
10974 return 0;
10975 }
10976
10977 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)10978 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
10979 struct cftype *cft)
10980 {
10981 struct task_group *tg = css_tg(css);
10982 u64 weight = scale_load_down(tg->shares);
10983
10984 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
10985 }
10986
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)10987 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
10988 struct cftype *cft, u64 weight)
10989 {
10990 /*
10991 * cgroup weight knobs should use the common MIN, DFL and MAX
10992 * values which are 1, 100 and 10000 respectively. While it loses
10993 * a bit of range on both ends, it maps pretty well onto the shares
10994 * value used by scheduler and the round-trip conversions preserve
10995 * the original value over the entire range.
10996 */
10997 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
10998 return -ERANGE;
10999
11000 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
11001
11002 return sched_group_set_shares(css_tg(css), scale_load(weight));
11003 }
11004
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)11005 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
11006 struct cftype *cft)
11007 {
11008 unsigned long weight = scale_load_down(css_tg(css)->shares);
11009 int last_delta = INT_MAX;
11010 int prio, delta;
11011
11012 /* find the closest nice value to the current weight */
11013 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
11014 delta = abs(sched_prio_to_weight[prio] - weight);
11015 if (delta >= last_delta)
11016 break;
11017 last_delta = delta;
11018 }
11019
11020 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
11021 }
11022
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)11023 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
11024 struct cftype *cft, s64 nice)
11025 {
11026 unsigned long weight;
11027 int idx;
11028
11029 if (nice < MIN_NICE || nice > MAX_NICE)
11030 return -ERANGE;
11031
11032 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
11033 idx = array_index_nospec(idx, 40);
11034 weight = sched_prio_to_weight[idx];
11035
11036 return sched_group_set_shares(css_tg(css), scale_load(weight));
11037 }
11038 #endif
11039
cpu_period_quota_print(struct seq_file * sf,long period,long quota)11040 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
11041 long period, long quota)
11042 {
11043 if (quota < 0)
11044 seq_puts(sf, "max");
11045 else
11046 seq_printf(sf, "%ld", quota);
11047
11048 seq_printf(sf, " %ld\n", period);
11049 }
11050
11051 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)11052 static int __maybe_unused cpu_period_quota_parse(char *buf,
11053 u64 *periodp, u64 *quotap)
11054 {
11055 char tok[21]; /* U64_MAX */
11056
11057 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
11058 return -EINVAL;
11059
11060 *periodp *= NSEC_PER_USEC;
11061
11062 if (sscanf(tok, "%llu", quotap))
11063 *quotap *= NSEC_PER_USEC;
11064 else if (!strcmp(tok, "max"))
11065 *quotap = RUNTIME_INF;
11066 else
11067 return -EINVAL;
11068
11069 return 0;
11070 }
11071
11072 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)11073 static int cpu_max_show(struct seq_file *sf, void *v)
11074 {
11075 struct task_group *tg = css_tg(seq_css(sf));
11076
11077 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
11078 return 0;
11079 }
11080
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)11081 static ssize_t cpu_max_write(struct kernfs_open_file *of,
11082 char *buf, size_t nbytes, loff_t off)
11083 {
11084 struct task_group *tg = css_tg(of_css(of));
11085 u64 period = tg_get_cfs_period(tg);
11086 u64 burst = tg_get_cfs_burst(tg);
11087 u64 quota;
11088 int ret;
11089
11090 ret = cpu_period_quota_parse(buf, &period, "a);
11091 if (!ret)
11092 ret = tg_set_cfs_bandwidth(tg, period, quota, burst);
11093 return ret ?: nbytes;
11094 }
11095 #endif
11096
11097 static struct cftype cpu_files[] = {
11098 #ifdef CONFIG_FAIR_GROUP_SCHED
11099 {
11100 .name = "weight",
11101 .flags = CFTYPE_NOT_ON_ROOT,
11102 .read_u64 = cpu_weight_read_u64,
11103 .write_u64 = cpu_weight_write_u64,
11104 },
11105 {
11106 .name = "weight.nice",
11107 .flags = CFTYPE_NOT_ON_ROOT,
11108 .read_s64 = cpu_weight_nice_read_s64,
11109 .write_s64 = cpu_weight_nice_write_s64,
11110 },
11111 {
11112 .name = "idle",
11113 .flags = CFTYPE_NOT_ON_ROOT,
11114 .read_s64 = cpu_idle_read_s64,
11115 .write_s64 = cpu_idle_write_s64,
11116 },
11117 #endif
11118 #ifdef CONFIG_CFS_BANDWIDTH
11119 {
11120 .name = "max",
11121 .flags = CFTYPE_NOT_ON_ROOT,
11122 .seq_show = cpu_max_show,
11123 .write = cpu_max_write,
11124 },
11125 {
11126 .name = "max.burst",
11127 .flags = CFTYPE_NOT_ON_ROOT,
11128 .read_u64 = cpu_cfs_burst_read_u64,
11129 .write_u64 = cpu_cfs_burst_write_u64,
11130 },
11131 #endif
11132 #ifdef CONFIG_UCLAMP_TASK_GROUP
11133 {
11134 .name = "uclamp.min",
11135 .flags = CFTYPE_NOT_ON_ROOT,
11136 .seq_show = cpu_uclamp_min_show,
11137 .write = cpu_uclamp_min_write,
11138 },
11139 {
11140 .name = "uclamp.max",
11141 .flags = CFTYPE_NOT_ON_ROOT,
11142 .seq_show = cpu_uclamp_max_show,
11143 .write = cpu_uclamp_max_write,
11144 },
11145 #endif
11146 { } /* terminate */
11147 };
11148
11149 struct cgroup_subsys cpu_cgrp_subsys = {
11150 .css_alloc = cpu_cgroup_css_alloc,
11151 .css_online = cpu_cgroup_css_online,
11152 .css_released = cpu_cgroup_css_released,
11153 .css_free = cpu_cgroup_css_free,
11154 .css_extra_stat_show = cpu_extra_stat_show,
11155 #ifdef CONFIG_RT_GROUP_SCHED
11156 .can_attach = cpu_cgroup_can_attach,
11157 #endif
11158 .attach = cpu_cgroup_attach,
11159 .legacy_cftypes = cpu_legacy_files,
11160 .dfl_cftypes = cpu_files,
11161 .early_init = true,
11162 .threaded = true,
11163 };
11164
11165 #endif /* CONFIG_CGROUP_SCHED */
11166
dump_cpu_task(int cpu)11167 void dump_cpu_task(int cpu)
11168 {
11169 if (cpu == smp_processor_id() && in_hardirq()) {
11170 struct pt_regs *regs;
11171
11172 regs = get_irq_regs();
11173 if (regs) {
11174 show_regs(regs);
11175 return;
11176 }
11177 }
11178
11179 if (trigger_single_cpu_backtrace(cpu))
11180 return;
11181
11182 pr_info("Task dump for CPU %d:\n", cpu);
11183 sched_show_task(cpu_curr(cpu));
11184 }
11185
11186 /*
11187 * Nice levels are multiplicative, with a gentle 10% change for every
11188 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
11189 * nice 1, it will get ~10% less CPU time than another CPU-bound task
11190 * that remained on nice 0.
11191 *
11192 * The "10% effect" is relative and cumulative: from _any_ nice level,
11193 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
11194 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
11195 * If a task goes up by ~10% and another task goes down by ~10% then
11196 * the relative distance between them is ~25%.)
11197 */
11198 const int sched_prio_to_weight[40] = {
11199 /* -20 */ 88761, 71755, 56483, 46273, 36291,
11200 /* -15 */ 29154, 23254, 18705, 14949, 11916,
11201 /* -10 */ 9548, 7620, 6100, 4904, 3906,
11202 /* -5 */ 3121, 2501, 1991, 1586, 1277,
11203 /* 0 */ 1024, 820, 655, 526, 423,
11204 /* 5 */ 335, 272, 215, 172, 137,
11205 /* 10 */ 110, 87, 70, 56, 45,
11206 /* 15 */ 36, 29, 23, 18, 15,
11207 };
11208
11209 /*
11210 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
11211 *
11212 * In cases where the weight does not change often, we can use the
11213 * precalculated inverse to speed up arithmetics by turning divisions
11214 * into multiplications:
11215 */
11216 const u32 sched_prio_to_wmult[40] = {
11217 /* -20 */ 48388, 59856, 76040, 92818, 118348,
11218 /* -15 */ 147320, 184698, 229616, 287308, 360437,
11219 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
11220 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
11221 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
11222 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
11223 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
11224 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
11225 };
11226
call_trace_sched_update_nr_running(struct rq * rq,int count)11227 void call_trace_sched_update_nr_running(struct rq *rq, int count)
11228 {
11229 trace_sched_update_nr_running_tp(rq, count);
11230 }
11231